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ABSTRACT 

Following Lion Oil’s drilling of the Sowell #1, Lower Cretaceous step-out drilling 

in Pelahatchie Field has led to the establishment of Mooringsport, Paluxy, Rodessa, 

Sligo, and Hosston oil and gas condensate production along the flanks and crest of a salt 

feature within Rankin County, Mississippi. Exploration of salt features has been 

intermittent throughout Mississippi, but has shifted from targeting pay zones along the 

crests of domal and piercement salt features in the 1940s, to targeting reserves along the 

flanks of these features in the 1970s.  The dominant structural feature in Pelahatchie Field 

is an elongate north-south-trending salt ridge. Results of this study suggest that 

combination traps predominate. The Glen Rose Subgroup in southern Rankin County 

transitions from upper shoreface to the south of the study area, to estuarine tidal flats in a 

more restrictive environment within Pelahatchie Field. The discovery of a channel within 

the lower Rodessa Formation records a short period of fluvial deposition. A more clear 

definition of paleo-depositional environments in association with structural and 

stratigraphic controls on production are important to the continued oil and gas exploration 

of salt dome plays in the Mississippi Interior Salt Basin. 
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TVT  Total vertical thickness  
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INTRODUCTION 

Pelahatchie Field (Fig. 1) in Rankin County Mississippi has produced 1,442,633  

 

Figure 1. Pelahatchie Field location shaded in yellow showing proximity to state capital, 

Jackson. 
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cumulative barrels of oil, 6,250 MCF of natural gas, and 7,759,244 cumulative barrels of water 

(DrillingInfo, 2018) since its discovery in 1956 and could still hold potential as an important 

energy resource. Outside of private prospectors and proprietary data, the field is largely 

unstudied and nearly absent from energy literature. The field is located near the up-dip limit of 

Lower Cretaceous oil production and the down-dip limit of Smackover production (Karges, 

1968). Hydrocarbon potential was first discovered in 1956 with Lion Oil’s Leon No. 1, which 

encountered oil shows in the sands of the Rodessa Formation (Fig. 2).     

    

       

 

Figure 2. Producing sand intervals in Rodessa Formation as indicated by perforating records in 

labelled wells. Well log shown is Davis #2.  

 

Beginning in 1957, C.F. Martin and American Petrofina step outs encountered oil shows 

in the Rodessa, as well as the Hosston Formation sands. Following discoveries in the Rodessa 



 

3 
 

and Hosston, expansion of the field was pursued by American Petrofina and Love Petroleum. 

This led to the establishment of production in the Hosston, Sligo, Rodessa, Mooringsport, and 

Paluxy Formations (Karges, 1968). Results from this attempted expansion resulted in 

identification of the eastern extent of the field when American Petrofina drilled the L. E. Knight, 

a dry hole one half mile east of the Rhodes Sowell #1 in section 18 (Karges, 1968). Later 

attempts to explore deeper horizons, such as the Smackover and Norphlet Formations, resulted in 

high produced volumes of CO2 and H2S gas. Large volumes of high purity CO2 accumulations 

within Jurassic formations are common in central Mississippi where salt-cored anticlines occur 

in close proximity to the intrusive Jackson Volcano, located 21 miles to the west of Pelahatchie 

Field (Studlick et al., 1990). Another early target, the basal Smackover sand, is supersaturated in 

brine formation water. Wells producing out of this sand experienced considerable production 

complications in the late 1960’s, such as tubing and flow line plugging by salt crystals when 

brought to the surface (Karges, 1968). The discovery of sour gas in conjunction with production 

difficulties discouraged deep testing in the area. In response to the difficulties in Jurassic 

formations, multiple Upper and Lower Cretaceous horizons have been discovered and proven to 

be productive, though many previously targeted Upper Cretaceous reservoirs have been 

abandoned due to non-commercial production values. Current zones of interest yielding 

economic quantities of oil are the Mooringsport, Rodessa, Sligo, and Hosston Formations 

(Odyssey, 2005). Historically, Pelahatchie Field produced little natural gas from these and other 

reservoirs although they are known natural gas producers in nearby fields.  

In addition to anomalous gas production, hydrocarbon development, specifically within 

the Glen Rose Subgroup, has provided highly inconsistent production data, suggesting the 
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existence of a complex interaction of geologic controls. This study will focus on horizons within 

the Glen Rose Subgroup (Fig. 3) and use structural characteristics from the underlying Sligo  

 

Figure 3. Stratigraphic column of Central Mississippi with Glen Rose Subgroup highlighted in 

red (modified from Fails, 1990). 

 

and Hosston Formations, as well as the overlying Paluxy Formation to aid in the reconstruction 

of the Glen Rose Subgroup environments of deposition.  
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FIELD STRUCTURE 

 

The prominent structure of Pelahatchie Field is an elongate, north-south trending salt-

cored anticline, which dips steeply on the east and west flanks, demonstrating closure on Late 

Jurassic horizons, but little on Lower Cretaceous horizons. Lack of significant structural closure 

on Lower Cretaceous horizons suggests stratigraphic trapping mechanisms predominate. Seismic 

and gravity studies indicate the presence of a generally north-south trending salt ridge, which 

veers slightly southwest in the southern extent of the field (Karges, 1968). Although salt 

movement is known to have occurred, previous studies state that the structure has little or no 

fault complications, but reference a possible west-east normal fault separating two structural 

highs in section 7 (Karges, 1968). Spatial anomalies in production may indicate that faulting has 

a greater impact on production than previously observed (L. Baria, personal communication, 

September 2016). Although production and downhole data can be used for chemical analyses in 

relation to Smackover sour gas, sedimentary accumulation rates, and reservoir calculations, there 

exist too little public data to effectively evaluate these parameters. Therefore, this study will 

focus on the sequence stratigraphy, lithostratigraphy, structural influences, and qualitative timing 

of such events. Deposition in this area differs from surrounding depocenters in central 

Mississippi, Louisiana, and Alabama in that there is increased clastic deposition in Lower 

Cretaceous formations known along the northern and northwestern rims of the GoM basin to be 

predominantly shallow marine carbonates (McFarlan, 1991). The increase in clastic deposition is  
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interpreted as representing the sediment load of major rivers draining the Ouachita and 

Appalachian uplands along the northern extents of the basin (McFarlan, 1991). Channel sands 

and sand lenses have been suggested to exist throughout the field on the basis of differing water 

levels identified through oil-water contacts in downhole data (Karges, 1968). No distinct 

channels have been proven in this field to date.  

This complex geologic history has made stratigraphic analysis and correlation 

challenging. Because of the field’s location along previously delineated production limit margins 

and being within one of the interior salt basins along the Lower Cretaceous Gulf of Mexico 

(GoM) margin, this field could serve as a possible analog to aid in interpretation of locally 

similar fields in the salt anticline play of central Mississippi. This research will investigate the 

depositional environments of the Glen Rose Subgroup in Pelahatchie Field, which will provide 

new insight into previous regional studies and future hydrocarbon development. 

 

 

 

 

 

 

 

 

 

 

 



 

7 
 

 

 

 

DEVELOPMENTAL HISTORY 

 

Early wells drilled by Lion Oil such as the Sowell No. 1, and the Leon No. 1, 

encountered oil and gas shows in the Eutaw, Tuscaloosa, and Rodessa Formations in 1947 and 

1956 (Karges, 1968). In 1957, C. F. Martin’s Ragsdale No. 1, two miles south of the Leon No.1, 

extended exploration to the deeper Hosston Formation, where good oil shows were encountered 

as well as oil shows in the previously established Rodessa sands. In 1962, production in the 

Mooringsport Formation sand was discovered by American Petrofina. Expansion of the field was 

accomplished through American Petrofina and Love Petroleum’s northern step-outs which 

encountered oil shows in the Paluxy, Rodessa, Sligo, and Hosston sands. Love Petroleum’s 

Church No. 1 and Purina No. 1 extended the field, initially centered around sections 7 and 18 of 

east-central Rankin Co., one mile south and one mile north, respectively (Fig. 4).  
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Figure 4. Pelahatchie Field AOI with well names and numbers.  

American Petrofina attempted to extend the field one half mile east of section 18 with their L.E. 

Knight No. 1 in 1963. The well was dry and currently serves as the eastern bound of the field 

(Mississippi Oil and Gas Board, 2017). The Church No. 1 well encountered a Mooringsport and 

a Paluxy oil show in non-commercial quantities (Karges, 1968).  
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In 1965, two deep Smackover zones were tested for CO2, and a middle Smackover zone 

was tested for H2S at a concentration of 21 tons per mcf (Karges, 1968) in the Gooch No. 1 with 

a total depth reaching 17,501 feet. This was the first Smackover well in the area, but was 

considered to be non-commercial and abandoned (Mississippi Oil and Gas Board, 2017). The 

Shell-Love, W. D. Rhodes No. 1 was the first deep pay discovery well, but was plugged and 

abandoned in 1994. This well was converted into an injection well in 2016 (Mississippi Oil and 

Gas Board, 2017). The Buckner and Norphlet Formations contain CO2 which has less than 10 

ppm H2S and considered a “sweet” gas. The Smackover, however, contains higher volumes of 

H2S, which require treatment before transportation or use (Studlick et al., 1990). Although 

Jurassic formations are outside of the scope of this research, it is important to acknowledge the 

possibility of CO2 floods being transported up-dip. This process is recorded in the Pisgah 

anticline by Studlick et al. (1990). The Pisgah anticline is the largest of the salt-cored anticlinal 

structures north-east of the intrusive Jackson Volcano within the Mississippi Interior Salt Basin 

(Fig. 5).  
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Figure 5. Regional tectonic map of salt structures within the Mississippi Interior Salt Basin 

(Montgomery and Ericksen, 1997). 

