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Abstract

Classical multivariate statistical inference methods including multivariate analysis of variance,

principal component analysis, factor analysis, canonical correlation analysis are based on sample

covariance matrix. Those moment-based techniques are optimal (most efficient) under the nor-

mality distributional assumption. They are, however, extremely sensitive to outlying observations,

susceptible to small perturbation in data and poor in the efficiency for heavy-tailed distributions. A

straightforward treatment is to replace the sample covariance matrix with a robust one. Visuri et al.

(2000) proposed a technique for robust covariance matrix estimation based on different notions of

multivariate sign and rank. Among them, the spatial rank based covariance matrix estimator that

utilizes a robust scale estimator (MRCM) is especially appealing due to its high robustness, com-

putational ease and good efficiency. In this dissertation, properties of the estimator on orthogonal

equivariance under any distribution and affine equivariance under elliptically symmetric distribu-

tions have been established. The major robustness properties of the estimator are studied by the

breakdown point and influence function analysis. More specifically, the finite sample breakdown

point is obtained and the upper bound of the finite sample breakdown point can be achieved by

a proper choice of univariate robust scale estimator. The influence functions for eigenvalues and

eigenvectors of the estimator are derived. They are found to be bounded under some mild assump-

tions. Moreover, empirical comparisons to popular robust MCD, M and S estimators show that

MRCM has a competitive performance on efficiency as well as robustness.

With rapid advances in information technology, data have been becoming huge in size and com-

plex in structure. A single elliptical distribution is no longer sufficient to model such data. This

motivates a generalization of our notion of MRCM to mixture models. In this dissertation, we pro-
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pose a robust Spatial-EM algorithm for estimating parameters in the mixture model. Rather than

using sample covariance matrix in each M-step, Spatial-EM ingeniously implements MRCM to

enhance stability and robustness of the estimation procedure. Analyzing the log-likelihood func-

tion, the proposed one is found to be closely related to the maximum likelihood estimator (MLE)

of Kotz type mixture model. Comparing with the direct MLE, Spatial-EM has advantages in com-

putation ease as well as stability.

Applications of Spatial-EM to data mining become natural. We illustrate procedures how to use

Spatial-EM for supervised and unsupervised learning problems. More specifically, robust cluster-

ing and outlier detection methods based on Spatial-EM have been proposed. We adopt the outlier

detection to taxonomic research on fish species novelty discovery. UCI Wisconsin diagnostic

breast cancer data and Yeast cell cycle data are used for clustering analysis. Comparing with the

regular EM and many other existing methods such as X-EM and SVM, Spatial-EM demonstrates

its competitive classification power and high robustness.
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Chapter 1

Introduction

1.1 Statistical Functionals
Let X1,...,Xn be a random sample from a population with probability distribution function

F ∈ Rp. Assume that F belongs to some family F of distribution functions but is unknown. One

is usually interested in estimating some quantities related to F , denoted by the parameter θ. In

fact, θ can be viewed as a functional T (F ). Then, an intuitive estimator of θ. with sample data

{X1, ...,Xn} is simply T (Fn), Here Fn is the empirical distribution function such that for a set

A ⊆ RP ,

Fn(A) =
1

n

n∑
i=1

I[xi ∈ A],

where I[·] is the indicator function which is 0 when I[False] and is 1 when I[True]. Fn uniformly

puts probability mass 1/n on each point xi, therefore it has empirical probability mass function

fn(xi) = 1/n, i = 1, ..., n.

Usually, a parameter θ can be characterized by various functionals. For instance, in unimodal

symmetric distributions, the center of symmetry can be represented by one of the following: the

expected value, median or mode of a given distribution. Some functionals are explicitly defined

in terms of F . For instance, the expected value of random variable X is a functional of F defined

by EF (X) = T (F ) :=
∫
xdF (x), then θ̂ = T (Fn) = 1/n

∑n
i=1 xi = x̄. However, some other

functionals T (F ) are implicitly defined as a root of a system of equations or as a solution of a min-

imization (maximization) problem. For instance, the median of X , Med(X) = T (F ) is a solution

of the equation F (X) = 1/2. The maximal likelihood estimator of θ is a solution maximizing the
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likelihood function based on F , etc. Estimator of θ is usually obtained as an empirical functional

based on Fn. That is, given θ := T (F ), we estimate θ by θ̂ = T (Fn). Estimators based on

distinct functionals T have different statistical properties regarding to efficiency, robustness and

computational complexity. The robustness of a statistical functional is discussed in detail in Sec-

tion 1.2. The concept of Statistical efficiency is introduced in Section 1.3. A few example of affine

equivariant estimators are listed in Section 1.4. In this paper, we propose a new robust statistical

approach that improves existing methods in terms of above mentioned properties.

1.2 Characteristics of Robustness
Every statistical approach builds upon a set of explicit and implicit assumptions. Any result

coming out of the approach relies on these assumptions. The outcomes that are not influenced

much by (little) changes in assumptions are called them robust.

Statisticians noticed the sensitivity of statistical procedures to deviations from model assump-

tions. It took a long time to develop the concept of robustness from various points of view. Mean-

while, the issue prompted researchers from different areas to determine the most important and

most reasonable assumptions for the underlying model. In order to give an feeling of robustness

and what the effect of an outlier can be, let us consider the following example.

Example 1 Consider a sorted random sample of X , X = {2, 3, 5, 7, 7, 9, 11, 12, 13, 16,100}, it

is obvious that the value 100 is far away from the majority of data distribution and therefore can

be thought as an outlier. Different estimators of location and scale can be used. Two columns of

values represent the estimates without or with (bold face font) the outlier 100. The values of sample

mean and standard deviation change significantly with the presence of the outlier. However, the

other estimators remain stable. So we can roughly consider mode, median, IQR and MAD are

robust estimators, but sample mean and sample standard deviation are not.

2



Location Scale

Sample Mean 8.5 16.82 Standard Deviation 4.53 27.92
Mode 7 7 IQR=|Q3 −Q1| 6.25 6.5
Median 8 9 MAD 5.19 5.93

In fact, the interpretation of robustness can involve many different aspects. From a technical

point of view, Hampel et al. (1986, p.6) provided the following definition of statistical robustness.

In a broad informal sense, robust statistics is a body of knowledge, partly formal-

ized into “theories of robustness” relating to deviations from idealized assumptions of

statistics.

For instance, in the setting of linear models, number of discrepancies from ideal assumptions have

been investigated. These include the effect of dependence of observations, heteroscedasticity,

collinearity, measurement error, influential point in terms of both leverage and outliers, normality

of error, etc. However, we restrict our discussion of robustness of a statistical procedure to devia-

tion from the underlying distribution of data. More specifically, there are two types of definitions

of outliers. One is nonparametric, based on some notions of distance. An outlier is considered to

be the data far away from the majority of data in a predefined distance metric. The other is para-

metric, based on some distributions. An outlier is thought to be the data point residing in the low

density region of the given distribution. Perhaps the two most popular examples that are sensitive

to outlying observations are sample mean and sample standard deviation as indicated in Example

1.

Statistically, there are three basic tools to examine whether an estimator is robust or not. They

are qualitative robustness, infinitesimal robustness, and quantitative robustness by breakdown

points. We illustrate their properties in the univariate case and focus on robustness of location

and scale estimators in this chapter. The generalizations to the multivariate case would be studied

in the following chapters.

Before going further, the meaning of measure of location and scale (scatter in the multivariate

case) are explained here. For univariate distribution F (X), the basic requirement for a quantity θ
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to be a measure of location is the scale and location equivariance. That is, for any number a and

b ∈ R, θ must satisfy

θ(aX + b) = aθ(X) + b. (1.1)

A quantity σ is a measure of scale, e.g., population standard deviation, if it is scale equivariant i.e.

for a > 0,

σ(aX) = aσ(X) (1.2)

and location and sign invariant, i.e., for any number b,

σ(X + b) = σ(X) (1.3)

σ(−X) = σ(X). (1.4)

Affine equivariance is similar to the situation of a change of unit, For example, when the unit

changes, then the values of θ and σ changes.

1.2.1 Qualitative Robustness

Qualitative robustness can be understood as the continuity of a function f(x) (not necessary

the probability density function). For example, if f(x) = 0 for x ≥ 1, but f(x) = 1000 for any

x < 1, then the function f(x) is not continuous at x = 1. It is considered to be not “robust”

in the sense that a small change in x around 1 would cause a big change in f(x). The notion of

continuity of function can be easily extended to robustness of a functional in this way. That is, we

say a functional (estimator) is robust if small changes of function can only cause small change in

the functional.

The Prohorov metric on the function space F was first proposed to measure the neighborhoods

of a function. It is also used to define the continuity of a functional. Other suitable metrics on

F such as the Kolmogorov metric are employed most often nowadays due to their theoretical

convenience.
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The Kolomogorov metric is defined as DK(F,Gn) := supx |F (x) − Gn(x)|. A functional T

is qualitative robust if for any distribution Gn(x), DK(F,Gn) → 0 as n → 0 implies T (Gn) →

T (F ). For example, the mean µ of a distribution, denoted by a location functional T (F ), can not

be qualitative robust, because one can always find a sequence of distributions Hn(x), such that

DK(F,Hn)→ 0 as n→ 0 but T (Hn) 9 µ. Details are given by Staudte & Sheather (1990, p.66).

The continuity assumption of the statistical functional plays a central role in this paper. It is

a necessary condition for the existence of the influence function, which we will discuss in the

following sections.

1.2.2 Infinitesimal Robustness by Influence Function

The second robustness concept is the infinitesimal robust. It can be regarded to the differ-

entiability of a functional. A better understanding of infinitesimal robustness is to think of the

differentiability of a function f(x), (again, not necessarily the probability density function). Sup-

pose we want to know what constraints should be imposed on f(x) so that small change of x

would not lead to a large change in f(x). One may require more rigorous condition such that

f(x) is differentiable and its derivative is small or at least bounded. In the context of statistical

functional T (F ), the “derivative” we consider here is called the influence function.

The following definitions of functional derivative are shown to be useful in describing the

robustness.

Definition 2 Let F and G be two cdf’s that belong to F . The functional T is differentiable in the

Gâteau sense in F in the direction of G, if there exists the limit

T ′G(F ) = lim
t→0+

T (F + t(G− F ))− T (F )

t
.

T ′G(F ) is called the Gâteau derivative T in F in the direction of G.

Definition 3 Let X be a separable and complete metric space with metric d, denoted B the σ-field

of its Borel subsets. F ∈ F , the system of all probability measures on space (X ,B). The functional

5



T is differentiable in F in the Frêchet sense, if there exists a linear functional LF (G − F ) such

that

lim
t→0

T (F + t(G− F ))− T (F )

t
= LF (G− F )

uniformly for G ∈ F , d(F,G) ≤ C for any fixed C ∈ (0,∞). The linear functional LF (G − F )

is called the Frêchet derivative of functional T in F in the direction G.Remark 4

a If we denote φ(t) = T ((1 − t)F + t(G)), where 0 ≤ t ≤ 1, the Gâteau derivative T ′G(F )

equals the ordinary right derivative of φ′(0+), It is obvious that differentiability of T in the

Frêchet sense implies its differentiability in Gâteau sense, and Gâteau derivative T ′G(F ) =

LF (G− F ).

b If T is differentiable in the Frêchet sense, by Riesz Representation theorem, there exists a funci-

ton h : X 7→ R such that

T ′G(F ) = LF (G− F ) =

∫
X
hd(G− F ).

Specifically, define Dirac Probability measure ∆x = 1 to the singleton set {x}, 0 elsewhere,

T ′∆x(F ) =

∫
X
hd(∆x − F ) = h(x)−

∫
X
hdF.

Furthermore, abbreviating T ′∆x(F ) to T ′x(F ) we have,

EF (T ′x(F )) =

∫
X

[h(x)−
∫
X
hdF ]dF = 0. (1.5)

This equality is useful when we discuss influence function of any statistical functional.

c If denote φ(t) = T ((1− t)F + tFn), for 0 ≤ t ≤ 1, the Taylor expansion at u can be shown as

φ(t) = φ(u) +
n−1∑
k=1

φ(k)(u)

k!
(t− u)k +

φ(n)(v)

n!
(t− u)n, v ∈ [u, t].

6



In special case when t = 1, u = 0+, and by the first order Taylor expansion, we have

T (Fn)− T (F ) = T ′Fn
(F ) +

1

2

[ d2

dt2
T (F + t(Fn − F ))

]
t=v∈(0,1)

(1.6)

Definition 5 The Gâteau derivative of functional T in distribution F in the direction of ∆x, x ∈

X is called the influence function of T in F , thus

IF (x, T ;F ) = T ′x(F ) = lim
t→0+

T (Ft(∆x))− T (F )

t

where Ft(∆x) = (1− t)F + t∆x.

Note that IF (x;T, F ) describes the effect of an infinitesimal contamination at the point x to

functional T . One can define a global sensitivity of the functional T under the distribution F to be

γ∗ = sup
x∈X
‖IF (x, T ;F )‖I

where ‖ · ‖I is a proper norm defined accordingly in the range space of T . For example, it is

defined to be the absolute value function if T ∈ R, Euclidean norm if T ∈ Rd, a matrix norm if

T ∈ Rp × Rp, etc.

A functional T is considered to be infinitesimal robust if it has a bounded influence function

w.r.t x, and therefore a finite γ∗.

Example 6 Consider the following statistics in the univariate case where the empirical distribu-

tion is simplified as Fn(x) = 1/n
∑n

i=1 I[xi ≤ x], x ∈ R.

(a) Expected value:

Let

T (F ) = E(X) =

∫
R
xdF,

then

T (Fn) =

∫
R
xdFn =

1

n

n∑
i=1

xi, denoted by x̄n

7



Further, if

φ(t) := T ((1− t)F + t∆x)

=

∫
R
Xd((1− t)F + t∆x)

= (1− t)E(X) + tx

so

IF (x;E(X), F ) = T ′x(F ) = φ′(0+) = x− E(X) (1.7)

Then γ∗ =∞. Hence the expected value is not infinitesimal robust in that global sense.

(b) Quantiles:

For an univariate random variable X with cdf F , the qth quantile, Xq = inf{x ∈ R|F (x) ≥

q}, where 0 < q < 1. For example, the median of X equals X.5. In particular, if X is continuous

random variable, Xq = F−1(q). Let f(x) be the probability density function associated with

F (x). The influence function of qth quantile thus has the following form,

IF (x;Xq, F ) =



q − 1

f(Xq)
, if x < Xq

0, if x = Xq

q

f(Xq)
, if x > Xq.

Then γ∗ is bounded. Hence the qth quantile is infinitesimal robust in the global sense.

(c) Variance:

Let

T (F ) = var(X) =

∫
R
x2dF − (E(X))2,

then

T (F̂n) =
1

n

n∑
i=1

x2
i − (x̄n)2, denoted by S2

n.
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If

φ(t) := T ((1− t)F + t∆y)

=

∫
R
x2d((1− t)F + t∆y)−

(∫
R
xd((1− t)F + t∆y)

)2

= (1− t)E(X2) + ty2 − (1− t)2(E(X))2 − 2t(1− t)yE(X)− t2y2

then

IF (y; var(X), F ) = T ′y(F ) = φ′(0+)

= y2 − E(X2)− 2xE(X) + 2(E(X))2

= (y − E(X))2 − var(X) (1.8)

γ∗ is unbounded in y by the first term in (1.8), so var(X) is sensitive (not infinitesimal robust) in

global sense.

(d) Median Absolute Deviation (MAD)

The median absolute deviation ω is defined implicitly by

P (|X −X.5| ≤ w) = .5

That is, the ω is the median of the distribution of |X−X.5|, the distance between random variable

X and its median. Its influence function is lengthy and shown in Wilcox (2005).

IF (x;w,F ) =

sign(|x−X.5| − ω)−
f(X.5 + ω)− f(X.5 − ω)

f(X.5)
sign(x−X.5)

2[f(X.5 + ω) + f(X.5 − ω)]
.

Assuming f(X.5) and 2[f(X.5 + ω) + f(X.5 − ω)] are not equal to 0, then MAD has a bounded

γ∗ and therefore robust in global sense. In addition, if density function of F is symmetric around
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0, then X.5=0, and f(ω) = f(−ω). The influence function can be further written as

IF (x;w,F ) =
sign(|x| − w)

4f(ω)
(1.9)

This result is useful in our derivation of influence function of MRCM in the Chapter 4.
It is well known that the continuity is a necessary condition for differentiability of a given

function. Since the qualitative robustness is defined as the continuity of given functional, the

infinitesimal robustness is thus deemed to be stronger by requiring the boundedness condition on

derivative of the given functional. In fact, Jurečková & Picek (2006, section 2.4) pointed out that

a qualitative robust estimator can not automatically guarantee its bounded influence function and

they provide a counter example.

In addition, not only being a tool to measure the robustness, the influence function is also

convenient to be used for finding the asymptotic distribution of the empirical functional T (Fn),

see Jurečková & Picek (2006). This is due to the Central Limit Theorem and the fact that

EF (IF (x;T, F )) = 0, as shown in (1.5),
Theorem 7 If T is Frêchet differentiable, for metric space (F , d) of all probability distributions on

(X ,B), F̂n, F ∈ F satisfy condition
√
nd(F̂n, F ) = OF (1), as n→∞, and varF (IF (X;T, F )) =

EF (IF (X;T, F ))(IF (X;T, F ))T is positive semidefinite, then

(√
n(T (F̂n)− T (F ))

)
→ N

(
0, varF (IF (X;T, F ))

)
. (1.10)

Example 8 (a) Expected value: If T (F ) := E(X) then T (Fn) = X̄ = 1
n

∑n
i=1Xi. By (1.7)

var(IF (x; E(X), F )) = E(IF (x; E(X), F ))2

= E(X2)−
(
E(X)

)2
= var(X)

We therefore have the following classical representation by (1.10),

√
n(X̄ − E(X))→ N (0, var(X)). (1.11)
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(b) Variance: If T (F ) := var(X) then T (Fn) =
1

n

∑n
i=1 x

2
i − X̄2. By (1.8)

var
(
IF (x; var(X), F )

)
= E(x− E(X))4 − (var(X))2

Again, by (1.10), we have the asymptotic distribution of S2
n

√
n
(
S2
n − var(X)

)
→ N

(
0, E(x− E(X))4 − (var(X))2

)
.

1.2.3 Quantitative Robustness by Breakdown Point

Breakdown point is another popular tool in robustness analysis. It provides a measurement

of robustness in a global sense. There are two types of breakdown points (BP): the “addition /

replacement breakdown point”. Roughly speaking, they are the minimal proportion of points to be

added / replaced in the original data set so that the estimator on the new data set deviates from the

original estimator beyond any boundary. We feel the replacement breakdown point more likely to

describe the realistic condition. So, in this dissertation, the use of terminology breakdown point

and RBP are interchangeable without a further mention. Different from the influence function

indicating the effect brought by a single “bad” point, the breakdown point reflects the capacity

of a statistic that how many “bad” points it can handle. Since they both return a measurement in

numerical value, some people also consider the influence function as one of quantitative robustness

measurements.

