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ABSTRACT 

Through the process of drug development, a molecule goes through discovery screening; 

lead selection and optimization, ADME testing, toxicity profiling, dosage form determination, 

preclinical testing in an in vitro and in vivo setup, followed by clinical research, FDA review and 

approval until eventually it is manufactured in the determined dosage form and reaches the patient. 

At every point through this process, scientists actively work towards a smoother transition and a 

quick and safe approval of the molecule towards the next step. The different chapters in this 

research would cover various phases of drug development; from discovery stage to fill-finish and 

primary container compatibility.  

Cannabidiol (CBD), has therapeutic potential in the management of diabetic retinopathy 

induced pain and inflammation, however, being a lipophilic molecule, is challenged by delivery 

to the back of the eye through the topical route. This work aims at improving ocular penetration 

of CBD by means of drug design and analog derivatization. Another cannabinoid, Δ9-

Tetrahydrocannabinol-Valine-Hemisuccinate, a relatively hydrophilic prodrug of Δ9-

Tetrahydrocannabinol, synthesized with the aim of improving ocular bioavailability of the parent 

molecule. This work brings forth importance of combination of prodrug strategy with ophthalmic 

formulation development. Triamcinolone Acetonide (TA) is a corticosteroid administered 

intravitreally for the management of ocular inflammatory conditions such as diabetic retinopathy. 

Currently, there is a need for the development of a topical formulation of TA, designed to achieve 

drug levels at the back of the eye. Nanostructured lipid carriers (NLCs) are lipid-based 

nanoparticles made up of a combination of solid and liquid lipids. This project aims at the 
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development of TA-NLC formulations. Voriconazole (VRC) has emerged as a promising 

candidate for the treatment of fungal keratitis. Antifungal drugs such as VRC have been reported 

to have a synergistic effect with fluoroquinolones such as Ciprofloxacin (CIP). The goal of this 

project is use of statistical techniques for the development of a dual drug, VRC and CIP, loaded 

NLC carrier for the treatment of fungal keratitis. The final chapter focuses on development of a 

capping mechanism that would enable a vial-stopper combination to maintain integrity and product 

quality at storage temperatures of -55ºC and below. 
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CHAPTER 1 

INTRODUCTION AND SPECIFIC AIMS 

Introduction 

The number of compounds which can be classified as “drug-like” are few, these 

compounds possess acceptable ADME properties and a toxicity profile, enabling them to survive 

through Phase 1 clinical trials. 1 Lipinski et al.  proposed few guidelines for an orally absorbable 

molecule, the Lipinski’s rule of 5 (RO5) which determines limitations for drug design for an oral 

targeted molecule to be successful through all the stages of drug development (molecular weight 

500, log P 5, H-bond donors 5, H-bond acceptors 10).  With a few modifications, we can utilize 

the Lipinski’s RO5 in designing molecules for non-oral routes of delivery. 2-3 Investigational 

studies conducted have tried to determine the applicability of RO5 to non-oral routes of delivery, 

such as ophthalmic delivery. 2-3 Taking into consideration the ocular barriers, designing a molecule 

permeating across the cornea is more challenging than targeting intestinal permeation. However, 

as the dosage requirements of most of ophthalmic molecules for local treatment is low in 

comparison to oral molecules, the reduction in the overall bioavailability is balanced, allowing us 

to follow RO5 guidelines in drug design. 2-3  

Chemical derivatization strategies such as prodrug derivatization, have been employed to 

improve trans-membrane permeation. The prodrug approach provides a strategy to modulate the 

lipophilicity, solubility, ionization and stability of the drug candidate and, thus, improve ocular 

penetration.4 Hussain et al. introduced the prodrug concept was introduced to the field of 
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ophthalmology in 19765 to enhance the absorption of a highly polar molecule, epinephrine, through 

lipid membranes.6 Since then, various prodrugs have been designed to improve physicochemical 

properties of therapeutic agents. This strategy involves modification of the active moiety into 

various derivatives in a fashion that imparts some advantage, such as membrane permeability, site 

specificity, transporter targeting and improved aqueous solubility, over the parent compound. The 

application of prodrug strategies to ocular drug delivery provides an option of enhancing drug 

penetration into the ocular tissues, and overall ocular bioavailability, with minimum disruption of 

the ocular diffusion barriers. A prodrug/analog strategy has been, and is being, employed to 

overcome barriers in ocular delivery for some drug molecules, utilizing a chemical modification 

approach rather than a formulation-based approach. Although success of the prodrug strategy is 

contingent on various factors, such as the chemical structure of the parent molecule, aqueous 

solubility and solution stability, capacity of targeted transporters and bioreversion characteristics, 

this approach has been successfully utilized, commercially and therapeutically, in several cases. 

Ocular bioavailability cannabinoids such as Δ9- Tetrahydrocannabinol (THC) and Cannabidiol 

(CBD) can be enhanced by employing this strategy.  

The other strategy, that can be employed to improve bioavailability, is a formulation-based 

approach. Retention of the formulation on the ocular surface and penetration of the active 

ingredient into the ocular tissues are critical parameters governing the effectiveness of topical 

application. Conventional formulation strategies involve the use of viscosity enhancers such as 

hydroxyethyl cellulose and hydroxypropyl methyl cellulose, or penetration enhancers such as 

cyclodextrins, benzalkonium chloride or surfactants, in solution and suspension formulations.7 The 

formulator may also opt for gels, ointments and other viscous formulations to improve residence 

time on the surface.8-9 
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Improving the viscosity improves the contact time of the active ingredient with the corneal 

surface and improves flux but does not improve the corneal membrane permeation characteristics 

of the molecules. Nanocarriers, such as liposomes, niosomes, lipid nanoparticles and 

nanoemulsions, are a few of the innovative strategies that can encapsulate a wide range of drugs. 

Vesicular carriers such as liposomes have an added advantage in that they can load both 

hydrophilic as well as lipophilic molecules and provide an option for surface modification. The 

use of a vesicular system is, however, associated with problems such as limited drug loading, short-

term stability, unwanted side effects and difficulty with sterilization.10-11 Lipid-based 

nanoparticulate systems have recently gained interest for ocular delivery. Solid lipid nanoparticles 

(SLN) and nanostructured lipid carriers (NLC) show promise because of better biocompatibility, 

enhanced corneal retention and permeation of the nanoparticles.12-13 The formulation approaches, 

however, do not change the ability of the compounds themselves to diffuse across membranes. 

Ocular drug delivery remains a major challenge for formulators because of the unique 

structural organization of the eye. To understand the fate of the drug in the ocular tissues and 

overcome the barriers to drug absorption, it is necessary to study the anatomy of the eye (Figure 

1.), organized into an anterior segment and a posterior segment. Therapeutic agents may need to 

be targeted to one or both segments of the eye. 

Anatomical and physiological considerations for drug delivery 

Ocular drug delivery remains a major challenge for formulators because of the unique 

structural organization of the eye.14-16 To understand the fate of the drug in the ocular tissues and 

overcome the barriers to drug absorption, it is necessary to study the anatomy of the eye (Figure 

1.), which is organized into an anterior segment and a posterior segment.17 Therapeutic agents may 

need to be targeted to one or both segments of the eye. The anterior segment is composed of the 
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crystalline lens suspended from the ciliary body, and the structures anterior to it; namely, the 

cornea, the iris and the two chambers containing aqueous humor: the anterior and the posterior 

chambers. The anterior chamber contains approximately 0.25 mL of aqueous humor and is bound 

anteriorly by the back of the cornea and posteriorly by the iris and a part of the ciliary body. The 

posterior chamber consists of approximately 0.06 mL of aqueous humor and is bound anteriorly 

by the iris and a part of the ciliary body and posteriorly by the crystalline lens.18-19 The aqueous 

humor is a clear, colorless fluid, secreted by non-pigmented epithelial cells of the ciliary body, 

with a chemical composition similar to that of blood plasma, but with a low protein content.20 The 

sclera, retina-choroid, vitreous humor and optic nerve make up the posterior segment, of which the 

vitreous humor, a hydrophilic gel matrix, makes up 80% of the volume of the eye.14, 18, 21-24  

 

 

Figure 1. Physiological barriers to ocular drug delivery (diffusional barriers are indicated in red, 

elimination route is indicated in green). A major pathway for ocular penetration of topically 

administered therapeutic agents is via the cornea (1). Some large and hydrophilic drugs prefer 
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the conjunctival and scleral route, and then diffuse into the ciliary body (2). After systemic 

administration small compounds can diffuse from the iris blood vessels into the anterior segment 

(posterior chamber) (3). From the anterior segment the drugs are eliminated either by aqueous 

humor outflow (4) or by venous blood flow - diffusion across the iris surface (5). Systemically 

administered therapeutics agents must pass across the retinal pigment epithelium or the retinal 

capillary endothelium to reach the retina and vitreous humor (6). Alternatively, drugs can be 

administered by intravitreal injection (7). Drugs are eliminated from the vitreous via the blood–

retinal barrier (8) or via diffusion into the anterior chamber (9). 

 

Topical delivery is the preferred and patient-friendly technique for treating diseases of the 

anterior segment and involves instillation of the eye drops into the conjunctival cul-de-sac. A 

topically applied formulation, however, has to overcome multiple pre-corneal barrier mechanisms, 

such as dilution, overflow, tear-fluid enabled lacrimal drainage and conjunctival absorption 

resulting in elimination from the pre-corneal area.17, 25-26 The ocular tissues maintain a highly 

regulated environment for visual cells and transparent tissues. Ocular barriers, namely the Blood-

Aqueous Barrier (BAB) and the Blood-Retinal Barrier (BRB), play a vital role in the protection of 

the eye and the maintenance of ocular functions by restricting the entry of xenobiotics, 

consequently challenging the passage of therapeutic drug molecules into the ocular tissues.27  

The cornea is the outermost tissue in the anterior ocular segment and consists of five layers: 

the epithelium, Bowman’s membrane, the stroma, Descemet’s membrane, and the endothelium.28-

29 The corneal epithelial cells are connected to each other via desmosomes and express tight-

junctions that act as a rate-limiting barrier for hydrophilic molecules.30-31 Lipophilic drugs, 

depending on biopharmaceutical characteristics such as solubility, partition coefficient, ionization 
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and charge and polar surface area, demonstrate better transcellular permeation compared to 

hydrophilic molecules.32-33  The stroma underlying the corneal epithelium, however, is hydrophilic 

in nature.34 Additionally, efflux pumps present on the corneal and conjunctival membranes restrict 

the entry of substrates (mostly lipophilic in nature) into the deeper ocular tissues.29, 35-37 Thus, 

therapeutic agents must possess optimal physicochemical and biopharmaceutical characteristics to 

permeate efficiently across the total corneal membrane. The non-corneal route of absorption 

encompasses conjunctival pathways, and favors hydrophilic and large polar molecules.14, 38-39 The 

BAB and the BRB also limit the passage of both hydrophilic and lipophilic molecules by virtue of 

the tight-junctions and efflux mechanisms present.14, 36, 40-43 Both systemic and periocular delivery 

are affected by the presence of the BAB and BRB. 

Designing a stable formulation delivering effective amounts of API to the desired site of 

action involved several steps, such as preformulation screening, stability and solubility of the API, 

determination of the route of delivery and an appropriate formulation strategy, excipient selection 

and compatibility, process parameters and scale up44. The drug product development process for 

any molecule is a multi-variate process and these variables could be interdependent, affecting the 

efficacy of the optimized formulation. In this situation, instead of running random trials, by 

changing single variable, using Quality by Design (QbD) principles for formulation and process 

development a more cost effective and time efficient technique. This process involves setting up a 

target product profile for the product, within its safety and efficacy limitations, identifying critical 

quality attributes (CQAs) that affect the final drug product properties, coming up with a 

manufacturing process that meets the CQAs for the final drug product, identifying the main effects 

or the critical process parameters (CPPs) that control the critical material attributes of the final 

product. The different tools utilized by QbD are Design of Experiment (DOE), process analytical 



7 

 

technologies (PAT) and risk assessment. Using DOE for formulation optimization is a systematic 

way of analyzing effects of independent variables and interactions on the final formulation 

properties (response variables). Constructing a robust model using these variables results in 

establishing a predictive design space, helping us design an optimum formulation as also establish 

the edge of failure.  

QbD principles can also be applied to optimization of pharmaceutical manufacturing 

processes such as tableting or homogenization or even filling. A process optimization DOE would 

help establish equipment limits and optimum conditions for processing the material, in turn 

increasing process efficiency. Applying QbD principles to developing processes involves similar 

steps, keeping in mind a target product profile, identifying the CQAs for the product and 

establishing the CPPs for the process in concern. The design space constructed facilitates 

understanding of the relationship between CPPs and CQAs of the product in question. A 

pharmaceutical capping process is a critical process that ensures the optimized drug product is 

protected from external stresses. Depending on the equipment in use, there are various CPPs (main 

effects) that affect the CQA, which in this case would be an acceptable crimp ensuring container 

closure integrity through the product cycle. The final chapter would discuss one such process 

optimization for a stopper-vial combination for storage and shipping at frozen conditions.  

The work described herewith would employ prodrug/analog strategy, formulation strategy 

and both to enhance ocular bioavailability of the target molecule. In entirety, the research chapters 

described henceforth would talk about various aspects of the path followed by a small molecule 

ophthalmic from the bench to the final product. The initial chapters would discuss work on the 

cannabinoids in early discovery phase: THC and CBD, their prodrugs and analogs respectively.  

The THC chapter aims at improving the ocular bioavailability of the molecule by means of 



8 

 

optimizing a novel formulation of its prodrug, THC-VHS. The therapeutic potential of this novel 

formulation was evaluated in a set of preclinical pharmacokinetic-pharmacodynamic (PK-PD) 

studies in a small animal model. The primary goal of the CBD chapter was to screen CBD analogs 

in an in vitro setup.  Furthermore, the efficacy of a few lead candidates was evaluated in a small 

animal model. Apart from Cannabinoids, formulation optimization of anti-inflammatory agents 

(Triamcinolone Acetonide), antifungals (Voriconazole) and antimicrobial agents (Ciprofloxacin) 

was undertaken by statistical DOE. The final chapter discusses pharmaceutical capping process 

optimization for drug products meant for cold storage. This work tries to unify pharmaceutical unit 

operations such as capping and filling at a laboratory scale and a manufacturing scale by modeling 

a predictive design space for that operation.  

Specific Aims 

1. To evaluate ocular bioavailability of CBD analogs with a range of physicochemical properties 

and establish in vitro-in vivo correlation.  

2. To evaluate the intra-ocular pressure (IOP) lowering efficacy and ocular tissue disposition of 

THC and its prodrug, THC-VHS in nanoemulsion and solid lipid nanoparticulate formulation.  

3. To study the effect of surface modification of Triamcinolone Acetonide Nanostructured Lipid 

carriers with Chitosan and Chitosan derivatives on the permeation profile of the same 

4. Anti-fungal & Anti-bacterial PEGylated-NLCs for ocular applications: Formulation 

Development, Characterization and In vitro Efficacy Testing 

5. Optimization of Capping Parameters for Low Temperature Storage of a Plastic Vial-Rubber 

Stopper Combination
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CHAPTER 2 

 ANALOG DERIVATIZATION OF CANNABIDIOL FOR IMPROVED 

OCULAR PERMEATION 

Introduction 

Non-inflammatory disorders such as diabetic retinopathy (DR) might occur as a result of 

inflammatory mediators, needing anti-inflammatory agents as a part of clinical therapy. 45  DR is 

one of the leading causes of vision loss in working age adults and the fifth most common cause of 

moderate to severe vision impairment. 46-47 Studies testing the global prevalence of DR reported 

285 million people with diabetes, one third of whom show symptoms of DR. 48 DR involves 

leakage of the retinal blood vessels leading to distorted vision. Breakdown of the blood-retinal 

barrier leads to further vision loss through macular edema and retinal neovascularization. 49-50 

Degeneration of the retinal cells may be caused by a mechanism involving tyrosine nitration and 

may include a vascular endothelial growth factor (VEGF) triggered breakdown component.51-52 

Diabetic retinas have shown an increase in the vascular permeability which can be associated with 

increase in VEGF and tumor necrosis factor alpha (TNFα) pointing towards pro-inflammatory 

roots of this disease.53 High glucose conditions in diabetic retinas stimulates endothelial apoptosis 

by activation of p38 MAP kinase.54  

Current treatment options for DR include laser photocoagulation, vitreoretinal surgery and 

intravitreal injections of anti-VEGF and steroids. Laser photocoagulation is the recommended 
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therapy for DR; however, laser photocoagulation is associated with neural tissue death raising the 

need for the development of non-invasive therapies for DR. 55 Intravitreal steroid therapy often 

leads to unwanted side effects such as elevated intra-ocular pressure, cataracts and advent of 

opportunistic infections. 56-57 Ophthalmic surgical procedures such as vitreoretinal surgeries are 

often accompanied by post-surgical complications such as elevated intra-ocular pressure, 

endopthalmitis and cataract formation.58 

Discoveries pertaining to the involvement of the endocannabinoid system in modulation of 

ocular pain and inflammation open new avenues for targeting the cannabinoid receptor system 

(CB1 and CB2) for the management of ocular inflammatory conditions. 59-60 CB1 are Gi/o-protein-

coupled receptors expressed in the central nervous system (CNS) especially in the basal ganglia, 

cerebellum and hippocampus. They are also located in the periphery, including the retina, sperm 

cells, testis, colonic tissues and peripheral neurons. 61-63 While CB2 receptors are located in the 

immune system; there have also been reports of localization of CB2 receptors in the retinal cells. 

61, 64-67  

CBD is a major cannabinoid of the plant Cannabis sativa, free of cannabimimetic CNS  

activity, possessing neuroprotective, anti-emetic and anti-inflammatory properties 68. Possible 

explanations for the anti-inflammatory activity of CBD could be its ability to interact with  CB2 

receptors and inhibiting immune cell migration.69  Moreover, CBD acts as an effective anti-oxidant 

by scavenging reactive oxygen species (ROS) and blocking NADPH oxidase 50. CBD has been 

shown to decrease retinal inflammation by blocking ROS and TNFα formation and by p38 MAP 

kinase activation.50 It has also been reported to exert anti-inflammatory activity by inhibiting 

adenosine re-uptake in rat retinal microglial cells. 70 Thus, CBD, by virtue of its anti-inflammatory 
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properties, might be a treatment option for DR induced pain and inflammation, by modulating the 

formation of TNFα and scavenging ROS.  

El-Remessy et al. demonstrated neuroprotection in NMDA-induced retinal neurotoxicity 

in rats via the anti-oxidant effect of CBD 50. They also determined the effect of blocking oxidative 

stress on the  BRB preservation in diabetic rats 50. The benefits of CBD, i.e. blocking oxidative 

stress and inhibiting adenosine reuptake to enhance a self-defense mechanism against retinal 

inflammation, potentially represents a novel therapeutic approach for the inflammatory 

complications of the eye. 70 

CBD (Figure 2A) is a lipophilic molecule with a Clog P of 5.91 making its topical delivery 

to treat retinal inflammation extremely challenging. In order for CBD to produce a therapeutic 

effect, the molecule has to transverse across the static ocular layers and the dynamic blood-ocular 

barriers to reach the back of the eye 71. This work aims at improving ocular penetration of CBD 

by means of bio-engineered analog derivatization. Through structural modifications in the 

molecule, inherent molecular properties such as molecular size, structural conformation, 

lipophilicity, solubility etc. were optimized to increase the “druglikeness” of the molecule.   

CBD-amino acid ester (CBD-AA) analogs are prepared by linking one or both of its 

hydroxyl groups to an amino acid such as L-Valine, via an ester linkage, to form CBD-

monovalinate (CBD-Mono-Val) and CBD-divalinate (CBD-Di-Val), respectively (Figures 2B & 

C). L-Valine has previously been reported to improve the transport of the molecule acyclovir and 

ganciclovir 72. The electron releasing-electron withdrawing properties of the side chain determine 

the stability of the bond. The parent molecule, as a virtue of its steric bulk is lipophilic and 

incorporation of an ionizable group in this structure attempts to increase its aqueous solubility. 

Hemi-esters of dicarboxylic acids have been known to enhance the solubility of 
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methylprednisolone, chloramphenicol, propranolol and a few other drugs 73-76. CBD-dicarboxylic 

acid (CBD-DCA) analogs were synthesized (Figure 2D) by attaching a dicarboxylic acid, such as 

succinic acid to both hydroxyl groups of CBD (CBD-HS). Another derivatization approach 

employed synthesis of CBD-amino acid- dicarboxylic acid ester (CBD-AA-DCA) analogs by 

linking a dicarboxylic acid such as succinic acid to the free amino group of the CBD-AA to form 

CBD-monovalinate-monohemisuccinate (CBD-Mono-VHS) (Figure 2E) and CBD-divalinate-

dihemisuccinate (CBD-Di-VHS) (Figure 2F), respectively. The rationale behind this modification 

was to impart the stability in biological matrix as achieved by the AA analogs and solubilize the 

molecule at physiological pH by including an ionizable group. Moreover, addition of an ester bond 

after the amide bond increases the stability of the amide bond. The physicochemical properties of 

the synthesized analogs are mentioned in Figure 2.  
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Figure 2. Structures, chemical formulae and physicochemical parameters of CBD and biologically 

active CBD-analogs   
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Materials 

CBD analogs were synthesized by ElSohly Labs Inc. 77. Tocrisolve™ was purchased from Tocris® 

Bioscience, Bristol, UK. High performance liquid chromatography (HPLC) - grade solvents, and 

other chemicals (analytical grade) were obtained from Fisher Scientific (Hampton, NH, USA). 

Animals 

Male New Zealand White rabbits (2-2.5 kg), obtained from Harlan laboratories® (Indianapolis, IN) 

were used in all studies. All animal experiments conformed to the tenets of the Association for 

Research in Vision and Ophthalmology statement on the use of animals in ophthalmic and vision 

research. All experiments followed the University of Mississippi Institutional Animal Care and 

Use Committee approved protocols.  

Methods 

Stability of CBD and Analogs in Ocular Tissue Homogenates  

Tissue Preparation 

The degradation of CBD analogs was determined in aqueous humor (AH), vitreous humor (VH), 

iris-ciliary bodies (IC), and retina-choroid (RC). The tissues were shipped on dry ice from Pel-

Freez Biologicals; AR. Ice-cold isotonic phosphate buffer (IPBS) was used to homogenize the 

solid tissues, RC and IC, in an ice bath using a TISSUEMISER (Fisher Scientific). The 

homogenates were then centrifuged at 13,000 rpm at 4°C for 15 minutes. The protein contents of 

the supernatants were determined according to the method of Bradford and were adjusted to 

approximately 1 mg/mL. 78 

Hydrolysis Procedure  

Enzymatic degradation of CBD and analogs was studied at 37°C in a shaking water bath. The 

tissue homogenates were equilibrated for 30 minutes at 37°C to activate the enzymes. To 1.9 mL 
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of the supernatant, 100 µL of the CBD/analog stock solution were added to make the final CBD/ 

analog concentration as 25 µg/mL (analog concentration spiked for CBD-di-Val was 50 µg/mL). 

At predetermined time-points, 100 µL aliquots of the sample were withdrawn up to 6 hours post 

initiation. An equal volume of ice-cold acetonitrile was added to each sample to arrest the 

enzymatic degradation. The samples were centrifuged at 13,000 rpm for 15 minutes and the 

supernatant was analyzed for analog/CBD content using HPLC-UV.  

Chromatography methods 

Analytical method for in vitro samples 

The in vitro samples were analyzed for CBD and analogs using an HPLC-UV system comprising 

a Waters 717 plus Auto sampler, Waters 600E pump controller, Waters 2487 dual λ Absorbance 

detector and an Agilent 3395 integrator. Stock solutions of CBD and analogs were prepared in 

acetonitrile. A gradient method (Table 1.) was used for elution of CBD and analogs with the mobile 

phase consisting of Acetonitrile and 5 mM Phosphate buffer (pH 2.5). A Phenomenex® C18 (4.6 

x 150 mm) column was used at a flow rate of 1 mL/min. Detection was carried out at 222 nm.  

 

Table 1. HPLC gradient method for separation and quantification of CBD and analogs 

Time 

(min) 
Flow (mL/min) % Acetonitrile % Buffer 

0 1 75 25 

3-6 1 95 5 

7-15 1 75 25 
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Preparation of topical ophthalmic nanoemulsion of CBD/analogs 

CBD and the associated analogs were formulated into a soybean-oil based nanoemulsion 

composed of a 1:4 ratio of soya oil/water that was emulsified with the block co-polymer Pluronic 

F68 (Tocrisolve™). The formulations were prepared by adding the drug/analog to the blank 

emulsion. This mixture was vortexed for five minutes followed by sonication for ten minutes. For 

quantification of CBD and analogs in the nanoemulsion, the formulations were centrifuged at 9000 

rpm for 5 min at 25°C. The solubility of CBD and the analogs is listed in Figure 2. 

Distribution of CBD and analogs in ocular tissues after topical administration 

In vivo bioavailability of CBD and analogs was determined in Male New Zealand White Albino 

(NZW) rabbits, weighing between 2 and 2.5 kg, procured from Charles River Labs. CBD and its 

analogs, namely CBD-Di-VHS, CBD-Di-Val, CBD-Mono-Val, CBD-Mono-VHS and CBD-HS 

were formulated in Tocrisolve™ emulsion. These formulations were evaluated in vivo in a 

conscious rabbit model, at least in triplicates (n = 3). The initial study compared ocular penetration 

of CBD-Di-VHS and CBD-Di-Val to that of CBD. The second study compared the ocular 

bioavailability of CBD-Mono-Val, CBD-Mono-VHS, CBD-HS and CBD. Concentration of the 

CBD analog as well as CBD were determined in the AH, VH, RC and IC. Fifty microliters of the 

above formulations were dosed topically (Dose: 250 μg CBD equivalent) - instilled in the 

conjunctival sac of the NZW rabbits. Ninety minutes after dosing the rabbits were anesthetized 

using a combination of ketamine (35 mg/kg) and xylazine (3.5 mg/kg) injected intramuscularly. 

The rabbits were euthanized with an overdose of pentobarbital injected through the marginal ear 

vein. The eyes of the rabbits were then enucleated and washed thoroughly with IPBS and the 

intraocular tissues such as IC, AH and VH were separated. 
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Tissue sample preparation and extractions 

A protein precipitation technique was employed to determine the amount of CBD and analogs in 

the ocular tissue homogenates. The solid tissues, namely IC (50 mg) and RC (30 mg) were cut into 

small pieces and homogenized with ice-cold IPBS in an ice bath using a TISSUEMISER (Fisher 

Scientific), whereas, the liquid tissues, AH (50 µL) and VH (100 µL) were taken as they were.  