 

CO2 reserves in this feature surpass 4 TCFG and have been located in mid-dip Cretaceous 

formations (Studlick et al., 1990). Recent advanced in CO2 recovery methods, as well as the log 

realization of CO2 as a production enhancement for liquid hydrocarbon recovery, has led to 

renewed interest in the extraction of gas in Pelahatchie Field (Studlick et al., 1990).  
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GEOLOGIC SETTING 

A complete understanding of the stratigraphy of Pelahatchie Field requires knowledge of 

the complex developmental history of the GoM Basin. Reconstructions of the GoM Basin state 

that the North American and South American plates were joined during the late Paleozoic and 

earliest Mesozoic as a part of the supercontinent Pangea, which existed over what is now the 

GoM (Salvador, 1991). The current GoM is considered a divergent basin characterized by a 

period of crustal extension and thinning in the form of extensional rift tectonics and wrench 

faulting (Pilger, 1981; Miller, 1982; Klitgord, et al., 1984; Van Siclen, 1984; Pindell, 1985; 

Salvador, 1987; Winker and Buffler, 1988; Buffler, 1991) in the Late Triassic to Middle Jurassic, 

followed by a period of thermal subsidence (Nunn, 1984) during the Late Jurassic and into the 

Cretaceous (Salvador, 1991).  The paleotopographic highs are interpreted to be relicts of rifting 

in the form of unrotated continental blocks that have experienced little internal deformation 

(Sawyer et al., 1991). Paleotopographic lows are depressions formed in response to crustal 

extension (Sawyer et al., 1991) related to the opening of the GoM (Montgomery and Erickson, 

1997). The Wiggins Arch would be an example of a paleotopographic high, and the Mississippi 

Interior Salt Basin (MISB) would be an example of a paleotopographic low allowing for the 

deposition of thick salt deposits, non-marine clastic sediments, and volcanics as it was actively 

subsiding throughout the Mesozoic and into the Cenozoic (Mancini et al., 2012). The MISB is 

the largest of several salt-diapir provinces along the northern margin of the GoM (Montgomery 

and Ericksen, 1997). The MISB is important to this research because Pelahatchie Field is 
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considered a salt dome play. The MISB is a tectonic depression covering over 6,000 square miles 

in area with well-defined structural margins (Montgomery and Ericksen, 1997). Pelahatchie 

Field lies within the northernmost extent of the MISB.  

i. Late Triassic to late Middle Jurassic 

The Late Triassic to the late Middle Jurassic was characterized by a period of active 

rifting associated with the breakup of Pangea, crustal attenuation, and the evolution of alternating 

basement highs and lows. As previously stated, this period of rifting initiated the formation of 

the Gulf of Mexico (Salvador, 1991; Mancini et al., 2012). Sedimentation during the early part of 

this period was dominated by thick accumulations of nonmarine clastics, continental red beds, 

lacustrine deposits and associated volcanics deposited in rapidly subsiding grabens and rift 

basins (Mancini et al., 2012; Salvador 1991).  

ii. Late Middle Jurassic to late Upper Jurassic 

During the late Middle Jurassic, extensive and thick evaporite deposits accumulated over 

most of the Gulf of Mexico and were most likely formed in extensive, shallow bodies of hyper 

saline water in limited communication with the present day Pacific Ocean across central Mexico. 

At the time of deposition, evaporation exceeded the inflow of marine water and large volumes of 

halite were able to accumulate in the arid-semiarid climate (Salvador, 1991) contemporaneously 

with continued basin subsidence. Although the exact age of salt deposition remains unknown, it 

has been largely agreed upon that deposition of the Louann Salt began during this late Middle 

Jurassic and continued into the earliest part of the Late Jurassic (Salvador, 1991). Salt movement 

occurred mainly during the Late Jurassic and continued into the Early Cretaceous, with limited 
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movement in the Late Cretaceous (Kupfer et al., 1976 and Lobao and Pilger (1985) though 

piercement features have been recorded as late as the Cenozoic (Montgomery and Ericksen, 

1997). Within the northern region of salt distribution, Salvador (1991) recognized four distinct 

belts of salt occurrence. The MISB lies within the northernmost area of salt occurrence and is 

characterized by a series of interior salt basins separated by structural highs.  

Following the period of substantial salt formation during the late Middle Jurassic, an 

extensive marine transgression covered most of the present-day GoM as a result of sea-floor 

spreading and oceanic crust formation in the Late Jurassic (Mancini et al., 2012). This 

transgression was active throughout the duration of the Late Jurassic, peaking during the 

Tithonian or early Cretaceous, with only smaller regressive episodes throughout. As subsidence 

continued into the Early Cretaceous, a carbonate shelf margin developed along the tectonic hinge 

zone between thick and thin transitional crusts (Salvador, 1991; Mancini et al., 2012). This 

pattern of deposition was broken by the mid-Cenomanian unconformity that will be discussed in 

later sections. Despite existing within a period of sea-level rise, the northern flank of the Gulf of 

Mexico experienced an influx of terrigenous clastics from major streams draining the 

Appalachians, Ouachitas, and other areas of previous tectonic uplift experiencing erosion 

(Salvador, 1991). This influx of sediment along the northern and northeastern flank of the GoM 

resulted in a thick, prograding wedge of clastics not necessarily connected with a regression 

(Salvador, 1991).  

 

iii. Early Lower Cretaceous to Upper Cretaceous 

Throughout the Early Cretaceous, the GoM basin continued to experience continental and 

marine deposition. It was tectonically stable with the exception of gradual subsidence taking 
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place in the central area, growth faulting, and small-scale deformation due to halokinesis 

(McFarlan, 1991). Shallow-marine water covered the peripheral shelves, and deepened 

basinward. Shelf deposits of the Lower Cretaceous GoM are characterized predominantly by 

carbonates and evaporates (Fig. 6).  

 

 

 

Figure 6. Lithofacies paleogeographic map of shallow-marine carbonate and evaporite 

distribution, Albian (McFarlan and Menes, 1991).  
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The continental slope at this time was dominated by carbonate deposition. The northern flanks of 

the basin were characterized by continental and shallow-marine terrigenous clastic sediments 

(McFarlan, 1991). Widespread carbonate deposition ceased in the mid-Cenomanian and another 

depositional cycle, dominated by terrigenous clastics, began. The shift from carbonate deposition 

to clastic deposition is marked by a mid-Cenomanian unconformity. The unconformity is a result 

of a period of global sea-level fall which resulted in the exposure of the shallow platform margin 

that rimmed the Gulf during the Lower Cretaceous (Salvador, 1991). It is generally concluded 

that two cycles of progradation are recorded in the Early Cretaceous: the Cohuilan 

(Hosston/Sligo) and the Comanchean (Pine Island to Washita) (Mancini et al., 2012).  
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REGIONAL CHRONOSTRATIGRAPHY 

The Upper Triassic-Lower and Middle Jurassic nonmarine sequence is called the Eagle 

Mills Formation. The Eagle Mills Formation has more recently been divided, in ascending order, 

into the Eagle Mills, Werner, Louann, and Norphlet Formations (Mancini, 2005; Salvador, 

1991). The Louann and Norphlet Formations are more widely considered to be Middle and Late 

Jurassic in age, respectively (Salvador, 1991). After deposition, the Louann Salt was later subject 

to deformation by the overburden of younger strata. Common deformation types that have been 

either encountered by drilling or by seismic reflection are domal features, pillows, massifs, and 

salt-supported anticlines (Mancini et al., 2012), similar to that of Pelahatchie Field. 

Because of the expansive transgression during the Late Jurassic, the Upper Jurassic is a 

predominantly marine section showing no evidence of substantial tectonic influence. The lower 

Upper Jurassic is represented by non-marine or littoral coarse-clastic units. These units grade 

into nearshore and shallow-shelf sequences basinward. These non-marine and coarse-clastic 

units are predominantly composed of carbonates, calcareous shales, and evaporates (Salvador, 

1991). Lower Upper Jurassic formations are, in ascending order, the Norphlet, Smackover, and 

Haynesville. In northern Louisiana, across northern Mississippi, and into Alabama, The Norphlet 

is a coarse-clastic unit composed mainly of sandstones and conglomeratic sandstones deposited 

in coalescing alluvial fans by erosion of the southern Appalachians (Mancini et al., 1985). 
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However, in central Mississippi, the Norphlet is a finer-grained, mature sandstone. The 

difference in grain size is attributed to the paleogeography of central Mississippi at the time, 

which was considered to be a desert plain bound to the north and east by the Appalachians, and 

to the south by an emerging shallow sea (Mancini et al., 1985). Norphlet deposits in central 

Mississippi have been interpreted as eolian sands (Hartman, 1968; Badon, 1975; McBride, 1981; 

Pepper, 1982; Mancini et al., 1985; Marzano et al., 1988). The Smackover is a carbonate-shale 

unit, and along certain paleohighs, a local shoal complex.  The Smackover was deposited on a 

ramp surface during the major Jurassic marine transgression in the GoM (Mancini et al., 2005).  

The upper Upper Jurassic is composed of a finer-grained clastic section than the 

underlying coarse-clastics of the lower Upper Jurassic. This section is called the Cotton Valley 

Group. Units in the lower and upper Upper Jurassic become increasingly shaley basinward, 

indicating deep-water deposition. Terrigenous sediments in central Mississippi from this time are 

indicative of an ancestral Mississippi River and its associated deltal lobes contributing coarse 

clastics to the GoM (Salvador, 1991). According to Salvador (1991), the Upper Jurassic of the 

GoM basin can be divided into three intervals that approximately correspond to global 

chronostratigraphic, and recognized lithostratigraphic units. They are, from youngest to oldest: 

Tithonian, Kimmeridgian, and Oxfordian. 

The Lower Cretaceous has been divided into three chronostratigraphic units. They are, in 

ascending order, The (1) Berriasian and Valanginian; (2) Hauterivian, Barremain, and Aptian; 

and (3) Albian and lower Cenomanian (McFarlan, 1991). The sedimentary units deposited within 

these chronostratigraphic units are, in ascending order, the Hosston, Sligo, and Trinity Group 

(Pine Island, James Limestone, Rodessa, Ferry Lake Anhydrite, Mooringsport, and Paluxy). 
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Because this research focuses on Lower Cretaceous strata, these chronostratigraphic units will be 

discussed in further detail, followed by a brief discussion of lithostratigraphy.  

The Berriasian and Valanginian units record a period of clastic sedimentation along the 

northern and northeastern coast of the Gulf of Mexico, and of carbonate deposition along 

continental shelves. The clastic sediments were deposited in alluvial valley, deltaic, and inter 

deltaic environments (McFarlan, 1991). 

The Hauterivian-Barremian-Aptian succession records an episode of sea-level rise, 

followed by progradation of sediments with the regression of sea-level. This was followed by a 

period of aggradation of shelfal and platform carbonates, which are capped by a widespread 

marine-shale unit in the late Aptian. This aggradational period is associated with sea-level rise.  

