
University of Mississippi University of Mississippi

eGrove eGrove

Electronic Theses and Dissertations Graduate School

2017

Genetic Algorithm For University Course Timetabling Problem Genetic Algorithm For University Course Timetabling Problem

Achini Kumari Herath
University of Mississippi

Follow this and additional works at: https://egrove.olemiss.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Herath, Achini Kumari, "Genetic Algorithm For University Course Timetabling Problem" (2017). Electronic
Theses and Dissertations. 443.
https://egrove.olemiss.edu/etd/443

This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more
information, please contact egrove@olemiss.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by eGrove (Univ. of Mississippi)

https://core.ac.uk/display/288063041?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://egrove.olemiss.edu/
https://egrove.olemiss.edu/etd
https://egrove.olemiss.edu/gradschool
https://egrove.olemiss.edu/etd?utm_source=egrove.olemiss.edu%2Fetd%2F443&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=egrove.olemiss.edu%2Fetd%2F443&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/etd/443?utm_source=egrove.olemiss.edu%2Fetd%2F443&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu

GENETIC ALGORITHM FOR UNIVERSITY COURSE TIMETABLING PROBLEM

A Thesis
presented in partial fulfillment of requirements

for the degree of Masters of Science
in the Department of Computer and Information Science

The University of Mississippi

by
Achini Kumari Herath

May 2017

Copyright © 2017 by Achini Herath

All rights reserved

ii

ABSTRACT

Creating timetables for institutes which deal with transport, sport, workforce,

courses, examination schedules, and healthcare scheduling is a complex problem. It is

difficult and time consuming to solve due to many constraints. Depending on whether the

constraints are essential or desirable they are categorized as ‘hard’ and ‘soft’, respectively.

Two types of timetables, namely, course and examination are designed for academic

institutes. A feasible course timetable could be described as a plan for the movement of

students and staff from one classroom to another, without conflicts. Being an NP-complete

problem, many attempts have been made using varying computational methods to obtain

optimal solutions to the timetabling problem. Genetic algorithms, based on Darwin's theory

of evolution is one such method. The aim of this study is to optimize a general university

course scheduling process based on genetic algorithms using some defined constraints.

iii

DEDICATION

I dedicate this thesis to my family. Their patience and inspiration never ceases to amaze

me.

iv

ACKNOWLEDGEMENTS

Foremost, I would like to express my thanks and sincere gratitude to my advisor Dr.

Conrad Cunningham for the unwavering support and encouragement during my Masters

study. His patience, availability and vast knowledge in computing helped me during my

graduate study and research.

 I would also like to thank the rest of my thesis committee, Dr. Dawn Wilkins and

Dr. Yixin Chen, whom I've also been blessed with the opportunity to learn and get advice

from. Their vast knowledge in AI and machine learning have been very helpful in my

studies.

 I thank my department chair, Dr. Dawn Wilkins and the rest of our amazing faculty

and staff. Thank you for your support and the wonderful job at the department.

 Finally, to my family, thank you for all your advice, sacrifice, encouragement and

support throughout my life. I couldn't ask for a better family.

v

TABLE OF CONTENTS

ABSTRACT ……………………………………………………………………..ii

DEDICATION …………………………………………………………………..iii

ACKNOWLEDGEMENTS …………………………………………………… iv

LIST OF FIGURES ……………………………………………………………v

INTRODUCTION………………………………………………………………….1

 1.1 Timetabling……………………………………...................................1

 1.2 Aim of Thesis …………………………………………………………3

 1.3 Methods for automated timetabling…………………………………3

GENETIC ALGORITHM :8

 2.1 Fundamentals of Genetic Algorithm (GA) …………………………….8

2.2 How Genetic Algorithms Work ……………………………10

2.3 Initial population of chromosomes ……………………………11

2.4 Suitability of chromosomes to mate ……………………………11

2.5 Selection to the mating pool……………………………12

2.6 Methods of change in reproduction……………………………16

2.7 Advantages of genetic algorithm ……………………………20

2.8 Disadvantages of genetic algorithm ……………………………21

 DESIGN AND IMPLEMENTATION STRATEGY : 22

 3.1 Encoding ……………………………….22

vi

3.2 Initialization …………………………… 23

EXPERIMENTS AND RESULTS : 26

 4.1 Architectural specifications . 26

 4.2 Performance Analysis . 27

CONCLUSION : 31

BIBLIOGRAPHY : 32

VITA : 37

vii

LIST OF FIGURES

2.2 Genetic Algorithm. 10
2.4 Suitability of chromosomes to mate. 12
2.5.1 Five member population fitness scores. 13
2.5.1 The normalized fitness scores and the percentage values.13
2.5.2 Selection based on the wheel of fortune. 13
2.5.4 Tournament mechanism. 15
2.6.1 Cross-over 17
2.6.1 One point cross-over . 17
2.6.1 Selecting a random point . 17
2.6.1 Coin-flipping approach . 17
2.6.2 Mutation . 18
2.6.3 Program trees in Genetic Algorithms 19
3.1 Encoding the chromosome .23
4.2 Performance of Course Scheduler 27
4.2 Performance of population size increase 28
4.2 Performance of mutation rate vs number of clashes 29
4.2 Performance of mutation rate vs fitness value 30

1

CHAPTER 1

INTRODUCTION

1.1 Timetabling

Scheduling or timetabling is the process of allocating time for planned activities in an

orderly manner to bring about a satisfactory result, free of constraints [1]. Some of the

examples include transport, sport, workforce, course, and examination scheduling. In an

academic institution for instance, two types of timetables can be recognized. They are the

course and the examination schedules. Courses should be assigned to specific time slots for

five working days of the week taking into consideration the specific classrooms suitable for

the respective courses and the registered number of students [2]. A feasible timetable in an

academic institute is thus a description of the movement of students and staff from one

classroom to the next one, the location of the classrooms, and the time slots. In creating a

timetable an institute has to face many constraints which could be defined as ‘hard’ and

‘soft’ depending on whether they are essential or desirable [3].

