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ABSTRACT

Spectrum sensing in cognitive radio involves the determination of presence or absence

of a primary user signal so that secondary users may opportunistically gain access when the

spectrum is unoccupied. In decentralized sensing scheme, two or more secondary users (SUs)

sense the spectrum, process individual observation and then pass quantized data to a fusion

center, where the decision on signal present hypothesis or signal absent hypothesis is made.

The reporting channel between a SU and the fusion center (FC) is typically bandlimited and

error prone.

In this thesis we consider the problem of design of quantizers at the SUs assuming i)

the secondary users’ observations have known joint distributions, conditioned on the signal

present and absent hypothesis and ii) the reporting channel is a binary symmetric channel

with known error probability. The quantizer design is to obtain, at the minimum a locally

optimal design based on optimizing one of three possible criteria: i) KL divergence metric

ii) Chernoff metric iii) direct metric, that is Bayes error, with all metrics computed for the

data received at the FC. A successful quantizer design must consider three integrated-issues

simultaneously, i.e., quantizer thresholds, binary codeword assignment, and error resilience.

Numerical simulation results are obtained assuming that two SUs’ observations are

conditionally distributed as bivariate Gaussian, with identical marginal distributions and

higher mean value under the signal present hypothesis. The results indicate that all of the

quantizer designs possess the inherent property of resilience to channel errors, that is, given

the limit of D bits transmission through the reporting channel, the quantizer would represent

the data with less than the maximum allowable 2D quantization intervals, with appropriate

binary codewords, thus using the unused codewords for combating channel error. The higher

the channel error, the coarser will be the quantization of user observation. The results also
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indicate that the quantizer designed with the knowledge of known joint distributions of SUs’

data outperform, in the sense of KL divergence, Chernoff, or Bayes error, as the case may be,

when compared to the case of quantizer designed as though the users’ data were statistically

independent. Hence, for obtaining better performance at the fusion center, it is not possible

to ignore correlation, especially when the correlation is significant.
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CHAPTER 1

INTRODUCTION

The problem addressed in the thesis is the design of quantizers for digital representa-

tion of sensing data, received at SUs’ in a cooperative spectrum sensing scheme for cognitive

radio (CR) systems. This is an extension of previous work where the SUs data were as-

sumed statistically independent. Before we introduce the specific problem, we provide a

brief introduction to cognitive radio systems and cooperative spectrum sensing.

1.1 COGNITIVE RADIO SYSTEMS

Cognitive radio is one of the new long term developments taking place in radio com-

munications technology. The fundamental task of each CR user in CR networks, in the

most primitive sense, is to detect the licensed users, also known as primary users (PUs),

if they are present and identify the available spectrum if they are absent. This is usually

achieved by sensing the radio frequency (RF) environment, a process called spectrum sensing

[1]− [2]. In [3]− [4], Mitola stated that CRs are capable of sensing their environment, learn-

ing about their radio resources and user/application requirements, and adapting behavior

by optimizing their own performance in response to user requests.

1.2 COOPERATIVE SPECTRUM SENSING

As mentioned, spectrum sensing is a key function of CR to prevent the harmful inter-

ference with licensed users and identify the available spectrum for improving the spectrum’s

utilization. Spectrum sensing with different detection techniques are reviewed in [5]. This

spectrum sensing is challenging in low signal-to-noise ratio (SNR) regions, which can be

caused by severe fading, shadowing or blocking in the CR sensing channel. One possible
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approach to increase the spectral estimation reliability and decrease the probability of inter-

ference of CRs to existing radio systems is by using distributed spectrum sensing. In such a

distributed approach, the spectrum occupancy is determined by the joint work of cognitive

radios, as opposed to being determined individually by each cognitive radio. However, when

cooperating CR users are geographically proximate, they may experience similar environmen-

tal shadowing effects and thus have correlated shadowing [6]. Hence, correlated shadowing

could cause the sensors’ observations to be correlated. Also, in general, the complexity of the

cooperative spectrum sensing approach is higher; it needs a control channel and increases

the traffic overhead. Cooperative sensing can be implemented in two fashions: Centralized

and Decentralized. In centralized scheme, each sensor transmits all of its observation to a

FC. The FC will aggregate the local information and make a final decision. In decentralized

detection scheme, also called distributed detection, each sensor sends a summary of its own

observations (soft or hard decisions) to the fusion center. The fusion center makes a decision

on the basis of the summary it has received. We digress a little to briefly review distributed

detection literature

Distributed detection has attracted substantial attention for its application to the

cooperative spectrum sensing in cognitive radios [7]. A review of distributed signal detection

procedures was discussed in [8]. In application scenarios involving geographically distributed

radios, such as a wireless communication system, distributed spectrum sensing approaches

are worth considering due to the variability of the radio signal, as suggested in [9]. Such

methods may significantly increase the reliability of the spectrum estimation process, at the

expense of computational complexity and power/bandwidth usage for the transmission of

spectrum sensing information. The detection performance can be primarily determined on

the basis of two metrics: probability of false alarm, which denotes the probability of a CR

user declaring that a PU is present when the spectrum is actually free, and probability of

detection, which denotes the probability of a CR user declaring that a PU is present when the

spectrum is indeed occupied by the PU. Since a miss in the detection will cause interference
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with the PU and a false alarm will reduce the spectral efficiency, it is usual to assume that

the probability of false alarm is minimized subject to the constraint of the probability of miss

(Neyman-Pearson criterion). The performance of a distributed detection system with the

given local decision rules and correlated local decisions was studied in [10], and the optimum

decision fusion rule in Neyman-Pearson sense was derived and analyzed.

The performance of cooperative spectrum schemes based on hard decision and soft

decision has been compared in [11]− [13] for the case in which decisions are sent over error-

free reporting channels. Spectrum sensing considering soft decision and hard decision in the

presence of channel error is studied in [14]. The authors have highlighted the advantages

of using soft decisions, instead of hard decisions, to improve the performance of cooperative

spectrum sensing, specially in the presence of reporting channel errors. Channel coding is

a technique used for controlling errors in data transmission over unreliable or noisy com-

munication channels. It does this by introducing redundant data, called error correcting

code, prior to data transmission or storage. This operation involves increased data packet

size. So, rather than using forward error correction coding, a quantizer can be designed at

the SU with error resilient feature. Some time, the performance loss due to quantization in

signal detection and estimation is investigated in terms of Ali-and-Silvey divergence loss [15].

A fundamental issue related to quantization and error resilience design is the binary code-

word assignment. The quantizer design must consider the quantization thresholds, binary

codeword assignment and error resilience simultaneously.

1.3 THESIS WORK

An earlier work looked at the quantizer design for independent and identical SU’s

data [16]. The contribution of this thesis is to present a joint quantizer design that considers

local quantization, codeword assignments and channel error resilience from KL and Chernoff

metric divergences perspective, for correlated secondary users’ data. Further goal is to

examine the design based on Bayes error, instead of divergent measures. The quantizer
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design procedure is based on a two stage algorithm and is developed using Flynn and Gray

algorithm [17], which is executed iteratively for guaranteed convergence. The secondary

user is allowed to transmit the quantized data only with a limited rate. Problem is to

maximize divergence computed for the data at the FC. The design is based on person-by-

person optimization and therefore provides a local optimality. Also, investigation of error

probability of a likelihood ratio test at the FC, for different types of local quantizers, is

considered. We observe that by applying the proposed quantizer design, improvement in KL

and Chernoff metric divergences are achieved over the quantizer designed as though the SU

observations were statistically independent.

