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ABSTRACT 
 
 
In obligate symbioses, the host’s survival relies on the successful acquisition and maintenance of 

symbionts, which can be transferred from parent to offspring via direct inheritance (vertical 

transmission) or acquired anew each generation from the environment (horizontal transmission).  

Vertical transmission ensures progeny acquire their obligate symbionts, but progeny 

encountering an environment that differs from that of their parent may be disadvantaged by 

hosting a suboptimal symbiont.  Conversely, horizontal symbiont acquisition provides hosts the 

benefit of acquiring symbionts well suited to the prevailing environment, but progeny may fail to 

acquire their obligate symbionts.  Here I show that the coral Stylophora pistillata may garner the 

benefits of both transmission modes by releasing progeny with maternally derived symbionts that 

are also capable of subsequent horizontal symbiont acquisition.  The algal symbionts 

(Symbiodinium) present in S. pistillata adults, juveniles, and larvae (planulae) were identified 

using denaturing-gradient gel electrophoresis (DGGE) and real-time PCR.  DGGE confirmed 

previous reports that in the Gulf of Eilat, Red Sea, shallow water (2-6m) S. pistillata adult coral 

colonies host clade A Symbiodinium, while deep-water (24-26m) colonies host clade C.  Real-

time PCR uncovered previously undetected Symbiodinium present at low-levels in some deep, 

but no shallow water adult colonies.  Planulae only inherited the dominant symbiont clade from 

their maternal colony.  While most shallow water juveniles hosted only clade A Symbiodinium, 

deep-water juveniles either hosted clade C, clade A, or a mixture of both clades.  As all planulae 

analyzed hosted only one symbiont clade, while some juvenile colonies 
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hosted either multiple symbionts, or symbionts not characteristic of the depth in which they 

occurred, these data support environmental Symbiodinium acquisition, in addition to vertical 

symbiont inheritance, in the coral S. pistillata.  Reciprocal depth transplant experiments of 

juvenile S. pistillata colonies were executed to monitor potential changes in the Symbiodinium.  

Hosting physiologically distinct Symbiodinium may allow coral host survival under varied 

environmental conditions.  Therefore, horizontal symbiont acquisition may enable coral species 

with vertical transmission to acquire advantageous symbionts.  In turn, this may provide genetic 

variation in the symbiosis on which natural selection can act, providing a mechanism for coral 

adaption to global climate change.
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I. MIXING IT UP: MULTIPLE SYMBIONT ACQUISITION 
STRATEGIES AS AN ADAPTIVE MECHANISM IN THE 

CORAL STYLOPHORA PISTILLATA 

 

Introduction 

Obligate Symbioses 

In obligate symbioses, the host’s survival relies on the successful acquisition and 

maintenance of symbionts.  Symbionts can either be transferred from parent to offspring via 

direct inheritance (vertical transmission) or acquired anew each generation from the environment 

(horizontal transmission).  Vertical transmission should promote obligate mutualisms because 

the fitness of the symbiont is intrinsically correlated to the successful reproduction of the host 

(Wilkinson & Sherratt 2001; Sachs et al. 2011).  Additionally, partner fidelity eliminates the risk 

of cheating (Leigh 2010).  In turn, the host benefits because vertical transmission ensures 

offspring inherit their obligate symbionts, eliminating the risk of lack of symbiont acquisition 

(Douglas 1998; Wilkinson & Sherratt 2001).  

 Horizontal symbiont transmission seems counterintuitive in obligate symbioses because 

host survival hinges on a potentially unpredictable symbiont source and the risk of cheating is 

high (Leigh 2010; Douglas 1998).  Despite these risks, obligate symbioses are maintained via 

horizontal transmission in a variety of species (Bright & Bulgheresi 2010; Wilkinson & Sherratt 
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2001; Leigh 2010; Sachs et al. 2011), including most scleractinian corals (Baird et al. 2009).  As 

partner fidelity is not absolute in horizontal transmission, strong partner choice can allow

mutualisms to persist in systems with horizontal transmission (Ruby & Lee 1998; Leigh 2010; 

Sachs et al. 2011).  Partner sanctions can also promote stable mutualism through the

“punishment” of cheaters or nonperforming symbionts (Leigh 2010; Sachs et al. 2011).  Corals 

with horizontal transmission may use both partner choice and partner sanctions to maintain 

stable symbioses with dinoflagellate algae (Leigh 2010). 

 Partner choice creates the opportunity for the host to acquire symbionts that may improve 

host fitness and allow for adaptation to environmental changes (Douglas 1998; Wilkinson & 

Sherratt 2001).  Vertical symbiont transmission, on the other hand, does not provide the 

opportunity to acquire non-parental symbionts.  Consequently, hosts may be disadvantaged in 

changing environments by hosting a suboptimal symbiont.  Host species may therefore benefit 

from employing both symbiont transmission modes.  Phylogenetic analyses have revealed 

predominant vertical transmission punctuated by relatively infrequent horizontal symbiont 

acquisition in some obligate prokaryote-insect (Baldo et al. 2006; Allen et al. 2007; Kikuchi & 

Fukatsu 2003; Haine et al. 2005), prokaryote-marine invertebrate (Lim-Fong et al. 2008; Schmitt 

et al. 2008; Stewart et al. 2008; Yang et al. 2011), prokaryote-earthworm (Schramm et al. 2003), 

and eukaryotic lichen symbioses (Dal Grande et al. 2012).  As scleractinian corals host obligate 

algal symbionts, it is possible that corals may also utilize both symbiont transmission strategies.

 

Symbiodinium Diversity and its Ramifications for Corals 

Dinoflagellate algae in the genus Symbiodinium form mutualistic symbioses with a wide 

array of marine organisms including cnidarian hosts (e.g. scleractinian corals, octocorals, sea 
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anemones) (Pochon et al. 2007).  In the obligatory relationship scleractinian corals form with 

Symbiodinium, the host provides its unicellular tenants with protection and nutrients that aid 

photosynthesis in oligotrophic tropical waters.  In return, Symbiodinium translocate up to 95% of 

their photosynthate, providing a nutritional foundation for host metabolism (Muscatine 1990) 

and calcification (Allemand et al. 2011).   

Symbiodinium are divided into nine distinct phylogenetic clades named A-I (Pochon & 

Gates 2010).  Within clades, Symbiodinium exhibits substantial diversity, but as species limits 

remain largely unresolved, subclades are referred to as types (LaJeunesse 2001; Baker 2003; van 

Oppen 2004; LaJeunesse et al. 2005; Correa & Baker 2009a; Stat et al. 2011).  Specific 

Symbiodinium types exhibit distinct physiologies and respond differently to variation in light and 

temperature (Warner et al. 1999; Iglesias-Prieto et al. 2004; Rowan 2004; Tchernov et al. 2004; 

Loram et al. 2007; Reynolds et al. 2008; Sampayo et al. 2008).   

Given the genetic and physiological diversity of the Symbiodinium genus, and the rapidly 

declining health of coral reef ecosystems worldwide, there is a great deal of interest in 

understanding whether corals are able to host multiple Symbiodinium types, either sequentially or 

simultaneously.  Stress events that lead to a reduction in Symbiodinium numbers may provide an 

opportunity for coral hosts to acquire novel symbionts from the environment (Buddemeier & 

Fautin 1993; Buddemeier et al. 2004).  Corals may be able to rapidly adapt to changing 

environmental conditions by sequentially altering their symbionts such that Symbiodinium types 

mal-adapted to current stressors are replaced with types well suited to the prevailing environment 

(Buddemeier et al. 2004).  Following stress events, the acquisition of novel Symbiodinium has 

been documented in numerous coral species, but the relationship appears transient, as novel 
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symbionts do not persist after recovery (Baker 2004; Lewis & Coffroth 2004; Thornhill et al. 

2006b; Sampayo et al. 2008; LaJeunesse et al. 2009b; Coffroth et al. 2010).  

In adult coral colonies, although not common, some species host multiple Symbiodinium 

types within the same colony.  Subsequent to a stress event, background, or low-level, 

Symbiodinium populations may increase in abundance (Buddemeier et al. 2004; Silverstein et al. 

2012).  While some species do host multiple clades, at abundant or background levels, in the vast 

majority of coral species, adults feature extremely stable and highly specific symbioses with a 

single Symbiodinium clade (Goulet 2006), even during stress events (LaJeunesse et al. 2010; Stat 

et al. 2009a; Thornhill et al. 2006a,b; Thornhill et al. 2009).  In general, coral species that 

horizontally acquire symbionts may exhibit a greater capacity to host multiple Symbiodinium 

types at either abundant or low-levels (Stat et al. 2008a).  Even still, low-level Symbiodinium 

have been detected in adult colonies of several coral species with vertical symbiont transmission 

(Mieog et al. 2007; LaJeunesse et al. 2009b; Silverstein et al. 2012).  In these vertical systems, if 

a single adult colony hosts multiple Symbiodinium, progeny may inherit all or any one of the 

Symbiodinium types present in the maternal colony.   

 

Initial Symbiont Acquisition in Corals 

Deciphering symbiont acquisition strategies utilized by corals throughout ontogenesis is 

key to understanding corals’ ability, or lack thereof, to alter their symbionts based on the 

environmental conditions of the habitat in which they grow.  Scleractinian corals initially acquire 

Symbiodinium through either horizontal or vertical symbiont transmission and, in general, each 

symbiont transmission mode is associated with one of two distinct coral reproductive modes.  

The majority of coral species (~84-89%) broadcast spawn, whereby eggs and sperm are released 



 5 

into the water column where external fertilization and larval development take place (Baird et al. 

2009; Harrison 2011).  The remaining 11-16% of coral species brood larvae (planulae), in which 

fertilization and planula development occur internally (Baird et al. 2009; Harrison 2011).  The 

mode of symbiont transmission is not known for many species, but in general, ~90% of brooding 

species display vertical symbiont transmission (Baird et al. 2009).  In contrast, horizontal 

acquisition is the predominant transmission mode in broadcast spawning coral species, with only 

~25% of all spawners exhibiting vertical symbiont inheritance (Baird et al. 2009).  

Vertical transmission of symbionts results in stable, long-lasting symbioses that are well 

adapted to the prevailing environment (Wilkinson & Sherratt 2001).  Thus, vertical transmission 

ensures that coral planulae inherit an advantageous Symbiodinium type while eliminating the risk 

of death due to a lack of symbiont acquisition (Douglas 1998; Weis et al. 2001).  Symbiotic 

planulae also benefit from energy resources of the photosynthetically derived nutrients provided 

by Symbiodinium (Richmond 1987; Isomura & Nishihira 2001; Baird et al. 2009; Harii et al. 

2010).  Most symbiotic planulae are competent to settle within hours to days of release 

(Fadlallah 1983; Nishikawa et al. 2003), but long competency periods (from 35-103 days) have 

been documented in several brooding species with vertical transmission (Richmond 1987; 

Rinkevich & Loya 1979a; Harii et al. 2002).  Long competency periods coupled with nutritional 

provisioning from Symbiodinium, may allow for occasional long-distance dispersal, which 

increases the probability of successful settlement in a favorable habitat (Isomura & Nishihira 

2001; Harii et al. 2010) and allows for the colonization of new habitats (Richmond 1987; Baird 

et al. 2009).   

Although hosting Symbiodinium confers benefits to planulae, there are costs.  First, 

having symbionts at the planula stage can generate high levels of anti-oxidant defense activity 
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and increased oxidative cellular damage (Yakovleva et al. 2009).  Further, high intensities of 

photosynthetically active radiation (PAR, 400-700nm) and UV radiation (280-400nm) can 

reduce chlorophyll concentration and consequently survivorship in symbiotic planulae (Gleason 

& Wellington 1995).  The negative effects associated with hosting Symbiodinium in the larval 

stage can apply to species with either symbiont transmission mode, since even in some species 

with horizontal symbiont transmission, Symbiodinium acquisition can occur prior to settlement 

(Harii et al. 2009).   

Second, due to the fidelity of symbiont transfer, vertical symbiont transmission may 

preclude coral hosts from associating with novel Symbiodinium during times of environmental 

change (Benayahu & Schleyer 1998; Douglas 1998; Loh et al. 2001; Weis et al. 2001; Thornhill 

et al. 2006a; Harii et al. 2009).  In contrast to vertical transmission, horizontal Symbiodinium 

acquisition may predominate in corals because it allows planulae or juveniles to acquire new 

symbionts each generation, increasing the probability of acquiring Symbiodinium well suited to 

the environment in which the planulae settle (Rowan & Knowlton 1995).  While planulae that 

inherit their Symbiodinium vertically may be incapable of acquiring symbionts from the 

environment, planulae may still inherit a diverse Symbiodinium population if maternal colonies 

host multiple Symbiodinium types.  To my knowledge, no studies have assessed the 

Symbiodinium types present in planulae that inherit symbionts directly from their maternal 

colony, and therefore it remains unclear whether planulae with vertically transmitted symbionts 

can host multiple types of Symbiodinium.    
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Symbiont Promiscuity in Juvenile Corals 

The Symbiodinium specificity exhibited by adult corals is thought to limit the possibility 

of symbiont altering in the adult life stage (LaJeunesse 2002; Goulet & Coffroth 2003; Goulet 

2006).  But, some coral species with horizontal transmission are capable of acquiring novel 

Symbiodinium during the juvenile life stage (Coffroth et al. 2001; Gomez-Cabrera et al. 2008; 

Abrego et al. 2009a,b; Weis et al. 2001; Little et al. 2004; Rodriguez-Lanetty et al. 2006).  

While the juvenile stage may be key in establishing novel symbioses, no studies to date have 

demonstrated juveniles capable of successfully maintaining an exogenously acquired novel 

symbiont into adulthood.  The onset of Symbiodinium specificity has been shown to range from 

as little as 21 hours in Fungia scutaria planulae (Rodriguez-Lanetty et al. 2006) to up to 3.5 

years in the case of Acropora tenuis juveniles (Abrego et al. 2009b), but the mechanisms of 

specificity are not well understood (Hirose et al. 2008; Schnitzler and Weis 2010).  Initial uptake 

of symbionts by planulae and juveniles may be non-selective (Little et al. 2004; Harii et al. 

2009), and infection may be dominated by opportunistic symbionts that are subsequently 

removed from symbiosis (Abrego et al. 2009a).  Furthermore, it is unclear whether selection 

occurs at the holobiont (host and symbiont) level, whereby hosts with certain symbionts perish, 

the host level, whereby either the host retains or excludes certain algal types (Little et al. 2004), 

or the symbiont level, where algal types compete for dominance within the host (Gomez-Cabrera 

et al. 2008).   

Vertical transmission is often regarded as a “closed” system that limits symbiont diversity 

in all life stages (Benayahu & Schleyer 1998; Douglas 1998; Loh et al. 2001; Weis et al. 2001; 

Thornhill et al. 2006a; Harii et al. 2009; but see van Oppen 2004).  As such, corals with vertical 

symbiont transmission may not acquire Symbiodinium in early ontogeny because they are already 
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equipped with maternally derived symbionts and may be incapable of additional horizontal 

acquisition.  Studies to date have consequently focused on juvenile corals that horizontally 

acquire symbionts.  Although not tested, it has been suggested that horizontal acquisition may 

occur in coral species with vertical symbiont transmission (van Oppen 2004; Megalon et al. 

2006; Stat et al. 2008a).  To investigate this hypothesis, the present study sought to determine the 

Symbiodinium identity in the planulae and juveniles of a species with vertical symbiont 

transmission.   

 

Stylophora pistillata in the Red Sea 

The brooding coral Stylophora pistillata (family Pocilloporidae) is widely distributed 

throughout the Indo-Pacific and Red Sea (Veron 2000), and is among the most abundant frame 

building corals in the Gulf of Eilat, Red Sea (Figure 1; Rinkevich & Loya 1979a; Loya 1976b).  

As a sequential hermaphrodite, the development of S. pistillata in the Red Sea is categorized into 

four distinct life stages: 1) young, non-reproductive, 2) first year reproductive colonies 

(commonly male), 3) hermaphroditic mature colonies, and 4) hermaphroditic old colonies 

(Rinkevich & Loya 1979b).  Hermaphroditic mature and old colonies are distinct stages because 

old colonies produce more female gonads per polyp compared to mature colonies (Rinkevich & 

Loya 1979b).  Reproductively mature hermaphroditic colonies have a long reproductive season 

in shallow water, releasing planulae from December through July (Loya 1976a, Rinkevich & 

Loya 1979b; Zakai et al. 2006).  The reproductive season is about two or three months shorter in 

deep as compared to shallow water colonies (Rinkevich & Loya 1987). 
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Figure 1. Shallow water adult Stylophora pistillata colony. Photograph taken on the reef in 
front of the Interuniversity Institute for Marine Science in Eilat, Eilat, Israel.  