1.1.1 Timetabling: Hard constraints

Hard constraints concern issues that are physically impossible – such as a teacher or

student being in two places at the same time. Similarly, two teachers are not permitted to

2

teach two separate courses to the same group of students in a given time slot. Further,

allocations of two or more classrooms are not made for the same course for a given group

of students. Thus, it is necessary that, neither the staff nor the students can be in more than

one place at a given time. Further, all the necessary resources such as the staff, rooms etc.

should be available for each time slot. All the available courses must be entered in the

timetable with flexibility for multi-period sessions if a teacher so desire and to repeat

sessions for small groups when all the registered students cannot participate

simultaneously (such as lab work) [2]. Depending on the nature of meetings allocating

lecture theaters of varying sizes as well as specific laboratory spaces are added problems

[3].

1.1.2 Timetabling: Soft constraints

The soft constraints include the assignment of “hard courses” in time slots in the

morning sessions when students are able to pay attention to such subjects. When higher

number of students occupy large classrooms, changing rooms after every lecture is avoided

unless small groups have to move to small spaces such as laboratories. Staff preferences

such as teaching at times and classrooms of choice are additional constraints [3].

1.1.3 Timetabling as an NP problem

 Although manual scheduling is time consuming and inaccurate, small universities

adapt to generate their schedules. As the complexity of university increases it to become

necessary to adopt computer methods to ease the task of timetabling [4][5]. It is to be

noted that when the student population with diverse interests and requirements increases

3

and the teaching programs get complicated with the growth of university, the number of

constraints grows resulting in an exponential rise in the computational time, making it an

NP-complete operation [2],[6],[9],[10].

1.2 Aim of Thesis

The aim of this work is to demonstrate the usefulness of genetic algorithm usage to obtain

optimal solutions in general timetable scheduling. Although much commercial scheduling

software is available, its lack of generality rarely meets the demands of various institutions.

Therefore, the requirement of specific coding as per respective universities is the biggest

hurdle to overcome.

1.3 Methods for automated timetabling

 In constructing a timetable, it is useful to have knowledge about the previous

timetable, especially about the weaknesses associated with it. If drastic changes are

introduced a new timetable has to be computed. Timetabling could be treated as a

feasibility problem when the requirement is a single feasible solution. However, an optimal

solution is sought according to an objective function when it is treated as an optimality

problem. Many techniques have been developed to generate acceptable timetables [8], [11].

1.3.1 Some methods for automated timetabling

 One of the most studied NP-hard problems is the “graph coloring problem”, and as a

result has many applications that are useful in scheduling problems, specifically,

timetabling.

4

1.3.1.1 Graph coloring algorithms.

Graph coloring [12] is the assignment of a minimum number of colors (timeslots) to the

vertices (nodes) to represent events (courses) of a graph in such a manner that two

vertices are connected with different colors to avoid time conflicts. The edges

(constraints) of the graph represent the conflict between events. With the increase in

size (increase in the number nodes) of a graph, getting an optimal solution becomes

difficult as it needs exponential time, making it a NP-hard problem [3],[13],[14]. The

method involves the coloring of the nodes of the graph properly and utilizing it to create

a conflict free timetable[15].

1.3.1.2 Mathematical programming algorithms.

Many mathematical models have been described in the literature to solve

timetabling problems in various universities [16]-[24]. All the models have utilized

commercial solvers.

1.3.1.3 Use of database management systems.

Database management systems is the use of computer database support systems for the

development of timetables [25].

1.3.1.4 Genetic algorithms.

5

A genetic algorithm is a heuristic search method used to find solutions for optimization

problems. It is based on the Darwinian theory of evolution. This technique involves the

ultimate selection of the fittest (best timetable) from a randomly created population

(chromosomes) of solutions for the timetabling problem where each individual

(chromosome) represents a timetable. The optimality (perfection) of a chromosome is

evaluated by a fitness function based on hard and soft constraints [26],[27]. Genetic

algorithms begin by creating a random population of timetables followed by their

evaluation according to defined criteria to select parents (timetables) for the next

generation which is expected to produce better timetables by way of crossovers and

mutations. The process is repeated until a satisfactory solution is reached [27].

1.3.1.5 Logic programming approaches.

 Logic programming is a method used to find solutions to combinatorial optimization

 problems [28].

 Constraint logic programming is a declarative programming paradigm mainly suited for

encoding combinatorial minimization problems. It is the natural union of the two declarative

paradigms known as Constraint Solving and Logic Programming.

 1.3.1.6 Timetabling: genetic algorithm approach

 Scheduling a Timetable for College.

As mentioned earlier, scheduling classes for a college timetable is often encountered

with constraints (hard and soft) due to diversity as compared to a school timetable where the

requirements are highly limited [29]. The problems associated with hard constraints need to

be resolved to produce a functional solution. To optimize the performance of the scheduling it

6

is important to address the issues linked to soft constraints. However, a careful approach

should be formulated without compromising the solutions to hard constraints to minimize

serious disruptions to the system. As such, a straightforward scheduling system as for a small

school system cannot be successfully applied to a complex organization without turning to a

different approach for quick and optimum results [30].

There may be conflicts between multiple soft constraints and as a result a tradeoff

will need to be reached between them [31]. As an example, a class might have 12 students,

and as such the soft constraint will assign a suitable classroom that can accommodate the

students. However, there may be a classroom that the professor prefers which can hold up

to 45 students. The class scheduler will hopefully find a preferred configuration as

professor preference is considered in the soft constraints.

The Problem:

The class-scheduling problem will be based on the following data.

• Available Professors

• Available Rooms

• Timeslots

• Student groups

A college timetable is different from a grade school timetable in that there may be

free time periods on a college student’s schedule. This depends on the number of courses

taken by the student.

Each class will be assigned a timeslot, a professor, a room, and a student group by

the class scheduler. The total number of classes that need to be scheduled can be obtained

7

by summing the number of student groups multiplied by the number of modules each

student group is enrolled in.

For each class scheduled by this application the following hard constraints will be

considered.

