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ABSTRACT 

 

Creating timetables for institutes which deal with transport, sport, workforce, 

courses, examination schedules, and healthcare scheduling is a complex problem. It is 

difficult and time consuming to solve due to many constraints. Depending on whether the 

constraints are essential or desirable they are categorized as ‘hard’ and ‘soft’, respectively. 

Two types of timetables, namely, course and examination are designed for academic 

institutes. A feasible course timetable could be described as a plan for the movement of 

students and staff from one classroom to another, without conflicts. Being an NP-complete 

problem, many attempts have been made using varying computational methods to obtain 

optimal solutions to the timetabling problem. Genetic algorithms, based on Darwin's theory 

of evolution is one such method. The aim of this study is to optimize a general university 

course scheduling process based on genetic algorithms using some defined constraints.  
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CHAPTER 1 

 
INTRODUCTION 

 
 

 
1.1 Timetabling 

 
Scheduling or timetabling is the process of allocating time for planned activities in an 

orderly manner to bring about a satisfactory result, free of constraints [1]. Some of the 

examples include transport, sport, workforce, course, and examination scheduling. In an 

academic institution for instance, two types of timetables can be recognized. They are the 

course and the examination schedules. Courses should be assigned to specific time slots for 

five working days of the week taking into consideration the specific classrooms suitable for 

the respective courses and the registered number of students [2]. A feasible timetable in an 

academic institute is thus a description of the movement of students and staff from one 

classroom to the next one, the location of the classrooms, and the time slots. In creating a 

timetable an institute has to face many constraints which could be defined as ‘hard’ and 

‘soft’ depending on whether they are essential or desirable [3]. 

 

1.1.1 Timetabling: Hard constraints  

 

Hard constraints concern issues that are physically impossible – such as a teacher or   

student being in two places at the same time. Similarly, two teachers are not permitted to 
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teach two separate courses to the same group of students in a given time slot. Further, 

allocations of two or more classrooms are not made for the same course for a given group 

of students. Thus, it is necessary that, neither the staff nor the students can be in more than 

one place at a given time. Further, all the necessary resources such as the staff, rooms etc. 

should be available for each time slot. All the available courses must be entered in the 

timetable with flexibility for multi-period sessions if a teacher so desire and to repeat 

sessions for small groups when all the registered students cannot participate 

simultaneously (such as lab work) [2]. Depending on the nature of meetings allocating 

lecture theaters of varying sizes as well as specific laboratory spaces are added problems 

[3].   

 

1.1.2 Timetabling: Soft constraints  

 

The soft constraints include the assignment of “hard courses” in time slots in the 

morning sessions when students are able to pay attention to such subjects. When higher 

number of students occupy large classrooms, changing rooms after every lecture is avoided 

unless small groups have to move to small spaces such as laboratories.  Staff preferences 

such as teaching at times and classrooms of choice are additional constraints [3]. 

 

1.1.3 Timetabling as an NP problem  

 

  Although manual scheduling is time consuming and inaccurate, small universities 

adapt to generate their schedules. As the complexity of university increases it to become 

necessary to adopt computer methods to ease the task of timetabling [4][5]. It is to be 

noted that when the student population with diverse interests and requirements increases 
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and the teaching programs get complicated with the growth of university, the number of 

constraints grows resulting in an exponential rise in the computational time, making it an 

NP-complete operation [2],[6],[9],[10].  

 
1.2 Aim of Thesis 

 
The aim of this work is to demonstrate the usefulness of genetic algorithm usage to obtain 

optimal solutions in general timetable scheduling.  Although much commercial scheduling 

software is available, its lack of generality rarely meets the demands of various institutions. 

Therefore, the requirement of specific coding as per respective universities is the biggest 

hurdle to overcome. 

 

 
1.3 Methods for automated timetabling  

 

 In constructing a timetable, it is useful to have knowledge about the previous 

timetable, especially about the weaknesses associated with it. If drastic changes are 

introduced a new timetable has to be computed. Timetabling could be treated as a 

feasibility problem when the requirement is a single feasible solution. However, an optimal 

solution is sought according to an objective function when it is treated as an optimality 

problem. Many techniques have been developed to generate acceptable timetables [8], [11]. 