In the late Hauterivian and early Barremian, eustatic sea-level rise accompanied by regional 

subsidence continued. As accommodation increased and the shoreline was covered by 

transgressing marine waters, coastal plains were inundated, causing a decrease in clastic 

deposition in nearshore areas (McFarlan, 1991). The Hauterivian, Barremain, and lower Aptian 

are recorded by the terrigenous clastics of the Hosston Formation. In Mississippi, the 

Hosston/Sligo beds increase in thickness within the MISB and other subbasins (Devery, 1981) 

and generally dip to the southwest throughout the state. In Mississippi, the Hosston is notably 

coarser than in adjacent depositional areas due to fluvial deposition by rivers draining the 

continental interior and Appalachian and Ouachita uplands (McFarlan, 1991). Throughout most 

of Mississippi, the Hosston is conformably overlain by the Sligo, but up-dip in central and north-

central Mississippi along the northern flanks of the GoM, Hosston clastics interfinger gulfward 

with the massive, shelfal limestones of the Sligo Formation (Devery, 1981). The Hosston and 
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Sligo are significant to Pelahatchie Field because they are proven hydrocarbon reservoirs 

(Mancini et al., 2012).  

 The Albian-lower Cenomanian consists of a prograding and aggrading stratigraphic 

sequence of shelfal carbonates with marginal shelf sediments (McFarlan, 1991). Subsidence and 

a continuing rise in eustatic sea-level influenced deposition of Albian-lower Cenomanian 

sediments (McFarlan, 1991). An alluvial and deltaic plain was present during this time that 

extended from central Mississippi to southern Florida and consisted of multiple deltaic features. 

The most prominent of these features was the ancestral Mississippi delta. Basal Albian deposits 

are represented by the Glen Rose Subgroup, which is subdivided in Louisiana, Mississippi, and 

Alabama into three units. They are, in ascending order: the Rodessa Formation, a calcium 

cemented sandstone and shale unit, the Ferry Lake Anhydrite, and the Mooringsport Formation, 

also a predominantly sandstone interval. The Glen Rose Subgroup becomes increasingly 

calcareous basinward (McFarlan, 1991). The Glen Rose Subgroup is onlapped by shelfal 

limestones of the Fredericksburg Group. The Fredericksburg Group is divided, in ascending 

order, into the Paluxy, which is composed of sandstones and shales, the Goodland, and the  

Kiamichi. Of significance to the Pelahatchie Field study area are the Rodessa, Ferry Lake, 

Mooringsport, and Paluxy because they include productive sand intervals. 
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REGIONAL LOWER CRETACEOUS LITHOSTRATIGRAPHY 

 

Hosston Formation: During the lower Lower and upper Lower Cretaceous, deposition 

included a wide range of lithologies from delta-plain to shallow-marine shelf environments 

(Mancini et al., 2012). In the northern GoM, the Hosston is interpreted to be a transgressive 

sequence consisting primarily of terrigenous clastics. The terrigenous clastics of the Hosston 

interfinger gulfward, and are overlain by the limestones and grey shales of the Sligo Formation. 

Blount et al., (1986) identified five major lithofacies characteristic of a fluvial-deltaic system in 

the Travis Peak Hosston equivalent in a study of Trawick Field in east Texas. Blount et al. 

(1986) also noted various braided stream and crevasse splay deposits and distribution differences 

between the upper and lower Hosston. The distribution differences are summarized as follows: in 

the lower Hosston, channel, crevasse splay, and interdistributary bay facies were most common, 

and in the upper Hosston, a marginal marine delta-fringe system was prevalent. This is consistent 

with more recent results from the USGS’s (2006) assessment of the Hosston Formation, which 

extended the depositional study area across northern Louisiana and into southern Mississippi and 

found the Hosston in southern Mississippi to be a wedge of terrigenous clastics derived from 

deposition of an ancestral Mississippi River (Fig. 7) (Dyman and Condon, 2006). From east 

Texas, across northern Louisiana, and to Mississippi, the Hosston is a predominantly arenaceous 

siliciclastic section, which ranges from pink and white to gray sandstones, shales, and siltstones, 

to conglomerates (Beckman and Bloomer, 1953; Cullom et al., 1962; Gorrod, 1980; Saucier et 
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al., 1985; Garner et al., 1987). Locally, the Hosston is more coarse-grained and graveliferous due 

to the field’s up-dip position and increased fluvial deposition draining uplands to the north and 

northeast (Dyman and Condon, 2006). As noted by Karges (1968), The Hosston sands are thick 

and generally a blanket type, with the producing horizon showing little change in thickness in 

Pelahatchie Field. 

 

Figure 7. Pelahatchie Field in relation to Ancestral Mississippi River depocenter during the 

Lower Cretaceous. After Dyman (2006). 
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The highest consistent reservoir qualities come from the lower channel sands. In northern 

Louisiana and Mississippi, the reservoir sands have little permeability and require hydraulic 

fracturing for economic recovery (Dutton and Finley, 1988; Dutton et al., 1990, 1993; Davies et 

al., 1991). Hydrocarbons produced in the Hosston are typically 25° to 46° API gravity oil, 

condensate, and gas (Mancini et al., 2012).  The Hosston interfingers gulfward, and is overlain 

by the Sligo Formation.  

Sligo Formation: The Sligo Formation is generally thought to be a transgressive, shallow-

marine carbonate shelf sequence (Forgotson and Forgotson, 1975). The Sligo is composed of 

gray to brown argillaceous and fossiliferous limestones that aggrade and prograde in the shelfal 

areas (Mancini et al., 2012). In southern and central Mississippi, the Sligo Formation is a 

massive fossiliferous shelfal limestone (McFarlan, 1977) and occurs stratigraphically higher than 

the Hosston. This carbonate deposition was succeeded by the predominantly clastic Pine Island 

Formation.  

 Pine Island Formation: Updip of the MISB, the Pine Island Formation is a terrigenous 

clastic section characterized by calcareous black shales interbedded with thin, dense, grey, and 

often crystalline, limestones, with interbedded fine-grained sandstones. The crystalline limestone 

layers are associated with lagoonal and nearshore marine environments (Mancini et al., 2012). 

Because the marine shales present in the Pine Island can be correlated throughout the basin, 

Yurewicz et al. (1993) have interpreted them to be regional transgressive deposits. In southern 

Mississippi, McFarlan (1991) described the Pine Island as more arenaceous and argillaceous than 

its up-dip equivalents. Pine Island hydrocarbons are typically 24° to 30° API gravity oil, gas, and 

condensate and are produced from a basal sand unit (Mancini et al., 2012).  
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  The James Limestone: The James Limestone is an argillaceous miliolid lime mudstone, 

wackestone, and packstone deposited in a fairly low-energy open shelf environment (Yurewicz 

et al., 1993) which typically overlays the Pine Island Formation. The lithology of the James 

Limestone is inconsistent throughout the northern GoM, with descriptions spanning from a 

sandy, chalky, fossiliferous lime (Forgotson, 1957) to a reef-like deposit (Hermann, 1976) in 

north-central Louisiana. In contrast, a study by Mancini et al. (2012) determined the James 

Limestone to be non-reef in origin. Isopach maps show that the James Limestone is a detrital 

deposit accumulating in basin lows, not a reef complex like previously defined. Due to the 

widely varying lithology, The James Limestone will be included in the Rodessa Limestone 

sequence for the purpose of this study.  

 The James Limestone is a known producer in certain reef facies along structural highs 

related to salt deformation within the interior salt basins of east Texas, north Louisiana, and 

Mississippi (Hermann, 1976). Hydrocarbons produced in these plays are generally light oils and 

condensates. Gas is produced in porous limestone intervals (Mancini et al., 2012).   

The Rodessa Formation: Overlying the Pine Island Formation is the Rodessa Limestone, 

which has been described in northwestern Louisiana to be a grey, arenaceous, argillaceous, 

oolitic, skeletal limestone interbedded with thin, often lenticular, sandstones and grey shale 

layers (Weeks, 1938; Forgotson, 1957). In east Texas, the Rodessa is described as a skeletal-

peloid-oncoid packstone that grades into skeletal grainstones and packstones down-dip at the 

platform margin (Yurewicz et al., 1993). Anhydrite beds have also been known to occur 

throughout the formation in parts of Louisiana (Mancini et al., 2012). Siliciclastic input was 

derived from the craton to the north (Mancini et al., 2012). Within the MISB, the Rodessa more 

locally consists of stacked channel sands. The increase in siliciclastics has been attributed to the 
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possibility of an ancient stream or tributary of a precursory Mississippi River (Karges, 1968). 

These channel sands are interbedded with thin shales.  

Hydrocarbons produced in the Rodessa are generally 34° to 41° API gravity oil, gas, and 

condensate (Mancini et al., 2012).  Reservoir porosities range from 10-26%. Permeability ranges 

from 10-650 md (Mancini et al., 2012). The Rodessa Limestone is overlain by the Ferry Lake 

Anhydrite.  

The Ferry Lake Anhydrite: The Ferry Lake Anhydrite is a massive, white to grey, finely 

crystalline anhydrite, interbedded with thin limestones, shales, and dolomites (Imlay, 1940a). 

The Ferry Lake Anhydrite is a distinctive, widespread sedimentary unit extending from east 

Texas, across southern Arkansas and northern Louisiana, central Mississippi, to southern 

Alabama and south Florida (Forgotson, 1957) deposited in an extensive lagoonal sea. Because 

the formation represents a regional episode, it is commonly used as a marker bed in this region 

(Petty, 1995; Montgomery et al., 2002). For correlation purposes, the Ferry Lake Anhydrite will 

be included in what is referred to as the Mooringsport Formation hereto forward in this paper. 

The Ferry Lake Anhydrite will serve as a marker bed to ensure consistency for structural and 

stratigraphic analysis.  

 The Mooringsport Formation: The Rodessa Formation is overlain by the Mooringsport 

Formation, which is composed of shallow-marine carbonates that are predominantly crystalline, 

fossiliferous, and oolitic limestones interbedded with shale, sandstone, red beds, anhydrite, and 

marl (Imlay, 1940a; Yurewicz et al., 1993). Adams (1985) described six depositional 

environments in the Mooringsport Formation. These include a basin, fore-reef, reef, bank 

margin, bank interior, and restricted shelf. Adams (1985) also reported that uncharacteristically 

thick Mooringsport reef complexes are the result of rapid subsidence/sea-level rise.  
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Hydrocarbons produced in the Mooringsport are primarily gas and condensate (Mancini 

et al., 2012). The Mooringsport Formation is uncomformably overlain by the Paluxy Formation.  