• Classes can only be scheduled in free classrooms.

• A professor can only teach one class at any one time.

• Classrooms must be big enough to accommodate the student group.

When encoding the class schedule, certain class properties are needed. They are: the

timeslot the class is scheduled for, the professor teaching the class, and the classroom

required for the class.

Room: RoomID, Room Number, Room Capacity

Time slot: TimeslotID, Timeslot

Professor: ProfessorID, Professor Name.

Course/Module: Course/ModuleID, Course/Module Code (Sections), Course/Module,

 Professor ID.

Group: GroupID, Group Size, ModuleID

CClass: Represents the class taken by the student. ClassID, GroupID, ModuleID,

ProfessorID, TimeslotID, RoomID.

 The timetable will encapsulate all these objects. This class will be able to differentiate

how different constraints interact with each other. Also, it will be responsible for parsing

for example a chromosome in genetic algorithm to create a candidate timetable to be

evaluated and scored.

8

CHAPTER 2

GENETIC ALGORITHMS

 Genetic algorithms are metaheuristic methods used to solve computational problems

which require large search areas for possible solutions. They very often depend on

adaptive systems to perform well in changing environments [32]. In timetabling, for

example, a self-adaptive method is desired to increase the level of generality. Complex

behavior required by a robot to navigate its surroundings is another example [33],[34].

2.1. Fundamentals of Genetic Algorithm (GA)

 A genetic algorithm (GA) is a powerful problem-solving programming technique. It

is in a category of evolutionary algorithms which is a subset of evolutionary computation in

artificial intelligence [35]. It was developed in 1960 by Professor John Holland of the

University of Michigan. His book, Adaptation in Natural and Artificial Systems pioneered

genetic algorithm (GA) research in the 1970s [36]. This technique was inspired by the

Darwinian theory of natural evolution, which states that the organisms in the world

multiply in geometric proportions leading to a struggle for existence due mainly to limited

space and food. In this struggle the fittest will survive. The fittest are those with favorable

variations, the accumulation of which lead to the evolution of species. The chances for the

survival of organisms with injurious variations are rather slim. Thus, evolution is a process

of natural selection [38].

http://en.wikipedia.org/wiki/Subset
http://en.wikipedia.org/wiki/Evolutionary_computation
http://en.wikipedia.org/wiki/Artificial_intelligence

9

 Each cell of an organism of a species has a definite number of genetic structures

called chromosomes consisting of linearly arranged units called genes (blocks of DNA)

carrying genetic information for one or many characters.

 A complete set of genetic material, namely all the chromosomes is called a genome.

Man for example has 23 pairs of chromosomes. A group of genes in a genome is called the

genotype. The expression of a genotype is referred as the phenotype. Each gene has a

definite position in the chromosome called the locus. A given gene can be in several states

called alleles which express characters such as the eye color of the organism.34 When

organisms reproduce, the resulting offspring will have half the genes from each parent. Due

to cross-over and mutations of genes offspring may get new features, favorable or

unfavorable for survival.

 Genetic algorithms closely mimic the biological model of chromosomes and genes

with each chromosome representing an individual organism and genes forming

components of a solution that is to be used with a genetic algorithm. Thus, a chromosome

represents a data structure. As in nature, new chromosomes are generated by mixing

genetic material by means of cross over and mutation. Cross over is equivalent to mating in

the biological process. New information is introduced to the population by way of

mutation. Thus, it is the chromosome (individual) that changes (evolves) by altering the

order and the makeup of its genes. It is noteworthy that a finite number of genes are used

in the process.

10

2.2. How Genetic Algorithms Work

 In a genetic algorithm, a population of chromosomes consisting of a given random

collection of genes is initiated according to the following steps (Figure 1).

1. Generating an initial population of chromosomes.

2. Evaluating the suitability of each chromosome (individual) that forms the population.

3. Selecting the chromosomes for mating based on the above results.

4. Producing offspring by mating (cross over) the selected chromosomes.

5. Mutating genes randomly.

6. Repeating steps 3-5 until a new population is generated.

7. Ending the algorithm when the best solution obtained has not changed after a preset

 number of generations.

Start

Initial random population generation

Calculation of fitness function

Stop

Crossover

Mutation

Survivor selection
Figure I

Best individuals

Solution

Yes

No

11

Three basic operations are evident from the above procedure. They are the

selection, cross over, and mutation. The technique provides more than one solution for

complex problems such as the “NP-hard” problems which probably cannot be solved

exactly in polynomial time. Such problems increase at a much greater rate, described by the

factorial operator (n!). An example of an NP-hard problem is the traveling salesman

problem.

 Polynomial problems solved by present day computers involve several steps to

arrive at a solution. Each problem is bound by a polynomial, a mathematical expression of

exponents and expressions.

The above steps of genetic algorithm are elaborated as follows.

2.3. Initial population of chromosomes

 A genetic algorithm creates an initial population of chromosomes with each

chromosome (organism) representing a complete solution to a given problem. The genes

which constitute the chromosomes are initialized to random values. Based on a function

specific to a given problem each chromosome is evaluated for its “fitness” which defines the

quality of the solution.

2.4. Suitability of chromosomes to mate

 In a genetic algorithm, creation of an improved population is the aim of mating the

most suitable chromosomes in a population. It results in the production of offspring

(chromosomes) which join the existing population of chromosomes to become part of a

12

mating population in subsequent generations. For the genetic algorithm to function

effectively a “fitness function” in the form of a numeric score has to be designed to evaluate

the solutions (chromosomes). In nature there is no assignment of a score the -- organisms

just die or survive.

 As an example of designing a numeric score to evolve the word “run” as described in

the literature, a population consisting of three members namely, “son”, “rug” and “cat” can

be considered [39]. The word “rug” has two correct features as against the other two and

has the highest number of points. The word “son” has one feature against that of “mat” with

none of the characters having a score amounting to zero. Thus, the “fitness” in this example

is attributed to the number of correct features as depicted in Table I.