 

1.3.1 Some methods for automated timetabling 

 

        One of the most studied NP-hard problems is the “graph coloring problem”, and as a  

 

result has many applications that are useful in scheduling problems, specifically, 

timetabling. 



 

4 

 

 

 
 

 

1.3.1.1 Graph coloring algorithms.  

 

Graph coloring [12] is the assignment of a minimum number of colors (timeslots) to the 

vertices (nodes) to represent events (courses) of a graph in such a manner that two 

vertices are connected with different colors to avoid time conflicts. The edges 

(constraints) of the graph represent the conflict between events. With the increase in 

size (increase in the number nodes) of a graph, getting an optimal solution becomes 

difficult as it needs exponential time, making it a NP-hard problem [3],[13],[14]. The 

method involves the coloring of the nodes of the graph properly and utilizing it to create 

a conflict free timetable[15]. 

 

1.3.1.2 Mathematical programming algorithms. 

 

Many mathematical models have been described in the literature to solve 

timetabling problems in various universities [16]-[24]. All the models have utilized 

commercial solvers. 

 

1.3.1.3 Use of database management systems.  

 

Database management systems is the use of computer database support systems for the 

development of timetables [25]. 

 

1.3.1.4 Genetic algorithms. 
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A genetic algorithm is a heuristic search method used to find solutions for optimization 

problems. It is based on the Darwinian theory of evolution. This technique involves the 

ultimate selection of the fittest (best timetable) from a randomly created population 

(chromosomes) of solutions for the timetabling problem where each individual 

(chromosome) represents a timetable. The optimality (perfection) of a chromosome is 

evaluated by a fitness function based on hard and soft constraints [26],[27]. Genetic 

algorithms begin by creating a random population of timetables followed by their 

evaluation according to defined criteria to select parents (timetables) for the next 

generation which is expected to produce better timetables by way of crossovers and 

mutations. The process is repeated until a satisfactory solution is reached [27]. 

 

1.3.1.5 Logic programming approaches.  
 

        Logic programming is a method used to find solutions to combinatorial optimization  
 
         problems [28]. 

        Constraint logic programming is a declarative programming paradigm mainly suited for              

encoding combinatorial minimization problems. It is the natural union of the two declarative 

paradigms known as Constraint Solving and Logic Programming. 

      1.3.1.6 Timetabling: genetic algorithm approach 

      

        Scheduling a Timetable for College.  
 

As mentioned earlier, scheduling classes for a college timetable is often encountered 

with constraints (hard and soft) due to diversity as compared to a school timetable where the 

requirements are highly limited [29]. The problems associated with hard constraints need to 

be resolved to produce a functional solution. To optimize the performance of the scheduling it 
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is important to address the issues linked to soft constraints. However, a careful approach 

should be formulated without compromising the solutions to hard constraints to minimize 

serious disruptions to the system. As such, a straightforward scheduling system as for a small 

school system cannot be successfully applied to a complex organization without turning to a 

different approach for quick and optimum results [30]. 

 
There may be conflicts between multiple soft constraints and as a result a tradeoff 

will need to be reached between them [31]. As an example, a class might have 12 students, 

and as such the soft constraint will assign a suitable classroom that can accommodate the 

students. However, there may be a classroom that the professor prefers which can hold up 

to 45 students. The class scheduler will hopefully find a preferred configuration as 

professor preference is considered in the soft constraints.  

 
The Problem:  
 
The class-scheduling problem will be based on the following data.  

•  Available Professors  

•  Available Rooms  

•  Timeslots  

•  Student groups  

 

A college timetable is different from a grade school timetable in that there may be 

free time periods on a college student’s schedule. This depends on the number of courses 

taken by the student.  

Each class will be assigned a timeslot, a professor, a room, and a student group by 

the class scheduler. The total number of classes that need to be scheduled can be obtained 
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by summing the number of student groups multiplied by the number of modules each 

student group is enrolled in.  

For each class scheduled by this application the following hard constraints will be 

considered.  

 

• Classes can only be scheduled in free classrooms.  

•  A professor can only teach one class at any one time.  

•  Classrooms must be big enough to accommodate the student group.  

When encoding the class schedule, certain class properties are needed. They are: the 

timeslot the class is scheduled for, the professor teaching the class, and the classroom 

required for the class.  