1.4 ORGANIZATION OF THESIS

The rest of the thesis is organized as follows. In chapter 2, we present system model

and concepts which are essential in understanding quantizer design. We first design the

quantizers based on distributional divergence and Bayes error criterion based on our proposed

algorithms. Numerical results are then analyzed in chapter 3. In chapter 4, we summarize the

content of thesis, and discuss the contributions of our work. Recommendations for further

research in this topic are also included in this chapter.
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CHAPTER 2

JOINT QUANTIZER DESIGN FOR SPECTRUM SENSING

In this chapter, we formulate quantizer design algorithms with the assumption that

sensors’ observations (i.e., SUs’ data) are distributed as bivariate Gaussian. We consider CR

network with two SUs, which can detect the presence of PU. Let H0 be the null hypothesis

(i.e, PU is absent) and H1 be the alternative hypothesis (i.e., PU is present) with priors of

π0 and 1 − π0, respectively as shown in Figure 2.1. Each SU receiver senses the spectrum

signal and makes a local log-likelihood ratio (LLR) statistic, denoted Ln (n = 1, 2). Assume

that the SUs’ data are correlated with correlation coefficient ρ (−1 ≤ ρ ≤ 1). Information

Ln is quantized into a D-bits binary codeword, Lsu
n , which is then transmitted through a

binary symmetric channel with bit error probability (BEP) Pb. At the fusion center, Lsu
n is

received as Lfc
n . The best decision rule, i.e, LLR detection rule is used at the fusion center

to arrive at a final decision. Let

Λ = log
P (Lfc

1 , L
fc
2 |H1)

P (Lfc
1 , L

fc
2 |H0)

. (2.1)

Using a threshold η, the FC implements the test

Λ

H1

>

<
H0

η. (2.2)

The false alarm probability and miss detection probability are defined as

α = Pf =

+∞∫
η

P (Λ|H0)dΛ. (2.3)
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Figure 2.1. Sensors and data fusion model

β = Pm = 1− Pd = 1−
+∞∫
η

P (Λ|H1)dΛ. (2.4)

2.1 QUANTIZATION INTERVALS AND CODEWORD ASSIGNMENT

The quantizers and reporting channels between SUs and FC are shown in Figure. 2.1.

Let W (W = 2D) be the number of levels of the quantizer as shown in Figure. 2.2.

Figure 2.2. Quantizer threshold

Let tm be the quantization thresholds, where m = 0, . . . ,W , t0 = −∞ and tW = +∞. Since
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both the SUs’ data are correlated, calculation of probability mass of an interval considers both

SU’s LLRs. Hence, combining quantizer thresholds of both SU leads to a two-dimensional

cell structure with LLR of SU1 on x-axis and LLR of SU2 on y-axis as shown in Figure 2.3.

We denote P su
j (i, k) , i, k = 1, . . . ,W as the probability that the quantized symbol is in the

cell (i, k) under hypothesis j, j = 0, 1 .

Then probability mass of each cell is given by

P su
j (i, k) =

ti∫
ti−1

tk∫
tk−1

f(L1, L2|Hj)dL1dL2. (2.5)

where

f(L1, L2) =
1

2πσ0σ1
√

1− ρ2
exp

[
− z

2(1− ρ2)

]
, (2.6)

z ≡ (L1 − µ0)
2

σ2
0

− 2ρ(L1 − µ0)(L2 − µ1)

σ0σ1
+

(L2 − µ1)
2

σ2
1

.

The codewords assignments for these W quantization intervals are (i, ci) for SU1 and (k, c 8k)

for SU2, i, k = 1, . . . ,W , where ci and c 8k are D-bits binary sequence. Concatenation of ci, c
8
k

binary sequences represents the (i, k)th cell’s codeword. This concatenated codeword cq,

q = 1, . . . ,W ∗W is in the vector space, V (22D), consisting of all 22D bits binary sequences,

i.e., ci ∈ V (2D) and c 8k ∈ V (2D). Let P su
j = [P su

j (1), . . . , 0, . . . , 0, . . . , P su
j (W ∗ W )] be

the probability mass of the quantized data under hypothesis, j for all possible codeword

combinations. Then probability mass of each codeword combination is calculated as the

sum of the probability mass of the cells with the respective codeword, cq. Existence of the

zero elements means that the number of quantization levels is less than 2D for each SU

and hence, some D-bits binary sequences are not used for the codeword assignment. This

quantized data passes through a binary symmetric channel (BSC) with bit error probability,

Pb. A unique probability transition matrix, PT = {pij}, i, j = 1, . . . , 22D , can be obtained
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Figure 2.3. 2-D cell structure

among all possible vectors in V (22D). Let vi, vj ∈ V (22D), then

pi,j = Pb
H(vi,vj)(1− Pb)D−H(vi,vj). (2.7)

where H (vi, vj) is the hamming distance between vi and vj. The quantized data Lsu, which

is a D-bits binary codeword, is transmitted through BSC. This codeword may be changed

by the channel and received at the fusion center as Lfc. The probability mass of the Lfc

for all codeword combinations under hypothesis j can be calculated once the indices of the

quantized codewords are aligned with that of PT and can be computed as

P fc
j = P su

j ∗ PT . (2.8)

Final performance is determined in terms of distributional divergence or Bayes error criterion.
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Therefore, the main objective is to find the quantization thresholds ti, tk, i, k = 1, . . . ,W −1,

and the codewords ci, c
8
k, i, k = 1, . . . ,W , that maximizes a divergence measure between P fc

0

and P fc
1 for the quantizer designed for optimizing a divergence metric or that minimizes the

probability of error for the quantizer designed for Bayes error criterion.

2.2 QUANTIZATION SCHEMES, JOINT QUANTIZATION AND ERROR RESILIENCE

A quantization scheme is designed based on a distributional divergence (KL or Cher-

noff) or Bayes error criterion. A two-stage iterative algorithm is discussed below with guar-

anteed convergence to a local optimum scheme.