 

Adult S. pistillata in the Gulf of Eilat, host two distinct Symbiodinium clades.  Shallow 

water colonies (<17m) associate with clade A Symbiodinium (Lampert-Karako et al. 2008; 

Winters et al. 2009), specifically type A1 (LaJeunesse 2001; Daniel 2006; LaJeunesse et al. 

2009a).  Deep-water congeners harbor symbiont types in clade C (Winters et al. 2009).  Deep-

water colonies ranging from 20-30m host Symbiodinium type C72 (LaJeunesse et al. 2005; 

Daniel 2006).  Mesophotic colonies (>30m) host several Symbiodinium clade C types: C1s, 

C21s, C21t, and C72s (Daniel 2006).  Depth mediated patterns of symbiont variability are seen 

in coral species around the world at both the cladal and subcladal level (Sampayo et al. 2007; 

Bongaerts et al. 2010a,b; Frade et al. 2008; Copper et al. 2011; Rowan & Knowlton 1995).  To 

my knowledge, no studies have assessed the potential presence of low-level Symbiodinium in a 

species that exhibits depth mediated symbiont variability.  

 

 

 



 10

Research Objectives 

Given that S. pistillata in the Gulf of Eilat hosts two different Symbiodinium clades as a 

function of depth, I determined if shallow and deep-water adult colonies hosted previously 

undetected Symbiodinium at low-levels.  Since S. pistillata vertically transmits its symbionts, I 

further analyzed planulae released from both shallow and deep-water maternal colonies to 

determine the Symbiodinium clade(s) inherited.  Which symbiont(s) progeny inherit may affect 

their survivorship in different habitats due to physiological differences in S. pistillata symbionts 

(Winters et al. 2009).  Finally, by examining the Symbiodinium genetic identity at both depths in 

juvenile colonies, I determined whether juveniles are capable of acquiring Symbiodinium from 

the environment.  Understanding the Symbiodinium present throughout S. pistillata ontogenesis 

may lend insight into the symbiont depth distribution observed in adult colonies and whether it is 

a consequence of host differential mortality or symbiont succession.  Additionally, deciphering 

whether S. pistillata juvenile colonies are capable of both vertical and horizontal symbiont 

transmission has important implications concerning corals’ ability to adapt to global climate 

change.    

 

Methods 

Sample Collection 

Samples were collected from a reef in front of the Interuniversity Institute for Marine 

Sciences in Eilat (IUI), Gulf of Eilat (Aqaba), Red Sea (29º 30’ N, 34º 56’ E).  Stylophora 

pistillata colonies were haphazardly collected from both shallow (2-6m) and deep (24-26m) 

water habitats in May, June, and/or July of 2009-2011 using SCUBA.  S. pistillata were 

collected from three distinct age classes: adult colonies (~15-30cm width), juveniles colonies 
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(~0.5-2.8cm width), and pelagic planulae.  All samples were immediately frozen at -80ºC or 

preserved in 95-100% ethanol for DNA analysis.  From each adult colony, a branch piece of 

approximately 2cm in length was collected.  In total, samples were collected from 14 shallow 

and 21 deep-water colonies in July of 2009; from 10 shallow and 11 deep-water colonies in May-

July of 2010; and from 10 shallow and 14 deep-water adult colonies in June of 2011.   

From each adult colony sampled in 2009 and 2010, spawned planulae were also collected 

using planula collection nets as described by Zakai et al. (2006; Figure 2).  No planulae were 

collected in 2011.  Planula collecting nets consisted of a mesh plankton net topped with a 

positively buoyant plastic collection container and a drawstring that secured the net around the 

base of the maternal colony.  As planulae are positively buoyant, upon release, they swam into 

the collection container.  The collection nets were placed at dusk and left on the colonies 

overnight for approximately 12 hours.  The following morning, the nets were collected and 

immediately moved to an outdoor flowing seawater table, and the contents of each collection 

container were emptied into a bucket.  Planulae were then collected with a Pasteur pipette and 

preserved in 95-100% ethanol.  S. pistillata colonies were less fecund in 2010 compared to the 

2009 sampling period.  Therefore, while an adequate number of planulae were collected from all 

adult colonies over a single collection night in 2009, adult colonies were repeatedly sampled in 

2010 in order to obtain a sufficient sample size.   
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Figure 2. Planula collection net.  Net is placed over a shallow water adult Stylophora pistillata 
colony. 

 

Juvenile S. pistillata colonies were haphazardly collected from both depths only in July 

of 2010.  Entire juvenile colonies were removed from both natural and artificial substrates using 

a hammer and chisel.  Juveniles were immediately transferred to an outdoor flowing seawater 

table under shading equivalent to the irradiance levels present at the depth from which they were 

collected.  All collected colonies appeared healthy with no visible signs of bleaching.  As S. 

pistillata colonies are approximately spherical, the length (l), width (w), and height (h) of all 

juvenile colonies were recorded.  The geometric mean radius (��) was then calculated (Loya 

1976a, Loya 1976b) using the following formula: 

�� � ��� � � � �	
/�	/2. 

An approximate age was then extrapolated for each juvenile colony based on growth rate 

estimates for shallow water S. pistillata colonies in the Gulf of Eilat (Loya 1976a, Loya 1976b).  

A small chip (~4-7mm) was removed from each juvenile and preserved in 100% ethanol for 

subsequent DNA analysis. 



 13

DNA Extraction  

Genomic DNA was extracted from each adult and juvenile coral fragment and individual 

planula using either a phenol:chloroform protocol or a Wizard Genomic DNA Purification Kit 

(Promega).  Most of the 2009 adult samples were extracted using a phenol:chloroform extraction 

protocol as described by Goulet et al. (2003).  An adult coral branch piece, approximately 4mm 

by 4mm, was added to a 1.5ml microcentrifuge tube with 600µl of digestion buffer (100mM 

Tris, 5mM EDTA, 200mM NaCl, 0.2% sodium dodecyl sulfate (SDS)).  Coral tissue was 

disrupted with a plastic pestle before 3.6µl of proteinase K (20mg/ml) was added.  The tubes 

were then incubated at 65°C for one hour.  600µl of chloroform-isoamyl alcohol (24:1) was 

added and tubes were left on a shaker for five minutes.  Samples were then centrifuged for five 

minutes.  The top aqueous phase was removed and placed into a fresh 1.5ml microcentrifuge 

tube with 600µl of phenol:chloroform:isoamyl alcohol (25:24:1).  Once again, the samples were 

left to shake for five minutes prior to a five-minute centrifugation.  The top aqueous phase was 

removed and placed into a fresh 1.5ml microcentrifuge tube with 1ml of 95% ethanol.  Samples 

were then left to precipitate overnight at -20°C.  Next, samples were centrifuged for 30 minutes 

and the resulting supernatant was decanted.  The pellet was then washed in 500µl of 70% ethanol 

and centrifuged for five minutes, two separate times.  After the second wash and centrifugation, 

the ethanol was removed and the pellet was dried prior to re-suspension in 20-30µl of TE buffer.  

This protocol was also used for most of the 2009 planula samples, but reagent volumes were 

reduced ten-fold according to Coffroth et al. (2001).  As multiple planulae released from a single 

parent were stored in the same microcentrifuge tube, clumps of multiple planulae were separated 

using a dissecting microscope such that entire individual planulae were transferred to new 

microcentrifuge tubes for DNA extraction.  
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In an effort to eliminate the extra source of error associated with the use of lab-made 

reagents in the phenol:chloroform extraction protocol (an important consideration for real-time 

PCR analysis, S. Baerson pers. comm.), I extracted some of the 2009 and all of the 2010 adult 

and planula samples using the Wizard DNA (Promega) extraction protocol according to 

LaJeunesse et al. (2003).  All juveniles and 2011 adult colonies were extracted using the Wizard 

DNA protocol.      

Following LaJeunesse et al. (2003), an approximately 4mm by 4mm adult or juvenile 

coral fragment was placed in a 1.5ml microcentrifuge tube with 600µl of nuclei lysis buffer 

(Promega) and 100-200µl volume of glass disruption beads (0.25-0.05mm).  Samples were 

incubated at 65°C with 3µl of proteinase K (20mg/ml) for one hour and briefly vortexed every 

20 minutes.  The samples were next incubated for 20 minutes at 37°C with 1µl of RNAase 

(4mg/ml; Promega).  After incubation, 260µl of protein precipitation solution (Promega) was 

added, gently mixed, and the tubes were placed on ice for 15 minutes.  The samples were 

centrifuged for five minutes (12,000rpm) and 600µl of the resulting supernatant was placed into 

a new 1.5ml microcentrifuge tube with 700µl of 100% isopropanol and 25µl of sodium acetate 

(3M).  The precipitate was then placed on ice for an additional 20 minutes.  The DNA was 

centrifuged for five minutes (12,500rpm) and the resulting pellet washed in 500µl of 70% 

ethanol.  After a final centrifugation, the supernatant was decanted and the pellet was dried 

before re-suspension in 10-20µl of DNA rehydration solution (Promega).     

In order to extract planula DNA, I modified the LaJeunesse et al. (2003) Wizard DNA 

protocol to accommodate the small sample volume.  Planula samples were processed by the 

same protocol as the adults and juveniles, but all reagent volumes were reduced 10-fold (with the 

exception of final DNA pellets, which were re-suspended in 10µl of DNA rehydration solution 
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(Promega)).  As planulae have no calcified structures, no glass beads were used and instead a 

planula was crushed against the side of the microcentrifuge tube using a pipette tip.    

 

Amplification of the Hypervariable Internal Transcribed Spacer 2 (ITS2) Region of the 

Ribosomal Array 

The rapidly evolving internal transcribed spacer 2 (ITS2) region of the ribosomal array 

(Figure 3) is the most extensively utilized marker for differentiating Symbiodinium due to its 

ability to resolve sub-cladal diversity.  Owing to the widespread use of this marker, there is 

extensive DNA sequence data available, allowing for the rapid characterization of Symbiodinium 

types present within a host.  While other markers are available and still more are being 

developed (LaJeunesse & Thornhill 2011; Pochon et al. 2012), to date, ITS2 is the best available 

marker for type level resolution in the Symbiodinium genus.   

 
Figure 3. Schematic of the ribosomal subunit consisting of tandemly repeated copies of the 
rDNA operon.  Each cistron consists of the highly variable ITS1 and ITS2 regions surrounded 
by the highly conserved 18S, 5.8S, and 28S regions of the large (LSU) and small (SSU) 
ribosomal subunits. 

 

The ITS2 region of the ribosomal gene was amplified using the Symbiodinium specific 

primer set developed by LaJeunesse and Trench (2000; Table 1).  The forward primer 

(ITSintfor2) anneals to a highly conserved region of the 5.8S ribosomal gene.  The reverse 

primer (ITS2CLAMP) is equipped with a 39bp GC-clamp on the 5’ end and anneals to the 

conserved 28S region (Figure 3).   



 16

To ensure PCR specificity, a “touchdown” amplification protocol was used as described 

by LaJeunesse (2002).  Following an initial denaturation step of 92°C for three minutes, samples 

were run for two sets of 20 cycles with the following conditions: 92°C for 30 seconds, 60°C for 

45 seconds, and 72°C for 30 seconds.  For the first round of 20 cycles, annealing conditions were 

set at 60ºC and were dropped by 0.5ºC each cycle until a final annealing temperature of 50ºC 

was reached.  With a constant annealing temperature of 52ºC, another 20 cycles were run.  A 

final 10 minute annealing step was run at 72°C.  

 

Denaturing-Gradient Gel Electrophoresis (DGGE) 

Denaturing-gradient gel electrophoresis (DGGE) of ITS2 has been used extensively to 

investigate Symbiodinium diversity within coral hosts.  DGGE fingerprinting of ITS2, coupled 

with the sequencing of diagnostic bands, has resulted in the identification of hundreds of unique 

Symbiodinium types (LaJeunesse et al. 2002; Correa & Baker 2009a; Stat et al. 2011).   

DGGE takes advantage of the fact that double stranded DNA exhibits unique melting 

temperatures based on the length and G/C content of the sequence.  Therefore, as double-

stranded DNA migrates through a gradient of increasing denaturant chemicals, diagnostic 

banding profiles are created through differences in the dissociation, or melting point of unique 

DNA sequences.  Even a single base-pair change will alter the dissociation point such that DNA 

fragments with low melting temperatures will quickly denature and migrate only a short distance 

into the gel relative to fragments with high melting temperatures (LaJeunesse 2002, Sampayo et 

al. 2009). 

The PCR amplified ITS2 product was electrophoresed on an 8% polyacrylamide 

denaturing gradient gel (45-80% urea-formamide gradient) at a constant temperature (60ºC) for 



 17

13 hours at 120V (CBS Scientific DGGE system; Thornhill et al. 2006b).  Gels were stained 

with SYBR Green I nucleic acid gel stain (Invitrogen) for at least 20 minutes.  The most distinct 

and dominant bands were excised and placed into individual 1.5ml microcentrifuge tubes with 

500µl of nuclease-free water.  The tubes were vortexed for two minutes and left to incubate at 

4ºC for at least two days before the elute was PCR amplified for direct sequencing using the 

ITSintfor2 primer and the ITS2Rev primer without the GC-clamp (LaJeunesse 2002, Sampayo et 

al. 2007).  The PCR reaction products were sequenced, in the forward direction only, on an 

Applied Biosystems 3730 capillary sequencer (Core DNA Laboratory at Arizona State 

University, Tempe, AZ).  Sequence chromatographs were analyzed manually using Geneious 

(version 5.3.6) and compared to GenBank submissions for Symbiodinium type identification.  

Adult corals were run on the same gel with a maximum of 17 of their released planulae 

(some colonies released more than 17 planulae, but due to well restrictions, no more than 17 

planulae were run per adult colony).  In total, from the 2009 samples, 11 shallow and 19 deep-

water colonies were run in addition to 131 shallow and 143 deep-water planulae.  From the 2010 

samples, nine shallow and 10 deep-water adults were run along with 115 shallow and 96 deep-

water planulae.   Of the juveniles collected in 2010, 26 shallow and 22 deep-water colonies were 

analyzed with DGGE. 

Several limitations inherent to the ITS2 marker and DGGE can confound the 

interpretation of Symbiodinium diversity.  While the ITS2 primers used are Symbiodinium 

specific, they are capable of occasionally amplifying host coral DNA (LaJeunesse 2002), 

resulting in additional, confounding bands in the DGGE profile.  In addition, ribosomal genes in 

eukaryotic organisms consist of multiple tandem repeats, or cistrons (Figure 3).  Symbiodinium 

and other dinoflagellate algae are estimated to contain anywhere from 200 to 1200 tandemly 
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repeated copies of the rDNA operon (Maroteaux et al. 1985; Galluzzi et al. 2004).  Through 

concerted evolution rDNA cistrons are homogenized, resulting in intragenomic sequence 

variation (reviewed in Sampayo et al. 2009).  The multi-copy nature of the ITS2 region has made 

it difficult to differentiate intragenomic from intergenomic variation and has contributed to the 

large number of Symbiodinium types that are characterized as unique based on single base pair 

changes in the ITS2 region.  In other words, when multiple bands are seen on a DGGE gel, it can 

be difficult to determine if each band represents a distinct Symbiodinium type or multiple, rare, 

intragenomic variants of the same Symbiodinium type.  

DGGE often produces multi-band profiles making it challenging to differentiate 

diagnostic bands.  Many of these additional bands represent heteroduplexes, which are PCR 

artifacts formed when heterologous DNA strands anneal (LaJeunesse 2002).  Heteroduplexes, as 

well as pseudogenes, result in relatively unstable DNA strands that denature quickly, leaving 

multiple uninformative bands that migrate only a short distance into the gel (LaJeunesse 2002).  

Additionally, Symbiodinium types with unique DNA sequences will co-migrate to the same 

distance in the gel if they happen to have the same melting temperature (Pochon et al. 2007; 

Sampayo et al. 2009).  Consequently, to validate DGGE analysis, one must start by sequencing 

all bands in a given profile to differentiate diagnostic from erroneous bands (D. Thornhill pers. 

comm.).  Further, even after validating a given DGGE profile, any unique bands observed must 

be excised and sequenced. 

Despite these limitations, DGGE is still favored over cloning, which is the other most 

widely used technique for determining Symbiodinium diversity with the ITS2 marker (Apprill & 

Gates 2007; Winters et al. 2009; Stat et al. 2009b; Pochon and Gates 2010; Stat et al. 2011).  