Room:         RoomID, Room Number, Room Capacity  

Time slot:     TimeslotID, Timeslot  

Professor:     ProfessorID, Professor Name.  

Course/Module: Course/ModuleID, Course/Module Code (Sections), Course/Module,  

                                 Professor ID.  

Group:       GroupID, Group Size, ModuleID  

CClass:    Represents the class taken by the student. ClassID, GroupID, ModuleID,        

ProfessorID, TimeslotID, RoomID.  

        The timetable will encapsulate all these objects. This class will be able to differentiate  

how different constraints interact with each other. Also, it will be responsible for parsing 

for example a chromosome in genetic algorithm to create a candidate timetable to be  

evaluated and scored.



 

8 

 

 

CHAPTER 2 
 

GENETIC ALGORITHMS 
 

        Genetic algorithms are metaheuristic methods used to solve computational problems 

which require large search areas for possible solutions. They very often depend on 

adaptive systems to perform well in changing environments [32]. In timetabling, for 

example, a self-adaptive method is desired to increase the level of generality. Complex 

behavior required by a robot to navigate its surroundings is another example [33],[34].  

 

2.1. Fundamentals of Genetic Algorithm (GA) 

 

 A genetic algorithm (GA) is a powerful problem-solving programming technique. It 

is in a category of evolutionary algorithms which is a subset of evolutionary computation in 

artificial intelligence [35]. It was developed in 1960 by Professor John Holland of the 

University of Michigan. His book,  Adaptation in Natural and Artificial Systems pioneered 

genetic algorithm (GA) research in the 1970s [36]. This technique was inspired by the 

Darwinian theory of natural evolution, which states that the organisms in the world 

multiply in geometric proportions leading to a struggle for existence due mainly to limited 

space and food. In this struggle the fittest will survive. The fittest are those with favorable 

variations, the accumulation of which lead to the evolution of species. The chances for the 

survival of organisms with injurious variations are rather slim. Thus, evolution is a process 

of natural selection [38]. 

http://en.wikipedia.org/wiki/Subset
http://en.wikipedia.org/wiki/Evolutionary_computation
http://en.wikipedia.org/wiki/Artificial_intelligence
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 Each cell of an organism of a species has a definite number of genetic structures 

called chromosomes consisting of linearly arranged units called genes (blocks of DNA) 

carrying genetic information for one or many characters.  

 

 A complete set of genetic material, namely all the chromosomes is called a genome. 

Man for example has 23 pairs of chromosomes. A group of genes in a genome is called the 

genotype. The expression of a genotype is referred as the phenotype. Each gene has a 

definite position in the chromosome called the locus. A given gene can be in several states 

called alleles which express characters such as the eye color of the organism.34 When 

organisms reproduce, the resulting offspring will have half the genes from each parent. Due 

to cross-over and mutations of genes offspring may get new features, favorable or 

unfavorable for survival. 

 

 Genetic algorithms closely mimic the biological model of chromosomes and genes 

with each chromosome representing an individual organism and genes forming 

components of a solution that is to be used with a genetic algorithm. Thus, a chromosome 

represents a data structure. As in nature, new chromosomes are generated by mixing 

genetic material by means of cross over and mutation. Cross over is equivalent to mating in 

the biological process. New information is introduced to the population by way of 

mutation. Thus, it is the chromosome (individual) that changes (evolves) by altering the 

order and the makeup of its genes. It is noteworthy that a finite number of genes are used 

in the process. 
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2.2. How Genetic Algorithms Work 
 
 In a genetic algorithm, a population of chromosomes consisting of a given random 

collection of genes is initiated according to the following steps (Figure 1). 

1. Generating an initial population of chromosomes. 

2. Evaluating the suitability of each chromosome (individual) that forms the population. 

3. Selecting the chromosomes for mating based on the above results.  

4. Producing offspring by mating (cross over) the selected chromosomes.  

5. Mutating genes randomly.  

6. Repeating steps 3-5 until a new population is generated.  

7. Ending the algorithm when the best solution obtained has not changed after a preset   

    number of generations. 