For the calibrators, standards were prepared by spiking the tissues with CBD and the analogs to 

yield final concentrations of 2.5, 5, 10, 25, 50, and 100 ng/ml. Twenty-five microliters ice-cold 

acetonitrile, precipitating proteins from individual tissues. Samples were vortexed and kept aside 

for 10 minutes. The supernatant was collected after centrifuging for 30 minutes at 13,000 rpm and 

analyzed using LC-MS/MS.  

Bio-analytical quantification method 

Analysis was performed on two LC-MS-MS systems consisting of a Shimadzu Prominence HPLC 

with a dual pump, a vacuum solvent micro degasser, a controlled-temperature autosampler, and an 

MS-MS detector (Applied Biosystems/MSD Sciex Qtrap 3200 and 4500 with a turbo-ion ESI 

source operating the positive-ion multiple reaction monitoring, or MRM, mode). Specific MRM 

transitions were monitored for each compound for maximum selectivity and sensitivity. Separation 

was achieved on a Synergi Hydro-RP column (50 x 3.00 mm; 2.5 μm; 100 Å) from Phenomenex 

(Torrance, CA, USA). Water with 0.1% Formic acid (Pump A) and Acetonitrile with 0.1% Formic 

acid (Pump B) were used as the mobile phase with a gradient elution. Data acquisition and 

processing were performed with Analyst™ 1.6.2 software (Applied Biosystems (AB Sciex), Foster 

City, CA). 
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Statistical analyses 

Data is represented as the mean ± standard deviation, for a minimum of three independent 

experimental runs. Statistical comparisons of the means were performed using one-way analysis 

of variance (ANOVA) or Student’s t-test. The differences were considered significant when the p-

value was < 0.05. 

Results and Discussion 

Physicochemical characterization of analogs 

To improve aqueous solubility and tissue permeability, the parent molecule was derivatized; the 

aim of analog design was to modify molecular properties in the desired direction. Physicochemical 

parameters such as molecular weight, log P, pKa, hydrogen bond donors and acceptors and polar 

surface area, were estimated using the ChemDraw software (PerkinElmer®) to obtain a better 

understanding of the membrane permeation characteristics of the molecule. Figure 1. lists the 

computed physicochemical parameters for CBD and analogs. Optimum physicochemical 

parameters would in turn prove to be efficient predictors of overall ocular bioavailability. The RO5 

defined by Lipinski determines limitations for drug design for an oral targeted molecule to be 

successful through all the stages of drug development (molecular weight 500, log P 5, H-bond 

donors 5, H-bond acceptors 10).  With a few modifications, we can utilize the Lipinski’s RO5 in 

designing molecules for non-oral routes of delivery. 2-3  

Stability of CBD and analogs in ocular tissue homogenates 

Stability of CBD in ocular tissue homogenates 

The stability of CBD in the biological matrix and its resistance to enzymatic attack is shown in 

Table 2. CBD was stable in most of the ocular tissues tested. Some degradation is observed in 

the iris-ciliary bodies.  
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Table 2. Stability of Cannabidiol in ocular tissue/tissue homogenates.  

Tissue Time (min) 0 15 30 45 60 90 120 180 240 360 

Aqueous 

Humor 

CBD 

(µg/mL) 
31.3 29.8 31.8 30.0 29.4 29.3 23.9 30.5 32.6 26.3 

Vitreous 

Humor 

CBD 

(µg/mL) 
30.9 34.2 34.5 34.4 32.9 34.0 37.4 44.2 34.9 32.0 

Retina 

Choroid 

CBD 

(µg/mL) 
30.0 19.9 34.3 34.2 31.9 34.5 36.2 28.4 34.1 32.0 

Iris 

Ciliary 

bodies 

CBD 

(µg/mL) 
16.6 12.5 15.1 11.2 10.9 14.8 13.8 12.5 10.9 7.3 

 

Stability of CBD-Di-Val in ocular tissue homogenates 

The results (Figure 3) suggest that CBD-Di-Val is enzymatically hydrolyzed in some of the ocular 

tissues with detectable levels of CBD observed ninety minutes post initiation of the study. The half 

life of CBD-Di-Val in AH and VH was 5.78 h and 2.89 h respectively, with apparent first order 

degradation rate constants of 0.33x10-4 h-1 and 0.67x10-4 h-1. The delayed and restricted generation 

of CBD could be explained by possible formation of intermediate degradation products such as 

CBD-Mono-Val. AA derivatives synthesized with promoeties such as valine, isoleucine, 

phenylalanine etc. have been reported to provide stability to hydrolytic attack in comparison to the 

DCA analogs due to the presence of steric groups such as branched aliphatic amino acid (valine) 

or aromatic amino acid (phenylalanine). 79-82  CBD-Di-Val is a lipophillic molecule with a clog P 

of 6.45 (Figure 1.), and shows limited dissolution in the homogenized tissues. Figure 3. depicts 

low initial concentrations of CBD-Di-Val followed by a slight increase and steady analog 

concentrations through the duration of the study. This behaviour could be attributed to the drug 

concentrations exceeding equilibrium solubility in the biological matrices, leading to possible 

precipitation of the analog followed by continual dissolution of the same in the tissue matrix 

leading to an equilbrium between the drug in solution and undissolved drug. In solid tissues, IC 
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and RC, no CBD as a breakdown product was observed. However,a decline in the analog levels 

were detected. This could again be attributed to generation of intermediate degradation products 

and the resistance of the analog to hydrolytic attack.  

Figure.3. In vitro enzymatic stability of CBD-Di-Val in ocular tissue homogenates;  

 

 

 

 

 

 

Figure 3. In vitro enzymatic stability of CBD-Di-Val in ocular tissue homogenates; Aqueous 

Humor, Vitreous Humor, Retina Choroid and Iris Ciliary Bodies. The blue bars represent CBD-

Di-Val concentrations (nM) and the red bars represent regenerated CBD (nM) concentrations. 

 

Stability of CBD-HS in ocular tissue homogenates 

CBD-HS, like CBD-Di-Val, is enzymatically hydrolyzed in some of the ocular tissues (Figure 4). 

The half life of CBD-HS in AH and VH was 13.07 and 13.52  minutes, respectively, with apparent 

first order degradation rate constants of 0.053 and 0.051 min-1 respectively. Furthermore, the AH, 

VH and IC data shows constant CBD-HS levels initially with a sudden drop, below detection levels
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hinting towards solubility issues of the analog and the stability of ester bond governing the overall 

rate of the reaction, with it changing from pseudo-zero to first-order degradation process. The 

delayed generation of CBD suggest formation of an intermediate degradation product, like CBD-

Mono-HS, before generating CBD or a different degradation pathway.  

 

 

 

 

 

 

 

 

Figure.4. In vitro enzymatic stability of CBD-HS in ocular tissue homogenates; Aqueous Humor, 

Vitreous Humor, Retina Choroid and Iris Ciliary Bodies. The blue bars represent CBD-HS 

concentrations (nM) and the red bars represent regenerated CBD (nM) concentrations. 

 

The half life of CBD-HS in IC was 16.5 minutes and the apparent first order degradation rate 

constant was 0.042 min-1. The observed bioconversion in IC was similar to the results for 

bioconversion of CBD-Di-Val in IC; CBD-HS failed to regenerate CBD through the duration of 
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the study. We can attribute this phenomenon to secondary degradation products formed due to 

precence of multiple sites for hydrolytic attack and presence of unexplored degradation pathways. 

The results in RC point towards formation of an initial supersaturated solution followed by 

precipitation and generation of an equilibrium between the solid state and solution state as 

evidenced by CBD-HS levels remaining almost constant even though generation of CBD is 

observed two hours post initiation. 76, 82. 

 

 

 

 

 

 

 

 

 

Figure.5. In vitro enzymatic stability of CBD-Di-VHS in ocular tissue homogenates; Aqueous 

Humor, Vitreous Humor, Retina Choroid and Iris Ciliary Bodies. The blue bars represent CBD-

Di-VHS concentrations (nM) and the red bars represent regenerated CBD (nM) concentrations. 
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Stability of CBD-Di-VHS in ocular tissue homogenates 

CBD-Di-VHS demonstrates excellent stability in the ocular tissues without any CBD generation 

even after a 6 h exposure (Figure 5.). This is consistent with the results observed with CBD-Di-

Val and CBD-HS since the increased chain length leads to steric hindrance and provides greater 

protection from enzyme attack. Moreover, the number of intermediates that can form are double 

that with CBD-Di-Val and CBD-HS. Out of all the analogs tested, CBD-Di-VHS was observed to 

be the most stable, with no degradation within the study duration, whereas, CBD-Di-Val and CBD-

HS regenerated CBD but at a slow rate.  

The in vitro data points towards the solubility of the analogs, the stability of the ester bond, 

involvement of different degradation pathways and formation of multiple degradation 

intermediates as a possible explanation for the low rate of bioconversion observed in the biological 

matrices of the analogs and generation of CBD.  

Distribution of CBD and Analogs in ocular tissues after topical administration 

First PK Study 

Fifty microliters of three formulations were dosed in the first study, CBD, CBD-Di-Val and CBD-

Di-VHS (n=6) in Tocrisolve™ emulsion in NZW rabbits (n=3), with the dose being equivalent to 

250 µg CBD (Figure 6). CBD, from CBD formulations, did not penetrate across the ocular tissues 

following topical instillation, with CBD being detected only in the RC tissues (17.35 ± 4.57 ng/g). 

This indicates that CBD, because of its physicochemical characteristics, is not suited for 

penetration across the ocular membranes. CBD-Di-Val formulations displaying a similar pattern 

- did not permeate significantly into the ocular tissues with about 9.11 ± 1.07 ng/g of the analog 

(equivalent to     ng/g of CBD) being detected in the RC only. A potential explanation for this 
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phenomenon could be that CBD-Di-Val, being slightly more hydrophobic than the other 

analogs displays poor solubility in the tissue environment at physiological pH. In comparison 

to CBD, CBD-Di-Val is more lipophilic (clog P 6.45) and is a bulkier molecule, resulting in 

overall lower bioavailability in comparison to the parent molecule. Because of its lipophilic 

nature and high solubility in the oily emulsion (Figure 2), its dissolution in the tissue 

microenvironment serves as a rate-limiting step, preventing the molecule from partitioning 

into the hydrophilic tear fluid. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Ocular tissue concentrations of CBD, CBD-Di-Val and CBD-Di-VHS  90 min post 

topical application of CBD (0.47%), CBD-Di-Val (0.94%) or CBD-Di-VHS (1.2%) in Tocrisolve™ 
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emulsion (Dose: 250 µg CBD; 50 µL instilled volume) respectively. Data represented is Mean ± 

SEM, the differences were considered significant when the p-value was < 0.05 

CBD-Di-VHS, on the other hand, demonstrated significantly better ocular bioavailability. 

CBD-Di-VHS concentration were 612.48 ± 187.11 ng/mL (detected in three of the six test 

animals) in the VH and 279.77 ± 75.29 ng/g tissue weight in the RC. Concentrations in the 

front of the eye tissues were lower with 12.32 ± 7.53 ng/ mL in the AH and 160.31 ng/ g tissue 

weight in the IC (detected in IC of only one animal). The reason behind overall higher 

bioavailability of this compound could be its improved solubility at physiological pH.  CBD-

Di-VHS has a pKa of 3.93, and is charged at physiological pH, resulting in higher solubility of 

the analog, in turn increasing its partitioning into the tear and permeation. CBD-Di-VHS was 

not metabolized to CBD in the ocular tissues within the timeframe tested. This observation 

was consistent with the in vitro stability data in the tissue homogenates. The analog 

demonstrated surprisingly high penetration into the VH. The charge of the analog at 

physiological pH and the route of ocular permeation could possibly explain penetration of the 

analog from the RC into the VH. However, the overall tissue disposition profile of CBD and 

the analogs, from the nanoemulsion formulations, suggests a non-corneal route of absorption, 

with higher levels of the analogs present in the posterior tissues.  

Second PK Study 

Taking into consideration the in vitro and in vivo data of CBD, CBD-Di-Val and CBD-Di-VHS, 

mono derivatized AA and AA-DCA analogs of CBD (CBD-Mono-VHS, CBD-Mono-Val) were 

synthesized for in vivo evaluation, aiming to reduce the steric bulk of the molecule but retaining 
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the overall permeation/stability profile offered by an AA and AA-DCA analog.  CBD and the DCA 

analog, CBD-HS, were also included in this set.  

Fifty microliters of the four formulations were dosed in the second study: CBD, CBD-Mono-Val, 

CBD-Mono-VHS (n=6), and CBD-HS in Tocrisolve™ emulsion in NZW rabbits (n=3), with the 

dose being equivalent to 250 µg CBD (Figure 7). Following topical administration of CBD-HS, 

the analog concentrations were below detection levels in all the ocular tissues tested at the end of 

90 minutes; however, bio-reversed CBD, 263.15 ± 93.33 ng/ g tissue weight in RC and 266.69 ± 

35.52 ng/g in IC, were observed, consistent with the in vitro stability profile. CBD-HS, being a 

DCA analog has two ester bonds prone to hydrolysis rendering it susceptible to chemical and 

enzymatic hydrolysis.  

Comparing the data obtained in both sets, following CBD administration, lower levels of CBD 

were observed in the RC in the first study, however the difference in the drug concentrations 

detected were not statistically significant and this variation could be attributed to biological system 

variability.  

CBD-Mono-Val is a hydrophobic molecule with a clog P value of 6.18, (Figure 2). The lipophilic 

nature as well as other physicochemical characteristics of the molecule along with restricted 

solubility in the tissue microenvironment results in low ocular bioavailability (below detection 

limit in all tissues tested) as observed in the in vivo study.  

CBD-Mono-VHS, in contrast, showed significantly higher levels of the analog in AH (94.5 ± 7.83 

ng/ml), IC (728.18 ± 152.62 ng/g) and RC (603.92 ± 160.42 ng/ g tissue weight), in comparison 

to CBD-HS and CBD-Mono-Val (Figure 7).  
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Figure 7. Ocular tissue concentrations of CBD- Mono-VHS, CBD-Mono-Val, CBD, CBD-HS 90 

min post topical application in Tocrisolve™ emulsion (Dose: 250 µg; 50 µL instilled volume) 

respectively. Data represented is Mean ± SEM, the differences were considered significant when 

the p-value was < 0.05 

*CBD-Mono-VHS > CBD, CBD-HS, CBD-Mono-Val 

**CBD-HS > CBD & CBD-Mono-Val 

 

The in vivo studies suggest that the mono derivatized form, CBD-Mono-VHS permeates more 

effectively than CBD-Di-VHS, with higher concentrations of the analog detected in the tissues. 

CBD-Mono-VHS levels are almost twice, four times and eight times higher in RC, IC and AH 

(Figure 7), respectively in comparison to CBD-Di-VHS (Figure 6). Looking at the ocular 
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bioavailability in relation to drug design, several features about the physicochemical properties of 

the molecule stand out (Figure 2.); CBD-Mono-VHS is a smaller molecule (M.W 513.68) in 

comparison to CBD-Di-VHS (M.W 712.88) and has one charged group at physiological pH, 

balancing its hydrophilic and lipophilic nature. The transmembrane permeation of CBD-Mono-

VHS, which has a PSA of 112.93 A2
, 
is comparatively more effective than that of CBD-Di-VHS, a 

more polar molecule with a PSA of 185.4 A2. Looking at the total number of hydrogen bond donors 

and acceptors (Figure 2), even though both molecules follow Lipinski’s RO5, CBD-Mono-VHS 

displays a better profile due to a lower number of donors and acceptors, giving it a comparatively 

better ADME profile. We also observe bio-converted CBD, following topical application of CBD-

mono-VHS formulations, in RC (348.37 ± 131.17 ng/g), IC (469.09 ± 62.78 ng/g) and AH (30.66 

± 13.84 ng/ml) indicating that this analog was more prone to hydrolysis than CBD-Di-VHS. 

Conclusion 

The above results demonstrate that CBD displays poor ocular tissue permeation following 

topical application. When analogs are designed with a natural AA modification (e.g. CBD-Di-Val) 

or as a DCA ester (e.g. CBD-HS), penetration into the ocular tissues is not adequate. A 

combination of an AA and DCA (e.g. CBD-Di-VHS) strikes an effective balance between the 

hydrophilicity and lipophilicity and other physicochemical characteristics, effectively increasing 

ocular bioavailability.  

CBD-mono-AA analogs, wherein one of the hydroxy groups is derivatized as a valine ester 

and the other hydroxyl group is unsubstituted, do not penetrate into the ocular tissues. On the other 

hand, when one of the hydroxyl groups is derivatized with a valine-hemisuccinate moiety and the 

other hydroxyl group is free (CBD-Mono-VHS), ocular bioavailability following topical 

application is significantly enhanced. The results suggest that the free –COOH group and stability 
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of the linkage plays an important role in the penetration across the ocular tissues. Amongst all the 

derivatives studied, the AA-DCA analog possessed optimum physicochemical properties, 

permeating effectively across ocular barriers. 

 

Supporting data 

Table 3. In vitro stability of CBD-Di-Val, CBD-Di-VHS and CBD-HS in ocular tissue 

homogenates; AH, VH, RC and IC. Analog and CBD concentrations (nM) monitored over a period 

of 6h. 

 Analog concentration (nM) CBD concentration (nM) 

Formulation Type Tissue Time point Mean Std. Dev Mean Std. Dev 

CBD-HS 

AH 

0 34.9 1.15 0 0 

15 31.5 0.5 0 0 

30 29.1 0.25 0 0 

45 28.4 0.31 0 0 

60 27.6 0.17 1.19 0.23 

90 26.9 0.03 4.73 0.34 

120 0 0 9.18 1.07 

180 0 0 16.2 0.33 

240 0 0 18.8 1.43 

360 0 0 26.5 0.12 

VH 

0 27 0.19 0 0 

15 26.2 0.56 0 0 

30 25.9 0.08 0 0 

45 25.8 0.1 0 0 

60 25.5 0.04 0 0 

90 12.6 17.9 0 0 

120 0 0 3.42 4.83 

180 0 0 2.5 3.54 

240 0 0 4.31 1.14 

360 0 0 12 1.31 

IC 

0 29.2 0.06 0 0 

15 28.7 0.08 0 0 

30 28.4 0.02 0 0 

45 28.3 0.03 0 0 

60 28.2 0.02 0 0 
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90 0 0 0 0 

120 0 0 0 0 

180 0 0 0 0 

240 0 0 0 0 

360 0 0 0.5 0.7 

RC 

0 32.2 0.12 0 0 

15 31 0.74 0 0 

30 30.6 0.08 0 0 

45 30.4 0.05 0 0 

60 30.2 0.04 0 0 

90 29.9 0.01 0 0 

120 30 0.1 2.29 0.23 

180 30.3 0.49 7.14 3.09 

240 30 0.02 11.2 3.48 

360 29.9 0.01 18.2 4.85 

CBD-Di-Val 

AH 

0 66.4 13.3 0 0 

15 117 7.76 0 0 

30 121 0.66 0 0 

45 111 11.3 0 0 

60 116 3.8 0 0 

90 101 0.9 13.9 11.1 

120 84.5 4.77 4.93 3.58 

180 77.4 4.12 11.1 2.54 

240 62.2 7.15 13.2 0.92 

360 45.7 3.28 7.31 0.2 

VH 

0 26.1 1.93 0 0 

15 25.5 2.8 0 0 

30 35.4 16.5 0 0 

45 27.9 7.34 0 0 

60 23 1.3 0 0 

90 20.3 2.94 2.44 3.45 

120 16.5 3.74 0 0 

180 15.9 3.44 5.34 7.56 

240 11.7 0.72 8.36 11.8 

360 7.7 1.63 5.95 4.55 

IC 

0 27.7 0.96 0 0 

15 16.9 2.69 0 0 

30 17.8 0.14 0 0 

45 13.8 4.43 0 0 

60 9.62 0.29 0 0 

90 7.66 1.1 0 0 
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120 2.24 3.16 0 0 

180 2.4 3.4 0 0 

240 0 0 0 0 

360 0 0 0 0 

RC 

0 39.4 14.5 0 0 

15 9.73 6.91 0 0 

30 37.8 2.98 0 0 

45 21.3 10.3 0 0 

60 33.7 3.85 0 0 

90 24.3 3.41 0 0 

120 15.4 3.57 0 0 

180 23.7 10.9 0 0 

240 34.3 2.2 0 0 

360 34.5 6.53 0 0 

CBD-Di-VHS 

AH 

0 34 0.47 0 0 

15 31.8 1.91 0 0 

30 33 0.37 0 0 

45 32 0.86 0 0 

60 32.5 0.61 0 0 

90 30.5 0.71 0 0 

120 30.1 0.84 0 0 

180 28.6 0.49 0 0 

240 28.1 0.32 0 0 

360 33.6 0.03 0 0 

VH 

0 30.1 4.38 0 0 

15 34.3 0.64 0 0 

30 34.3 0.96 0 0 

45 33.6 0.65 0 0 

60 32.8 0.11 0 0 

90 30.9 0.59 0 0 

120 29.1 0.69 0 0 

180 25.2 0.31 0 0 

240 23.1 0.29 0 0 

360 34.1 0.04 0 0 

IC 

0 36.3 0.08 0 0 

15 38.4 1.83 0 0 

30 37.1 0.22 0 0 

45 37.1 0.33 0 0 

60 37.2 0.85 0 0 

90 38.3 0.39 0 0 

120 37.9 0.21 0 0 
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180 36.8 0.1 0 0 

240 37.8 0.56 0 0 

360 32.7 0.34 0 0 

RC 

0 35.8 1.49 0 0 

15 33.8 1.3 0 0 

30 32.9 1.45 0 0 

45 33.5 0.41 0 0 

60 30.4 0.22 0 0 

90 30.8 2.5 0 0 

120 29.5 1.3 0 0 

180 26.6 0.25 0 0 

240 28.7 0.34 0 0 

 

Table 4. Ocular tissue concentrations of CBD, CBD-Di-Val, CBD-Di-VHS, CBD-HS, CBD-

Mono-VHS compiling studies 1 and 2, 90 min post topical application of CBD (0.47%), CBD-

Di-Val (0.94%) or CBD-Di-VHS (1.2%) in Tocrisolve™ emulsion (Dose: 250 µg CBD; 50 µL 

instilled volume) respectively. Data represented is Mean ± SEM 

*Concentrations detected in only one animal  

**Concentrations detected in three of the six test animals 

 
Analog Conc (ng/g of 

tissue) 

CBD Conc (ng/g 

of tissue) 

Study 

number 

Formulation 

dosed 

Tissue 

Analyzed 
Mean Std Err Mean 

Std 

Err 

1 

 

 

 

 

 

 

 

 

 

 

 

CBD 

 

 

 

AH 0.00 0.00 0.00 0.00 

VH 0.00 0.00 0.00 0.00 

IC 0.00 0.00 0.00 0.00 

RC 17.35 4.57 0.00 0.00 

CBD-Di-Val 

 

 

 

AH 0.00 0.00 0.00 0.00 

VH 0.00 0.00 0.00 0.00 

IC 0.00 0.00 0.00 0.00 

RC 9.11 1.07 0.00 0.00 

CBD-Di-VHS 

 

 

 

AH 12.32 7.53 0.00 0.00 

VH 612.48** 187.11 0.00 0.00 

IC 160.31* - 0.00 0.00 

RC 279.77 75.29 8.35 8.35 
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2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CBD 

 

 

 

AH 0.00 0.00 0.00 0.00 

VH 0.00 0.00 0.00 0.00 

IC 0.00 0.00 0.00 0.00 

RC 0.00 0.00 0.00 0.00 

CBD-HS 

 

 

 

AH 0.00 0.00 0.00 0.00 

VH 0.00 0.00 0.00 0.00 

IC 0.00 0.00 266.69 32.52 

RC 0.00 0.00 263.15 93.33 

CBD-Mono-Val 

 

 

 

AH 0.00 0.00 0.00 0.00 

VH 0.00 0.00 0.00 0.00 

IC 0.00 0.00 0.00 0.00 

RC 0.00 0.00 0.00 0.00 

CBD-Mono-VHS 

 

 

 

AH 94.50 7.83 30.66 13.84 

VH 0.00 0.00 0.00 0.00 

IC 728.18 152.62 469.10 62.78 

RC 603.92 160.42 348.37 137.2 
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CHAPTER 3 

 Δ9-TETRAHYDROCANNABINOL DERIVATIVE LOADED NANO-

FORMULATION LOWERS IOP IN NORMOTENSIVE RABBITS 

Introduction 

Glaucoma is a neurodegenerative disorder characterized by progressive peripheral vision 

loss due to structural and functional damage to the optic nerve head. 83-84 The latest statistics from 

the World Health Organization ranks glaucoma as the second leading cause of blindness, after 

cataracts, affecting almost 60 million people worldwide.85 The 2010 report by the National Eye 

Institute stated that 2.72 million people in United States suffer from glaucoma, 23 percent higher 

than the 2.22 million affected in the year 2000, and projects almost 6.3 million to be affected by 

this illness by 2050. 85-88 

Glaucomatous optic neuropathy is caused by several factors that result in death of retinal 

ganglion cells (RGC) and their axons. The major risk factor for glaucoma is elevated intraocular 

pressure (IOP), normally regulated by AH hydrodynamics in the anterior chamber.89 AH is a fluid 

secreted by the IC.90 AH drains out via the trabecular meshwork (TM) through the Canal of 

Schlemm into venous circulation. The ciliary muscles maintain the tension on the TM structure 

and control the drainage of AH. The Goldmann equation can be used to describe AH 

hydrodynamics,91 

𝐼𝑂𝑃 = 𝑃𝑒 +
(𝐹−𝑈)

𝐶𝑡𝑟𝑎𝑏
                                                                                                       …...(1) 
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Wherein, Pe is the episcleral venous pressure (the pressure opposing the drainage of AH 

through the trabecular meshwork), F is the AH flow, U is the uveoscleral outflow and Ctrab is the 

AH outflow from the TM and Schlemm canal.89 The balance between AH production and drainage 

determines IOP, wherein increased AH production or inadequate AH drainage might result in 

increased pressure.89, 92-94 Glaucoma medications target IOP reduction by acting on the 

aforementioned factors i.e. either decreasing the production of AH or increasing AH outflow 

through TM and through the uveoscleral pathway or both.95-97  

Currently, there are five families of treatment governing the market as anti-glaucoma 

agents.98 Adrenergic agonists, beta blockers, prostaglandin F2-α analogs, carbonic anhydrase 

inhibitors and cholinergic agents. The mechanism of action of each class and examples of some 

FDA approved agents are listed in Table 5. 