The Paluxy Formation is composed of numerous bodies of nonfossiliferous red, brown, 

and gray sandstones (Hill, 1984), separated by shales. The time of deposition of the Paluxy is 

characterized as a time of uplift and erosion (Granata, 1963).  

 Following the deposition of the Fredericksburg Group, a major lowering of sea level in 

the region exposed the Lower Cretaceous platform margin. This event is represented by the mid 

Cenomanian unconformity (Salvador, 1991) and the removal of parts of the Trinity and 

Fredericksburg Group throughout the northern part of the basin (Mancini et al., 2012). Following 

this, the Lower Cretaceous formations were inundated with the advance of the Gulfian seas 

(Granata, 1963), marking the end of the Lower Cretaceous. The mid-Cenomanian unconformity 

marks the end of widespread carbonate deposition and the beginning of abundant terrigenous 

clastic deposition (McFarlan, 1991).   
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MATERIALS 

i. Public well data 

Data for Pelahatchie Field are a composite of public data found on the Mississippi Oil 

and Gas Board (MSOGB) website, IHS, Inc., and DrillingInfo, as well as donated collections 

within the Mississippi Mineral Resource Institute’s (MMRI) database and website, and core from 

the Mississippi Department of Environmental Quality (MDEQ). Public data from the MSOGB, 

IHS, and DrillingInfo databases consist of well records and permits, well logs, scout cards, and 

scattered production data. The donated collections within the MMRI database typically include 

printed originals as well as scanned logs. In some collections, exclusive hand-drawn maps made 

by the donating geologist are also included. Proprietary seismic data exist for the field, however, 

the University of Mississippi was not able to obtain access to these data. There is much overlap 

in well records between the four online databases. The use of four unrelated databases ensured 

quality control and serves as a way to mitigate discrepancies.  

In total, 48 wells were used for mapping in this study. Criteria for mapping includes 

having an XY coordinate as well as log data.  Of the 48, 42 wells were within the field extents 

and 3 were step outs. Of the 42 wells within the field extents, 36 were logged over the entire 

Glen Rose Subgroup section.  
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The three step outs previously referenced are the C M Gooch #1, which is used as a 

northern step out for mapping purposes, the Earl Huffman #1, which is used as an eastern step 

out for mapping purposes, and the Loper #1-25, which is used as a core point.  

 

ii. Well logs   

 

The primary data type used in the analysis of Pelahatchie Field is downhole well logs. 

Logging is a process by which in situ reservoir characteristics can be measured and recorded 

along the length of a wellbore using an array of tools called sondes. This is typically 

accomplished by lowering a combination of several sondes in one toolstring into the borehole by 

a wireline, or by multiple logging runs for the same result (Andersen, 2011). An alternate 

approach to wireline logging is referred to as logging while drilling (LWD), in which case the 

logging tools are included as part of the drilling tool assembly (Andersen, 2011). Either of these 

tool assemblies can be employed within a casing (cased-hole logs), or in an open borehole (open-

hole logs) before the hole has been cased. Although cased-hole logs can be beneficial in 

recording production parameters, the steel casing will interfere with many of the logging 

instruments, resulting in less robust data retrieval. The cement effect also leads to difficulties in 

separating resistivity contribution of the cement from that of the formation (Zhou, 2005). Caliper 

logs help to identify possible zones of interference in this case. The most common type of log 

suite within the field is the electric log. Curves included in the electric log are spontaneous 

potential and/or gamma ray, resistivity, and conductivity.  

Spontaneous potential, or SP, logs indirectly record the electrical potential differences of 

fluids within the formation and can be used as an indicator of porosity and permeability. The 
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baseline of an SP curve usually corresponds to impervious strata, while kicks to the left are 

indicative of permeable strata (Doll, 1949; Varhaug, 2016).  

Resistivity logs are a type of electric log which measures a formation’s resistivity to an 

electric current. Hydrocarbon-rich zones will be more resistive than formation water in a given 

chemostratigaphic unit. Conductivity is the reciprocal of resistivity. The SP curve is generally 

displayed alongside the resistivity curve for ease of correlation (Varhaug, 2016; Andersen, 

2011).  

Another common log in the field is the neutron density log. These are used to help 

determine fluid type and lithology (Asquith, 2004). The neutron porosity tool is often run with a 

density porosity tool, and a tool measuring the photoelectric absorption properties of the 

formation. The resulting log is referred to as a lithodensity log. The photoelectric factor, neutron 

porosity, density porosity log is the most useful in lithologic identification where core is not 

present. This is especially helpful when correlating core studies to a gamma ray signature and 

determining an appropriate core shift, if any. 

Gamma ray logs are common in the Pelahatchie database and are basic indicators of 

lithology. Gamma ray logs measure naturally occurring radioactive materials, or NORMs, within 

the formation. Typically, quartz and carbonates contain little or no intrinsic radioactivity 

(Andersen, 2011). This is in contrast to shales, which tend to have a high gamma response. When 

considered collectively, the lithodensity and gamma ray curves can aid in lithologic 

identification. 

Other logs, and their number of occurrence in the field are: micro (8), sonic (12), 

dipmeter (3), production (8), cement bond (6), mud (3), sample (3), bulk density (1), GR 

spectralog (1), and caliper (1) PeF (1).  
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The well logs used in this investigation were raster images. Raster logs require depth 

registry before they can be used in accurate subsurface mapping by any geologic software. The 

depth registration process includes rigorously depth matching the image file to a given measured 

depth (MD) and straightening the file to minimize logs that may have been slightly askew when 

scanned. An overly askew log could introduce a false deviation of the well from vertical. Depth 

registering also includes adding appropriate ground and kelly busing elevations to the well 

database for the most accurate true vertical depth (TVD) and MD readings. Raster logs used in 

this study’s analysis were depth registered in the PRIZM application of GeoGraphix, and stored 

in the program’s database tool. 

iii. Core  

Core data is an effective supplement to downhole data. The MDEQ does not have record 

of any full core data within the study area in its warehouse. Cores used in the study are either 

short intervals of half core, cuttings, and in one case, what seems to be broken quarter core 

samples in discontinuous intervals. The one full core is located 4 miles to the southeast of the 

field in the Loper #1-25. Core descriptions were recorded using a template developed by Louis 

Zachos and modified from Boyles et al. (1986), for specific usage in describing Cotton Valley 

and Smackover core in the state of Mississippi appendix (a and b).  

iv. Mud logs  

As mentioned, this study uses 4 mud logs or sample logs.  These are typically completed 

on the well site during the drilling process. The drilling fluid carries cuttings of the formation up 

through the wellbore to surface shakers on location. These cutting are then analyzed and 
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recorded on what is referred to as a mud log. The mud log gives a detailed record of the borehole 

as drilling proceeds. In some cases, mud logging is accompanied by gas chomatography. The gas 

chromatograph is an instrument that qualitatively measures total hydrocarbons in the drilling 

fluid. Gas chromatograph (GC) measurements are often unreliable unless accompanied by a 

daily calibration and use of a constant volume trap. Minor changes in drilling parameters, trap 

mechanisms, or weather, can have a negative effect on the accuracy of GC measurements.  

v. Drilling, completion, and production data 

In addition to well header information, production data is commonly associated with each 

well in online public databases. Although analysis of production data is beyond the scope of this 

research, the data can be helpful in quantifying the productivity of producing zones. Drilling 

records provide information on zones that were problematic during the drilling process. 

Completion records are especially helpful in depth control of information that may be recorded 

qualitatively elsewhere. For example, completion data can assist in assigning an absolute depth 

to a producing zone submitted by the operator. Of the 48 wells used for mapping, 35 have 

publically available production data. DrillingInfo records the total depth (TD) of the hydrocarbon 

source, however, many are misleading due to the order in which the site generates data for this 

depth. The depth is usually derived from the completion data. In the absence of completion data, 

the depth is derived from the deepest plugging. In the absence of plugging data, the number is 

derived from the deepest permit. In the absence of all previously stated data sources, the number 

is derived from scout card headers of well logs. Because only 35 of the 48 wells used for 

mapping have production data, this mean that at least 13 wells are gathering TD data solely from 

header information. This tends to be unreliable. Another source of error exists in discrepancies of 
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what is considered the top of a given formation. Public production data is sparse and contains 

many holes in data vital for data normalization. For these reasons, detailed analyses of 

production data are excluded in this work. Production data are only used in a qualitative sense to 

investigate the relationship between cumulative production and structural controls.  

vi. Analytical software 

Data interpretation for this research is performed using GeoGraphix version 2017.1, 

ArcGIS version 10.4, and MATLAB. GeoGraphix, or GGX, is an integrated geoscience software 

suite that includes stratigraphic workflows, subsurface data mapping and contouring, and 3D 

wellbore viewing capabilities. GGX is the primary software used in subsurface interpretation. All 

well information and associated logs are uploaded and stored in the geodatabase created in GGX. 

ArcGIS is used for most surface mapping. Quantitative analysis is achieved by use of MATLAB, 

a numerical computing software. Other visualization applications used are Corel and Adobe 

Illustrator. 
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METHODS 

i. Data  

GGX version 2017.1 was chosen as the primary interpretation software over ArcGIS 10.4 

because of its advanced subsurface mapping capabilities. A new project and AOI were set up 

using a database coordinate system of NAD 27. The map display coordinate system used is 

SPCS27 – Mississippi West. Culture layers created in ArcGIS were then imported to help 

delineate the study area and confirm well locations. IHS well data were imported into GGX by 

exporting .297 well datasets and importing the data into WellBase, a database application within 

GGX. Additional data found through use of scout cards or production reports were then 

associated with their respective wells in the application. Additional data include, but are not 

limited to, well symbols, current status, current operator, well name, number, API, spud date, 

ground and kelly bushing elevations. Raster images were then imported into PRIZM, a 

petrophysical application within GGX. The rasters were then depth registered for accurate 

mapping. None of the 48 wells were horizontal, although many were deviated. To account for the 

discrepancy in measured depths between the wells, all formation tops were assigned using total 

vertical depth. Both structural and stratigraphic cross sections were created in XSection and 

SmartSection in order to understand the stratigraphic and depositional relationships within the 

field.  

ii. Pelahatchie Field AOI 
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Pelahatchie Field extends north-south across sections 6, 7, and 18 of Township 5 North, 

Range 5 East with southern step outs in section 19, a northern step out in section 30, and an 

eastern step out in section 14. Of the 48 wells used for mapping, 4 are active, 13 are inactive, 23 

are plugged and abandoned, 5 are expired permits, 1 is a dry hole, and the status of 2 is 

unknown. Of the 4 active wells, 2 are oil wells, and 2 are converted disposals. The field AOI will 

be represented by a yellow hatched rectangle in mapping. The AOI is cropped to exclude the 

northernmost well in the field located in section 30. Control points are sparse in sections 6 and 

nonexistent in sections 30. Therefore, the interpretations from section 6 to section 30 would be 

done with little confidence. The same is true for the three sections leading up to the easternmost 

well in section 14. 

iii. Log analysis 

Because inconsistencies exist in formation top picks gathered from mud logs and scout 

cards throughout Rankin County, the tops chosen for this study are a combination of tops 

published in the Mississippi Geological Society’s Field Archives. Type log tops from Martinville 

and Merit Fields in Simpson County, and from Boykin Church and Traxler Fields in Smith 

County were integrated due to their proximity to Pelahatchie Field and distinct log signatures 

(Davis and Lambert, 1963). In general, mudlogger tops matched those chosen for this study. The 

main discrepancies were found in the Sligo top picks. These picks were inconsistent when 

mapped across the field.  