Start 
 
 

Initial random population generation 
 
 

Calculation of fitness function 
 
 
 

Stop 
 
 
 
 

Crossover 
 
 

Mutation 
 
 

Survivor selection  
Figure I  

 
 

Best individuals 

Solution 

Yes 

No 
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Three basic operations are evident from the above procedure. They are the 

selection, cross over, and mutation. The technique provides more than one solution for 

complex problems such as the “NP-hard” problems which probably cannot be solved 

exactly in polynomial time. Such problems increase at a much greater rate, described by the 

factorial operator (n!). An example of an NP-hard problem is the traveling salesman 

problem.  

 

 Polynomial problems solved by present day computers involve several steps to 

arrive at a solution. Each problem is bound by a polynomial, a mathematical expression of 

exponents and expressions. 

 

The above steps of genetic algorithm are elaborated as follows.  

 
2.3. Initial population of chromosomes 
 
 A genetic algorithm creates an initial population of chromosomes with each 

chromosome (organism) representing a complete solution to a given problem. The genes 

which constitute the chromosomes are initialized to random values. Based on a function 

specific to a given problem each chromosome is evaluated for its “fitness” which defines the 

quality of the solution. 

 
2.4. Suitability of chromosomes to mate 
 
 In a genetic algorithm, creation of an improved population is the aim of mating the 

most suitable chromosomes in a population. It results in the production of offspring 

(chromosomes) which join the existing population of chromosomes to become part of a 
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mating population in subsequent generations. For the genetic algorithm to function 

effectively a “fitness function” in the form of a numeric score has to be designed to evaluate 

the solutions (chromosomes). In nature there is no assignment of a score the -- organisms 

just die or survive.   

  As an example of designing a numeric score to evolve the word “run” as described in 

the literature, a population consisting of three members namely, “son”, “rug” and “cat” can 

be considered [39]. The word “rug” has two correct features as against the other two and 

has the highest number of points. The word “son” has one feature against that of “mat” with 

none of the characters having a score amounting to zero. Thus, the “fitness” in this example 

is attributed to the number of correct features as depicted in Table I.  

 

 

 

 
 

Table I 
 
2.5. Selection to the mating pool. 
 
 With the above example it is obvious that only two members are fit to be parents to 

be placed in a mating pool as shown by the fitness calculations made on the members of the 

population. One of the approaches called the elitist method can be used to select the 

members with highest scores are allowed to make offspring for the next generation. If there 

are only two members among thousands available as parents, the variety of the offspring 

will be very much limited, which could stunt the process of evolution. The obvious 

conclusion therefore is to make a large mating pool to obtain better results. However, this 

DNA  Fitness 
son 1 
rug 2 
mat 0 
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will not render optimal solutions as the top scoring individuals have the same chance of 

being selected as the ones toward the middle.   

     2.5.1. Roulette Wheel Selection 

A method popularly known as the “wheel of fortune” or the “roulette wheel” based 

on probability seems to provide a better solution in selecting members to the mating pool. 

A simple example to illustrate the method is to consider a five member population having 

the following fitness scores Table II.  

 

 

Table II 

 

The total fitness is 4 + 3 + 0.7 + 1.3 + 1 = 10 

The normalized fitness scores and the percentage values are given in Table III. 

 

 

 

 

TABLE III 
 
2.5.2  Selection based on the wheel of fortune. 
 
 

 
 
 
 
 
 

DNA Fitness 
P 4 
Q 3 
R 0.7 
S 1.3 
T 1 

DNA  Fitness  Normalized Fitness  Expressed as a Percentage 
P 4 0.4 40% 
Q 3 0.3 30% 
R 0.7 0.07 7% 
S 1.3 0.13 13% 
T 1 0.1 10% 

Parent Probability 

P 40% 

Q 30% 

R 7% 

S 13% 

T 10% 

 

P

Q

R

S

T

Figure 1I 
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The selection chance for members P - T are P> Q> S> T>R      (Figure II) 
 

This procedure is considered satisfactory because it ensures the reproduction of the 

highest scoring individuals without completely eliminating the ones with lowest scores 

providing an opportunity to pass the information to the next generation.  This could be 

explained by trying to evolve the phrase, “to do or not to do” using the available individuals 

P-R.  