 

Table 5. Classification and mechanisms of action of the currently used anti-glaucoma medications 

Anti-glaucoma 

medications 
Mechanism of Action FDA approved therapy 

Prostaglandin analogs 

Reduction in hydraulic resistance 

to uveoscleral outflow, Increase in 

trabecular outflow facility 

Xalatan® (latanoprost), 

Lumigan® (bimatoprost), 

Travatan Z® (travoprost), 

Zioptan™ (tafluprost) 

Beta blockers 

Reduce aqueous humor production 

by acting on the β1 and β2 

receptors  

Timoptic® (timolol maleate 

ophthalmic solution), 

Betagan® (levobunolol 

hydrochloride ophthalmic 

solution 

Adrenergic agonists 

Increases elimination by reducing 

episcleral venous pressure, 

increasing uveoscleral outflow by 

increasing prostaglandin synthesis 

Alphagan®P (brimonidine), 

Iopidine® (apraclonidine 

hydrochloride, ophthalmic 

solution) 

Carbonic anhydrase 

inhibitors 

Inhibit the enzyme carbonic 

anhydrase, reduce production of 

aqueous humor 

Trusopt® (dorzolamide), 

Azopt® (brinzolamide) 
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Cholinergic agents 

Increases aqueous humor outflow 

by contracting longitudinal fibers 

in of the ciliary muscles 

Isopto® Carpine (pilocarpine 

hydrochloride ophthalmic 

solution)98-99 

  

Current glaucoma research is directed towards finding new lines of treatment pursuing 

novel mechanisms for lowering of the IOP. The recent FDA approvals on anti-glaucoma agents, 

Rhopressa (Netarsudil 0.02%), a rho-kinase inhibitor and Latanoprostene Bunod 0.024% (made of 

two components, Latanoprost and a nitrogen oxide donating component) are examples of drug 

products harnessing novel mechanisms of action for IOP reduction.99 There are several 

investigational treatments such as a sustained release bimatoprost implant and ocular punctal plugs 

of travoprost and latanoprost, however all these approaches focus on a formulation-based 

approach.99 A completely new class of agents would bring forth another perspective for anti-

glaucoma medications. 

Cannabinoids have been investigated for the past few decades for their IOP lowering 

capacity. Cannabinoids utilize several unique mechanisms for IOP reduction. There are reports 

suggesting that IOP reduction occurs due to decreased AH production, a result of curtailed release 

of noradrenaline in ocular tissues.100 Δ9-Tetrahydrocannabinol (THC) is an example of a 

cannabinoid that favors the opening of the endothelial-lined Schlemm’ s channels draining the 

AH.100-105 Another suggested mechanism involves the CB1 receptors in IOP reduction. Human 

ciliary bodies are rich in CB1 mRNA, and functional protein, supporting the hypothesis that 

cannabinoids such as THC, through their action on CB1 receptors, may act directly as vasodilators 

of the efferent blood vessels of the anterior uvea, favoring AH efflux.63, 106 Taking into 

consideration the pathophysiology of glaucoma, along with increased IOP, there is also a 

neurodegenerative component to the disease. Increased IOP produces early injury in glaucomatous 
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optic atrophy resulting in structural changes in the lamina cribrosa, a membrane through which the 

RGC axons pass before condensing to form the optic nerve.107-109  Moreover, overproduction of 

free radicals, such as nitric oxide, results in an excessive release of glutamate, which, by activating 

NMDA receptors results in apoptotic ganglionic cell death.110-112 Findings suggest that THC can 

inhibit glutamic acid release by increasing K+ and decreasing Ca2+ permeability.111, 113-114 It also 

exhibits antioxidant properties and prevents neuronal cell death by reactive oxygen species (ROS) 

scavenging action.104, 115 Reportedly, in an animal glaucoma model, treatment with THC for 20 

weeks decreased IOP and reduces death of RGCs by approximately 75%. 116 The neuroprotective 

effect of THC on the RGC makes it one of the very few agents tackling not only IOP reduction but 

also halting progressive vision loss.104, 117 

Hepler and Frank reported about 25-30% drop in IOP after smoking marijuana, in a small 

number of subjects with a duration of action of 3-4 hours.118-119 Crawford and Merritt in the late 

1970’s conducted clinical studies to determine a relationship between changes in heart rate, blood 

pressure, IOP in normotensive (n=8) and hypertensive volunteers (n=8) and also patients 

diagnosed with open- angle glaucoma (n=16) and they observed decreased IOP (6-21mm of Hg 

lower than control) along with intense cardiovascular effects.120 Overall, it has been observed that 

smoking of marijuana is accompanied with a drop in both systolic pressure as well as IOP; 

however, cardiovascular effects such as tachycardia and postural hypotension outweighs the IOP 

lowering effects, giving rise to the need of investigating the effect of topical application THC on 

lowering of IOP.119-120 Several reports can be found on the topical administration of THC 

formulated in various oily vehicles.121-124 However, for THC to show both an IOP reducing and a 

neuroprotective effect, it is important for it to permeate through initial layers of the eye, to the 

target tissues.63, 125 Previously, a prodrug approach was devised aiming to improve the ocular 
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bioavailability of THC.126 Adelli et al. evaluated the pharmacokinetic and pharmacodynamic 

efficacy of a hydrophilic prodrug of THC, Δ9-Tetrahydrocannabinol-Valine-Hemisuccinate (THC-

VHS) in an elevated IOP model (Figure 8.). THC-VHS demonstrated a better permeation profile 

in comparison to THC, penetrating to the IC and RC, and a corresponding IOP drop for about 180 

minutes. 76, 86  

 

Figure 8. Chemical structures of (A) Δ9-Tetrahydrocannabinol and (B) Δ9-Tetrahydrocannabinol 

Valine Hemisuccinate (THC-VHS). 

A 

B 



39 

 

To understand the IOP lowering mechanisms of THC-VHS in an intact eye with all the 

production and drainage mechanisms unimpaired, a normotensive IOP model was opted for in the 

current set of studies. The goals of this project were to formulate a lipid-based vehicle, SLNs, to 

improve the delivery of the prodrug, THC-VHS, to the target tissues. SLNs have been reported to 

enhance ocular bioavailability by prolonging the residence time of the formulation in the cul-de-

sac, forming a lipid-based drug reservoir interacting with the ocular mucosa.127 

The formulation was characterized in terms of drug content (% w/v), particle size (d. nm), 

polydispersity index and scanning transmission electron microscopy (STEM). Stability of the 

formulations in terms of particle size growth under different storage conditions was investigated. 

A comparative PK-PD profile of the THC-VHS-SLN formulations was established post single and 

multiple topical applications in a normotensive rabbit model. The PK-PD profile of THC-VHS-

SLN was compared to that of THC-VHS formulated in a soybean oil-based emulsion and THC-

SLN to delineate the effect of prodrug derivatization and the effect of vehicle in improving ocular 

bioavailability. IOP lowering efficacy (PD profile) of the formulations were also compared against 

marketed ophthalmic formulations of pilocarpine and timolol maleate in the same model (single 

dose). 

Materials 

THC-VHS was synthesized by ElSohly Laboratories, Inc. according to previously established 

protocols.128 Compritol® 888 ATO (glyceryl behenate) was obtained as a gift sample from 

Gattefossé (Paramus, NJ, USA), glycerin was purchased from Acros Organics (NJ, USA), 

Pluronic® F68 (poloxamer 188) was purchased from Spectrum Pharmaceuticals (Henderson, NV), 

Tween™ 80 was received as a gift sample from Croda Inc. (Mill Hall, PA), Tocrisolve™ 100 was 

purchased from Tocris® biosciences (Bristol, UK). HPLC - grade solvents, and other chemicals 
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(analytical grade) were obtained from Fisher Scientific (Hampton, NH, USA). Amicon® Ultra 

centrifugal filter devices, regenerated cellulose membrane (MWCO 100 kDa) were purchased 

from EMD Millipore (Billerica, MA). Formalin was purchased from Thermo Scientific™. Timolol 

maleate eye drops (0.25 % w/v) and pilocarpine HCl eye drops (2 %w/v) are commercially 

available formulations obtained from The University of Mississippi, Health Center.  

Animals 

Male New Zealand White rabbits (2-2.5 kg), obtained from Harlan laboratories® (Indianapolis, IN) 

were used in all studies. All animal experiments conformed to the Association for Research in 

Vision and Ophthalmology statement, “Use of Animals in Ophthalmic and Vision Research” and 

followed the University of Mississippi Institutional Animal Care and Use Committee approved 

protocols.  

Development of SLNs and Emulsion 

THC-VHS-SLNs and THC-SLNs 

THC-VHS or THC loaded SLNs were prepared by the ultra-sonication technique. Compritol® 888 

ATO constituted the lipid phase of the SLNs. THC-VHS (equivalent to 0.6% of THC) and 0.6% 

of THC was mixed with Compritol® 888 ATO to obtain a clear lipid phase. The aqueous phase 

comprising of Pluronic® F-68 (0.25% w/v), Tween™ 80 (0.75% w/v) and glycerin (2.25% w/v) 

was simultaneously heated in bi-distilled water. The hot aqueous phase was added to the melted 

lipid phase under constant stirring. A coarse emulsion from this pre-mix was formed by 

emulsification at 11,000 rpm for 5 min using T 25 digital Ultra-Turrax™. This coarse emulsion 

was subjected to ultrasonification using SONICS® Vibra-Cell™ Ultrasonic Liquid Processor using 

previously optimized parameters (Amplitude: 40%; Pulse on: 10 seconds, Pulse off: 15 seconds; 
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Time: 10 minutes). The temperature during this entire process was maintained at 70°C. The hot 

emulsion was slowly cooled to room temperature to form THC-VHS or THC SLNs.  

THC-VHS and THC emulsion 

THC-VHS and THC emulsion were prepared by dispersing weighed amount of THC (0.6% w/v) 

or THC-VHS (0.98% w/v, equivalent to 0.6% w/v THC) in the Tocrisolve™ emulsion vehicle 

(THC-TOC and THC-VHS-TOC), a soya-bean oil emulsion composed of a 1:4 ratio of soya 

oil/water, purchased from Tocris Bioscience. Tocrisolve™ is a water-soluble emulsion used for 

formulating hydrophobic moieties such as cannabinoids. The soybean oil solubilizes the 

cannabinoid molecule and the emulsion is stabilized by the block co-polymer, Pluronic-F68, 

preventing the lipid droplets from coalescing in the dispersion. This mixture was vortexed for 5 

minutes on Ultra Cylone™ and sonicated for 10 minutes. 

Formulation Characterization 

Drug content 

To determine the drug content in the SLNs and the emulsion, the lipid/oil was precipitated using 

ethanol. An accurately measured volume of the formulation was extracted in 1 mL ethanol and 

this suspension was centrifuged at 13,000 rpm for 15 minutes. The drug content in the supernatant 

was analyzed using the following HPLC-UV method. 

In-vitro sample analysis 

The samples were analyzed for THC and THC-VHS using an HPLC-UV system comprising a 

Waters 717 plus Autosampler, Waters 600E pump controller, Waters 2487 dual λ Absorbance 

detector and an Agilent 3395 integrator. Stock solutions of THC-VHS and THC were prepared in 

acetonitrile and used immediately. A mobile phase consisting of 60: 40 Acetonitrile: Water with 
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0.1% glacial acetic acid was used on a Phenomenex® C18 (4.6 x 250 mm) column at a flow rate 

of 1 mL/min. Detection was carried out at 226 nm.  

Particle size, Polydispersity Index (PDI), Zeta Potential 

The mean particle size and the PDI of the THC-VHS-SLN, THC-SLN, and THC-VHS-TOC 

formulations were determined by Dynamic Light Scattering (DLS) technique using the Zetasizer 

Nano ZS Zen3600 (Malvern Instruments, Inc.) at 25°C and 173° detection optics using the Non-

Invasive-Back-Scatter technology. The cells used were disposable folded capillary clear cells. The 

measurements were obtained using a helium-neon laser of 633 nm, and the particle-size analysis 

data was evaluated using intensity distributions. Zeta potential was measured at 25°C in folded 

capillary cells using the same instrument. To measure the particle size distribution, the samples 

were diluted (1:500) with bidistilled water filtered using 0.2-micron filters.  

Scanning transmission electron microscopy studies 

A negative staining procedure was used to conduct the STEM studies. THC-VHS-SLNs were 

characterized by scanning transmission electron microscope Zeiss Auriga®-40 dual beam using 

1%w/v uranyl acetate as a stain. Twenty microliters of the sample was placed on a piece of 

parafilm and a glow discharged 200 mesh copper grid with a thin carbon film was floated on top 

of the sample (film side down) for 30 seconds. After taking the grid off the drop, excess sample 

was blotted using a piece of filter paper. The grid was then floated on a drop of distilled water for 

a couple of seconds. Once excess water was removed, the grid, sample side down was floated on 

a drop of 1% uranyl acetate for 1 minute. After blotting and drying, the samples were imaged in a 

Zeiss Libra operating at 30 kV and in STEM mode. 

  

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/uranyl-acetate
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Physical and Chemical Stability 

THC-VHS-SLNs were evaluated for changes in % drug content, particle size and PDI on storage 

at conditions of 40°C/60% RH, 25°C/75% RH and 4°C. 

Corneal Histology  

Six NZW rabbits were used for comparison of corneal histology after treatment with Placebo-

SLNs or with IPBS as control (n=3). The placebo-SLNs were topically administered to the eye of 

normotensive New Zealand White rabbits to observe the effect of the vehicle on the histological 

characteristics of the cornea. Rabbit corneas dosed with IPBS, under similar experimental 

conditions, were used as controls. The study was conducted for 120 minutes, after which the 

animals were euthanized, and the corneas were excised. Extracted corneas were fixed in 10% 

Neutral Buffered Formalin. Histological evaluation was carried out at Excalibur Pathology Inc. 

(Oklahoma City, OK) as per previously reported protocols. Corneas embedded in paraffin were 

sliced into 5μm cross sections using a microtome (American Optical® 820 Rotary Microtome). 

These sections were placed on a slide and dried overnight in an oven at 68 °C. The slide was 

washed with xylene to remove paraffin and washed with alcohol and water to hydrate the tissue. 

This was then stained with nuclear dye Gill III hematoxylin (StatLab medical) for 10 min and 

rinsed, and then counterstained with eosin. These slides were then washed in reverse manner 

(running water, alcohol, and xylene), cover slipped and examined under microscope 

(ChromaVision ACIS II). 

Efficacy studies 

Multiple Dose studies  

The rabbits were acclimatized to the environment, personnel and IOP measurements using a Tono-

Pen Vet™ (Reichert® Technologies) for a period of 2-3 weeks.  The formulations THC-VHS-
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SLNs, THC-VHS-TOC, THC-SLNs were dosed topically, conforming to a predetermined multiple 

dosing protocol in eighteen NZW rabbits (n=6). Fifty microliters of SLNs or nanoemulsion (in 

Tocrisolve™), was instilled topically in the cul-de sac of the left eye of normotensive rabbits, twice 

a day, for five consecutive days. The right eye served as the control. To avoid spillage, the eyelid 

was closed for 10 seconds. On Day 1, for the single dose IOP-Time profiling, IOP was measured 

before (baseline IOP), and, every 30 minutes after administration until IOP returned to 90 % of the 

baseline. From Day 2 onwards the IOP was measured before (baseline) and 60-90 min after 

administration of the dose. The IOP value displayed by the TONO-PEN VET™ (Reichert, Inc.) 

was an average of five concurrent IOP measurements, and each time point was measured in 

triplicates. The decrease in IOP was recorded as a function of single dose and multiple dosing, i.e. 

an intra-day as well as an inter-day IOP trend was monitored. On Day 5, IOP-Time profiling was 

done similar to Day 1. On Day 6, the animals were sacrificed at two time points, the first time 

point, which showed the lowest drop in IOP on day 5, and the second time point right before the 

IOP returned to 90% IOP from the baseline. 

Eye Dissection and Tissue collection 

At the time points mentioned before, the rabbits were administered Ketamine (35 mg/kg) and 

Xylazine (3.5 mg/kg) intramuscularly and euthanized under anesthesia with an overdose of 

pentobarbital administered through the marginal ear vein. The eyes were immediately enucleated 

after washing with ice-cold IPBS. Enucleated eyeballs were then dissected and the AH, VH, IC 

and RC tissues were collected. All samples were weighed and stored at −80°C until further 

processing. 
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Bioanalytical methods for quantification 

An AB Sciex QTrap 4500 (Framingham, MA, USA) LC-MS/MS quadrupole interfaced with 

Shimadzu Nexera HPLC (Kyoto, Japan) was used to analyze both the THC and THC-VHS content. 

Calibration curves were prepared by spiking THC and THC-VHS into blank ocular tissues along 

with the internal standard, D3-THC. The tissues analyzed were AH, VH, IC, RC and plasma (PL). 

Protein precipitation took place after addition of ice-cold acetonitrile followed by extraction of 

THC and THC-VHS. The samples were vortexed and then centrifuged at 13,000 rpm, for 30 

minutes. The supernatant was filtered through a 0.2-µm filter, and the filtrate was analyzed for 

THC and THC-VHS content. The calibration curves were prepared with both THC and THC-VHS 

in AH (2.5–100 ng/ml), VH (2.5–100 ng/ml), IC (2.5–100 ng/ml), RC (2.5–100 ng/ml), and plasma 

(2.5–100 ng/ml). Tissues collected from the multiple dosing studies were also prepared per this 

protocol. A Phenomenex Synergi Hydro Reverse Phase, 100 A, 50 x 3 mm, 2.5-µm column was 

used with a gradient elution method; the solvent phase was composed of water and acetonitrile 

with 0.1% w/v formic acid.  

Single Dose studies 

Single dose IOP-lowering efficacy studies were conducted with the marketed ophthalmic 

formulations of timolol maleate (0.25 % w/v) and pilocarpine HCl (2 %w/v) in NZW rabbits (n=4). 

Fifty microliters of each test formulation were instilled into the lower cul de sac of the left eye of 

the rabbits, while the right eye acted as the control. The eyelids were closed after the instillation 

for 10 seconds to avoid spillage. IOP was measured before instillation (baseline IOP) and every 

30 min post instillation until the IOP returned to 90% of baseline IOP. The drop in IOP was also 

expressed as ΔIOP or percent baseline IOP (± SEM) i.e. (measured IOP/baseline IOP) x 100. 
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Statistical Analysis 

To assess the effect of formulation on change in IOP over time a repeated measures model was 

used. Between and within group differences were modeled using the proc mixed procedure in SAS 

with treatment, time and interaction of treatment and time as independent factors in the model. A 

two-tailed p-value of ≤ 0.05 was considered statistically significant. Data analysis was conducted 

using Statistical Analysis System 9.4 software (SAS Institute; Cary, NC). Furthermore, using 

JMP® 12 (SAS Institute, NC, USA) data analyses software, a Standard Least Squares personality 

was used to fit the time-based IOP-drop from the baseline IOP for each of the formulations to 

study the comparative IOP trend across treated and untreated eyes. A p-value of less than 0.05 was 

considered statistically significant.  

Results 

Formulation characterization 

A detailed description of the compositions of these formulations has been listed in Table 6.   

The homogenization-ultrasonification process yielded SLNs with hydrodynamic radii less than 

300 d. nm and a narrow distribution range. However, their particle size was slightly greater than 

that of Tocrisolve™ emulsion. Tocris Bioscience reports the mean droplet size of the emulsion as 

182 nm and our investigated values for THC-VHS-TOC particle size fall along similar lines 

(189.75 ± 22.7 d. nm).  Physicochemical properties of the test formulations have been listed in 

Table 7. A consistent negative zeta potential was observed in all the formulations. That, along with 

a narrow PDI suggests no aggregation/ coalescence of the nano-colloidal formulations.  
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Table 6. Optimized composition of THC-VHS-SLN, THC-VHS-TOC and THC-SLN 

formulations 

Content (% w/v) 

Ingredients THC-VHS-SLN THC-VHS-TOC THC-SLN 

Compritol 3 - 3 

Glycerin 2.25 - 2.25 

Poloxamer 188 0.25 - 0.25 

THC - - 0.6 

THC-VHS (0.6% THC equivalent) 0.98 0.98 - 

Tocrisolve™ emulsion - Q.S - 

Tween 80 0.75 - 0.75 

Water, HPLC grade Q.S - Q.S 

 

Table 7. Particle size (d. nm), polydispersity index (PDI), zeta potential (mV) and drug content 

(%w/v) of test formulations THC-VHS-SLN, THC-VHS-TOC and THC-SLN 

Formulation 

Particle size (d. nm) 

(± Std. deviation) 

Polydispersity Index (PDI) 

(± Std. deviation) 

Drug content (% w/v) 

(± Std. deviation) 

THC-VHS-SLN 287.80 ± 7.35 0.29 ± 0.01 93.57 ± 4.68 

THC-VHS-TOC 189.75 ± 22.7 0.15 ± 0.06 87.74 ± 3.6 

THC-SLN 269.2 ± 5.66 0.32 ± 0.15 96.84 ± 0.02 
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Scanning transmission electron microscopy studies 

Morphological characteristics of THC-VHS-SLNs were studied using STEM (Figure.9). STEM 

technique images samples based on absorption of an electron beam as it passes through ultra-thin 

layer of sample. The transmitted beam is then projected on a phosphorescent screen or detector, 

providing us with information regarding the morphological characteristics of the particles as well 

as the hydrodynamic radius.  The electron microscopy pictures at different magnifications (Figure. 

9) show the presence of spherical nanoparticles with a smooth well-defined periphery.  
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Figure 9. STEM images of THC-VHS-

SLN at A. 92.29 KX and B. 209.82 KX magnification 
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Physical and Chemical Stability 

The particle size and polydispersity index of THC-VHS-SLNs was observed for 6 months at 

40°C/60% RH, 25°C/75% RH and 4°C. The formulations were stable over a period of six months 

at both 4°C and 25°C with particle size remaining around 200 to 300 d.nm and a PDI of 0.3 129 

(Figure 10.). However, after 1 month at 40°C, a 95% increase in particle size was observed from 

the original diameter of 248.9 nm and a PDI of 0.4. In terms of drug content, the THC-VHS-SLN 

was stable with a change in % drug content of ± 1.5% when stored at 4°C and 25°C over a period 

of 23 days (the last timepoint checked).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Particle size and polydispersity index of THC-VHS-SLNs stored at conditions of 

40°C/60% RH, 25°C/75% RH and 4°C over a period of six months. 
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Corneal Histology 

To observe the effect of formulation on the corneal histology, cross-sections of rabbit corneas 

treated with placebo-SLNs (Figure 11. A, B, C) and IPBS (control) were studied (Figure 11. D, E, 

F). The cornea is composed of five membranes; the corneal stratified squamous epithelium (1), 

Bowman’s membrane (2), stroma consisting of collagen fibers and keratocytes (3), Descemet’s 

membrane (4) and the endothelium (5), as marked in Figure 11. A. The corneal epithelium of all 

the rabbits, treated with control or placebo-SLNs looked intact, and attached to the Bowman’s 

membrane, without any signs of edema.  

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Histological sections of rabbit corneas (Magnification 10x) excised from NZW rabbits 

(n=3) treated with placebo-SLNs (A, B, C) and IPBS (control) (D, E, F) 120 minutes after 

application 
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Efficacy studies 

Multiple dosing regimen for THC-VHS-SLN 

It has been previously reported that THC fails to lower IOP of normotensive rabbits. The data 

obtained on normotensive rabbits for studies with THC-VHS-SLN formulations show a significant 

IOP lowering effect by THC-VHS when formulated in SLNs. Figure 12 depicts the 5-day mean 

IOP vs Time profile for treated eye after dosing with THC-VHS-SLN over the five-day dosing 

regimen in comparison to the contralateral eye IOP (untreated eye). IOP of the treated eye was 

significantly lower than the untreated eye from the 30 minutes time-point, and this effect lasted 

until 360 minutes.  

 

 

Figure 12. Mean IOP vs time profile for treated (blue line) and untreated (red line) eyes in 

normotensive rabbits (n=6) dosed with 50 µL of 0.98 % THC-VHS-SLN twice a day for five 
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consecutive days. The line represents the mean of these data points at each time point (± SEM). 

The IOP profile of the Treated vs contralateral rabbit eyes were compared using proc mixed 

repeated measures model. The p-values for treated vs untreated eyes are also listed. 

 

Multiple dosing regimen for THC-VHS-TOC 

The THC-VHS-TOC emulsion formulation did not have a significant effect on the IOP of 

normotensive rabbits. The 5-day mean IOP vs Time profile for the eye treated with THC-VHS 

TOC in comparison to the contralateral eye is shown in Figure 13. The IOP drop in the treated eye 

lasts for about 90 minutes with IOP significantly lower than the contalateral eye at the 30, 60 and 

90 minute time points.  
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Figure 13. Mean IOP vs time profile for treated (blue line) and untreated (red line) eyes in 

normotensive rabbits (n=6) dosed with 50 µL of 0.98 % THC-VHS-TOC twice a day for five 

consecutive days. The lines represent the mean of these data points at each time point (± SEM). 

The IOP profile of the Treated vs contralateral rabbit eyes were compared using proc mixed 

repeated measures model. The p-values for treated vs untreated eyes are listed in figure. 

 

Multiple dosing regimen for THC-SLN 

To elucidate the effect of prodrug derivatization, the efficacy of the THC-SLN formulations were 

also tested. The mean 5-day IOP vs Time profile comparing the THC SLN treated and contralateral 

eyes is shown in Figure. 14. The eyes receiving THC-SLNs did not show a significant drop in  IOP 

in comparison to the contralateral eye upto 90 minutes. However, at the 135 minute time-point the 

IOP of the treated eye was significantly lower than the contralateral eye. After a period of 2.5 

hours, at the 285 minute time-point, this effect was reversed and the contralateral eye showed 

significantly lower IOP in comparison to the treated eye.  
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Figure 14. Mean IOP vs time profile for treated (blue line) and contralateral (red line) eyes in 

normotensive rabbits (n=6) dosed with 50 µL of 0.6% THC-SLNs twice a day for five consecutive 

days. The line represents the mean of these data points at each time point (± SEM). The IOP 

profiles of the Treated vs contralateral rabbit eyes were compared using proc mixed repeated 

measures model. The p-values for treated vs untreated eyes are listed in the figure. 