Table I

2.5. Selection to the mating pool.

 With the above example it is obvious that only two members are fit to be parents to

be placed in a mating pool as shown by the fitness calculations made on the members of the

population. One of the approaches called the elitist method can be used to select the

members with highest scores are allowed to make offspring for the next generation. If there

are only two members among thousands available as parents, the variety of the offspring

will be very much limited, which could stunt the process of evolution. The obvious

conclusion therefore is to make a large mating pool to obtain better results. However, this

DNA Fitness
son 1
rug 2
mat 0

13

will not render optimal solutions as the top scoring individuals have the same chance of

being selected as the ones toward the middle.

 2.5.1. Roulette Wheel Selection

A method popularly known as the “wheel of fortune” or the “roulette wheel” based

on probability seems to provide a better solution in selecting members to the mating pool.

A simple example to illustrate the method is to consider a five member population having

the following fitness scores Table II.

Table II

The total fitness is 4 + 3 + 0.7 + 1.3 + 1 = 10

The normalized fitness scores and the percentage values are given in Table III.

TABLE III

2.5.2 Selection based on the wheel of fortune.

DNA Fitness
P 4
Q 3
R 0.7
S 1.3
T 1

DNA Fitness Normalized Fitness Expressed as a Percentage
P 4 0.4 40%
Q 3 0.3 30%
R 0.7 0.07 7%
S 1.3 0.13 13%
T 1 0.1 10%

Parent Probability

P 40%

Q 30%

R 7%

S 13%

T 10%

P

Q

R

S

T

Figure 1I

14

The selection chance for members P - T are P> Q> S> T>R (Figure II)

This procedure is considered satisfactory because it ensures the reproduction of the

highest scoring individuals without completely eliminating the ones with lowest scores

providing an opportunity to pass the information to the next generation. This could be

explained by trying to evolve the phrase, “to do or not to do” using the available individuals

P-R.

P: to do or not to be
Q: to do or not to go
R: xxxxxxxxxxxxxxxxdo

The chromosomes P and Q have most of the features of the required phrase having

the highest scores as against R with lower score. However, the individuals P and Q lack the

correct features for the end of the phrase. R on the other hand contains the necessary

genetic data for the end of the phrase. As it can be seen, elements P and Q are clearly the

most fit and would have the highest score. But neither contains the correct characters for

the end of the phrase. Element R, even though it would receive a very low score, happens to

have the genetic data for the end of the phrase. Whilst P and Q are selected to produce

majority of offspring of the next generation it is necessary to have a some opportunity for R

to take part in reproduction to obtain a perfect solution for the present problem.

 2.5.3. Tournament selection

 This method also selects individuals for the mating pool depending on their fitness

function. It is a frequently used method in GA due to its simplicity and efficiency. The

15

method involves a random selection of individuals from a bigger population. They will

compete with each other for a place in the next generation population.

Figure IV: Tournament mechanism

2.5.4 Stochastic Tournament selection

 In stochastic tournament selection, the individual selected by the Roulette Wheel is

taken to the Tournament.

 Scaling, Rank, Generational, Steady-state and Hierarchical are other selection

methods used [40].

 The convergence rate together with the number of generations required to yield the

optimal solution defines the performance of the genetic algorithm [42].

The Roulette Wheel method is associated with high time complexity as well as faster

convergence with the selection of certain parents. The tournament method, on the other

hand, exhibits lesser time complexity and therefore is faster [41]. In this study, tournament

f-7

f-7

f-6
f-4

f-8
f-5

f-8

f-2
Selection

Tournament

Size = 3

f-8

With Highest

 Fitness value

 Random

Individuals with Fitness

Values

f-3f-6

f-2

Random Individual

16

selection method is used for its simplicity with regards to coding and efficiency towards

parallel and nonparallel constructions [42],[43]. In addition, this method leaves room for

selection pressure adjustments which has an impact on its usage [43],[44]. Selection of

individuals with higher fitness values for the next generation is controlled by selection

pressure which is described as the extent to which the better individuals of the population

are favored. The tournament size can be increased or decreased to obtain a desired

selection pressure. A higher tournament size (higher selective pressure) will prevent some

individual to take part in a tournament where as some others may not be selected at all.

This brings about loss of genetic diversity resulting in premature convergence restricting

the results to a local optima.38 Genetic diversity in essence, is the maintenance of a diverse

solution population which makes sure that the solution space is searched adequately. A too

small selection pressure (lower tournament size) on the other hand, may take a longer time

to converge to an optimum. Thus, a proper selection pressure which ensures genetic

diversity is required for the genetic algorithm to converge to a global optimum [42].

2.6. Methods of change in reproduction.

2.6.1 Cross-over

 The characteristics of the suitable individuals selected must be altered in order to

improve their fitness to the next generation. This is achieved by means of cross-over and

mutation. Crossover simulates the recombination of chromosomes in sexual reproduction

which involves two parents. To explain the phenomenon the following two parent phrases

(individuals) from the mating pool can be considered.

17

Parent 1: CROW Parent 2: KEGH

Figure V

A child phrase can be made in a 50/50 manner by taking two features from each parent as

shown in Figure V. This is one-point crossover

 Picking up a random point instead of the 50/50 selection is preferred as it increases

variety for the next generation as indicated in Figures VI and VII.

Figure VI: Selecting a random point.

 child
Figure VII:

KEOH, CEOW, CROH, CEOW are some of the possible combinations.

2.6.2 Mutation.

Additional variety to the offspring DNA which was created during the crossover can

be introduced by mutation as shown in Figure VIII. It is a process of picking up a new

random character. A mutation rate of 1%, indicates that each character in the phrase

C R O W K E G H

 C R G H child

C R O W K E G H C R O W K E G H

 C E G H C R O H

1 2
 C R O W K E G H

 C E O H

18

resulted from crossover, there is a 1% chance that it will mutate. A mutation may produce a

desirable or undesirable character. Natural selection will decide upon the fate of the

mutated chromosome.

C E R H

 C E R X

 Figure VIII

The processes of selecting parents and reproduction are repeated until desirable results

are obtained.