2.2.1 DISTRIBUTIONAL DIVERGENCE

Divergence metrics are used to measure the difference between two distributions and

can be applied to detection problems [8]. Consider two distributions, P0(x) and P1(x). The

divergence can be measured by the expectation of a function of the likelihood ratio, i.e.,

E[h(φ(x))], where φ(x) = P1(x)/P0(x). It is shown in [18] that there is no loss of generality

in considering the expectation relative to P0, compared to the expectation relative to a

mixture distribution consisting of P0 and P1. Considering probability mass function (PMF),

the KL divergence between P0 and P1 is given by

D(P0||P1) =
∑
i

P0(i) log
P0(i)

P1(i)
= E0

[
− log

P1

P0

]
. (2.9)

Steins lemma [19] shows that for a large number of SUs, the asymptotic miss probability β,

for any false alarm probability α, is

lim
n→∞

βn = e−nD(P0 ||P1). (2.10)
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In [15], considering the tradeoff between the asymptotic values, α and β, it is shown that

α ≈ e−nD(Pλ ||P0)

β ≈ e−nD(Pλ ||P1). (2.11)

where

Pλ(i) =
P0(i)

1−λP1(i)
λ∑

j P0(j)
1−λP1(j)

λ
, 0 ≤ λ ≤ 1. (2.12)

When λ satisfies D(Pλ ||P0) = D(Pλ ||P1), the smallest detection error is achieved. It can

be proved [20] that Bayes probability error Pe = π0α + π1β satisfies,

1

N
logPe ≤ log

∑
i

P0(i)
1−λP1(i)

λ = logE0

[(
P1

P0

)λ]
. (2.13)

We define E0

[
−
(
P1

P0

)λ]
as the Chernoff metric in the sequel.

We consider a joint quantizer design based on one of these two divergence measurements.

For the two PMF distributions received at the FC under different hypothesis, one optimal

design is to maximize the KL divergence in (2.9) or minimize the exponent in (2.13).

2.2.2 MINIMUM ERROR PROBABILITY

Consider the binary hypothesis test H0 : x ∼ f0(x), H1 : x ∼ f1(x). Let πi be the

prior probability of hypothesis Hi. In making a decision in any binary hypothesis testing

problem, we have four possibilities to consider:

(a) H0 is the true hypothesis, the test decides D0;

(b) H1 is the true hypothesis, the test decides D1;

(c) H0 is the true hypothesis, the test decides D1; and

(d) H1 is the true hypothesis, the test decides D0.
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The first two correspond to correct choices. The last two correspond to errors. In the

statistical literature (c) is called a type I error and (d) is a type II error. We assume prior

probabilities π0 and π1 are known. The probability of making an error, denoted Pe, is

Pe = Pr[H1] Pr[DecideH0|H1] + Pr[H0] Pr[DecideH1|H0]

= π1 Pr [D0|H1] + π0 Pr [D1|H0]. (2.14)

In a practical communication system, the consequences of each type of error are not equally

important. The consequence of saying target is present when in fact there is none, is quite

different from saying that no target is present when in fact there is. To reflect these differ-

ences, costs may be assigned to each type of error. Define Cij as the cost associated with

choosing hypothesis Hi when actually hypothesis Hj is true. In terms of log likelihood ratio

function, the optimum Bayes rule that minimizes Bayes cost is given by [21],

Λ

H1

>

<
H0

ln

(
P (H0)(C10 − C00)

P (H1)(C01 − C11)

)
. (2.15)

where Λ is same as equation (2.1). In communication system, it is usual to minimize the

average error probability. Zero cost is associated with a correct decision, and the errors of

each kind are assigned equal cost. Therefore, assume that C00 = C11 = 0 and C10 = C01 = 1

and the average cost is the average error probability Pe. For minimizing the average error

probability, the decision rule becomes

Λ

H1

>

<
H0

ln

(
P (H0)

P (H1)

)
. (2.16)

In the numerical computation, for minimum error probability criterion, we assume equal

prior probabilities i.e., P (H0) = P (H1). Hence, right hand side of above inequality will be

equal to 0. In the next section we propose a suboptimal quantization algorithm (algorithm
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3) for minimizing error probability.

2.2.3 ALGORITHMS

In our scenario, we denote P0 and P1 as P fc
0 and P fc

1 . Altering the local quantiza-

tion thresholds and the codewords assignments, changes these two PMFs. To initiate the

algorithm, we start by representing the range of LLR of the local SUs’ observations before

transmission as the union of a large number of non-overlapped small cells, each with a given

probability mass under the mixture of two distributions, i.e., π0f(L|H0) + (1− π0)f(L|H1).

Each cell will be assigned an initial codeword. Since the number of cells generally far exceeds

2D, each of the possible codewords would be assigned to more than one cell. The algorithms

for different divergence metrics and minimum error probability are summarized as follows.

Algorithm 1: Joint Quantizer and Error Resilience Design Based on Maximizing

KL-Divergence

1. Initialization

Set the rate limit, D

Divide the range of local LLR of each SU into small intervals with a number much

larger than 2D,

Assign initial codeword v ∈ V (2D) to each interval using regular scalar quantization,

Considering correlated SU’s data, combine the two local LLR value’s intervals to form

2-dimension cells.

Calculate P su
0 (i, k) and P su

1 (i, k) of each cell based on the codeword assignment and

the probability mass using (2.5),

P fc
j = P su

j PT , j = 0, 1

Div-old = 0,

Div = E0

[
−logP

fc
1

P fc
0

]
2. Iteration Loop (person-by-person)

While Div−Divold > err do

12



Div-old = Div,

(a) For each cell,

Update its codeword assignment if the resulting Div from (2.9) is increased (up-

date first SU’s codeword by keeping second SU’s codeword constant),

End-For

(b) With the new codeword assignment:

Find P su
j , and P fc

j = P su
j ∗ PT , j = 0, 1,

Calculate Div using (2.9).

Repeat (a) and (b) by keeping newly assigned first SU’s codeword constant and

update second SU’s codeword.

Calculate Div using (2.9)

End-While

3. Post-processing

Combine adjacent cells with the same codeword assignment and output the quantizers

thresholds and codewords.

Algorithm 2: Joint Quantizer and Error Resilience Design Based on Maximizing

Chernoff Metric

Same as Algorithm 1 except replace the divergence with Chernoff metric.

Algorithm 3: Joint Quantizer Design Based on Minimum Error Probability.

1. Initialization

Set the rate limit, D

Divide the range of local LLR of each SU into small intervals with a number much

larger than 2D,

Assign initial codeword v ∈ V (2D) to each interval using regular scalar quantization,

Considering correlated SU’s data, combine the two local LLR value’s intervals to form

13



2-dimension cells.

Calculate P su
0 (i, k) and P su

1 (i, k) of each cell based on the codeword assignment and

the probability mass using (2.5),

P fc
j = P su

j ∗ PT , j = 0, 1

Likelihood ratio Λ is formed using the PMFs at the FC using (2.16).

P (H0) = P (H1)

α and β are calculated using (2.3) and (2.4)

Pe old = 0,

Pe is calculated from (2.14).

2. Iteration Loop (Person-by-Person)

While |Pe − Pe old| > err do

Pe old = Pe,

(a) For each cell,

Update its codeword assignment if the resulting error probability Pe using (2.14)

is decreased (update first SU’s codeword by keeping second SU’s codeword con-

stant),

End-For

(b) With the new codeword assignment:

Find P su
j , and P fc

j = P su
j PT , j = 0, 1,

Calculate Pe.

Repeat (a) and (b) by keeping newly assigned first SU’s codeword constant and

update second SU’s codeword.

Calculate Pe

End-While

3. Post-processing

Combine adjacent cells with the same codeword assignment and output the quantizers
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thresholds and codewords.