Studies have shown that DGGE, in conjunction with direct sequencing of the dominant bands, 
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provides a more accurate representation of Symbiodinium diversity compared to cloning 

(Thornhill et al. 2007, Sampayo et al. 2009).  Distinct Symbiodinium types contain fixed 

sequence variation that allows for a diagnostic, and repeatable DGGE profile in which the 

dominant band corresponds to the most dominant intragenomic variant (LaJeunesse 2002, 

Thornhill et al. 2007, Sampayo et al. 2009).  As such, excising and sequencing the dominant 

DGGE band(s) allows for the accurate characterization of the Symbiodinium type(s) present in a 

given sample. 
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Real-time PCR 

Most coral species maintain stable symbioses with a single Symbiodinium type 

(LaJeunesse 2002; Goulet & Coffroth 2003; Goulet 2006; Thornhill et al. 2006a,b; Stat et al. 

2009a; Thornhill et al. 2009; LaJeunesse et al. 2010).  However, Symbiodinium types present in 

proportions below five to ten percent of the total symbiont population cannot be detected using 

DGGE and other gel techniques (Thornhill et al. 2006b; Mieog et al. 2007).  This has led some 

to hypothesize that while most corals dominantly associate with a single symbiont type, coral 

species may host a highly diverse symbiont population that cannot be detected with traditional 

gel techniques (LaJeunesse 2002; Ulstrup & van Oppen 2003; Buddemeier et al. 2004; van 

Oppen & Gates 2006; Silverstein et al. 2012).  In response, there has been a relatively recent 

increase in the number of studies utilizing real-time PCR technology (Ulstrup & van Oppen 

2003; Loram et al. 2007; Mieog et al. 2007; Ulstrup et al. 2007; Smith 2008; Correa et al. 

2009b; LaJeunesse et al. 2009b; Mieog et al. 2009; Coffroth et al. 2010; Yamashita et al. 2011; 

Silverstein et al. 2012).  Real-time PCR provides a nearly 100-fold increase in detection 

sensitivity compared to DGGE (Mieog et al. 2007; Loram et al. 2007), and has been successful 

in identifying previously undetected Symbiodinium types present at low-levels within a variety of 

host species (Mieog et al. 2007, LaJeunesse et al. 2009; Silverstein et al. 2012).   

Unlike traditional end-point PCR, real-time PCR monitors target amplification through 

the detection of a fluorescent reporter molecule.  The fluorescence generated is directly 

proportional to the amount of PCR product present in a given PCR cycle.  Differences in the 

initial DNA template concentration will be reflected in the number of cycles needed for sample 

fluorescence to reach a set threshold value, which is referred to as the threshold cycle or CT value 

(Kubista et al. 2006; Smith 2008).  
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As real-time PCR monitors the fluorescent signal generated during each PCR cycle, 

software accompanying the real-time instrument creates amplification plots (Figure 4).  During 

the initial stages of PCR (e.g. cycles 1-16 in Figure 4) very little fluorescence is detected, as 

amplicon copy numbers remain low; these initial stages are referred to as the baseline (Kubista et 

al. 2006).  Included in each PCR reaction are a reporter dye and an internal passive reference 

dye.  The reporter dye produces the fluorescent signal from the target DNA.  The passive 

reference dye generates an internal fluorescence upon which the reporter dye can be normalized.  

Therefore, fluorescence fluctuations are corrected in the normalized reporter (Rn) value, which is 

defined as the ratio between the fluorescence intensities of the reporter dye to the passive 

reference dye.  The delta Rn (∆Rn) value can then be calculated based on the signal magnitude 

generated following the formula: 

∆�� � �� � ��������. 

Real-time PCR software creates amplification plots of either Rn or ∆Rn versus the PCR 

cycle number (Figure 4) and allows for the monitoring of PCR amplification in real-time.  In 

order to either quantify samples or determine positive versus negative reactions qualitatively, a 

threshold value must be set to determine the CT value (Figure 4).  Samples with low CT values 

indicate the target DNA is of higher abundance compared to samples with high CT values.  The 

threshold can be manually set or automatically determined using real-time instrument software.  

Regardless, it is important that threshold values are set above the baseline but as low as possible 

within the exponential growth phase of the amplification curve (Larionov et al. 2005; Figure 4).   
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Figure 4. Annotated example of a real-time PCR amplification plot.  Each point within the 
amplification curves represents the fluorescence signal generated during a PCR cycle (40 cycles) 
as measured by Rn.  Circle points represent sample amplification while triangle points represent a 
no template negative control. The dotted red line represents a set threshold value that is placed 
above the baseline, but as low as possible within the exponential growth phase of the sample’s 
amplification curve.  The CT value indicates the cycle number at which sample fluorescence 
exceeds the threshold; in this example, the sample has a CT value of 18.  (Image modeled after 
the Applied Biosystems Real-time SDS software (see “Absolute Quantification…”).) 
 

There are several different chemistries used for the detection of PCR products by real-

time PCR instruments including intercalating dyes, duel labeled probes, minor groove binding 

probes, molecular beacons, fluorescence energy transfer, and fluorescently labeled primers 

(Gunson et al. 2006; Kubista et al. 2006; VanGuilder et al. 2008).  In the present study I used the 

SYBR green (Applied Biosystems) detection chemistry, which is an intercalating dye that is 

widely used for many real-time PCR applications.  The SYBR green dye indiscriminately binds 

to all double-stranded DNA (VanGuilder et al. 2008; Kubista et al. 2006).  During PCR, the 

denaturing step creates single stranded DNA fragments that do not fluoresce, as the dye cannot 

properly bind.  However, upon PCR extension, the SYBR green dye binds to the newly created 

double-stranded DNA fragments and fluoresces.  Consequently, as the number of PCR fragments 
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increases with each PCR cycle, the net fluorescence detected by the real-time instrument 

proportionally increases.  The chief limitation of SYBR green chemistry is that all double-

stranded DNA, even non-target DNA, creates a fluorescent signal (VanGuilder et al. 2008).  This 

limitation can be circumvented with the use of a dissociation-curve analysis. 

With SYBR green chemistry, real-time instruments record the decrease in fluorescence 

that occurs each cycle when double-stranded DNA denatures.  As denaturation occurs at slightly 

different temperatures according to the unique DNA sequences of each target, and because 

deceased fluorescence only occurs after denaturation, dissociation-curve analysis can determine 

diagnostic melting temperatures for each target.  Dissociation-curve analysis can easily identify 

primer dimers, which display characteristically low melting temperatures relative to target DNA.  

Dissociation curves are typically plotted as the “first derivative of the rate of change in 

fluorescence as a function of temperature” (see “Absolute Quantification…”). 

 

Real-time PCR Assay 

Real-time PCR was used to evaluate possible low-levels of Symbiodinium that fell below 

the detection limit of DGGE.  S. pistillata in the Red Sea has only been reported to associate with 

clade A in shallow water and clade C in deep water (Daniel 2006; Lampert-Karako et al. 2008; 

Winters et al. 2009).  Consequently, only clade A (SymA28S) and C (SymC28S) Symbiodinium 

specific primer pairs, designed by Yamashita et al. (2011; see Table 1 for primer sequences), 

were used to target the 28S ribosomal region (Figure 3).     

All of the adults, juveniles, and planulae collected in 2010 were analyzed with real-time 

PCR, while only a subset of samples collected in 2009 and 2011 were run.  In total, nine shallow 

water adults and 134 of their released planulae were analyzed from the 2010 samples.  From the 



 25

2010 deep-water samples, 10 adults and 107 planulae were run.  Of the samples collected in 

2009 and 2011, 10 adults from each depth and year were analyzed.  Additionally, I ran 28 

shallow and nine deep-water planulae released from adults in 2009.  Finally, 25 juveniles from 

each depth were run with real-time PCR.  

For real-time PCR, the amount of DNA in any given sample was quantified 

spectrophotometrically using a NanoDrop (Thermo Scientific, ND-1000 Spectrophotometer) and 

DNA concentrations were normalized to 0.1-2.0ng/µl.  All samples were run in triplicate on an 

Applied Biosystems 7300 real-time PCR system.  A total reaction volume of 25µl was used, but 

due to differences in primer concentrations, the reactions varied slightly between primer pairs.  

The clade A primer pair reaction contained 12.5µl 2x Power SYBR green PCR mastermix 

(Applied Biosystems), 7.75µl nuclease-free water, 450nM of each primer, and 2.5µl of genomic 

DNA at a concentration of 0.1-2ng/µl.  The clade C primer pair reaction contained 12.5µl 2x 

Power SYBR green PCR mastermix (Applied Biosystems), 9.25µl nuclease-free water, 150nM 

of each primer, and 2.5µl of genomic DNA at a concentration of 0.1-2ng/µl.  All plates were run 

under the same thermal conditions: 2 minutes at 50°C, 10 minutes at 95°C, and 40 cycles of 15 

seconds at 95°C and 1 minute at 60°C.  A dissociation curve was also run on each plate, which 

consisted of one cycle at 95°C for 15 seconds, 60°C for 30 seconds, and 95°C for 15 seconds.  

The dissociation curve was used to determine the melting temperature of each reaction to 

identify non-specific fluorescence characteristic of primer dimers.  Additionally, clade A and C 

Symbiodinium exhibited diagnostic melting temperatures allowing for confirmation that the clade 

of interest was in fact amplified.    

Since DGGE had already confirmed the presence of clade A in all shallow water adults, 

juveniles, and planulae, only the clade C primer pair was used to detect the presence or absence 
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of low-levels of clade C Symbiodinium.  A subset of shallow samples was run on each plate with 

the clade A primer pair as a positive control.  Likewise, all deep-water adults, juveniles, and 

planulae were run with the clade A primer pair to detect low-levels of clade A Symbiodinium and 

positive controls were run on each plate with the clade C primer pair.  Due to ambiguous DGGE 

profiles for many of the juveniles collected in deep-water, all deep-water juveniles were run with 

both primer pairs.  No template negative controls were run on each plate to detect non-specific 

fluorescence.   

 

Primer Optimization and Standard Curves 

Prior to running assays, primer optimizations and standard curves were run to confirm 

optimal primer and DNA concentrations.  Both primer optimizations and standard curves were 

run in duplicate in 25µl reactions.  Primer optimization reactions contained 12.5µl 2x Power 

SYBR green PCR mastermix (Applied Biosystems), 1ng DNA template, and either 0.25µl, 

0.75µl, or 2.25µl of each forward and reverse primer to obtain final primer concentrations of 

50nM, 150nM, or 450nM, respectively.  The clade A and C specific primer pairs were run at all 

three primer concentrations using a DNA template from one shallow and one deep-water adult 

colony known to contain clade A and C Symbiodinium, respectively.  With both primer pairs, 

amplifications run at a 450nM primer concentration only marginally outperformed amplifications 

run at 150nM; both the 450nM and 150nM concentrations proved more efficient than 50nM 

(Figure 5A).  Therefore, 450nM was used as the primer concentration for all reactions run with 

the clade A primer pair.  However, primer interactions in the clade C primers resulted in primer 

dimers that caused non-specific amplification at 450nM.  The primer dimers were eliminated 
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when the primer concentration was dropped to 150nM and therefore, all clade C reactions were 

run with a 150nM primer concentration (Figure 5B).      

Standard curves were initially run to determine an optimal DNA concentration.  Standard 

curves run with the clade A primers were created using genomic DNA isolated from a shallow 

water adult colony known to contain clade A Symbiodinium.  Similarly, standard curves run with 

the clade C primers were created from DNA isolated from a deep-water adult colony known to 

contain clade C Symbiodinium.  Initial standard curves were run in duplicate over six, three-fold 

serial dilutions ranging from 1ng/µl to 0.004ng/µl.  In both the clade A and C standard curves, 

0.33ng/µl amplified more strongly than the 1ng/µl concentration indicating that 1ng/µl 

overwhelmed the PCR reaction and that lower DNA concentrations were required for efficient 

amplification.  Consequently, standard curves were run in duplicate over five, three-fold serial 

dilution from 0.33ng/µl to 0.004ng/µl on all subsequent plates in order to monitor primer 

efficiency.     
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Figure 5. Real-time PCR results from primer optimization analysis.  (A) At 450nM (black) 
and 150nM (orange) primer concentrations, the amplification efficiency was similar, but the 
450nM concentration was considered optimal for this primer due to the higher derivative seen in 
the dissociation curve (inlay).  Both concentrations performed better than 50nM (green).  (B) 
Primer interactions with the clade C primer pair resulted in non-specific fluorescence in the no 
template control at 450nM primer concentration (black).  At 150nM (orange) no non-specific 
fluorescence was detected. Target DNA amplified similarly at both concentrations for the clade 
C primer. 
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Data Analysis  

Although real-time PCR has been used to quantify the number of algae present in coral 

samples (Ulstrup & van Oppen 2003; Mieog et al. 2007; Yamashita et al. 2011), the multi-copy 

nature of rDNA complicates the analysis.  As I was unable to determine the copy number for the 

Symbiodinium types present in the samples, I chose a qualitative approach to detect the presence 

or absence of Symbiodinium clades not identified with DGGE (Smith 2008; LaJeunesse et al. 

2009b; Coffroth et al. 2010).  In order to accurately compare samples, strict values were set to 

consistently define a positive reaction.   

Threshold Determination 

The cycle-threshold (CT) is a numerical value representing the PCR cycle at which 

sample fluorescence surpasses a set threshold limit (Figure 6).  Therefore, in order to compare 

samples run on different plates, first a fixed threshold value had to be determined (Gunson et al. 

2006; Smith 2008; Correa et al. 2009b).  The exact placement of the threshold value is somewhat 

arbitrary as amplification curves are expected to be near parallel during the exponential, or 

growth phase, of the reaction (Kubista et al. 2006).  Still, the selected threshold value should be 

set as low as possible within the exponential phase of growth and must produce an acceptable 

standard curve (r2 values of 99%; Larionov et al. 2005).  The Applied Biosystems SDS software 

uses machine set algorithms to automatically determine an optimal threshold value for each well.  

By comparing the standard curves run on each plate, I created a fixed threshold value based on 

the average automatic threshold setting for each primer pair.  Each primer pair was considered 

individually and therefore, the clade C primer had a fixed threshold of 0.57 while the clade A 

primer pair had a fixed threshold of 1.30 (Figure 6A-D).  Set threshold values were placed as low 

as possible within the exponential amplification phase (when plotted as Rn versus cycle number; 
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Figure 6C-D) and each standard curve was checked to determine if an acceptable coefficient of 

determination was produced when plotted as cycle number versus the logarithm of DNA 

concentration (Figure 6E-F).  For both primer pairs, standard curves produced acceptable r2 

values indicating optimal threshold settings (clade A N=24, mean r2 = 0.9930, SD = 0.0033; 

clade C N=27, mean r2 = 0.9928, SD = 0.0031). 

 
 
Figure 6. Real-time PCR standard curve analysis. All standard curves were run in duplicate 
over five, three-fold serial dilutions at the following concentrations: 0.33ng/µl (purple), 
0.11ng/µl (green), 0.04ng/µl (blue), 0.01ng/µl (orange), and 0.004ng/µl (black). Amplification 
plots are show as ∆Rn versus cycle number for the clade A (A) and clade C (B) primers and as Rn 
versus cycle number for the clade A (C) and clade C (D) primers. The threshold value (green 
vertical line) was set as low as possible within the exponential phase of amplification (C-D). The 
clade A primer threshold was set a 1.30 (A,C) while the clade C primer threshold was set at 0.57 
(B,D). These particular standard curves produced r2 values of 0.993 for the clade A primer (E) 
and 0.996 for the clade C primer (F).   
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Cutoff CT Determination 

 In addition to a fixed threshold, it is necessary to determine a cutoff CT value to 

consistently define a positive versus negative reaction.  I determined an appropriate cutoff CT 

value for each primer pair through a series of competitive mixed clade amplifications.  As 

described by Smith (2008), I created mixtures of clade A and C Symbiodinium in known 

proportions to determine an approximate detection limit.  Samples were created using template 

DNA from one shallow and one deep-water planula.  The planulae selected only contained the 

Symbiodinium clade characteristic of their depth of origin, i.e. the shallow water planula only 

contained clade A while the deep-water planula only contained clade C.  This was confirmed 

through DGGE and real-time PCR.  The planula DNA extract was combined such that the target 

clade represented 50, 9, 0.9, 0.1, and 0.01 percent of the total DNA template (Table 2).  The 

mixtures were run three times, once in duplicate and twice in triplicate, in order to determine an 

average CT value for each mixture proportion and to confirm amplification consistency between 

runs.   

The target clade amplified consistently when it composed at least 0.9% of the total DNA 

template, indicating a conservative detection limit of approximately 1% (Table 2).  Since field-

collected samples were used to create the mixtures, by extension, any samples with a 

Symbiodinium clade comprising at least 1% of the total symbiont population can consistently be 

detected with this real-time PCR assay.  Consequently, I set the cutoff CT value at the average CT 

value for the mixture where the target clade made up 0.9% of the template DNA.  The cutoff CT 

was set at 34 for the clade A primer pair and 32 for the clade C primer pair (Table 2; Figure 7).  