2.6.3. Methods of representation

Several methods are available to encode potential solutions to a given problem in a

form that the computer is able to process the data [40]. In one method binary strings in

sequences of 1's and 0's are used to encode solutions with each digit representing some

aspect of the solution. A similar method is to encode solutions in integers and decimal

numbers with each position representing some feature of the solution allowing precision

and more complexity than using only the binary numbers [45]. In a third method a string

of letters are used to represent an individual where each letter is designated to some

aspect of the problem.

All three methods clearly define the changes which the selected individuals undergo

during the process. The changes include the flipping of a 0 to 1, changing a letter to another

or adding or subtracting a randomly selected amount to a number.

Mutation

19

Another approach called genetic programming where programs are represented as

branching data structures (Figure IX) [46] and random changes are brought about by

changing the value at a specific node in the tree. Changes can also be made by replacing one

subtree with another.

Figure IX

Three common program trees used in genetic programming. The mathematical expression

for each program is given under each diagram.

2.7 Advantages of genetic algorithm

 As compared to genetic algorithms, other optimization algorithms look for solutions

in a serial manner (in one direction) in the search field at a given time. The disadvantage of

a serial search is that if the solution obtained is not favorable, the work carried out thus far

has to be abandoned and a new search must be started. Genetic algorithms, which have

multiple offspring on the other hand, are able to look for solutions in many directions at a

given time, abandoning the paths which lead to suboptimal solutions. Thus, the opportunity

of finding a favorable solution in a genetic algorithm is high during each run. Further, as

A 1 A *

-
+

*

+

1

A A A 2

A+1 A2+1 A+(A^2)

20

per Holland’s schema theorem, the fitness schemata which are above average grow while

the ones below average decay. As such, parallelism in addition, indirectly evaluates many

different schemata to identify individuals of highest fitness values. Thus, although genetic

algorithms seem to evaluate a small group, in reality they evaluate a very large group of

individuals in a reasonable amount of time. As an example, an 8-digit binary string

designated as, ٭٭٭٭٭٭٭٭ could be considered. ٭ is either 0 or 1. All these 8 digit

strings form a search space. 01101010 string, for example with a fitness of 24, becomes not

only a member of this search space, it also becomes a member of the spaces,

0٭٭٭٭٭٭٭ 01٭٭٭٭٭٭ , 0٭٭٭٭٭٭0 , Genetic algorithms 0٭1٭1٭1٭, 10٭01٭٭0 ,

will sample to evaluate the fitness of the particular string in each of these spaces to which

the string, 01101010 belongs.

Another advantage of a genetic algorithm (GA) is its capability to handle several

parameters simultaneously. Usually many of the real-world problems can only be

described in terms of multiple objectives. As such, they cannot be expressed in the form of

a single value for minimization and maximization purposes. A parameter can only be

improved at the expense of another. Due to parallelism however, a GA can generate many

solutions with one individual optimizing one parameter and another optimizing another.

This allows one to select a desired solution for use.

21

2.8 Disadvantages of genetic algorithm

 There are disadvantages to genetic algorithms. The representation for the problem

must be clearly defined. The language employed to describe solutions should be able to

bear random changes so that no fatal errors occur. Binary, integer or real-valued list of

numbers is usually used to define individuals.

 Choosing a fitness function is difficult. It should be carefully written to obtain the

desired solution. An ill-defined fitness function could end up in not getting any solution or

it might result in solving the wrong problem [47]. In addition to getting a good fitness

function, it is also necessary to pay attention when selecting such factors as the number of

individuals (population), crossover and mutation rates. Less solution space created by a

small population leads to inaccurate results.

 Premature convergence is another problem associated with a GA, especially when

small populations are involved. This results from an individual (more fit) who is relatively

capable of reproducing abundantly diminishes the population diversity too soon leading to

convergence to a local optimum. In such an event, finding the global optimum becomes

impossible as there could not be a search in the search field due to the particular individual

representation. However, there are methods that can be adopted to overcome this

problem.

 Analytical techniques are generally recommended to solve analytical problems

instead of GA methods, as the former take less computational effort and time.

22

CHAPTER 3

DESIGN AND IMPLEMENTATION STRATEGY

3.1. Encoding

 As stated earlier, scheduling classes for a college timetable is often met with

constraints (hard and soft) due to diversity as compared to a school timetable where the

requirements are highly limited.

The class-scheduling problem will be based on the available professors, classrooms,

timeslots and student groups.

Each class will be assigned a timeslot, a professor, a room, and a student group by

the class scheduler. The total number of classes that needs to be scheduled can be obtained

by summing the number of student groups multiplied by the number of modules each

student group is enrolled in.

For each class scheduled by this application the following hard constraints will be

considered.

• Classes can only be scheduled in free classrooms.

• A professor can only teach one class at any one time.

• Classrooms must be big enough to accommodate the student group.

When encoding the class schedule, certain class properties are needed. They are: the

timeslot the class is scheduled for, the professor teaching the class, and the classroom

required for the class.

23

 The encoding used must be able to encode all the class properties that are required.

The class properties are, the timeslot the course is scheduled for, the professor teaching the

course and the classroom for the course.

 A numerical code can be allocated to each timeslot, professor, and the classroom. A

chromosome can then be used that encodes an array of integers to represent each class.

Class 1 Class 2 Class 3

1 3 2 3 4 2 2 5 1

Timeslot ID Room ID Professor ID

Figure X: Array is split into three to retrieve information for each class.

3.2. Initialization

 A timetable needs to be built around the following criteria : the rooms, professors,

timeslots, courses/modules, and student groups.

 The room class will contain information about the classroom, such as the roomID,

room number and the capacity of students that can be accommodated. This class will

accept a roomId, a room number and the capacity as well as provide methods to get the

room’s properties.

 The timeslot class represents the day of the week and time that a class takes place. It

contains the timeslotId and the timeslot details.

 The professor class accepts a professorID and professor name properties. It also

makes an allowance to retrieve this information as well.