There are some techniques in practice that could improve these algorithms. For example, if

two adjacent cells have the same codeword during several iterations, they can be combined

into one cell. Since each update of codeword assignment is for one cell, while keeping the

codewords of other cells fixed, the above algorithms present linear computational complexity.

2.2.4 JOINT QUANTIZATION AND ERROR RESILIENCE

As stated in algorithms, the codeword of each small cell is updated independently.

Hence, it is possible that at the end, some binary sequences have never been chosen for the

codeword assignment. In other words, the number of quantization intervals could be less

than 2D, although each interval is always represented by a D-bits sequence. In [16] it is

shown that quantizer with less quantization intervals i.e., less than 2D works much better

than the quantizer that uses all D-bits in quantization, when channel error exists. This

indicates that optimal quantizer actually uses some portion of the total D-bits (< D) in

quantization for the purpose of data representation, while leaving the rest of the bits for the

combating channel errors. LLR at the SU is quantized with a number of quantization levels

less than 2D, when channel errors are present, depending on the error probability. However,

it should be noted that the number of different codewords at the FC is always 2D. Every

possible D-bits binary sequences can be obtained at FC due to channel errors. Finally, at the

FC, we have two probability mass function P fc
0 and P fc

1 , with respect to all possible binary

sequences of received codewords.

2.3 CENTRALIZED DETECTION WITH GAUSSIAN CHANNELS

The purpose of this analysis is to provide a performance benchmark for compari-

son of decentralized quantized schemes with a central scheme. Assume in centralized and

un-quantized detection scheme, the FC knows everything about the practical scenario: ob-

servation in its analog domain, Gaussian noise variance in the sensing process, and the
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spectral density of additive white Gaussian noise (AWGN) channel for transmission of the

observation.

Suppose that H0 : X ∼ N(−µ0, σ
2) and H1 : X ∼ N(µ1, σ

2), with the prior proba-

bility of π0 and π1 = 1 − π0, respectively. In the decentralized case, X is quantized into a

D-bits string, which is transmitted through a BSC channel with bit error rate (BER), Pb,

and further received by the FC. While in the centralized version, the un-quantized X is di-

rectly transmitted through an equivalent AWGN channel N(0, σ2
n). Now, the objective is to

find σ2
n so that the FC can appropriately account for the reporting channel errors. Consider

only one SU for simplicity.

For un-quantized case: The energy/symbol of X is

Es = X2 = (µ2
0 + σ2)π0 + (µ2

1 + σ2)π1. (2.17)

For quantized case: X is quantized into D-bits, then the energy/bit is

Eb =
Es
D

=
X2

D
. (2.18)

With binary phase shift keying (BPSK) transmission

Pb = Q

(√
2Eb
N0

)
. (2.19)

where N0 is the one-sided power spectral density (PSD), i.e, the noise power per Hz. Theo-

retically, two symbols can be transmitted per Hz. Then, channel noise power (i.e., variance

σ2
n) per symbol is σ2

n =
N0

2
.

Combining all the above, we obtain

σ2
n =

X2

[Q−1(Pb)]2D
. (2.20)
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To summarize, σ2
n is related to µ0, µ1, σ, priors and D. The key point is to keep the overall

energy of transmitting one D-bit string in the quantized case the same as the energy of

transmitting the original X in the un-quantized case.

There is one glitch in the above when using BPSK. It’s known that transmitting one

symbol uses channel once. In the BPSK case, each bit is a symbol. Therefore, theD-bit string

uses the channel D times in total. Given the time period Ts to transmit the X and the D-bit

string being the same (so as to keep the same power), BPSK expands channel bandwidth

by D times, although we always have the same N0 for each channel use. However, this issue

can be easily solved by using a D-ary modulation scheme so that the D-bit string is grouped

into one symbol for transmission and uses the channel only once per Ts second. In this case,

(2.19) needs to be changed based on the specific modulation scheme and subsequently (2.20)

needs change as well. In our work, without changing anything in simulation, we can simply

update σ2
n to recalculate the performance of the centralized case and then we can safely say

that we have transmitted the quantized data with the corresponding modulation scheme.

Lets assume (X ′1, X
′
2) be the data received at the FC instead of (X1, X2) after transmitting

through an equivalent AWGN channel N(0, σ2
n) for the centralized scheme.

Likelihood ratio test (LRT) for the data received at FC for centralized scheme is,

(µ1 − µ0)(X
′
1 +X ′2)

σ′2(1 + ρ′)

H1

>

<
H0

ln η. (2.21)

where ρ′ =
ρσ2

σ2 + σ2
n

and σ′2 = σ2 + σ2
n

Proof : See Appendix A shown below.

APPENDIX A

The proof consists of LRT derivation for bivariate Gaussian distribution. Consider

the test of H0 : X1, X2 ∼ N(µ0, µ0, σ, σ, ρ) vs. H1 : X1, X2 ∼ N(µ1, µ1, σ, σ, ρ), the LRT is
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given by,

Λ =
f1(X1, X2)

f0(X1, X2)

H1

>

<
H0

η. (2.22)

Λ =

1

2πσ2
√

1− ρ2
exp

− (X1 − µ1)
2

σ2
− 2ρ(X1 − µ1)(X2 − µ1)

σ2
+

(X2 − µ1)
2

σ2

2(1− ρ2)


1

2πσ2
√

1− ρ2
exp

− (X1 − µ0)
2

σ2
− 2ρ(X1 − µ0)(X2 − µ0)

σ2
+

(X2 − µ0)
2

σ2

2(1− ρ2)


H1

>

<
H0

η

By taking natural log on both the sides for above equation, it simplifies to

ln Λ =

− (X1 − µ1)
2

σ2
− 2ρ(X1 − µ1)(X2 − µ1)

σ2
+

(X2 − µ1)
2

σ2

2(1− ρ2)

+

− (X1 − µ0)
2

σ2
− 2ρ(X1 − µ0)(X2 − µ0)

σ2
+

(X2 − µ0)
2

σ2

2(1− ρ2)

 H1

>

<
H0

ln η

After simplification, we have the equivalent test,

(µ1 − µ0)(X1 +X2)

σ2(1 + ρ)

H1

>

<
H0

ln η. (2.23)

Hence, we consider LRT for the data received at FC for centralized scheme, assuming X ′1, X
′
2

to be the data received at the FC after transmission through an equivalent AWGN channel

N(0, σ2
n).

The equivalent LRT of the received data at FC reduces to

(µ1 − µ0)(X
′
1 +X ′2)

σ′2(1 + ρ′)

H1

>

<
H0

ln η. (2.24)

We assume covariance of the SU’s data are same, before and after transmission through the

18



AWGN channel. Hence, Cov(X1, X2) = Cov(X ′1, X
′
2)

i.e., ρ
√

Var(X1)Var(X2) = ρ′
√

Var(X ′1)Var(X ′2) which is equivalent to

ρσ2 = ρ′σ′2

where σ′2 = (σ2 + σ2
n). Therefore, ρ′ =

ρσ2

σ2 + σ2
n

Probability of false alarm and probability of detection can be found in terms of Q-function

[21] for the LRT specified in (2.24).