Only values equal to or lower than the set cutoff CT were considered positive for the presence of 

low-level Symbiodinium.  These estimates are conservative because amplification did occur at 
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higher CT values, but, due to the consistency of amplification at 0.9%, this was determined to be 

the most appropriate cutoff CT.  Moreover, symbionts that comprise less than 1% of the 

symbiotic community may not be ecologically relevant.  

 

Table 2. Mixed clade real-time PCR trials for threshold and cutoff CT determination.  
Mixtures of clades A and C DNA were combined to determine approximate detection limits and 
CT cutoff values.  Boxed values indicate the detection limit of the real-time PCR assay for each 
primer pair as determined by the lowest DNA concentration where the target clade was 
consistently detected (i.e. crossed set threshold at any CT value). 
 
Clade A Primer Pair 

DNA Conc. 
Clade C 

DNA Conc. 
Clade A 

Total DNA 
Conc. 

Percent 
Clade A 

No. Replicates 
Crossed Average CT ± SD 

1ng 1ng 2ng 50.00% 8/8 26.61 ± 0.19 
1ng 0.1ng 1.1ng 9.00% 8/8 29.95 ± 0.19 
1ng 0.01ng 1.01ng 0.90% 8/8 33.54 ± 1.07 
1ng 0.001ng 1.001ng 0.10% 7/8 36.44 ± 1.23 
1ng 0.0001ng 1.0001ng 0.01% 2/8 37.21 ± 2.40 

Clade C Primer Pair 
DNA Conc. 
Clade A 

DNA Conc. 
Clade C 

Total DNA 
Conc. 

Percent 
Clade C 

No. Replicates 
Crossed Average CT ± SD 

1ng 1ng 2ng 50.00% 8/8 25.40 ± 1.03 
1ng 0.1ng 1.1ng 9.00% 8/8 28.54 ± 1.13 
1ng 0.01ng 1.01ng 0.90% 8/8 32.13 ± 1.25 
1ng 0.001ng 1.001ng 0.10% 5/8 31.46 ± 1.11 
1ng 0.0001ng 1.0001ng 0.01% 2/8 36.44 ± 1.18 
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Figure 7. Mixed clade real-time PCR trials for threshold and cutoff CT determination. 
Amplification plots of mixed clade trials for the clade A primers (A) and clade C primers (B) to 
determine the detection limit of the real-time PCR assay and to set cutoff CT values.  The green 
horizontal lines correspond to the set threshold values for the clade A (1.3) and clade C (0.57) 
primer pairs.  Mixed clade amplifications were prepared in accordance with Table 2.  Each color 
corresponds to triplicate runs in which the target clade composed 50% (purple), 9% (green), 
0.9% (blue), 0.1% (orange), and 0.01% (black) of the DNA template.  No template controls are 
shown in red.  Note that for both primers, all replicates amplified the target clade consistently 
when it composed at least 0.9% of the DNA template.  When the target DNA represented less 
than 0.9%, amplification was inconsistent.  CT is defined as the point at which sample 
fluorescence exceeds a fixed threshold value; the vertical red lines represent the chosen cutoff CT 
value for the clade A primers (CT 34) and clade C primers (CT 32).  
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Results 

Denaturing-Gradient Gel Electrophoresis (DGGE) 

Adults and planulae 

Two distinct ITS2 DGGE fingerprints were identified from the 534 adult and planula 

samples processed.  All shallow water (2-6m) samples analyzed (n=266) showed the same 

dominant two-band DGGE fingerprint (Figure 8).  Sequencing revealed that the two dominant 

bands differed by 1bp in the ITS2 region.  The top band in the shallow water DGGE fingerprint 

showed 100% similarity to ITS2 type A1, Symbiodinium microadriaticum subsp. 

microadriaticum (accession number: AF333505).  Symbiodinium type A1 has been previously 

reported in shallow water S. pistillata adults in the Gulf of Eilat (LaJeunesse 2001; LaJeunesse et 

al. 2009a; Winters et al. 2009).  The lower band in the shallow water DGGE profile reported 

here showed a consistent 1bp T/C transition compared to type A1.  Daniel (2006) also reported a 

two-band DGGE profile for shallow water S. pistillata in the Gulf of Eilat.  He described the 

second band as a novel Symbiodinium subtype named A1.2.  Unfortunately, Daniel (2006) did 

not upload this sequence to GenBank, and therefore I was unable to determine if the second band 

detected here is the A1.2 type he reported.  As both bands likely represent intragenomic 

variation, the two-band profile probably represents two co-dominant variants of the same 

Symbiodinium A1 variant.   

All samples collected from deep-water (20-30m; n=268) exhibited a characteristic multi-

band DGGE fingerprint (Figure 8).  Upon sequencing, the dominant band aligned with ITS2 type 

C72 (accession number: AY765407).  Type C72 has been previously reported for S. pistillata 

adult colonies from 20-30m depths in the Gulf of Eilat (LaJeunesse et al. 2005; Daniel 2006; 

Winters et al. 2009).  In all cases, from both shallow and deep-water colonies, planulae displayed 
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the same DGGE fingerprint as their maternal colony, with no additional clades and/or types 

detected.  

In addition to the dominant bands, multiple faint bands were also observed which 

probably represent rare intragenomic variants and/or heteroduplexes.  Occasionally, additional 

bands appeared that migrated further in the gel than the characteristic Symbiodinium profiles. 

Sequencing revealed that these bands represented coral host DNA that aligned to S. pistillata or 

the closely related species, Pocillopora damicornis.   

 
Figure 8. Denaturing-gradient gel electrophoresis image of the Symbiodinium hosted by 
adults and planulae.  Stylophora pistillata adult colonies (Ad) and several of their released 
planulae (Pl) were collected from both shallow (Sh, 2-6m) and deep (Dp, 24-26m) water.  In all 
cases, the planula DGGE fingerprints were identical to that of their maternal colony, 
demonstrating the vertical inheritance of the abundant Symbiodinium type. The sequence of the 
upper dominant band from the shallow water samples was identical to Symbiodinium type A1 
(accession AF333505).  The lower dominant band in the shallow water DGGE fingerprint 
showed a consistent 1bp difference compared to A1, indicating that S. pistillata hosts an A1 
variant.  All deep-water samples hosted type C72 (accession AY765407).  Symbiodinium type 
A1 and C72 standards (Std) were run on every gel for reference.   
 

Juveniles 

 Unlike the adults and planulae, which only contained one of two distinct DGGE 

fingerprints, the juvenile colonies analyzed displayed multiple profiles.  All shallow water 

juvenile colonies, showed a two-band profile characteristic of Symbiodinium type A1, with the 

exception of one individual, which contained both types A1 and C72 (Figure 9).  The juveniles 

collected in deep-water showed four different DGGE profiles.  Of the 25 deep-water juveniles 



analyzed, 11 contained type A1 Symbiodinium

mixed profiles of both types A1 and C72, and 

(Figure 9).  

 

 
Figure 9. Denaturing-gradient 
juveniles.  Juvenile Stylophora pistillata
(Dp, 24-26m) water.  (A) Lanes 1
and deep-water juveniles.  Lanes 7
colonies. (B) Lanes 10-12 and 15 display mixed clade profiles consisting of 
A1 and C72 in shallow and deep-
water juvenile.  Lane 16 exhibits a 3
juvenile.  *While the shallow water colony in lane 13 appears to have the C72 band, sequences 
showed stronger similarity to type A1. 
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Symbiodinium, nine contained type C72, four juveniles 

mixed profiles of both types A1 and C72, and one juvenile hosted Symbiodinium

radient gel electrophoresis image of the Symbiodinium
Stylophora pistillata colonies collected from shallow (Sh, 2-

anes 1-6 and 9 all contain type A1 Symbiodinium from both shallow 
.  Lanes 7-8 show Symbiodinium type C72 from two deep

12 and 15 display mixed clade profiles consisting of Symbiodinium
-water juveniles.  Lane 14 depicts only type A1 

ane 16 exhibits a 3-band Symbiodinium type C21 profile from a deep
While the shallow water colony in lane 13 appears to have the C72 band, sequences 

showed stronger similarity to type A1.  

juveniles exhibited 

Symbiodinium type C21 

 

Symbiodinium hosted by 
-6m) and deep 

from both shallow 
o deep-water 
Symbiodinium types 

 in a shallow 
from a deep-water 

While the shallow water colony in lane 13 appears to have the C72 band, sequences 
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Real-time PCR 

Adults 

In adult S. pistillata, the presence of low-level symbionts varied with depth.  Low-level 

Symbiodinium were not detected in any shallow water adult colonies, but low-levels of clade A 

Symbiodinium were detected in some of the deep-water adults analyzed (Table 3).  In 2009, all 

adult deep-water colonies sampled hosted only clade C, but in 2010, the majority of deep-water 

adult colonies sampled contained low-levels of clade A in addition to the abundant clade C 

symbionts (Figure 10).  In 2011, only one of the sampled deep-water colonies hosted clade A at 

low-levels (Table 3).  In 2011, I re-sampled three colonies that were also sampled in 2010.  Of 

those three colonies, two did not contain low-levels of clade A Symbiodinium in either year, 

while the third individual had detectable low-levels of clade A in 2010 but not in 2011.  

Planulae 

All planulae processed, from both depths, hosted a single Symbiodinium clade with no 

detectable low-levels of the second clade (Table 3).  Even maternal colonies hosting both 

abundant and low-level Symbiodinium released planulae without low-level symbionts.  The lack 

of detection of additional symbionts in planulae was not due to under-sampling.  Using one-

sample proportion tests, I tested a series of null hypotheses to determine the lowest proportion of 

released planulae that may contain low-level Symbiodinium.  I was able to reject the null 

hypothesis that ≥2% of planulae released by shallow water adults contain low-levels of clade C 

Symbiodinium (n=161, df=1, χ2=3.286, p-value=0.035).  Similarly, I rejected the null hypothesis 

that ≥ 3% of planulae released from deep-water adults may contain low-levels of clade A 

Symbiodinium (n=116, df=1, χ2=3.588, p-value=0.029).    
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Table 3. Summary of real-time PCR results. Real-time PCR results of the abundant and low-
level Symbiodinium clades present in shallow (Sh) and deep (Dp) water S. pistillata in adults 
(Ad), planulae (Pl), and juveniles (Jv) analyzed (N).  The numbers in parentheses denote the 
number of samples containing a given clade. * Samples that contained both A and C at levels 
detectable by DGGE, hence both clades were listed as abundant. 
 

Year Depth Life Stage N Abundant Clade Low-level Clade 
2009 Sh Ad 10 A (10) - 
  Pl 28 A (28) - 
 Dp Ad 10 C (10) - 
  Pl 9 C (9) - 
2010 Sh Ad 9 A (9) - 
  Pl 134 A (134) - 
  Jv 25 A (25) C (1) 
 Dp Ad 10 C (10) A (7) 
  Pl 107 C (107) - 

  Jv 25 
C (5); A (11);  
A & C (9)* 

- 

2011 Sh Ad 10 A (10) - 
 Dp Ad 10 C (10) A (1) 

 

 

Juveniles 

Similar to the results for adult colonies, the majority (24/25) of juveniles collected in 

shallow water hosted only clade A with no low-levels of clade C Symbiodinium (Table 3).  One 

juvenile collected in shallow water, however, hosted clade A Symbiodinium in addition to low-

levels of clade C.  Of the 25 deep-water juveniles analyzed, only five individuals solely 

contained clade C Symbiodinium.  Nine other juveniles collected in deep-water contained both 

clade C and clade A Symbiodinium.  Unexpectedly, 11 of 25 deep-water juveniles analyzed 

solely contained clade A Symbiodinium, with no detectable traces of clade C (Table 3). 

 



 
Figure 10. Real-time PCR amplification plot of
colonies.  Each sample was run in triplicate
primer (black).  Horizontal green and black lines correspond to the threshold values set for the 
clade A (1.3) and C primers (0.57), respectively.  Vertical red lines represent the cutoff CT 
values for the clade A (34) and clade C (32)
with both the clade A and C primer indicating the presence of both 
Sample 2 (solid lines) amplified with the clade C primer
Symbiodinium.  Cycle numbers withi
 
 
Juvenile Age Determination 

 The geometric mean radius (

from 0.342-1.229cm with an average of 

ranged in geometric mean radius from 

Overall, the shallow water juvenile colonies analyzed had a significantly larger 

to the deep-water juvenile colonies collected (normal log transformed t

An approximate age range for juvenile colonies was determined based on a geometric 

mean radius growth rate estimate of 1.131
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mplification plot of  Symbiodinium from two deep
in triplicate with both the clade A primer (green) and the clade C 

primer (black).  Horizontal green and black lines correspond to the threshold values set for the 
clade A (1.3) and C primers (0.57), respectively.  Vertical red lines represent the cutoff CT 

clade A (34) and clade C (32) primers.  Note that sample 1 (dotted lines) amplified 
with both the clade A and C primer indicating the presence of both Symbiodinium
Sample 2 (solid lines) amplified with the clade C primers, but was negative for clade A 

.  Cycle numbers within the baseline are eliminated.  

The geometric mean radius () of juvenile colonies collected in shallow water ra

with an average of 0.794 ± 0.209 (Table 4).  Deep-water juvenile colonies 

ranged in geometric mean radius from  = 0.330 to 1.286cm with an average of 0.656 ± 0.263

Overall, the shallow water juvenile colonies analyzed had a significantly larger 

ter juvenile colonies collected (normal log transformed t-test, df = 48, p = 0.0252). 

An approximate age range for juvenile colonies was determined based on a geometric 

mean radius growth rate estimate of 1.131 ± 0.158cm yr-1 (Loya 1976).  Colonies ranged

 

two deep-water adult 
with both the clade A primer (green) and the clade C 

primer (black).  Horizontal green and black lines correspond to the threshold values set for the 
clade A (1.3) and C primers (0.57), respectively.  Vertical red lines represent the cutoff CT 

(dotted lines) amplified 
Symbiodinium clades.  

, but was negative for clade A 

) of juvenile colonies collected in shallow water ranged 

water juvenile colonies 

0.656 ± 0.263.  

in comparison 

test, df = 48, p = 0.0252).  

An approximate age range for juvenile colonies was determined based on a geometric 

olonies ranged in age 
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from approximately 3 to 16 months (Table 4).  As juvenile colonies were collected in July of 

2010, age estimates indicate settlement likely occurred throughout 2009 and into early 2010.  

Consequently, the juveniles collected likely represent progeny from 2009 and 2010 spawning 

events. 

The overall �� was smaller for deep-water colonies, which, based on the growth rate 

estimate used, indicates that they are younger than the shallow water juveniles collected (Table 

4).  The smaller �� recorded for deep-water juveniles, however, does not necessarily correlate to a 

younger age because the growth rate used here was based on estimates from shallow water (4-

5m) colonies only (Loya 1976).   Therefore, this growth rate may underestimate the actual age of 

the deep-water juveniles collected.  Unfortunately, I was unable to recover any growth estimates 

for S. pistillata colonies present in the 20-30m depth range.  As growth generally decreases with 

decreasing light (Dubinsky et al. 1990), the lower light levels present beyond 20m will likely 

lead to a decrease in the growth rate of deep-water juveniles.  Therefore, while there was a 

significant difference in size between the shallow and deep-water juveniles collected, they may 

be of a similar age class. 

Regardless of the exact age, all juvenile colonies collected were probably reproductively 

immature colonies.  In S. pistillata, sperm production usually commences once colonies reach 

�� = 1.51-2cm, although in extremely rare cases colonies as small as �� = 0.5-1.5cm can produce 

sperm (based on analysis of shallow water colonies; Rinkevich & Loya 1979b).  Ripe eggs are 

typically seen once colonies reach approximately �� = 4-5cm (Loya 1976).  Therefore, because all 

of the juveniles collected from both depths had a �� below the 1.51cm size of reproductive 

maturation, these young colonies were classified as juveniles. 

 



 41

Table 4: Size and age ranges of juvenile colonies.  Mean geometric radius and approximate 
age of each juvenile colony collected from either shallow (2-6m) or deep (24-26m) habitats.   
The mean geometric radius was calculated based on the length (l), width (w) and height (h) of 
colonies using the formula �� � ��� � � � �	
/�	/2.  The average geometric mean radius of all 
colonies collected from each depth is recorded with the standard deviation.  Age estimates were 
based on an average growth rate estimate of shallow water S. pistillata colonies in the Gulf of 
Eilat according to Loya (1976); growth rate estimate with standard deviation: ∆�� per year = 
1.131 ± 0.158 cm yr-1.  The age range includes the standard deviation of the growth rate estimate. 
 