P: to do or not to be 
Q: to do or not to go 
R: xxxxxxxxxxxxxxxxdo 
 

The chromosomes P and Q have most of the features of the required phrase having 

the highest scores as against R with lower score. However, the individuals P and Q lack the 

correct features for the end of the phrase. R on the other hand contains the necessary 

genetic data for the end of the phrase. As it can be seen, elements P and Q are clearly the 

most fit and would have the highest score. But neither contains the correct characters for 

the end of the phrase. Element R, even though it would receive a very low score, happens to 

have the genetic data for the end of the phrase. Whilst P and Q are selected to produce 

majority of offspring of the next generation it is necessary to have a some opportunity for R 

to take part in reproduction to obtain a perfect solution for the present problem.  

 

    2.5.3. Tournament selection  

 

 This method also selects individuals for the mating pool depending on their fitness 

function. It is a frequently used method in GA due to its simplicity and efficiency. The 
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method involves a random selection of individuals from a bigger population. They will 

compete with each other for a place in the next generation population.  

 

  

      

 

   

 

 

 

 

Figure IV: Tournament mechanism 

 

2.5.4 Stochastic Tournament selection 

 

 In stochastic tournament selection, the individual selected by the Roulette Wheel is 

taken to the Tournament. 

 

 Scaling, Rank, Generational, Steady-state and Hierarchical are other selection 

methods used [40]. 

 

 The convergence rate together with the number of generations required to yield the 

optimal solution defines the performance of the genetic algorithm [42].  

 

The Roulette Wheel method is associated with high time complexity as well as faster 

convergence with the selection of certain parents. The tournament method, on the other 

hand, exhibits lesser time complexity and therefore is faster [41]. In this study, tournament 

f-7     

  

 

 

 

   

 

  

    

                    

f-7

f-6     
f-4     

f-8     
f-5

f-8     

f-2     
Selection

 

Tournament  

Size = 3 

f-8     

With Highest 

 Fitness value

 
 Random 

Individuals with Fitness  

Values 

f-3f-6

f-2

Random Individual
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selection method is used for its simplicity with regards to coding and efficiency towards 

parallel and nonparallel constructions [42],[43]. In addition, this method leaves room for 

selection pressure adjustments which has an impact on its usage [43],[44]. Selection of 

individuals with higher fitness values for the next generation is controlled by selection 

pressure which is described as the extent to which the better individuals of the population 

are favored. The tournament size can be increased or decreased to obtain a desired 

selection pressure. A higher tournament size (higher selective pressure) will prevent some 

individual to take part in a tournament where as some others may not be selected at all. 

This brings about loss of genetic diversity resulting in premature convergence restricting 

the results to a local optima.38 Genetic diversity in essence, is the maintenance of a diverse 

solution population which makes sure that the solution space is searched adequately. A too 

small selection pressure (lower tournament size) on the other hand, may take a longer time 

to converge to an optimum. Thus, a proper selection pressure which ensures genetic 

diversity is required for the genetic algorithm  to converge to a global optimum [42]. 

 

2.6. Methods of change in reproduction. 

 

2.6.1 Cross-over 

 The characteristics of the suitable individuals selected must be altered in order to 

improve their fitness to the next generation. This is achieved by means of cross-over and 

mutation. Crossover simulates the recombination of chromosomes in sexual reproduction 

which involves two parents. To explain the phenomenon the following two parent phrases 

(individuals) from the mating pool can be considered. 
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Parent 1: CROW             Parent 2: KEGH 
                                                                                            
                                              
                         
        

Figure V 
 
A child phrase can be made in a 50/50 manner by taking two features from each parent as  
 
shown in Figure V. This is one-point crossover  
 
        Picking up a random point instead of the 50/50 selection is preferred as it increases 

variety for the next generation as indicated in Figures VI and VII.  

 
    

    
 
Figure VI: Selecting a random point. 
 
 
     

                                                                                    child  
Figure VII: 

 
 
 
 
KEOH, CEOW, CROH, CEOW are some of the possible combinations. 