Pf = Q

(
−2µ0√

2σ′ (1 + ρ′)

)
. (2.25)

Pd = Q

(
−2µ1√

2σ′ (1 + ρ′)

)
. (2.26)
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CHAPTER 3

NUMERICAL ANALYSIS AND RESULTS

In this chapter, we present some detailed numerical results of our proposed quan-

tization algorithms. We compare the quantizers designed for dependent SUs observation

with the quantizers designed with independence assumption. Also, we analyze the FC LRT

performance using ROC curve and probability of error.

3.1 KL DIVERGENCE-BASED QUANTIZER

We consider testing of mean of Gaussian as a simple model to represent the signal

present or absent hypothesis. Let H0 : X1, X2 ∼ N(−1,−1, σ2, σ2, ρ) and H1 : X1, X2 ∼

N(1, 1, σ2, σ2, ρ), and prior probabilities π0 = π1 = 0.5, where X1, X2 are the observations

at SU1 and SU2, respectively. This is equivalent to the case that one hypothesis has zero

mean and the other has a mean 2, when the observation is added to 1. It can be seen that

the normalized log-likelihood ratio L at each SU is equivalent to the observation, x. To start

the algorithm, the initial codeword assignment is set as regular scalar quantization with

equal intervals over (−s, s), with (−∞,−s) and (s,∞) forming the end intervals. For de-

signing this quantizer, we considered specific cases where σ = 0.5, channel error probability

Pb = [0, 0.05], and different correlation coefficients ρ, which ranges from −1 to 1. For nu-

merical computation, different values of ρ [−0.9,−0.75,−0.5, 0, 0.5, 0.75, 0.9] and D = [1, 2],

are considered. In Table 3.1, we have summarized the quantizer thresholds and codeword

assignments for the quantizer design for algorithm 1, when D = 1 and no channel error,

Pb = 0. Table 3.2 shows the KL divergence values for the quantizer design for algorithm 1

for the same case, D = 1 and Pb = 0.
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Table 3.1. Quantizer thresholds and codeword assignment for algorithm 1, when channel
error probability, Pb = 0 and D = 1

ρ = −0.9 ρ = −0.75
SU1 thresh. SU1

label
SU2
label

SU2 thresh. SU1 thresh. SU1
label

SU2
label

SU2 thresh.

(−∞,−0.5] 00 00 (−∞,−0.5] (−∞,−0.5] 00 00 (−∞,−0.5]
[−0.5,∞) 01 01 [−0.5,∞) [−0.5,∞) 01 01 [−0.5,∞)

ρ = −0.5 ρ = 0
SU1 thresh. SU1

label
SU2
label

SU2 thresh. SU1 thresh. SU1
label

SU2
label

SU2 thresh.

(−∞,−0.5] 00 00 (−∞,−0.5] (−∞,−0.6] 00 00 (−∞,−0.6]
[−0.5,∞) 01 01 [−0.5,∞) [−0.6,∞) 01 01 [−0.6,∞)

ρ = 0.5 ρ = 0.75
SU1 thresh. SU1

label
SU2
label

SU2 thresh. SU1 thresh. SU1
label

SU2
label

SU2 thresh.

(−∞,−0.7] 00 00 (−∞,−0.7] (−∞,−0.7] 00 00 (−∞,−0.7]
[−0.7,∞) 01 01 [−0.7,∞) [−0.7,∞) 01 01 [−0.7,∞)

ρ = 0.9
SU1 thresh. SU1

label
SU2
label

SU2 thresh.

(−∞,−1.2] 00 00 (−∞,−0.7]
[−1.2, 0] 01 01 [−0.7,∞)
[0,∞) 00

Table 3.2. KL divergence values for the quantizer designed using algorithm 1 with channel
error probability, Pb = 0 and D = 1

ρ −0.9 −0.75 −0.5 0 0.5 0.75 0.9
KL-DIV 68.037 30.227 17.226 10.447 7.730 6.675 6.972

In Table 3.1, we observe that as the ρ tends towards total positive correlation (+1),

quantization intervals tend to be non-contiguous [22] i.e., quantizer intervals with the same

codeword assignment are not adjacent to each other. In the same table (Table 3.1), quantizer

thresholds for SU1 and ρ = 0.9, codeword 00 is assigned for two non-adjacent intervals i.e.,

(−∞,−1.2] and [0,∞). Table 3.2 shows that KL divergence value for the quantizer designed

for negative correlation (ρ = −0.9) is maximum whereas that of the quantizer designed

for positive correlation (ρ = 0.9) is minimum. Hence, negative correlation gives better
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performance, although physically it is not conceivable to expect negative correlation. In

Tables 3.3 and 3.4, we have summarized the quantizer thresholds with codewords assignment

and KL divergence values for the quantizer design based on algorithm 1, when D = 1 and

channel error probability, Pb = 0.05.

Table 3.3. Quantizer thresholds and codeword assignment for algorithm 1, when channel
error probability, Pb = 0.05 and D = 1

ρ = −0.9 ρ = −0.75
SU1 thresh. SU1

label
SU2
label

SU2 thresh. SU1 thresh. SU1
label

SU2
label

SU2 thresh.

(−∞,−0.1] 00 00 (−∞,−0.1] (−∞,−0.1] 00 00 (−∞,−0.1]
[−0.1,∞) 01 01 [−0.1,∞) [−0.1,∞) 01 01 [−0.1,∞)

ρ = −0.5 ρ = 0
SU1 thresh. SU1

label
SU2
label

SU2 thresh. SU1 thresh. SU1
label

SU2
label

SU2 thresh.

(−∞,−0.1] 00 00 (−∞,−0.1] (−∞,−0.1] 00 00 (−∞,−0.1]
[−0.1,∞) 01 01 [−0.1,∞) [−0.1,∞) 01 01 [−0.1,∞)

ρ = 0.5 ρ = 0.75
SU1 thresh. SU1

label
SU2
label

SU2 thresh. SU1 thresh. SU1
label

SU2
label

SU2 thresh.

(−∞,−0.2] 00 00 (−∞,−0.2] (−∞,−0.3] 00 00 (−∞,−0.3]
[−0.2,∞) 01 01 [−0.2,∞) [−0.3,∞) 01 01 [−0.3,∞)

ρ = 0.9
SU1 thresh. SU1

label
SU2
label

SU2 thresh.

(−∞,−0.4] 00 00 (−∞,−0.2]
[−0.4,∞) 01 01 [−0.2,∞)

Table 3.4. KL divergence values for the quantizer designed using algorithm 1 for channel
error probability, Pb = 0.05 and D = 1

ρ -0.9 -0.75 -0.5 0 0.5 0.75 0.9
KL-DIV 4.804 4.804 4.804 4.768 4.581 4.394 4.247

We tabulated the quantizer thresholds and KL divergence values for the quantizer

designed by algorithm 1 for Pb = 0 and D = 2 in Tables 3.5 and 3.6, respectively. With a

larger D value (D = 2), observation similar to D = 1 case is observed, that is when ρ tends
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Table 3.5. Quantizer thresholds and codeword assignment for algorithm 1, when channel
error probability, Pb = 0 and D = 2

ρ = −0.9 ρ = −0.75
SU1 thresh. SU1

label
SU2
label

SU2 thresh. SU1 thresh. SU1
label

SU2
label

SU2 thresh.