The resulting type log used for this study area is shown in Figure 8.  
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Figure 8. Davis #2 Type Log showing relevant Lower Cretaceous tops in the Glenrose 

Subgroup. API 23121000990000.  
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The type log, Love Petroleum’s Davis #2, is located in the southwest quarter of section 7. This 

was chosen as the field’s type well because the logged interval exhibits the complete 

stratigraphic section studied in this research. This well also penetrates the highest number of 

well-developed sands in each formation, with the most characteristic log signatures. The Davis 

#2 did not encounter any faulting.  

One limitation in this study is the lack of core data within the field. Without core data, 

mud logs and drill cuttings are of increased value as they are considered to be direct field 

observations that can serve as constraints to associated wireline responses such as density and 

photoelectric factor. The one available PeF-density porosity-neutron porosity log in the field is 

found in the Clifton Rhodes #6-15. This litho-density log was then tied to the Davis #2 type log, 

as well as a mud log and cuttings from the Earl Huffman #1 to produce a synthetic lithology 

track based on the PeF-density porosity-neutron porosity log responses in the Clifton Rhodes. 

The lithologic interpretation in the Clifton Rhodes was analogous to mud log records and data in 

the Earl Huffman #1 and provided the confidence in the interpretation. The next step was to 

correlate the synthetic mud log created in the Clifton Rhodes to the Earl Huffman mud log, and 

the Loper #1’s SP and resistivity curves and associated core description. In addition to the Earl 

Huffman, three other sample logs were donated to the MMRI library from a private collection. A 

map of wells with sample logs is shown in Figure 9.  
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Figure 9. Map showing wells with sample logs throughout area of interest. 
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The orientation of available sample logs provides good data points for a N-S cross section over 

sections 18 and 19, but leaves a gap over section 7, which is where the highest density of wells 

are located. To gain a more complete view of the subsurface lithology, the Clifton Rhodes #6-15 

synthetic lithology log was used in place of a sample log for section 7. The incorporation of a 

lithodensity log provided a more complete lithologic interpretation across the field. The resulting 

N-S cross section is shown in Figure 10.   
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Figure 10. Stratigraphic cross section showing synthetic lithologic log based on Clifton Rhodes 

#6-15 PE-density porosity-neutron porosity log responses, correlated to the Earl Huffman #1 

original mud log and the Loper #1-25. Datum is Mooringsport. 
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iv. Structure  

Structure contour maps were created using GeoGraphix’s IsoMap utility. The data set 

used for surface modeling in this field is constrained by previous drilling operations.  As 

previously stated, data points are lacking to the east and west, and are more robust along the 

north-south axis. Irregularity in the spacing of data points affects the contour accuracy on the 

eastern and western flanks of the core data set. To minimize this effect, preliminary structure 

contour maps and isopach maps were created manually. Eighteen structure contour maps were 

then created testing sensitivities to different gridding algorithms, search methods, convergences 

and tolerances, and smoothing factors. The method that best fit the preliminary structure 

contoured surfaces was then employed during contouring of remaining maps. All maps were 

made using a minimum curvature gridding algorithm, natural neighbor search method, a 

convergence of 5%, a tolerance of 5%, 10 iterations of grid smoothing. Grid spacing was set to a 

smallest feature radius of 1,200 feet, with a corresponding radius of influence. This radius was 

chosen using the preliminary structure as a benchmark. The perimeters and diameters of closed 

features in the preliminary map were measured and the smallest used as the minimum feature 

radius. The initial boundary polygon was used for all structure and isopach maps for consistency. 

Structure maps were created by subtracting the depth of the horizon found in each electric log 

from the land surface datum. Isochore maps were produced by subtracting the depth of 

occurrence of the underlying formation from the overlying formation in order to get the true 

vertical thickness of the overlying formation at each well point. TVT values were then corrected 

for dip to yield TST values. All final structure maps and isopachs are the same scale and 

coverage. Color gradients for both sets of deliverables are also unchanged. 
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 Four faults were identified in the field based on electric log correlation and the isolation 

of missing section to these locations. Two of the faults were identified first by their missing 

sections in wells to the south. The missing sections were then calculated in measured log 

thickness, and converted to true vertical thickness using the Setchell equation, a three 

dimensional correction factor. Resulting missing sections were then used for offset in the 

structure contour maps of the tops of formations of interest. 

v. Correlation and interpretation of depositional environment(s) 

Cross sections developed in this investigation are essential to the examination of 

subsurface structure and stratigraphy. Determination of fault data, such as missing section due to 

normal faulting, are derived from well log correlation and used in the construction of integrated 

subsurface structure maps. Final structural cross sections are used as compliments to structure 

contour maps. Other important interpretations derived from stratigraphic cross sections in this 

study are erosional surfaces and the assessment of possible infill sediment. Together, structure 

and stratigraphic cross sections can be used to validate interpretations of structure and original 

deposition. Stratigraphic cross sections use the top of the Ferry Lake Formation as a datum. All 

structural cross sections are displayed in TVD with a vertical and horizontal scaling of 1.00 and a 

vertical exaggeration of 1.00. The preferred raster image displayed is the 2-inch resistivity log. In 

cases where this does not exist, a resistivity log of a different scale or another type of log is 

displayed. A combination of structural, stratigraphic, well-to-well, and projected cross sections 

was compiled for field interpretation. In one case, a projected structural cross section was 

displayed in 3D space cutting through formation top surfaces. This view displays formation 

thickness in relation to field structure and will be used as a visual aid in later discussions.  
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RESULTS AND DISCUSSION 

i. Structure and Stratigraphy  

Previous literature has confirmed the presence of a salt dome underlying the field 

(Karges, 1968), to which the field lends its prominent structure. This salt dome is considered the 

principal structural control of the field and interpreted to be a narrow, elliptical north-south 

trending feature. The dome is generally symmetric with a north-south axial trace. Within the 

extent of the principal dome, structure contour maps show the existence of three structural highs 

within the Hosston and Sligo Formations, and two structural highs within the Pine Island, 

Rodessa, and Mooringsport Formations. A north-south structural cross section covering the 

entire AOI (Fig. 11) illustrates the structure of the field, as well as the overall dip direction of the 

formations to the south. Formations have been projected onto a north-south axis line and color 

filled in Figure 12 to further visualize well interaction with structural influences. Formations 

within the Glen Rose Subgroup dip locally to the south.  

 

 

 

 

 

 



 

42 
 

 



 

43 
 

 

 



 

44 
 

Three faults were identified using electric log correlation in the field. Although the exact 

azimuth of fault planes cannot be confirmed due to a lack of number of wells encountering the 

same faults, anticipated fault traces have been delineated based on structural contours. The two 

fault traces cut by wells in section 18 and section 19 strike west-east. The two faults traces strike 

generally parallel to the strike of the southernmost edge of the principal feature. Wells in this 

area do not demonstrate significant deviation from vertical. Because the deviation effect is 

minimal in the area, no meaningful trigonometric corrections are required to measure the missing 

section of faults. Missing section values measured in TVD depths are equal to true vertical 

thickness values and can be used directly. The fault identified in the southern portion of section 

18 is a normal fault, with the downthrown block to the south, and has a missing section of 130 

feet. The fault is encountered in the King et al. Unit #1 at a depth of -10,868. The fault identified 

in the northern margin of section 19 is normal, with the downthrown block to the north, and has a 

missing section of 147 feet. The fault is encountered in the M.D. Ragsdale #1 at a depth of -10, 

837. The downthrown blocks of both faults being toward one another, this paleographic low in 

between these wells is interpreted as a graben that is present in the Hosston, Sligo, and Pine 

Island Formations, and is partially infilled by younger strata beginning in the Rodessa. It could 

be argued that both faults propagate into the Rodessa. The faults were terminated at the Rodessa 

because the Rodessa displays thickening of as much as 42 feet within the graben, suggesting that 

displacement due to faulting was minimal and sedimentation in the downthrown block began to 

infill the paleotopographic low. The log signature in the King et al. Unit #1 within the Rodessa 

indicates a more fine-grained interval than wells on the north and south of the paleotopographic 

low, indicating enhanced deposition of mudstones and siltstones within topographic lows. Strata 

in the Mooringsport show little influence of this graben feature (Fig. 13) and are contoured to  
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Figure 13. North to south structural cross section over sections 18 and 19 showing faulting in the 

King et al. Unit 1 and the M.D. Ragsdale #1. Missing section labeled at each fault depth. 

Formations are offset according to missing section. Cross section location is displayed over the 

Pine Island structure contour map.   
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reflect this. Structure maps include one fault on the southwest corner of section 7 (Fig. 14). This 

fault is not encountered by a well. Instead, this fault is identified based on a 50’ displacement 

between the E.W. Rhodes 7-6 #4 and the Leon #1, which are located only 320 feet from one 

another on surface. This fault surface is not formatted to show vertical offset in strata in cross 

sections because the fault does not penetrate wells. The two faults in section 18 are shown with 

vertical offset of strata in cross section because they are encountered within the Kind et al. Unit 

#1 and the M.D. Ragsdale #1.  