24

 A module class will store the information on the course modules. Each module can

have several sections and groups of students taking the course at different times of the

week with different professors. The module class accepts a moduleID, module code

(“CSCI111” or “ENGL 101”), module name, an array of professorID’s (professors who teach

the module).

 A group class will hold the information about the student groups. This class accepts

groupID, a group size, module IDs the group is taking.

 The Class class combines all of the above information. It will take a student group

that takes a section of a module at a given timeslot, in a specific room with a specific

professor.

 A timetable class will encapsulate all these objects and will co-ordinate how

different constraints interact with each other. This class will also parse a chromosome and

create a candidate timetable to be appraised and recorded. The timetable class serves two

purposes. First, it is aware of all the available rooms, timeslots, professors, modules and

groups. Second, it can read a chromosome, generate a subset of classes from that

chromosome, and help evaluate the fitness of the chromosome. This class consists of two

significant methods. The create class method and the calculation of clashes method. When

creating a class for the timetable, an individual (chromosome) must be accepted, read and

assigned information (timeslot, room, professor) to each class. As a result, the create class

method uses a genetic algorithm and the subsequent chromosome to try different

combinations of timeslots, rooms, and professors. The timetable class stores this

information for future use. The clashes method then checks each one of the classes that has

been built and count the number of clashes. A clash is a hard constraint violation. Examples

25

of clashes: room is too small, conflict with professor and timeslot, conflict with room and

timeslot.

 Clashes are used later in the genetic algorithm to calculate the fitness value. As each

class is compared to all other classes, a “clash” is added, if any of the hard constraints are

violated. The total number of clashes are calculated. This is then used to calculate the

fitness value. The fitness value is the inverse of the number of clashes (1/clashes+1). If

there are no clashes then the fitness value will be 1.

 The main method in the timetable class creates the timetable and initializes it with

all of the available courses, timeslots, rooms, modules, groups and professors. As a result,

tournament selection and uniform crossover is used for the genetic algorithm.

 A termination check is set up such that the deciding factors are the number of

generations and the fitness factor. Combining both of these factors will terminate the

genetic algorithm either after a certain number of generations or if it finds a valid solution.

As such the fitness value depends on the number of broken constraints. As a result, the

perfect solution will have a fitness value of 1. The number of generations is set to 1000.

 Uniform crossover is applied to guarantee that chromosomes are selected at

random and are swapped with a parent, within the collections of genes.

Mutation is implemented in such a way that a new random valid individual is

created. The random individual created is used to select genes to copy into the individual to

be mutated. This is called uniform mutation. This technique ensures that all the mutated

individuals are valid.

26

CHAPTER 4

 EXPERIMENTS AND RESULTS

 The hard constraints were tested to ensure that all the solutions obtained were

valid.

The optimized solution for the timetable consisted of the following factors and their

values. The population size was 100 with a mutation rate of 0.01%, a crossover rate of

0.9%, the number of elite individuals was 2 and the tournament size was 5. With these

values the resulting timetable had zero number of clashes with the fitness value of 1.

4.1 Architectural specifications

JAVA version 8 was used on a 6th Generation Intel(R) Core (TM) i7 Quad Core (6M

Cache, upto 3.5 GHz) 16GB Dual Channel DDR4 256GB PCle Solid State Drive with NVIDIA

GTX960M 2GB DDR5 for the design of the Course Scheduler.

27

4. 2 Performance Analysis

Figure XI: The number of generations the Course Scheduler takes to reach an

optimal solution.

The increase in population size shows a steady increase in the number of generations that

takes to reach a valid solution.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

o

f
ge

n
er

at
io

n
s

of runs

Course Scheduler using Genetic Algorithms

28

Figure XII: Population size increase vs number of generations to reach a solution.

Mutation rate plays an important role in genetic algorithms. As a result, the effect of

clashes and the fitness value were checked with the course scheduler. Here, the number of

generations were limited to 1000, the mutation rate range was from 0.01 to 0.21.

0

20

40

60

80

100

120

140

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

o

f
ge

n
er

at
io

n
s

Population Size

Population Size vs Generations

29

Figure XIII: mutation rate vs number of clashes.

As seen from the graph above, the increase in mutation rate increases the number of

clashes. As a result, the mutation rate is optimal at 0.01.

-1

0

1

2

3

4

5

6

7

8

9

0
.0

1

0
.0

2

0
.0

3

0
.0

4

0
.0

5

0
.0

6

0
.0

7

0
.0

8

0
.0

9

0
.1

0
.1

1

0
.1

2

0
.1

3

0
.1

4

0
.1

5

0
.1

6

0
.1

7

0
.1

8

0
.1

9

0
.2

0
.2

1

#0
f

cl
as

h
es

mutation rate

mutation rate vs # of clashes

30

Figure XIV: mutation rate vs fitness value.

 The increase in mutation rate decreases the fitness value as seen from the graph in

Figure XIV.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0.010.020.030.040.050.060.070.080.09 0.1 0.110.120.130.140.150.160.170.180.19 0.2 0.21

fi
tn

es
s

va
lu

e

mutation rate

mutation rate vs fitness

31

CHAPTER 5

 CONCLUSION

 The course scheduler using genetic algorithms finds the best solution that

satisfies a number of hard constraints. Also, the mutation technique used guarantees that

the mutated chromosomes remain valid. This was done by creating a known valid random

individual, swapping genes with it similar to uniform crossover. Use of uniform crossover

and tournament selection completed the algorithm. The factors such as population size,

mutation rate, crossover rate, elite individuals, and tournament size were considered for

the course scheduler. The optimum values for these factors were obtained through

several runs of the system. Also, the effect of mutation rate and the population size were

studied for the course scheduler.

32

BIBILOGRAPHY

33

Bibilography:

[1] Khaled Elleithy, Tarek Sobh, Innovations and Advances in Computer, Information ,

Systems Sciences, Part 1, Ed., Springer, New York, Heidelberg Dordrecht, London,

ISSN 1876-1100 (2013).