(−∞,−1.1] 00 00 (−∞,−1.1] (−∞,−1.1] 00 00 (−∞,−1.1]
[−1.1,−0.6] 01 01 [−1.1,−0.6] [−1.1,−0.6] 01 01 [−1.1,−0.6]
[−0.6, 0] 10 10 [−0.6, 0] [−0.6, 0] 10 10 [−0.6, 0]
[0,∞) 11 11 [0,∞) [0,∞) 11 11 [0,∞)

ρ = −0.5 ρ = 0
SU1 thresh. SU1

label
SU2
label

SU2 thresh. SU1 thresh. SU1
label

SU2
label

SU2 thresh.

(−∞,−1.2] 00 00 (−∞,−1.1] (−∞,−1.2] 00 00 (−∞,−1.2]
[−1.2,−0.7] 01 01 [−1.1,−0.6] [−1.2,−0.7] 01 01 [−1.2,−0.7]
[−0.7,−0.1] 10 10 [−0.6, 0] [−0.7,−0.2] 10 10 [−0.7,−0.2]
[−0.1,∞) 11 11 [0,∞) [−0.2,∞) 11 11 [−0.2,∞)

ρ = 0.5 ρ = 0.75
SU1 thresh. SU1

label
SU2
label

SU2 thresh. SU1 thresh. SU1
label

SU2
label

SU2 thresh.

(−∞,−1.1] 00 00 (−∞,−1.1] (−∞,−1.1] 00 00 (−∞,−1.1]
[−1.1,−0.6] 01 01 [−1.1,−0.6] [−1.1,−0.6] 01 01 [−1.1,−0.6]
[−0.6, 0] 10 10 [−0.6, 0] [−0.6, 0] 10 10 [−0.6, 0]
[0,∞) 11 11 [0,∞) [0,∞) 11 11 [0,∞)

ρ = 0.9
SU1 thresh. SU1

label
SU2
label

SU2 thresh.

(−∞,−1.7] 00 00 (−∞,−1.1]
[−1.7,−1.4] 10 01 [−1.1,−0.7]
[−1.4,−0.9] 11 11 [−0.7,−0.3]
[−0.9,−0.4] 01 10 [−0.3,∞)
[−0.4, 0] 10
[0, 0.5] 00
[0.5,∞) 11

Table 3.6. KL divergence for the quantizer designed using algorithm 1 for channel error
probability, Pb = 0 and D = 2

ρ −0.9 −0.75 −0.5 0 0.5 0.75 0.9
KL-DIV 116.557 49.2706 26.239 14.139 9.7882 8.454 7.957

towards total positive correlation (+1), quantization intervals tend to be non-contiguous i.e.,

it results in multiple non-adjacent intervals with the same codeword assignment. Quantizer

23



thresholds for SU1 and ρ = 0.9 in Table 3.5 shows that, codeword 00 is assigned for two

non-adjacent intervals, that is, (−∞,−1.7] and [0, 0.5]. As before, Table 3.6 shows that KL

divergence of the quantizer designed for negative correlation is maximum.

Table 3.7. Quantizer thresholds and codeword assignment for algorithm 1, when channel
error probability, Pb = 0.05 and D = 2

ρ = −0.9 ρ = −0.75
SU1 thresh. SU1

label
SU2
label

SU2 thresh. SU1 thresh. SU1
label

SU2
label

SU2 thresh.

(−∞,−0.4] 01 01 (−∞,−0.4] (−∞,−0.4] 01 01 (−∞,−0.4]
[−0.4, 0] 00 00 [−0.4, 0] [−0.4, 0] 00 00 [−0.4, 0]
[0,∞) 10 10 [0,∞) [0,∞) 10 10 [0,∞)

ρ = −0.5 ρ = 0
SU1 thresh. SU1

label
SU2
label

SU2 thresh. SU1 thresh. SU1
label

SU2
label

SU2 thresh.

(−∞,−0.4] 01 01 (−∞,−0.4] (−∞,−0.5] 01 01 (−∞,−0.5]
[−0.4, 0] 00 00 [−0.4, 0] [−0.5,−0.1] 00 00 [−0.5,−0.1]
[0,∞) 10 10 [0,∞) [−0.1,∞) 10 10 [−0.1,∞)

ρ = 0.5 ρ = 0.75
SU1 thresh. SU1

label
SU2
label

SU2 thresh. SU1 thresh. SU1
label

SU2
label

SU2 thresh.

(−∞,−0.6] 01 01 (−∞,−0.6] (−∞,−0.7] 01 01 (−∞,−0.7]
[−0.6,−0.2] 00 00 [−0.6,−0.2] [−0.7,−0.2] 00 00 [−0.7,−0.2]
[−0.2,∞) 10 10 [−0.2,∞) [−0.2,∞) 10 10 [−0.2,∞)

ρ = 0.9
SU1 thresh. SU1

label
SU2
label

SU2 thresh.

(−∞,−0.8] 01 01 (−∞,−0.7]
[−0.8,−0.3] 00 00 [−0.7,−0.1]
[−0.3,∞) 10 10 [−0.1,∞)

Table 3.8. KL divergence for the quantizer designed using algorithm 1 for channel error
probability, Pb = 0.05 and D = 2

ρ −0.9 −0.75 −0.5 0 0.5 0.75 0.9
KL-DIV 9.0848 9.0847 9.0836 8.8328 7.6769 7.0017 6.6248

In Table 3.7 and 3.8, we have outlined the quantizer thresholds with codeword assignments

and KL divergence values for the quantizer design based on algorithm 1, when D = 2 and
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channel error probability, Pb = 0.05. Table 3.8 shows the KL divergence values for the

quantizer design based on algorithm 1 when D = 2 and Pb = 0.05. We can observe in Table

3.7, that when channel errors exist, the quantization scheme provides for error resilience. It

can be seen that the codeword 11 is not used for data representation, but is left unassigned

for combating channel errors.

The curve of KL divergence as a function of channel error probability with correlation

coefficient as a parameter is shown in Figure 3.1. Since BEP in practical systems is generally

less than 0.1, Pb range of [0, 0.1] is used in Figure 3.1. We observe that with the increase

of channel error probability, the KL divergence value decreases. This is to be expected.

In Figure 3.2, for D = 2 and σ = 0.5, we have plotted KL divergence for the quantizers

designed, when Pb = [0, 0.05, 0.1] and for different correlation coefficients. Both Figures 3.1

and 3.2 show that negative correlation is beneficial, i.e., increases KL divergence.

Figure 3.1. The variation of KL divergence as a function of channel error probability (Pb)
with correlation coefficient (ρ) as a parameter, when D = 2
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Figure 3.2. The variation of KL divergence as a function of correlation coefficient (ρ) for
different channel error probability (Pb) when D = 2.

3.2 CHERNOFF METRIC-BASED QUANTIZER

With the same parameter setup used in the design of KL divergence quantizer, we now

consider the quantizers based on algorithm 2. We have summarized the quantizer thresholds

and codeword assignments for algorithm 2, when D = 2 and no channel error, Pb = 0 in

Table 3.9. Table 3.10 shows the negative Chernoff metric values for the quantizer design

using algorithm 2, when D = 2 and Pb = 0.