To give the formal definition, we start with a random sample X(0) = {x1, ...,xn} and consider

the corresponding Tn(X(0)) be an estimator of functional T . Suppose for this “initial” sample, we

can replace anym data points by arbitrary values, even the unrealistic large quantity∞. Denote the

new sample after replacement as X(m) = {x∗1, ...,x∗m,xm+1, ...xn}, and Tn(X(m)) is the estimator
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of T based on the new sample. The (finite sample) breakdown point of the estimator Tn for sample

X(0) is

ε(Tn,X(0)) =
m∗(X(0))

n

where m∗(X(0)) is the smallest integer m such that

sup
X(m)

‖Tn(X(m))− Tn(X(0))‖B =∞

The asymptotic breakdown point ε̃ is considered when the sample size goes large, that is,

ε̃ = lim
n→∞

ε(Tn,X(0)).

‖ · ‖B is defined differently according to the functional Tn. If Tn is location estimator in R or

Rp, ‖ · ‖B would be absolute value or Euclidian norm. If Tn is scatter estimator in Rp ×Rp, ‖ · ‖B

has to be specially defined. Because Tn can breakdown in either way of explosion (its biggest

eigenvalue tends to infinity) or implosion (its smallest eigenvalues tends to zero). For instance,

the scale estimator (correspondence of scatter estimator in the univariate case), sample variance or

MAD has breakdown if it equals to 0 or∞. We will give more details about the method to define

‖ · ‖B in the Chapter 4 when we consider the breakdown of scatter estimator in high dimensional

spaces.

Example 9 Under the univariate case, for any initial random sample X(0):

(a) The sample mean X̄n and sample variance S2
n have breakdown point ε(X̄n,X(0)) = ε(S2

n,X(0)) =

1
n

, so the asymptotic breakdown point ε̃ = limn→∞ ε(X̄n,X(0)) = limn→∞ ε(S̄
2
n,X(0)) = 0

(b) The qth quantile has ε̃=min(q, 1 − q). In particular, the sample median x.5 = xdn+1
2
e

(for simplicity, only consider n being odd) have breakdown point ε(X.5,X(0)) = n+1
2n

, and the

asymptotic breakdown point ε̃ = 1/2

(c) MAD has asymptotic breakdown point ε̃ = 1/2, the highest level for an equivariant scale

estimator.
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1.3 Statistical Efficiency
To give a comprehensive assessment of any proposed statistical method, the notion of statis-

tical efficiency has to be reported. Efficiency is a measure of optimality of an estimator. To put

it simple, an estimator is said to be more efficient than the other if it needs a smaller sample size

to achieve the same accuracy level under a given distribution. Here, accuracy often refers to the

standard error or mean square error of the estimator. Comparing efficiency of different estimators

of a parameter is often done by comparing their accuracy for a fixed sample size under a given

data distribution. If the estimator is naturally presented in a matrix form, such as scatter estimators

in the multivariate case, distinct criteria of accuracy may apply, see Chapter 4.

Two general approaches exist to estimate standard error (accuracy) of an estimator. One way

is to develop the mathematical formula of the asymptotic standard error of the estimator. Most

of time, this would require the use of Central Limit Theorem, such as (1.10). However, if the

algebraic expression is too difficult to derive or the standard error of the estimator can not be

written out as an explicit form, one can use bootstrap to estimate it. Specifically, bootstrap can

be done by constructing a number of resamples of the observed dataset, each of which is obtained

by random sampling with replacement on the original dataset. For each resample, one estimate

is computed. Then the standard error of the estimator can further be estimated by the standard

deviation of these bootstrap estimates.

In practice, the standard error of location estimator developed by the first approach often in-

volves the an estimation of scale, e.g. (1.11). So, when seeking for an estimator of scale, robust-

ness is considered to be more important than efficiency. For instance, using the sample standard

deviation to estimate the standard error (accuracy) of measure of location (e.g., sample mean) will

widen the confidence interval if outliers exist. From here we can see, a robust estimator of scale

is especially important regarding to the statistical inference. Typically, in the way of choosing or

constructing a robust estimator, we hope to balance the following two situations: (1) The standard

error would not be inflated due to outliers or the heavy-tailed distributions; (2) The standard error

is not too large comparing to the most efficient estimators under the target distribution like Gaus-
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sian distribution. An interesting discussion on how to achieve this goal can be found by Wilcox

(2005, p.57). In the context, a trimming parameter of sample trimmed mean is tuning to balance

both properties. Furthermore, in Section 4.3, we would show the relative statistical efficiency of

our proposed method by considering of this two situations simultaneously. Previous sections are

served as an introduciton of necessary conpets with simple examples on the univariate case. From

now on, we will focus out discussion on the multivaraite case and robust scatter estimators.

1.4 Robust Affine Equivariant Estimator for Multivariate Model
Similar to the parameters location and scale in the univariate case, i.e. (1.1)- (1.4), the location

and scatter parameters in multivariate case should possess the same properties. The generaliza-

tion of these characteristics from one dimension to high dimensions is called affine equivariance.

They have different meanings respectively. Assume X ∈ Rp, for measure of location, affine

equivariance requires that for any p × p non-singular matrix A and p-vector b, if Tn is a location

estimator,

Tn(AX1 + b, ...,AXn + b) = ATn(X1, ...,Xn) + b.

For measure of scatter, affine equivariance requires that for the same matrix A, if Vn is scatter

estimator,

Vn(AX1 + b, ...,AXn + b) = AVn(X1, ...,Xn)AT .

Donoho & Gasko (1992, p.1811) indicated that the breakdown point has an upper bound (n−

p + 1)/(2n − p + 1) for any affine equivariant estimator. The scatter estimator we shall propose

in the next chapter is designed to preserve the affine equivariance and attain the highest possible

breakdown point in the same time under the assumption of elliptically symmetric distributions.

In the multivariate case, the classical sample mean (componentwise average ) and sample

covariance matrix are examples of affine equivariant location and scatter estimator. Applied re-

searchers commonly use them to characterize the distribution or make statistical inferences without

a careful check. However, like their univariate counterparts, they are extremely sensitive to out-
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liers with an unbounded influence function and low breakdown point (asymptotically 0). Before

the decade of 1960’s, methods for dealing with outliers were ad hoc. Not until Tukey wrote a

paper in 1960 discussing the contaminated normal distribution, did statisticians gather around to

address those technical issues. Moreover, the rapid growth of computational power provides a

huge support for developing more sophisticated methods to deal with high-dimensional noisy data

sets.

Many alternatives were proposed to replace the classical methods that are sensitive to outliers.

Variant robust affine equivariant estimators have been discussed about their robustness, statistical

efficiency, and computational complexity. We will briefly review some of them in the following.

1.4.1 Minimum Volume Ellipsoid and Minimum Covariance Determinant

Rousseeuw (1985) consecutively introduced the Minimum Volume Ellipsoid (MVE) and Min-

imum Covariance Determinant (MCD) estimators. MVE location estimator is the center of the

smallest regular ellipsoid containing h data points (out of n). The scatter estimator Σ is then

defined by the ellipsoid shape matrix. MCD is a variant of the MVE. Instead of considering the

ellipsoid, the objective is to find the h observations (out of n) whose classical covariance matrix

has the lowest determinant. The MCD location and scatter estimator are then given by the center

and covariance matrix on this collection of h observations. h is set to be between n/2 and n, and

usually taken to be n/2 + 1 or rounded to the nearest integer to cover half of the data points. Both

methods are making decision on tightly clustered data in order to reduce effects from outliers.

They have the a same break down point (n − h)/n, but the MVE is less attractive by its lower

statistical efficiency compared to MCD, see Davies (1992).

The major drawback of both MVE and MCD is their computational complexity. It is generally

difficult to exhaust all the subsets containing half of data when sample size n is large. Rousseeuw

& Leroy (1987) proposed a basic resampling algorithm to approximate the MVE, called MINVOL.

Rocke & Woodruff (1993) then find an algorithms combining the resampling principle with other

heuristic search techniques. In contrast to MVE, the computation time of MCD is greatly reduced
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by Rousseeuw & Driessen (1998). They proved a theorem called C-step and further proposed an

extremely fast algorithm, even in high dimensions, to compute the MCD. The use of MCD be-

comes popular since then. In addition, Croux & Haesbroeck (1999) studied the bounded influence

function of MCD scatter estimator and compute the asymptotic variances of its elements based on

the similar idea as (1.10).

1.4.2 M-estimator
The class of M-estimators was introduced by Huber (1964) from the estimation of a univariate

location parameter. The name “M-estimator” comes from “generalized maximum likelihood”,

which can be a solution of a minimization problem

n∑
i=1

ρ(X i,θ) := min with respect to θ ∈ Θ

where ρ(·, ·) is a properly chosen function.

Maronna (1976) was the first one to define M-estimators for multivariate locationµ and covari-

ance Σ. Huber & Ronchetti (2009) extended Maronna’s definition and defined the simultaneous

M-estimator as solutions of following system of equations:

1
n

∑n
i=1 v1(di)(X i − µ) = 0

1
n

∑n
i=1{v2(d2

i )(X i − µ)(X i − µ)T − v3(di)Σ} = 0,

(1.12)

where di =
√

(X i − µ)TΣ−1(X i − µ) is the Mahalanobis distance. Maronna (1976) showed

the existence and uniqueness of the solution above for the special case v3 = 1. Huber & Ronchetti

(2009) also studies the robustness of these estimators by showing the breakdown point, which is

typically at most 1/(p+ 1), where p is the dimension. The influence function is bounded when v1

and v2 are suitably chosen. Therefore, from the prospective of breakdown, M-estimator becomes

less robust to outlier in higher dimensions. But from the prospective of influence function, M-

estimator is infinitesimal robust.
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1.4.3 S-estimator

S-estimator was first introduced in a regression context by Rousseeuw & Yohai (1984). From

its direct generalization, the S-estimator of multivariate locationµ and covariance Σ is the solution

of

Minimize det(Σ), (1.13)

s.t.
1

n

n∑
i=1

ρ
(√

(X i − µ)TΣ−1(X i − µ)
)

= b0

where ρ is often chosen to be Tukey’s biweight ρB function

ρB(y, c0) =


y2

2
− y4

2c2
0

+
y6

6c4
0

, for |y| ≤ c0;

c2
0

6
, for |y| ≥ c0.

It is worth noting that S-estimator of location and covariance can also be viewed as a robust version

of the least squared estimator if b0 = p and ρ = y2. In that case, the classical sample mean and

sample covariance matrix would be the solution.

S-estimator can reach the maximal breakdown point b(n−p+ 1)/2c/n, or asymptotically 0.5,

when the ratio of 6b0
c20

= (n− p)/2n, see Lopuhaä & Rousseeuw (1991). However, the asymptotic

variance of estimators is positively proportional to c0. Therefore, it is not possible to achieve the

most efficiency and highest breakdown point at the same time. Lopuhaä (1989) further discussed

existence and continuity of S-estimator to obtain the influence function. He also indicated that

the S-estimator is a type of M-estimator. However, statisticians often refer M-estimators to those

that have low breakdown points and are solutions of the implicit equations (1.12), with decreasing

function of v2 and constant function v3 = 1. The S-estimators, instead, are associated with totally

different v2(·) and v3(·), and have a high breakdown point. Nevertheless, the asymptotic behaviors

and influence functions of M-estimators and S-estimators are the same.
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1.5 Dissertation Overview
The rest of this dissertation will be formalized in the following way. Chapter 2 will briefly

go over two types of sign and rank concepts, the marginal sign and rank and Oja sign and rank

functions. Chapter 3 will discuss the spatial sign and rank, which is different from Chapter 2, the

detailed explanation of spatial rank function, spatial rank covariance matrix (RCM) and a modi-

fied spatial rank covariance matrix (MRCM) will be present. Chapter 4 will give the theoretical

robustness results of MRCM in terms of the influence function and breakdown point. Further,

finite sample efficiency is also showed by comparing with other robust methods. In Chapter 5,

the mixture model and the regular EM algorithm are reviewed. The problems associated with the

regular EM algorithm are summarized. Some existing procedures are suggested to resolve them.

In particular, the undue influence of outliers in mixture of Gaussian model is discussed in detail.

In Chapter 6, a robust Spatial-EM algorithm that integrates the notion of MRCM is proposed to

solve the problem brought by outliers. The algorithm is also analyzed from the likelihood point of

view. Finally, in Chapter 7, experiments of using the robust Spatial-EM on outlier detection and

clustering are implemented. Results are compared to the regular EM and some existing techniques

in statistical learning or data mining. Chapter 8 will give the concluding remarks and possible

future work.
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Chapter 2

Two Types of Sign and Rank Covariance Matrices

2.1 Preliminaries
Classical multivariate statistical inference methods including multivariate analysis of variance,

principal component analysis, factor analysis, canonical correlation analysis are based on the co-

variance matrix. Those moment-based techniques, e.g., sample mean and sample covariance ma-

trix, are optimal (most efficient) under the normality distributional assumption. They are, however,

extremely sensitive to outlying observations, and poor in the efficiency for heavy-tailed distribu-

tions. A straightforward treatment is to replace the sample covariance matrix with a robust one.

A variety of robust estimators of scatter matrix have been reviewed in previous chapter. Besides

from those M-estimators, S-estimators, MCD-estimators mentioned before, sign and rank covari-

ance estimates (Visuri et al., 2000) received more attention recently. In this chapter, we focus on

one branch of these estimators.

Sign and rank functions defined in the univariate case are simple and intuitive. However,

when comes to multivariate case, the correspondences become interesting. They can be defined

differently with different forms with different points of view. This idea also applies to the related

sign and rank covariance matrices. Chapter 2 would give a brief review of these scatter estimators.

They are marginal and Oja sign and rank covariance matrices. After that, in Chapter 3 we would

focus on the discussion of the spatial sign and rank covariance matrices and a modified version of

spatial rank covariance matrix.
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2.2 Elliptical Models and Role of Covariance
Before continue, it would be wise to declare the general model assumption we mainly inter-

ested in and explain why covariance matrix (scatter parameter) is so important. We know that for

the multivariate Gaussian distribution, the covariance matrix determines the shape of distribution,

i.e. whether the density region is flat and sparse or concentrated. In fact, for a broader family

called elliptical models, in which a multivariate Gaussian distribution is just a special case, the

covariance matrix plays the same vital role.

A distribution is elliptical or elliptically symmetric if it has a density of the form

f(x;µ,Σ) = {det(Σ)}−1/2h{(x− µ)TΣ−1(x− µ)}, (2.1)

for some µ ∈ Rp, a positive definite symmetric p × p matrix Σ, and a nonnegative function h

with
∫∞

0
tp/2−1h(t)dt < ∞ independent to µ and Σ. The parameter µ is the symmetric center

of the distribution and it equals the first moment EX if it exists, while the scatter parameter Σ

is proportional to the covariance matrix Cov(X) when it exists. In the case of the multivariate t

distribution with degrees of freedom ν > 0, h in (2.1) is of the form h(t) = c(ν, p)(1+t/ν)−(p+ν)/2,

where c(ν, p) is the normalization constant. For ν > 2, the covariance matrix Cov(X) = ν/(ν −

2)Σ. For ν = 1, it is called p-variate Cauchy distribution. It has very heavy (fat) tails so that

even the first moment doesn’t exist. When ν → ∞, it yields the Gaussian distribution with

h(t) = (2π)−p/2e−t/2, such that all moments exist and Cov(X) = Σ.

Bensmail & Celeux (1996) presented that the (theoretical) covariance matrix can be eigen-

decomposed in the form

Σ = λUCUT ,

where U is the matrix of eigenvectors, C is the diagonal matrix with normalized eigenvalues ci’s

such that
∏p

i=1 ci = det(C) = 1 and λp is the Wilks generalized variance. λ, C and U are

described as scale, shape and orientation respectively. The idea of our modified rank covariance

matrix is originated from here. It is believed that if we can robustly estimate the eigenvector matrix
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and eigenvalues separately, we can have a robust estimator of covariance matrix.

In general, the diagonal matrix Λ = λC is the usual eigenvalue matrix. Wilks generalized

variance, one of the “global” measure of the multivariate scatter, is just the geometrical mean of

the eigenvalues to the power of p, which also equals det(Σ). Another “global” measurement of

the multivariate scatter is the sum of eigenvalues trace(Σ) = trace(Λ). Keep in mind that these

measurements also provide ways in defining the breakdown of scatter estimators.

As shown in the Section 1.4, affine equivariance of a scatter estimator is an important property

that any robust scatter estimator should strive for. Under an elliptical distribution assumption, this

turns to be especially significant. We shall see in the following sections, some of the robust scatter

estimators do not fully possess the affine equivariance. This is again the reason why we want to

propose a modified version of them.

2.3 Marginal Sign and Rank Covariance Matrices
The marginal sign function in high dimensions can be componentwisely generalized from the

univariate case. Recall that in the case x ∈ R, the sign function sign(x) takes value 1, 0 or −1 as

x > 0, x = 0 or x < 0. The (sample) sign and rank functions associated with a random sample

{x1, ..., xn} are defined below

S(x, Fn) = sign(x−Med(x1, ..., xn)),

and

R(x, Fn) = ave{S(x− xi)} =
1

n

n∑
i=1

sign(x− xi).

Note that R(x) is in fact the derivative of criterion function ave{|x − xi|}. Notation ave is the

average taking on the index i. In here, it is equivalent to 1
n

∑n
i=1.

For p-variate data set X = {x1, ...,xn}, where xi = [xi1, ..., xip]
T ∈ Rp, consider the objective

functions

H1(x) = ‖x‖1 = |x1|+, ...,+|xp|,
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and

D1(x) = ave{‖x− xi‖1}.

One can define the marginal sign function S1(x) and marginal rank function R1(x) as the

gradient of the above objective functions,

S1(x) = ∇xH1(x),

R1(x) = ∇xD1(x).

So theS1(x) = [sign(x1), ..., sign(xp)]
T . The vector of marginal rank ofx isR1(x) = ave{S1(x−

xi)}. The marginal sign ofx isS1(x−M 1(X)), whereM 1(X) is the marginal median (also called

the componentwise median) which minimizes the criterion function D1(x). The marginal median

also satisfies the equality

R1 (M 1(X)) = 0.

The corresponding (sample) sign covariance matrix (SCM) is defined as

SCM1 = ave{(S1 (xi −M 1(X)) (S1 (xi −M 1(X))T},

and (sample) rank covariance matrix (RCM) is defined as

RCM1 = ave{R1(xi)R
T
1 (xi)}.

Visuri et al. (2000) illustrated that the marginal sign and rank covariance matrices are scale

invariant (re-scaling the coordinates does not change the values of the matrices). Simply put, they

can not reserve the orientation and shape (eigenvectors and eigenvalues) of the original geometry

(distribution) of data cloud. Also, they lack the efficiency under the Gaussian model. We thus are

not interested in this type of scatter estimators even though their computation is relatively simple.
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2.4 Oja Sign and Rank Covariance Matrices
The volume of p-variate simplex determined by x and p observations with indices i1 < i2 <

... < ip is

1

p!
abs

det
 1 ... 1 1

xi1 ... xip x


 .

Consider the objective functions, Visuri et al. (2000)

H2(x) = ave

abs
det

 1 1 ... 1 1

0 xi1 ... xip−1 x



 ,

and

D2(x) = ave

abs
det

 1 ... 1 1

xi1 ... xip x



 .

The Oja sign and rank functions, S2(x) andR2(x) are defined as the gradient functions as follows,

S2(x) = ∇xH2(x),

R2(x) = ∇xD2(x).