2.6.2 Mutation. 

Additional variety to the offspring DNA which was created during the crossover can 

be introduced by mutation as shown in Figure VIII. It is a process of picking up a new 

random character. A mutation rate of 1%, indicates that each character in the phrase 

C R O W       K E G H 
              
              
     C R G H  child    

C R O W     K E G H   C R O W     K E G H 
                          
                          
    C E G H           C R O H     

1                   2
  C R O W       K E G H 
              
              
     C E O H      
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resulted from crossover, there is a 1% chance that it will mutate. A mutation may produce a 

desirable or undesirable character. Natural selection will decide upon the fate of the 

mutated chromosome. 

 

C E R H 
    

 C E R X 

 
                                                    Figure VIII 
 
The processes of selecting parents and reproduction are repeated until desirable results 

are obtained.   

 

 
2.6.3. Methods of representation 
 

Several methods are available to encode potential solutions to a given problem in a 

form that the computer is able to process the data [40]. In one method binary strings in 

sequences of 1's and 0's are used to encode solutions with each digit representing some 

aspect of the solution. A similar method is to encode solutions in integers and decimal 

numbers with each position representing some feature of the solution allowing precision 

and more complexity than using only the binary numbers [45].  In a third method a string 

of letters are used to represent an individual where each letter is designated to some 

aspect of the problem.  

All three methods clearly define the changes which the selected individuals undergo 

during the process. The changes include the flipping of a 0 to 1, changing a letter to another 

or adding or subtracting a randomly selected amount to a number. 

Mutation 
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Another approach called genetic programming where programs are represented as 

branching data structures (Figure IX) [46] and random changes are brought about by 

changing the value at a specific node in the tree. Changes can also be made by replacing one 

subtree with another. 

                      

 

 

 

 

 

  

Figure IX 

Three common program trees used in genetic programming. The mathematical expression  

for each program is given under each diagram. 

 
2.7 Advantages of genetic algorithm 
 
 As compared to genetic algorithms, other optimization algorithms look for solutions 

in a serial manner (in one direction) in the search field at a given time. The disadvantage of 

a serial search is that if the solution obtained is not favorable, the work carried out thus far 

has to be abandoned and a new search must be started. Genetic algorithms, which have 

multiple offspring on the other hand, are able to look for solutions in many directions at a 

given time, abandoning the paths which lead to suboptimal solutions. Thus, the opportunity 

of finding a favorable solution in a genetic algorithm is high during each run. Further, as 

A 1 A * 

- 
+ 

* 

+ 

1 

A A A 2 

A+1 A2+1 A+(A^2) 
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per Holland’s schema theorem, the fitness schemata which are above average grow while 

the ones below average decay. As such, parallelism in addition, indirectly evaluates many 

different schemata to identify individuals of highest fitness values. Thus, although genetic 

algorithms seem to evaluate a small group, in reality they evaluate a very large group of 

individuals in a reasonable amount of time.  As an example, an 8-digit binary string 

designated as, ٭٭٭٭٭٭٭٭  could be considered. ٭ is either 0 or 1. All these 8 digit 

strings form a search space. 01101010 string, for example with a fitness of 24, becomes not 

only a member of this search space, it also becomes a member of the spaces, 

0٭٭٭٭٭٭٭ 01٭٭٭٭٭٭ , 0٭٭٭٭٭٭0 ,  Genetic algorithms 0٭1٭1٭1٭, 10٭01٭٭0  ,

will sample to evaluate the fitness of the particular string in each of these spaces to which 

the string, 01101010 belongs.  

Another advantage of a genetic algorithm (GA) is its capability to handle several 

parameters simultaneously. Usually many of the real-world problems can only be 

described in terms of multiple objectives. As such, they cannot be expressed in the form of 

a single value for minimization and maximization purposes. A parameter can only be 

improved at the expense of another. Due to parallelism however, a GA can generate many 

solutions with one individual optimizing one parameter and another optimizing another. 

This allows one to select a desired solution for use.  
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2.8 Disadvantages of genetic algorithm 
 

 There are disadvantages to genetic algorithms. The representation for the problem 

must be clearly defined. The language employed to describe solutions should be able to 

bear random changes so that no fatal errors occur. Binary, integer or real-valued list of 

numbers is usually used to define individuals. 