The one area of contour pinching due to a 45’ formation top offset in the Sowell #1 in 

section 7 is not representative of a fault encountered by the well in this study, though a 50’ fault 

in the Rodessa at a depth of -9,940 was noted by the site geologist, Marvin Oxley in the nearby 

Rhodes E W et al. #1. This study did not identify a fault at this depth, however, this 50’ offset 

does match the missing section found in this study to be caused by a small stream in the base of 

the Rodessa Formation. This stream cuts into the upper Pine Island shale, causing the Rodessa 

Formation top picks within the channel to have offsets of about 40’ compared to top picks in 

surrounding wells. Based on the structure contour maps, the structural influence of the 

underlying salt feature is more prominent in the deeper horizons, and has increasingly less 

influence on younger horizons as faults terminate and paleotopographic lows are infilled by 

younger strata. The remainder of this section will report the structural results of each of the 

mapped formations in order from oldest to youngest.  
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Figure 14. Southwest to northeast structural cross section over section 7 showing fault on 

western flank of section 7 paleohigh between the E. W. Rhodes 7-6 #4 and the Leon #1. Cross 

section location is displayed over the Pine Island structure contour map.   
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Hosston Formation: The Hosston Formation is characterized by three major north-south 

trending elongate paleohighs and a graben to the south. The minimum Z value in the Hosston 

subsea dataset is -10739. The maximum Z value is -10517. The Mean Z value is -10614. The 

three structural highs present in the Hosston Formation are located in sections 18, 7, and 6 (Fig. 

15).  The Hosston Formation does not have a TST map because the underlying formation top 

was not picked and many wells in the field have a total depth that does not penetrate deeper than 

the Hosston Formation.  
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Figure 15. (Left): Top of Hosston Formation Structure Map. Depth in subsea. Depths in red 

correspond to data points. (Right): TST Isopach Map of Hosston Formation.  
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The principal dome within the Hosston structure contour map exhibits a gradient of 645 feet per 

mile at the southernmost edge of the high in section 18. This gradient is steeper than any of the 

other highs mapped in this formation.  

Sligo Formation: The Sligo is also characterized by three north-south trending elongate 

paleohighs and a graben to the south. The Sligo is most structurally similar to the underlying 

Hosston Formation. The minimum Z value in the Sligo subsea dataset is -10506. The maximum 

Z value is -10317. The mean Z value is -10408. The three structural highs present in the Sligo 

Formation are also located in sections 18, 7, and 6 (Fig. 16). The principal dome within the Sligo 

structure contour map exhibits a gradient of 694 feet per mile at the southernmost edge of the 

high in section 18. This gradient is steeper than any of the other highs mapped in this formation 

and is also steeper than the gradient in the same position as calculated in the Hosston. This 

suggests re-initiation of halokinesis during deposition of the Sligo Formation. A west-east 

structural cross section over the crest of the paleotopographic high in section in section 6 (Fig. 

17) shows slight thinning of the Sligo Formation in sections 6 and 7 as much as 16 feet over the 

shallowest paleohigh in section 6.  
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Figure 16. (Left): Top of Sligo Formation Structure Map. Depth in subsea. Depths in red 

correspond to data points. (Right): TST Isopach Map of Sligo Formation.  
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Figure 17. West to east structural cross section showing central uplift. Structure is more 

prominent to the south. Cross section is displayed over top of Hosston Formation structure map.  
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Pine Island Formation: The Pine Island is characterized by two north-south trending 

paleohighs, and a graben to the south. The minimum Z value in the Pine Island dataset is -

10,131. The maximum Z value is -9,910. The mean Z value is -10,005. The paleotopographic 

low that existed between the highs in sections 18 and 7 is less prevalent in the subsea structure 

map of the Pine Island (Fig. 18). The paleotopographic low in this horizon can be contoured as 

one structural high rather than two. The most pronounced of these paleo highs is present in 

section 6 rather than section 18 in underlying formations. The gradient of the paleohigh in 

section 18 is 541 feet per mile, which is less steep than the underlying Sligo Formation. The Pine 

Island TST isopach shows thinning as much as 51 feet across structural crests of the underlying 

Sligo Formation. The Pine Island TST map also shows thinning on the western flank of the 

middle paleohigh in section 7.  
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Figure 18. (Left): Top of Pine Island Formation Structure Map. Depth in subsea. Depths in red 

correspond to data points. (Right): TST Isopach Map of Pine Island Formation.  
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The Rodessa: The Rodessa is characterized by two north-south trending paleohighs with 

only one of the underlying faults present on the western flank of the southern paleohigh. Domal 

features in the Rodessa are less distinct than in underlying formations. The minimum Z value in 

the Rodessa dataset is -9,787. The maximum Z value is -9,540. The mean Z value is -9,668. The 

paleotopographic low between sections 18 and 7 is also less prevalent in the subsea structure 

contour map of the Rodessa (Figure 19).  
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Figure 19. (Left): Top of Rodessa Formation Structure Map. Depth in subsea. Depths in red 

correspond to data points. (Right): TST Isopach Map of Rodessa Formation.  
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For this reason, one structural high is contoured rather than two in the southern half of section 7 

and northern half of section 18. The most pronounced paleohigh is located in section 6, like the 

underlying Pine Island Formation. The gradient of the paleohigh in section 18 in the Rodessa 

Formation is 420 feet per mile, which is less steep than in the underlying Pine Island Formation. 

The Rodessa TST isopach shows thinning as much as 60 feet, but is not correlating with the 

underlying Pine Island Formation. Thickenning of the Rodessa is present in southeastern corner 

of section 6, the southwestern corner of section 7, and northeastern half of section 8. Thicker 

areas of the Rodessa Formation are bordered by thinner areas. The thickening and thinning 

pattern of the TST map records the presence of a channel in the base of the Rodessa Formation, 

which displays deflection around paleohighs present in the underlying Pine Island Formation 

(Fig. 20). The deeper Pine Island Formation top in the Davis #2 and the Sowell #1 correspond to 

what would be the depositional pattern characteristic of a channel thalweg on the outer perimeter 

of a meander. The Rodessa TST map shows higher stratigraphic thickness where the Pine Island 

shows lower stratigraphic thickness. The inner perimeter of the same meander records a rapid 

decrease in thickness. The rapid decrease on thickness would be representative of a shallow 

channel bank. The electric logs of the Davis#2 and Sowell #1 shown in the structural cross 

section in Figure 19 display offset in Pine Island and Rodessa top picks between the two inner  
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Figure 20. Structural cross section depicting possible channel in base of Rodessa in yellow 

shading. Isopach shows elongate thickening possibly attributed to erosion and channel infill.  

 

wells, the Davis #2 and the Sowell #1, and the wells on the west and east, the E.W. Rhodes 7-6 

#4 and the Mashburn et al. Unit 1. Close examination of the log signatures in the Davis #2, 

Sowell #1, E.W. Rhodes 7-6 #4, and the Mashburn et al. Unit 1 exposes a much thinner 

shale/siltstone interval within the upper Pine Island in the Davis #2 and Sowell #1 (Fig. 21).  
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Figure 21. Structural cross section showing thinning of Pine Island upper shale interval.  

 

Where the shale/siltstone interval is thinner, a basal sand is introduced that is not seen in the 

offset wells. This suggests that the underlying Pine Island shale/siltstone was eroded and infilled 

by the sands present at the base of the Rodessa. Furthermore, the Davis #2 and the Sowell #1 lie 

within the trend of thicker Rodessa deposits as shown in the Rodessa TST isopach. The trend of 

thicker deposits is similar to that of a meandering channel. If this trend was to continue, the 

channel would be expected to curve to the south-east across the north-eastern corner of section 

18 towards the L.E. Knight well. This interpretation is solidified by similarities in the log 

signatures of the L.E. Knight to the Davis #2 and the Sowell #1. Although there is strong 
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evidence for this interpretation, it cannot be confirmed without a detailed lithologic analysis of at 

least one well within the channel trend or additional drilling or seismic data.  

Mooringsport Formation: The Mooringsport is characterized by two paleohighs. The 

paleohighs, however, are the least distinct in the Mooringsport. There is a central low separating 

the northern and southern paleohighs and only one fault on the western flank of the southern 

paleohigh. The minimum Z value in the Mooringsport dataset is -9382. The maximum Z value is 

-9144. The mean Z value is -9276. Similar to the Rodessa Formation, the paleotopographic low 

between sections 18 and 7 is less prevalent in the subsea structure contour map of the 

Mooringsport (Fig. 22). One elongate structural high is present in the southern half of section 7 

and northern half of section 18 rather than two. The most prominent paleohigh is located in 

section 6. The gradient of the paleohigh in section 18 in the Mooringsport Formation is 126 feet 

per mile. This gradient is over 3 times gentler than the same gradient in the underlying Rodessa 

Formation. This indicates sediment infill within the topographic lows of the Rodessa Formation. 

The Mooringsport TVT isochore shows thinning as much as 45 feet across the structural crests of 

the underlying Rodessa Formation. The thinning of formations across structural crests suggests 

that salt movement continued at various rates into the middle Albian. 
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Figure 22. (Left): Top of Mooringsport Formation Structure Map. Depth in subsea. Depths in 

red correspond to data points. (Right): TST Isopach Map of Mooringsport Formation.  
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A 3D subsurface map of all preceding structure contour grids is shown in Figure 23, 

depicting well intersections with structure throughout the field. The contour surfaces 

 

 

 

 

Figure 23. Subsurface view of Hosston, Sligo, Pine Island, Rodessa, and Mooringsport structure 

contour grids in 3D space. Wellbores are shown in green. TD of each well is labeled in white and 

posted at the bottom hole location. Vertical exaggeration equals 5.95. Horizontal grid lines 

represent 500 feet. 
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displayed in Figure 23 are the structure grids of the Hosston, overlain by the Sligo, overlain by 

the Pine Island, overlain by the Rodessa, overlain by the Mooringsport. In general, all of the 

horizons follow the same structural geometry, with less structural definition in younger horizons. 

An exception to this is found in the Sligo, where slightly steeper gradients are found on the 

flanks of the southern paleohigh quantified in the preceding paragraphs.  