Oja median (see Oja, 1983), M 2(X), minimizes D2(x), which is the solution of R2(x) = 0.

The Oja sign covariance matrix SCM2 (w.r.t. the Oja median M 2(X)) and Oja rank covariance

matrix RCM2 can be constructed in a similar way as SCM1 and RCM1. By introducing the

notion of simplex, both statistics are granted with “affine equivariance in the sense”. That is, if

x∗i = Axi + b, where A is a non-singular p × p matrix, and b is a p-variate vector, the Oja sign

and rank covariance matrix on the transformed data satisfies

SCM∗
2 = A∗SCM2A

∗T ,
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and

RCM∗
2 = A∗RCM2A

∗T ,

where A∗ = abs(det(A))(A−1)T . See Hettmansperger et al. (1998). If A is orthogonal, then

A∗ = A, and diagonalA = diag(a1, ..., ap) with all positive entries, thenA∗ = diag(
∏

i ai
a1

, ...
∏

i ai
ap

).

This means the SCM2 and RCM2 carry the orientation (eigenvectors) and shape (eigenvalues) of

the data distribution.

A series of papers investigate covariance matrices based on Oja sign and rank functions. For

example, a regression model with coefficient estimated by sign covariance matrix was dealt by

Ollila et al. (2002). Ollila et al. (2003) discuss the same issue base on Oja rank covariance matrix

Ollila et al. (2004) explored the influence function and efficiency of the Oja rank covariance ma-

trix. It has high efficiency under the multivariate Gaussian distribution and superior performance

in heavy-tailed distributions. However, the “affine equivariance in the sense” is still different from

the traditional definition of affine equivariance we give in Section 1.4. They are not robust in

the usual sense. The influence function is unbounded, and the breakdown point is 0. Even being

worse in practice, it needs
(
n
p

)
iterations for just calculating a single rank R2(x). Thus for data

with dimension higher than 5 or reasonable large sample size, the time taken on computation is

already prohibitively long.

24



Chapter 3

Modified Spatial Rank Covariance Matrix and

Equivariance

3.1 Introduction
Comparing to the methods in Chapter 2, spatial sign and rank covariance matrices are more

attractive due to its computational ease, robustness and statistical efficiency. But they are only

orthogonally equivariant. In order to gain fully affine equivariance property, one approach is to

utilize transformation-retransformation(TR) technique, which serves as standardization of multi-

variate data. More details can be found in Serfling (2010). The well-known scatter functional of

Tyler (1987) is a TR version of spatial sign covariance matrix. Use the same idea, Dümbgen (1998)

considered symmetrized TR spatial sign covariance matrix. Oja & Randles (2004) constructed

nonparametric tests based on TR spatial rank covariance matrix. Indeed, the above mentioned TR

scatter functionals are of the form of M-estimator, hence inherit the pitfall from M-estimator. The

breakdown point is disappointingly low in high dimensions. Dümbgen & Tyler (2005) studied the

breakdown properties of those estimators: the breakdown point for Tyler’s estimator is 1/p and

Dümbgen’s estimator is 1 −
√

1− 1/p ∈ (1/2p, 1/p), where p is the size of dimension. K-step

versions of the above estimators are studied in Croux et al. (2010) and Taskinen et al. (2010). A

related approach is a spatial trimming technique used by Mazumder & Serfling (2010), in which

a scatter estimator is obtained based on the trimmed data with the TR version spatial outlying-

ness less than some threshold. The robustness depends on the value of threshold, the trimming

parameter. With authors’ suggestion on the parameter, the breakdown point is 1/(p+ 2).
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In this chapter, we use a different approach to obtain affine equivariance property of spatial

sign and rank covariance matrices under elliptical models (see (2.1)) without sacrifice of robust-

ness. Suggestion of modifying structure for different rank covariances is proposed by Visuri, Oja

and Koivunen (2000). The basic idea is to take advantage of the fact that the spatial sign and

rank functions preserve directional information but lose some measure on distance. Consequently,

eigenvectors of the spatial sign and rank covariance matrices are able to capture principal compo-

nents (orientation) of a data cloud (or underlying distribution), but eigenvalues no longer reflect

the true variation on those directions. This is the result of Marden (1999). Our strategy is to re-

place each eigenvalue with an univariate scale estimator on the corresponding direction such that

it depicts the proper variability. This is also the approach that Visuri et al. (2000) took. For con-

sideration of robustness, the univariate scale functional must also be robust, e.g. MAD (median of

absolute deviation). The spatial rank covariance matrix is in favor over the spatial sign covariance

matrix because it is more statistically efficient. In addition, there is no initial location estimator

needed for computing rank vectors. We call the resulting covariance matrix the modified spatial

rank covariance matrix (MRCM). In the next chapter, we will study the robustness properties of

MRCM by the influence function and the breakdown point. The finite sample breakdown point is

also obtained. We show that the finite sample breakdown point can attain the upper bound by a

proper choice of univariate scale estimator. The influence functions of eigenvalues and eigenvec-

tors of the covariance matrix are derived and found to be bounded.

3.2 Spatial Sign, Spatial rank and Spatial depth
One can create the spatial sign or rank covariance matrix similar to the idea of the sign and

rank covariance matrix quoted in Chapter 2. Nevertheless, different from the simple way as the

marginal sign function taking the componentwise sign or the complex way as the Oja sign based

on the notion of simplex. We consider the following two objective functions,

H(x) = ‖x‖ =
√
x2

1 + ...+ x2
p,
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and

D(x) = ave{‖x− xi‖}.

The spatial sign function and the spatial rank function are defined as the gradient of them,

S(x) = ∇xH(x),

R(x) = ∇xD(x).

So the spatial sign function S(x) = x/‖x‖ (S(0) = 0). In fact, the spatial sign can be

viewed as the unit vector in the direction of x. The spatial sign of x with respect to (w.r.t.) a

random sample X = {X1, ...,Xn} is S(x, Fn) = S(x − M(X)), where M(X) is the spatial

median. The (sample) spatial rank is thus derived accordingly

R(x, Fn) = ave{S(x− xi)} =
1

n

n∑
i=1

x− xi
‖x− xi‖

.

Follow by the definition of spatial sign and spatial rank, the spatial median M (X) is a point that

minimizes the expected Euclidean norm D(x). It can be defined as a solution of

R (x, Fn) = 0.

Small (1990) took this from the other perspective and defined it to be the point with maximal

(“deepest”) depth Depth(x, Fn). Vardi & Zhang (2000) called it L1 median. Regardless, they are

all the solution of the same equation ‖R(x, Fn)‖ = 0.

Notice that the spatial sign and rank functions are conceptually similar to the marginal sign

and rank functions and the Oja sign and rank functions. They are only different in terms of the

objective functions. But, it would be evident that this difference from where they start makes the

spatial rank the prominence.
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In order to be more convenient in developing the theoretical result, we would give the popula-

tion version of spatial rank function as well. If X ∈ Rp is a random variable from a distribution

with cdf F , the expected Euclidean distance from x toX is D(x, F ) = EF‖x−X‖. The spatial

median of F minimizes the criterion function D w.r.t. x The multivariate centered spatial rank

function is defined as the gradient of D:

R(x, F ) = ∇xD(x, F ) = EF
x−X
‖x−X‖

= EF{S(x−X)}.

The spatial rank function of x is the expected direction to x from X . We call it centered

because the rank of a random vector from the same distribution F has expected value at 0, that is,

EFR(X, F ) = 0. It is interesting to see, the three objective functions D1, D2 (see Chapter 2) and

D would degenerate to the same absolute value function in the univariate case. If we consider with

the population version, the marginal rank, Oja Rank and spatial rank objective functions all equal

to D(x, F ) = EF |x − X|. Their gradient functions (rank functions) lead to the univariate rank

function R(x, F ) = EF sign(x−X) = 2F (x)− 1 ∈ [−1, 1]. Therefore, the marginal median, Oja

median and spatial median would coincide at the same point and be equal to the regular univariate

median.

The spatial rank function has many nice properties. It characterizes the distribution F (up to a

location shift) (see Koltchinskii, 1997), which means that if we know the rank function, we know

the distribution (up to a location shift). Under very weak assumptions on F , R(x, F ) is a one-to-

one mapping from x ∈ Rp to a vector inside the unit ball with the magnitude ‖R(x, F )‖ ∈ [0, 1].

Chaudhuri (1996) proposed the spatial quantile based on the inverse mapping of R(x, F ).

Serfling (2002) extended the notion and defined the spatial depth, Depth(x, F ), of point x to be

Depth(x, F ) = 1−‖R(x, F )‖. Distinct from the univariate case when scaler sample points have

natural ordering from small to large, in multivariate case, there is no unique method to order the

data. Historically, the most popular depths used in applied statistic science are Tukey halfspace

depth (Tukey, 1975) and various projection depths. There were vast amount of well-established
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results based on the research of these depth functions, see Wilcox (2005). Depth of a point can be

used to provide the relative position of the point regarding to a data cloud or the a population

distribution. Based on that, one can perform outlier detection (see figure 3.1), and statistical

inference on high dimensional data. In Chapter 7, we would propose a brand new robust outlier

detection method based on the notion in here.
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Figure 3.1. A contour plot of sample spatial depth

A contour plot of sample spatial depth based on 100 random observations (o’s) from Normal

Distribution. * on the upper corner is considered to be a possible outlier with Depth(∗,X) =

0.0372, which is relative low.
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3.3 Spatial Rank Covariance Matrix
By convention, one can define the sample version spatial sign covariance matrix by

SCM = ave{S(X i −M (X))ST (X i −M (X))},

and the sample version spatial rank covariance matrix as

RCM = ΣR(Fn) = ΣR(X)

= ave{R(X i)R
T (X i)}

=
1

n

∑
i

R(xi, Fn)RT (xi, Fn)

=
1

n(n− 1)2

∑
j,k 6=i

S(xi − xj)ST (xi − xk). (3.1)

We would focus onRCM rather than SCM , since it does not require the quantity of the spatial

medianM (X).

If we treat the RCM as a functional of F (or random variableX for convenient), then ΣR(F )

or ΣR(X) are defined as follows,

ΣR(F ) = ΣR(X) = EF{R(X, F )RT (X, F )}.

Since the rank is centered, the RCM is nothing but the covariance matrix of the rank ofX , which

is Cov(R(X, F )). Recall that ‖R(X, F )‖ ≤ 1, hence the assumptions on F for existence of ΣR

are much weaker than the ones for existence of Cov(X).

From the last term in the (3.1), the computational complexity of ΣR(Fn) seems to be O(n3).

However, utilizing the middle term to compute ΣR(Fn) needs only O(n2) computing time. It is

worth noting that ΣR(Fn) is asymptotically equivalent to a matrix-valued U-statistic with the ker-

nel of size 3, hence the convergence of the sample version to the population one can be established

by the practice of U-statistic theory.
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As any spatial procedure, spatial signs and spatial ranks are orthogonally equivariant in the

sense that for any p × p orthogonal matrix O (OT = O−1), p-dimensional vector b and nonzero

scaler c, letting x∗ = cOx+ b andX∗ = cOX + b with the distribution FX∗ ,

S(x∗) = sign(c)OS(x), and R(x∗, FX∗) = sign(c)OR(x, FX).

Therefore, ΣR(F ) is orthogonally equivariant, meaning that,

ΣR(X∗) = c2OΣR(X)OT .

Orthogonal equivariance ensures that under rotation, translation and homogeneous scale change,

the quantities are transformed accordingly. It has the same property as the much more complicated

Oja rank covariance matrix at this point. However, it does not allow heterogeneous scale changes.

The above equations do not hold for a general p × p nonsingular matrix A. Hence, they are not

fully affine equivariant. In order to achieve fully affine equivariance, we strengthen the assumption

by confining our focus to the family of all elliptically symmetric distributions, which is the most

frequently used assumption in practice. See Section 2.2.

The key result from Marden (1999) provides the fundamental to modify spatial rank covariance

matrix such that it is affine equivariant under elliptical models. In fact, we may remove the as-

sumption from Marden that requires the existence of the covariance matrix. The result and proofs

are still valid with only difference being the interpretation of eigenvalues.

Lemma 10 (Marden, 1999) If X is elliptically distributed from F with the scatter parameter Σ

having the spectral decomposition V ΛV T , then ΣR(F ) = V ΛRV
T , where ΛR is the diagonal

matrix of eigenvalues of ΣR.

The lemma insures that the same orthogonal matrix V diagonalize Σ and ΣR. In other words,

spatial rank covariance matrix ΣR has the same eigenvectors as Σ. For any eigenvector v as a

column of V , the corresponding eigenvalue λ in diagonal position of Λ is the measure of vari-

ability of vTX . If the scatter parameter Σ exists, the eigenvalue λ is proportional to the variance
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of vTX . Therefore, instead of using eigenvector of sample covariance Cov(X) to estimate the

eigenvector of Σ, one can use the one of RCM ΣR(X). The entries of diagonal matrix Λ can then

be estimated by a scale estimation on the projection of vTX .

3.4 Modified RCM
The way we construct the modified spatial rank covariance matrix MRCM (sample version),

denoted as Σ̃(Fn) or Σ̃(X), is as follows.

1 Compute the sample spatial covariance matrix ΣR(Fn) using (3.1).

2 Construct eigenvector estimates. Find the corresponding eigenvector estimates s1, s2, ..., sp by

the spectral decomposition of ΣR(Fn), denoted by the matrix S. That is, S = [s1, s2, ..., sp]

3 Find scale estimates (eigenvalues, principal values) of X on directions of si’s, by using an uni-

variate robust scale estimator σ. Let λ̂i = {σ(sTi X)}2 and denote Λ̂ = diag(λ̂1, ..., λ̂p).

Here, we take σ to be the median absolute deviation (MAD).

4 The scatter estimate is Σ̃(Fn) = SΛ̂ST .

Remark 11 MAD is a widely used robust measure of variability of a univariate sample of data.

For a univariate data set X = {x1, ..., xn}, the MAD is defined as the median of absolute deviations

from the median of the sample. That is,

MAD = median(|xi −median(X)|).

Its robust properties are illustrated in the Chapter 1, by the Example 1, Example 6 (d) and Example

9.

Let Fv be the distribution of vTX , we may obtain the population version of MRCM by finding

eigenvector vi of ΣR(F ) and λ̃i = σ2(Fvi
) for i = 1, ..., p, then Σ̃(F ) = V Λ̃V T , where V =

[v1, ...,vp] and Λ̃ = diag(λ̃1, .., λ̃p).
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By the way of constructing Σ̃, an immediate consequence of Lemma 10 is that Σ̃(F ) is pro-

portional to the true scatter parameter Σ, that is,

Σ̃(F ) = c(hF , σ)Σ, (3.2)

where c(hF , σ) is a constant only depends on h function of the distribution F and the choice of

univariate scale functional σ. For example, in here, by taking σ = MAD, if F is the multivariate

Gaussian distribution, c(hF , σ) = {Φ−1(3/4)}2 ≈ 0.455, where Φ−1 is the quantile function of the

standardized Gaussian distribution. If F is a t-distribution with ν > 2, c(hF , σ) ≈ 0.455ν/(ν−2).

If F is the Cauchy distribution, c(hF , σ) = 1. We would show in later, for the sake to obtain the

highest possible breakdown point, we will use the MADk, a variation of MAD as a substitution of

σ to estimate the scale and shape of Σ. Its definition and further discussion are given in Section

4.2.

Theorem 12 Under an elliptical distribution F with scatter parameter Σ, Σ̃(F ) (or Σ̃(X) ) is

an affine equivariant scatter functional.

Proof of theorem 12:

The proof of the affine equivariance of Σ̃ is straightforward. Let X be a random vector ellip-

tically distributed from F with h and scatter parameter Σ, then X∗ = AX + b has the elliptical

distribution with the same h and scatter parameterAΣAT . So by (3.2), we have

Σ̃(X∗) = c(hF , σ)AΣAT = c(hF , σ)Ac(hF , σ)−1Σ̃(X)AT = AΣ̃(X)AT .

�

Therefore, the modified spatial rank covariance matrix is affine equivariant under elliptical

models. For any distribution, it is orthogonally equivariant, the property inherited from the spatial

rank covariance matrix.
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Theorem 13 For any p-variate random vectorX , Σ̃(F ) (or Σ̃(X)) is orthogonally equivariant.

Proof of Theorem 13:

Let X∗ = cOX + b for any orthogonal matrix O, p-vector b and nonzero scalar c. Let the

spectral decomposition of ΣR(X) be UΛRU
T . By the orthogonal equivariance of spatial rank

covariance matrix, we have

ΣR(X∗) = c2OΣR(X)OT = c2OUΛRU
TOT = c2(OU)ΛR(OU)T ,

so the eigenvector matrix of ΣR(X∗) is OU , which is [Ou1, ...,Oup]. Then for each scale esti-

mate λ̃i(X∗) = σ2((Oui)
TX∗) = σ2((Oui)

T (cOX+b)) = c2σ2(uTi O
TOX) = c2σ2(uTi X) =

c2λ̃i(X) for i = 1, ..., p. Let Λ̃(X) = diag(λ̃1, ...λ̃p), by the construction of Σ̃, we have

Σ̃(X∗) = (OU)c2Λ̃(X)(OU)T = c2OΣ̃(X)OT .

�

3.5 More on Affine Equivariance
Under elliptical symmetric distributions, MRCM is affine equivariant and proportional to the

scatter parameter. Indeed, besides the the class of elliptical distributions, the MRCM can be

shown as affine equivariance in a broader class of distributions. For example, if X have an

exchangeable and symmetric distribution. That is, X and DJX have the same distribution

for any permutation matrix J and any diagonal matrix D with diagonal elements ±1, MRCM

Σ̃(FX∗) = AΣ̃(FX )AT , where X∗ = AX + b. Elliptical symmetric distributions belong to

this class because the distribution of the corresponding X is independent and symmetric in each

component.

Under the assumption of data distributed in this class, we may obtain the affine equivariant

location estimator using the spatial median by the transformation and retransformation technique.
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More specifically, one can find the spatial median of the transformed data (Σ̃
−1/2

(X∗)x∗1, · · · , Σ̃
−1/2

(X∗)x∗n),

denoted as Ms, then retransform it back to the original coordinate system, i.e., Σ̃
1/2

(X∗)Ms gives

an affine equivariant location estimator.

Tyler et al. (2009) presented a general method for exploring high dimensional data based on

the spectrum decomposition of one scatter estimator matrix relative to the other. For a distribution

which lies outside of the above mentioned class, different scatter statistics may estimate different

quantities of underly distributions, hence their methods may reveal interesting features in data

structure. Our MRCM, an easy-computed high breakdown point scatter matrix, certainly deserves

further investigation in application to their method and other multivariate methods.
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Chapter 4

Properties of MRCM

In the this chapter, we would conduct robustness analysis on the MRCM through two ap-

proaches: influence function and breakdown point. In addition, we would study the finite sample

efficiency among different methods.

The MRCM is robust locally in terms of the influence function and highly robust globally in

terms of the sample breakdown point. We derived the influence functions for the eigenvectors and

eigenvalues of the MRCM, then the influence function for the MRCM. They are bounded under

the assumption that the scatter parameter has distinct eigenvalues. A generalization to multiple

eigenvalues is possible as in Tanaka (1988). The breakdown point attains the upper bound by the

a choice of robust univariate scale functional to be σ = MADk with some optimal values for k.