       Choosing a fitness function is difficult. It should be carefully written to obtain the 

desired solution. An ill-defined fitness function could end up in not getting any solution or 

it might result in solving the wrong problem [47]. In addition to getting a good fitness 

function, it is also necessary to pay attention when selecting such factors as the number of 

individuals (population), crossover and mutation rates. Less solution space created by a 

small population leads to inaccurate results.  

 Premature convergence is another problem associated with a GA, especially when 

small populations are involved. This results from an individual (more fit) who is relatively 

capable of reproducing abundantly diminishes the population diversity too soon leading to 

convergence to a local optimum. In such an event, finding the global optimum becomes 

impossible as there could not be a search in the search field due to the particular individual 

representation.  However, there are methods that can be adopted to overcome this 

problem.  

 Analytical techniques are generally recommended to solve analytical problems 

instead of GA methods, as the former take less computational effort and time.
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CHAPTER 3 
 

DESIGN AND IMPLEMENTATION STRATEGY  

 
3.1.  Encoding 

 
           As stated earlier, scheduling classes for a college timetable is often met with  
 
constraints (hard and soft) due to diversity as compared to a school timetable where the  
 
requirements are highly limited. 
 

The class-scheduling problem will be based on the available professors, classrooms, 

timeslots and student groups.  

Each class will be assigned a timeslot, a professor, a room, and a student group by 

the class scheduler. The total number of classes that needs to be scheduled can be obtained 

by summing the number of student groups multiplied by the number of modules each 

student group is enrolled in.  

For each class scheduled by this application the following hard constraints will be 

considered.  

• Classes can only be scheduled in free classrooms.  

• A professor can only teach one class at any one time.  

• Classrooms must be big enough to accommodate the student group.  

When encoding the class schedule, certain class properties are needed. They are: the 

timeslot the class is scheduled for, the professor teaching the class, and the classroom 

required for the class. 
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 The encoding used must be able to encode all the class properties that are required. 

The class properties are, the timeslot the course is scheduled for, the professor teaching the 

course and the classroom for the course.  

 A numerical code can be allocated to each timeslot, professor, and the classroom. A 

chromosome can then be used that encodes an array of integers to represent each class.  

 

Class 1                                                Class 2                                            Class 3 

1 3 2 3 4 2 2 5 1 

 

Timeslot ID           Room ID          Professor ID 

 
Figure X: Array is split into three to retrieve information for each class. 

 
3.2. Initialization  
  
 A timetable needs to be built around the following criteria : the rooms, professors, 

timeslots, courses/modules, and student groups.  

 The room class will contain information about the classroom, such as the roomID, 

room number and the capacity of students that can be accommodated. This class will 

accept a roomId, a room number and the capacity as well as provide methods to get the 

room’s properties.  

 The timeslot class represents the day of the week and time that a class takes place. It 

contains the timeslotId and the timeslot details.  

 The professor class accepts a professorID and professor name properties. It also 

makes an allowance to retrieve this information as well.  
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 A module class will store the information on the course modules. Each module can 

have several sections and groups of students taking the course at different times of the 

week with different professors. The module class accepts a moduleID, module code 

(“CSCI111” or “ENGL 101”), module name, an array of professorID’s (professors who teach 

the module).  

 A group class will hold the information about the student groups. This class accepts 

groupID, a group size, module IDs the group is taking.  

   The Class class combines all of the above information. It will take a student group 

that takes a section of a module at a given timeslot, in a specific room with a specific 

professor.  

 A timetable class will encapsulate all these objects and will co-ordinate how 

different constraints interact with each other. This class will also parse a chromosome and 

create a candidate timetable to be appraised and recorded. The timetable class serves two 

purposes. First, it is aware of all the available rooms, timeslots, professors, modules and 

groups. Second, it can read a chromosome, generate a subset of classes from that 

chromosome, and help evaluate the fitness of the chromosome. This class consists of two 

significant methods. The create class method and the calculation of clashes method.  When 

creating a class for the timetable, an individual (chromosome) must be accepted, read and 

assigned information (timeslot, room, professor) to each class. As a result, the create class 

method uses a genetic algorithm and the subsequent chromosome to try different 

combinations of timeslots, rooms, and professors. The timetable class stores this 

information for future use. The clashes method then checks each one of the classes that has 

been built and count the number of clashes. A clash is a hard constraint violation. Examples 
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of clashes: room is too small, conflict with professor and timeslot, conflict with room and 

timeslot. 