[2] S. Daskalaki, T. Birbas, E. Housos, An integer programming formulation for a case

study in university timetabling, Eur. J. Oper. Res., 153, 117-135 (2004).

[3] E. K. Burke, S. Petrovic, Recent research directions in automated timetabling, Eur. J.

Oper. Res., 140, 266–280 (2002).

[4] A. Schaerf, Local search techniques for large high-school timetabling problems,

IEEE Transactions on Systems Man. And Cybernetics, Part A, 29 (4), 368-377

(1999).

[5] H.P. Hariyadi, T. Widiyaningtyas, et. al., Implementation of Genetic Algorithm to

Academic Scheduling System, IEEE, Region 10 Conference, (2016).

[6] A.F. AbouElhamayed, A.S. Mahmodd, et. al., An Enhanced Genetic Algorithm-Based

Timetabling System with Incremental Changes, IEEE, (2016).

[7] T. Islam, Z. Shahriar, et. al., University Timetable Generator Using Tabu Search,

Journal of Computer and Communications, 4,28-37, (2016).

 [8] V. Rohini, A.M. Natarajan, Comparison of Genetic Algorithm with Particle Swarm

Optimization, Ant Colony Optimization, and Tabu Search based on University

Course Scheduling System, Indian Journal of Science and Technology, 9(21),

(2016).

 [9] M. Dimopoulou, P. Miliotis, An automated university course timetabling system
developed in a distributed environment: A case study, Eur. J. Oper. Res., 153 136–
147 (2004).

 [10] E. Burke, K. Jackson, J. H. Kingston, R. Weare, Automated university timetabling:
 The state of the art, The Computer Journal, 40 (9): 565-571, (1997).

 [11] H. Frangouli, V. Harmandas, P. Stamatopoulos, UTSE: Construction of optimum

 timetables for university courses - A CLP based approach, Conference on the

 practical applications of prolog, Paris, France, 225-243 (1995). Publisher: Alinmead

http://comjnl.oxfordjournals.org/search?author1=E.+Burke&sortspec=date&submit=Submit
http://comjnl.oxfordjournals.org/search?author1=K.+Jackson&sortspec=date&submit=Submit
http://comjnl.oxfordjournals.org/search?author1=J.+H.+Kingston&sortspec=date&submit=Submit
http://comjnl.oxfordjournals.org/search?author1=R.+Weare&sortspec=date&submit=Submit

34

 Software Ltd., ISBN: 0952555409, 9780952555407.

[12] C. Gueret, N. Jussien, P. Boizumault, C. Prins, Building University Timetables

 UsingConstraint Logic Programming. In Proc. of the 1st Int. Conf. on the Practice and

 Theory of Automated Timetabling, 393-408, (1995).

[13] J. W. Shen, Solving the graph coloring problem using genetic programming, "Genetic

 Algorithms and Genetic Programming at Stanford 2003, Ed. J. R. Koza, 187-196.

 Publisher: Stanford Bookstore.

[14] H. Babaei, J. Karimpour, A. Hadidi, A survey of approaches for university course

 timetabling problem, Comput. Ind. Eng., 86, 43–59 (2015).

[15] T. A. Redl, On using Graph Colouring to Create University Timetables with Essential
 and Preferential Conditions, Advances in Marketing, Management and Finances,
 Proceedings of the 3rd International Conference on Management, Marketing and
 Finances (International Conference on Computational and Information Sciences,
 University of Houston-Downtown, 162- 167 (2006).

[16] A. Tripathy, School Timetabling - a Case in Large Binary Integer Linear-

Programming. Management Science, 30(12): 1473-1489 (1984).

[17] M. A. Badri, A two-stage multiobjective scheduling model for [faculty-coursetime]
assignments. European Journal of Operational Research, 94(1),16-28, (1996).

[18] T. Birbas, S. Daskalaki, and E. Housos, Timetabling for Greek high schools. Journal of
the Operational Research Society, 48(12): 1191-1200, (1997).

[19] M. Dimopoulou, P. Miliotis, Implementation of a university course and examination
timetabling system. European Journal of Operational Research, 130(1): 202-213
(2001).

[20] Papoutsis, K., C. Valouxis, E. Housos, A column generation approach for the
timetabling problem of Greek high schools. Journal of the Operational Research
Society, 54(3): 230-238 (2003).

[21] S. Daskalaki, T. Birbas, and E. Housos, An integer programming formulation for a
casestudy in university timetabling. European Journal of Operational Research,
153(1): 117-135 (2004).

[22] S. M. Al-Yakoob, H. D. Sherali, A mixed-integer programming approach to a class

timetabling problem: A case study with gender policies and traffic considerations.
European Journal of Operational Research, 2007. 180(3):1028-1044.

35

[23] S. A. MirHassani, A computational approach to enhancing course timetabling with

integer programming. Applied Mathematics and Computation, 175(1):814-822
(2006).

[24] Hinkin, T.R. and G.M. Thompson, SchedulExpert: Scheduling courses in the Cornell

University School of Hotel Administration. Interfaces, 32(6), 45-57 (2002).

[25] D. Johnson, A Database approach to course timetabling, The Journal of the
Operational Research Society, Vol. 44(5), 425-433, (1993).

[26] L. Lalescu, C. Badica, Timetabling experiments using genetic algorithms. In
Proceedings of the International 12th Turkish Symposium on Artificial Intelligence
and Neural Networks (TAINN-2003), Canakkale, Turkey, (2003).

[27] K. F. Man, K. S. Tang, and S. Kwong, Genetic Algorithms: Concepts and Applications,

IEEE Trans. Ind. Electron. 43 (5), 519 – 534, (1996).

[28] A. Dal Palù, A. Dovier, Federico Fogolari, Constraint Logic Programming approach to
protein structure prediction, BMC Bioinformatics, 5: 186 (2004).

[29] S. Abdullah, H. Turabieh, "Generating university course timetable using genetic

algorithm and local search", Proc. 3rd Int. Conf. Hybrid Inform. Tech., pp. 254-260,
(2008).