We observe that the results are similar to that of the quantizer design based on

algorithm 1. As ρ tends towards total positive correlation (+1), quantization intervals tend

to be non-contiguous i.e., quantizer intervals with same codeword assignment are not adjacent

to each other. In Table 3.9, quantizer thresholds for SU1 and ρ = 0.9 shows that codeword

10 is assigned for two non-adjacent intervals i.e., (−∞,−1.1] and [0.8, 1.4]. Table 3.10 shows

that Chernoff metric value of the quantizer designed for negative correlation is larger than
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that of the quantizer designed for independent SUs (i.e. ρ = 0). Figure 3.3 shows the

Table 3.9. Quantizer thresholds and codeword assignment for algorithm 2, when channel
error probability, Pb = 0 and D = 2

ρ = −0.9 ρ = −0.75
SU1 thresh. SU1

label
SU2
label

SU2 thresh. SU1 thresh. SU1
label

SU2
label

SU2 thresh.

(−∞,−0.9] 00 00 (−∞,−0.9] (−∞,−0.7] 00 00 (−∞,−0.7]
[−0.9, 0.4] 01 01 [−0.9, 0.4] [−0.7, 0.2] 01 01 [−0.7, 0.2]
[0.4, 1.2] 10 10 [0.4, 1.2] [0.2, 1.2] 10 10 [0.2, 1.2]
[1.2,∞) 11 11 [1.2,∞) [1.2,∞) 11 11 [1.2,∞)

ρ = −0.5 ρ = 0
SU1 thresh. SU1

label
SU2
label

SU2 thresh. SU1 thresh. SU1
label

SU2
label

SU2 thresh.

(−∞,−0.6] 00 00 (−∞,−0.6] (−∞,−0.5] 00 00 (−∞,−0.5]
[−0.6, 0.1] 01 01 [−0.6, 0.1] [−0.5, 0] 01 01 [−0.5, 0]
[0.1, 0.8] 10 10 [0.1, 0.8] [0, 0.5] 10 10 [0, 0.5]
[0.8,∞) 11 11 [0.8,∞) [0.5,∞) 11 11 [0.5,∞)

ρ = 0.5 ρ = 0.75
SU1 thresh. SU1

label
SU2
label

SU2 thresh. SU1 thresh. SU1
label

SU2
label

SU2 thresh.

(−∞,−0.5] 00 00 (−∞,−0.5] (−∞,−0.4] 00 00 (−∞,−0.8]
[−0.5, 0] 01 01 [−0.5, 0] [−0.4, 0.1] 01 11 [−0.8,−0.2]
[0, 0.5] 10 10 [0, 0.5] [0.1, 0.6] 10 01 [−0.2, 0.3]
[0.5,∞) 11 11 [0.5,∞) [0.6,∞) 11 10 [0.3, 1.2)

00 [1.2,∞)

ρ = 0.9
SU1 thresh. SU1

label
SU2
label

SU2 thresh.

(−∞,−1.1] 10 00 (−∞,−0.3]
[−1.1,−0.8] 11 01 [−0.3, 0]
[−0.8,−0.5] 00 10 [0, 0.8]
[−0.5, 0.2] 01 11 [0.8,∞)
[0.2, 0.5] 00
[0.5, 0.8] 11
[0.8, 1.4] 10
[1.4,∞) 01

curve of negative Chernoff metric as a function of channel error probability, with correlation

coefficient, ρ, as a parameter, when D = 2. As expected, the performance corresponding to

lower channel error probability is better that of the case of higher error. Figure 3.4 shows
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Table 3.10. Negative Chernoff metric values for the quantizer designed using algorithm 2 for
channel error probability, Pb = 0 and D = 2

ρ −0.9 −0.75 −0.5 0 0.5 0.75 0.9
Chernoff
metric

−8.59e-06 −2.48e-04 −2.92e-03 −3.07e-02 −8.83e-02 −1.22e-01 −1.39e-01

Chernoff metric values with respect to correlation coefficients ρ. Both Figures 3.3 and 3.4

show that Chernoff values decrease with increasing correlation coefficient.

Figure 3.3. The variation of Chernoff metric as a function of channel error probability (Pb)
with correlation coefficient (ρ) as a parameter when D = 2
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Figure 3.4. The variation of Chernoff metric as a function of correlation coefficient (ρ) for
different channel error probability (Pb) when D = 2

3.3 DETECTOR PERFORMANCE ANALYSIS USING ROC CURVE

A detector’s performance is measured by its ability to achieve a certain probability of

detection and probability of false alarm for a given sensor observation signal-to-noise ratio

(SNR). Typically, examination of a detector’s receiver operating characteristic (ROC) curves

provides insight into its performance.

We plotted the ROC curve for the quantizer based on algorithm 1 designed with the

assumption of independent SUs data and ROC curve of the quantizer based on algorithm 1

with the actual dependent SUs data. In the independent assumption case also, the probabil-

ity mass functions for the sensors’ observations were calculated using the true bivariate joint

density, although the quantizers were designed based on independence assumption. Proba-

bility of false alarm and probability of detection are calculated using (2.3) and (2.4). Figures
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3.5−3.10 show the plots of ROC for the cases mentioned below. In order to get more clarity

on behavior of the system for lower probability of false alarm, we plotted logarithmic value

of probability of false alarm on x-axis and probability of detection on y-axis.

We perform numerical computation for each sensing SNR, with distinct mean and

standard deviation values, correlation coefficients, ρ = [−0.75,−0.5, 0, 0.5, 0.75] and channel

error probabilities, BER (Pb) = [0, 0.05, 0.1]. Numerical values considered are listed below.

However, we show the graph of one case for each scenario, as the behavior happens to be

similar.

High sensing SNR

(i) H0 ∼ N(−1,−1, 0.5, 0.5, ρ), H1 ∼ N(1, 1, 0.5, 0.5, ρ) (Figure 3.5 and 3.6).

(ii) H0 ∼ N(−2,−2, 1, 1, ρ), H1 ∼ N(2, 2, 1, 1, ρ).

Average sensing SNR

(i) H0 ∼ N(−0.5,−0.5, 0.5, 0.5, ρ), H1 ∼ N(0.5, 0.5, 0.5, 0.5, ρ) (Figure 3.7 and 3.8).

(ii) H0 ∼ N(−1,−1, 1, 1, ρ), H1 ∼ N(1, 1, 1, 1, ρ).

Low sensing SNR

(i) H0 ∼ N(−1,−1, 2, 2, ρ), H1 ∼ N(1, 1, 2, 2, ρ).

(ii) H0 ∼ N(−0.5,−0.5, 1, 1, ρ), H1 ∼ N(0.5, 0.5, 1, 1, ρ) (Figure 3.9 and 3.10)

In the following figures of ROC plot, the terms Quantizer-KL-1 and Quantizer-KL-2 are

defined, follows:

Quantizer-KL-1: Quantizer based on algorithm 1 with correlated SU information.