The structural closure seen in the Lower Cretaceous strata may act as an important 

trapping mechanism for the petroleum system. To qualitatively test this theory, production values 

assigned to producing formations by use of API gravities were superimposed onto a structure 

contour grid. Results from a preliminary investigation show that the formations within this study 

can be differentiated with confidence based on their produced oil API gravities. The one 

exception to this is between the Sligo Formation and the Hosston Formation. These two 

formations cannot be differentiated, which is consistent with their syndepositional nature in 

literature. Results from this preliminary investigation are recorded in (appendix c). The exercise 

allowed for a cumulative production bubble map with production in each horizon to be created 

(Fig. 24). The resulting bubble map overlaying the Rodessa Formation Top structure map 
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Figure 24. Cumulative oil production map overlaying Rodessa Formation structure top map.  
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confirms that closure is a hydrocarbon trapping mechanism. The Rodessa Formation structural 

grid was chosen for this map because the production dataset includes the most data values in this 

horizon. Bubble sizes represent the sum of cumulative oil produced in each formation perforated 

over the lifetime of the well. This map is not normalized in respect to days on production due to 

the lack of production data and should be used only qualitatively. This exercise shows that wells 

drilled within a paleohigh produce oil; those on the flanks of the structures are dry holes showing 

no production.  There is also a positive correlation between higher cumulative oil and higher 

structural relief. 

 

i. Environment(s) of Deposition  

 

Results from the Loper #1 core analysis are recorded in (appendix d) and digitally rendered in 

Figure 25. This core covers 51 feet of the lower Mooringsport Formation, from -10,364 to -10,415. The 

core shift is 3 feet. The cored interval is primarily composed of red and maroon to slightly teal-gray clays 
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Figure 25. Core description of upper shoreface and coastal plain deposits in the Loper #1-25. 

API 23121201220000. Core shift of 3 ft.  
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and silts and pink-tan to gray very fine to medium grained calcareous sandstones. Sandstones are often 

massive, and often sub-rounded to sub-angular. Many normally graded very thin beds exist within the 

core. Seven coarse-grained to gravel sized conglomeritic beds are present within this section. The pebbles 

and gravel sized clasts are almost exclusively chert. These pebble interbeds are usually underlain by an 

erosional scour contact (Fig. 26).  

 

  

Figure 26. Pebble to gravel sized clasts in a mottled fine-medium grained sandstone matrix. 

Small tick marks are 1/10th of an inch. The basal contact is erosional and sharp. The unit is 

underlain by finer-grained sandstone. Clay draping and lenses are abundant and deformed. This 

interval represents a sediment-gravity-flow bed. 
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The pebble interbeds are commonly matrix supported in wavy, nonparallel calcareous silt and mud 

matrix. Upward from the scour surface, the beds typically grade into planar, low-angle lamination, and 

then into fine-grained, massive sandstones. These are interpreted to be high-energy flow events and storm 

deposits. Primary sedimentary structures include horizontal (Fig. 27), even, laminasets, planar, low-angle 

laminasets (Fig. 28), ripple cross-lamination (Fig. 29), curved, planar, laminasets, wavy, nonparallel 

lamination (Fig. 30), flaser bedding, clay draping, variegated bedding, pebble lag, and parting. 

Bioturbation is minimal in the cored section (Fig. 31). 
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Figure 27. Fine-grained sandstone light pink to grey in color showing repetitive horizontal, 

planar, lamination. Interpreted as tidal rythmites.  
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Figure 28. Low-angle planar lamination in a predominantly fine-medium-grained sandstone. 

Pebble beds present. Middle section shows coarse lag at the base of a fining-upward sequence. 
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Figure 29. Ripple cross-lamination in a fine-medium grained sandstone. Lower core shows clay 

lenses and rip up clasts.  
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Figure 30. Bioturbated, nonparallel cross lamination.   
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Figure 31. Iron-rich mud and siltsone showing burrows infilled with coarser grains. 

 

Most bedding contacts are planar, but five erosional contacts exist. In one case, the erosional surface 

exists at the top of a sandstone exhibiting low-angle, planar cross lamination. Two instances of dip 

reversals within planar, low-angle lamination are present in intervals 6 and 7, which are in the middle 1/3 

of the cored interval. The base of the cored interval is more calcareous than the upper intervals. The basal 

intervals are classified as wackestones. Many of the beds are iron stained. One instance of cross-cutting 

iron stains is encountered in interval 9. The increasing abundance of iron in the top of the cored interval 

suggests shallowing of water and an increasingly oxidizing environment. Many clay lenses and drapes are 

present throughout the core. This core is indicative of an upper shoreface to coastal plain environment 

with fluvial influence.  

The M.D. Ragsdale cuttings are much less complete as a dataset than the Loper #1 core. The 

cuttings are more similar to residual fragments of quarter core than to drill cuttings. Although this does 
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not allow for a detailed analysis of bedding, some primary and secondary sedimentary structures are 

visible. The descriptions of the M.D Ragsdale cuttings are less complete, but are more pertinent to this 

field than the Loper, #1 core, which lies about 14 miles to southwest of Pelahatchie Field and therefore 

reflects a more basinward paleodepositional environment. The M.D. Ragsdale cuttings are grouped into 

two depth intervals and described in (appendix e). Interval 1 covers 57 feet of the Rodessa Formation. 

Interval 2 covers just 24 feet of the top of the Hosston Formation. The Hosston descriptions will be 

excluded in this discussion. Cuttings from the Rodessa interval are composed primarily carbonate clastics 

composed of dark red, red, and grey calcareous sandstones. Primary bedding features are commonly 

horizontal, planar lamina. Sandstones in this well contain 10-20% calcareous matrix, making them much 

more calcium-rich than the Rodessa in the Loper #1 core in general. Light grey, dark grey, and white 

calcareous sandstones are also common. Clasts in this interval are mainly calcareous, but plagioclase 

feldspar and potassium feldspar wackes are also present, indicating an influx of terrigenous matrix 

material. One white to grey quartz wacke interval exhibits little to no porosity, possibly providing a 

hydrocarbon seal. Horizontal, planar, rhythmic, dark and light grey laminae are present in the lower 

portion of depth interval 2 of the Rodessa. Rhythmic sequences of multiple lighter layers deposited above, 

and bounded by darker layers of finer-grained sediment are characteristic of tidal rhythmites. Presence of 

tidal rhythmites suggests deposition in a tide-dominated environment. The lower depth interval contains 

small amounts of fibrous selenite and anhydrite towards the base, suggesting a low-energy, restricted 

environment. This sample interval is representative of the underdeveloped Ferry Lake Anhydrite in 

central Rankin County. Brown-red mud to very-fine sandstone is present in the upper portion of the 

interval. Plagioclase feldspar wacke and potassium feldspar wacke are noted in the core descriptions of 

depth interval 5 of interval 1 in the M.D. Ragsdale cuttings. Extraformational feldspathic clasts agree with 

the interpretation of fluvial channels within the Rodessa Formation. The M.D. Ragsdale is indicative of an 

upper shoreface, to restricted lagoonal or tidal environment. Interpretations of the core indicate a highly 

interactive paleoenvironment with tidal and fluvial influences representative of a transgressive coastal 

environment.  
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Lithologic identification based on the one available lithodensity log in the Clifton Rhodes 6-15 

#1shows that the Glen Rose Subgroup in Pelahatchie Field is composed mainly of interbedded shales, 

siltstones, and sandstones, with thinly bedded limestones and dolomitic shales (Figure 32). 

 

Figure 32. Structural cross section showing synthetic lithologic log based on Clifton Rhodes #6-

15 PE-density porosity-neutron porosity log responses, showing strong correlation to sample logs 

and confirming dolomitic nature of Ferry Lake Anhydrite in central Rankin County.  



 

76 
 

The following paragraphs will discuss each formation in depth. 

The base of the Mooringsport Formation is a calcium cemented sandstone that grades upward into 

a siltstone. Overlying this sandstone is a ten foot thick dolostone interval. This dolostone represents the 

Ferry lake Anhydrite equivalent in this area, indicating that the field was above the up-dip limit of Ferry 

Lake anhydrite deposition. However, mudlogging records indicate trace amounts of anhydrite over this 

interval in nearby wells, indicating that the area may have experienced a brief period of deposition within 

a shallow water, restricted circulation, hot and arid, environment. This dolostone is topped by a thick 

shale unit followed by a massive sandstone. Above this sandstone is a thin shale unit, and a very thin 

dolomitic limestone. The top of the PeF log reading in the Mooringsport is a massive sandstone.  

The Rodessa Formation is composed interbedded sandstones and shales. A thin basal sandstone. 

Overlying this is a thin shale, and a very thin dolomitic shale, topped by a thick interval of sandstone 

interbedded with shale. Overlying this unit is a normally graded, calcium cemented siltstone to shale bed. 

This is overlain by a thick sandstone, which is overlain by a shaley sandstone. This is followed by a shale 

which is capped by a very thin dolostone layer. Mudloggers record the presence of lignite in the upper 

Rodessa Formation in the Earl Huffman. 

The Pine Island Formation is composed of a thin basal shale, overlain by a normally graded 

sandstone to siltstone to shale bed. This is overlain by a sandy limestone. The low Pe value in this interval 

may also be indicative of cherty dolomite, in which case, the effect of silica is confounded by the effect of 

dolomite. This will cause the neutron and density porosities to falsely overlay. This is overlain by a 

dolomitic shale, and a thin limestone unit, followed by another dolomitic shale. Overlaying this shale is a 

sand unit composed of three fining-upward sequences, the lowest of which includes a sandy dolomitic 

sandstone. This is followed by a thin shale interval, capped by a well-cemented calcareous sandstone. 

This is followed by a thick shale interval, with one very thin, tight limestone interbed.  
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CONCLUSIONS 

Results from this study indicate that the environment of deposition in the Glen Rose 

Subgroup from the Loper #1 area in southern Rankin County, transitions from upper shoreface 

deposits south of the study area, to estuarine tidal flats in a more restrictive environment within 

Pelahatchie Field in north, central Rankin County. The Glen Rose Subgroup in central Rankin 

County includes two major fining-upward successions as seen on SP and GR log signatures. The 

base of each of the fining-upward successions represent a parasequence boundary and record an 

overall transgression of sea-level, with smaller regressive episodes marked by a rapid increase of 

sediment influx following maximum flooding surfaces. This is confirmed by paleodeposits 

depicting sediment flows with erosional bases overlying mudstones within each core. This is also 

substantiated by log signatures showing an abrupt change in facies immediately overlying the 

maximum flooding surfaces associated with fining upward sequences.  Extraformational 

plagioclase and potassium feldspar clasts within M.D. Ragsdale cuttings confirm updip igneous 

sediment sources. Indications of a mappable channel near the base of the Rodessa Formation 

supports the interpretation of deposition within a tidal flat environment. The presence of 

channels provide an explanation for the method of transport of extraformational clasts and can be 

important to the petroleum system if proven to be of reservoir quality. Structure in the field is 

controlled by an underlying salt dome, creating slight structural closure and faulting within study 

area. Salt movement was syndepositional with the lower and middle Glen Rose Subgroup, but 

halted before Mooringsport deposition based on stratigraphic relationships within the field.  
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Understanding the environments of deposition and structural controls on production are 

important to the continued oil and gas exploration of salt dome plays in the Mississippi Interior 

Salt Basin and the recovery of hydrocarbons. Identifying migration pathways and trapping 

mechanisms related to faulting, closure, and stratigraphy of paleoenvironments within the MISB 

will contribute to future salt feature play development. 
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Appendix A: Helmerick & Payne Loper #1 Core Analysis 
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Appendix B: American Petrofina M.D. Ragsdale #1 Core Analysis 
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Appendix C: Box and whisker plot of produced oil gravities with accompanying ANOVA table. 

p<.0001. 
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Appendix D: Helmerick & Payne Loper #1 Core Desciptions 
 

 Depth Interval 1: 10,364-10365 ft.— Color pink to tan; grain size fine-medium; 
subrounded; well sorted; massive; low-angle stratification present in middle; parting present in 
middle; calcareous cement; iron staining; mica present; hornblende present (<1%). 