Comparing with the other high breakdown point estimators such as the MCD, the S-estimator and

the projection based estimator, our MRCM is easy to compute with the complexity O(n2 + p3).

Even for large data sets in high dimensions, using MRCM is still practical. Also, MRCM is highly

statistical efficient under Gaussian distribution and heavy-tailed distributions.

4.1 Infinitesimal Robust on Influence Function
As shown in the Chapter 1, the influence function is a Gâteau derivative of functional. For any

fixed point x ∈ Rp, let the ε-contamination distribution at F be Fε = (1− ε)F + ε∆x. Then the

influence function of a functional T (·) at the given distribution F is given by

IF (x, T ;F ) = lim
ε→0+

T (Fε)− T (F )

ε
=
∂T (Fε)

∂ε

∣∣∣∣∣
ε=0

.
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The influence function measures the effect on T of infinitesimal point mass contamination of the

distribution F . Clearly, it is desired to be small or at least bounded. A functional T with a bounded

influence function is regarded as infinitesimal robust, see Section 1.2.2.

Lemma 14 For any random vector X with distribution F in Rp, the influence functions of the

spatial rank and RCM are given by

IF (x,R(X, F );F ) = S(x−X)−R(X, F ),

and

IF (x,ΣR;F ) = EFS(X − x)S(X − x)T +R(x, F )R(x, F )T

−2ΣR(F )− EF IF (x,R(X, F );F )IF (x,R(X, F );F )T .

Proof of Lemma 14: We have

IF (x,R(X, F );F ) =
∂

∂ε
R
(
X, (1− ε)F + ε∆x

)∣∣∣∣∣
ε=0

=
∂

∂ε

[
(1− ε)R(X, F ) + ε

X − x
‖X − x‖

] ∣∣∣∣∣
ε=0

= S(X − x)−R(X, F ).

Because

IF (x,ΣR;F ) =
∂

∂ε
EFε{R(X, Fε)R(X, Fε)

T}
∣∣∣
ε=0

=
∂

∂ε
EFε{[(1− ε)R(X, F ) + εS(X − x)]

[(1− ε)R(X, F ) + εS(X − x)]T}
∣∣∣
ε=0

=
∂

∂ε
(1− ε)EFM + εI[X = x]M

∣∣∣
ε=0
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where I[A] is the indicator function being 1 when A is true or 0 otherwise, and

M = [(1− ε)R(X, F ) + S(X − x)][(1− ε)R(X, F ) + S(X − x)]T .

Simplify further, we have

IF (x,ΣR;F ) = −3ΣR(F ) + EFS(X − x)R(X, F )T + EFR(X, F )S(X − x)T

+R(x, F )R(x, F )T

= −3ΣR(F )− EF [S(X − x)−R(X, F )][S(X − x)−R(X, F )]T

+EFS(X − x)S(X − x)T + ΣR(F ) +R(x, F )R(x, F )T

= EFS(X − x)S(X − x)T +R(x, F )R(x, F )T − 2ΣR(F )

−EF IF (x,R(X, F );F )IF(x,R(X, F );F )T .

�

Remark 15 (i) The influence function of the rank functionR(X, F ) is bounded with

supx ‖IF(x,R(X, F );F )‖ = ‖R(X, F )‖ + 1 < 2 and the supremum is achieved at x =

X + cR(X, F ), where c is any positive scalar.

(ii) The influence function for the RCM is bounded due to the boundedness of the spatial sign

function, rank function and influence function of the rank function. In here, we say a matrix to be

bounded if all of its elements are bounded.

(iii) The IF of the RCM for a spherically symmetrical distribution F can be obtained from Sirkiä

et al. (2009), in which it was derived through the U-theory. However, the result can not be ex-

tended to an elliptical distribution by using Lemma 1 of Croux & Haesbroeck (2000), since RCM

is not affine equivariant.

In order to give the influence function of MRCM Σ̃, we need the following lemma that pro-

vided by Croux & Haesbroeck (2000).
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Lemma 16 (Croux & Haesbroeck, 2000) Let S : F → SPD(p) be a statistical functional and F a

p-dimensional distribution. Suppose that IF (x, S;F ) exists. Denote v1, ...,vp and λ1, ..., λp the

eigenvectors and eigenvalues of S(F ). Then the influence functions of vj and λj are given by

IF (x, λj;F ) = vTj IF (x, S;F )vj,

IF (x,vj;F ) =

p∑
k 6=j

1

λj − λk
{vTk IF(x, S;F )vj}vk.

The modified rank covariance matrix is determined by the eigenvectors of RCM and robust

scale estimator of the univariate projection on each eigenvector. For σ = MAD, we conduct the

perturbation analysis for eigenvalues and eigenvectors of Σ̃(F ). Their influence functions are

given by the following theorem.

Theorem 17 Let Σ̃(F ) be the modified spatial rank covariance functional on an elliptical dis-

tribution F with σ = MAD. Suppose the spatial rank covariance matrix ΣR(F ) has distinct

eigenvalues λ1 > ... > λp > 0 and the corresponding eigenvectors v1, ...,vp. Denote λ̃j and

ṽj as the jth eigenvalue and corresponding eigenvector of Σ̃(F ), respectively. Then the influence

functions of ṽj and λ̃j (j = 1, ..., p) are given by

IF (x, ṽj;F ) =

p∑
k 6=j

1

λj − λk
{vTk IF (x,ΣR;F )vj}vk

and

IF (x, λ̃j;F ) =
1

4h(1)
sgnT (|vj ◦ x| − 1p)IF (x, ṽj;F ), (4.1)

where a◦b is the component-wise product of a and b, |a| = (|a1|, ..., |ap|)T is the component-wise

absolute value, 1p is the p-vector with all entries 1, and sgn(a) is the component-wise sign vector

and equal to (sgn(a1), ..., sgn(ap))
T .

Proof of Theorem 17:
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Since ṽj = vj for j = 1, ..., d, the influence function of ṽj is directly followed from Lemma

16 with S = ΣR.

Treating median and MAD as simultaneousM -estimators as in Page 135 of Huber & Ronchetti

(2009), it is easy to prove that for any unit vector u ∈ Rd under an elliptical model

IF(uTx,MAD;Fu) =
sgn(|uTx| − 1)

4h(1)
. (4.2)

Notice that the similar equality is shown in (1.9). Now λ̃j = MAD(Fvj
), where Fv is the distri-

bution of vTX . By the chain rule of vector derivatives,

∂λ̃j(Fε)

∂ε
=
∂λ̃j(Fε)

∂vj(Fε)

∂vj(Fε)

∂ε
, (4.3)

where Fε = (1− ε)F + ε∆x. The evaluation at ε = 0 of the second derivative on the right hand

side of (4.3) is the column vector that is the influence function of ṽj . To be more specific, denote

vj = (vj1, vj2, ..., vjp)
T . The evaluation of the first derivative at ε = 0 is the row vector whose

ith element is the influence function of MAD at (0, ..., 0, vji, 0, ..., 0)Tx. By (4.2), the influence

function of eigenvalue of Σ̃ follows.

�
Remark 18 (i) The boundedness of IF of RCM implies the boundedness of influence functions

for the eigenvectors of Σ̃(F ).

(ii) With a robust choice of univariate scale estimator (MAD), the influence functions for eigen-

values of Σ̃(F ) are also kept bounded.

(iii) The RCM provides an immediate application to robust principle component analysis for di-

mension reduction.

(iv) The result is obtained under the assumption of distinct eigenvalues. A generalization to mul-

tiple eigenvalues is possible as in Tanaka (1988).

(v) The assumption on elliptical symmetry is not necessary. However, for a general model, the

representations of IF for MAD and eigenvectors may be in length.
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Based on the influence functions of eigenvalues and eigenvectors, we are able to derive the

influence function for our modified spatial rank covariance matrix, which is given in the following

theorem.

Theorem 19 For an elliptical distribution F , let the eigenvalues and eigenvectors of ΣR(F ) be

λ1 > ... > λp > 0 and v1, ...,vp respectively. Then the influence function of Σ̃ at F is given by

IF (x, Σ̃;F ) = IF (x,ΣR;F ) +

p∑
j=1

aj(x)vjv
T
j ,

where aj(x) =
1

4h(1)

∑p
k 6=j

1

λj − λk
vTk IF (x,ΣR;F )vjsignT (|vj◦x|−1p)vk−vTj IF (x,ΣR;F )vj

Proof of Theorem 19:

By comparing to the first order Taylor expansion in (1.6), the results of Theorem 17 imply that

λ̃j(Fε) = λ̃j(F ) + εIF(x, λ̃j;F ) +O(ε2),

and

vj(Fε) = vj(F ) + εIF(x,vj;F ) +O(ε2).

Then

Σ̃(Fε) =

p∑
j=1

λ̃j(Fε)vj(Fε)v
T
j (Fε)

=

p∑
j=1

{λ̃j(F )vj(F )vTj (F ) + εIF(x, λ̃j;F )vj(F )vTj (F )

+ελ̃j(F )IF(x,vj;F )vTj (F ) + ελ̃j(F )vj(F )IF(x,vj;F )T}+O(ε2).
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Hence,

IF(x, Σ̃;F ) =

p∑
j=1

{IF(x, λ̃j;F )vj(F )vTj (F )+λ̃j(F )[IF(x,vj;F )vTj (F )+vj(F )IF(x,vj;F )T ]}.

(4.4)

The summation of the last two terms is

p∑
j=1

p∑
k 6=j

vTj IF(x,ΣR;F )vkvkv
T
j = IF(x,ΣR;F )−

p∑
j=1

vTj IF(x,ΣR;F )vjvjv
T
j .

Plugging the influence functions of eigenvectors into the first term of (4.4) in the right side yields

the stated expressions.

�

Remark 20 (i) aj(x) is bounded in x, therefore the influence function of Σ̃(F ) is bounded.

(ii) Even though MRCM is affine equivariant under elliptical distributions, its influence function

could not be written as the form in the result of Lemma 1 in Croux & Haesbroeck (2000). This

is due to the construction way of MRCM. It is based on RCM, which is the covariance matrix of

nonlinearly transformed ranks.

For demonstration and comparison, we compute and plot the influence functions of eigen-

values and eigenvectors for our MRCM, as well as for the classical covariance matrix. At F =

N(0, diag(1, 4)), both scatter functionals and RCM have the same eigenvectors v1 = (0, 1)T and

v2 = (1, 0)T . Since IF’s of v1 for both functionals are of the form b(x)v2, hence the second

components are always zero. We plot the first components of IF for v1 in Fig. 4.1 (c) and (p).

The curve for our MRCM is saddle-shaped and bounded. Note that if we turn the curve upside

down or rotate the curve 90 degree, we obtain the curve of the second component of IF for v2

since it equals the negative of the first component of IF of v1. Surprisingly, the influence func-

tion of the largest eigenvalue for MRCM is the first component of IF for v1 multiplying a factor

−1/4h(1) = −2.5898. The curve of IF of λ̃1 is plotted in Fig. 4.1 (b). The component-wise sign
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function in the formula (4.1) doesn’t play any role in this case because the first component of v1

is 0 and the second component of IF for v1 is also 0. However, for a general distribution, we shall

anticipate that the curve of IF for eigenvalue has more jumps, hence more local valleys and peaks

than the curve of IF for eigenvector because of the component-wise sign function. As expected,

the curves for our MRCM are kept bounded, while unbounded for the sample covariance matrix.
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Table 4.1. Influence functions of the classical covariance matrix and modified spatial rank covariance matrix

Influence functions of (a) the largest eigenvalue for the classical covariance matrix, (b) the largest

eigenvalue for the modified spatial rank covariance matrix, (c) the first component of the eigen-

vector corresponding to the largest eigenvalue for the classical covariance matrix and (d) the first

component of the eigenvector corresponding to the largest eigenvalue for the modified spatial rank

covariance matrix at F = N(0, diag(1, 4)).

45



4.2 Quantitative Robustness on Breakdown Point
The influence function measures the infinitesimal robustness of a functional T (F ), while the

breakdown point captures the quantitative robustness of estimator T (Fn), see Section 1.2.3. For

scale estimators, it can break down in two ways, either become arbitrarily large (explosion) or

become arbitrarily close to zero (implosion). In terms of scatter estimators, they can break down

if one of its eigenvalues approaches∞ or 0.

So the breakdown point of an scatter estimator T on a random sample X = {x1, ...,xn} is

defined as

ε(T,X) = min{m
n

: sup
Xm

|det{T (X)T (Xm)−1}+ det{T (X)−1T (Xm)}| =∞},

where Xm denotes a contaminated sample resulting from replacing m points of X with arbitrary

values.

Before we derive the finite sample breakdown point for the MRCM, a variation of MAD,

MADk is better introduced in here. Only in this section, the univariate scale estimator σ, which is

used to obtain MRCM, is taken to be the MADk. This can lead to a slightly higher breakdown point

and an elegant theoretical result. Similar ideas were adopted by several authors in the literature,

for example Tyler (1994), Gather & Hilker (1997) and Zhou & Dang (2010).

MADk can be roughly considered as the k/nth percentile of |xi −median|. Specifically, Let

X = {x1, ..., xn} be a random sample of n points in R with ordered values x(1) ≤ · · · ≤ x(n).

MADk(X) = mediank(|x1 −median(X)|, ..., |xn −median(X)|),

where mediank(X) = (x(b(n+k)/2c) + x(b(n+k+1)/2c))/2, 1 ≤ k ≤ n, and bac is the greatest

integer smaller or equal to a. The regular median and MAD correspond to mediank and MADk

with k = 1, respectively. A simple example of MADk is shown as follows.
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Example 21 Given the sorted data X = {8, 8, 12, 15, 17, 19, 21}, median(X) = 15, the sorted

absolute deviations are

{ 0 2 3 4 6 7 7 }

↑ ↑ ↑

MAD1 MAD3 MAD5

Theorem 22 For any p−variate random sample X = {z1, ...,zn}, let σ = MADk and c1(X) be

the maximum number of points of X in any (p−1)-dimensional hyperplane. If n > 2c1(X)−k+1,

then

ε(Σ̃,X) =

 b(n− 2c1(X) + k + 1)/2c/n if 1 ≤ k ≤ c1(X)

b(n− k + 2)/2c/n if c1(X) + 1 ≤ k ≤ n.

Proof of Theorem 22:

Let ε∗(σ,X) represent the uniform finite sample breakdown point of σ at X as defined by Tyler

(1994) when all univariate projections of the data are considered. That is,

ε∗(σ,X) = min
m
{m
n

: sup
‖u‖=1

sup
Xm

{σ(uTX)σ(uTXm)−1 + σ(uTX)−1σ(uTXm)} =∞}.

Let ε(σ,uTX) represent the finite sample breakdown point for σ for the projected data in direction

u.

The estimator Σ̃(X) breaks down only if σ = MADk breaks down for some direction u. Since

MADk can be exploded (→ ∞) or imploded (→ 0), the breakdown point of Σ̃(X) is determined

by two quantities corresponding to the explosion and implosion of MADk, respectively.

According to Lemma 1 in Gather & Hilker (1997), for k ∈ [1, c2(uTX)], MADk in direction

u will implode with the breakdown point being b(n− 2c2(uTX) + k + 1)/2c/n, where c2(uTX)

represents the maximum number of data points on the hyperplane orthogonal to the direction u.

If k ∈ [c2(uTX) + 1, n], the finite sample explosive breakdown points for MADk in direction u is

b(n−k+2/2c/n. Tyler (1994) states that ε∗(σ,X) ≤ infu ε(σ,u
TX) and equality holds if σ(uTX)
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is a continuous function of u. This is the case if σ is MADk. Also note that c2(uTX) ≤ c1(X) for

any u with equality holding for some u. So we have

ε∗(MADk,X) =

 b(n− 2c1(X) + k + 1)/2c/n if 1 ≤ k ≤ c1(X)

b(n− k + 2)/2c/n if c1(X) + 1 ≤ k ≤ n.

The proof will be finished if we show that ε(Σ̃,X) = ε∗(MADk,X). First, ε(Σ̃,X) ≤ ε∗(MADk,X)

due to orthogonal equivariance of Σ̃. This follows by noting that if m = b(n−2c1(X)+k+1)/2c

and the replacements all lie in the same plane as c1(X) data points reside, then MADk equals to 0

for the univariate projection orthogonal to that plane. By the orthogonal equivariance of Σ̃, there

exists orthogonal matrixO such that Σ̃(OXm) has an eigenvalue 0. Hence 0 = det{Σ̃(OXm)} =

det{OΣ̃(Xm)OT} = det(O)det{Σ̃(Xm)}det(OT ) = det{Σ̃(Xm)} and Σ̃ implodes. Similarly,

when MADk explodes, our estimator explodes.

One the other hand, we also have ε(Σ̃,X) ≥ ε∗(MADk,X). Suppose εm = ε(Σ̃,X) <

ε∗(MADk,X). Then for all εm-corrupted data sets Xm and for all unit directions u, there exist σ0

and σ1 such that 0 < σ0 < MADk(u
TX) < σ1 < ∞. This implies that for all Xm, 0 < σ0 <

λj(Σ̃(Xm)) < σ1 < ∞ for all j = 1, ..., p, where λj is an eigenvalue of Σ̃(Xm). Hence Σ̃ does

not break down at εm, contradicting to the definition of ε(Σ̃,X).

�

Remark 23 (i) The breakdown point of Σ̃ depends only on the sample size n and c1(X), but is

independent of other configurations of X. For the breakdown point as a quantitative robustness

measurement of estimators, this ‘sample-free’ property is definitely desirable.

(ii) The optimal choices of k are c1(X) or c1(X) + 1 so that ε(Σ̃,X) = b(n − c1(X) + 1)/2c/n

attains the maximum value. This is the upper bound of breakdown point for any affine equivariant

scatter estimators, see Tyler (1994). Although MRCM is only orthogonally invariant in general, it

is affine equivariant for elliptical models. Clearly, this attainability is preferred.

(iii) If X is in general position, that is, c1(X) = d, then the breakdown point of Σ̃ equals b(n− d+
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1)/2c/n when k = d, reaching the upper bound given by Davies (1987).

(iv) Theorem 22 focuses on the case σ = MADk. The result, however, can be extended to any

scale estimator with the same breakdown point as MADk.

(v) On the discussion of Davies & Gather (2005), Tyler mentioned an example to construct a high

breakdown point covariance matrix estimator based on the sample covariance matrix by replacing

the eigenvalues of the sample covariance matrix with robust variances for the sample principle

component variables. Then the resulting covariance matrix has a high breakdown point. His

intention was to call a reasonable concept of breakdown on principle component vectors that are

some estimators in a compact set. It is out of scope of this paper to do so. However, it is worthwhile

to note that MRCM has different robust properties comparing to that example. It has bounded

influence functions for eigenvectors. Such property is closely related to the bounded breakdown

function concept proposed by He & Simpson (1992).
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Figure 4.1. Comparison between sample covariance estimator and MRCM on on contaminated Gaussian dis-
tribution

This is the comparison of the sample covariance estimator and MRCM. Normal data are generated

from N
(

(0, 0)T ,
(
(3,−.9)T ; (−.9, 1)T

))
of size 100. 20% of contamination points uniformly

distributed on [−10, 15] × [−15, 10] are added. Sample covariance estimate is severely distorted

by the contamination. However, the MRCM returns a reasonable estimate of true covariance

matrix
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4.3 Finite Sample Efficiency
In this section, we consider the statistical efficiency of MRCM. Although the influence func-

tions derived in Section 4.1 are useful in the calculation of asymptotic variance by the theorem

7, it is extremely challenge to obtain explicit expression of spatial rank covariance matrix under

non-standard Gaussian distributions, even numerical integration becomes difficult. We insist to

use Monte-Carlo simulation for efficiency comparison with other scatter estimators.