[30] D. Mitta, H. Doshi, M. Sunasra, R. Nagpur, Automatic Timetable Generation using
Genetic Algorithm, Int. J. Adv. Res. Comput. Commun. Eng., 4 (2), 245-248, (2015) .

[31] T. Jain, N. Jamil, Genetic Algorithm Approach to Time Tabling Problem, European
 Journal of Business and Management , 7(4) 7-11, (2015).

[32] J. E. Smith, T. Fogarty, “Operator and parameter adaptation in genetic algorithms,”
 Soft computing : a fusion of foundations, methodologies and applications, 92, 81–87,
 (1997).

[33] M. Mitchell, C. E. Taylor, Evolutionary computation: An overview. Annu. Rev. Ecol.
 Syst. 30, 593–616 (1999).

[34] S. Petrovic, E. K. Burke 2004. University Timetabling. In: Leung J. (ed.) Handbook of
 Scheduling: Algorithms, Models, and Performance Analysis. Chapter 45. CRC Press.

[35] Rosen, Kenneth H. (2012). Discrete Mathematics and Its Applications (7th ed.). New
 York: McGraw-Hill. p. 119. ISBN 978-0-07-338309-5.

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-07-338309-5

36

[36] D. Shiffman, The Nature of Code, Chapter 9, 2012, Creative Commons, 444 Castro

 Street, Suite 900, Mountain View, California 94041, USA. ISBN-13: 978-0985930806.

[37] E. R. Pianka, Evolutionary Ecology, 6th ed. San Francisco, CA: Addison-Wesley-
 Longman, 2000; Deepti Gupta, Shabina Ghafir, International Journal of Emerging
 Technology and Advanced Engineering, 2(5), (2012).

[38] Z. Michalewicz, Genetic Algorithms+Data Structures = Evolution programs, second
 edition, Springer-Verlag Heidenberg New York, 15 (1996). (ISBN 3-540-60676-9).

[39] D. Shiffman, The Nature of Code, 2012, Creative Commons, 444 Castro Street, Suite
 900, Mountain View, California 94041, USA., ISBN-13: 978-0985930806.

[40] A. Marczyk, Genetic Algorithms and Evolutionary Computation, (2004).

[41] A. Jain, S. V. Chande, International Journal on Computational Science & Applications
 (IJCSA) 5(6), (2015).

[42] N. M. Razali, John Geraghty, Genetic Algorithm Performance with Different Selection
 Strategies in Solving TSP, Proceedings of the World Congress on Engineering, Vol II,
 WCE 2011, July 6 - 8, (2011), London, U.K.

[43] B. L. Miller, D. E. Goldberg, Genetic Algorithms, Tournament Selection, and the Effects
 of Noise, Complex Systems 9, 193- 212 (1995).

[44] H. Xie, M. Zhang, Tuning Selection Pressure in Tournament Selection, Technical
 Report Series, School of Engineering and Computer Science, Victoria University of
 Wellington, New Zealand (2009).

[45] P. J. Fleming, R. C. Purshouse (2002), Control Evolutionary Practice, 10: 1223-1241.

[46] J. Koza, M. Keane, M. Streeter, W. Mydlowec, J. Yu, G. Lanza, Genetic Programming IV:
 Routine Human-Competitive Machine Intelligence, Kluwer Academic Publishers, 35,
 (2003).

[47] D. Graham-Rowe, "Radio Emerges from the Electronic Soup.", New Scientist, 175, 19,
 (2002).

http://natureofcode.com/
mailto:adam@ebonmusings.org
http://www.talkorigins.org/faqs/genalg/genalg.html#fleming2002

37

VITA

Achini Kumari Herath

103, Jamie Cove • Oxford, MS 38655 • (662) 915- • akherat1@olemiss.edu

A. EDUCATION

1. Graduate Diploma, British Computer Society (UK), Sri Lanka (2002)

2. BSCS in Computer Science University of Mississippi Oxford, MS (2009)

3. Masters in Computer Science, University of Mississippi, Oxford, MS (2017)

4. Ph.D. in Computer Science, University of Mississippi, Oxford, MS (pending)

B. WORK EXPERIENCE

The University of Mississippi, Oxford, MS

1. Graduate Instructor:

a. Teaching –Intoduction to the Java Programming Language (Spring 2017-).

b. Teaching – MS Office Applicvations (MS Word, MS Excel, MS Access, MS

PowerPoint) undergraduate students (August 2016)

c. Teaching –Intoduction to the Java Programming Language (June-August

2016).

2. Computer Department – Head Teaching Assistant (August 2015 – May 2016):

a. Selecting and scheduling student TA's for weekly labs.

b. Coordinating labs between the instructor and student TA's.

mailto:akherat1@olemiss.edu

38

c. Preparing and completing grade related paperwork.

d. Meeting with students for scheduling missed labs.

e. Receiving feedback from students, teaching assistants and instructors/faculty to

improve the performance.

3. Graduate Instructor

a. Teaching MS Office Applications (August 2013 – May 2015)

4. Teaching Assistant

a. JAVA

5. Technical Skills

a. JAVA

b. C++

c. Javascript

d. MS Office Applications

6. Career Overview

I have worked as a software programmer in Sri Lanka while studying for my Graduate

Professional Diploma (British Computer Society -UK) in Sri Lanka. After moving to

USA, I worked as a student worker at the University of Mississippi while studying for my

bachelors degree in Computer Science. I am currently working as a graduate instructor

and reading for my Ph.D.

7. References

Dr. Dawn Wilkins
Professor and Chair

203 Weir Hall

662 915 7309

dwilkins@cs.olemiss.edu

Dr. H. Conrad Cunningham

Professor (Chair 2001 – 2015)

11 Weir Hall

662 915 5358

hcc@cs.olemiss.edu

mailto:dwilkins@cs.olemiss.edu
mailto:hcc@cs.olemiss.edu

	Genetic Algorithm For University Course Timetabling Problem
	Recommended Citation

	tmp.1561729892.pdf.ftRWb