Shallow Habitat (2-6m)  Deep Habitat (24-26m) 

Sample 
Name 

Geometric Mean 
Radius (��) 

Age Range 
(Months)  Sample 

Name 
Geometric Mean 
Radius (��) 

Age Range 
(Months) 

RSh477 0.342 3-4  RD1 0.330 3-4 
RSh393 0.453 4-6  RDY5 0.337 3-4 
RSh21 0.466 4-6  RD45 0.396 4-5 
RSh470 0.520 5-6  RD283 0.417 4-5 
RSh0 0.637 6-8  RD5 0.437 4-5 
RShY3 0.692 6-9  RD301 0.444 4-5 
RShY4 0.712 7-9  RD372 0.455 4-6 
RSh352 0.733 7-9  RD250 0.463 4-6 
RShY7 0.744 7-9  RD221 0.467 4-6 
RSh256 0.766 7-9  RD269 0.476 4-6 
RShY6 0.783 7-10  RDY10 0.497 5-6 
RSh340 0.788 7-10  RD254 0.514 5-6 
RSh280 0.805 7-10  RD.2 0.543 5-7 
RShY11 0.806 8-10  RD435 0.548 5-7 
RShY38 0.819 8-10  RD227 0.694 6-9 
RSh218 0.827 8-10  RD52 0.803 7-10 
RSh415 0.855 8-11  RD259 0.842 8-10 
RSh350 0.867 8-11  RD346 0.844 8-10 
RSh55 0.917 9-11  RD24 0.862 8-11 
RSh22. 0.941 9-12  RD268 0.877 8-11 
RSh261 0.969 9-12  RD277 0.884 8-11 
RSh272 1.011 9-12  RD257 0.896 8-11 
RSh499 1.038 10-13  RD215 0.946 9-12 
RSh347 1.138 11-14  RD70 1.147 11-14 
RSh30 1.229 11-15  RD472 1.286 12-16 
Average 0.794 ± 0.209 -  Average 0.656 ± 0.263 - 
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Discussion 

Abundant and Low-level Symbiodinium in Adults and Planulae 

This study determined the presence of previously unreported low-level Symbiodinium in 

Stylophora pistillata colonies in the Gulf of Eilat.  Most likely, though, all individuals in a coral 

species do not host an ever-present resident population of low-level symbionts.  As demonstrated 

here, even on the same reef, low-level Symbiodinium were not present in all S. pistillata 

individuals sampled.  Further, the presence of low-levels symbionts may have varied over time, 

but since I did not repeatedly sample the same colonies, I cannot ascertain whether low-levels of 

clade A are hosted permanently or transiently in some deep-water colonies.  Hosting transient 

symbionts at abundant and low-levels, even those not known to associate with a given host, has 

been documented in temporal studies in association with bleaching (LaJeunesse et al. 2009b; 

Coffroth et al. 2010).  However, since no bleaching events were reported in the Gulf of Eilat 

during this three-year study, there is no evidence to support that the low-level Symbiodinium 

detected in some deep-water S. pistillata were acquired due to a stress event.  

The role of low-level Symbiodinium in a host is still an unanswered question that has 

predominantly been discussed in conjunction with bleaching events.  Resident populations of 

low-level Symbiodinium may increase in abundance following the expulsion of the dominant 

symbiont during a bleaching event (Berkelmans & van Oppen 2006; Mieog et al. 2007).  Low-

level symbionts may therefore provide functional redundancy by supplying the host with 

photosynthate during recovery, potentially preventing host mortality, until the previously 

abundant symbiont returns to dominance within the host (Silverstein et al. 2012).  Conversely, 

opportunistic symbionts may increase in abundance during bleaching because they are able to 
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exploit the weakened health state of the holobiont (host and native symbiont; LaJeunesse et al. 

2009b).   

In the case of S. pistillata in the Gulf of Eilat, it seems unlikely that hosting low-level 

Symbiodinium acts as a buffer for occasional thermal stress.  First, bleaching events are relatively 

rare in the Red Sea (Cantin et al. 2010).  Second, no low-level Symbiodinium were detected in 

any of the shallow water adult colonies sampled, even though thermal stress most strongly 

affects shallow water habitats (Glynn 1996).  Conversely, some deep-water S. pistillata colonies 

hosted low-levels of clade A Symbiodinium.  Clade A may be a highly infective, opportunistic 

symbiont (Baker 2001; Stat et al. 2008b), which may partially explain its presence in some deep-

water colonies.  It is also possible that real-time PCR detected Symbiodinium types that were not 

in symbiosis, but rather represent surface contaminants or ingested material (but see Silverstein 

et al. 2012).  Lastly, the presence of clade A Symbiodinium in deep-water S. pistillata colonies 

may be a signature of the depth origin of these adult colonies. 

All planulae processed, from both depths, hosted a single Symbiodinium clade with no 

detectable low-levels of a second clade.  Even maternal colonies hosting both abundant and low-

level Symbiodinium released planulae without low-level symbionts.  Furthermore, based on the 

DGGE analysis, none of the planulae analyzed had a symbiont composition that differed from 

their parent.  Therefore, planulae appear to only inherit the abundant Symbiodinium type, despite 

the presence of additional symbionts at low-levels in some adult colonies.  In S. pistillata, 

Symbiodinium present in the maternal pharyngeal cavity are likely endocytosed by immature 

planulae (Benayahu & Schleyer 1998); therefore, if low-level symbionts are not proximate to egg 

cells, they will not be inherited by planulae.  Fluorescent in-situ hybridization analysis may be 
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able to determine the spatial distribution of the low-level Symbiodinium in adult S. pistillata 

colonies (Loram et al. 2007). 

 

Mixed Symbioses in Juvenile Colonies 

Intriguingly, some juvenile S. pistillata colonies harbored a mixture of symbionts, in 

stark contrast to planulae, which only contained the abundant parental symbiont clade. Since one 

shallow and nine deep-water juveniles analyzed contained mixed symbioses, while none of the 

planulae from either depth hosted multiple symbionts, juveniles appear to be capable of 

horizontally acquiring Symbiodinium from the environment.  Furthermore, given the dominance 

of clade C in deep-water adult colonies, it was unexpected that 11 of 25 deep-water juveniles 

analyzed solely contained clade A Symbiodinium.  The incongruity between the abundant 

Symbiodinium clade found in deep-water adult S. pistillata and the majority of juveniles is likely 

explained by events occurring during the juvenile phase.   

If planulae released from shallow water colonies, with their clade A Symbiodinium 

complement, settle and metamorphose in deep-water, the resulting juveniles will initially contain 

clade A Symbiodinium (Figure 11).  Two possible, not mutually exclusive, scenarios may then 

follow, both leading to the observed S. pistillata symbiosis with abundant clade C Symbiodinium 

in deep-water.  First, juveniles that continue to maintain only clade A Symbiodinium may not 

survive to adulthood (Figure 11).  Alternatively, juveniles may be able to acquire symbionts from 

the environment.  In S. pistillata the number of Symbiodinium is reduced two-fold in settled, as 

compared to swimming, planulae (Titlyanov et al. 1998).  As S. pistillata planulae do not feed 

(Alamaru et al. 2009), this symbiont reduction may provide the opportunity for external 

Symbiodinium acquisition following metamorphosis.  If clade A containing juveniles in deep-
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water horizontally acquire clade C Symbiodinium, clade C may outcompete clade A and become 

the abundant symbiont present (Figure 11).  I may have witnessed a snapshot of this process in 

the nine juveniles that contained predominantly clade C and low-levels of clade A.  Similarly, 

planulae released from deep-water adults may settle in shallow water, as was potentially 

observed in one shallow water juvenile (Figure 11).  

The above scenarios require that planulae are capable of settling in a non-natal depth.  

While laboratory studies have shown that in some species planulae preferentially settle in their 

natal habitat, occasional settlement outside the depth range of the parental colony can occur, 

especially in species with large depth distributions (Mundy & Babcock 1998; Baird et al. 2003).  

This has been supported by a number of population studies that have shown strong philopatric 

settlement with occasional long distance dispersal in several species, including S. pistillata in the 

Indo-Pacific (Nishikawa et al. 2003; Underwood et al. 2009).  Preliminary analysis of the 

population structure of S. pistillata along a depth gradient in the Gulf of Eilat indicates that no 

population subdivision exists between colonies present in the 2-30m depth range (Daniel 2006).  

Horizontally acquiring Symbiodinium may allow juvenile S. pistillata colonies to survive at any 

depth, leading to a lack of coral population subdivision as a function of depth.  Conversely, if 

population subdivision between depths occurred, it would imply post-settlement mortality of 

coral juveniles that settle outside of their natal depth.  Therefore, a thorough population genetic 

analysis will determine the degree of coral host gene flow between depths, supporting either the 

hypothesis of horizontal symbiont acquisition in S. pistillata juveniles or the hypothesis of 

differential juvenile mortality.  

Further evidence of at least occasional larval dispersal across large depth gradients was 

reported for the vertically transmitting coral Seriatophora hystrix in western Australia (van 
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Oppen et al. 2011).  Similar to S. pistillata, S. hystrix displays symbiont zonation with depth, 

hosting Symbiodinium clade D in shallow and C in deep-water (Cooper et al. 2010; van Oppen et 

al. 2011).  Population genetic analysis of the corals revealed that some shallow water adult S. 

hystrix colonies originated from the deep-water coral population.  Interestingly, despite being of 

deep-water origin, these adult colonies possessed the shallow water symbiont (van Oppen et al. 

2011).  One potential explanation offered by the authors was that non-natal symbionts were 

horizontally acquired upon settlement, but as larval and juvenile colonies were not analyzed, 

their hypothesis remained untested.  Therefore, the present study is the first to provide support 

for horizontal acquisition in conjunction with vertical symbiont inheritance in juvenile 

scleractinian corals. 
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Differential Presence of Low-level Symbiodinium 

Shallow and deep-water colonies differed in their abilities to host both Symbiodinium 

clades.  While clade C Symbiodinium was only detected in one shallow water juvenile S. 

pistillata colony, clade A occurred in several deep-water adult and juvenile colonies.  As clade C 

Symbiodinium routinely thrive at shallow depths around the world, including the Red Sea (Baker 

2004; Barneah et al. 2004; LaJeunesse 2005), the symbiont depth zonation observed in S. 

pistillata in the Gulf of Eilat may be due to symbiont niche partitioning (Rowan & Knowlton 

1995).  Winters et al. (2009) reported differences in chlorophyll content and cell size between 

clade A and C Symbiodinium hosted by shallow and deep-water S. pistillata colonies, 

respectively.  These physiological differences may explain why clade A is capable of surviving 

at both depths while clade C appears mostly limited to deeper waters.  Clade A Symbiodinium 

hosted by shallow water S. pistillata are capable of altering chlorophyll density in response to 

seasonal changes in irradiance (Winters et al. 2009).  Therefore, clade A symbionts hosted by 

deep-water colonies may be able to increase chlorophyll density in order to survive in deeper, 

low irradiance waters.   

Clades A and C Symbiodinium also display differential responses to both elevated 

temperature and irradiance (Reynolds et al. 2008; Winters et al. 2009).  When compared to clade 

A Symbiodinium cultures, clade C cultures are more sensitive to high irradiance and elevated 

temperature (Reynolds et al. 2008).  In S. pistillata specifically, colonies hosting clade C were 

less resilient to thermal stress than colonies hosting clade A (Winters et al. 2009).  Taken 

together, these studies suggest that not only is clade A Symbiodinium flexible enough to survive 

at both depths in S. pistillata, but that photoadaption to high irradiance and temperature may 

make clade A a superior competitor in shallow water.  Alternatively, shallow and deep-water S. 
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pistillata colonies in the Gulf of Eilat may differ in their abilities to concurrently harbor multiple 

symbionts because they belong to two distinct coral populations or even coral morphospecies 

(Stefani et al. 2011).  

 

Mixed Modes of Symbiont Transmission 

Vertical symbiont transmission leads to highly stable, specific symbioses (Wilkinson & 

Sherratt 2001; Leigh et al. 2010; Sachs et al. 2011).  Due to this fidelity, co-speciation often 

occurs, creating a strong congruence between host and symbiont phylogenies, as has been 

demonstrated in the Buchnera/aphid symbiosis for example (reviewed by Moran et al. 2008).  In 

contrast, symbioses with horizontal acquisition typically show no signature of phylogenetic 

concordance or co-speciation (Bright & Bulgheresi 2010).  Phylogenetic incongruence in 

vertically transmitted symbioses suggests that host switching or cheating occurs at least 

occasionally via horizontal symbiont acquisition (reviewed by Bright & Bulgheresi 2010).  

While these studies demonstrate predominant vertical and occasional horizontal transmission of 

prokaryotic symbionts, the frequency and life stage of acquisition could not be inferred.  Here I 

demonstrate that in a coral species with vertically transmitted symbionts, horizontal acquisition 

of Symbiodinium may occur in the juvenile stage.  

Several studies have shown a lack of congruence between Symbiodinium and host 

phylogenies (Rowan & Powers 1991; LaJeunesse et al. 2005).  Distantly related hosts are known 

to harbor very closely related Symbiodinium types, leading some to conclude that the evolution 

of coral-algal symbioses are driven by frequent host switching events (Rowan & Powers 1991).  

Given that the majority of coral species utilize horizontal symbiont acquisition, phylogenetic 

incongruence is not unexpected.  Additionally, many corals with vertical transmission host 
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specialized Symbiodinium types endemic to a particular coral species, unlike many horizontal 

transmitters that associate with cosmopolitan, host-generalist Symbiodinium types (LaJeunesse et 

al. 2004; LaJeunesse 2005; Thornhill et al. 2006a; Stat et al. 2008a).  On the other hand, no 

phylogenetic congruence between host and symbiont was detected in an analysis of Montipora 

spp., all of which maternally transmit Symbiodinium, suggesting that occasional host switching 

may occur even in species with vertical transmission (van Oppen 2004).  Evidence of infrequent 

horizontal transmission was also documented in Pocillopora spp., which exhibits maternal 

symbiont inheritance.  Pettay et al. (2011) used microsatellite markers to investigate the 

genotypic diversity of Symbiodinium glynni (type D1) clones present within individual 

Pocilloporid colonies.  The observed incongruence between host and S. glynni genotypes implies 

that switching occurs with some frequency (Pettay et al. 2011).  

In laboratory studies of cnidarian hosts, horizontal acquisition in addition to vertical 

Symbiodinium transmission has been documented in both a scyphozoan (Montgomery & Kremer 

1995) and an octocoral species (Zurel et al. 2008).  The scyphozoan, Linuche unguiculata 

displays a very different life history as compared to scleractinian corals.  Mature medusae release 

aposymbiotic eggs that are coated in mucus strands that contain maternally derived 

Symbiodinium (Montgomery & Kremer 1995).  When developing embryos were exposed to 

fluorescently labeled Symbiodinium (of the same Symbiodinium type hosted by the maternal 

colony), embryos predominantly acquired the labeled Symbiodinium horizontally, but also 

acquired some symbionts from the maternal mucosal lining (Montgomery & Kremer 1995).  

Therefore, L. unguiculata embryos acquire Symbiodinium from the surrounding environment, 

which also contains maternally derived symbionts.  This system differs from that observed in S. 
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pistillata planulae, which are released with internal maternal Symbiodinium.  S. pistillata 

planulae appear to be capable of horizontal acquisition only after settlement and metamorphosis.  

In a separate study, Zurel et al. (2008) documented horizontal acquisition of heterologous 

Symbiodinium in the vertically transmitting soft coral, Litophyton crosslandi.  Young colonies 

were challenged with a fluorescently labeled Symbiodinium type not typically hosted by L. 

crosslandi colonies, and some fluorescently labeled Symbiodinium were acquired (Zurel et al. 

2008).  Many cnidarian hosts, including some scleractinian corals, can acquire herterologous 

Symbiodinium types in laboratory infection experiments, but acquisition is often transient 

(Rodriguez-Lanetty et al. 2004; Coffroth et al. 2010).  Furthermore, in many studies the 

Symbiodinium types acquired in the laboratory have never been documented in natural 

populations (Thornhill et al. 2006c and references within).  Therefore, laboratory experiments 

that challenge hosts with diverse Symbiodinium may not correlate to patterns of symbiont 

specificity in natural populations.   

Vertical Symbiodinium transmission, coupled with occasional horizontal acquisition, has 

been proposed in various coral species (van Oppen et al. 2004; Stat et al. 2008a; Pettay et al. 

2011; van Oppen et al. 2011), but has remained an untested hypothesis in scleractinian corals.  In 

addition, while mixed symbiont transmission modes have been documented in a scyphozoan and 

octocoral, it has not been documented in a natural population.  The S. pistillata juvenile colonies 

analyzed here therefore represent the first known documentation of vertical and horizontal 

Symbiodinium acquisition in a natural population of a scleractinian coral.   