The following estimators are considered:

RCM The function spatial.rank in the R package ICSNP is used for computing the spatial rank

vector. It is only orthogonally equivalent, hence RCM is only suitable for spherically sym-

metric distributions.

Mest Tyler’s M-estimator is obtained by the function tyler.shape in the R package ICSNP. For a

consideration of computational simplicity and robustness, the location vector is specified as

the spatial median computed by the function spatial.median.

Mcd Minimum covariance determinant estimator is computed by the R package rrcov. The MCD

method looks for the h observations (out of n) whose classical covariance matrix has the

lowest possible determinant. Then MCD scatter estimator is the covariance matrix based on

those h observations. h value is set to be default value n/2 of the function CovMcd which

leads the breakdown point close to 1/2.

Sest Re-weighted S-estimator (Sest) is calculated by the R package riv using Tukey bi-weighted

ρ function with c = 2.661 for d = 2 and c = 4.652 for d = 5. Such c values provided as

output of the function slc yield the breakdown point close to 1/2.

Cov Non-robust sample covariance matrix.

As performance criteria for matrices, two quantities are used. One is the condition number of

Σ−1V , where Σ is the true scatter matrix and V is one of the above mentioned estimators. It is the
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ratio of the largest eigenvalue to the smallest eigenvalue of Σ−1V . A good estimator V estimates

Σ well such that Σ−1V is close to the identity matrix, hence the mean of log condition number

(MLCN) of Σ−1V is expected to be close to 0. Such a criterion was also utilized in Maronna

& Yohai (1995) and Gervini (2003). The other one is called the ADD, the angle difference in

the direction of the first eigenvectors to measure the accuracy on estimating the first principle

component, that is, cos−1(|vT1 v̂1|), where v1 is the first eigenvector of the theoretical scatter matrix

Σ and v̂1 is the first eigenvector of the scatter estimator V .

We generate M = 200 samples with two sample sizes n = 50 and n = 200 from each of the

following three scenarios:

Case I Standard Gaussian distributions with contaminations on shifted locations. i.e., (1−ε)N (0,Σp×p)+

εN (10p,Σp×p), where 10p is the p-vector with all elements 10, Σp×p = diag(4,1Tp−1), ε to

be 0, 0.1, 0.2 and p = 2, 5.

Case II Heavy-tailed tν(0,Σp×p) distributions for different degrees of freedom ν = 1, 3, 5 and

∞ with dimension p = 2 and p = 5. Note that ν =∞ corresponds to Case I with ε = 0, the

standard Gaussian distributions.

Case III Normal mixtures with contaminations on rotation. i.e. (1−ε)N (0,Σp×p)+εN (0,Σ∗p×p),

where Σp×p = diag(4,1Tp−1) and Σ∗p×p = 10× diag(1Tp−1, 4). We take ε = 0, 0.05, 0.1.
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ε = 0 ε = 0.1 ε = 0.2

p = 2 p = 5 p = 2 p = 5 p = 2 p = 5

n = 50 MRCM(RE) 0.69 0.83 1.06 1.27 1.17 1.38
RCM(RE) 0.37 0.91 0.55 1.44 0.62 1.50
Mest(RE) 0.70 0.84 1.06 1.33 1.24 1.40
Mcd(RE) 0.55 0.68 0.87 1.09 1.02 1.15
Sest(RE) 0.56 0.86 0.89 1.35 1.04 1.39
Cov(MLCN) 0.25 0.67 0.38 1.04 0.43 1.10

n = 200 MRCM(RE) 0.73 0.82 1.23 1.34 1.16 1.47
RCM(RE) 0.19 0.57 0.30 0.91 0.30 0.97
Mest(RE) 0.74 0.85 1.14 1.37 1.13 1.47
Mcd(RE) 0.62 0.84 1.04 1.32 0.97 1.43
Sest(RE) 0.62 0.88 1.02 1.41 1.01 1.50
Cov(MLCN) 0.13 0.33 0.21 0.52 0.21 0.57

Table 4.2. Mean of log condition numbers for contaminated Gaussian distribution

Mean of log condition numbers (MLCN) of the sample covariance matrix (Cov) and relative effi-

ciencies (RE) of other estimators relative to Cov under F = (1−ε)N (0,Σp×p)+εN (101p,Σp×p),

where Σp×p = diag(4,1Tp−1).
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ν = 1 ν = 3 ν = 5 ν =∞
p = 2 p = 5 p = 2 p = 5 p = 2 p = 5 p = 2 p = 5

n = 50 MRCM(RE) 4.23 3.93 1.36 1.36 1.00 1.12 0.69 0.83
RCM(RE) 3.56 4.63 0.99 1.72 0.72 1.40 0.37 0.91
Mest(RE) 4.78 4.12 1.37 1.40 1.01 1.08 0.70 0.84
Mcd(RE) 3.26 2.50 0.99 0.95 0.73 0.77 0.55 0.68
Sest(RE) 3.49 3.05 1.08 1.23 0.79 1.00 0.56 0.86
Cov(MLCN) 2.49 4.77 0.70 1.60 0.51 1.29 0.25 0.67

n = 200 MRCM(RE) 8.77 7.85 1.63 1.83 1.10 1.16 0.73 0.82
RCM(RE) 3.56 6.77 0.62 1.58 0.40 1.01 0.19 0.57
Mest(RE) 10.12 8.32 1.66 1.95 1.10 1.17 0.74 0.85
Mcd(RE) 7.19 5.25 1.26 1.49 0.86 0.93 0.62 0.84
Sest(RE) 7.69 6.41 1.41 1.76 0.94 1.11 0.62 0.88
Cov(MLCN) 2.41 4.57 0.42 1.05 0.28 0.64 0.13 0.33

Table 4.3. Mean of log condition numbers for tν−distributions

Mean of log condition numbers (MLCN) for Cov and relative efficiencies (RE) for other estimators

relative to Cov under tν-distributions with µ = 0,Σ = diag(4,1Tp−1).
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ε = 0 ε = 0.05 ε = 0.1

p = 2 p = 5 p = 2 p = 5 p = 2 p = 5

n = 100 MRCM(RE) 0.93 0.96 4.66 3.48 7.64 5.32
Mest(RE) 0.65 0.82 3.96 3.26 7.98 5.36
Mcd(RE) 0.56 0.72 3.71 3.09 8.39 5.14
Sest(RE) 0.55 0.87 3.77 3.56 8.06 6.04
Cov(cos−1(vT1 v̂1)) 2.9◦ 7.1◦ 21.1◦ 28.8◦ 42.9◦ 51.3◦

n = 400 MRCM(RE) 0.97 0.95 5.59 3.90 12.19 7.70
Mest(RE) 0.76 0.83 5.36 3.66 11.91 8.05
Mcd(RE) 0.62 0.77 5.22 3.68 13.14 8.71
Sest(RE) 0.58 0.86 5.29 3.94 13.04 9.25
Cov(cos−1(vT1 v̂1)) 2.1◦ 5.2◦ 18.8◦ 23.6◦ 47.5◦ 54.0◦

Table 4.4. Mean of angle differences in the direction for contaminated Gaussian distribution

Mean of angle differences in the direction (MADD) for Cov and relative efficiencies for other esti-

mators relative to Cov under F = (1−ε)N (0,Σp×p)+εN (0,Σ∗p×p), where Σp×p = diag(4,1Tp−1),

and Σ∗p×p = 10× diag(1Tp−1, 4).
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In the first two cases, we check the efficiency and robustness on the eigenvalues of estimators,

hence use the mean of log(cond) (MLCN) as criterion to measure non-sphericity of Σ−1V . The

finite sample relative efficiency (RE) of estimator V is obtained by the ratio of MLCN of sample

covariance to that of V . Reported in Tables 4.2 and 4.3 are MLCN for Cov and RE for other

estimators. In the third case, contaminations have totally different orientation and we are interested

in estimating the first principle component. Hence the mean of angle difference in the direction

between the first eigenvector of the true scatter matrix Σ and that of V (MADD) are computed,

and the relative efficiency of V is the ratio of MADD of Cov to that of V . Results of MADD of

Cov and RE’s of other estimators are listed in Table 4.4. RCM is skipped since it yields the exactly

same results as the MRCM.

For the non-standard Gaussian distribution, RCM performs poorly due to its failure on estimat-

ing eigenvalues of the true covariance matrix. The MRCM seems to be better than other estimators,

especially in estimating orientation of data clouds with the efficiencies at least 0.93. Efficiency on

shape (eigenvalues) of MRCM is lower than it on the orientation, while the other estimators have

almost the same RE on the shape as it on the orientation. This phenomenon can be explained by

the separated steps in the construction of MRCM and relatively low efficiency on MADk. In the

contaminated Gaussian models, the MRCM has a comparable or better performance comparing

with other robust estimators. MRCM and Tyler M-estimator have very similar behaviors since

both of them are based on spatial procedures with some treatments for affine equivariance prop-

erty. Without a surprise, Tyler M-estimator is superior to MRCM and others under the heavy-tailed

t-distribution of the degree of freedom ν = 1, since it is the limiting form of MLE for scatter as

ν → 0. In summary, MRCM has a competitive performance on efficiency as well as robustness.
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Chapter 5

Mixture Model and EM Algorithm

In Section 2.2, we reviewed the unimodal multivariate elliptical models. The MRCM is shown

to be a robust estimator of the scatter parameter Σ with many nice properties. However, if data

have a more complex structure and come from the mixture of distributions (with “multi-mode”),

all the methods we described earlier may not be sufficient. In order to give a robust method in

estimating the parameters of mixture models, it is highly desired to extend the notion of MRCM

to a broader class of distributions. Starting form this chapter, we would like to develop a robust

method by modifying the traditional EM algorithm on the assumption of mixture of elliptical

model. Actually, multivariate mixture of elliptical distribution has been widely used for various

purposes in data mining and statistical learning. As the size of data getting larger and larger in

terms of sample size and dimension, outlying observations are naturally inhabited in the data set.

People in robust statistical society and computer science start to pay more and more attention to

develop numerous methods in solving such problems. The main goal of robust methods in data

mining and statistical learning is to capture the most important information from those noisy data.

We would give several examples as part of application to show how we use the proposed method

in performing outlier detection, clustering and classification at the end of this dissertation.

In this chapter, we would review the EM algorithm in general, discuss its contributions in

estimating parameters of mixture models. In addition, we would point out the drawbacks of the

tradition EM algorithm in different aspects and introduce some way to improve it based on the

recent research done in this field.
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5.1 Review of Regular EM Algorithm
Dempster et al. (1977) first advocated a unified algorithm, called the Expectation-Maximization

(EM) Algorithm for deriving the maximum likelihood estimates from “incomplete” data. Rubin

(1991) regarded the EM algorithm as one of the methodologies for solving incomplete data prob-

lems sequentially based on a complete data framework. During the past 3 decades, EM algorithm

has been applied to almost all fields where statistical analysis is required, including medical sci-

ence, engineering, sociology and business intelligence.

Suppose we consider a random sample of variable Z ∈ Rp with density function f(Z|θ).

For each observation of Z, we have observed value, denoted by variable X . Besides that, we

have missing value denoted by Y . Thus, Z = (X,Y ). X and Y are assumed to be mutually

independent. One can find out the maximum likelihood estimate (MLE) of θ base on the observed

likelihood function L(θ;X) =
∏n

i=1 f(xi|θ). The EM algorithm was first proposed to maximize

the observed likelihood L(θ;X) by using the complete likelihood L(θ;X,Y ).

The EM algorithm iteratively updates the estimate of θ. The following basic identity gives the

way to shift the maximization problem from observed likelihood to complete likelihood. Assum-

ing θ̂
(t)

, t-stage (iteration) estimate of θ, is in the same parameter space of θ, then

logL(θ;X) =

∫
log f(X|θ)f(Y |θ̂(t)

,X)dY (5.1)

=

∫
log

f(X,Y |θ)

f(Y |θ,X)
f(Y |θ̂(t)

,X)dY

=

∫
log f(X,Y |θ)f(Y |θ̂(t)

,X)dY −
∫

log f(Y |X,θ)f(Y |θ̂(t)
,X)dY

= E[logL(θ;X,Y )|θ̂(t)
,X]− E[log f(Y |θ,X)|θ̂(t)

,X] (5.2)

Iteratively applying the two following steps:

• E-step: Calculate the first term of (5.2), the conditional expectation ofY by the given density
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f(Y |θ̂(t)
,X), and denote

Q(θ|θ̂(t)
) = E

Y |θ̂
(t)

,X
[logL(θ;X,Y )],

• M-step: Update θ by maximizing Q(θ|θ̂(t)
) at stage t, denoted by θ̂

(t+1)

θ̂
(t+1)

= arg max
θ

Q(θ|θ̂(t)
).

Dempster et al. (1977) proved that the set of likelihood values {L(θ̂
(t)

;X)}t=1,2,... converges to

some valueL∗, by showingL(θ̂
(t+1)

;X) ≥ L(θ̂
(t)

;X). But the convergence of {L(θ̂
(t)

;X)}t=1,2,...

does not automatically guarantee the convergence of θ̂
(t)

. Wu (1983) further proved the conver-

gence of EM iterates θ̂
(t)

by requiring more stringent regularity conditions. In many practical

applications, in particular, with the assumption of the mixture of Gaussian model that we mainly

focus on, L∗ will be a local maximum of likelihood values.

5.2 Mixture of Gaussian Models

Definition 24 The pdf f(x) of mixture distributions with K number of components is of the form

f(x) =
K∑
j=1

τjfj(x),
K∑
j=1

τj = 1, τj ≥ 0, j = 1, 2, ..., K,

where fj(x) is pdf of the jth component, and τj is the proportion weight.

We can further define a K mixture of elliptical models of f(x), based on the definition of

elliptical distribution in Section 2.2. That is , for j = 1, 2, ..., K,

fj(x) = {det(Σ)}−1/2h{(x− µ)TΣ−1(x− µ)}.
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In particular, the the mixture of Gaussian distribution is obtained when pdf fj is associated with

h(t) = (2π)−p/2e−t/2, therefore,

fj(x) = N(x|µj,Σj) = (
1

2π
)p/2

1√
|Σj|

exp
(
− 1

2
(x− µj)TΣ−1

j (x− µj)
)
.

The family of mixture of elliptical models contains a quite rich collection of distributions.

Perhaps the most widely used is the mixture of Gaussian distribution. Other than that, mixture of

tv and Laplace distributions are also used in modeling the data distribution with heavy tails. Later

on, we would introduce a distribution called the mixture of Kotz type distribution. It has a similar

form as Gaussian distribution, and the parameters estimated by the tradition EM algorithm has an

expression very close to the one from our proposed method.

EM algorithm is found to be very effective in estimating the parameters of mixture models. In

particular, if the likelihood function belongs to exponential family, all the estimates are formulated

in closed form in each iteration step, see Sundberg (1972). Examples of exponential family include

the Gaussian, Exponential, Gamma, Chi-squared, etc, while it does not include the Cauchy and

Laplace distributions (with mean not equals to zero). The Kotz type distribution that we will see

later is one of generalizations of Laplace distribution in a multivariate case.

Many authors (McLachlan & Krishnan, 1997) focus on mixtures of multivariate Gaussian dis-

tributions (or sometimes refer to the mixture of Gaussian model) by using EM algorithm to esti-

mate the set of parameters. If X comes form the mixture of Gaussian model, its log-likelihood

function is

logL(θ;X) =
n∑
i=1

log

(
K∑
j=1

τjf(xi|µj,Σj)

)

For many models, if the likelihood function is convex, the Newton-Raphson method is used to

solve for the maximum in usual. Nevertheless, in this case, the Hessian matrix used in Newton

method involves second derivatives of logarithm of summation, which is difficult to derived ana-

lytically. Even worse, numerically it might be closed to a singular matrix. So, the Newton method
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would not be applicable. People have to find a more reliable solution as an alternative. The EM al-

gorithm, however, comes to be the best fit in such case. One can maximize the likelihood function

by introducing the “unobserved variable” Y , and iteratively update θ̂ until it converges.

Specifically, for the mixture of Gaussian model, let X = {X1, ...,Xn} be a collection of

random samples of X ∈ Rp from mixture model f . We know that the probability density of

jth component, fj is parameterized by fj(x) = N(x|µj,Σj), j = 1, 2, ..., K. Then, one can

retrieve the mixture model by finding the parameters of components {µj,Σj}Kj=1 and the weight

factors {τj}Kj=1. To keep the consistence of notations used in (5.1), we combine them as a set of

parameters θ = {µj,Σj, τj}Kj=1. Then the MLE of θ, denoted by θ̂, is solved by maximizing the

likelihood function ofX (or the log likelihood function base on the random sample X), such that,

θ̂ = arg max
θ

logL(θ;X) = arg max
θ

n∑
i=1

log

(
K∑
j=1

τjfj(xi|θ)

)
.

In the language used in describing the EM algorithm, the random variable X is the “observed

data”. We can “complete” the data by introducing the variable Y , which is the “unobserved data”.

For each X i, define a latent variable Y i = (Y1,i, Y2,i, ..., YK,i)
T , such that Yj,i = 1[X i ∼ fj],

which is the indicator function such that Yj,i = 1 ifX i is taken from jth component of mixture, 0,

otherwise. So, in the E-step

Q(θ|θ̂(t)
) = E

Y |θ̂
(t)

,X
[logL(θ;X,Y )]

= E
Y |θ̂

(t)

,X

n∑
i=1

K∑
j=1

Yj,i log τjfj(xi)

=
n∑
i=1

K∑
j=1

E(Yj,i|θ̂
(t)
,xi)(log τj + log fj(xi)). (5.3)

In (5.3), we need the conditional expectation of Yj,i givenX = xi and θ = θ̂
(t)

,E(Yj,i|θ̂
(t)
,xi).

Because Yj,i is Bernoulli distributed, it is equal to P (Yj,i = 1|θ̂(t)
,xi).

If we define variable T (t)
j,i = P (Yj,i = 1|θ̂(t)

,xi), and use marginal distribution P (Yj,i = 1) =
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τ
(t)
j , for j = 1, ..., K, then the estimate of T (t)

j,i (the conditional probability) can be determined by

Bayes theorem, that is,

T
(t)
j,i =

τ
(t)
j f(xi|µ(t)

j ,Σ
(t)
j )∑K

j=1 τ
(t)
j f(xi|µ(t)

j ,Σ
(t)
j )

. (5.4)

Therefore, in M-step, maximize Q(θ|θ̂
(t)

) w.r.t. τ , µ, and Σ, we have for each j = 1, ..., K,

τ
(t+1)
j =

∑n
i=1 T

(t)
j,i∑K

j=1

∑n
i=1 T

(t)
j,i

=
1

n

n∑
i=1

T
(t)
j,i . (5.5)

If we denote

w
(t)
j,i =

T
(t)
j,i∑n

i=1 T
(t)
j,i

, (5.6)

then

µ
(t+1)
j =

n∑
i=1

w
(t)
j,ixi, (5.7)

Σ
(t+1)
j =

n∑
i=1

w
(t)
j,i (xi − µ

(t+1)
j )(xi − µ(t+1)

j )T . (5.8)

5.3 Limitations of Regular EM on Mixture Model
As an iterative algorithm seeking for the maximum of the likelihood function, the EM algo-

rithm with the mixture of Gaussian model suffers from some problems. This method is sensitive

to (1) the number of components, (2) initial values and (3) outliers in sample. Issues (1) and (3)

are stem from the usage of likelihood function in general.