Quantizer-KL-2: Quantizer based on algorithm 1 with independent SU information.
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Figure 3.5. ROC comparison between different KL divergence quantizers for channel error
probability, Pb = 0 and D = 2. H0 ∼ N(−1,−1, 0.5, 0.5,−0.75), H1 ∼ N(1, 1, 0.5, 0.5,−0.75)

Figure 3.6. ROC comparison between different KL divergence quantizers for channel
error probability, Pb = 0.05 and D = 2. H0 ∼ N(−1,−1, 0.5, 0.5,−0.75), H1 ∼
N(1, 1, 0.5, 0.5,−0.75)
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Figure 3.7. ROC comparison between different KL divergence quantizers for channel error
probability (Pb = 0) and D = 2. H0 ∼ N(−0.5,−0.5, 0.5, 0.5, 0), H1 ∼ N(0.5, 0.5, 0.5, 0.5, 0)

Figure 3.8. ROC comparison between different KL divergence quantizers for chan-
nel error probability, Pb = 0.05 and D = 2. H0 ∼ N(−0.5,−0.5, 0.5, 0.5, 0), H1 ∼
N(0.5, 0.5, 0.5, 0.5, 0)
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Figure 3.9. ROC comparison between different KL divergence quantizers for channel error
probability, Pb = 0 and D = 2. H0 ∼ N(−0.5,−0.5, 1, 1, 0.5), H1 ∼ N(0.5, 0.5, 1, 1, 0.5)

Figure 3.10. ROC comparison between different KL divergence quantizers for channel error
probability, Pb = 0.05 and D = 2. H0 ∼ N(−0.5,−0.5, 1, 1, 0.5), H1 ∼ N(0.5, 0.5, 1, 1, 0.5)
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As the SU’s observations are discrete in nature, comparing the performances of the

quantizers based on algorithm 1, with correlated and independence assumptions at a par-

ticular α value was not obtainable, unless one uses randomization. Using randomization,

although considering correlation of SU’s data improved divergence compared to that of in-

dependence assumption, it turns out that there was not much to gain in ROC behavior. The

non-symmetric nature of KL divergence could have also contributed to this behavior.

3.4 BAYES ERROR BASED QUANTIZER AND PROBABILITY OF ERROR

In this section we compute probability of error for the quantizer based on algo-

rithm 3 and compare it with the probability of error obtained with Chernoff based quan-

tizer and the centralized test. Probability of error was calculated using (2.14), α, and β

from (2.3) and (2.4), respectively. We present computation results of probability of er-

ror for different quantizers by considering all the cases mentioned in the ROC curve anal-

ysis section. Because of the space constraint, we tabulated the result for the scenario

H0 ∼ N(−1,−1, 0.5, 0.5, ρ), H1 ∼ N(1, 1, 0.5, 0.5, ρ), ρ = [−09,−0.5, 0, 0.5, 0.9] and BER

(Pb) = [0, 0.05] only. In the quantizer column of Table 3.11, Corr. Bayes represents the

quantizer designed using algorithm 3 for dependent SU’s data, Corr. Chernoff represents

the quantizer designed using algorithm 2 for dependent SU’s data and Ind. Chernoff repre-

sents the quantizer designed using algorithm 2 assuming as though SU’s observations were

independent.

As to be expected, probability of error is minimum for the centralized test. The error

rate for centralized test is several orders less than the error rate of others, especially for

negative correlation coefficients. For positive correlation, the performance improvement for

centralized test over others is marginal. Excluding the centralized test, Table 3.11 shows

that Pe is minimum for the quantizer based on Bayes error. In the case of Chernoff metric

based quantizer, the probability of error for the quantizer design with the true correlated

sensor observation model is less than that of the quantizer designed as though the SUs data
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Table 3.11. Comparison of probability of error for different quantizers, H0 ∼
N(−1,−1, 0.5, 0.5, ρ) and H1 ∼ N(1, 1, 0.5, 0.5, ρ). BER (Pb) = [0, 0.05] and D = 2.

ρ Quantizer BER (Pb) = 0 CT BER
(Pb) = 0.05

CT

Corr. Bayes 2.569e-09 0.019896
−0.9 Corr. Chernoff 4.201e-07 9.360e-20 0.019970 0.000081

Ind. Chernoff 9.676e-04 0.020085
Corr. Bayes 0.000144 0.019923

−0.5 Corr. Chernoff 0.000299 3.167e-05 0.019990 0.001965
Ind. Chernoff 0.001150 0.020101
Corr. Bayes 0.003091 0.021158

0 Corr. Chernoff 0.004929 0.002339 0.021330 0.009662
Ind. Chernoff 0.004957 0.020085
Corr. Bayes 0.011221 0.024445

0.5 Corr. Chernoff 0.014156 0.010461 0.024553 0.021730
Ind. Chernoff 0.014562 0.024643
Corr. Bayes 0.020285 0.032803

0.9 Corr. Chernoff 0.022750 0.020087 0.038171 0.032857
Ind. Chernoff 0.022436 0.039504

were independent. In fact, the difference in error probabilities is significant in some data

points. Hence, for obtaining better performance at the fusion center, it is not possible to

ignore correlation, especially when the correlation is significant.
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CHAPTER 4

CONCLUSION AND FUTURE RESEARCH

In this thesis, we have studied decentralized signal detection with correlated obser-

vations with a focus on how correlation affects the soft decision fusion with channel errors.

The problem studied here is put in the context of cooperative spectrum sensing by secondary

users in a cognitive radio system. The work shows that when channel errors exist, there is a

trade off in using the available transmission resource, i.e., trade the limited number of bits,

between the sensor data representation and error resilience.

The design of quantizer for SU observation was based on three different criteria,

namely, the KL divergence, Chernoff metric and Bayes error. Since every Ali-and-Silvey

divergence metric must have a convex function kernel, design under other divergence metrics

may also follow the results presented here. However, we must point out that using divergence

metrics is reasonable with very large number of SUs (asymptotic assumption). Also, we

assumed the same statistical model in sensing and transmission for all SUs. Study of the

fusion performance for a limited number of SUs with heterogeneous sensing and transmission

statistics is interesting and may require different optimization rules. In addition, the current

quantizer design is still a sub-optimal process. Investigation of the local optimal regions for

the codeword assignment could be an interesting work in the future which might require a

study of the subspace spanned by the resultant quantizer codewords.

One more interesting issue is to look at the relationship between the number of bits

(D) and the detection performance, given a modulation scheme and a quantization scheme.

Let X̂ be the quantized value of X. Since a bit error can vastly change the value of X̂ due

to its error position, the detection performance based on the received D-bits string might
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not be able to approach the centralized performance, which only depends on the value of

X + N(0, σ2
n). This asymptotic performance gap from the centralized case needs further

investigation.

Another extension is to consider a practical scenario of known primary user location

with two secondary users placed at random points within a specified geometrical region.

Assuming a path loss model and energy detectors at the SUs, appropriate joint probability

distributions under the signal and no-signal hypothesis can be formulated. The specific

locations of the SUs may dictate non-identical marginal probability distributions at the two

sensors, thus providing a generalization to the identical marginal case studied in the thesis.
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