 

Figure 15. illustrates statistically significant within-group differences, comparing IOP for the same 

treatment with baseline IOP (time-point 0), and between-group differences for different 

formulations at various time points. The within-group differences for treatment THC-VHS-SLNs 

the drop in IOP at time-points 60, 90, 120 and 180 minutes are significantly lower than baseline 
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IOP (time-point 0 min) with p-values 0.011, <.0001, <.0001, 0.0021 respectively. A proc mixed 

repeated measures model was used with a Tukey Kramer adjustment to assess these differences. 

Other treatment formulations, THC-VHS-TOC and THC-SLNs do not show significantly lower 

IOP in comparison to baseline IOP. Analyzing between group differences, THC-VHS-SLNs 

demonstrated significantly lower IOP than THC-SLNs (p-value <.0001) and THC-VHS-TOC (p-

value 0.0019) at time-points 60 and 90 minutes and 90 minutes, respectively.  

 

 

Figure 15. Comparative mean IOP vs time profiles for rabbits treated with 50 µL of 0.98 % THC-

VHS-SLN, 0.98 % THC-VHS-TOC or 0.6 % THC-SLNs (n=6) twice a day for five consecutive 

days. The line represents the mean of these data points at each time point (± SEM). The rabbit eyes 

receiving the different formulations were compared using proc mixed repeated measures model.  
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Ocular Bioavailability 

For THC-VHS-SLN, the maximum drop in the IOP from the baseline (ΔIOPmax) was 31% and 

29.3 % on Day 1 and Day 5, respectively. The time to achieve ΔIOPmax, Tmax on Day 1 and Day 5 

was 90 minutes and the duration of action for THC-VHS-SLN, or the time required for ΔIOP to 

reach 90% of baseline IOP was 480 minutes on both Days 1 and 5. The two-sacrificial time-points, 

determined based on the IOP data, were 90 and 360 minutes. Table 8. displays the concentration 

of both THC-VHS and the parent molecule at the two-sacrificial time-points. At 90 minutes, THC-

VHS concentrations were 10.67 ± 2.28 ng/50 mg in AH and decreased to 3.84 ± 0.53 ng/50 mg at 

360 minutes. In comparison to AH, higher levels of the prodrug were observed in the IC and RC 

with 1466 ± 514.5 ng/50 mg and 902 ± 372 ng/50 mg observed at 90 minutes and 77.6 ± 69.5 

ng/50 mg and 238.3 ± 143.3 ng/50 mg observed at the 360 minutes time points, respectively. At 

360 minutes, 6.36 ± 3.83 ng/50 mg of bio-reversed THC was observed. Significant amounts of 

drug permeated to the RC and IC tissues, both important from the point of view of neuroprotection 

and IOP lowering and a corresponding IOP drop was observed as the pharmacodynamic response. 

THC-VHS was not observed in the plasma even after multiple administration, which helps rule 

out CNS involvement through systemic exposure.  
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Table 8. Tissue concentrations (ng/50 mg) of THC-VHS and THC on Day 6, post instillation of 

50 µL of 0.98 % THC-VHS-SLNs, at 90 minutes (n=3) & 360 minutes (n=3) in Aqueous Humor, 

Vitreous Humor, Retina Choroid and Iris Ciliary Bodies. Dose equivalent to 300 µg THC. 

ND: below limits of detection 

 
ng / 50 mg  

THC-VHS THC 

Formulation 
Tissue 

Analyzed 

Time point 

(min) 
Mean 

Standard 

Error 
Mean 

Standard 

Error 

 

 

 

 

 

THC-VHS-

SLN 

 

 

 

 

 

 

 

Aqueous Humor 

 

90 10.7 2.3 ND ND 

360 3.8 0.5 ND ND 

Vitreous Humor 

 

90 ND ND ND ND 

360 ND ND ND ND 

Iris Ciliary 

Bodies 

 

90 1466 514.5 ND ND 

360 77.6 69.5 6.4 3.8 

Retina Choroid 

90 902 372 ND ND 

360 238.3 143.3 ND ND 

 

For THC-VHS-TOC, the ΔIOPmax for Day 1 and Day 5 of dosing was 11.7 and 10.9% respectively 

and the Tmax was 60 minutes. The sacrifice time-points thus determined for this formulation were 

60 and 120 minutes. The ocular concentrations of THC-VHS obtained with the THC-VHS-TOC 

formulation were significantly lower than those obtained with the THC-VHS SLN formulation 

(Table 9).  
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Table 9. Tissue concentrations (ng/ 50 mg) of THC-VHS and THC on Day 6, post administration 

of 50 µL of 0.98 % THC-VHS-TOC, at 60 minutes (n=3) & 120 minutes (n=3) in Aqueous Humor, 

Vitreous Humor, Retina Choroid and Iris Ciliary Bodies. Dose equivalent to 300 µg THC. 

ND: below limits of detection 

*Drug levels observed in a single animal only 

 
ng / 50 mg  

THC-VHS THC 

Formulation 
Tissue 

Analyzed 

Time point 

(min) 
Mean 

Standard 

Error 
Mean 

Standard 

Error 

 

 

 

 

THC-VHS-

TOC 

 

 

 

 

 

 

 

Aqueous Humor 

 

60 91.2 1.85 ND ND 

120 ND ND ND ND 

Vitreous Humor 

 

60 ND ND ND ND 

120 ND ND ND ND 

Iris Ciliary 

Bodies 

 

60 24.2 5.06 53 28.9 

120 11.3 0.50 57.4 18.5 

Retina Choroid 

 

60 15.5 6.70 5.2 0.2 

120 7.5* NA 5.3^ NA 

 

Consistent with the previously reported data, THC did not produce as intense or as prolonged an 

IOP drop from baseline IOP in comparison to the THC-VHS formulations 86. A 6.9% drop in IOP 

in comparison to the baseline IOP was observed with THC-SLNs at 60 minutes on Day 5. Animals 

were sacrificed at two time points on Day 6 at 60 and 120 minutes (Table 10). THC levels of 12.53 

± 3.51 ng/50 mg and 9.87 ± 3.22 ng/50 mg were observed in the IC at 60 and 120 minutes, 

respectively.  
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Table 10. Tissue concentrations (ng/ 50 mg) of THC on Day 6, post administration of 50 µL of 0.6 

% THC-SLN, at 60 minutes (n=3) & 120 minutes (n=3) in Aqueous Humor, Vitreous Humor, 

Retina Choroid and Iris Ciliary Bodies. Dose equivalent to 300 µg THC. 

ND: below limits of detection 

 ng / 50 mg THC  

Formulation Tissue Analyzed 
Time point 

(min) 
Mean Standard Error 

 

 

 

 

 

THC-SLN 

 

 

 

 

 

 

 

Aqueous Humor 

 

60 ND ND 

120 ND ND 

Vitreous Humor 

 

60 ND ND 

120 ND ND 

Iris Ciliary Bodies 

 

60 12.5 3.5 

120 9.9 3.2 

Retina Choroid 

 

60 ND ND 

120 ND ND 

 

Single dose efficacy studies 

Pilocarpine HCl (2 %w/v) exhibited a ΔIOPmax of 15.9% at 30 minutes and its IOP lowering effect 

lasted for 120 minutes (Fig. 16).  The graphs represent %IOP drop from the baseline IOP. Timolol 

maleate (0.25 % w/v) resulted in a more intense ΔIOPmax of 23.1% at 60 minutes with duration of 

action of 180 minutes for the IOP to reach 90% of the baseline IOP. THC-TOC emulsion or the 

placebo-SLNs did not result in any reduction in IOP (Data not shown). The IOP vs Time profiles 

of the marketed preparations are compared to that of the THC-VHS-SLNs, THC-VHS-TOC and 

THC-SLNs in Figure 16.  
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Figure 16. Percent IOP change from baseline vs Time profile for THC-VHS-SLN, THC-VHS-

TOC and THC-SLN and 2% pilocarpine, 0.25% timolol maleate marketed formulations. A single 

drop (50 µL) was instilled. Data represents mean ± SE. 

 

Discussion 

In 1977, Green et al. reported a seventeen percent drop in the IOP, sixty minutes post dosing, using 

light mineral oil as the vehicle in adult albino rabbits. The tissue concentrations obtained were 

extremely low, about one ng of 14C-labelled THC/ mg of wet tissue weight four hours post dosing 

in the cornea and IC. 130 Hingorani et al. observed that the amount of THC permeating into the 

ocular tissues was below levels of detection in rabbit AH, VH, RC and IC, one hour post 

administration of THC in light mineral oil (0.1% w/v), emulsion (0.37% w/v) or micellar solutions 

(0.125 % w/v THC, 0.5% Cremophor RH 40) in New Zealand White rabbits with detectable levels 

only in the cornea and sclera. 131 Such findings suggest that the lipophilic nature of THC prevents 

its partitioning from the oily vehicle into the tear film, in turn affecting its overall ocular 
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bioavailability. THC has poor aqueous solubility (1–2 µg/mL) and high log P (6.42), which makes 

the development of an eye drop for the molecule challenging. The lack of activity through the 

topical route of application, as observed in the above-mentioned reports, could be due to the 

ineffective delivery of THC to the target ocular tissues rather than absence of local 

pharmacological activity. Delivery of a therapeutic agent to the deeper ocular tissues depends on 

the type of formulation, physicochemical properties of the molecule and absorption pathway.17 

These properties determine the permeation profile of the molecule across alternating lipophilic and 

hydrophilic tissue layers and through the corneal tight junctions. For targeting a molecule to the 

back-of-the eye, it should possess optimum physicochemical properties and be formulated in 

appropriate dosage forms.132 

To improve the intrinsic solubility of THC, a prodrug strategy was employed by Hingorani 

et al. by using a hemiglutarate (dicarboxylic acid) ester (THC-HG), which, being ionized at 

physiological pH would have better aqueous solubility (19 µg/mL). 131, 133 One hour post 

instillation of 50 μL of THC-HG, formulated in 0.5% w/v Cremophor RH 40, 35.6 ± 12.5 ng of 

THC /50 mg of tissue was observed in the IC and 32.1 ± 12.6 ng of THC / 100 μL was detected in 

AH of  New Zealand White rabbits, whereas, the THC tissue concentrations obtained post dosing 

of 50 μL THC formulated in 0.5% w/v Cremophor RH 40 were below detection levels. This finding 

suggested that hydrophilic prodrug derivatization is an efficient method to improve the ocular 

bioavailability of THC.131 However, in terms of chemical stability, THC-HG was extremely 

unstable and underwent rapid degradation at  acidic and alkaline pH conditions, as well as at 

physiological pH. 133-134  

In subsequent studies, THC-VHS was designed as an amino acid- dicarboxylic acid 

prodrug, the amide linkage enhancing its stability. In terms of the physicochemical properties, 
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THC-VHS is stable from pH 5 to pH 9.128 Adelli et al. observed the efficacy of THC-VHS in a 

soybean oil-based emulsion in an elevated IOP-glaucoma model. THC-VHS demonstrated an IOP 

drop comparable to the marketed ophthalmic solution of 2% Pilocarpine HCl.76, 86 However, the 

IOP vs time profile indicated that frequent dosing would be necessary. Thus, developing a 

formulation strategy that could increase the amount of THC-VHS that could enhance the 

bioavailability as well as retention of the therapeutic agent at the ocular surface would be desirable.  

Post topical application, a molecule has to overcome significant barriers, such as vascular 

and lymphatic drainage in the conjunctiva, sclera and choroid, restricting its passage from the 

ocular surface to posterior ocular tissues. 135 SLNs enhance ocular bioavailability of poorly soluble 

compounds by acting as unit carriers of the target molecules and prolonging its residence time in 

the cul-de-sac and forming a lipid-based drug reservoir that interacts with the ocular mucosa.127, 

132, 136-137 SLNs, being solid at room temperature have a modulated drug release profile in 

comparison to a liquid based-formulation.138 Punyamurthula et al. demonstrated enhanced delivery 

of Δ8 THC-SLNs to all ocular tissues attributed to the probable uptake of the SLNs by the 

conjunctival and corneal membranes - resulting in sustained release of the drug.127  

However, in order to develop a SLN formulation of THC-VHS, thermal stability of the 

prodrug would play an important role during formulation development.  Both molecules, THC and 

THC-VHS, are amorphous with absence of a definite crystal lattice structure making them 

susceptible to atmospheric degradation.134, 139 THC undergoes rapid thermo-oxidative degradation 

into its metabolite cannabinol. The use of polymeric stabilizers and cross-linked matrices can be 

considered as a way of controlling the oxidative degradation of amorphous molecules such as 

THC.139-141 Compritol 888 ATO is a crystalline amphiphilic material with a melting point of about 

70°C. The crystalline structure of the bulk lipid can form protective barriers increasing the storage 
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stability of the formulation. 142 The high solubility of THC and THC-VHS in Compritol 888 ATO, 

along with the stabilizing effect provided by the crystalline lipid make it a good choice of lipid for 

development of the SLN formulation. Previous reports show that THC-VHS shows only about 3 

% degradation of drug when heated at 120°C for 10 minutes.128 Taking into consideration this 

along with the melting point of Compritol® 888 ATO, a temperature of 70°C was chosen to 

formulate the SLNs. 

The physicochemical data suggests that a structured lipid phase comprising of Compritol® 

888 ATO (stabilized by a Poloxamer 188 - Tween 80 surfactant system) resulted in a stable nano-

particulate system. The data obtained from the STEM indicates that the size of the well-rounded 

nanoparticles is slightly greater than 200 nm, also consistent with the results obtained from DLS. 

In case of multimodal data, particle size may not agree across different measurement techniques, 

however, for a monodisperse formulation the particle size data might be comparable.143 144 

Introduction of any form of energy such as temperature to the nanoparticulate system can lead to 

particle growth and subsequent gelation145. The increase in the particle size at the storage condition 

of 40°C/60% RH can be attributed to increase in the entropy of the system because of the high 

temperature, resulting in coalescence of the SLNs and a corresponding particle size growth. At the 

six-month time point, complete gelation of the SLN formulation was observed (Figure 10.).  

Histological analysis of the rabbit corneas treated with the SLNs helps understand the 

toxicity profile of the SLNs; edema results into separation of structural elements and accumulation 

of edematous fluid in the stroma results into empty spaces formed between keratocytes and corneal 

collagen fibers.146  Figure 12. (D, E, F), corneas treated with control, portray a more generalized 

and widespread edema with detachment of Descemet’s membrane. We also observe structurally 

disturbed collagen bonds in areas close to the Descemet membrane invagination. However, taking 
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into consideration the exclusivity of this event, the damage to this cornea can be attributed to 

mechanical stress during the enucleation and the fixing of the cornea. Figure 12. (A, B, C), for 

corneas treated with Placebo-SLNs, the stroma is present as even layers with signs of edema 

ranging from slight to none. 

Topical THC-VHS-SLNs produced a prolonged and intense drop in the IOP in 

normotensive rabbits in comparison to the THC-VHS-TOC as well as THC-SLNs. THC-VHS-

SLNs lowered the IOP of the treated eye in comparison to the untreated eye and maintained IOP 

below baseline until 360 minutes. In comparison, rabbit eyes treated with THC-VHS-TOC 

produced a significant drop in IOP in comparison to the untreated eye at 30, 60 and 90 minutes 

only. Comparing the p-values for differences in the IOP for treated and untreated eyes, the IOP 

drop produced by THC-VHS-TOC was not as significant as THC-VHS-SLN. SLNs, being 

colloidal carriers have advantages of better penetration, stability, drug loading and sustained 

release of the drug.147 The large surface area provided by the nanoparticulate system increased the 

contact area, ensuring close contact with the ocular mucosa after instillation. Lipid based 

nanoparticles have an occlusive effect and forms a depot in the cul de sac, slowly releasing the 

drug over prolonged duration of time.148-149 The additives present in the formulations, such as 

surfactants, also play a role in permeation enhancement via fluidization of the lipid bilayers of the 

ocular membranes.150   

The THC-SLN treated eyes showed a statistically significant lower IOP in comparison to 

the untreated eyes at the 135 minutes time point only. Based on the IOP data, THC-VHS was 

effectively delivered to the target tissues within the first 30 minutes from both the SLN and 

emulsion-based formulations, whereas the parent molecule required about 2 hours to demonstrate 

a pharmacodynamic response. 
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 The pharmacokinetic data suggests that the SLN formulations deliver an almost 60 times 

greater concentration of THC-VHS in the IC in comparison to the emulsion formulation. THC 

levels in the ocular tissues from the THC-VHS-SLN formulations were extremely low (below 

detection levels in most cases) in comparison to that obtained from the THC-VHS-TOC or THC-

SLN formulations. However, the duration of IOP drop observed with the THC-VHS-SLNs was 

significantly more prolonged. A possible explanation for this disconnect between the 

pharmacokinetic and pharmacodynamic observations could be that the site of action might not be 

the IC. It could also be possible that the prodrug being more permeable could be distributing deeper 

into the tissues better than THC (administered as such or THC generated from THC-VHS). As a 

result, a correlation between the prodrug concentration, rather than THC concentration, and IOP 

lowering effect is observed. The lack of a pharmacodynamic response even though the ocular 

tissues exhibited significant THC concentrations (with the THC-VHS-TOC and THC-SLN 

formulations) could be because of THC forming a depot in the ocular tissues, rather than 

penetrating and distributing across the ocular tissues (e.g.  IC). As a result concentrations at the 

site of action maybe low even though the overall tissue concentrations are high..104 The reason 

why THC-VHS-TOC is not as effective as THC-VHS-SLN could be because the emulsion 

formulation is not protecting the prodrug from bio-reversion (chemical or enzymatic) as a result 

of which higher THC tissue concentrations are observed from THC-VHS-TOC, thus decreasing 

the concentration deeper in the tissues. On the other hand, the SLN formulation protects against 

bioreversion of THC-VHS to THC, as evidenced by the lack of detectable THC concentrations 

from the THC-VHS-SLN formulations.  

The overall tissue distribution profile indicates a non-corneal route of absorption. With 

THC-VHS-SLN, we observe 1466 ± 514.50 ng/50 mg tissue of THC-VHS in the IC at 90 minutes. 
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The prodrug concentrations dropped almost 20-fold at 360 minutes, which can be explained by 

elimination and slow conversion into THC, which was also detected then. We also observe THC-

VHS partitioning into the RC, from both THC-VHS-TOC and THC-VHS-SLN formulations, 

which is important for neuroprotective action. With THC-SLNs however, we observe THC levels 

in the IC at both sacrifice time points, but THC fails to distribute itself across other tissues. The 

preferential accumulation of THC in the IC could indicate binding of THC to an IC specific 

protein.  

The IOP lowering duration with THC-VHS-SLNs lasted almost twice as long as the 

marketed formulations, 2.5% w/v pilocarpine or 0.2 % w/v timolol maleate. A combined effect of 

prodrug derivatization and the dosage form can be attributed to this effect as the prodrug alone (in 

an emulsion formulation) or the parent compound THC in an SLN formulation, were not effective. 

The molecule design facilitated easy passage of the parent molecule across the ocular tissues and 

the lipid-based nano-carrier system acted as a long acting depot, resulting in a formulation with 

better pharmacokinetic and pharmacodynamic profile.  

Conclusion 

These studies suggest that formulation development efforts along with prodrug 

derivatization can effectively improve overall ocular bioavailability. THC-VHS-SLNs were 

successfully formulated and tested in a normotensive rabbit model. Results suggested that the 

prodrug, THC-VHS has a better permeation profile than THC due to its modified structure. Solid 

lipid nanoparticles are efficient in delivery of THC-VHS to the RC, important from the point of 

view of neuroprotection. THC-VHS-SLNs, on multiple dosing were able to achieve an intense IOP 

drop with its effect lasting for a longer duration than the marketed solutions of 2.5% w/v 

pilocarpine HCl and 0.2% timolol maleate. Thus, THC-Val-HS has the potential of bringing forth 
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cannabinoids as another line of therapy as anti-glaucoma agents at par with the anti-cholinergic, 

beta-blockers and carbonic anhydrase inhibitors, with the added advantage of its neuroprotective 

activity
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CHAPTER 4 

 TRIAMCINOLONE ACETONIDE-NLCS FOR OCULAR DELIVERY: 

EFFECT OF CHITOSAN AND CHITOSAN DERIVATIVE 
Introduction 

Corticosteroids have been used for the treatment of ocular inflammation since the past few 

decades. Triamcinolone Acetonide (TA) is a corticosteroid administered intravitreally for the 

management of ocular inflammatory conditions such as diabetic retinopathy, cystoid macular 

edema, and choroidal neovascularization 151-152. The use of TA has been prevalent in conditions of 

posterior uveitis to reduce intraocular inflammation and extravasation of blood vessels. Currently, 

the marketed products for ophthalmic use (e.g. Kenalog®, Tricinolon®, Flutex® and Kenacort®) are 

intravitreally administered ophthalmic suspensions containing TA 151, 153. However, intravitreal 

injections are often associated with defects such as intraocular pressure elevation, retinal 

detachment, cataract formation, subconjunctival bleeding, vitreous hemorrhage and 

endopthalmitis. In addition, repeated administration of corticosteroid intravitreal injections results 

in lower patient compliance in comparison to a sustained release device therapy and implants 154-

155. Chemically, TA is a lipophilic molecule and has a Log P of 2.5 (Figure 17.), making it an 

unfavorable candidate for back of the eye delivery via topical administration. There arises a need 

for the development of a novel formulation of TA dosed topically, designed to achieve drug levels 

at the back of the eye.  
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Figure.17. Chemical structure of Triamcinolone Acetonide 

 

Bioavailability can be enhanced by modification of physicochemical properties of the drug by 

attaching a promoiety, formation of ion-pairs, use of permeation enhancers or by formulation 

approaches aiming at increasing the pre-corneal residence time 76, 86, 156-157. In the past few years, 

research focus on the use of colloidal nanoparticulate systems as a promising ocular drug delivery 

platform has increased 137-138, 158. Lipid based colloidal nanocarriers such as SLNs and NLCs are 

nanoparticulate systems efficient in targeted and controlled delivery of lipophilic drugs 159. These 

nanoparticulate carriers may demonstrate superior ocular bioavailability of the encapsulated 

therapeutic agent because of improved retention in the cul-de-sac resulting in sustained release for 

prolonged duration of time. 97  

Chitosan (CH) is a biodegradable polymer known to interact with the mucin protein and extend 

retention time of the formulation.160-162 It also behaves as mucoadhesive, increasing the contact 

time with the membrane and acts as an absorption enhancer across biological membranes. It helps 

in opening of the tight junctions between the epithelial cells enhancing transport of molecules.160-
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161, 163-164 The predicted mechanism for this absorption enhancement is interaction of the positively 

charged amino groups on the C-2 position of chitosan with the negatively charged sites on the cell 

membranes 160-161, 163, 165-166. Protonated chitosan is also known to interact with the glycoproteins 

of the mucous membrane covering the cornea and with the lipid bilayer of the corneal cell 

membrane resulting in permeability enhancement. The pKa value of chitosan is between 5.5 and 

6.5 and thus is insoluble at physiological pH, losing its positive charge 166-167. Derivatization of 

chitosan to its quarternized form, tri-methyl chitosan (TMC) is an effort in solubilizing chitosan at 

all pH ranges 168. TMC has been known to interact with the epithelial cell monolayers by the same 

mechanism as chitosan 164. The use of permeation enhancers such as TMC and CH as nanoparticle 

surface modifiers may further improve the retention of the nanoparticles on the epithelial surface 

and increase cellular uptake of the nanoparticles. 162, 166  

This research aims at optimizing a colloidal formulation for the topical delivery of TA. The studies 

also investigate the effect of CH and TMC on the permeation characteristics of TA. Primarily, 

TMC was synthesized using previously reported protocols from deacetylated CH 169. Lipid based 

nanoparticles of TA were formulated selecting a combination of solid and liquid lipids. The 

rationale behind selection of lipid-based nanoparticles, NLCs, was development of a topically 

dosed nano-colloidal based depot system sustaining the release of TA, thus reducing the overall 

frequency of administration. Transcorneal permeation of 0.1% TA encapsulated in CH and TMC 

nanoparticles was compared to that of the optimized TA-NLC system, 0.1% w/v TA-Randomly 

methylated β cyclodextrin (RMβCD) solution (TA-SOL). In addition, the effect of surface 

modification of NLCs using polymers CH and TA was evaluated; a 0.25% CH and 0.25% TMC 

surface modified TA-NLC system was evaluated for the precorneal retention and overall ocular 

bioavailability of TA.  
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Materials and methods 

Materials 

TA and sodium tripolyphosphate (TPP) was procured from Alfa Aesar™, Chitosan chloride (CH-

Cl) < 200 kDa was received from Novamatrix (Philadelphia, PA, USA), Trimethyl Chitosan 

Chloride was synthesized using method detailed in the following section. Precirol® 888 ATO 

(glyceryl behenate) was obtained as a gift sample from Gattefossé (Paramus, NJ, USA), Glycerin 

was purchased from Acros Organics (NJ, USA), Pluronic® F68 (Poloxamer 188) was purchased 

from Spectrum Pharmaceuticals (Henderson, NV). Castor oil and Tween® 80 were purchased from 

Acros Organics (NJ, USA). HPLC - grade solvents, and other chemicals (analytical grade) were 

obtained from Fisher Scientific (Hampton, NH, USA). Amicon® Ultra centrifugal filter devices, 

regenerated cellulose membrane (MWCO 100 kDa) were purchased from EMD Millipore 

(Billerica, MA). Corneas for the transcorneal studies were purchased from Pel Freez, AK. 

Animals 

Male New Zealand White rabbits (2-2.5 kg), obtained from Harlan laboratories® (Indianapolis, IN) 

were used in all studies. All animal experiments conformed to the Association for Research in 

Vision and Ophthalmology statement, “Use of Animals in Ophthalmic and Vision Research” and 

followed the University of Mississippi Institutional Animal Care and Use Committee approved 

protocols. 

Methods 

Synthesis of Trimethyl chitosan chloride  

To prepare TMC, a two-step synthesis described by Sieval et al. was employed. 169 Initially, 2g of 

91% deacetylated chitosan, 4.8 g sodium iodide, 11 mL of 15% aqueous sodium hydroxide 

solution and 11.5 mL of methyl iodide was added to 80 mL of 1- methyl-2-pyrrolidinone. This 
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mixture was stirred on a water bath at 60°C for 1 hour. The product, N-methyl chitosan iodide, 

obtained hereby was precipitated using ethanol and further centrifuged for isolation. To completely 

remove the ethanol post centrifugation, the product was subjected to multiple washings with ether. 

The substance thus obtained was dissolved in 80 mL of 1-methyl-2-pyrrolidinone and heated to 

60°C. 5.4 g of sodium iodide, 11 mL of 15% NaOH solution and 9 mL of methyl iodide was added, 

the reaction mixture heated on a water bath with the temperature maintained at 60°C for 30 min. 