5.3.1 Number of components

Similar to a model selection problem, the issue (1) can be categorized into two cases. First,

in the situation that the number of components has physical meaning given by the nature of the

problem, we don’t want it to be varied but rather fixed. In other situation, even though the data

are known being collected from a C number of groups, Chances are the data may not come from

a mixture of C component Gaussian distributions. For instance, one of the group is constituted by
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more than one Gaussian components. Or, two or more groups are so closed that it might be better

to combine as one single Gaussian component. So a criterion of splitting or combining compo-

nents has to be considered. One way to select the number of components is cross validation. Please

refer to our experiment on fish species data on in Chapter 7. Besides that, some other techniques

based on model selection were proposed. Akaike Information Criterion (AIC) and Bayesian Infor-

mation Criterion (BIC) are set to maximize the likelihood function plus some penalty terms on the

model complexity, see Schwarz (1978). Medasani & Krishnapuram (1997) used an agglomerative

method to choose the number of components. Zhang & Cheung (2006) proposed the X-EM algo-

rithm to perform model selection by fading the redundant components out from a density mixture,

meanwhile estimate the model parameters appropriately. Vetrov et al. (2010) proposed different

methods on determination of the number of components by other criteria. It is worth to point out,

because both AIC and BIC are methods based on likelihood function, they are easily influenced

by existence of outlying observations in the sample. Issue (3) still be unsolved.

5.3.2 Initial Values

Since EM algorithm is an iterative algorithm, the initial value often affects the convergence of

the algorithm, and whether it converges to global maximum or a local one. In practice, the issue

(2) is mainly caused by the initial location parameters. This problem can be alleviated by multiple

random restarts. One compares the values of likelihood functions on multiple runs with different

initial values, and choose the one with the highest likelihood value. Herein, location estimates

from K-Means (MacQueen, 1967) and Fuzzy C-Means (Bezdek, 1981), are frequently used to

initialize the location of components.

5.3.3 Outliers in Sample

As the data being analyzed coming from a wider and wider field in recent years, the issue

(3), outlying observation in the sample, draws more and more attention in statistics society. Some

of applied researchers use EM algorithm on mixture of Gaussian model without careful check of
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the data with presence of outliers. Part of the reason is due to the hardness of detecting outlying

observations in high dimensional spaces. For example, in the univariate case, outliers can be

detected by traditional methods such as box-whisker plot. However, this method on each feature of

p features is not helpful to find out outliers in high dimensions, see Figure (5.1). Marginal checking

of each features for outlyingness is inadequate. Statistician usually used the hat matrix (XTX)−1

and leverage x(XTX)−1x to identify the outlier in one multivariate elliptical distribution. Kutner

et al. (2005), chapter 10, gave a through summary to identify the outliers base on the hat matrix

and leverage values. It is not difficult to imagine that outliers are even harder to be identified if

they are hidden in the mixture of multivariate distributions. This is the problem we are trying to

tackle in this dissertation.

Since the outliers are the focal point in this dissertation, we would briefly review some existing

methods that are robust to outlier with the EM algorithm on the mixture model as follows.

First, perhaps the most intuitive way to deal with outliers is to add the number of components.

It assumes that outliers can be explained by one or more mixture components, see Banfield &

Raftery (1993). However, adding the number of components may increase the complexity of the

model and therefore create an overfitting model. An extreme case can be thought as fitting k

outliers in the training set with k components. It is obvious that this model would be useless

for prediction. Further, increasing the number of components may lead the model difficult to

interpret, and lost the potential physical meaning. For example, in breast cancer diagnostic data,

see Chapter 7, patients are naturally categorized into two groups (components) being benign, or

malignant. Two Gaussian components are used to model the data and provide a clustering on

whether or not the patient is malignant. Adding extra components to explain outliers would destroy

the interpretation of the model.

Rather than adding components, one may use distributions with heavier tails than Gaussian

distribution to model the mixture components, e.g., mixture of tν-distributions or Kotz type dis-

tributions, see Lange et al. (1989), and Shoham (2002). Assumption on heavy-tailed distributions

often provide robustness against outlier in statistical analysis. For the mixture of tv-distributions,
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degree of freedom ν controls how heavy the of distribution tails are. For instance, t1 is the Cauchy

distribution which doesn’t even have the first moment, and t∞ is the Gaussian distribution. The

EM algorithm based on assumptions of these distributions is deemed to be more sensitive to out-

liers with large value of ν , and more robust with smaller value of ν. I personally consider this

method is more appropriate than the first approach to overcome the influences from outliers. It

is more general and interpretable. Many of researches have been done on using mixture of tν

distributions. However, because the problem involves an estimation of ν, no explicit form of the

estimators of location and scatter parameters can be obtained. For other heavy-tailed distributions,

e.g. the Kotz type distribution (a generalized Laplace distribution in the multivariate case), loca-

tion and scatter estimates in each M-step have to be numerically solved by the other algorithm,

which dramatically increases the computation complexity.

Third, use robust methods in M-step in EM algorithm. Tadjudin & Landgrebe (2000) uses a

robust M -estimators defined by theψ-function (Huber, 1964) as a hybrid of Gaussian distribution

with a Laplacian tail. Medasani et al. (1998) uses least trimmed squared estimators. We know that

infinitesimal robust M - estimators, see Section 1.4.2, are obtained by minimizing some given ρ(·)

functions that have an odd and bounded derivative function ψ(·). Qin & Priebe (2012) adopted

the similar idea to maximize the Lq likelihood such that θ̂MLqE = arg maxθ
∑n

i=1 Lq(f(xi;θ)),

where Lq(u) = (u1−q − 1)/(1− q) and q > 0. Our proposed robust EM algorithm belongs to this

category. It will be evident that our rank-based location estimator in EM is a robust M−estimator.

And these spatial rank based estimates of location and scatter are also shown to closely relate to

the MLE of mixture of Kotz type distributions.
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Figure 5.1. Outlying observations in 2-dimensional space

(a) is the data generated by 2-dimensional multivariate Gaussian distribution with µ = (0, 0)T ,

Σ = ((4, 1.3)T , (1.3, .5)T )T . The points a, b and c are consider to be outliers in the sample. (b) is

the box-and-whisker plot for data in (a). Obviously, none of the point a, b or c is detected as an

outlier by marginal checking.
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5.4 Sensitivity of Location and Scatter Estimates
Regular EM algorithm returns decent estimates of parameters when data is distributed as mix-

ture of Gaussian. The algorithm gains its fame on applications in Statistical/Machine Learning

society. Chandola et al. (2007) gave a comprehensive review on it.

In the previous sections, we keep saying that regular EM algorithm is weak in overcoming

problems from presence of the outlying observations. In here, we simply explain the reason why.

By revisiting the expression of those location (5.4) and scale (5.4) estimates in M-step,

µ
(t+1)
j =

n∑
i=1

w
(t)
j,ixi,

Σ
(t+1)
j =

n∑
i=1

w
(t)
j,i (xi − µ

(t+1)
j )(xi − µ(t+1)

j )T .

The similar formulation to the location estimator sample mean and scatter estimator sample co-

variance causes the problem. They are not infinitesimal robust in terms of influence function. The

unboundness in xi would draw the estimates to be severely biased from the true parameters. This

is illustrated in the Figure 5.2. The “normal” data o’s are from a same mixture of two component

Gaussian distribution on both graphes. The elliptical covariance contours are estimated by regular

EM Algorithm on both cases with same initial condition. However, with the single contamination

point * in the upper right corner in (b), one of covariance estimates is stretched drastically in the

corresponding direction.

If we look at the quantitative robustness of estimates of regular EM algorithm on mixture

Gaussian model by RBP, both the location (mean), and scatter (covariance) estimates have RBP

equal to 1/n, which is extremely low. In spite of the fact that it is impractical to collect a data point

equals to “∞” in a sample, the small value of RBP implies that even tiny amount of large points

deviate from the “normal” data points could exert undue influence on the estimates. Again, Figure

5.2 explains the phenomenon.
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Figure 5.2. Sensitivity of regular EM algorithm to single contamination point

“Normal” data o’s are from a same mixture of 2-component Gaussian distribution on both graphes.

The elliptical covariance contours are estimated by regular EM Algorithm on both cases with same

initial condition. However, with the single contamination point * in the upper corner in (b), one of

covariance estimates is stretched drastically. Therefore any further inferences based on it would

be badly impacted.
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Chapter 6

Spatial EM

The idea to strengthen robustness of regular EM algorithm on mixture of Gaussian model

comes from the closed forms of µj and Σj in M-step. It is shown that the estimates are not robust

there. We want to solve the problem at the place where it is. Can we use robust estimators to

estimate the location and scatter parameters of different components? Would that be reasonable

and applicable? In this chapter, first of all, we discuss why the spatial median and MRCM is

chosen. Second, we show how they imbed into the EM algorithm. Third, we explore some con-

nection between our method with the mixture of Kotz type distribution from the point of likelihood

function.

6.1 Why Spatial Median and MRCM
As noticed in the previous chapter, if we can use some robust estimators to estimate the lo-

cation and scatter parameters for different components, the sensitivity problem to the outlying

observation of EM algorithm can be solved. Our choices of these robust estimators are the spatial

median and MRCM we proposed in Chapter 3.

Similar to the robust location and scale estimators, median and MAD, in univariate case, one

of the extension in high dimensional spaces are are the spatial median and MRCM. We give the

definition and way to construct above statistics in Chapter 3. Remember that we define the spatial

rank to be the expectation of spatial sign S(x−X), such that

R(x, F ) = EF{S(x−X)} = EF
x−X
‖x−X‖

,
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where ‖ · ‖ is the Euclidean norm. Then spatial median M (X) is defined to be the solution of

‖R(x, F )‖ = 0. It is shown in Lemma 14, for any X , the associated rank R(X, F ) is infinites-

imal robust. Part of the reason is that the influence of every data point is being standardized by

its Euclidean norm. Every single point is mapped to a unit vector but the information of direction

is reserved. Thus even the extremist can only influence the spatial median by just one unit in the

corresponding direction. In fact, spatial median can also be treated as a type of M -estimator. It is

obtained by minimizing the loss function ρ(X − µ) = EF‖µ −X‖ w.r.t. µ, which has a com-

ponentwise odd and bounded derivative ψ(X − µ) = EFS(µ−X). Therefore, it is proven that

the spatial median has the RBP asymptotically 1/2 and a bounded influence function (Jurečková

& Picek, 2006).

In Chapter 4, the MRCM is shown to be a robust affine equivariant scatter estimator of ellipti-

cal models. It ensures that the quantity transformed accordingly under rotation, translation (shift

center) and even heterogenous scale changes of data. Not only that, it has a bounded influence

function. The RBP can attain the upper bound by properly chosen MADk. It is statistically rel-

atively efficient. Comparing to other robust scatter estimators we mention in the Section 1.4 and

Chapter 2, the MRCM is easy to compute, well balanced between the statistical robustness and

efficiency. We therefore hope to extend the notions of the spatial median and MRCM to regular

EM for mixture models.

However, in the mixture of elliptical models, the calculation of MRCM for each component is

not as simple as it seems. In order to illustrate our thinking process, it is better to step back into

the way of constructing the MRCM and see how we adjust it to the mixture model.

MRCM looks complicated to discuss by the way it formulated. However, it would be easier if

we separate our viewpoints into looking at direction and looking at scaler on that direction.

Robustness on directions of MRCM is shielded, because MRCM is a function of bounded spa-

tial ranks. Eigenvectors of MRCM are identical to those of RCM, and thanks to Marden (1999),

they preserve the orientation of the original elliptical model. For the scaler, the robust estimator

MAD that measures the dispersion of projection on those directions (eigenvectors) would again
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prevent the outliers from interfering. When it comes to mixture of elliptical distributions, data that

are used to construct the component MRCM should belong to the corresponding the component.

That is, in each iteration, when construct the MRCM for each component on the mixture of ellipti-

cal models, both the direction and scaler estimates should be emphasized more by the data points

from that component, but ignore or reduce the influences of the data points from other compo-

nents. It seems redundant to say that, since we are estimating the scatter of each component rather

than the whole data. But still, as it would be seen later, this is the trickiest part in the Spatial-EM

algorithm.

6.2 Spatial-EM Algorithm on Mixture of Gaussian model
The concept to strengthen the robustness of regular EM algorithm on mixture of Gaussian

model comes from the closed forms of µj and Σj in the M-step. The basic idea of Spatial-EM is

to replace the estimators in M-step by the spatial median and MRCM.

Following the notations used in the Section 5.2, the implementation of Spatial-EM is as fol-

lows.

Algorithm 25 Spatial-EM Algorithm

1 {Initialization}

Use K-means for the centers {µ(0)
j }Ki=1,

Σ
(0)
j = Ip×p (identity matrix),

τ
(0)
j = 1/K, for j = 1, ..., K

2 Do Until µ(t)
j , Σ

(t)
j and τ (t)

j ’s converge for all j

3 t = 1

4 For j = 1 To K

E-Step:

5 Calculate T (t)
j,i by equation (5.4)

M-Step:
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6 Update τ (t)
j ’s by equation (5.5)

7 Define w(t)
j,i as equation (5.6)

8 Find weighted spatial median µ(t+1)
j (Refer to Algorithm 26)

9 Find weighted MRCM Σ̃
(t+1)

j (Refer to Algorithm 27)

10 End

11 t = t+ 1

12 End

Obviously, we need the following two functions for the jth component spatial median and MRCM,

Algorithm 26 Function for weighted spatial median µ(t+1)
j

1 Input {xi}ni=1, w(t)
j,i

2 For ` = 1 To n

3 R
(t+1)
j (x`) =

∑n
i=1 w

(t)
j,iS(x` − xi)

4 End

5 µ(t+1)
j = arg minx`

‖R(t+1)
j (x`)‖

6 Output µ(t+1)
j

Algorithm 27 Function for weighted MRCM Σ̃
(t+1)

j

1 InputR(t)
j (xi),T (t)

j,i , w(t)
j,i , µ

(t+1)
j

2 Compute jth component RCM

Σ
(t+1)
R,j =

∑n
i=1w

(t)
j,i

(
R

(t)
j (xi)

)(
R

(t)
j (xi)

)T
3 Find eigenvectors uj,m’s of Σ

(t+1)
R,j .

4 Form = 1 To p

5 Generate projected sequence

{T (t)
j,i u

T
j,m(xi − µ(t+1)

j )}i=1,..,n

6 Sort the set {T (t)
j,i u

T
j,m(xi − µ(t+1)

j )}i=1,2,..,n,

take away the dn(1− τ (t+1)
j )e smallest values,
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then denote the new collection by

{T (t)
j,ik
uTj,m(xik − µ

(t+1)
j )}ik

7 λ̂j,m = MAD ({T (t)
j,ik
uTj,m(xik − µ

(t+1)
j )}ik)

8 End

9 Λ̂j = diag(λ̂j,1, ..., λ̂j,p)

10 MRCM Σ̃
(t+1)

j = U jΛ̂jU
T
j

11 Output Σ̃
(t+1)

j

In fact, different criteria can be used as the stoping rule of the algorithm. Especially, for

Algorithm 25, if a stopping rule involves the converge of vectors and matrices, it would be time

consuming to check one by one. In practice, We can just simply set the algorithm to stop when

τ
(t)
j get converged for all j.

6.2.1 On M-Step

There are several places worth to be noted in M-step.

First is the way to update µ(t+1)
j . In the algorithm 26, we use the spatial median by convolving

wj,i in the definition of spatial ranks for component j. For simplicity, we confine our search in the

pool of sample points. That is, replace

µ
(t+1)
j = x such that

∥∥∥R(t)
j (x)

∥∥∥ =

∥∥∥∥∥
n∑
i=1

w
(t)
j,iS(x− xi)

∥∥∥∥∥ = 0 (6.1)

by

µ
(t+1)
j = arg min

xi

∥∥∥R(t+1)
j (xi)

∥∥∥ .
This would save a great amount of computational time and works fine when the sample size is

large enough.

Second, in the way of defining MRCM for a certain component at the tth iteration , we need to

set up a weighted RCM in algorithm 27. It is not hard to see, for the points that can be well clus-
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tered into different components, T (t)
j,i would be either close to 1 or 0. It is similar to a binary classi-

fication on whether a point belongs to jth component or not. So the factor w(t)
j,i = T

(t)
j,i /
∑n

i=1 T
(t)
j,i ,

can provide a proper weight to average the elements that belongs to the jth component. As the

iteration goes on, the jth component RCM would be finally stands out by “picking” the correct

ranks using w(t)
j,i .

Third, construction of MRCM becomes trickier when applying MAD to the projection data

on each eigenvector of RCM. As shown on the step 5 in algorithm 27, we first centralize the

data by shifting toward the respective spatial medians µ(t+1)
j , then multiply the factor T (t)

j,i ’s and

generate the whole sequence of {Tj,isTj,m(xi − µ(t+1)
j )}i=1,..,n. Again, because each T (t)

j,i would

play as a classifier and degenerate to 0 if ith data point does not belong to jth component. The

sequence above thus contains quite a lot of small values (probably sufficiently close to 0) that

indicates the corresponding points do not belong to the component j. Therefore, we shall omit the

smallest dn(1−τ (t+1)
j )e number of such values, then apply MAD on the rest set of projection data.

Various experiments show that this is a reasonable robust scale estimator on all eigen-directions for

mixture of Gaussian distributions. Taking the normality consistency into account, the consistent

factor 3/4th quantile of Gaussian distribution, Φ−1(3/4) ≈ 1.4862, is multiplied to all the MAD

estimates. In this way, if data is Gaussian distributed, MAD is an unbiased estimator of the true

standard deviation.

6.2.2 More on M-Step

It is interesting to compare the M-step between regular EM and Spatial-EM. In fact, for regular

EM, location and scatter estimates can be viewed as the M-estimators by minimizing the objective

function ρ1(µj,Σj), which is negatively proportional to the log-likelihood function modeled by a

mixture of Gaussian w.r.t. µj and Σj , sequentially.

ρ1(µj,Σj) =
n∑
i=1

Tj,i{log |Σj|+ (xi − µj)TΣ−1
j (xi − µj)}. (6.2)
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Because
∂ρ1

∂µj
= −2

n∑
i=1

Tj,i(xi − µj)TΣ−1,

∂ρ1

∂Σ−1
j

=
n∑
i=1

Tj,iΣj −
n∑
i=1

Tj,i(xi − µj)(xi − µj)T

are both unbounded in x, they are not considered to be robust from the theory of M-estimator.

Therefore, being a robust method, we have to change from maximizing the likelihood of mixture

Gaussian model to other possible mixture models that might have a bounded differentiate w.r.t.

parameters.