Vertical Symbiodinium transmission is generally associated with coral species that brood 

planulae, which only compose approximately 15% of coral species, implying that vertical 

Symbiodinium transmission may be relatively rare.  This assumption, however, is not precise, as 
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approximately one quarter of all broadcast spawning coral species vertically transmit their 

Symbiodinium (Baird et al. 2009).  Taken together, approximately 35% of coral species vertically 

transmit Symbiodinium.  Furthermore, several widely distributed coral genera that exclusively 

vertically transmit Symbiodinium, such as Porites, Montipora, and Pocillopora, are among the 

most dominant genera on many reefs (Baker et al. 2008; Baird et al. 2009).  Consequently, as 

observed in S. pistillata, numerous ecologically dominant coral species with vertical 

transmission may also be capable of horizontal acquisition in the juvenile phase.  

Although the symbiont transmission strategy is unknown in a large number of coral 

species, in the majority of cases, all of the species within a given genus either vertically or 

horizontally transmit Symbiodinium.  However, at least 7 coral genera feature both transmission 

strategies, as some species in the genera exhibit vertical transmission while others feature 

horizontal Symbiodinium transmission (Table 5).  Additionally, three coral species display both 

vertical and horizontal transmission within the same species, as individual adult colonies can 

brood symbiotic larvae and spawn aposymbiotic gametes (Table 5; Sakai 1997; Lam 2000; 

Nozawa & Harrison 2005; Baird et al. 2009).  It is unknown whether brooded symbiotic larvae 

can also horizontally acquire symbionts in these three species.    

While some coral species are capable of releasing some progeny with, and other progeny 

without Symbiodinium, to my knowledge, this is the first report of the same individual progeny 

being capable of both symbiont transmission modes in scleractinian corals.  Therefore, while 

other coral species may use both modes to increase their reproductive fitness, individual progeny 

are still limited to symbiont acquisition by a single mode.  S. pistillata on the other hand, releases 

planulae with vertically inherited symbionts that are capable of subsequent environmental 

symbiont acquisition post-settlement, presenting a novel mechanism for symbiont acquisition. 
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Table 5. Coral genera in which symbiont transmission (vertical and horizontal) modes vary 
among species.  The number of species in each genera that exclusively vertically or horizontally 
transmit Symbiodinium, or those species that are capable of doing both in the same colony (but 
has not been demonstrated in the same progeny).  The total number of species in each genus 
illustrates that more data are needed to characterize the remaining species in most of these 
genera.  Table is based on data compiled by Baird et al. 2009 (supplementary material).  
 

Genera 
Vertical 

Transmission 
Horizontal 

Transmission Both 
Total No. of 

Species/Genera 
Galaxea 1 1 - 6 
Siderastrea 2 1 - 5 
Cyphastrea 1 3 - 8 
Goniastrea - 4 1 12 
Heliofungia - - 1 1 
Oulastrea - - 1 1 
Madracis 3 1 - 15 

 
 
 
The Perpetuation of Novel Symbionts 

Environmental acquisition of new symbionts may be a means by which corals can 

acclimate and/or adapt to environmental changes (Buddemeier et al. 2004), but symbiont 

acquisition in adult corals may either not occur or may be transient (Goulet & Coffroth 2003; 

Goulet 2006; Thornhill et al. 2006b; LaJeunesse et al. 2009; Coffroth et al. 2010).  In coral 

species with horizontal symbiont acquisition, the juvenile stage appears to be more flexible in 

acquiring symbionts not present in the adult population (Coffroth et al. 2001; Weis et al. 2001; 

Little et al. 2004; Rodriguez-Lanetty et al. 2006; Gomez-Cabrera et al. 2008; Abrego et al. 

2009a,b).  However, even if a juvenile colony were able to horizontally acquire and maintain a 

novel Symbiodinium type into adulthood, these novel symbionts would not be transmitted to the 

next generation, since in corals with horizontal symbiont transmission, progeny must acquire 

symbionts anew.  Horizontal transmission may provide an opportunity for symbiont switching, 

and enable short-term acclimation on an individual level, but it does not provide a mechanism for 

the perpetuation of novel Symbiodinium across generations.  
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In contrast, if juvenile corals with vertically transmitted symbionts are capable of 

acquiring novel, advantageous Symbiodinium that are maintained into adulthood, the subsequent 

vertical symbiont inheritance to their progeny would facilitate the maintenance of novel 

Symbiodinium over generations.  If progeny with the advantageous novel symbiont have a higher 

survival rate and/or fecundity, the novel, advantageous symbiosis will be perpetuated through 

natural selection.  Consequently, unlike horizontal symbiont transmission, vertical symbiont 

transmission provides an evolutionary mechanism for rapid adaptation to environmental change. 

 

Conclusions 

S. pistillata may benefit from both modes of symbiont transmission.  On the one hand, 

the progeny are equipped with Symbiodinium, eliminating the risk of not obtaining their obligate 

symbionts.  On the other hand, under certain conditions, juveniles may acquire symbionts from 

the environment, potentially increasing their chances of survival in a new environment.  

Employing both horizontal and vertical symbiont acquisition modes provides a mechanism for 

the acquisition and maintenance of novel Symbiodinium, which may prove adaptive during 

changing environmental conditions, such as those occurring due to global climate change. 
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II. RECIPROCAL DEPTH TRANSPLANTATION OF 
STYLOPHORA PISTILLATA COLONIES IN EARLY 

ONTOGENY  
 

Introduction 

Reef building (scleractinian) corals rely on the photosynthate provided by obligate algal 

symbionts (Symbiodinium) for growth and calcification (Muscatine 1990; Allemand et al. 2011).  

Consequently, scleractinian corals are restricted to the photic zone of tropical and subtropical 

waters, where light levels are sufficient to sustain photosynthesis (Bongaerts et al. 2010a).  Some 

coral species inhabit broad depth distributions, ranging from 1m to over 30m in depth.  In 

contrast, the majority of coral species are distributed within narrow depth ranges due to 

differential physiological tolerances to abiotic factors such as irradiance or temperature (Mundy 

& Babcock 1998; Bongaerts et al. 2010a; Baird et al. 2003 and references therein).  As 

scleractinian corals host Symbiodinium, this niche partitioning may occur at the host, symbiont, 

or holobiont (host and symbiont) level.  Indeed, differences in host morphology (Rowan & 

Knowlton 1995; Bruno & Edmunds 1997; Smith et al. 2007; Einbinder et al. 2009) and 

Symbiodinium fitness (Iglesias-Prieto et al. 2004; Warner et al. 2006; Reynolds et al. 2008; 

Winters et al. 2009) have been recorded as a function of differences in depth or irradiance.   

Many species with wide depth distributions host distinct Symbiodinium as a function of 

depth.  For instance, Bongaerts et al. (2010a) determined that of the ten species with broad depth 
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distributions and known Symbiodinium composition, nine exhibit clade-level depth zonation.  In 

western Australia, shifts from clade D to clade C dominated colonies have been observed in 

Seriatophora hystrix as a function of depth (Cooper et al. 2010) and in the Gulf of Eilat, Red 

Sea, Stylophora pistillata associates with clade A in shallow water but clade C in deeper water 

(Daniel 2006; Winters et al. 2009).  Shifts in Symbiodinium with depth have also been reported 

at the subcladal, or type, level.  In the Great Barrier Reef, Stylophora pistillata and Pocillopora 

damicornis both associate with different clade C subtypes as a function of depth (Sampayo et al. 

2007).  Similarly, in the Caribbean, Madracis pharensis associates with type B7 exclusively 

between 5-10m, but at depths greater than 25m, also harbors type B15 Symbiodinium (Frade et 

al. 2008).    

Given the pattern of symbiont zonation in species with broad depth distributions, several 

studies have attempted to determine if Symbiodinium composition changes in response to 

reciprocal transplant experiments.  Most studies did not demonstrate changes in Symbiodinium 

even after depth transplantations (Toller et al. 2001; Goulet & Coffroth 2003; Iglesias-Prieto et 

al. 2004; LaJeunesse et al. 2004).  Changes in the abundant Symbiodinium clade present was 

observed following transplantation in five Caribbean coral species, all of which have broad depth 

distributions and host specific symbionts with depth (Baker 2001).  Following transplantation 

from deep (20-23m) to shallow (2-4m) water, all five species hosted the Symbiodinium clade 

characteristic of shallow water colonies of each species.  Interestingly, Baker (2001) did not 

document any Symbiodinium changes over 12 months in colonies of the same species that were 

transplanted from shallow to deep depth.  Similarly, in reciprocal depth transplantation of 

Stylophora pistillata in the Gulf of Eilat, shallow water (5m) coral fragments transplanted to 50m 

showed no change in the dominant Symbiodinium clade present after 6 months, but when deep-
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water fragments were transplanted to shallow water, some colonies transitioned from one clade C 

type to another, but in most cases, the change was transient and did not persist (Daniel 2006).    

Most reciprocal transplant experiments have focused on adult corals, and within these 

studies, few have shown changes in Symbiodinium after either transplantation to geographically 

distinct reefs or following transplantation to different depths (change: Baker 2001; Daniel 2006; 

Berkelmans & van Oppen 2006; no change: Toller et al. 2001; Goulet & Coffroth 2003; Iglesias-

Prieto et al. 2004; LaJeunesse et al. 2004; Smith et al. 2007).  This is not necessarily surprising 

given the strict fidelity most adult coral hosts have to a single Symbiodinium type (Goulet 2006).  

However, juvenile corals are known to host Symbiodinium with less specificity than adults 

(present study- Chapter 1; Coffroth et al. 2001; Weis et al. 2001; Little et al. 2004; Rodriguez-

Lanetty et al. 2006; Gomez-Cabrera et al. 2008; Abrego et al. 2009a,b).  If corals are able to 

acquire unique Symbiodinium from the environment, it is more likely that this will occur at the 

juvenile phase than the adult phase.  Few studies have attempted reciprocal transplants of 

juvenile corals and none, to my knowledge, have considered both Symbiodinium composition 

and reciprocal depth transplantation in the same experiment.  Mundy and Babcock (2000) 

conducted reciprocal depth transplants (between 0, 5, and 10m) of 10 day-old juvenile corals 

from three different species, one species with a shallow water distribution, one species restricted 

to deep-water only, and one species with a broad depth distribution.  Surprisingly, 12 months 

after transplantation, juveniles from all three species survived equally well over all three depths 

(Mundy & Babcock 2000).  The authors explained the lack of post-settlement morality in 

habitats outside the parental distribution as evidence for selective settlement behavior in larvae 

(planulae).   
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For most species, it is not clear whether adult distributions are dictated by differential 

settlement behavior in planulae or differential post-settlement survival.  Studies have 

demonstrated that coral planulae are not simply at the whim of ocean currents, but rather exhibit 

various preferential settlement behaviors in response to varying substrates, light intensity, and 

light spectrum (Mundy & Babcock 1998; Baird et al. 2003; Harrington et al. 2004; Golbuu & 

Richmond 2007; Vermeij et al. 2009).  Mundy and Babcock (2000) did not consider the 

Symbiodinium type present in the transplanted colonies.  It is possible that juveniles acquired 

Symbiodinium from the environment that allowed at least short-term survival in the non-parental 

habitat.  If this is the case, the possibility of differential mortality at older juvenile stages cannot 

be eliminated.  Abrego et al. (2009a) did consider changes in Symbiodinium but did not 

transplant colonies to different depths.  Eight-day old juveniles representing two different 

Acropora species were reciprocally transplanted between geographically separate reefs.  When 

transplanted outside of their parental habitat, most juveniles, from both species, environmentally 

acquired Symbiodinium types and/or clades not present in parental colonies (Abrego et al. 

2009a).  Therefore, in order to fully understand the depth distributions of coral species, it is 

important to consider the holobiont with focus towards the host juvenile phase.  Neither Mundy 

and Babcock (2000) nor Abrego et al. (2009a) included in their analyses coral species that 

vertically transmit their Symbiodinium from parent to offspring.   

In coral species with vertical transmission, the Symbiodinium inherited by planulae may 

influence larval settlement behavior.  Additionally, if juvenile corals with vertically transmitted 

symbionts are restricted to the inherited symbiont type, post-settlement mortality in non-parental 

habitats may occur.  Here, I report evidence of environmental acquisition of non-parental 

Symbiodinium post-settlement in Stylophora pistillata, a coral species with vertical symbiont 



 59

transmission (Chapter 1).  Consequently, the acquisition of non-parental symbionts may support 

post-settlement survival at any depth, allowing species to inhabit wide bathymetric distributions.  

S. pistillata in the Gulf of Eilat, Red Sea, has a wide depth distribution and clade level 

Symbiodinium zonation.  Adult colonies present from 2-17m exclusively host clade A 

Symbiodinium, while colonies inhabiting depths of 20-30m dominantly host clade C 

Symbiodinium (Chapter 1; Daniel 2006; Winters et al. 2009).   

Adult S. pistillata in the Gulf of Eilat survive reciprocal transplant experiments, although 

mortality rates are often high (Falkowski & Dubinsky 1981; Daniel 2006).  However, no studies 

of this population have investigated the survivability of young recruits when settled in an 

environment that differs from their maternal colony.  Therefore, several manipulative studies 

were attempted to establish how host/symbiont combinations affect post-settlement survival over 

depth.  Reciprocal depth transplant experiments were run in order to gauge survival as well as 

any changes in symbiont associations.  Using various experimental designs, I was interested in 

addressing the null hypothesis that survival will not be affected by placing settled recruits in a 

depth that differs from their maternal colony.  I additionally addressed the null hypothesis that 

the Symbiodinium types hosted by newly settled recruits will not change following reciprocal 

depth transplantation.  While I was unable to adequately address these hypotheses, here I will 

explain each attempted experiment, outline why they were ineffective, and describe what can be 

done in future studies to investigate the proposed hypothesis with success.    
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Methods 

Transplantation of Recruits Reared from Field-collected Planulae 

All experiments were performed at the Interuniversity Institute for Marine Sciences in 

Eilat (IUI), Eilat, Israel, Red Sea in May through July of 2010.  Planulae were collected from 

reproductively active adult S. pistillata colonies with planula collection nets as described 

previously (Chapter 1-Methods).  In order to identify colonies that consistently released planulae 

each night, 67 different shallow water (2-8m) adult colonies were sampled.  In an effort to 

repeatedly sample only the most fecund colonies, if, after one night of collection, a colony 

released less than seven planulae, that colony was no longer used.  Ten shallow water adult 

colonies were identified that consistently released planulae.  In total, 970 planulae were collected 

from shallow water adults over 10 days of collection.  SCUBA diving restrictions prevented the 

extensive sampling of deep-water colonies (24-26m), but planulae were collected from deep-

water colonies over two nights, collecting 119 planulae in total from 12 adult colonies.  

Following collection, each net was emptied into a bucket and planulae were individually 

collected with a transfer pipette.  The isolated planulae were placed in petri dishes, which had 

lids with several small holes to allow for water circulation.  Individual petri dishes contained 

planulae collected over one night from a single adult, and housed no more than 24 planulae per 

petri dish.  Each petri dish also contained a piece of pre-conditioned settlement paper (Figure 

12A,B).  Settlement paper (underwater paper) was pre-conditioned in an indoor flow through 

seawater table (no coral was in the tank), supplied with unfiltered seawater pumped directly from 

the Gulf of Eilat.  Pre-conditioning is important because it allows the paper to develop a bacterial 

biofilm that induces planula settlement (Vermeij et al. 2009).   



To determine if settlement success 

shallow water planulae were exposed to alternative pre

petri dish had at least one or a combination of all three different settlement surfaces: 1) small 

pieces of underwater paper that had been pre

weeks (the paper had substantial amount

baskets that were preconditioned for at least three weeks in a flow through seawater table that 

contained multiple adult corals, and 3) pebbles collected from the sea floor of the shallow reef.  

In total, 230 shallow water planulae were exposed to various alternative per

that were added to the petri dishes.  All of the petri dishes, regardless of settlement surface, were 

then placed in an outdoor flow through seawater table with shading nets that provided

irradiance levels to those of the planulae’s maternal colonies (Figure 1

 
Figure 12. Experimental setup to rear field
table.  (A) Underwater paper that 
clothespins and preconditioned in an indoor 
was lined with settlement paper.  A f
Flowing seawater table with shading nets to control irradiance levels.  
planulae, weighed down with rocks
contained planulae from a single adult colon
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To determine if settlement success rate was affected by the substrate provided

exposed to alternative pre-conditioned settlement surfaces.  

petri dish had at least one or a combination of all three different settlement surfaces: 1) small 

pieces of underwater paper that had been pre-conditioned in the ocean for approximately three 

substantial amounts of macroalgal growth), 2) small pieces of plastic 

baskets that were preconditioned for at least three weeks in a flow through seawater table that 

contained multiple adult corals, and 3) pebbles collected from the sea floor of the shallow reef.  

lanulae were exposed to various alternative per-conditioned surfaces 

that were added to the petri dishes.  All of the petri dishes, regardless of settlement surface, were 

then placed in an outdoor flow through seawater table with shading nets that provided

irradiance levels to those of the planulae’s maternal colonies (Figure 12C,D). 