The product obtained was dissolved in 40 mL of 10% NaCl solution. 1H NMR were measured in 

D2O at 400MHz.  

The degree of quaternization (DQ) and the degree of dimethylation (DM) were calculated by using 

the following equations:  

DQ = [(CH3)3]/[H]*1/9] * 100  

DM= [(CH3)2]/[H]*1/6] * 100 

Saturation solubility studies 

Solubility of TA was studied in IPBS at pH 7.4. Effect of addition of solubility enhancers such as 

cyclodextrins; 5% HPβCD and 5% RMβCD was also evaluated. The experiment was conducted 

by adding excess amount of TA to centrifuge tubes containing 1 mL of the above-mentioned 

solutions. To achieve uniform mixing, samples were shaken overnight at 100 rpm, 25°C in a 

reciprocating water bath (Fisher Scientific). After 24hrs, the samples were centrifuged using the 

AccuSpin 17R at 13,000 rpm for 30 minutes and the supernatant was analyzed for TA using HPLC-

UV analytical method.  
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Synthesis of TA formulations 

TA-SOL solution   

TA-SOL solution was prepared by dissolving TA (0.1% w/v) in 2.5% w/v RMβCD solution 

prepared in IPBS at pH 7.4. TA was added to the solution and the mixture was vortexed for 2-5 

minutes and sonicated until a clear solution was obtained. 

TA-NLCs 

Lipid excipient screening study 

The solubility of TA was observed in solid lipids; Compritol® 888 ATO with a melting point (MP) 

of 70°C–72°C, Precirol® 888 ATO (MP: 56°C), Coco butter (MP: 34–38 °C), and Geleol™ Mono 

and Diglycerides NF (MP: 54°C–64°C) and Gelucire® 50/13 was studied. Liquid lipids castor oil, 

Miglyol 812, Oleic acid and Sesame oil were scanned similarly. The solid and liquid lipids were 

heated to 80°C and TA (100 mg) was added to the heated lipids (100 mg) under constant magnetic 

stirring at 2000 rpm. The different TA-lipid mixtures were then cooled and observed for 

precipitation of the API. The lipids devoid of any precipitation were further selected for synthesis 

of the NLCs.  

Selection of a binary lipid phase 

To determine the best solubilizing potential of the solid-lipid-liquid-lipid mixture, 100 mg of TA 

was mixed with three different ratios, (i.e.; 2:3, 1:1, 3:2) of select solid and the liquid lipids, those 

showing maximum solubilizing potential for TA in the solubility study. TA was added to the lipid 

mixtures under magnetic stirring at 600-800 rpm at 80℃ for 30 minutes. The miscibility of the 

binary lipid phase was observed by spreading the mixture on a glass slide followed by visual 

observation. Mixtures which presented with least to no bleeding of the oil from the solid lipid were 

selected from preparation of the NLCs.  
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Preparation of TA-NLCs 

TA-NLCs were prepared by an ultrasound sonication method using Vibra-Cell™ Ultrasonic Liquid 

Processor, SONICS™. Based on lipid screening studies, Precirol® 888 ATO (glyceryl 

palmitostearate) was the choice of solid lipid and castor oil was chosen to be the liquid lipid. The 

aqueous phase composed of surfactants such as Poloxamer 188 (0.25% w/v), Tween® 80 (0.75% 

w/v) and glycerin (2.25% w/v) in bidistilled water, was heated at 80 ± 2°C and added to the molten 

lipid phase under stirring (2000 rpm) to form a coarse emulsion, the temperature during the entire 

process maintained at 80 ± 2°C. The premix was then homogenized at 11,600 rpm for 10 mins 

using T 25 digital Ultra-Turrax to form a pre-emulsion. This pre-emulsion was further subjected 

to probe sonication resulting in further particle size reduction and formation of a hot nanoemulsion. 

Further cooling resulted in the formation of TA-NLCs; a lipid based nanocolloidal suspension.  

Preparation of TMC/CH surface modified NLCs 

For the TMC/CH surface modification of TA-NLCs, TMC synthesized by the previously described 

protocols and CH-Cl (mol. wt. < 200 kDa) were used. Accurately weighed amounts of TMC/CH 

corresponding to 0.25% w/v were incorporated in the TA-NLC formulation once prepared and 

cooled.  These surface modified formulations were then stirred at 800-900 rpm for 10-12hrs to 

ensure optimum surface interaction of TMC/CH to the NLCs. A pre and post-modification 

measurement of the hydrodynamic radius as well as zeta potential could confirm the effectiveness 

of the surface modification.  

Preparation of TMC/ CH-TA nanoparticles  

TMC/ CH nanoparticles (NP) were prepared by cross-linking with TPP by ionotropic gelation 

method. Primarily, TMC/CH solution (0.5 % w/v) was prepared by dissolving TMC/ the chloride 

salt of CH in bi-distilled water. TA (0.1% w/v) was dissolved in ethanol and added to the TMC/CH 
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solution under vigorous stirring. Further, for cross-linking, TPP was added under probe sonication 

to form TMC/ CH NPs. The TMC/CH to TPP weight ratio used was 5:1.  

Physicochemical characterization 

Assay and Entrapment 

Methanol was used for the precipitation of lipids in the TA-NLC systems. An accurately measured 

volume of the TA-NLC (10 µL) was extracted with methanol (990 µL). For estimating the % Assay 

of TA in the CH-NP and TMC-NP formulations, the extracting solvent used was a 1:1 ratio of 

methanol: 0.1% Acetic acid for CH-NP and methanol: bidistilled water for TMC-NP. The 

supernatant was analyzed after centrifugation (13,000 rpm for 20 min) as such or with further 

required dilutions for TA content using a HPLC-UV method described later.  

For estimating the % Entrapment Efficiency (%EE), five hundred µL of all the formulations 

centrifuged using a 100 kDa centrifugal unit made of regenerated cellulose membrane (Amicon 

Ultra) and the sample was centrifuged at 13,000 rpm, for 20 mins, following which the filtrate was 

analyzed for free TA content. Percentage EE was calculated using the formula, 

% 𝐸𝐸 =  
(𝑇𝑜𝑡𝑎𝑙 𝑑𝑟𝑢𝑔 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 − 𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑓𝑟𝑒𝑒 𝑑𝑟𝑢𝑔 𝑖𝑛 𝑎𝑞𝑢𝑒𝑜𝑢𝑠 𝑝ℎ𝑎𝑠𝑒) ∗ 100

𝑇𝑜𝑡𝑎𝑙 𝑑𝑟𝑢𝑔 𝑐𝑜𝑛𝑡𝑒𝑛𝑡
 

Chromatography 

Samples were analyzed for TA using an HPLC-UV system comprising a Waters 717 plus 

Autosampler, Waters 600E pump controller, Waters 2487 dual λ Absorbance detector and an 

Agilent 3395 integrator. Stock solutions of TA were prepared in acetonitrile and used immediately. 

A mobile phase consisting of 50: 50 Acetonitrile: Water was used on a Phenomenex® C18 (4.6 x 

250 mm) column at a flow rate of 1 mL/min. Detection was carried out at 254 nm.  
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Dynamic light scattering (DLS) 

The hydrodynamic radius and the PDI of the TA-NLCs, TMC/CH coated NLCs and CH/ TMC 

NPs was determined by photon correlation spectroscopy using a Zetasizer Nano ZS Zen3600 

(Malvern Instruments, Inc.) at 25°C and with 173° backscatter detection in disposable folded 

capillary clear cells. The same equipment was used to determine the zeta potential of the 

formulations at 25°C in folded capillary cells using the same instrument. To measure the particle 

size distribution and zeta potential, the samples were diluted (1:100) with bidistilled water filtered 

using 0.2 µ syringe filters.   

Scanning transmission electron microscopy (STEM) 

TA-NLCs were characterized using a 40-dual beam scanning transmission electron microscope by 

Zeiss Auriga®. A negative staining procedure was employed wherein 1% w/v uranyl acetate was 

used as a staining agent. A drop of the sample, about 20 µL was placed on a piece of parafilm. A 

200-mesh glow discharged copper grid coated with a thin film made of carbon was floated on top 

of the sample with the film facing the sample. The contact between the grid and the sample was 

maintained for 30 s, after which the grid was displaced and excess sample on the grid was blotted 

using a filter paper. The grid was then subjected to washing using ultrapure water; the grid was 

placed on a drop of the ultrapure water, after which the excess water was blotted out. The grid then 

was placed sample side down on a drop of 1% uranyl acetate for 1 minute. The excess stain was 

then removed, and the sample was dried completely. After blotting and drying, the samples were 

imaged in a Zeiss Libra operating at 30 kV and in STEM mode. (The STEM studies were 

performed at University of Tennessee, Knoxville). 
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In vitro drug release of TA from formulations  

The in vitro release kinetics of TA from TA-NLCs, TMC/CH coated TA NLCs and TA-SOL were 

evaluated across dialysis membranes (10K molecular weight cut-off) using Slide-A-Lyzer® Mini 

Dialysis Devices. The dialysis devices were placed in scintillation vials containing 20 milliliters 

of the release medium; IPBS at pH 7.4, containing 5% w/v HPβCD, the temperature of which was 

maintained at 34°C. The donor chamber was filled with 1 mL of each of the formulations and the 

cross-sectional area of diffusion was 0.64 cm2. At regular time intervals up to a total duration of 5 

hours, 600-µL of the release medium was aliquoted and replaced with an equal amount of fresh 

IPBS solution containing 5% HPβC. The aliquots were analyzed for TA content using a HPLC 

UV method.  

The in vitro release profile of TA from TA-NLC, TMC/CH coated TA NLCs and TA-SOL was 

fitted to different mathematical models to analyze the release kinetics quantitatively. Models such 

as zero order, first order, Korsmeyer-Peppas, Higuchi and Hixson- Crowell release model were 

evaluated for linear regression of the release data. The best fit model was determined based on the 

regression coefficient (r2) and the best fit model was considered the one with the highest r2.  

In vitro transcorneal permeability  

A vertical Franz diffusion cell setup from PermeGear®, Inc. was used to evaluate trans-corneal 

permeability of formulations across isolated rabbit corneas. The corneas were excised from whole 

eyes obtained from Pel-Freez Biologicals, AK shipped overnight in Hanks’ balanced salt solution 

over wet ice. The corneas were excised so that they had scleral lining of about 2-3 mm thickness 

to help secure the membrane between the diffusion cells. The cornea was clamped in between the 

two half-cells with the epithelial surface facing upwards toward the donor chamber. A jacketed 

circulating water bath helped maintain the temperatures of the diffusion half-cells at 34°C.    
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Permeability of TA from formulations TA-NLCs (0.1% w/v), TA-SOL (0.1% w/v), TMC-TA-

NLC (0.1% w/v) and CH-TA-NLC (0.1% w/v) across the excised corneas was studied. The 

receiver medium comprised of 5 mL of 2.5% solution of RMβCD in DPBS. The contents of the 

receiver chamber were stirred continuously with a magnetic stirrer and aliquots of 600 μL were 

withdrawn from the receiver chamber at predetermined time points and replaced with an equal 

volume of receiver medium. TA was quantified using the previously mentioned HPLC-UV 

chromatography method.  

Mucoadhesion study 

To study the mucoadhesion of the coated NLCs, the interaction of the coated CH and TMC with 

mucin was studied in an in vitro setup. Zeta potential was used as a measure of the interaction 

between the surface modified NLCs and different concentrations of mucin solution. A 0.25% w/v 

solution of mucin stock solution was prepared by dispersing the mucin in Milli-Q® water. Dilutions 

of the stock were prepared at concentrations of 0.025 mg/mL, 0.125 mg/mL, 0.25 mg/mL, 0.5 

mg/mL, 1.25 mg/mL, 2.5 mg/mL and 5 mg/mL. A 25 µL aliquot of each of the test formulations 

(TA-NLC, TMC-TA-NLC, CH-TA-NLC) was admixed with each of the mucin concentrations 

individually. The zeta potential of the resulting mixture was monitored. All the measurements were 

performed in triplicates.  

Ocular pharmacokinetics 

The ocular retention of TA-NLC, TMC-TA-NLC, CH-TA-NLC and TA SOL was determined by 

tear sample analysis of male New Zealand white rabbits, weighing between 2 and 2.5 kg. The 

experiment was carried out in 12 male rabbits, four groups comprising of three animals per group. 

A single instillation of 50 μL of each of the formulations (Dose: 50 µg) was made into the lower 

conjunctival sac of the rabbits, after which the test eye was manually closed for 10 s. Tear samples 
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were collected using Whatman™ Quantitative filter paper. A dry, pre-weighed triangular piece of 

filter paper (11 x 6 x 11mm) was angled using a pair of forceps into the cul-de-sac of the rabbit, 

making sure that the filter paper does not poke the eye of the rabbit. Tear samples were collected 

at time intervals of 1, 15, 30, 60, 90, 120 minutes after instillation. A pre and post sampling weight 

check was recorded for the filter paper in centrifuge tubes to quantify the amount of tear collected. 

TA was then extracted from the filter papers by adding 600 μL of acetonitrile to the centrifuge 

tube, followed by vortexing the sample for 30 to 45 s and centrifugation at 13,000 rpm for 15 min. 

Non-compartmental analysis of the collected tear fluid concentrations was performed to compute 

the ocular pharmacokinetic parameters using the software PK Solver 2. TA was quantified from 

the supernatant using the HPLC-UV method. 

In vivo bioavailability   

In vivo bioavailability of TA was determined in male New Zealand white rabbits, weighing 

between 2 and 2.5 kg, procured from Charles River Labs. The formulations TA-NLC, TMC-TA-

NLC, CH-TA-NLC, TA-SOL were evaluated in vivo in a conscious rabbit model in triplicates (n 

= 3); the ocular penetration of TA was evaluated as a function of the vehicle. Concentration of TA 

was determined in the Cornea (Cor), AH, VH, RC, IC and sclera (SC). Fifty microliters of the 

above formulations were dosed twice, with a 5-minute gap between the two doses (Dose: 100 μg 

TA). The formulations were instilled in the conjunctival sac of the rabbits; the eyelid of the rabbit 

was shut manually by the personnel for 10 to 15 seconds post dosing. Three hours after dosing, 

the rabbits were anesthetized using a combination of ketamine (35 mg/kg) and xylazine (3.5 

mg/kg) injected intramuscularly. The rabbits were euthanized with an overdose of pentobarbital 

injected through a marginal ear vein. The eyes of the rabbits were then enucleated and washed 
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thoroughly with IPBS and the intraocular tissues such as Cor, RC, SC, IC, AH and VH were 

separated. 

Tissue sample preparation and extractions 

The amount of TA permeated through the ocular tissues was determined by precipitating the 

proteins in the ocular tissues. The solid tissues, namely, Cor (50 mg), Sc (250 mg), IC (50 mg) and 

RC (30 mg) were cut into small pieces, whereas, the liquid tissues, AH (100 µL) and VH (500 µL) 

were used as is.  The calibrators were prepared by spiking the tissues with TA to yield final 

concentrations of 0.5, 1, 5, 10, 20, 50, and 100 ng/mL. Fifty ng/mL of internal standard 

(Fluocinolone Acetonide) was added to the samples. Volume was made up with ice-cold 

acetonitrile, precipitating proteins from individual tissues. Samples were vortexed and kept aside 

for 10 minutes. The supernatant was collected after centrifuging for 30 minutes at 13,000 rpm and 

analyzed using LC-MS/MS quadrupole. 

Quantification of TA from biological matrices 

TA quantification post tissue extractions was performed using a Waters Xevo TQ-S triple 

quadrupole tandem mass spectrometer with an electrospray ionization (ESI) source, equipped with 

the ACQUITY UPLC® I-ClassSystem, was used (Waters Corporation, Milford, MA). A Waters 

Xevo TQ-S quantitative analysis TargetLynx software was used for data acquisition which was 

processed using the MassLynx mass spectrometry software.  

A C18 column (Acquity UPLC®BEH C18 100mm 2.1 m, 1.7-mm particle size) was used for the 

chromatographic separations with a gradient elution method. A mobile phase made up of 

components (A) Water + 0.1% formic acid and (B) acetonitrile + 0.1% formic acid at a flow rate 

of 0.7 mL/min was used. The gradient elution protocol was as follows; at 0 min, a ratio of 98% 

A/2% B which was held for 0.2 min, switching over to 100% B in next 2.3 min. This composition 
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was held for 1 min and switched over again to 98% A/2% B in the next 0.2 min. The system was 

then equilibrated with this composition over the next 2 min for the next injection. The column and 

sample temperature were maintained at 50°C and 10°C, respectively. After the chromatographic 

separations, the effluent passed into the ESI probe. The ESI source conditions were optimized for 

the molecule of interest; source temperature 150°C, desolvation temperature 600°C, capillary 

voltage 0.6 kV, cone voltage 26 V, nebulizer pressure 7 bar, and nebulizer gas 1000 Lh-1N2. The 

mass spectra were acquired in positive mode and multiple reactions monitoring mode. Instrument 

control and data processing were performed by using MassLynx software (version 4.1; Waters, 

Milford, MA). The multiple reactions monitoring mode was applied to monitor the transitions 

parent to daughter compound; from 435.24 m/z to 339.153 m/z, 357.155 m/z and 397.190 m/z for 

TA and from 453.17 m/z to 121.02 m/z, 337.11 m/z and 413.16 m/z for the internal standard, 

Fluocinolone Acetonide.  

Statistical analysis 

Statistical analysis was performed using JMP® 14, SAS. Statistical significance was tested for 

using ANOVA followed by Tukey HSD test to analyze for inter-group differences (formulation 

dependent). Differences were statistically significant at a level of p ≤ 0.05. 

Results and Discussion 

Synthesis of TMC 

Chitosan was methylated with CH3I to yield TMC. The yield of TMC obtained was 4.5 grams and 

the compound was freely soluble in water up to concentrations of 5% w/v. As per the peak 

assignments by Sieval et al 169, 1H NMR data (Figure 18.) depicts a tertiary amino N(CH3)2 peak 

at 3.13 ppm and a quaternary amino peak at 3.36 ppm. The DQ of the product computed as per the 
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previously mentioned formula was 56.76% and the DM was 8.41%. TMC was prepared by a two-

step synthesis with a high % DQ as per protocols elucidated by Sieval et al 169.  

 

 

Figure.18. NMR spectra of the compound synthesized, N-Trimethyl Chitosan Chloride 
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Saturation solubility studies 

Cyclodextrins have been known to enhance the solubility of poorly soluble compounds in 

ophthalmic and topical products. The solubility of TA was observed in 5% cyclodextrin solutions 

of HPβCD and RMβCD (Figure 19.). In HPβCD, the observed solubility of TA was 0.97 ± 0.03 

mg/mL whereas in RMβCD saturation solubility of 1.6 ± 0.15 mg/mL was observed. Solubility of 

TA was extremely low in IPBS and was found to be 0.029 ± 0.004 mg/mL. The use of 

cyclodextrins led to 30-50 times enhancement of solubility of TA at pH 7.4. Based on the solubility 

data, RMβCD was selected as the solubility enhancer in the receiver medium for in vitro 

transcorneal permeation studies described previously.  

 

  

Figure 19. Saturation solubility of TA in phosphate buffer, 5% w/v HPβCD in phosphate buffer, 

and 5% w/v RMβCD in phosphate buffer (mg/mL). The results are depicted as the mean ± SD 

(n=3). 
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Lipid excipient screening study 

Solubility of TA in both solid and liquid lipids has been illustrated in Figure 20. The lipids 

presenting with maximum solubility for TA were chosen to formulate the TA-NLCs. In the solid 

lipids tested TA demonstrated superior solubility in Precirol® 888 ATO and Compritol® 888 ATO 

whereas amongst the liquid lipids tested, castor oil was the best. At a ratio of 1:1 of TA: individual 

solid/liquid lipids, no undissolved drug was observed at an elevated temperature of 80℃. 

Furthermore, no precipitation was observed on cooling the lipid melt to room temperature.  

 

 

Figure 20. Solubility of TA in solid and liquid lipids.  
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Selection of a binary lipid phase 

Solid lipids, Precirol® 888 ATO and Compritol® 888 ATO were tested individually at three 

different ratios for miscibility liquid lipid castor oil. Clear bleeding of castor oil from the solid 

phase was observed for both solid lipids at a 2:3 ratio of solid lipid: liquid lipid. However, when 

mixed at a 1:1 ratio Precirol® 888 ATO and castor oil demonstrated better stability in comparison 

to a combination of Compritol® 888 ATO and castor oil. Presence of higher amounts of liquid lipid 

permits for a better drug load and fluidity of the API within the particle. The goal behind 

formulation of these NLCs was to allow almost an equal amount of solid and liquid lipid which 

would further affect the partition and release characteristics of TA. Keeping this in mind, Precirol® 

888 ATO and castor oil were chosen to formulation the NLCs at a ratio of 1:1.  

Physicochemical characterization of all the formulations 

The % Assay and % EE of TA-NLC, TMC-TA NP and CH-TA NPs was found to be 96.5 ± 8.1%, 

85.76 ± 3%, 89.01 ± 0.86% and 99.01 ± 0.69%, 80 ± 0.07% and 88.14 ± 0.02%, respectively.  The 

NLCs prove to be a superior nano-carrier for TA in terms of % Assay and % EE, which could be 

a virtue of the lipophilic nature of TA having increased affinity for the lipids used for the 

encapsulation of TA in the TA-NLCs. Table 11. compares the particle size (d. nm), PDI and zeta 

potential (mV) of the TA-NLCs and the surface modified NLCs. TA NLCs have a particle size of 

192.27 ± 5.05 d. nm and a narrow PDI of 0.23 ± 0.001. On modification of the TA-NLC surface 

with different concentrations of TMC, the particle size of the NLC system increased up to 500 d. 

nm indicating that TMC had adhered to surface of the NLCs. The negatively charged (-37 mV) 

surface of the TA-NLCs provided a favorable setup for this surface modification. This surface 

modification can also be backed up by the ZP data, increase in the ZP of the TA-NLCs after surface 

modification indicated that TMC has accumulated on the NLC surface. Coating the NLCs with 
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concentration of 0.5% TMC or higher could possibly result in particle aggregation and an unstable 

formulation. Based on formulation stability, a 0.25% polymeric coating was chosen to coat the 

TA-NLCs for in vitro and in vivo evaluation. Table.11. provides a summary of the physicochemical 

characterization of the formulations.  

 

Table 11. Particle size (d. nm), PDI and zeta potential (mV) values for each formulation 

 Particle size (d. nm) Polydispersity 

Index 

Zeta Potential 

(mV) 

Formulation Mean Std Err Mean Std Err  

0.1% TMC COATED NLC 515.90 7.58 0.22 0.02 20.10 

0.25% TMC COATED NLC 531.10 11.44 0.24 0.00 26.80 

0.5% TMC COATED NLC 325.23 2.82 0.47 0.02 24.10 
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Scanning transmission electron microscopy (STEM) 

 

Figure 21. STEM image of the optimized TA-NLC formulation 

 

To visualize the optimized NLCs for morphological characterization, STEM imaging was 

employed. (Figure. 21.) An electron beam is passed through a thin layer of prepared sample. The 

transmitted beam is then projected on a phosphorescent screen or detector. Figure 21. depicts 

spherical NLCs formed with a smooth periphery, the particle size of which is around 100 d.nm. 

DLS describes the particles to have a particle size of 192 d. nm, with a PDI of 0.23, and presence 

of a slightly polydisperse particle size distribution could be a possible reason for the discrepancy 

between the particle sizes reported by DLS and STEM imaging. 143-144 
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In vitro drug release of TA from formulations 

TA release from the formulations was observed in a simulated ocular tissue environment. The 

release curves were obtained by plotting the cumulative % drug release against the time of the 

study in minutes, Figure 22. To analyze the drug release rate kinetics, the in vitro drug release 

profiles were fit into mathematical models. The model that best fit the release data was determined 

by the r2. The r2 values for all the formulations are listed in Table 12. The zero-order model fit the 

release profile of TA NLC best, which meant that the nanoparticles did not disintegrate; rather 

they released the drug slowly. The release profile of TA from TA-NLCs (Figure.22.) depicts a 

slow and gradual increase in release of TA, from 1 to 7% over a period of 5h. Comparing the 

release profile of TA from the NLCs to the polymeric coated nanoparticles (Figure. 22.), the 

presence of the polymeric coat controlled the release of TA through the duration of the study. 

Percent cumulative drug lease from TA NLC was significantly greater than the coated NLCs at 

60, 180 and 300 minutes. We observe a burst in release of TA from the TA-NLCs from the 30 

minutes to 60-minute time-point. This can be attributed to release of TA from the external surface 

of the nanoparticles, following by gradual release from the lipid core. The kinetic model that best 

fit the drug release from the coated NLCs was the first order model with a r2 value of 0.96 and 

0.99 for TMC-TA-NLC and CH-TA-NLC respectively. Looking at the n values for the Korsmeyer-

Peppas fit for the coated nanoparticles, CH-TA-NLC and TMC-TA-NLC had n values of 0.73 and 

0.54 respectively, which meant that the coated NLCs demonstrated a non-Fickian transport 

mechanism, involving swelling of the polymeric coat and diffusion of the drug from the lipidic 

core, through the polymer into the release medium.  
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Figure.22.  In vitro release profile of TA from nano-formulations in phosphate buffer, pH 7.4 over 

a period of 5h 

*% Drug release from TA-NLC significantly greater than CH-TA-NLC, TMC-TA-NLC and TA-

SOL 

** Drug release from TA-NLC significantly greater than CH-TA-NLC, TMC-TA-NLC 

*** Drug release from TA-NLC and TA-SOL significantly greater than CH-TA-NLC, TMA-TA-

NLC 

Table 12. In vitro release kinetic parameters for TA formulations; r2 is the regression coefficient 

Model fitted Equation 

r2 value 

TA-NLC TA-SOL CH-TA-NLC TMC-TA-NLC 

Zero Order 𝐶𝑡 = 𝐶0 +  𝐾𝑡 0.90 0.93 0.97 0.91 

First Order 𝐶𝑡= 𝐶0 𝑒
−𝐾𝑡 0.73 0.95 0.99 0.96 

* 
** 

*** 
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Korsmeyer-Peppas 

𝐶𝑡

𝐶∞
= 𝐾𝑡𝑛 

 

0.88 

n=0.69 

0.97 

n=0.92 

0.94 

n=0.73 

0.80 

n=0.54 

Higuchi Ct=Kt1/2 0.86 0.58 0.72 0.75 

 

Mucoadhesion study 

Ocular mucus is composed of mucin as one of its many components, protecting the corneal 

epithelium from desiccation and bacterial contamination. The mucin is negatively charged due to 

the presence of sialic acid residues, which helps the eye repel pathogens 170. A positively charged 

particle would interact with the mucin layer and reside in the cul-de-sac and corneal epithelium for 

a longer duration of time. While targeting the delivery of TA to the back of the eye, on topical 

application, enhanced ocular retention would in turn increase the overall permeation of the molecule 

76, 86. This mucoadhesion study was conducted to study the electrostatic interaction between the 

positively charged coated TA-NLCs and the negatively charged mucin in an in vitro setup. Zeta 

Potential of TA-NLC, TMC-TA-NLC, CH-TA-NLC was monitored at increasing concentrations of 

mucin to investigate the electrostatic interaction (Figure.23.). On increasing the mucin concentration 

from 0.5 mg/mL up to 2.5 mg/mL, there was a sharp drop in the zeta potential of the TMC coated 

NLC, from 16.8 ± 4.02 mV to -1.47 ± 3.94 mV, indicating a strong interaction between the polymer 

and the mucin. For the CH-NLC, we observe this interaction at a higher concentration of mucin, 

with a sharp drop in the zeta potential from 19.3 ± 3.78 mV to 10 ± 5.16 mV at mucin concentrations 

of 1.25 mg/mL to 2.5 mg/mL. Increasing the mucin concentration further resulted in a negative zeta 

potential of both the coated formulations. Through all the increasing concentrations of mucin, TA-

NLC had a negative zeta potential from about -30 mV to -40 mV, indicating no interaction between 

the uncoated particles and mucin. The interaction between the polymer coated NLC and the mucin 
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could result in retention of the nanoparticles in the ocular mucosa, improving the overall permeation 

profile of the formulation. The fact that TMC interacts with a mucin concentration 5 times lower 

than the mucin concentration CH interacts with is indicative that TMC is a better mucoadhesive 

agent in comparison to CH.  