Simply put, we can change the assumption from Gaussian mixture to some other elliptical

distributions to improve the robustness. However, what exactly the model likelihood that Spatial-

EM is trying to maximize would be difficult to answer. By investigating one type of heavier tail

elliptical distribution, we discover some amusing similarities with Spatial-EM. This is the Kotz

type distribution. It has a heavier tail regions than that of multivariate Gaussian. Its density

function is given by, see Fang & Anderson (1990),

g(x,µ,Σ) = cp|Σ|−1/2 exp{−[(x− µ)TΣ−1(x− µ)]1/2}, (6.3)

where location µ ∈ Rp, scatter Σ is a positive definite symmetric p × p matrix, and cp =

Γ(p/2)

(2π)p/2Γ(p)
. It obviously falls into the family of elliptical symmetric distribution. Moreover,

those estimators in Spatial EM have closed relationship with MLE of mixture of Kotz type distri-

bution.

Suppose that data come from a mixture of Kotz type distribution, one can obtain the MLE

by EM algorithm. Maximizing the Q function in (5.3) w.r.t µj and Σj would be equivalent to

minimizing the following objective function,
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ρ2(µj,Σj) =
n∑
i=1

Tj,i
(1

2
ln |Σj|+

√
(xi − µj)TΣ−1

j (xi − µj)
)
.

Its first derivatives are

∂ρ2

∂µj
=

n∑
i=1

Tj,i
(xi − µj)T

‖(xi − µj)TΣ
−1/2
j ‖

Σ−1
j

=
n∑
i=1

Tj,iS((xi − µj)TΣ
−1/2
j )Σ

−1/2
j , (6.4)

∂ρ2

∂Σ−1
j

=
n∑
i=1

Tj,iΣj −
n∑
i=1

Tj,i
(xi − µj)(xi − µj)T√

(xi − µj)TΣ−1
j (xi − µj)

. (6.5)

It is not hard to see, the influence of xi in both derivatives is either bounded by spatial sign

S(·) in (6.4) or bounded by “standardization” in (6.5). µj and Σj thus are considered to be robust

in theory of M-estimator.

Further, set the above two derivatives to zero, we can solve for the µj and Σj . They have the

similar form as what we defined weighted spatial median (6.1) and weighted MRCM in algorithm

27.
n∑
i=1

wj,iS((xi − µj)Σ
−1/2
j ) = 0

Σj =
n∑
i=1

wj,i
(xi − µj)(xi − µj)T√

(xi − µj)TΣ−1
j (xi − µj)

(6.6)

Rao (1988) proposed a way to solve this generalized spatial median µj and rank covariance

matrix Σj problem. Plungpongpun & Naik (2008) presented an algorithm to compute them. First

initialize Σ̂j and then solve µ̂j by minimizing

n∑
i=1

wj,i

√
(xi − µj)T Σ̂

−1

j (xi − µj), (6.7)
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denoted it as µ̂. Then update Σ̂j sequentially

Σ̂j =
n∑
i=1

wj,i
(xi − µ̂j)(xi − µ̂j)

T√
(xi − µ̂j)T Σ̂−1

j (xi − µ̂j)
(6.8)

until they converge.

Different from Spatial EM, the above estimates of location and covariance require the data

transformation w.r.t. Σ−1/2 prior to each calculation of “median” µ and “RCM” ΣR. In Particu-

lar, for location parameter µj , instead of minimizing (6.7), the Spatial EM attempts to minimize∑n
i=1wj,i

√
(xi − µj)T (x− µj). These two versions of spatial medians are not generally identi-

cal. However, they are the same if Σ = cI .

The EM algorithm with mixture of Kotz type distribution is theoretically tractable, but it is

not computationally ease. As suggested by Rao, an order to solve for the Σ̂j , an inner iteration

has to be done in each M-step. It would significantly increase the computation complexity. Other

than that, involving Σ−1
j in denominator of (6.6) not only causes more computational time (O(p3)

needed to find the Σ−1) but also makes the algorithm unstable to converge. Imagine if there is

an extreme outlier in jth component, Σ̂j tends to be inflated and makes the denominator of (6.8)

small, hence result in even more inflation of Σ̂j in the next run. Therefore, the risk of getting large

estimate of Σj piles up if extreme outlier exists. Because of the cut-off effect brought by MAD, it

is clear that scatter parameter estimated by Spatial-EM is more robust in the sense of RBP than that

of the mixture of Kotz type distribution In fact, for these two similar versions of rank covariance

matrices, we would like to give more detailed discussion and experiment in the future.

77



Chapter 7

Application on Statistical Learning

7.1 Introduction
The problems from science and industry constantly challenge the field of Statistics. The statis-

ticians in early days mainly dealt with the problems from agricultural and industrial experiments,

which were relatively small in scope. With emerging of advanced computers and flooding flow

of information, statistical problems becomes more large in size and more difficult in complexity.

Huge amounts of data are generated from different areas. It is the statistician’s job to extract im-

portant trends and patterns from the data, and tell the story form the data. This process is called

learning from data, see Hastie et al. (2009)

Provided by a survey of Chandola et al. (2007), based on types of input data, labeled or unla-

beled, problems can be categorized into supervised or unsupervised. In supervised learning, the

goal is to predict the value of outcome variable based on a number of input measure. In unsuper-

vised learning, there is no outcome measure, and the goal is to describe the association and pattern

among the input measures. The EM algorithm with assumption of the mixture of Gaussian model

has been used for supervised and unsupervised statistical learning purposes. Since, the spatial-EM

algorithm is robust against the outlier. It is straightforward to use spatial-EM to build a robust

outlier detection model.

Using EM to perform the outlier detection can be viewed as unsupervised or supervised clas-

sification problem. In the unsupervised setting, the training sample contains normal instances

and outliers without class labels. EM builds a mixture model on the whole sample, then identify
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outliers in the sample based on the distribution. This is out experiment in Section 7.2.2. In the

supervised setting, we construct the mixture model by EM only on the normal instances. Different

from the unsupervised learning, the class label information (normal) is used. Outlier is identified

if it largely deviates from the mixture model. Section 7.2.3 would give a detailed explanation on

this unsupervised outlier detector.

Further, the nature of mixture of Gaussian model also give a chance of using spatial EM al-

gorithm to perform a clustering. By a given number of components, one can use spatial-EM to

as a robust method to establish the mixture model. The pattern of the data can be recognized by

clustering data into different components.

In this chapter, we mainly focus on the application (experiment) of Spatial-EM on outlier

detection and clustering. In the Sections 7.2- 7.2.3, outliers in a mixture of Gaussian model are

defined. Two experiments to detect outliers are illustrated. One is on synthetic data, the other

is on real data set (fish data). In the fish data experiment, a heuristic robust method to estimate

the number of components of the mixture model is also proposed. The results of Spatial-EM are

compared to the regular EM and other methods. In the Sections 7.3-7.3.3, clustering with the

mixture model is briefly reviewed. Two experiments of real data set, UCI Wisconsin Diagnostic

Breast Cancer Data and Yeast Cell Cycle Data are used to evaluate the model performance of

Spatial-EM, regular EM and some other existing unsupervised and supervised learning techniques.

7.2 Outlier Detection

7.2.1 Outlyingness and Two Types Errors
As seen in Chapter 1 example 1 and Section 5.3.3, an outlier is an observation that is numer-

ically distinct from the rest of data. There are various different ways to define an outlier. Outlier

determination is often associated with a threshold parameter depending on different notions of out-

lyingness measure. An observation with outlyingness beyond the threshold is claimed as outlier.

Before we continue, it is necessary to clarify the definition of underlying outliers in the mixture of

Gaussian model.
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It is well known that if p-variate random vector X is distributed as N(µ,Σ), the square of

Mahalanobis distance (X − µ)TΣ−1(X − µ) has a χ2
(p) distribution. Based on this, we can

easily define the region of outlier in the following way. Assume the p−variate random vector

X has distribution function (cdf) F , which is a mixture of K component Gaussian distributions,

in which each component is distributed as N (µj,Σj) with weight τj , j = 1, ..., K. Let ξj =

(x− µj)TΣ−1
j (x− µj), and G be cdf of χ2

(p). We then define the outlyingness function to be

H(x) = 1−
K∑
j=1

τj(1−G(ξj)). (7.1)

For a given ε ∈ (0, 1), if 1 − G(ξj) < ε, then x is considered to be an outlier to the jth

component. For the case of more than one components, if
∑K

j=1 τj(1−G(ξj)) < ε, x is considered

being an outlier to the mixture of Gaussian model. If X is assumed from mixture of Gaussian

distribution, the probability of classifying a random sample point x as an outlier would be ε. From

the frequentist point of view, the theoretical Type-I error (probability of misclassifying a normal

point as an outlier) would be less than ε.

Be aware that H(x) ∈ (0, 1) is not a cumulative distribution function. H(x) measures the

outlyingness of x to the underlying mixture Gaussian model. A potential outlier has a large value

of H(x) close to 1. For any fixed threshold ε, point x is categorized as an outlier if H(x) > 1− ε,

normal, otherwise.

In order to evaluate performance of an outlier identifier, the sensitivity and specificity are

need to be calculated. They are related to two types of errors, which are called the false negative

FN (type-II error or masking effect) and false positive FP (type-I error or swamping effect). In

the context of outlier detection problem, if a point is a true outlier, we usually call it condition

positive. In the contrary, if the point belongs to the normal group, we call it condition negative.

Specifically, the probability of type-II error, Perr2, and type-I error, Perr1, can be formulated as

Perr1 = Prob(predicted as outlier | data is normal),

Perr2 = Prob(predicted as normal | data is outlier).
(7.2)
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In addition, Perr1 can be estimated by the false positive rate (FPR) and Perr2 can be estimated by

the false negative rate (FNR) in the sample.

Relations to the sensitivity and specificity are showed as follows.

specificity = 1− P̂err1 = 1− FPR,

sensitivity = 1− P̂err2 = 1− FNR.

A perfect outlier detection method would have 100% sensitivity (i.e. classify all the outlying

points as outlier) and 100% specificity(i.e. classify all the normal points as normal). However,

any detection mechanism will possess a minimum error bound known as the Bayes error rate, see

Fukunaga (1990). By our definition of the outlier in mixture of Gaussian model with H(x), ε is

a tuning parameter that determines the region of potential outliers. It thus controls the underlying

Perr1 and Perr2. If ε is small, the region of potential outliers is small. It is more likely to commit the

type-II error and therefore have a large value of Perr2 but a small value of Perr1. On the opposite,

if ε is large, the region of potential outlier is large. Then, it is more likely to have a large value

of Perr1 but small value of Perr2. Since the purpose of outlier detection is to take more serious

attention to potential outlying observations, in usual, ε is chosen to control the type-II error, the

false negative to be small. For example, if one intends to maintain the upper bound of theoretical

Perr2 ≤ 0.05, we can simply set ε = 0.05.

In order to give a better understanding of different terminologies that are commonly used in

statistical learning society. The classification table is showed in Table 7.2.1.
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7.2.2 Synthetic Data

Figure 7.1 illustrates the performance of Spatial-EM and regular EM on a synthetic data set

of 3 separable Gaussian components. They are generated from N ((−6, 6)T , [(2, .5)T , (.5, 1)T ]),

N ((6,−6)T , [(3,−.5)T , (−.5, 1)T ]), and

N ((6, 6)T , (4,−.3)T , (−.3, 1)T ), size 40, 40 and 120 respectively. In increasing proportions 10%,

20% and 30% of contamination uniformly distributed on span [−30, 30] × [−30, 30] are added to

the data.

Here, we set the ε = 0.05, which means that the theoretical probability of type-II error is

controlled to be less than 5%. It is shown in the plots that with the proportion of contamination

increases, the observed type-II error rates (FNR) of both methods increase. However, regular EM

algorithm can not maintain the level of type-II error. Even under 10% contamination, FNR of the

regular EM increase to 0.45. The Spatial-EM algorithm, however, well control the FNR as 0.05

for contamination proportion up to 20%. The FNR of Spatial-EM only slightly increase to 0.08

when contamination level reaches 30%. This example demonstrates the unreliability of regular

EM to outliers and robustness of Spatial-EM to outliers.
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Spatial-EM
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(a) 10% contamination (b) 20% contamination (c) 30% contamination
FNR = 0.05, FPR = 0.035 FNR = 0.05, FPR = 0.035 FNR = 0.083, FPR = 0.01

Regular EM
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(d) 10% contamination (e) 20% contamination (f) 30% contamination
FNR = 0.45, FPR = 0.00 FNR = 0.95, FPR = 0.00 FNR = 0.95, FPR = 0.00

Figure 7.1. Comparison between Spatial-EM and regular EM on Mixture of 3-component Gaussian distribu-
tions

Mixture of 3-components Gaussian distributed data are represented by o’s, with contamination

points * uniformly distributed in the plot box. ε = 0.05 is used to define a potential outlier.

Elliptic curves are 95% contours of estimated covariance matrices. So, points are deemed to be

normal if they are inside the contours, otherwise, be outliers. With the same initial conditions of

EM Algorithm, Spatial-EM exhibits highly robustness capability against outliers, while regular

EM Algorithm fails to predict the region of the normal data.
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7.2.3 Taxonomic Research on Fish Species Novelty Discovery

In the field of Biological Taxonomy, an individual is different from others in one way or an-

other. Scientists would put those who are similar into a cluster and define them as a species. If

an individual is significantly different from the existing species, one might consider it to be a

new species. Therefore, novelty species discovery problem on taxonomic study can be viewed as

an outlier detection problem. Base on type of input data, labeled or unlabeled, outlier detection

problem can be categorized into supervised or unsupervised learning algorithm Chandola et al.

(2007).

As mentioned in Section 7.1. We can use the EM algorithm to construct an supervised outlier

detector. It takes only the normal instances in the training phase and models them as a mixture of

Gaussian distributions. In the detection phase, one can define those data points in the low density

regions of the model as outliers or novelty species. The H(x) we define in (7.1) can be used for

this purpose.

Roberts (1999) and Yamanishi et al. (2004) applied a similar approach as this learning scheme

in their application of outlier detection problems. They defined extreme values w.r.t. the normal

(non-outlier) mixture models as outliers. Following in the same manner, the performance of Spatial

EM algorithm is evaluated by being applied to an experiment on the real data below. We would

also give a comparison with regular EM algorithm, the kernelized spatial depth (KSD) from Chen

et al. (2009), and single Gaussian model at the end of this section.

Data set and training scheme

This data set consists of 989 specimens from Tulane University Museum of Natural History

(TUMNH). There are 10 species that include 128 Carpiodes carpio, 297 Carpiodes cyprinus,

172 Carpiodes velifer, 42 Hypenteilum nigricans, 36 Pantosteus discobolus, 53 Campostoma

olibolepis, 39 Cyprinus carpio, 60 Hybopsis storeriana, 76 Notropis petersoni, and 86 Luxilus

zonatus. For each species, 12 features are generated by using 15 landmarks, which are those bio-

logically definable points along the body outline, see Chen et al. (2009) for a detailed description.
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The picture of these 10 species is shown in the table ?? at the end of Section 7.2.3. In order to unify

the measurement on each feature, we standardize each feature by subtracting the corresponding

mean and dividing the standard deviation.

In this experiment, we treated one of the 10 species as a “undiscovered” species and the other

9 species as known. Our experiment is to model those 9 known species as a mixture of Gaussian

model. Hopefully, the “undiscovered” fish is so different from the known species and thus can be

considered as an outlier or novelty species. This concept of discovering new species is also very

common in taxonomy study.

For instance, to do experiment on the species Carpiodes carpio, we use the data set consisted

of the other 9 species, which have 861 observations with 12 features, to construct a mixture of

Gaussian model. In Table 7.2 (a), the box-plot indicates that a considerable number of outliers

exist. In addition, it looks like the model can not be explained by just one single multivariate

Gaussian component. We therefore need to find out the number of mixture components w.r.t. the

data cloud.

One can use various off-the-shelf methods to guess the number of components in mixture

Gaussian model. It is exactly the same problem as issue (1) that we described in Section 5.3.

However, those methods for choosing number of components do not take outlying effect into

consideration in general. We have no idea which one is better fit into the robust condition we are

thinking about. So a simple method is proposed next.

We would like to employ a more heuristic method to predict the number of components by

multiple uses of spatial-EM (or regular EM). It is a similar idea as 10-fold cross-validation. To

be more specific, first, we call the 9 species fish data as the training sample. The 1 species of fish

being hold out for evaluation is called the test set. For each value of k, the number of components

between 1 to K, the training sample is randomly split even into 10 folds. 9/10 of the training

sample used to build the mixture model is called the training set. The other 1/10 of the training

sample used for validate the model is called the validation set. For each different fold, the spatial-

EM algorithm is run on the training set. So, we have 10 runs in total. After every run, use the H
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function, (7.1), with ε = 0.05 to determine the outlying observation on the validation set. Since,

by assumption, the fishes in training sample are all considered as normal instances. P̂err1, the FPR

on validation set, can be calculated for every single run. Based on these 10 values of P̂err1, the

mean and standard deviation are reported. Hastie et al. (2009), page 216, proposed a rule called

“one-standard-error” to select the number of parameters for regression model base on MSE. We

find it similar to apply for selecting the number of component of mixture model. we choose the

most parsimonious model whose mean P̂err1 is no more than on one standard error (deviation)

above the mean P̂err1 of the best model. As shown in Table 7.2 (b), the best model that yields

the smallest mean P̂err1 has 16 components, and the 6-component model is the one we choose

eventually.

After the component size is determined, we use the whole training sample to establish the mix-

ture model by both version of EM algorithms. In order to overcome the randomness of the initial

location parameters for starting the spatial-EM (or regular EM) algorithm, we repeat the training

process 20 times with different initial parameters and report the mean and standard deviations of

P̂err1 (FPR) and P̂err2 (FNR) for each fish species in Table 7.3.

Remember in the way of detecting an outlier, ε can be used to seek the balance between Perr1

and Perr2. In order to compare different outlier detection methods under a same scenario, ε is then

chosen to satisfy P̂err1 ≈ P̂err2. Chen et al. (2009) did the similar experiment on these data set

using the kernalized spatial depth (KSD). The basic idea of KSD is to evaluate the spatial depth in

feature space induced by a positive definite kernel. A point with KSD below a threshold is claimed

as an outlier. The FPR was reported in his paper when it equals FNR.
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Table 7.2. (a)Box-Plot of fish species sets 2 ∼10; (b)One-Standard-Error rule for choosing number of compo-
nents

(a) is the box-plot of 12 features of the fish data with 9 species without the Carpiodes carpio.

Features number 1, 2, 5, 6, are obviously skewed distributed. So one Gaussian distribution is not

sufficient to model the data. (b) 68% C.I.’s of the Perr1 are plotted vs the number of components.

One-Standard-Error rule choose the most parsimony model (the one with the smallest number of

components) whose mean of P̂err1 is no more than one standard deviation above the one of the

best model. Here the chosen component size is 6.
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Results

After the mixture model is finally estimated. We can evaluate the model performance by

showing the P̂err1 and P̂err2 based on the training sample and test set. Note that we would use all

of the 989 observations and ground truth of species labels to calculate the error rates. For example,

when the training sample are data from species sets 2-10, the false positive error occurs if the fish

from the training sample is classified as a novelty species (outlier), and the false negative error

occurs if the fish from the species set 1 is identified as a known species (normal) that belongs to

the species in training sample. FPR (P̂err1) and FNR (P̂err2) can be calculated by the formulas in

Table 7.2.1.