            Clashes are used later in the genetic algorithm to calculate the fitness value.  As each 

class is compared to all other classes, a “clash” is added, if any of the hard constraints are 

violated. The total number of clashes are calculated. This is then used to calculate the 

fitness value. The fitness value is the inverse of the number of clashes (1/clashes+1). If 

there are no clashes then the fitness value will be 1.  

 The main method in the timetable class creates the timetable and initializes it with 

all of the available courses, timeslots, rooms, modules, groups and professors. As a result, 

tournament selection and uniform crossover is used for the genetic algorithm.    

 A termination check is set up such that the deciding factors are the number of 

generations and the fitness factor. Combining both of these factors will terminate the 

genetic algorithm either after a certain number of generations or if it finds a valid solution. 

As such the fitness value depends on the number of broken constraints. As a result, the 

perfect solution will have a fitness value of 1. The number of generations is set to 1000.  

 Uniform crossover is applied to guarantee that chromosomes are selected at 

random and are swapped with a parent, within the collections of genes. 

Mutation is implemented in such a way that a new random valid individual is 

created. The random individual created is used to select genes to copy into the individual to 

be mutated. This is called uniform mutation. This technique ensures that all the mutated 

individuals are valid. 
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CHAPTER 4 
 

 EXPERIMENTS  AND  RESULTS 
 
 The hard constraints were tested to ensure that all the solutions obtained were 

valid.   

The optimized solution for the timetable consisted of the following factors and their 

values. The population size was 100 with a mutation rate of 0.01%, a crossover rate of 

0.9%, the number of elite individuals was 2 and the tournament size was 5. With these 

values the resulting timetable had zero number of clashes with the fitness value of 1. 

 

4.1 Architectural specifications  

JAVA version 8 was used on a 6th Generation Intel(R) Core (TM) i7 Quad Core (6M 

Cache, upto 3.5 GHz) 16GB Dual Channel DDR4 256GB PCle Solid State Drive with NVIDIA 

GTX960M 2GB DDR5 for the design of the Course Scheduler.
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4. 2 Performance Analysis  

 

  

 

Figure XI: The number of generations the Course Scheduler takes to reach an 

optimal solution. 

 
 
The increase in population size shows a steady increase in the number of generations that  
 
takes to reach a valid solution.  
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Figure XII: Population size increase vs number of generations to reach a solution. 

 
Mutation rate plays an important role in genetic algorithms. As a result, the effect of 

clashes and the fitness value were checked with the course scheduler. Here, the number of 

generations were limited to 1000, the mutation rate range was from 0.01 to 0.21.  
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Figure XIII: mutation rate vs number of clashes. 

 
As seen from the graph above, the increase in mutation rate increases the number of  

 
clashes. As a result, the mutation rate is optimal at 0.01.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-1

0

1

2

3

4

5

6

7

8

9

0
.0

1

0
.0

2

0
.0

3

0
.0

4

0
.0

5

0
.0

6

0
.0

7

0
.0

8

0
.0

9

0
.1

0
.1

1

0
.1

2

0
.1

3

0
.1

4

0
.1

5

0
.1

6

0
.1

7

0
.1

8

0
.1

9

0
.2

0
.2

1

#0
f 

cl
as

h
es

mutation rate

mutation rate vs # of clashes



 

30 

 

 

 
Figure XIV: mutation rate vs fitness value. 

 
 The increase in mutation rate decreases the fitness value as seen from the graph in  
 
Figure XIV.  
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CHAPTER 5 
 

 CONCLUSION 

 
 
 The course scheduler using genetic algorithms finds the best solution that  
 
satisfies a number of hard constraints. Also, the mutation technique used guarantees that  
 
the mutated chromosomes remain valid. This was done by creating a known valid random  
 
individual, swapping genes with it similar to uniform crossover. Use of uniform crossover  
 
and tournament selection completed the algorithm. The factors such as population size,     
 
mutation rate, crossover rate, elite individuals, and tournament size were considered for  
 
the course scheduler. The optimum values for these factors were obtained through  
 
several runs of the system. Also, the effect of mutation rate and the population size were  
 
studied for the course scheduler.  
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