 

Experimental setup to rear field-collected planulae in a flow through seawater 
that was used as a settlement surface is held in place with 

preconditioned in an indoor flow through seawater table.  (B) Each petri dish 
s lined with settlement paper.  A free-swimming planula that has not yet settled

Flowing seawater table with shading nets to control irradiance levels.  (D) Petri dishes containing 
weighed down with rocks, in the flow through seawater table.  Each petri dish

single adult colony. 

rate was affected by the substrate provided, a subset of 

onditioned settlement surfaces.  Each 

petri dish had at least one or a combination of all three different settlement surfaces: 1) small 

conditioned in the ocean for approximately three 

th), 2) small pieces of plastic 

baskets that were preconditioned for at least three weeks in a flow through seawater table that 

contained multiple adult corals, and 3) pebbles collected from the sea floor of the shallow reef.  

conditioned surfaces 

that were added to the petri dishes.  All of the petri dishes, regardless of settlement surface, were 

then placed in an outdoor flow through seawater table with shading nets that provided similar 

collected planulae in a flow through seawater 
in place with 
B) Each petri dish 

that has not yet settled is circled.  (C) 
etri dishes containing 

etri dish 
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After six to 18 days in the petri dishes, all successfully settled, healthy recruits were 

prepared for transplantation.  I use the term recruit to refer to newly settled colonies, 

approximately 3-5mm in diameter with minimal three-dimensional structure, to avoid confusion 

with older and larger juvenile colonies that featured three-dimensional structure.  Each settled 

recruit was gently removed from its settlement surface and, using commercial super glue, was 

glued to an individual glass microscope slide and photographed.  Recruits were out of seawater 

for approximately one minute during processing.  All microscope slides were placed in a shaded 

flow through seawater table for several days to allow the recruits to recover from processing and 

handling prior to transplantation.  The slides were then placed in Plexiglas microscope slide 

holders that were secured to one of two large crates placed at 7m and 30m on the reef (Figure 

13). 

Forty-six recruits reared from planulae released by shallow water adults were 

successfully transplanted to the reef.  Due to the reduced sampling effort applied to deep-water 

planula collection, only five recruits reared from deep-water were transplanted.  Half (23) of the 

shallow water recruits were transplanted to 30m while the remaining half were placed at 7m as a 

control (Figure 13).  All five of the recruits reared from deep-water planulae were placed at 7m.  

While the intention was to collect seven to eight recruits reared from shallow water planulae 

from each depth once a week for three weeks, high mortality rates only allowed six shallow 

water recruits from each depth to be collected two weeks following transplantation.  One deep-

water recruit was collected after two weeks at 7m.  Once collected, recruits were photographed 

to record growth before they were preserved in 100% ethanol.   



 
Figure 13. Experimental setup of the reciprocal transplant using newly settled recruits 
several weeks of age.  Settled recruits were glued to individual microscope slides and 
transplanted onto the reef.  (A) A newly settled, healthy recruit that 
shallow water planula and settled on the preconditioned settlement paper.  (
recruits collected from a flow through sea
pistillata colonies.  The larger recruit on the left is healthy
as indicated by the brown pigmentation.  The recruit on the right 
indicated by the white coloration.  These recruits settled on a plastic basket conditioned in a 
through seawater table that contained live coral.  Microscope slides were placed in Plexiglas 
holders and tied to crates.  One cr
 

Transplantation of Flow Through 

Due to the low sample sizes obtained from rearing recruits from 

I attempted to transplant settled recruits collected from experimental flow through seawater 

tables.  There were several seawater tables at IUI that were used for various unrelated studies 

contained gravid adult S. pistillata

adult S. pistillata colonies were initially 

The colonies released planulae that

flow through seawater table.   
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Experimental setup of the reciprocal transplant using newly settled recruits 
Settled recruits were glued to individual microscope slides and 

transplanted onto the reef.  (A) A newly settled, healthy recruit that metamorphosed 
shallow water planula and settled on the preconditioned settlement paper.  (B) Two newly settled 

flow through seawater table containing reproductively active 
colonies.  The larger recruit on the left is healthy, with a complement of 

as indicated by the brown pigmentation.  The recruit on the right lacks Symbiodinium
indicated by the white coloration.  These recruits settled on a plastic basket conditioned in a 

table that contained live coral.  Microscope slides were placed in Plexiglas 
holders and tied to crates.  One crate was placed at 7m (C) and the other at 30m (D)

hrough Seawater Table Recruits 

Due to the low sample sizes obtained from rearing recruits from field-collected planulae, 

I attempted to transplant settled recruits collected from experimental flow through seawater 

tables.  There were several seawater tables at IUI that were used for various unrelated studies 

S. pistillata colonies, as well as other scleractinian coral species

initially collected from the coral nursery on the IUI reef (10m).  

that successfully settled on various plastic surfaces present in th

Experimental setup of the reciprocal transplant using newly settled recruits 
Settled recruits were glued to individual microscope slides and 

metamorphosed from a 
) Two newly settled 

table containing reproductively active S. 
, with a complement of Symbiodinium, 

Symbiodinium, as 
indicated by the white coloration.  These recruits settled on a plastic basket conditioned in a flow 

table that contained live coral.  Microscope slides were placed in Plexiglas 
) and the other at 30m (D). 

collected planulae, 

I attempted to transplant settled recruits collected from experimental flow through seawater 

tables.  There were several seawater tables at IUI that were used for various unrelated studies and 

her scleractinian coral species.  These 

collected from the coral nursery on the IUI reef (10m).  

successfully settled on various plastic surfaces present in the 
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A total of 206 settled recruits (3-5mm; hence forth referred to as watertable recruits) were 

removed from the various plastic surfaces, glued to microscope slides, and photographed as 

described above (Figure 13C).  Twenty-three watertable recruits were preserved in 100% ethanol 

to determine the Symbiodinium present at time zero of the transplantation experiment. 

Additionally, a 2cm branch piece was collected from all adult colonies (irrespective of species) 

present in the watertable in order to establish which Symbiodinium types were present in the 

seawater table and more specifically, which symbionts the adult S. pistillata colonies hosted.  

One hundred three of the watertable recruits were transplanted to each of the crates secured at 

7m and 30m (these watertable recruits were placed on the same crates used to hold the recruits 

that we reared from planulae in the experiment described above; Figure 13).  Approximately five 

to 11 recruits were subsequently collected from each depth four, 10, 24, and 30 days after 

transplantation.  An additional eight colonies were collected from the 30m-transplant depth one 

year after transplantation.  Those watertable recruits that survived one year were preserved in 

100% ethanol prior to DNA extraction and analyzed with DGGE and real-time PCR described 

previously (Chapter 1- Methods).  

 

Transplantation of Juvenile Colonies 

To monitor the effects of transplantation on older colonies, juvenile S. pistillata colonies, 

ranging in size from approximately 5-30.5mm diameter were collected from three different 

sources: the shallow (2-6m; n=50) and deep reef (24-26m; n=42) at IUI, and from an outdoor 

aquarium from the local commercial underwater observatory (hence forth referred to as 

observatory juveniles; n=28).  Entire juvenile colonies were removed by hammer and chisel from 

both rock and artificial substrates present on the reef or from the concrete walls of the outdoor 
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aquarium.  The juveniles were then transferred to an outdoor flow through seawater table under 

shading equivalent to the irradiance levels present at the depth from which they were collected.  

The observatory juveniles were placed under the same level of shading as the juveniles collected 

form the shallow water reef.  All juveniles were acclimated in the seawater table for several days 

following collection.  All colonies appeared healthy with no signs of bleaching prior to further 

handling.   

To prepare the juveniles for transplantation, six juveniles were glued to each of 20, 

30.48cm by 30.48cm ceramic tiles.  To insure appropriate controls on each tile, when possible, at 

least one juvenile each from deep-water, shallow water, and the observatory were glued to each 

tile.  Six juveniles were randomly selected at a time and carried into the laboratory where they 

were measured for height, width, and length, photographed, and glued to the ceramic tile (Figure 

14A,B, and C).  Additionally, a small piece of coral (approximately 4mm by 4mm) was clipped 

from each juvenile colony and preserved in 100% ethanol in order to establish which symbiont(s) 

were present at time zero of the experiment.  The juveniles were out of seawater for 

approximately one-two minutes during processing.  The completed tile was carried back to the 

outdoor flow through seawater table and placed under irradiance levels equivalent to a 30m 

depth in order to avoid exposing the deep juveniles on the tile to high irradiance.  

Ten tiles, with 60 juveniles, were transplanted to each depth of either 7m or 30m.  In 

total, 23 shallow, 22 deep, and 15 observatory juveniles were transplanted to 7m, while 27 

shallow, 20 deep, and 13 observatory juveniles were transplanted to 30m.  The 10 tiles that were 

transplanted to 30m were left in the flowing seawater table for only one day before they were 

transferred to the reef (Figure 14C).  The remaining 10 tiles that were to be transplanted to 7m 

were left in the flowing seawater table under heavy shading.  Over a three-day period, the 



shading was slowly decreased in order to acclimate the juveniles to the irradiance level they 

would experience at 7m.  After three days of acclimation, the tiles were secured to a platform on 

the reef set at 7m (Figure 14D).  All juveniles appeared healthy immediately 

following transplantation with no visible bleaching.  While complete mortality prevented 

additional sampling, I intended to have collaborators collect small branch pieces from every 

juvenile colony at each depth after 

 
Figure 14. Experimental setup of the reciprocal transplant u
of age.  (A) Juvenile collected from the shallow reef (3
observatory outdoor aquarium.  (
ruler shown for scale. Ten tiles with 
(D) and 30m (E). 
 

Results 

Transplantation of Recruits Reared from 

The most fecund shallow water adult colony identified (ID number 226) released 216 

planulae over five nights, releasing as many as 99 planulae in a single night and averaging 43 
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lowly decreased in order to acclimate the juveniles to the irradiance level they 

would experience at 7m.  After three days of acclimation, the tiles were secured to a platform on 

D).  All juveniles appeared healthy immediately prior to and

following transplantation with no visible bleaching.  While complete mortality prevented 

additional sampling, I intended to have collaborators collect small branch pieces from every 

juvenile colony at each depth after one, three, and six months post transplantation.

 

Experimental setup of the reciprocal transplant using juveniles several months 
from the shallow reef (3-8m).  B) Juvenile collected from the 
(C) Juvenile collected from the deep reef (20-30m).  Centimeter 

Ten tiles with six juvenile colonies on each were placed on a rack at 7m

eared from Field-collected Planulae 

The most fecund shallow water adult colony identified (ID number 226) released 216 

planulae over five nights, releasing as many as 99 planulae in a single night and averaging 43 

lowly decreased in order to acclimate the juveniles to the irradiance level they 

would experience at 7m.  After three days of acclimation, the tiles were secured to a platform on 

prior to and 

following transplantation with no visible bleaching.  While complete mortality prevented 

additional sampling, I intended to have collaborators collect small branch pieces from every 

s post transplantation. 

sing juveniles several months 
) Juvenile collected from the 

30m).  Centimeter 
each were placed on a rack at 7m 

The most fecund shallow water adult colony identified (ID number 226) released 216 

planulae over five nights, releasing as many as 99 planulae in a single night and averaging 43 
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planulae per night.  This colony was exceptional however, as on average colonies released only 

14.3 planulae per night (Table 6).  Deep-water S. pistillata colonies are known to be less fecund 

(Rinkevich & Loya 1987) and released on average 6.3 planulae per night (Table 6).   

 
Table 6. Settlement and survival rates of field-collected planulae reared ex situ in a flow 
through seawater table.  As not all recruits that successfully settled survived, settlement rate 
was calculated in two ways.  Settlement success rate is the percent of planulae that settled 
successfully independent of whether they survived or subsequently died in the flow through 
seawater table ([no. of alive recruits + no. of dead recruits]/total number of planulae collected).  
Survival rate is the percent of planulae that successfully settled and survived until 
transplantation onto the reef (no. of alive recruits/total number of planulae collected). 

 

 
Colony 
ID No. 

No. of 
Planulae 
Collected 

Avg No. of 
Planulae  

Collected per Day 
No. of 
Days 

No. of Alive 
Settled 

Recruits 

No. of Dead 
Settled 

Recruits 

Settlement  
Success 

Rate (%) 
Survival 
Rate (%) 

Shallow Water Colonies 
212 91 13 7 8 2 10.99 8.79 
214 228 23 10 17 15 14.04 7.46 
210 54 5 3 0 0 0.00 0.00 
207 54 9 6 3 1 7.41 5.56 
211 129 13 10 3 2 3.88 2.33 
204 52 9 6 1 0 1.92 1.92 
209 37 7 5 1 2 8.11 2.70 
208 55 7 8 5 2 12.73 9.09 
217 54 13.5 4 11 5 29.63 20.37 
226 216 43 5 23 3 12.04 10.65 

Total 970 14.25 - 72 32 10.72 7.42 

Deep-Water Colonies  
229 12 6 2 0 0 - 0.00 
230 10 5 2 1 0 - 10.00 
235 9 4.5 2 0 0 - 0.00 
236 12 6 2 1 0 - 8.33 
238 14 7 2 0 0 - 0.00 
240 29 14.5 2 1 0 - 3.45 
241 3 - 1 0 0 - 0.00 
234 9 - 1 1 0 - 11.11 
249 11 - 1 1 0 - 9.09 
244 7 - 1 0 0 - 0.00 
247 2 - 1 0 0 - 0.00 
239 1 - 1 0 0 - 0.00 

Total 119 6.33 - 5 0 - 4.20 
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While some planulae metamorphosed and settled in the petri dishes supplied, settlement 

success and survival rates were extremely low (Table 6).  When petri dishes were checked to 

monitor settlement success, some planulae had successfully settled, but many had already died 

soon after settling.  Therefore, the settlement success rate is expressed as the percent of planulae 

that settled successfully regardless of whether they survived in the petri dishes after settlement.  

Alternatively, survival rate was calculated as the number of planulae that successfully settled and 

survived in the flow through seawater table until transplantation to the reef.  Although using 

settlement paper had been successful in the past (M. Fine pers. comm.), in the current 

experiment, the planulae avoided the settlement paper.  Actively swimming planulae were 

observed after as many as 23 days in the petri dishes indicating that the planulae did not find a 

favorable substrate, which likely caused the high mortality.  Only 9.32% of the planulae exposed 

to the settlement paper successfully settled, and only 5.56% survived post-settlement (Table 7). 

The survival rate of successfully settled recruits was significantly higher when the 

planulae were exposed to the alternative substrates as compared to the settlement paper pre-

conditioned in the empty flow through seawater table (test of two proportions, z-test, P<0.001).  

However, this statistical difference was primarily due to the large effects of colony 226 

(P<0.001) and colony 214 (P=0.031; Figure 15). 
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Table 7. Settlement and survival rates of field-collected planulae exposed to alternative 
settlement substrates.  Planulae collected from seven different shallow water adult colonies 
were presented with either settlement paper that was pre-conditioned in a flow through seawater 
table with no live coral or various alternative substrates pre-conditioned in the presence of live 
coral.  Alternative substrates included: small pieces of underwater paper that had been pre-
conditioned in the ocean for approximately three weeks, small pieces of plastic baskets that were 
preconditioned for at least three weeks in a flow through seawater table that contained multiple 
adult corals, and 3) pebbles collected from the sea floor of the shallow reef. 
 

 
Colony 
ID No. 

No. of Planulae 
Collected 

No. of Alive 
Settled Recruits 

No. of Dead 
Settled Recruits 

Settlement  
Success Rate (%) 

Survival 
Rate (%) 

      Settlement Paper  
214 206 12 12 11.65 5.83 
207 46 3 1 8.70 6.52 
211 95 2 0 2.11 2.11 
204 46 1 0 2.17 2.17 
208 34 4 2 17.65 11.76 
217 42 7 3 23.81 16.67 
226 89 2 3 5.62 2.25 

Total 558 31 21 9.32 5.56 

Alternative Substrates 
214 22 5 3 36.36 22.73 
207 8 0 0 0.00 0.00 
211 34 1 2 8.82 2.94 
204 6 0 0 0.00 0.00 
208 21 1 0 4.76 4.76 
217 12 4 2 50.00 33.33 
226 127 21 0 16.54 16.54 

Total 230 32 7 16.96 13.91 



Figure 15. Percent survival of field
substrates.  Planulae were collected from seven
bars represent the survival rate when planulae were presented with settlement paper that was pre
conditioned in a flow through seawater table with no live coral.  
rate when planulae were presented with alternative substrates.
the number of planulae that successfully settled and survived. Asterisks represent significant 
differences (p<0.05) between substrates offered.
 