 

 

Figure.23. Zeta potential of TA-NLCs, TMC-TA-NLC, CH-TA-NLC formulations at increasing 

concentrations of mucin (0.025 to 5 mg/mL) 

 

In vitro transcorneal permeation 

The transcorneal permeation profile of TA-NLC, TA-SOL, TMC NP and CH NP solution was 

observed over 180 minutes at 34°C across isolated rabbit corneas. The 0.1% TA- SOL 

demonstrates an enhanced permeation profile (Figure.24.) with significantly high amounts of 
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permeated TA by the 180 min time-point and a permeability of 6.30 ± 0.9 x 10 -6 cm/sec and a 

transcorneal flux of 0.378 ± 0.054 µg/min/cm2 (Table 13.). Cyclodextrins have been previously 

reported to affect the barrier characteristics of rabbit corneas.171 Cyclodextrins orient 

perpendicularly on the surface of the phospholipid monolayer and extract the cholesterol molecule 

and result in damage to the corneal membrane, increasing overall transmembrane permeation. CH/ 

CH derivatives are also known for their ability to interact with the corneal surface; CH/ CH 

derivatives interact with the mucin layer increasing the transcellular transport of molecules and 

increase the pre-corneal retention time. In terms of flux and permeability, TA-NLC demonstrate a 

slightly better permeation profile than the coated nanoparticles (Table.13.). This can be attributed 

to the presence of a hydrophilic polymeric barrier on the surface of the NLCs for the coated 

nanoparticles. This could possibly hinder the partitioning of the molecule from the lipophilic core 

into the external hydrophilic environment. The presence of CH and CH derivatives, along with 

mucoadhesion, also affect the dynamic transport mechanisms of molecules. The in vitro 

mucoadhesion study provides us with information that both TMC and CH interact with the 

negatively charged mucin at different concentrations, indicating that mucoadhesion is one of the 

inherent properties of the polymers that would affect the permeation of TA. However, to further 

elucidate the effect of polymeric coating on the TA-NLC, a dynamic in vivo environment would 

prove to be a better predictor over effect of CH and CH derivatives on overall ocular 

bioavailability. The comparable permeation profiles by CH-TA-NLC and TMC-TA-NLC indicate 

that despite increased adhesion and retention, the partition of TA from the lipophilic core is 

probably hindered and is a vital step that governs the transport mechanisms of TA. 
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Figure 24. Transcorneal permeation profile across isolated rabbit cornea from TA-NLC, TA-SOL, 

TMC-TA-NLC, CH-TA-NLC at 34ºC. The receiver solution consisted of DPBS containing 2.5% 

w/v RMβCD (pH 7.4). The results are depicted as the mean ± S.D (n=3)  

 

Table 13. Permeability (cm/sec) and transcorneal flux (µg/min/cm2) of TA-NLC, TMC-TA-NLC, 

CH-TA-NLC and TA-SOL across isolated rabbit cornea. The results are depicted as the mean ± 

S.D (n=3)  

Formulations Permeability x 10-6 (cm/sec) Flux (µg/min/cm2) 

TMC-TA-NLC 1.12 ± 0.25 0.067 ± 0.015 

CH-TA-NLC 1.29 ± 0.04 0.077 ± 0.002 

TA-NLC 1.88 ± 0.07 0.234 ± 0.106 

TA-SOL 6.30 ± 0.9 0.378 ± 0.054 
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Ocular pharmacokinetics 

Tear fluid kinetics of TA-NLCs and polymer coated NLCs in comparison to TA-SOL post single 

instillation (Dose: 50 µg) of each of the formulations was studied in NZW rabbits. Achieving 

suitable concentrations of the drug in the pre-corneal area and increasing its retention time is the 

first limiting step of achieving tissue concentrations at the back of the eye. Ocular barriers such as 

blinking, and tear clearance reduce the precorneal residence time of the drug. The concentration 

of drug present in the tear fluid is a measure of its availability to further permeate in the tissue 

layers. A higher mean residence time (MRT) indicates a longer residence of TA in the pre-corneal 

tissues. TMC-TA-NLC demonstrates an MRT of 49.50 minutes (Table 14.), with the MRT of the 

all the formulations ordered as TMC-TA-NLC > CH-TA-NLC> TA-NLC> TA-SOL. TMC-TA-

NLC also demonstrated a 1.73, 1.63 and 1.72 times higher AUC0-∞ in comparison to the other 

tested formulations, TA-SOL, CH-TA-NLC and TA-NLC respectively. TMC-TA-NLC retain TA 

in the precorneal area and show significantly higher concentrations (264.12 ± 59.74 ng/mg tear 

weight). Ocular pharmacokinetics of TA-SOL demonstrates quick drainage and minimum 

retention of the formulation in the pre-corneal tissues. Figure.25. is a graphical representation of 

the tear fluid concentrations; TA-SOL demonstrates a high concentration of TA, 2821.33 ± 78.31 

ng/mg tear weight significantly greater than all other formulations at the 0-time point. This 

observation can be attributed to the free TA present in solution at the first-time point. However, a 

sharp drop in TA concentrations was observed post the 0-minute time point signifying absence of 

precorneal retention from this solution formulation; the MRT for TA-SOL is 1.08 minutes. Due to 

the colloidal system, TA-NLCs does increase the overall precorneal retention of TA, and the MRT 

of the TA-NLCs is 28 times greater than the solution formulation. Presence of a positive charge 

on the particles does show a slight improvement in the MRT and AUC0-∞ of the NLCs. Looking 
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at the Clearance (Cl) of the TA formulations, TMC-TA-NLC depicts the lowest CL values of 

0.0013 mL/min, in comparison to the other formulations. The Cl values of the formulations can be 

ordered as TA NLC>TA-SOL>CH-TA-NLC>TMC-TA-NLC. Low Cl values of the coated 

nanoparticles can be indicative of the mucoadhesive properties of the positively charged polymers, 

CH and TMC and interaction of the same with the negatively charged ocular mucosa. The results 

of ocular pharmacokinetics agree with in vitro findings stating that presence of a charged 

polymeric coating enhances the residence of TA in the eye. The TMC and CH interact with the 

negatively charged corneal surface, impacting the retention of the NLC formulation in the pre-

corneal area. 

 

 

Figure.25. Tear concentration (ng/mg tear weight) vs time (min) profile for TA formulations 

*TA-SOL significantly > TA-NLC, CH-TA-NLC, TMC-TA-NLC 
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Table 14. Non-compartmental analysis of tear fluid concentrations post dosing of TA-NLC, 

TMC-TA NLC, CH-TA NLC and TA-SOL using software PK Solver 2.0 

Formulations AUC0-∞ 

(μg/mL*min) 

t1/2 (min) Cmax (μg/mL) Cl (mL/min) MRT (min) 

TA-NLC 23001.28 43.72 1660.87 0.0043 30.45 

CH-TA-NLC 24220.04 67.67 1211.79 0.0021 32.19 

TMC-TA-NLC 39466.58 32.59 1635.50 0.0013 49.50 

TA-SOL 22763.02 2.93 2821.33 0.0022 1.08 

 

In vivo bioavailability 

Male NZW rabbits were dosed consecutively with 50 µg of TA formulations; TA-NLC, TMC-

TA-NLC, CH-TA-NLC and TA-SOL. The tissues analyzed were Cor, AH, VH, IC, RC and SC. 

Looking at Figure.26., TA-SOL was not retained in the pre-corneal area and depicted lower 

concentrations (289 ± 99.6 ng/ g of tissue) in the Cor. This result is consistent with the ocular 

pharmacokinetics (Figure.8.), with high levels of TA-SOL detected on the 0-time point and quick 

drainage from the precorneal region post dosing. The concentrations in the Cor further impacts the 

distribution of TA in the ocular tissues and we observe 242 ± 17.5 ng/ mL in the AH, 22.7 ± 7.39 

ng/ g of tissue in the IC and 53.4 ± 20.3 ng/ g of tissue in the SC.  

With TA-NLC and CH-TA-NLC (Figure.26.), we observe comparable levels of TA, i.e. 533 ± 175 

ng/ g of tissue weight and 524 ± 211 ng/ g of tissue weight in the Cor respectively. For TMC-TA-

NLC, TA concentrations were lower than that of CH-TA-NLC and TA-NLC (454 ± 163 ng/ g of 

tissue weight). As TA permeates further into the tissues, we observe greater levels of TA delivered 
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to the AH via CH-TA-NLC (493 ± 144 ng/ g of tissue weight) in comparison to TA-NLC (377 ± 

32.6 ng/ g of tissue weight), indicating that CH enhances permeation of TA across the cornea.  

Previous reports of multiple dosing of 0.2% TA liposome formulation demonstrated levels of TA 

permeating into the VH and retina 12 h after topical administration. Considering the multiple 

dosing regimen and formulation concentration, there was 50-fold difference in the dosing reported 

in comparison to our data. Possible reasons for improved penetration could be the presence of 

formulation components such as permeability enhancers, which could be another possible 

approach employed for increasing TA bioavailability. 172  

Looking at the tissue concentrations, we can speculate that the drug permeates the tissues via two 

routes, the corneal route into the AH and IC and from the back of the eye, through the SC. A 

similar trend as in the AH is observed with the IC, CH-TA-NLC delivers higher levels of TA (146 

± 77.1 ng/ g of tissue weight) than TA-NLC (36.4 ± 5.44 ng/ g of tissue weight). We also observe 

that the formulations facilitate permeation through non-corneal routes with drug concentrations 

detected in the SC; 66 ± 25.6 ng/ g of tissue weight from CH-TA-NLC, 52 ± 9.43 ng/ g of tissue 

weight from TA-NLC, 53.4 ± 20.3 ng/ g of tissue weight for TA-SOL and 38.3 ± 7.91 ng/ g of 

tissue weight for TMC-TA-NLC. However, TA does not permeate significantly from the SC into 

the posterior tissues from any of the formulations. 

Comparing the ocular bioavailability to the pre-corneal pharmacokinetic parameters (Table 14.), 

we observe that the NLCs reside in the pre-corneal area for a longer duration in comparison to TA-

SOL. This further translates into higher TA concentrations in the anterior segment for the NLCs 

in comparison to the SOL. By looking at the overall ocular tissue disposition for TA we can state 

that residence time is not the only factor that would govern the ocular bioavailability of a lipophilic 

API, inherent molecule characteristics would play a vital role in determining the ADME 
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characteristics of the molecule. TA is a lipophilic molecule, and entrapment of TA in lipid based 

nanocarriers results into slow release of TA into the hydrophilic tissue microenvironment which 

further hindering the overall ocular bioavailability of the molecule.  

Reportedly, CH and TMC increase the drug bioavailability by two mechanisms; by increasing the 

precorneal residence time and increasing the paracellular transport of the molecule 161. CH and its 

derivatives work as permeation enhancers because of an interaction between the positively charged 

amino groups on the C-2 position of chitosan with negatively charged sites on the cell membranes 

and tight junctions. This alters the integrity of the tight junctions, increasing the overall 

paracellular transport of the molecule. 69 TA, being a molecule with some degree of lipophilicity, 

would adopt a transcellular pathway for permeation, rather than a paracellular pathway. The lack 

in elevation of overall ocular bioavailability could possibly be attributed to the mechanism of 

permeation enhancement of TMC, which might not be suitable for a lipophilic molecule such as 

TA. Another factor to be taken into consideration is the total positive charge at the site of action, 

along with the molecular weight and the DQ which affects the interaction of TMC with the mucin 

layer. 173 As inferred from the in vitro mucoadhesion study, CH and TMC do interact with the 

mucin elements, however, due to the aforementioned reasons, the increase in pre-corneal retention 

might not increase the overall permeation profile of the molecule 76. Reportedly, CH also increases 

permeation of molecules by endocytosis and transcytosis along with affecting the paracellular 

transport, which could be an explanation for increase in bioavailability of TA by surface 

modification using CH but not by TMC. 174-175 

Another possible explanation could be the drug load of the optimized NLCs, a 0.1% W/V drug 

load is not high enough a drug load to create a significant concentration gradient for diffusion of 

the molecule from the lipophilic carrier into the tissue micro-environment. Increasing the TA load 
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could possibly intensify the differences between the groups enough to make conceivable 

conclusions.  

 

 

Figure.26. Tissue concentrations three hours post dosing of TA formulations (Dose: 100 μg TA) 

+ TA-NLC, TMC-TA-NLC, CH-TA-NLC and TA-SOL in New Zealand White rabbits (n=3)  

 

Conclusion 

Topical administration is the preferred route for ophthalmic drug delivery, however anatomical 

barriers and precorneal factors affect the bioavailability of the formulation. The ocular 

bioavailability of any lipophilic molecule post topical dosing is controlled by its solubility in the 

hydrophilic tissue environment. Formulation approaches can enhance delivery of the molecule to 

the site of application. Lipid based nanoparticles have been previously reported to sustain the 
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release of the entrapped moiety by slowly releasing it over a prolonged period. This work 

attempted in developing a lipid based nanoparticulate system, NLCs to improve drug load, prolong 

the release and reduce dosing frequency of the molecule. Currently, TA is available as an 

intravitreal injection and development of a topical route is a desirable alternative. The optimized 

TA-NLCs with a 0.1% W/V drug load enhanced the ocular bioavailability of TA in comparison to 

a cyclodextrin solution. Furthermore, increasing the drug load would help in delivering sustained 

amounts of TA to the site of action. Surface modification of TA-NLCs with TMC increased the 

residence time of the formulation, however did not affect the overall ocular bioavailability.  CH-

TA-NLCs on the other hand were able to deliver higher concentrations of TA across the Cor. 

Investigations explaining mechanisms of CH on permeation enhancement by non-paracellular 

routes would help understand the role of CH and CH derivatives in permeation enhancement for 

lipophilic molecules. 

Supplementary Data 

Table 15. Tear concentration (ng/mg tear weight) post dosing of TA formulations (Dose: 50 µg) 

in male New Zealand White rabbits for time points up to 2 hours post dosing (n=3) 

TA concentrations (ng/mg tear weight) 

Formulation 
Time point  

(min) 
Mean Std Err 

CH-TA-NLC 

0 1211.79 138.99 

15 357.17 255.77 

30 142.31 90.41 

60 58.65 30.24 

90 14.98 4.65 

120 39.13 11.11 

TA-NLC 

0 1660.87 116.05 

15 158.88 130.06 

30 99.26 24.38 

60 76.33 4.19 

90 61.97 14.22 

120 21.48 12.75 

TA-SOL 0 2821.33 78.31 
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15 105.03 37.71 

30 2.34 2.34 

60 0.00 0.00 

90 0.00 0.00 

120 0.00 0.00 

TMC-TA-NLC 

0 1635.50 222.47 

15 828.99 282.90 

30 264.12 59.74 

60 147.75 82.28 

90 63.95 18.71 

120 12.38 7.30 

 

 

Table 16. Tissue concentration (ng/g tissue weight) post dosing of TA formulations (Dose: 100 μg 

TA) TA-NLC, TMC-TA-NLC, CH-TA-NLC and TA-SOL in New Zealand White rabbits (n=3) 

TA concentration ng/g 

Formulation Tissue Mean Std Err 

CH-TA-NLC 

  

  

  

  

  

AH 493 144 

Cor 524 211 

IC 146 77.1 

RC 0 0 

SC 66 25.6 

VH 2.09 0.2 

TA-NLC 

  

  

  

  

  

AH 377 32.6 

Cor 533 175 

IC 36.4 5.44 

RC 0 0 

SC 52 9.43 

VH 2.36 0.34 

TA-SOL 

  

  

  

  

  

AH 242 17.5 

Cor 289 99.6 

IC 22.7 7.39 

RC 0 0 

SC 53.4 20.3 

VH 2.63 0.21 

TMC-TA-NLC 

  

  

  

  

  

AH 253 73.3 

Cor 454 163 

IC 46.7 28 

RC 0 0 

SC 38.3 7.91 

VH 2.24 0.38 
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CHAPTER 5 

ANTI-FUNGAL & ANTI-BACTERIAL PEGYLATED-NLCS FOR 

OCULAR APPLICATIONS: FORMULATION DEVELOPMENT, 

CHARACTERIZATION AND IN VITRO EFFICACY TESTING 

Introduction 

Keratitis or corneal inflammation is commonly associated with bacterial or viral 

microorganisms resulting in corneal scarring and even permanent vision loss.176-177 Fungal keratitis 

is widespread in tropical and developing countries with an occurrence of over 50%.178 Fungal 

keratitis is more challenging to treat and can be more virulent and damaging than bacterial origin. 

Primarily an infection of the corneal epithelium, fungal keratitis (keratomycosis) may also affect 

the stroma and in more severe cases, the endothelium and the anterior chamber.179 While spreading 

through the cornea, into the anterior chamber, fungal organisms often penetrate through the corneal 

stroma without rupturing the cornea.179 A molecular target controlling fungal keratitis should 

penetrate across the cornea further into the stroma and other sites of infection. The aim of treating 

a patient with fungal keratitis is to conserve vision, which can be achieved by a timely diagnosis 

and antifungal therapy. Currently, the groups of antifungal agents used for the treatment of fungal 

keratitis are polyenes (natamycin, amphotericin B), azoles (voriconazole, posaconazole, 

econazole, fluconazole) and echinocandins (caspofungin).178 A 5% Natamycin suspension is 

available commercially as a topical ophthalmic preparation, however it is used for superficial 
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infections due poor bioavailability on topical application.177-178 Voriconazole (VRC), a second 

generation triazole derivative of fluconazole, has emerged as a promising candidate for the 

treatment of fungal keratitis because of its wide therapeutic window and high potency.180 VRC 

inhibits synthesis of ergosterol in the fungal membranes by binding to the active site of P450-

dependent enzyme lanosterol 14-demethylase, resulting in depletion of ergosterol, thus affecting 

the overall integrity and function of the fungal membrane. VRC has been approved by the US Food 

and Drug Administration for the treatment of systemic fungal infections. It is also commercially 

available for oral and parenteral use against fungal keratitis.178-180 Studies indicate that VRC is 

more potent than amphotericin B against filamentous fungi such as Aspergillus and 

Pseudallescheriaboydii.180-182 It is also effective against common pathogens such as  C. albicans, 

C. parapsilosis, C. tropicalis, A. fumigatus, Aspergillus flavus, and Fusarium solani. The 

drawback with using VRC orally for treatment of fungal keratitis is associated side effects and 

possible drug interactions.183 An efficient strategy would be delivering VRC locally; minimizing 

the drug interactions and side effects. Development of a dosage form of VRC having topical utility, 

and enabling VRC to permeate through the ocular tissues, to the desired site of action is necessary. 

Developing a topical formulation for VRC would involve overcoming the anatomical and 

physiological barriers such as blinking, high tear turnover and drainage and tissue barriers such as 

cornea, conjunctiva, blood aqueous barrier, blood-retinal barrier.184 Only about 3-5% of a topically 

dosed formulation penetrates into the deeper tissues after crossing the aforementioned barrier 

system, which makes development of a topical formulation challenging. VRC, being a lipophilic 

molecule unstable in an aqueous environment, needs a carrier system that would provide it with 

stability in-solution, along with sustained release by increasing the pre-corneal residence time.  
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Antifungal drugs such as VRC have been reported to have a synergistic effect with 

fluoroquinolones such as Ciprofloxacin (CIP) via binding to fungal topoisomerase II and inhibiting 

DNA replication.185 CIP in itself is devoid of anti-fungal activity, but may demonstrate synergistic 

interactions with antifungals such as amphotericin B, voriconazole and caspofungin.185-186 

Reportedly, CIP enhances the action of azoles by increasing intracellular concentrations of the 

anti-fungal agents due to an overlap of substrate specificity of ATP binding cassette multidrug 

transporters.187 

Different ocular delivery systems attempting to increase residence time of the formulation 

in the cul-de-sac have been investigated.127, 132, 188 NLCs are colloidal nano-carriers synthesized 

by blending a mixture of solid and liquid lipids. The resulting formulation is a suspension, particles 

which have a melting point lower than that of their counterpart, SLNs but still solid at body 

temperature.189 The imperfections in the matrix caused due to the presence of the liquid lipid result 

in accommodation of the API and a higher drug load (DL).189-190 NLCs enhance trans-corneal drug 

delivery and increase precorneal retention time, thus a favorable system for ocular drug 

delivery.132, 191  

In these set of studies VRC loaded NLCs were optimized, with the goal of achieving a 

stable formulation with an optimum DL which can be delivered topically for the treatment of 

fungal keratitis. CIP was loaded along with VRC in this nano-carrier to evaluate the synergism 

between anti-bacterial and anti-fungal agents. For efficient excipient selection and methodical 

formulation optimization, a statistical DOE methodology was employed. Being an optimization 

study, we wanted to look at the curvature in the model and thus a central composite design (CCD), 

response surface methodology (RSM) was employed to develop VRC and CIP loaded PEGylated 

nanostructured lipid carrier (PEG-NLC) system (VRC-CIP-PEG-NLC). The optimized 
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formulation was characterized in an in vitro setup for particle size (d. nm), DL, EE. Also, the 

permeation efficacy of the optimized formulation was evaluated across isolated rabbit corneas. 

Materials and Methods 

Materials 

The active molecules, VRC and CIP were purchased from Acros Organics (NJ, USA) along with 

glycerin, castor oil and Tween® 80. Pluronic® F68 (Poloxamer 188) was purchased from Spectrum 

Pharmaceuticals (Henderson, NV). Lipids, Compritol® 888 ATO, Precirol® 888 ATO (glyceryl 

behenate), Geleol Mono and Diglycerides NF and Gelucire 50/13 were obtained as a gift sample 

from Gattefossé (Paramus, NJ, USA), mPEG-2K-DSPE sodium salt (PEG) was purchased from 

Lipoid®. HPLC - grade solvents, and other chemicals (analytical grade) were obtained from Fisher 

Scientific (Hampton, NH, USA). Amicon® Ultra centrifugal filter devices, regenerated cellulose 

membrane (MWCO 100 kDa) were purchased from EMD Millipore (Billerica, MA). VRC for 

injection, Vfend® and Ciprofloxacin Hydrochloride Ophthalmic Solution 0.3% was obtained from 

The University of Mississippi, Health Center. Male albino New Zealand rabbits were procured 

from Harlan Labs (Indianapolis, IN, USA). 

Formulation optimization for NLCs 

Excipient selection  

NLCs are lipid-based carriers constituted with both solid and liquid lipids. As a pre-formulation 

screening, both solid and liquid lipids were evaluated for solubility of both the APIs. Lipids 

demonstrating maximum solubility were further optimized to an optimum binary mixture. Solid 

lipids (Compritol® 888 ATO, Precirol® 888 ATO, Stearic Acid, Geleol Mono and Diglycerides 

NF) and liquid lipids (castor oil, Oleic acid and Miglyol) were screened to maximize loading of 

both VRC and CIP. Primarily, the lipids were heated/melted by maintaining the temperature of the 

water bath to 80°C. After attaining the temperature, 100 mg of VRC and CIP were added 



107 

 

individually to the heated lipids (100 mg) under constant magnetic stirring at 2000 rpm. The API 

was allowed to dissolve (in case of VRC) and disperse (in case of CIP) under magnetic stirring for 

2-5 minutes. The CIP-lipid and VRC-lipid mixtures were then cooled and evaluated for 

precipitation of the API. The basis of lipid selection in this study was optimum solubility and 

compatibility with CIP and VRC.  

Selection of a binary lipid phase 

Presence of a liquid lipid in a lipid based nano-carrier allows for imperfections and accommodation 

of a higher load of API. To determine the best solubilizing potential of the solid-lipid-liquid-lipid 

mixture, an optimum ratio of the solid and liquid lipid was determined. 100 mg of individual 

molecules, CIP and VRC were admixed with the lipids demonstrating maximum solubility in the 

excipient selection in three different ratios, i.e.; 2:3, 1:1, 3:2. The API addition took place under 

constant magnetic stirring over a period of 30 minutes, with the lipids heated to a temperature of 

80℃. The binary lipid phase was then spread on a glass slide and was inspected for bleeding of 

the oil from the solid lipid. 

Experimental design  

After excipient selection, the next step was to optimize the levels of individual ingredients using a 

statistical experimental design. A mathematical optimization technique known as RSM was 

involved in modeling of the response variables in the dataset. This technique was used in order to 

make statistical predictions by fitting a polynomial equation to the set of experimental data. RSM 

is generally employed to a multivariate design wherein change in individual independent variables 

affects a response or a set of responses.   

Keeping in mind the number of trials, the optimization procedure designed experiments with 

different levels of the independent variables generating multiple responses. On analysis, these 
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responses can be used to determine main effects and the predictions of these responses would help 

us design the appropriate formulation with target goals. A CCD of the RSM was employed wherein 

the amount of PEG and 1:1 Castor oil and Precirol® 888 ATO each coded as Factors B and C 

respectively, was varied at different levels of VRC and CIP loading (Factors A and D respectively). 