Table 7.3 illustrates the comparison among Spatial-EM and regular EM under assumption of

the mixture of Gaussian model, KSD (Chen et al., 2009), and simple outlier detector based on

robust Mahalanobis distance, MCD covariance matrix, see the introduction from Section 1.4, is

used to estimate the covariance matrix. The mean value of FNR (P̂err2) from 20 runs with different

initial parameters are reported with the standard deviations inside parenthesis. Here, the mean FNR

is shown when it equals to the mean FPR (P̂err1). The numbers of components that are determined

by one-standard-error rule are also reported inside the brackets.

The spatial-EM detects most of the “unknown” species as outliers with high sensitivity and

specificity. For instance, the sensitivity of Carpiodes carpio is 0.740, and the risk for making

type-II error is 0.260; the sensitivity of Carpiodes cyprinus is 0.819, and the risk for making type-

II error is 0.181, etc. Most interestingly, the results of Spatial-EM outperform KSD in all the

species except the first species, Carpiodes carpio. Outlier detection based on robust Mahalanobis

distance with the assumption of single Gaussian distribution performs the worst in here. This is

also the reason why we want to provide a robust parameter estimation process (Spatial-EM) for

mixture model in our paper.

Comparing the result between regular EM and KSD, we notice there are 6 out of 10 species

with lower P̂err2 (higher sensitivity) than KSD. The main reason EM beating KSD in here is due

to the flexibility of the mixture Gaussian model. KSD is a nonparametric technique, which usually
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has lass assumptions. As pointed by out by Chen et al. (2009), the KSD is weak to deal with the

“masking” effect. It refers to the case that the “unknown” species in the middle is surrounded

by “known” species. However, by using mixture of Gaussian model, such masking effect can be

well explained by adding more components that are surround ringlike distributed. Masking effect

seems to appear seriously in the last 3 fish species Hybopsis storeriana, Notropis petersoni, and

Luxilus zonatus. The KSD can hardly detects the “new” species, hence high FNR’s are reported.

However, mixture model assumption can moderately alleviate this problem.

Spatial-EM has better performance than the regular EM. It outperforms the regular EM in 6

out of 10 species in terms of the mean value of P̂err2 (FNR). Moreover, it is impractical to use

regular EM for detecting outlier in general, because its high variance of FNR compare to spatial-

EM. Large standard deviation indicates that the prediction is not stable. With the random initial

parameters for EM algorithm, it means that there are large portion of fish being detected as novelty

in one run but known species in another run. For example, both EM algorithms has the similar

FNR around 0.35 for detecting the novelty of Luxilus zonatus. The estimated number of Gaussian

components by Spatial-EM is also similar to the regular EM, (i.e. 6 and 5). However, just because

the randomness of initial location inputs for the algorithms, the standard deviation produced by

regular EM is 0.427, about 5 times more than Spatial-EM, which is 0.086. Theoretically, we need

to collect a lot more observations with “normal” data in training sample to have a reliable detector

based on the regular EM. It is believed that the potential outliers in data cause us to choose more

number of components in mixture model when we train data by the regular EM. So, the spatial-

EM is much more statistical efficient and reliable to be used in the outlier detection problem.

Also, Spatial-EM tends to choose simpler model than the regular EM. The number of components

selected by the method described in early section for the Spatial-EM is smaller than the one for the

regular EM. Usually, too complicated models overfit data with poor generalization performance.

This also explain the large variance of the regular EM.
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Unknown Species Spatial-EM regular EM KSD Single Gaussian

Carpiodes carpio 0.260 0.303 0.234 0.408
[6](0.04) [9](0.289)

Carpiodes cyprinus 0.181 0.212 0.209 0.245
[8](0.114) [11](0.230)

Carpiodes velifer 0.11 0.095 0.180 0.144
[5](0.009) [9](0.131)

Hypentelium nigricans 0.007 0.006 0.071 0.0538
[5](0.011) [11](0.011)

Pantosteus discobolus 0.042 0.083 0.056 0.091
[5](0.065) [9](0.091)

Campostoma oligolepis 0.151 0.138 0.208 0.385
[8](0.065) [12](0.289)

Cyprinus carpio 0.001 0.019 0.051 0.0473
[7](0.001) [12](0.034)

Hybopsis storeriana 0.294 0.371 0.367 0.320
[7](0.033) [14](0.403)

Notropis petersoni 0.318 0.181 0.487 0.355
[7](0.154) [10](0.159)

Luxilus zonatus 0.324 0.388 0.512 0.460
[6](0.086) [5](0.427)

Table 7.3. Results of Fish Species Novelty Discovery

Experiment on Spatial-EM and regular EM are repeated 20 times with the respective number

of components and random input of locations µj’s. Contents are the P̂err2 (FNR) based on the

test set which is equal to P̂err1 (FPR) based on the training sample. “[m]” means the number

of Gaussian components in the mixture model chosen by one-standard-error rule. “(n)” means

the standard deviation of P̂err2. For instance, first entry 0.260 reflects the mean of probabilities

of misclassifying Carpiodes carpio as an existing specimen, when using Spatial EM. FPR that

misclassifying the existing specimen as a novelty is also set to equal 0.260 by using Spatial EM.

The values associate with KSD are presented here, see Chen et al. (2009)
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7.3 Clustering

7.3.1 Clustering Methods and Confusion Matrix

Clustering is to partition a set of objects into groups (clusters) so that the objects in the same

cluster are more similar to each others in some sense than those in the other groups. During

the process of modeling, no group label information is used. So, clustering is considered as the

unsupervised learning in general. The notion of clustering depends on a particular objective. There

are different ways to make clustering possible. Here are a few typical examples of cluster models:

• Connectivity model: hierarchical clustering based on the distance connectivity.

• Centroid model: K-means algorithm, each cluster represented by a single mean vector.

• Graph-based model: a cluster is considered as a clique, i.e., a subset of nodes such that every

two nodes in it are connected by an edge.

• Density models: clusters are connected dense regions in the data space.

• Distribution models: clusters are modeled by a mixture of distributions.

Our experiments of clustering shown the next are based on the distribution model. We assume

the data set is generated by sampling from mixture of Gaussian distribution. The number of

components (clusters) are given according to the nature of problems. For any data point, which

cluster it should belong to can be estimated by the posterior probability P (Yj,i = 1|θ,xi), which

is denoted by Tj,i in Section 5.2, equation (5.4). Specifically, by the Bayes theorem,

P (Yj,i = 1|θ,xi) =
τjfj(xi|µj,Σj)∑K
j=1 τjfj(xi|µj,Σj)

.

The clustering rule is to assign the point xi into the cluster with the highest posterior probability,

that is, arg maxj Tj,i. In practice, since we assume the mixture of Gaussian model, f(xi|µj,Σj) is

monotonically decreasing w.r.t. the square value of Mahalanobis distance ξj,i = (xi−µj)TΣ−1
j (xi−
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µj). In order to save computational time on clustering, we can assign the point to the jth cluster

which associates with the smallest value of ξj,i.

After the clustering result is produced, we can evaluate the clustering method based on the

sample of data with the known class label information. The data we choose for experiments are

the sets of data consisting of only the pre-classified items. As an unsupervised learning, we just do

not use the class label when we train the model. The benchmark set used in our experiment is the

same training sample with class labels. It can be thought of as a gold standard for evaluation. The

contingence table based on the benchmark set with predicted cluster ID and true class labels can

be used to recognize the association between them. This is well explained in the work flow shown

as the Figure 7.2. Finally, the confusion matrix (matching matrix) can be calculated to show how

different a cluster is from the gold standard (true) cluster.

An example of confusion matrix is show in Table 7.4. The predicted class c matches the actual

class C with 11 correct predictions but 2 mistakes. The predicted class a matching the true class

A yields 5 correct predictions but 3 mistakes. The predicted class b associated with actual class B

has 6 correct predictions but 5 mistakes.

In the ideal case, the non-diagonal entries of the matrix is equal to 0, which means no misclas-

sification is done by the clustering model. However, this seldom happens. Base on the confusion

matrix, the FPR and FNR of a given class can be calculated with different clustering algorithms

for comparison.

Actual class
A B C

Predict class

A 5 3 0

B 4 6 1

C 0 2 11

Table 7.4. Confusion Matrix
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7.3.2 UCI Wisconsin Diagnostic Breast Cancer Data

This is the Breast Cancer Wisconsin (Diagnostic) Data Set. The data set can be downloaded

from http://archive.ics.uci.edu/ml/datasets. This two-group (benign and ma-

lignant) data set is used for breast cancer diagnosis analysis (Mangasarian et al., 1995). There

are 569 observations. No information about the known benign and malignant label are used when

training the clustering model. With the same setup as the experiment done by Fraley & Raftery

(2002), we use two features mean texture and extreme area. The scatter plot of these two features

in Figure 7.3 shows a considerable overlap between benign and malignant patients. Our goal is

to partition patients into two groups, denoted by group A and group B, without using the known

benign or malignant label information of each patient. Every patient in the sample is clustered

either to group A or B based on the highest posterior probability. In order to evaluate the model

performance, after each data point is clustered into two groups, we “match” the cluster ID by com-

paring to the known label information (benign or malignant) from the same training sample to get

the highest contingency, shown in the Figure 7.2.

In health care application, the malignant patient should get the most attention in the clinical

practice. We define the malignant as positive effect and benign as negative effect as usual. Ac-

cording to Table 7.2.1, the probabilities of false positive and false negative and their estimated

probabilities would be redefined as follows,

Perr1 = Prob(predicted as malignant | patient is benign),

Perr2 = Prob(predicted as benign | patient is malignant).

All the observations form the data set are used to construct the mixture model. The FPR

(P̂err1) and FNR (P̂err2) are calculated upon the same set of sample. The performance is compared

between regular and Spatial EM algorithm, see the Figure 7.3. The resulting spatial-EM has the

FNR= 0.1320 slightly smaller than the one of the regular EM. Moreover the FPR= 0.0224 of

Spatial EM is just around 1/3 of that of regular EM. Therefore, in this example, the Spatial-EM

totally beats up the regular EM in terms of sensitivity and specificity. In fact, a medical screen test
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that maintains the same level of FNR and much smaller FPR can prevent patients from spending

more time and money on the follow-up diagnostic procedure.
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EM clustering

OBS Group ID
1 B
2 A
3 B
4 B
... ...

Matching Matrix
Benign Malignant

A 349 28
B 8 184

OBS Label
1 Malignant
2 Benign
3 Malignant
4 Malignant
... ...

Figure 7.2. Work flow of using EM algorithm on clustering

This is the work flow by using the spatial-EM algorithm with mixture of Gaussian model to iden-

tify whether or not a potential breast cancer patient is predicted as malignant. By measuring the

Mahalanobis distance w.r.t. the cluster, the observation (OBS) is assigned into group ID: A or B.

To match the group ID with the true label, the matching matrix is generated. Most of the benign

patients are clustered into group A, and most of the malignant patients are clustered into group B.

So A=Benign, B=malignant
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(a) Spatial-EM (b) Regular EM
P̂err1 = 0.0224, P̂err2 = 0.1320 P̂err1 = 0.0756, P̂err2 = 0.1368

Figure 7.3. Results of Clustering on UCI Wisconsin Diagnostic Breast Cancer Data

A Projection of the UCI Wisconsin Diagnostic Breast Cancer Data on feature mean texture v.s.

extreme area. o and 4 represent a patient being benign and malignant respectively. Closed sym-

bols represent misclassifications. P̂err1 denotes FPR as the estimated probability of an underlying

malignant patient being diagnosed as benign. P̂err2 denotes the FNR as the estimated probability

of a benign person being diagnosed as a malignant patient.
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7.3.3 Yeast Cell Cycle Data
The data set was used for experiment in Zhang & Cheung (2006), who proposed the X-EM

algorithm to automatically choose the number of components and estimate the parameters simulta-

neously. It is mentioned in the Section 5.3 as a method that intends to overcome one of limitations

of regular EM algorithm. The data set is microarray data of the yeast cell cycle. It can be down-

loaded from http://www.cs.washington.edu/homes/kayee/model. The yeast cell

cycle data (Cho et al., 1998) showed fluctuation of expression levels of genes over two cycles

(17 time points). Zhang & Cheung (2006) used a subset of data consisting of 384 genes, whose

expression levels peak at different time points corresponding to the five phases of cell cycles, see

the Table 7.5. Group 1 has 67 genes whose expression level reach peak at early G1. Group 2 has

135 genes whose expression level peak at late G1. Group 3 has 75 genes whose expression level

reach peak at S. Group 4 has 52 genes whose expression level reach peak at late G2. Group 5 has

55 genes whose expression level peak at M. X-EM successfully choose the number of components

to be 5. Gene clusters by X-EM showed some grouping patterns of the cell cycle phases. For the

given number of 5 Gaussian components, they compared the performance of their algorithm with

regular EM (Reg EM) as well as the other two supervised classification methods: the supervised

cluster analysis (SCA) by Qu & Xu (2004) and the support vector machines (SVM) by Brown

et al. (2000). Here, we run the spatial-EM with 5-component mixture of Gaussian model on the

same data set and compare our results to all the methods conducted in Zhang & Cheung (2006).

We consider the positive effect occur if a gene belongs to the given cell division phase. The

model performance are measured based on four indices: false positive (FP), false negative (FN),

true positive (TP), true negative (TN), see Table 7.6. The total error defined as FP+FN is shown

in Table 7.7 . It is showing that the Spatial-EM outperforms all of those 4 methods in terms

of the total error. The regular EM has high FPR and FNR. It is interesting to see that even the

two supervised learning methods that use the label information can not beat spatial-EM. It can

be seen that the X-EM has a relative high FNR, but spatial-EM well balances both FP and FN.

That is probably due to the robustness of spatial-EM making the parameter estimation much more
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accurate.
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Table 7.5. The genes expression levels of the five classes in the Yeast Cell Cycle Data. 384 genes are plot with
17 time point measurements.
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Cell division phase Mehtods FP FN TP TN

Early G1 Spatial-EM 20 17 50 297
(67 genes) X-EM 11 24 43 306

Reg EM 50 12 55 267
SCA 21 21 46 296
SVM 38 10 57 279

Late G1 Spatial-EM 32 18 117 217
(135 genes) X-EM 13 54 81 236

Reg EM 28 40 95 221
SCA 24 35 100 225
SVM 43 10 125 206

S Spatial-EM 13 42 33 296
(75 genes) X-EM 10 47 28 299

Reg EM 33 49 26 276
SCA 37 36 39 272
SVM 72 18 57 237

G2 Spatial-EM 17 17 35 315
(52 genes) X-EM 13 22 30 319

Reg EM 28 41 11 304
SCA 18 29 23 314
SVM 46 5 47 286

M Spatial-EM 19 7 48 310
(55 genes) X-EM 12 26 29 317

Reg EM 38 42 13 291
SCA 19 8 47 310
SVM 47 2 53 282

Table 7.6. Performance of five methods of Yeast Cell Cycle Microarray Data

Performance of five methods of Yeast Cell Cycle Microarray Data.The model performance are

measured based on four indices: false positive (FP), false negative (FN), true positive (TP) and

true negative (TN).
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Methods FP FN FP+FN

Spatial-EM 101 101 202
X-EM 59 173 232

Reg EM 177 184 361
SCA 119 129 248
SVM 246 45 291

Table 7.7. Comparison of total error rates of the five methods on Yeast Cell Cycle Microarray Data

Comparison of the total error rates of the five methods on Yeast Cell Cycle Microarray Data.

Spatial-EM outperforms the other methods in terms of total error.
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Chapter 8

Concluding Remarks and Future Work

A series of robust parameter estimation procedures for single distribution and the mixture of

distributions were developed in this work. The previous chapters presented the theory and imple-

mentation of these methods. All the algorithms are coded in R/S+ and C language. The contribu-

tion of this work to the robust statistics can be summarized as two parts from this dissertation.

In the first half of this dissertation, we studied the robustness properties of the modified spatial

rank covariance matrix (MRCM) proposed by Visuri et al. (2000). It is infinitesimal robust in

terms of the influence function and quantitative robust in terms of finite sample breakdown point.

We derived the influence functions for the eigenvector and eigenvalues of the MRCM, then the

influence function for the MRCM. They are bounded under the assumption that the scatter pa-

rameter has distinct eigenvalues. The breakdown point attains the upper bound by the choice of

robust univariate scale functional σ = MADk with some optimal values for k. Comparing with

other high breakdown point estimators such as the MCD, the S-estimators and the projection based

estimators, our MRCM is easy to compute with the complexity O(n2 + p3). Even for large data

set in high dimensions, using MRCM is still practical. Also, MRCM is highly statistical efficient

under unimodal Gaussian distribution and other heavy-tailed distributions. It is also shown, un-

der elliptical symmetric distribution, MRCM is affine equivariant and proportional to the scatter

parameter.

In the second half, in order to make use of the MRCM in a broader variety of distributions,

we extend the notion of MRCM from unimodal elliptical distributions to the multimode mixture

of elliptical distributions with the help of EM algorithm. In particular, we mainly focus on the
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mixture of Gaussian distribution. Based on the spatial rank and MRCM, we proposed a novel

Spatial-EM algorithm to estimate the component location and scatter parameters. The Spatial-

EM is shown to be highly robust in parameter estimation with the contaminated sample versus

the regular EM. Moreover, form the likelihood point of view, the estimates of Spatial-EM have

similar form as those done by the regular EM under a mixture of heavy-tailed distribution (Kotz

type distribution). But Spatial-EM is more practical to implement regarding to the computation

issue.

Most importantly, by inventing a brand new robust parameter estimation process for mixture

models, the problem of outlier effects that hinder the data analysis from using statistical learning

on noisy data set is well resolved. Learning schemes including outlier detection and clustering by

employing the Spatial-EM are also illustrated in this dissertation. It has better results in terms of

sensitivity and specificity comparing to some other existing supervised or unsupervised learning

techniques in the experiments we have done.

Future Work

In this dissertation, we modified the spatial rank covariance matrix by taking MAD of the pro-

jection data on the eigenvectors. As pointed out earlier, this was a method mentioned in Visuri

et al. (2000). However, despite the loss of the affine equivariance, RCM is approximately propor-

tional to the scatter parameter. Therefore, the true scatter parameter of an elliptical distribution

may be estimated by a constant λ̂ times RCM, where the λ̂ is an estimate of the Wilks generalized

variance described in Section 2.2. If this is reasonable, the computational time on calculating this

version of MRCM can be reduced. In addition, the concept is easy to be conducted on mixture

model by the same way as Spatial-EM, and therefore decrease the computation complexity in to-

tal. It is believed that some other modified RCM versions are waiting to develop. They want to

maintain the same level of estimation accuracy but make a faster computation possible.

The other future work we are interested is the development of a systematic way in choosing

number of component with data set contains outliers. We have done some of simulation work on
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using AIC or BIC with Spatial-EM to choose an optimal number of component in mixture model.

It is worthy to derive some more theoretical results and do more experiments based on Spatial-EM.
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SERFLING, R. (2010) “Equivariance and invariance properties of multivariate quantile and related
functions, and the role of standardisation.” J. Nonparametr. Stat., Vol. 22(7), pp. 915–936.

SHOHAM, S. (2002) “Robust clustering by deterministic agglomeration EM of mixtures of multi-
variate t-distributions.” Pattern Recognition, Vol. 35(5), pp. 1127 – 1142.
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