 

In total, from the 970 planulae collected from 10 different shallow water 

46 settled recruits, representing 10

Although Table 6 indicates that 72 recruits successfully settled and survived, I was unable to 

transfer all of the recruits to the microscope slide

care was taken in the process of removing recruits from their substrate, severa

crushed.  Second, many planulae appeared to preferentially settle on the

added to petri dishes as an alternative settlemen

from the pebbles without being crushed

water colonies, which yielded five successfully settled recruits. 
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of field-collected planulae exposed to alternative settlement 
Planulae were collected from seven different shallow water adult colonies. 

bars represent the survival rate when planulae were presented with settlement paper that was pre
conditioned in a flow through seawater table with no live coral.  White bars represent survival 
rate when planulae were presented with alternative substrates.  Survival rate was calculated as 
the number of planulae that successfully settled and survived. Asterisks represent significant 

between substrates offered.   

In total, from the 970 planulae collected from 10 different shallow water 

10 unique parent colonies, were transplanted to the reef.  

indicates that 72 recruits successfully settled and survived, I was unable to 

transfer all of the recruits to the microscope slides for various reasons.  First, although extreme 

care was taken in the process of removing recruits from their substrate, several samples were 

many planulae appeared to preferentially settle on the small pebbles 

petri dishes as an alternative settlement substrate, but recruits could not be removed 

being crushed.  A total of 119 planulae were collected from 12 deep

water colonies, which yielded five successfully settled recruits.  

 
exposed to alternative settlement 

different shallow water adult colonies.  Gray 
bars represent the survival rate when planulae were presented with settlement paper that was pre-

bars represent survival 
Survival rate was calculated as 

the number of planulae that successfully settled and survived. Asterisks represent significant 

In total, from the 970 planulae collected from 10 different shallow water adult colonies, 

d to the reef.  

indicates that 72 recruits successfully settled and survived, I was unable to 

s for various reasons.  First, although extreme 

l samples were 

small pebbles that were 

could not be removed 

.  A total of 119 planulae were collected from 12 deep-
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Six recruits reared from shallow water planulae were collected from the 7m-transplant 

depth, while only five were collected from the 30m-transplant depth after two weeks on the reef.  

Of the six recruits collected from the 7m-transplant depth, only three appeared healthy while the 

other three were at least bleached if not dead.  Additionally, two of the bleached colonies 

actually decreased in size over the two-week period.  Similarly, three of the five recruits 

collected from the 30m-transplant depth appeared healthy, while the other two were bleached 

and had decreased in size.  Only one recruit that was reared from a deep-water planula was 

collected after two weeks at 7m and the colony was severely bleached if not dead.  No additional 

recruits were collected as all the colonies later died.   

 

Transplantation of Flow Through Seawater Table Recruits 

Transplanted watertable recruits were sampled five times over the course of one year.  At 

time one (four days post transplantation), of the eight recruits collected from 7m, seven appeared 

healthy but several recruits were less pigmented compared to time zero, indicating the recruits 

were likely stressed; 10 recruits were collected from 30m, three of which were severely bleached 

or dead.  At time two (10 days post transplantation), only two of 11 recruits collected from 7m 

were completely healthy, five were dead, and the remaining four were extremely pale; four of 11 

recruits collected from 30m appeared healthy.  At time three (24 days post transplantation), most 

of the recruits had grown in size.  However, only four of 11 recruits collected from 7m and two 

of nine recruits collected from 30m appeared healthy.  After 32 days on the reef (time four), only 

five recruits were collected from 30m, of which one appeared healthy.  Since the health of the 

recruits appeared to be declining, no more recruits were sampled.  One year later, nine recruits 

transplanted to 30m had survived and were therefore collected.   
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Genomic DNA was only extracted from the nine recruits collected after one year on the 

reef, with extractions failing to obtain usable DNA from one sample.  Therefore, eight watertable 

recruits were run on DGGE and real-time PCR (according to the methods described in Chapter 

1).  All eight sampled displayed a DGGE fingerprint characteristic of Symbiodinium type A1 

(Figure 16).  Real-time PCR did not detect any low-levels of clade C Symbiodinium.   

 
 
Figure 16. Denaturing-gradient gel electrophoresis image of the Symbiodinium hosted by 
watertable recruits.  Nine watertable recruits were transplanted to 30m and collected after one 
year.  Since the maternal colonies of the watertable recruits were most likely of shallow water 
origin, they probably contained Symbiodinium type A1.  After one year at 30m, all eight 
watertable recruits analyzed displayed a DGGE fingerprint characteristic of Symbiodinium type 
A1.  The profiles on the extreme left and right of the image represent DGGE standards of A1 and 
C72 Symbiodinium, respectively.   

 

Transplantation of Juvenile Colonies 

 One month following transplantation, collaborators reported that all juvenile colonies at 

both transplant depths suffered 100% mortality. 

Discussion 

Transplantation of Recruits Reared from Field-collected Planulae 

Low Fecundity in Stylophora pistillata Colonies 

The success of this experiment hinged on an ability to collect large numbers of planulae 

from reproductively active adults.  For unknown reasons, reproductive output from the shallow 
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water adult colonies in 2010 was extremely low.  S. pistillata has a long reproductive season 

from December through July with peak planulation occurring between March and June 

(Rinkevich & Loya 1979b; Zakai et al. 2006).  In the Gulf of Eilat, S. pistillata colonies begin to 

develop mature ova when they reach a geometric mean radius of approximately 4.5-5cm (Loya 

1976b; Rinkevich & Loya 1979b).  The smallest adult colonies sampled had geometric mean 

radii of approximately 6-7cm, indicating that all adult colonies sampled were of a reproductive 

age class and potentially capable of releasing planulae.  Further, S. pistillata are known to release 

as many as 400 planulae in a single night (Loya 1976b; Rinkevich & Loya 1979b; Zakai et al. 

2006).  In 2009, an adequate number of planulae were collected from shallow water colonies in a 

single night in mid-July, well past the peak planulation period.  It is not clear then why shallow 

water adult colonies in May 2010 did not release similarly large numbers of planulae.  The most 

fecund colony identified only released 99 planulae in a single night, while most colonies released 

less than 10-20 planulae per night. 

In the winter of 2010, very strong storms in the northern Gulf of Eilat caused a great deal 

of heavy wave action on the IUI reef.  A large amount of physical damage was observed in many 

shallow water branching coral species including S. pistillata.  It is possible that the winter storms 

caused physical damage that negatively affected the fecundity of the shallow water colonies in 

the 2010 reproductive season.   

 

Low Settlement Success Rate 

Despite difficulties in collecting an adequate number of planulae, 970 planulae were 

ultimately collected from 10 different shallow water adult colonies.  However, an extremely low 

settlement success rate prevented the experiment from being executed with sufficient statistical 
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power to address the original hypothesis.  It is most likely that an unfavorable substrate 

prevented most planulae from successfully settling in the petri dishes.  The majority of planulae 

collected (740 shallow water) were exposed to settlement paper that was pre-conditioned in an 

indoor flow through seawater table, with no live coral present, for approximately two weeks.  

When exposed to this settlement surface in the petri dishes, only 8.78% successfully settled.  The 

settlement success rate is extremely low in comparison to the 60% settlement success rate for 

shallow water S. pistillata planulae reported by Linden and Rinkevich (2011).  Among other 

methodological differences described below, Linden and Rinkevich  (2011) exposed field-

collected planulae to petri dishes lined with polyester underwater paper that had been 

preconditioned in a flow through seawater table with live corals for at least 2 months.  Linden 

and Rinkevich (2011) used a slightly different type of underwater paper than used here, and 

importantly, exposed their settlement paper to a longer preconditioning period in a flow through 

seawater table with live coral.  The use of an unfavorable settlement surface is further supported 

by the significantly different settlement success rates reported in the present study when planulae 

were exposed to alternative substrates preconditioned in the presence of live coral.  Therefore, it 

is clear that a long preconditioning period is necessary for the establishment of a biofilm and the 

growth of crustose coralline algae that are known to induce settlement (Harrington et al. 2004; 

Golbuu & Richmond 2007).   

Settlement success rate in symbiotic planulae has also been linked to light exposure 

(Isomura & Nishihira 2001; Harii et al. 2010).  The symbiotic planulae of Pocillopora 

damicornis became inactive, white, and irregularly shaped after 30 days of exposure to no light 

in contrast to active, pigmented, and uniformly shaped planulae exposed to the light treatment 

(Harii et al. 2010).  This difference translated to a significant increase in settlement success rate 
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of P. damicornis planulae exposed to the light treatment (Harii et al. 2010).  Harii et al. (2010) 

determined that under dark conditions, P. damicornis planulae used approximately two times 

more of their lipid energy reserves, indicating that the Symbiodinium provide a substantial 

amount of energy to the planulae.  In the present study, S. pistillata planulae that survived 23 

days in the petri dishes appeared pale in color and were less active compared to freshly released 

planulae.  Therefore, it is possible that in the present study S. pistillata planulae were not 

exposed to light conditions that favored photosynthesis.  With the lack of a favorable substrate, 

the planulae would have exhausted their energy reserves quickly if the Symbiodinium were 

unable to supplement the energy requirements of the planulae (Harii et al. 2010).  Using nets that 

provide less shading may increase the settlement success rate. 

Recent research conducted by Linden and Rinkevich (2011) provides a detailed method 

for rearing field-collected S. pistillata from planulae for conservation applications.  Following 

the successful rearing of planulae to young recruits ex situ, 89% of recruits survived four months 

after transplantation to the shallow reef (Linden & Rinkevich 2011).  There were several 

differences between the methods applied here and those developed by Linden and Rinkevich 

(2011).  For instance, while I only placed settlement paper on the bottom of the petri dish and not 

on the lid, Linden and Rinkevich (2011) placed paper on both sides of the dish.  To allow for 

water circulation I added holes to the petri dish lids, while no efforts were made to facilitate 

water circulation by Linden and Rinkevich (2011).  Additionally, Linden and Rinkevich (2011) 

reported reduced settlement success if new settlement paper and water was not added to the 

dishes every few days; I did not change the water or settlement surfaces.  Following successful 

settlement and metamorphosis, Linden and Rinkevich (2011) allowed recruits to grow outside of 

the petri dishes for one month ex situ prior to further handling.  One-month-old recruits were 
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then individually transferred to plastic pegs before transplantation to an in situ nursery.  

Allowing newly settled recruits time to grow and develop prior to transferring them to a new 

surface is likely critical for successful transplantation to the reef.  Others have successfully 

transplanted laboratory reared recruits of various coral species by exposing planulae to 

preconditioned tiles that were then transferred to the reef, with no efforts made to remove the 

recruits from their substrate (although high mortality rates were documented; Mundy & Babcock 

2000; Abrego et al. 2009a).  In an effort to transplant the youngest colonies possible, 

survivorship was likely reduced in the present study, but following the protocol outlined by 

Linden and Rinkevich (2011) should increase the success of future experiments. 

 

Transplantation of Flow Through Seawater Table Recruits 

The nearly complete mortality observed in transplanted watertable recruits is likely an 

indication of the difficulty in transplanting extremely young recruits.  Attempts would have 

likely been more successful had recruits been given the time to grow to a larger size class before 

transplantation.  As documented in Pocillopora damicornis, recruits reared in the lab and 

transplanted to the reef at a size of 10.1-29mm featured 47.5% survivorship after one year 

(Raymundo & Maypa 2004).  This is in comparison to 0% and 2.5% one-year survivorship for 

juveniles transplanted at ≤3mm and 3.1-6mm in diameter, respectfully (Raymundo & Maypa 

2004).  Others have also demonstrated that juvenile survivorship increases with increased colony 

size (Loya 1976a,b; Glassom & Chadwick 2006; Vermeij & Sandin 2008).  To prevent 

predation, caging may also increase survivorship following transplantation to the reef (Baria et 

al. 2010; Linden & Rinkevich 2011).  Finally, Oren and Benayahu (1997) reported that S. 

pistillata juvenile survivorship increased with depth when transplanted to artificial reefs ranging 
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in depth from 6-15m.  At the shallow depths, macroalgae more easily out-compete juvenile 

corals thereby decreasing survivorship (Oren & Benayahu 1997).  Therefore, moving the shallow 

transplant depth from 7m to approximately 10m may increase survivorship.  

Despite these numerous difficulties, eight watertable recruits survived one year after 

transplantation to 30m.  Interestingly, even after one year in the deep-water environment, where 

clade C is the dominant Symbiodinium clade hosted by adults, all eight watertable recruits only 

contained clade A Symbiodinium.  These results indicate that watertable recruits, presumably 

reared from maternal colonies of shallow water origin, are capable of surviving at least one year 

in the deep-water habitat with clade A Symbiodinium.  This is in accordance with the results 

reported in Chapter 1.  Eleven of the 25 juveniles collected from deep-water solely contained 

clade A Symbiodinium, with no detectable low-levels of clade C.  Therefore, planulae released 

from shallow water adults may successfully settle and grow in deep-water.  No low-levels of 

clade C Symbiodinium were detected in the one-year old watertable recruits placed in 30m, 

which may indicate one of two things.  Either, the watertable recruits would have died before 

reaching adulthood, or they had not yet acquired clade C Symbiodinium from the environment.  

Juvenile Acropora tenuis colonies can associate with non-parental Symbiodinium for up to 3.5 

years (Abrego et al. 2009b).  Consequently, in order to detect potential changes in Symbiodinium 

composition following reciprocal transplant, juvenile colonies should be monitored for multiple 

years.  

 

Transplantation of Juvenile Colonies  

The main goal in conducting reciprocal transplant experiments was to monitor possible 

changes in survival and in the Symbiodinium type(s) hosted.  Juvenile colonies three to 16 
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months old can associate with both clade A and C Symbiodinium simultaneously (Chapter 1). 

Assuming that several month-old juveniles can still acquire exogenous symbionts, in future 

experiments, one to two-month old juvenile colonies can be used, as these colonies should 

demonstrate increased survival (Linden & Rinkevich 2011; Raymundo & Maypa 2004).  To 

ensure the identity of the maternal colony, juveniles could be reared from planulae and allowed 

to grow in flowing seawater tables for several months before attempting transplantation, as 

described by Linden and Rinkevich (2011).  Beyond increased survival rate, using older 

individuals allows for multiple collections from the same individual over time, which provides 

more accurate monitoring of changes in Symbiodinium.   

However, when older juveniles were transplanted they still suffered 100% mortality.  

Even control colonies, collected from shallow or deep-water and transplanted back to shallow or 

deep-water died after only one month on the reef.  The complete mortality observed at both 

transplant depths is an indication that the processing and handling of the juvenile colonies was 

likely too stressful.  Unfortunately, due to time constraints, juvenile samples were processed very 

quickly and likely did not have an adequate amount of time to recover from handling.  

Survivorship will likely increase if recruits are allowed a slow acclimation period, over the 

course of several weeks, to the irradiance levels they will experience when eventually 

transplanted.  Once the appropriate irradiance level has been reached, the juveniles should be left 

in flow through seawater tables for several days in order to closely monitor health prior to 

transplantation.  Finally, gluing each individual to its own ceramic tile or plastic peg, as opposed 

to gluing multiple colonies from various depths on the same tile, would provide the capability of 

varying exposure for shallow versus deep juveniles during the recovery and acclimation periods 

(Linden & Rinkevich 2011).   
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Conclusion 

 By employing various techniques in an effort to execute the reciprocal transplantation of 

S. pistillata colonies in early ontogeny, valuable methodological insight was gained that will 

benefit future experimentation.  By following recently available protocols (Linden & Rinkevich 

2011) settlement success and initial survival rates may improve.  This, in turn, will allow 

sufficient sample sizes for the continued monitoring of transplanted young (several week-old) 

recruits on the reef.  High mortality rates, however, may make this approach challenging.  

Transplanting older (several month-old) juveniles may still allow for the documentation of 

horizontal Symbiodinium acquisition and may also increase survivorship.  Consequently, future 

experiments may benefit from transplanting colonies of various ages.  Regardless of the initial 

age class used, in order to adequately address the possibility of horizontal acquisition and 

Symbiodinium switching, juvenile colonies should be monitored for several years.  While the 

data collected in Chapter 1 strongly suggests horizontal Symbiodinium acquisition in a vertically 

transmitting species, it would be beneficial to empirically document this in S. pistillata juveniles. 

Monitoring potential Symbiodinium changes in juveniles of a coral species with a large depth 

distribution will lend insight into understanding whether symbiont zonation patterns observed in 

that species are mediated by larval settlement behavior or post-settlement survival.            
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