Each of the factors was studied at 5 levels, the end limits of which were determined based on 

screening trials conducted before the optimization study (Table 17.).  

 

Table 17. Independent factors at their five coded levels from the Central Composite Design: 

Response Surface Methodology (The amounts (in mg) are per 10 ml of the formulation) 

 Levels 

Independent Factors -α -1 0 +1 +α 

A: Voriconazole (mg) 0 15 30 45 60 

B: mPEG-2K-DSPE sodium salt (mg) 0 75 150 225 300 

C: 1:1 Castor oil and Precirol® 888 ATO (Lipid ratio)  360 450 540 630 720 

D: Ciprofloxacin 0 15 30 45 60 

 

Once the limits of the input variables were established, a response surface optimization 

study was conducted using Design-Expert® software (Version 8.0.7.1, Stat-Ease Inc., MN). The 

CCD involved placement of center points (0), factorial points (+1, -1) and augmented axial points 

(+α, - α), with the value of α being 1.682, allowing estimation of curvature and to maintain 

rotatability.  A 30-run design was generated using the software; runs are depicted in Table 18. This 

design placed fewer runs on the extremes and focused on the center of the design space, making it 
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a robust predictor design. The dependent variables or the responses evaluated to obtain the optimal 

formulations were mean particle size of VRC-CIP-PEG-NLC (d. nm), polydispersity index of the 

same (PDI), drug EE and DL for each of VRC and CIP. 

Table 18. Runs designed by the Central Composite Design for the optimization study 

Run 
A: 

Voriconazole 
B: DSPE PEG C: Lipid Ratio D: Ciprofloxacin 

1 30 150 540 0 

2 15 75 630 45 

3 45 75 450 45 

4 15 225 450 45 

5 30 300 540 30 

6 15 225 630 45 

7 30 150 540 30 

8 15 225 630 15 

9 45 225 630 45 

10 15 75 630 15 

11 30 0 540 30 

12 60 150 540 30 

13 45 75 630 15 

14 15 75 450 15 

15 30 150 540 30 

16 45 225 450 45 

17 15 225 450 15 

18 30 150 540 30 

19 30 150 360 30 

20 45 75 630 45 

21 45 225 630 15 

22 30 150 540 30 

23 30 150 720 30 

24 0 150 540 30 

25 15 75 450 45 

26 45 225 450 15 

27 45 75 450 15 

28 30 150 540 60 

29 30 150 540 30 

30 30 150 540 30 
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Preparation of VRC-CIP-PEG-NLC 

The VRC and CIP loaded PEG-NLCs were prepared by an ultra-sonication- cold homogenization 

technique. APIs 0.15% VRC and 0.3 % CIP were dispersed in the lipid system and heated at 80°C. 

The lipid phase consisted of both the APIs, Precirol® 888 ATO, castor oil and PEG. The aqueous 

phase comprised of Poloxamer 188 (0.25% w/v), Tween 80 (0.75% w/v) and Glycerin (2.25% 

w/v) was and simultaneously heated in de-ionized water. The hot aqueous phase was added 

dropwise to the melted lipid phase to form a premix under constant magnetic stirring at 2000 rpm 

for 5 minutes. Further, the premix was homogenized for particle size reduction resulting in the 

formation of a pre-emulsion, using T 25 digital Ultra-Turrax™ at 11,000 rpm for 10 min by a cold 

homogenization method. The temperature through the second step was maintained at 35 ± 2°C. 

The particle size of the pre-emulsion was further reduced using a Vibra-Cell™ Ultrasonic Liquid 

Processor, at an amplitude of 40%. A pulse cycle was opted for this step, based on optimizations 

cycles run previously, and a 10 sec on and 15 seconds off pulse rate was set for a time duration of 

10 minutes. The final formulation obtained post this step was further characterized 

morphologically and for its permeation characteristics.  

Formulation Characterization 

Assay and Entrapment 

For the extraction of VRC and CIP, a 1:1 mixture of 0.025M O-Phosphoric acid and acetonitrile 

was used. Primarily, a volume of 10 µL was aliquoted from the formulation into centrifuge tubes. 

VRC and CIP was extracted from this aliquot using 990 µL of the aforementioned extracting 

solvent. This mixture was then sonicated at 30°C in a bath sonicator for 15 minutes to lyse the 

nanoparticles and extract both VRC and CIP. Post extraction, the tubes were centrifuged 

13,000 rpm for 15 min and the supernatant was analyzed for VRC and CIP content using a HPLC-

UV method.  
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The formulations were analyzed for the %EE for VRC and CIP. Five hundred µL of the 

formulation was aliquoted in a 100 kDa centrifugal unit made of regenerated cellulose membrane 

(Amicon Ultra). This sample was centrifuged at 13,000 rpm, for 20 mins, following which the 

filtrate was analyzed for unentrapped VRC and CIP content. Percentage EE was calculated using 

the formula, 

% EE = ((Total drug content-Amount of free drug in aqueous phase) *100)/ (Total drug content) 

The DL on the other hand was calculated using the following formula, 

% DL = (Amount of drug entrapped / Total lipid content) * 100 

Chromatography 

In vitro quantification took place by using a HPLC-UV method for simultaneously analyzing both 

VRC and CIP. The HPLC-UV system comprised of a Waters 717 plus Autosampler, Waters 600E 

pump controller, Waters 2487 dual λ Absorbance detector and an Agilent 3395 integrator. A 

mobile phase consisting of 65: 35 of 0.025M O-Phosphoric acid and acetonitrile was used on a 

Phenomenex® C18 (4.6 x 250 mm) column at a flow rate of 1 mL/min. The stock solution of VRC 

was prepared in acetonitrile and that for CIP was prepared in 0.025 M O-Phosphoric acid. A 

standard curve ranging from 1 to 100 µg/ml of both VRC and CIP was prepared by spiking required 

concentrations from the individual stock solutions, whereas the dilutions were prepared using the 

mobile phase. Detection was carried out at 254 nm.  

Dynamic light scattering (DLS) 

Photon correlation spectroscopy was one of the methods used to determine the particle size and 

polydispersity index of the formulations. A Zetasizer Nano ZS Zen3600 (Malvern Instruments, 

Inc.) was used to make all the DLS measurements at 25°C and with 173° backscatter detection in 
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disposable folded capillary clear cells. A 100 times sample dilution was performed using bidistilled 

water filtered using 0.2 µ syringe filters for all the measurements. 
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Scanning transmission electron microscopy  

Morphological characterization of VRC-CIP-PEG-NLC was carried out using STEM analysis. 

This study helped in particle visualization and comparison of the morphology and particle size to 

measurements made by DLS. The NLCs were stained using 1% uranyl acetate, using a negative 

staining procedure. A 40-dual beam scanning transmission electron microscope by Zeiss Auriga® 

was used to characterize the nanoparticles. The sample volume used for the study was 20 µL, 

which was placed on a piece of parafilm. A 200-mesh glow discharged copper grid coated with a 

thin carbon film was floated on top of the sample for about 30 secs, with the film facing the sample. 

The grid was then removed, and the excess sample blotted off using a filter paper. This step was 

followed by washing, the grid was placed on a drop of the ultrapure water and excess water was 

blotted out. The grid was placed on a drop of 1% uranyl acetate for 1 minute with the sample facing 

the stain. After the staining step, the excess stain was then removed, and the sample was dried 

completely. After sample preparation, imaging took place using a Zeiss Libra operating at 30 kV 

in STEM mode. (The STEM studies were performed at University of Tennessee, Knoxville).  

In-vitro trans-corneal permeation 

Transmembrane permeability of VRC and CIP from the VRC-CIP-PEG-NLC formulation was 

evaluated across isolated rabbit corneas using PermeGear® vertical diffusion apparatus. To 

establish the effect of dual drug loading, PEG-NLCs with each of the individual APIs, CIP-PEG-

NLC & VRC-PEG-NLC were also evaluated for their transcorneal permeability. Bearing in mind 

the clinical implications of the optimized formulation, its permeability was compared to marketed 

formulations; Ciprofloxacin Hydrochloride Ophthalmic Solution (0.3% as base) and Lyophilized 

Voriconazole for Injection (200mg/vial, dose normalized using Dulbecco's phosphate-buffered 

saline (DPBS) to 0.1% VRC). Five percent RMβCD in DPBS (5ml) was used in the receiver 
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compartment. Aliquots (0.6 ml) were withdrawn from the receiver chamber at predetermined time-

points up to 3 hours and replaced with an equal volume of 5% w/v RMβCD in DPBS. The 

concentration of VRC and CIP in the receiver medium was determined using an established HPLC-

UV method. At the end of 3 hours, the corneas were evaluated for the retention of API.  

Results and Discussion  

Excipient selection  

Based on the excipient solubility screening studies, the lipids that demonstrated the maximum 

solubility for both VRC and CIP were selected. Precirol® 888 ATO was chosen as the solid lipid 

and castor oil as the liquid lipid.  

Selection of a binary lipid phase 

With each of the different ratios, we observed CIP finely dispersed and VRC completely 

solubilized. However, with higher level of a liquid lipid we observed bleeding of the castor oil 

from the Precirol® 888 ATO and API melt. A 1:1 ratio of solid lipid-liquid lipid was chosen to 

formulate the NLCs. 

Formulation optimization of VRC-CIP-PEG-NLC using RSM-CCD statistical design 

Changing parameters or independent variables is the basis of determining the optimum conditions 

or a level to a stable and effective formulation. This can be done by using the “one-factor-at-a-

time” technique, which involves running trials by individually changing singular independent 

variables. However, this technique fails to take into consideration complex excipient interactions. 

The presence of multiple components in a final formulation leads to the development of a complex 

interactive concoction, and in this scenario, it is important to evaluate the independent and 

interactive effects of all these variables. Table 19 lists the independent variables that were 

evaluated in this design along with the different levels at which they were evaluated. The DOE in 
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this case was used for excipient selection and enhancement of the drug loading of CIP and VRC. 

The dependent variables, based on which the 30 formulation runs were evaluated were% Assay, 

% DL, % EE, particle size (d. nm) and PDI. The run schedule at the different levels of independent 

variables is listed in Table 18. Based on the design, 5 levels of each of the independent variables 

was selected, with points concentrated around the center of the design, being a response surface 

methodology.  

 

Table.19. Effects of Independent Factors on the Response Variables, regression analysis 

performed using Design-Expert® software 

Response 

variable 
Model 

Model F-

value 

Degree of 

freedom 

R2 values 

R2 Adjusted R2 

%EE (VRC) Linear 14.35 1 0.338 0.315 

%EE (CIP) Quadratic 1.95 14 0.66 0.321 

PDI Quadratic 2.87 5 0.374 0.243 

% DL (VRC) Quadratic 10.18 9 0.997 0.996 

% DL (CIP) 2FI 858.52 7 0.996 0.995 

%Assay (VRC) Linear 17.77 4 0.747 0.705 

 

 

Table 20. Statistical significance using One-way ANOVA for individual response variables 

Response 

variables 

Independent factors that 

affect the response 

variable significantly 

p-value Model equation 

%EE (VRC) A 0.0007 EE (VRC) = +81.24 +10.18 A 

%EE (CIP) 
D <0.0001 

EE (CIP) = +90.96 + 12.99 D -9.54 D² 
D2 <0.0001 

PDI 
A2 0.0057 PDI = +0.4073 -0.0163 A +0.0107 B 

+0.0171 C -0.0584 BC - 0.0664 A² BC 0.0582 

%DL 

(VRC) 

A <0.0001 
DL (VRC) = +3.31 +1.84 A -0.3630

 B -0.4632 C -0.2111 AB -

0.268 AC +0.0938 BC +0.0893 A² 

+0.0636 B² +0.0828 C² 

B <0.0001 

C <0.0001 

AB <0.0001 

AC <0.0001 
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Response 

variables 

Independent factors that 

affect the response 

variable significantly 

p-value Model equation 

BC 0.0029 

A2 0.0004 

B2 0.0066 

C2 0.0008 

%DL (CIP) 

A 0.00234 

DL (CIP) = +3.62 -0.0641 A -0.3753

 B -0.4463 C +1.94 D +0.0852 

BC -0.1970 BD -0.2398 CD 

B <0.0001 

C <0.0001 

D <0.0001 

BC 0.0149 

BD <0.0001 

CD <0.0001 

%Assay 

(VRC) 
A <0.0001 

Assay (VRC)  = 64.56 -16.02 A + 

2.75 B + 1.72 C - 3.06 D 

 

 

 

The optimum formulation should aim for a maximum DL for both, VRC and CIP without 

affecting the overall formulation stability, maintaining particle size and PDI at the minimum. 

Figure 27. is a 3D graph representing the effect of PEG and lipid ratio on particle size of the 

formulation. The regression analysis for this response variable did not determine any model fitting 

the data with a significant p-value (<0.05), however the 3D surface graph enables us to visualize 

the trend in the data. We observe a particle size increase at increasing levels of PEG (Figure.27. 

A), from 195 mg and above and with an increase with the total lipid concentration. A quadratic 

model best fit the PDI data (Table 19.); the variables that significantly affected the PDI values as 

per the model equation in Table 20. are VRC concentration (A) and an interaction term (BC), 

between the PEG and lipid ratio. Looking at Figure 27.B. which depicts the change in PDI, a 

similar trend is followed as the particle size, with higher PDI at high levels of PEG and lipid 

content. However, at high levels of both lipid and PEG we observe a drop in the PDI, which 

explains the negative sign on the significant BC interaction (Table 20.). Reportedly, PEG forms a 
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layer on top of the solidified lipids, stabilizing the colloidal system192. High levels of PEG, with 

low lipid content could lead to self-association of the PEG and further aggregation, as seen with 

the slight increase in PDI in Figure.27.B. Increasing the overall solid bulk reflects with an increase 

in the particle size and for maintaining a particle size of about 200 d. nm, a total lipid ratio below 

570 mg and PEG concentration below 195 mg would be desirable.  
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Figure.27. 3D Surface plots showing the effect of PEG and 1:1 castor oil and Precirol® 888 ATO 

on the Particle Size (d. nm) (A) and PDI (B) 
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Figure.28. depicts the effect of PEG and Lipid Ratio on the %DL of VRC. Increasing PEG 

concentration resulted in lowering of the %DL of VRC at both low (450 mg) and high (630 mg) 

of total lipid content. However, at a lower lipid ratio, the decrease in drug loading on increasing 

the PEG was higher than at a higher lipid ratio. From this observation, we can deduce that presence 

of PEG affects the loading of VRC; possible reasons for the decrease in DL could be the time of 

addition of PEG into the lipid melt during the initial mixing step, which would be a critical 

parameter in this situation, allowing VRC to partition into the lipid phase. Presence of high levels 

of PEG could possibly hinder the partitioning of VRC into the lipids by displacing the same. 

 

 

Figure.28. Interaction plots depicting the effect of PEG and 1:1 castor oil and Precirol® 888 ATO 

on the % Drug Loading of VRC 
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Looking at the equation for %Assay of VRC (Table 20.), both VRC and CIP have a 

negative impact on the drug content of VRC, as denoted by the negative signs. From Figure.29. A, 

we can see that increasing CIP content in the formulation has a negative effect on the %Assay of 

VRC. We also observe an effect of total lipid content on % Assay of VRC; at lower loading levels 

of CIP, a high lipid content improves the % Assay. Distribution of CIP in the lipids may saturate 

their solubilizing potential for VRC, possibly resulting in leaching of the drug outside the lipid 

matrix, or lower amount of drug being encapsulated in the first place. Overall, on increasing the 

PEG and total lipid content, the % Assay of VRC increases (Figure.29. B.), indicating that PEG 

and the lipids encase the drug and stabilize it, protecting it from degradation.    
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Figure.29. Contour plot describing the effect of (A) CIP loading amount and (B) PEG and 1:1 

castor oil and Precirol® 888 ATO on the % Assay of VRC. 
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Figure.30. 3D Surface plots showing the effect of PEG and 1:1 castor oil and Precirol® 888 ATO 

on the (A) % Assay and (B) % Drug Loading of CIP 
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For % Assay of CIP, on the other hand (Figure.30. A), increasing the total lipid content 

above 600 mg at lower levels of PEG (75-165 mg) results in a lower % Assay of CIP. A high PEG 

content is not favorable for increasing CIP content in the formulation.  This observation agrees 

with the % DL for CIP, a lower total lipid content and a lower PEG content is favorable for CIP 

content.  

Based on the models generated for the response variables with the 30 runs, a composite 

function was developed by Design-Expert® Software to compute the desirability of a factor 

combination. The desirability of a composition can be calculated by incorporating factor 

constraints and modifying the factor selection criteria. The aim was to minimize the particle size 

and the PDI and maximize the % DL and % EE. Table 21. depicts the composition of the optimized 

formulation with a desirability of 0.768. Comparing the model predicted values to the actual values 

of the formulated suspension, the values of most responses are close to the predicted values, 

indicating that the model is a good predictor for the current formulation (Table 21.). The particle 

size of the optimized VRC-CIP-PEG-NLC formulation was 240.67 ± 2.4 d. nm with a PDI of 0.19 

± 0.02 and zeta potential of -49 ± 1.28 mV. The drug content was 92.63 ± 0.91 % for VRC and 

101.93 ± 0.41 for CIP with an entrapment efficiency of 73.98 ± 1.71 for VRC and 98.86 ± 0.49 

for CIP. The formulation was stable for 1 month at both storage conditions of 25°C/75% RH and 

4°C (Figure.31.); we observe that the particle size and PDI of the formulation is maintained around 

230-240 d. nm and 0.1-0.2 respectively. We do not observe a significant drop in the % Assay and 

% EE for both VRC and CIP, pointing towards a stable formulation.  
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Figure.31. Changes in (A) Particle size and PDI, (B) % Assay, %EE for VRC in VRC-CIP-PEG-

NLC, (C) % Assay, %EE for CIP in VRC-CIP-PEG-NLC stored 4°C and 25°C/75% RH over a 

period of 1 month 

 

Table 21. Composition of the Most Desirable Formulation Obtained by Design-Expert® Software 

with Predicted and Experimental Values 

Formulation composition  Predicted values Experimental values 

VRC (15 mg) %DL (VRC) 2.09 2.38 

CIP (30 mg) %EE (VRC) 71.35 73.98 
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PEG (100 mg) %DL (CIP) 4.44 6.06 

Lipid Ratio (450 mg) % EE (CIP) 90.96 100 

 % Assay (VRC) 76.59 92.63 

 PDI 0.29 0.19 

 

Morphological characterization 

Figure.32. depicts the morphology of the VRC-CIP-PEG-NLC formulation. The morphology of a 

nanoparticulate system is significantly governed by the processing conditions used. A cold 

homogenization-ultrasonication method was used for the formulation of the NLCs. During 

formulation development attempts, we observed that VRC, at higher processing temperatures, 

migrated outside the oily lipid phase and precipitated in the form of shiny crystals. In order to 

prevent migration of VRC outside the lipid, during the first processing step, i.e. magnetic stirring, 

a high temperature of 80°C was employed, but, post this step, the temperature of the entire process 

was maintained below the melting temperature of the lipid mixture. The cold homogenization-

ultrasonication that followed, was more a fragmentation process to reduce the particle size, which 

can be seen in the STEM images in Figure.32. The NLCs have a well-defined periphery, but in 

comparison to the well-rounded NLCs as synthesized by a hot homogenization or a high pressure 

homogenization process, 192 the spherical particles so formed have an un-even rounded structure. 

However, the morphology does not affect the stability of the NLCs; presence of a stable surfactant 

system and PEG help in stabilizing this nano-colloidal system. The particle size observed in 

Figure.32. is in close agreement with the particle size measurements from DLS as mentioned 

previously. 
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Figure.32. STEM images for the optimized VRC-CIP-PEG-NLC formulation 

 

In-vitro trans-corneal permeation 

Permeation of the VRC-CIP-PEG-NLC formulation across isolated rabbit corneas was observed 

(Figure.33.); VRC-CIP-PEG-NLCs, being targeted as an antifungal formulation, the major sites of 

action for this formulation would be the cornea and the anterior chamber. To establish effective 

comparators, the transcorneal permeation of marketed Ciprofloxacin Hydrochloride Ophthalmic  

Solution and Lyophilized Voriconazole for Injection was also evaluated. To establish the effect of 

a dual-drug loaded formulation on the in-vitro transcorneal permeation, if any, individual drugs 

loaded in the same base formulation were also evaluated in a similar setup.  
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Figure.33. Graphical representation of the Permeability (cm/sec) and Flux (µg/min/cm2) across 

isolated rabbit corneas of VRC and CIP from CIP-PEG-NLC, VRC-PEG-NLC, VRC-CIP-PEG-

NLC and CIP and VRC marketed formulations (n=3) over a period of 3 hours 

 

Table 22. Significant p-values enlisted post one-way ANOVA analysis for the ordered between 

group differences for CIP-PEG-NLC, VRC-PEG-NLC, VRC-CIP-PEG-NLC and CIP and VRC 

marketed formulations (n=3). A p value < 0.05 was significant. 

Parameter Formulations p-value 

Flux 

(µg/min/cm2) 

CIP MKTD VRC-CIP-PEG-NLC (CIP) 0.0034 

CIP MKTD CIP-PEG-NLC 0.0036 

Permeability 

(cm/sec) 

CIP MKTD VRC-CIP-PEG-NLC (CIP) 0.0032 

CIP MKTD CIP-PEG-NLC 0.0034 
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Corneal 

concentrations 

(µg/ml) 

VRC-CIP-PEG-NLC (VRC) VRC-MKTD 0.0005 

VRC-PEG-NLC VRC-MKTD 0.0084 

VRC-CIP-PEG-NLC (VRC) VRC-PEG-NLC 0.0326 

 

The transcorneal flux for CIP from the marketed Ciprofloxacin Hydrochloride Ophthalmic 

Solution (0.3% as base) was greater than 10 times (1.52 ± 0.43 µg/min/cm2) that from CIP-PEG-

NLC (0.14 ± 0.03 µg/min/cm2) and the VRC-CIP-PEG-NLC (0.12 ± 0.04 µg/min/cm2) 

(Figure.33.). Table 22. enlists these differences as statistically significant. The transcorneal 

permeability of CIP was 506.06 ± 143.65 cm/sec for the marketed Ciprofloxacin Hydrochloride 

Ophthalmic Solution, significantly greater than the permeability of CIP from both CIP-PEG-NLC 

(39.96 ± 8.02 cm/sec) and VRC-CIP-PEG-NLC (36.77 ± 12.39 cm/sec) (Figure 33., Table 22.). 

The concentrations of CIP retained on the isolated corneas post the study were 40.46 ± 2.78 µg/ml, 

4.85 ± 1.58 µg/ml, 3.97 ± 0.46 µg/ml for the CIP-MKTD, VRC-CIP-PEG-NLC (CIP) and CIP-

PEG-NLC formulations respectively (Figure.34.). CIP MKTD being a Ciprofloxacin 

Hydrochloride (salt -form) has a high solubility in the pre-corneal area. The formulation is in a 

solution form resulting in high transcorneal permeation and corneal retention. CIP being entrapped 

in a lipid-based system demonstrates a controlled release and permeation.  
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Figure.34. Graphical representation of the concentrations (µg/ml) of CIP and VRC retained in 

isolated rabbit corneas 3 hours post dosing of CIP-PEG-NLC, VRC-PEG-NLC, VRC-CIP-PEG-

NLC and CIP and VRC marketed formulations (n=3) in an in-vitro transcorneal permeation 

setup. 

 

The transmembrane permeation of VRC from the PEG-NLCs was better than the marketed 

Lyophilized Voriconazole for Injection. The flux for VRC from the marketed formulation was 

0.39 ± 0.08 µg/min/cm2 whereas from the VRC-PEG-NLC was 0.48 ± 0.1 µg/min/cm2 and that 

from VRC-CIP-PEG-NLC was 0.57 ± 0.21 µg/min/cm2. The permeability of VRC from the VRC-

PEG-NLC and VRC-CIP-PEG-NLC was 334.46 ± 71.01 cm/sec and 381 ± 138.04 cm/sec and that 

from the marketed formulation was 258.25 ± 50.82 cm/sec. The corneal tissue concentrations were 

1.14 ± 0.51 µg/ml from VRC-PEG-NLC and 1.97 ± 0.11 µg/ml from the VRC-CIP-PEG-NLC, 

whereas no VRC was detected in the corneas treated with the VRC MKTD formulation. Higher 

permeation of VRC across the corneas from the lipid based nano-systems could be as a result of 
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interaction of this colloidal system with the cornea and possible internalization of the same 193. 

However, vehicle-related permeation enhancement of a molecule is also a function of the inherent 

molecule properties and the permeation pathway best-fitting the molecule. Lipophilic VRC 

entrapped in a PEGylated NLC system demonstrated enhanced permeation, whereas for a highly 

water-soluble molecule like CIP, when entrapped in a lipid based nanocarrier failed to demonstrate 

a similar effect. From Figure 34. we observe higher amounts of CIP retained in the cornea, but not 

permeating across. CIP being a hydrophilic moiety, may be entrapped in the hydrophilic stromal 

layers, whereas VRC could be permeating by a different (transcellular) pathway altogether.  We 

should also keep in mind that the loading of the two APIs is at two different levels, with a 0.15% 

w/v load for VRC and a 0.3% w/v loading for CIP, despite which the lipid-based carrier system 

enhances the permeation of VRC in comparison to both the VRC-MKTD and the CIP 

formulations.  

Conclusion 

These set of studies successfully used a DOE method to optimize a dual drug loaded 

PEGylated lipid nanocarrier. An RSM-CCD was utilized for excipient level optimization, 

furthermore, a cold-homogenization- probe sonication process was optimized for the development 

of the formulation. The optimized formulation was nano-sized and stable over a period of 1 month 

at both 4°C and 25°C/75% RH over a period of 1 month.  

 The VRC-CIP-PEG-NLC have a comparable permeability and flux to the individual drug 

loaded formulations, indicating that each of the APIs are compatible and permeate freely across 

isolated corneas. The marketed CIP solution, being in the salt form depicts high transcorneal flux 

and permeability as well as high corneal retention. In terms of VRC, however, the PEGylated 

NLCs demonstrate a slightly better permeation profile than the marketed formulation and 
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improved corneal retention. Thus, a PEGylated nanocarrier system increased the penetration of 

VRC across the cornea and controlled the release and permeation of CIP. Further studies 

investigating the efficacy of the formulation as an antifungal preparation and exploring the 

synergism between CIP and VRC would be a great asset for utilizing this dual drug loaded 

formulation as an alternative to conventional therapy. 
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CHAPTER 6 

OPTIMIZATION OF CAPPING PARAMETERS FOR LOW 

TEMPERATURE STORAGE OF A PLASTIC VIAL-RUBBER STOPPER 

COMBINATION 

Introduction 

Most of vaccines and biologic drug products (DP) being thermosensitive, are stored at 2-8°C, 

ensuring product quality and potency. However, for some products like Zostavax®, which is an 

attenuated varicella virus, a frozen storage state (-80°C) is preferred to ensure sufficient stability 

for the required shelf life.194-195 Such products are often shipped in a frozen state using dry ice, 

subjecting the product to temperatures lower than -50°C.   