Depth Interval 2: 10,365-10,366 ft.— Color light pink to light grey; grain size fine-
medium; well sorted; massive in upper section; low-angle stratification (15° planar bedding) in 
lower section; deformed bedding and mottles in middle section, underlain by unconformity; clay-
filled void in upper section (1mm wide, 2 inches long); low-angle stratification is gray-white 
with dark gray-black laminae; stylolite present; calcareous cement (15% occurrence); iron oxide 
spots present.  

Depth Interval 3: 10,366-10,367 ft.— Color light grey to light grey tan; grain size fine-
medium and well sorted in upper 5”; grain size fine to granule and poorly sorted in lower 7”; 
planar, low-angle, laminated bedding in upper 5”; deformed, variegated bedding in lower 7” with 
red clay lenses and very thin pebble layers present; chert clasts present in lower 7”; calcareous 
matrix. 

Depth Interval 4: 10,367-10,368 ft.— Color light grey; grain size fine-coarse; well-sorted 
with thin intervals of poorly sorted; massive; normally graded bedding sequence present at base 
with grain size very fine- granule; matrix supported pebble layers present. 

Depth Interval 5: 10,368-10,369 ft.— Color light grey to light pink grey; grain size fine- 
medium with thin fine- granule intervals interbedded; well-poorly sorted; low-angle, planar 
stratification; granule and pebble interbeds present consist of well-rounded, red chert clasts; 
calcareous matrix.  

Depth Interval 6: 10,369-10,370 ft.— Color light grey; grain size fine-very coarse in 
uppermost section, underlain by a thin fine-granule bed, underlain by a fine-medium lower 
section; well-poorly sorted; low-angle (15°), planar stratification; bedding dips in opposite 
direction of overlying bedding.  

Depth Interval 7: 10,370-10,371 ft.— Color light grey tan; grain size fine-medium; well 
sorted; planar, low-angle stratification; average bedding thickness = 1mm; parting present in 
upper section; dip direction change at part, possible unconformity; calcareous matrix (weak 
reaction).  

Depth Interval 8: 10,371-10,372 ft.— Color light grey tan; grain size fine-medium; well 
sorted; planar, low-angle stratification; average bedding thickness = 2-4mm; parting in lower 
section.  

Depth Interval 9: 10,372-10,373 ft.— Upper section unrecovered; lower section color 
light grey with dark, micaceous laminations; grain size fine-medium, well sorted; .5-1mm thick 
horizontal laminations; parting present in lower section; cross-cutting red stains present in lower 
section. 

Depth Interval 10: 10,373-10,374 ft.— Color pink tan and light grey; upper section grain 
size fine->4mm, conglomerate, red clay with white-tan, sub-round to sub-angular clasts; poorly 
sorted; possible ripple marks; planar cross-bedding present in middle section; middle section is 
fine-medium in grain size; well sorted; cross beds are grey and white in color and have strong 
reaction to diluted hydrochloric acid; lower section is medium in grain size; well sorted; massive;  
red in color with no reaction to diluted hydrochloric acid.  
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Depth Interval 11: 10,374-10,375 ft.— Color pink to tan to grey; grain size medium 
lower-coarse lower and silt - very fine; well sorted; massive; surrounded to subangular; red 
cement spots; no reaction to hydrochloric acid.  

Depth Interval 12: 10,375-10,376 ft.— Color pink to tan to grey (grey is in clots within 
pink color); grain size medium lower- coarse lower and silt - very fine; well sorted; massive; 
very porous; very coarse lower - coarse lower pebble bed or sub angular clasts at base.  

Depth Interval 13: 10,376-10,377 ft.— Color pink to tan to grey (grey is in clots within 
pink color); grain size medium lower-coarse lower and silt -very fine; well sorted; massive.  

Depth Interval 14: 10,377-10,378 ft.— Color pink to tan to grey (grey is in mottled? clots 
within pink color); grain size silt- very fine; well sorted; massive.  

Depth Interval 15: 10,378-10,379 ft.— Color pink to tan to grey; grain size silt-very fine; 
well sorted; massive.  

Depth Interval 16: 10,379-10,380 ft.— Color grey and red; grain size medium and silt - 
very fine; well sorted; massive; red spots within grey sands.  

Depth Interval 17: 10,380-10,381 ft.— Color light grey with red clasts; grain size 
medium and silt - very fine; well sorted; massive; lower section silt- very fine in grain size. 

Depth Interval 18: 10,381-10,382 ft.— Color light grey; grain size very fine in upper 
section, granule in lower section, normally graded bedding; poorly sorted; scoured basal contact 
with 1-1.5mm clasts at base of scour; subrounded; well sorted at base; clasts react to HCL; 
matrix does not react to HCL.  

Depth Interval 19: 10,382-10,383 ft.— Color light grey to grey, red tan at base; grain size 
mud to silt; well sorted; massive; >2/3 matrix, <1% allochems; very porous.  

Depth Interval 20: 10,383-10,384 ft.— Color red grey; grain size mud to silt; well sorted;  
massive.  
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Appendix E: Qualitative Descriptions of American Petrofina’s M.D. Ragsdale #1 Cutting 
Samples  

 

  Begin Interval 1 (Rodessa)– cuttings  

 Depth Interval 1: 10,223-10,230 ft.— Color red grey; grain size medium; subrounded-
subangular; well sorted; massive; micaceous; matrix = 10-20% and calcareous.  

Depth Interval 2: 10,230-10,240 ft.— Color  red with darker grey and light grey laminae; 
grain size medium lower-medium upper; subrounded-subangular; well sorted; massive in upper 
portion of section, horizontal, rhythmic, planar bedding in lower portion (dark grey and light 
grey laminae, each = 0.5mm in thickness); matrix = 10-20% and calcareous.  

Depth Interval 3: 10,240-10,250 ft.— Color red interval overlying a light, white grey 
interval, overlying a dark grey basal interval; grain size fine-medium in upper portion of section, 
medium upper-coarse lower in dark grey basal section; well sorted; massive; upper section is 
micaceous and subangular with white, CaCO3 rich clasts at base; the underlying white grey 
interval has 10-15% matrix, 95% Q, 5% feldspar, with CaCO3 cement (cement is very reactive to 
HCL), is classified as a quartz wacke; the underlying basal interval has 10-15% matrix, very low 
to no porosity, and no reaction to HCL. 

Depth Interval 4: 10,250-10,260 ft.— Color red; grain size medium lower-medium upper; 
well sorted; massive; CaCO3 cement (very reactive to HCL).  

Depth Interval 5: 10,260-10,270 ft.— Color light grey in upper portion of section, 
overlying a grey pink lower portion of section; grain size medium upper-coarse lower; 
subrounded; well sorted; massive; upper section is very reactive to HCL and some grains have 
black coating; classified as a plagioclase feldspar wacke; lower section is very reactive to HCL 
and classified as a potassium feldspar wacke.  

Depth Interval 6: 10,270-10,280 ft.— Color dark grey in upper portion of section, brown 
red in lower portion of section; grain size mud-very fine in upper portion of section, silt-fine in 
lower portion of section; well sorted; massive; upper portion classified as a silty shale and has 
low reaction to HCL; lower portion contains fibrous selenite/ anhydrite? xls and  has a low 
reaction to HCL.  

 

Begin Interval 2 (Hosston) – fragmented ¼ core in small envelopes 

 

Depth Interval 1: 11,089-11,100ft.— Envelope 1: Color light grey, white; grain size 
coarse; well sorted; massive; grains are white, clear, and slightly smokey in color; matrix = 20% 
and reacts to HCL; classified as a quartz wacke. Envelope 2: Color white with interbed of grey 
color; grain size medium upper-coarse lower; well sorted; massive with horizontal, grey interbed 
= 0.5 mm in thickness; slow reaction to HCL.  

Depth Interval 2: 11,100-11,107ft.— Color light grey white; grain size medium; well 
sorted; massive; slow to no reaction to HCL; low porosity.  
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Depth Interval 3: 11,107-11,113ft.— Envelope 1: Color white; grain size coarse upper; 
subangular; well sorted; massive; 90% Q, 9% F, 1% L; matrix = 20% and is calcareous; very 
porous interval; classified as a wacke; crystalline clasts present. Envelope 2: Color white; grain 
size medium upper-coarse lower; well sorted; massive; orange xls present; no porosity.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

104 
 

 
 
 

VITA 
 
Education:  Bachelor of Science in Geology, May 2016 
  University of Mississippi, University, MS 38655 
 
Work Experience: Geologist, 2017 – present  
   Callon Petroleum Company 
   Houston, TX  
 
Publications: “Synergistic Effects of Halogen Bond and pi-pi Interactions in Thiophene-based  

Building Blocks,” RSC Advances (2015) 
 
Memberships and Awards:  
 

American Association of Petroleum Geologists, Dallas Young Professionals in 
Energy, Dallas Geological Society, Houston Geological Society, West Texas 
Geological Society. Chancellors Honor Roll, Sigma Aloha Lambda honors 
organization, Gamma Beta Phi honor organization, Geologist in Training 

 
Grants: IHS University Grant for Kingdom PAKaged Suite, Academic Add-on, and IHS 

Petra- awarded in 2016 


	Structural Controls and Depositional Environments of the Glen Rose Subgroup in Pelahatchie Field in Rankin County, Mississippi
	Recommended Citation

	tmp.1569246484.pdf.G4bNJ