Container closure systems (CCS) for drug products usually comprise of a glass vial, elastomeric 

stopper and an aluminum crimp cap. The glass transition temperature, (Tg’) of most rubber 

stoppers is in the range of –50 to – 65 °C. Aforementioned low storage temperatures might lead to 

shrinkage of the rubber and loss of elastomeric properties. In addition, storage temperatures of -

80°C can cause condensation of air in the vial headspace resulting in a low-pressure environment. 

Loss of stopper elasticity coupled with under pressure in the vial headspace can end up with ingress 

of cold dense gas from the immediate environment, implying a potential container closure integrity 

(CCI) compromise.196 197 While shipping the DP on dry ice, this CCI breach can lead to carbon 

dioxide (CO2) ingress, which may further cause a pH drop affecting DP stability.  
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 Methods such as dye ingress, vacuum decay and microbial ingress can be used to study CCI at 

ambient conditions. However, evaluation of CCI of frozen drug products is a relatively new area 

and not much has been spoken about it. In a frozen state, investigative techniques such as Helium 

(He) leak detection test and nondestructive gas headspace analysis can be employed.  

CCI can be enhanced by selecting CCS components with good compatibility i.e. marriage of the 

elastomer and the vial and implementing a tightly sealed vial at all storage conditions. Residual 

Seal Force (RSF (Lbs)) is the force exerted by the compressed rubber stopper on the vial-sealing 

surface and is a measure of the seal tightness or the seal integrity. A quality seal requires optimal 

amount of force in the capping process, which is reflected by a high RSF (Lbs). This can be 

measured by the RSF tester, an instrument calculating RSF by a compression stress/distance plot 

as it applies a known force over a distance on a capped vial. In addition, visual acceptability is an 

important factor to take into consideration in the capping process; the capping parameters have to 

be modified to prevent defects such as wrinkling of cap skirt and dimpling rubber stoppers. It is 

important to consider visual inspection of crimped vials as a part of any optimization process. 194 

This project focuses on enhancing CCI of a particular vial stopper combination by maximizing the 

RSF during the capping process whilst generating a visually acceptable seal. We also attempt to 

standardize the crimping process across single-station cappers by using RSF as the output variable. 

A systematic approach was employed for optimizing the crimping parameters using DOE for a 

selected container closure combination (CZ® vial and chlorobutyl rubber stopper) for -80 °C 

storage. Two single-station cappers were studied, both the cappers use different techniques to 

crimp the vial. The Integra West Capper® uses a spinning roller technique for crimping a stoppered 

vial using an aluminum crimp cap. The spinning rollers tuck the skirt of the cap under the vial 
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flange to attain a visually acceptable seal. The Bausch and Strobel® capper on the other hand 

features a capping station with a plunger and stationary roller blades and a rotating vial holder.  

Each capping instrument has a set of input variables (factors) that affect the seal quality. RSM - 

CCD was used to generate a design space for crimping for the Integra West Capper®. Due to the 

multiple instrument parameters on the Bausch and Strobel® capper, a D-optimal design was 

initially employed to determine the main effects for the design. The D-optimal design was then 

augmented into an I-optimal design for capping process optimization on the Bausch and Strobel® 

capper.  RSF was modelled as the response variable along and the vials were verified for visual 

acceptability. 

Materials and Methods 

Materials 

Daikyo (Tokyo, Japan) Crystal Zenith (CZ®) vials with a 20mm vial neck diameter were stoppered 

using FluroTec® barrier coated 20mm chlorobutyl rubber stoppers by West (Exton, PA, USA). All 

vials were sealed using 20mm aluminum crimp cap by West (Exton, PA, USA) with a flip-off seal.  

Equipment 

Vials were sealed using two single-station cappers, (a) Integra West Capper® (Genesis Packaging 

Technologies, Exton, PA, USA) and (b) Bausch and Strobel® capping equipment HVM4610 

(Ilshofen, Germany). 

RSF Measurements 

All RSF measurements were conducted using the RSF tester by Genesis Packaging Technologies, 

Exton, PA, USA. 

Statistical Experimental Design 

Capping Process Optimization: Integra West Capper® 

https://www.adelphi-hp.com/products/closures/rubber-stoppers/flurotec-stoppers
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The Integra West Capper® is a single station capping machine used on a laboratory scale and has 

two modifiable capping process parameters affecting the final seal quality, namely, Pre-

compression force (Lbs) and Pressure Block Reference Height (thousands of an inch). Pre-

compression force is the force applied by the plunger on the aluminum seal with the flip-off cap 

(Figure 35. A), whereas Pressure Block Reference Height is the distance between the plunger and 

the capping plate (Figure 35. B).  

 

 

*Mathaes, R., Impact of Vial Capping on Residual Seal Force and Container Closure Integrity, PDA (copyright pending) 

Figure 35. Vial crimping for the Integra West Capper® 

 

A CCD was employed in the capping process optimization experimental design using 

JMP® 12 statistical software (SAS Institute, NC, USA) with the independent variables being (A) 

Pre-compression force and (B) Pressure Block Reference Height whereas RSF was considered as 

the response variable (dependent variable). A CCD uses RSM suitable for investigating the 

quadratic response surface and for constructing a second order polynomial model. The limits of 

the independent parameters were determined on the basis of random trials conducted before the 

A 

B 
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optimization study. In the given study, the above-mentioned two factors were coded as A and B 

respectively, each, studied at five levels, A as -α: 10, -1: 13.98, 0: 35, +1: 56.02, +α: 60 and B as 

-α: 100, -1: 103.2, 0: 120, +1: 136.8, +α: 140 in 9 different combinations: (0, +α), (-1, +1), (+1, 

+1), (-α, 0), (0, 0), (0, +α), (-1,-1), (+1, -1), (0, -α), each combination repeated five times. Table 

23. provides the details on the experimental design employed in this study.   

 

Table 23. Design space for the CCD for the vial crimping process on the Integra West Capper® 

Run number Pre-compression Force (Lbs) 
Pressure Block Reference Height 

(inch*10-3) 

1 13.98 103.2 

2 35.00 120.0 

3 10.00 120.0 

4 10.00 120.0 

5 13.98 136.8 

6 56.02 103.2 

7 35.00 120.0 

8 56.02 103.2 

9 35.00 120.0 

10 35.00 100.0 

11 13.98 103.2 

12 60.00 120.0 

13 35.00 140.0 

14 13.98 103.2 

15 56.02 136.8 

16 60.00 120.0 

17 13.98 136.8 

18 56.02 103.2 

19 60.00 120.0 

20 35.00 120.0 

21 35.00 100.0 

22 13.98 103.2 

23 10.00 120.0 

24 60.00 120.0 

25 56.02 103.2 



137 

 

26 35.00 100.0 

27 56.02 136.8 

28 56.02 136.8 

29 35.00 120.0 

30 56.02 103.2 

31 10.00 120.0 

32 13.98 103.2 

33 35.00 140.0 

34 13.98 136.8 

35 13.98 136.8 

36 35.00 100.0 

37 60.00 120.0 

38 10.00 120.0 

39 35.00 140.0 

40 13.98 136.8 

41 35.00 140.0 

42 56.02 136.8 

43 35.00 100.0 

44 56.02 136.8 

45 35.00 140.0 

 

The general form of the model generated from the design is given below,  

Y = β0 + β1A + β2B + β3AB+ β4 A2+ β5 B2 + ε 

Where Y is the measured value of the response variable and β0, the intercept, is the arithmetic 

average of all quantitative outcomes of 45 experimental runs, β1-β5 are the coefficients computed 

from the observed experimental values of Y, and A and B are the coded levels of the independent 

factors. The A and B terms indicate the average result of changing one factor at a time from its 

low to high value. The interaction term, AB suggests the response changes when these two factors 

are changed simultaneously whereas the terms A2 and B2 depict the quadratic terms. The equation 

aids in understanding the effect of the independent factor/s on the response variables after 

considering the intensity of coefficient and the mathematical sign it carries, that is, positive or 

negative. A positive sign indicates additive effect. Statistical validity was established based on 
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ANOVA provided in the JMP® 12 statistical software (SAS Institute, NC, USA), with level of 

significance considered at p < 0.05. 

The model thus generated was then validated by testing multiple points on the design space and 

comparing the generated actual results to the values predicted by the model.  

Capping Process Optimization: Bausch and Strobel® capper 

The Bausch and Strobel® Capper is a single station, hand sensor activated capping machine with 

in-built settings allowing to modify the capping recipe. This machine has a greater number of 

modifiable crimping parameters in comparison to the Integra West Capper®, namely, Lower 

position of crimping tool (in mm) (X1), Crimping tool lift (in mm) (X2), Crimping tool swivel 

movement pre--crimping position (in °) (X3), Crimping tool swivel movement crimping position 

(in °) (X4), Container rotation revolutions (X5). However, the parameters X3 and X4 denoting 

position of the crimping disc before and at the end of the crimping process had to be constant for 

a single vial-capper combination in accordance to the manufacturer recommendation.  

 

 

Figure 36.  Capping parameters on the Bausch and Strobel® capper  
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The distance (A) in Figure 36. was preset whereas distance (B) corresponding to the factor 

X1 and had to be modified physically and measured with the help of Vernier calipers. This value 

determined how hard the crimping disc (11) pressed against the container neck (12) from below. 

The three major factors or input variable identified that affect the seal quality were Distance B 

(mm) X1, Tool lift (mm) X2 and number of rotations X5. A D-optimal design space was generated 

to screen the modifications of these parameters. The number of rotations (X5) were studied as a 

categorical variable at three levels i.e. 4, 7 and 10. The crimp quality was measured in terms of the 

response variable, RSF. D-optimal experimental design was used for creating the experimental 

design attesting statistical significance using ANOVA and empirical modelling. This method has 

some advantages compared to other designs resulting in smaller number of runs and the ability to 

include categorical factors in the DOE. This optimization strategy can be employed to evaluate the 

relationship between multiple independent variables and determination the optimum conditions 

required to produce a specific desired response. 198 

The first step of generating the design space was to estimate the machine as well as acceptability 

limits of the input variables, i.e. create the edges of the design space. This was done by conducting 

random trials individually modifying the input variables (data not shown). Once the limits of the 

input variables were established, a D-optimal screening study was conducted using JMP® 

12 statistical software (SAS Institute, NC, USA). A 50-run design was generated using the 

software; runs are depicted in Table 24.  
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Table. 24 Design space for the D-optimal design on the Bausch and Strobel® capper 

Run number X1: Distance B (mm) X2: Tool Lift (mm) 

X5: (Categorical 

variable) Number of 

rotations 

1 34 20 10 

2 35.5 2 7 

3 34 2 4 

4 34 2 4 

5 35.5 2 10 

6 34 20 10 

7 34 20 10 

8 34 20 10 

9 34 20 7 

10 34 20 10 

11 34.75 11 7 

12 34 2 10 

13 34 2 10 

14 34 2 10 

15 35.5 2 10 

16 35.5 2 10 

17 34 2 4 

18 35.5 2 4 

19 34.75 11 7 

20 35.5 2 4 

21 35.5 20 10 

22 34 20 4 

23 34 20 4 

24 35.5 20 10 

25 35.5 20 4 

26 35.5 20 10 

27 35.5 2 4 

28 34 2 10 

29 34.75 11 7 

30 34 2 10 

31 35.5 2 4 

32 35.5 2 10 

33 34 2 4 

34 35.5 20 4 

35 34 2 4 

36 34 2 4 
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37 34 20 4 

38 35.5 2 10 

39 35.5 20 7 

40 34 2 7 

41 35.5 20 4 

42 34 20 4 

43 35.5 20 10 

44 35.5 20 10 

45 35.5 20 4 

46 35.5 2 4 

47 34 20 4 

48 35.5 20 4 

49 35.5 2 7 

50 34 20 4 

 

The general form of the model generated from the design is given below,  

Y = β0 + β1X1 + β2X2 + β3X3 + β1 β2 X1 X2 + β1β3 X1X3 + β2β3 X2 X3 + β1β2 β3 X1X2X3 + ε 

D-Optimal designs are appropriate for screening experiments because the optimality 

criterion focuses on precise estimates of the coefficients. This design focuses more on the 

extremities of the design than in the center and is efficient for determining the extent of a design 

space. D-optimal designs, however, are not appropriate for experiments where the primary goal is 

prediction. On the other hand, an I-optimal design places fewer runs on the extremes and focuses 

on the center of the design space, making them robust predictor designs.  Based on the data 

generated by the D-optimal design, a response surface screening study was conducted (I-optimal 

design). Zones of interest were identified from the D-optimal design, factor constraints and 

variable limits were defined accordingly. The I-optimal study allowed us to focus on the 

optimization area of interest by tailoring the limits of the design space. (Height B: 34-34.8 mm; 

Tool Lift: 12-20 mm; Rotations: 7, 10) The design was augmented with an additional 50 runs as 

shown in Table 25.  
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Table 25. Design space for the I-optimal design on the Bausch and Strobel® capper 

Run number 
X1: Distance B 

(mm) 

X2: Tool Lift 

(mm) 

X5: (Categorical variable) 

Number of rotations 

51 34 12.4 7 

52 34 12.4 7 

53 34.6 20 7 

54 34.6 20 7 

55 34 12.4 7 

56 34 12.4 7 

57 34 12.4 7 

58 34.6 20 7 

59 34 12.4 7 

60 34.6 20 7 

61 34.7 12.4 7 

62 34 12.4 7 

63 34 20 10 

64 34 12.4 7 

65 34 12.4 7 

66 34 20 10 

67 34.7 12 7 

68 34.7 12 10 

69 34.6 20 7 

70 34.6 20 7 

71 34.7 12 10 

72 34.6 20 7 

73 34.7 12 10 

74 34 20 10 

75 34 12.4 7 

76 34.7 12 10 

77 34.6 20 7 

78 34.6 20 7 

79 34.7 12 7 

80 34.6 20 7 

81 34.7 12 7 

82 34.7 12 10 

83 34.7 12 7 

84 34 20 10 

85 34.6 20 7 
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86 34.7 12 10 

87 34 12.8 7 

88 34.7 12 7 

89 34.7 12 10 

90 34.7 12.4 7 

91 34.7 12.4 7 

92 34.7 12 10 

93 34.6 20 7 

94 34.7 12 10 

95 34.7 12 10 

96 34 12.4 7 

97 34.6 20 7 

98 34.7 12 10 

99 34.6 20 7 

100 34.7 12 10 

 

Statistical validity was established based on ANOVA provided in the JMP® 12 statistical software 

(SAS Institute, NC, USA), with level of significance considered at p < 0.05. 

The model thus generated was then validated by testing multiple points on the design space and 

comparing the generated actual results to the values predicted by the model.  

Results and Discussion 

Capping Process Optimization: Integra West Capper® 

Table 26 summarizes the regression analyses evaluating effects of factors on the response variable 

(RSF). On the basis of lack-of-fit p-value (0.762) and sequential p-value (<0.0001), a quadratic 

model was chosen with a Power (y + k)λ  transformation as suggested by the Box-Cox diagnostics.  

The positive unstandardized coefficients (β) represent an increase in response variable with a unit 

increase in the predictor. The reverse applies to coefficients with negative values (7). The extent 

of the effect of the independent factors on RSF was determined using the regression analyses and 

plots that provided RSM analyses. Table 27 lists the factors that significantly affect RSF and also 

the predictive equation for the quadratic model. It is observed that both factors A and B, which are 
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the Pre-compression force (Lbs) and Pressure block reference height (inch*10-3) significantly 

affect RSF and they also have a quadratic effect which is evident by the curvature in the Figures 

37.A, and 37.B. As the Pressure block reference height is increased up to 120-125 inch*10-3 

(Fig.37.A) at a constant Pre-compression force, the RSF value increases.  

 

Table 26. Regression analyses for evaluating the effects of independent factors on the response 

variable 

Capper Model Model F-value 
Degree of 

freedom 

R2 values 

R2 
Adjusted 

R2 

Integra West 

Capper® 
Quadratic 107.67 5 0.932 0.924 

Bausch and 

Strobel® 

(D-optimal) 

 

2FI 

 

 

36.104 

 

 

4 

 

 

0.762 

 

 

0.741 

Bausch and 

Strobel® 

(I-optimal) 

 

Quadratic 

 

53.895 

 

5 

 

0.741 

 

0.728 

 

 

Table 27. One-way ANOVA analysis for Quadratic Model on the Integra West Capper® 

Response 

variables 

Independent factors that affect the 

response variable significantly 
p-value Model equation 

RSF 

(Lbs) 

A <0.0001 

RSF = -5.71 + 0.25 A + 

0.132 B + 0.011 AB + 0.006 

A2 -0.028 B2 

B <0.0001 

AB <0.0001 

A2 0.0001 

B2 <0.0001 
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On further increasing the Pressure block reference height, there is an extreme drop in the 

RSF. This observation can be explained as Pressure Block reference height determines the length 

of the aluminum skirt tucked under the vial flange. As this height is increased, the capping plate 

to plunger distance reduces causing the aluminum skirt of the cap to deform and resulting in low 

RSF values. However, looking at the effect of the other factor, RSF increases with an increase in 

the Pre-compression force at constant Pressure block reference height of 120 inch*10-3. (Fig.37.B) 

 

 

 

 

 

 

 

 

 

Figure 37. A. RSF at increasing values of Pressure block reference height when Pre-compression 

force is at a constant of 35 Lbs; B. RSF at increasing values of Pre-compression force when 

Pressure block reference height is at a constant of 120 inch*10-3. 

 

The model also presents with a significant AB interaction (Table 27.) represented 

graphically in Figure 38. The increase in RSF with Pressure Block reference height is significantly 

dependent on the level of Pre-compression force. At a lower level of Pre-compression force (103.2 

inch*10-3), increase in the Pressure-block reference height does not lead to a significant change in 
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the RSF, however at a higher level of Pre-compression force (136.8 inch*10-3), there is a 

significant increase in RSF with an increase in Pressure Block reference height.  

 

 

Figure 38. Significant interaction between Precompression force and pressure block reference 

height for the Quadratic model on the Integra West Capper® 

 

Figure 39. Illustrates a 3D surface profiler, the X1 axis representing increasing levels of 

Pressure block reference height whereas the X2 axis portraying increasing levels of Pre-

compression force, with a single output (response) variable on the Y axis, RSF (Lbs). Increasing 

the Pre-compression force at lower levels of Pressure Block reference height does not significantly 
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affect RSF values. However, at Pressure block reference height 120-130 inch*10-3 the predicted 

RSF values are above 20 Lbs, making it the optimum working range for this process. The orange-

red region in the 3D graph are the model predicted zones for process parameters leading to 

maximum RSF values.  

 

Figure 39. RSM generated 3D Surface Profiler for Integra West Capper® depicting RSF (Lbs) at 

different levels of Independent variables  

 

The robustness of model predictions was verified by crimping vials at different factor 

combinations and comparing the actual RSF to the model predicted RSF. Table 28 represents the 

factor combinations chosen for the validation study. (n=10) Figure 40. illustrates the results of this 

X1 

X2 
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validation. Mean RSF (Lbs.) (red bar) and Mean RSF predicted (blue bar) are plotted on the Y-

axis against increasing levels of Pressure Block reference height divided by Pre-compression force 

on the Y2-axis. There is no statistically significant difference amongst the actual vs the predicted 

RSF values at any level of Pre-compression force or Pressure Block reference height.  

 

Table 28. Model Validation parameters for Integra West Capper® 

Pre-compression Force 

(Lbs) 

Pressure Block Reference Height 

(inch*10-3) 

Predicted RSF 

(Lbs) 

25 125 15.2 

32 128 17.1 

37 128 18.8 

40 130 19.1 

60 110 14.7 

 

 

Figure 40. Design validation, Actual vs Predicted RSF (LBS) varying Pre-compression force and 

pressure block reference height. 
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Capping Process Optimization: Bausch and Strobel® Capper 

The Bausch and Strobel® capper had a greater number of factors affecting the RSF in comparison 

to the Integra West Capper® including a categorical variable. A D-optimal design was chosen as a 

screening study to initially study the design space and observe the effect of single factors/ 

interactions on the response variable. Table 29. summarizes the regression analyses evaluating 

effects of factors on the response variable (RSF). A 2FI (2 Factor Interaction) model was selected 

for this analyses on the basis of favorable R- Squared value (0.762) and the Lack of Fit test p-value 

(0.915). Table 29 lists the factors that significantly affect RSF and the predictive equation for the 

2FI model. According to this model, factors Distance B (mm), Tool lift (mm) and Number of 

rotations significantly affect RSF of the final crimp. 

 

Table 29. ANOVA for 2FI model and Quadratic model for D-optimal and I-optimal design 

respectively 

Experimental 

design 

Independent factors that affect 

the response variable 

significantly 

p-value Model equation in terms 

of Coded Factors 

D-optimal 

design 

(Screening) 

X1 <0.0001 RSF = 9.29 -5.24 * X1 + 

3.40* X2 + 1.72 * X5 [1] 

-0.12* X5 [2] -4.46 * X1X2 
X2 <0.0001 

X5 0.0161 

X1X2
  <0.0001 

I-optimal 

design 

(Optimization) 

 

X1 <0.0001  

RSF = 16.82+ -2.756 * X1 

+ 2.39* X2 + 1.298 * X5 + 

{X1 X2* -1.021} + {X12* 

-0.763} 

X2 <0.0001 

X5 0.0161 

X1X2
  <0.0001 

X1
2 0.0026 

 

We also observe a significant two factor interaction between Distance B and the Tool lift (Figure 

41.). From Figure 41 we can conclude that RSF is not significantly dependent on the Distance B 
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at low levels of the Tool lift (2mm), however, at a higher level of Tool lift (20 mm), RSF decreases 

with an increase in Distance B.  

  

Figure 41. 2FI for the D-optimal screening design, Factors Distance B and Tool lift.  

 

Distance B corresponds to the height of the container with a loosely positioned cap and lesser this 

distance, snugger is the fit of the cap. The crimping tool protrudes (lifts) during the time of 

crimping. Tool lift is the lift of the crimping tool during the crimping process, and thus at higher 

value of tool lift the vial is sealed more tightly and corresponds to high RSF value. The D-optimal 

screening study provides us with a general idea about the acceptable factor limits for the model. 

Figure 42. depicts the prediction profiler for the D-optimal design helping us determine factor 

constraints for further augmenting this design. It is not desirable (desirability factor below 0.5) to 

increase the distance B above 34.8 mm or to reduce the Tool lift below 12 mm. Taking into 

consideration the data from both of the output variables, the factors were further tailored for the 
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augmentation, Distance B was studied from 34-34.8 mm, Tool lift was studied from 12-20 mm 

and number of rotations were restricted to 7 and 10.  

 

 

 

 

 

 

 

 

Figure 42. Prediction profiler for the D-optimal screening design: Output variable RSF, Input 

variables: Distance B, Tool lift and Number of rotations and the predicted Desirability 

 

Table 29 enlists the significance testing for the I-optimal design; a quadratic model was chosen for 

this data based on the model R- Squared value and the Lack of Fit (p-value 0.9926) (Table 26.). 

The individual factors that significantly affect RSF include all the three independent variables; 

Distance B (mm), Tool lift (mm) and number of rotations. Also, Distance B has a slight quadratic 

effect on the observed RSF values, observed in Figure 43. Figure 43 is the 3D surface profiler for 

the I-optimal design and it plots Tool Lift and Distance B on the X1 and X2 axes respectively, 

while RSF as the response on the Y axis. According to the model predictions, the red zone as 

shown in Figure 43 are the areas of maximum RSF predicted. To achieve values of RSF 20 Lbs 

Distance B 
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and above, it is advisable to operate with Tool lift maintained above 15mm and Distance B 

maintained below 34.4mm. The rotations have been maintained at number 10, however there is no 

major difference in RSF by changing the number of rotations from 7 to 10.  

 

 

Figure 43. Surface profiler for the I-optimal screening design: Output variable RSF, Input 

variables: Height C, Tool lift Number of Rotations set at 10 

 

The robustness of the I-optimal design model was verified by crimping vials at different factor 

combinations and comparing the actual RSF to the model predicted RSF. Table 30 represents the 

factor combinations chosen for the validation study. (n=10) In terms of percentage, there is about 

4%, 22%, 8%, 6%, 4% for factor combinations 1, 2, 3, 4, 5 (Sr.no.) respectively. The model has 
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very good predictability with % error less than 10% for all combinations except Sr.no 2, which has 

a 21.8% deviation from the predicted value. This explains that the model has good predictability 

for factors near the center of the model, but its prediction efficacy reduces at the edges of the 

design.  

 

Table 30. Design validation, Actual vs Predicted RSF (LBS) varying factors Distance B, Tool 

Lift and Number of rotations 

 

Sr. no. Distance B 

mm 

Tool Lift 

mm 

Number of 

rotations 

 

Predicted 

RSF (Lbs) 

 

Actual RSF 

(Lbs) 

1 34.4 12 7 14.83 14.2 ± 1.2 

2 35.2 12 10 8.7 6.8 ± 1.3 

3 34.6 22 7 18.29 16.8 ± 1.0 

4 34 20 7 22.84 21.4 ± 1.5 

5 34 22 10 25.21 26.4 ± 1.9 

 

Conclusion 

Using a statistical Design of Experiment technique, capping parameters were optimized for 

single station cappers, Integra West Capper® and Bausch and Strobel® capper to increase CCI 

of crimped vials in all storage and transport conditions. On the basis of these generated models 

CCI can be studied as a function of unit processes, such as capping. This study also helped us 

co-relate the crimping mechanisms for lab-scale single station cappers in turn helping us 

standardize the capping process for a vial-stopper combination across lab-scale equipment. For 

the Integra West Capper®, in order to maintain CCI and obtain a high RSF value, Pre-

compression force of 35 Lbs and above and Pressure Block reference height of 120 to 130 

inch*10-3 are instrumental. For the Bausch and Strobel® capper, lower position of crimping 
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tool (Distance B) of 34-34.4 mm and Tool lift of 15mm and above are important. Increasing 

the number of rotations during crimping from 7 to 10 did not play a significant role in 

optimizing the RSF values.  
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