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ABSTRACT

For a smooth hypersurface S ⊂ R2n given by the level set of a Hamiltonian function H,

a symplectic form ω on R2n induces a vector field XH which flows tangent to S. By the

nondegeneracy of ω, there exists a distinguished line bundle LS whose characteristics are the

integral curves of XH . When S is the boundary of a smooth convex domain K ⊆ R2n, then

the least action among closed characteristics of LS is equal to the Ekeland-Hofer-Zehnder

capacity, a symplectic invariant. From a result due to Artstein-Avidan and Ostrover, there

exists a continuous extension of this capacity to nonsmooth convex domains K̃ ⊆ R2n, and

from the work of Künzle, there is a generalization of the notion of characteristics of K̃.

The existence of corners in ∂K̃, however, prevents the analogous uniqueness/existence result

found in the smooth case, coming from the characteristic initial value problem. First, we

will define a generic class of polyhedral sets, called “symplectic-faced”, which avoid certain

obstructions to uniqueness. We will show that, for symplectic-faced 4-polytopes Σ, we have

the existence and local uniqueness of generalized characteristics of Σ. Then, we will show

that symplectic-faced polytopes Σ ⊂ R2n admit only characteristics with piecewise-linear

trajectories. Finally, we will extend our existence/uniqueness result from 4-polytopes to the

relative interior of low-codimension faces of symplectic-faced 2n-polytopes.
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1 INTRODUCTION

Motivated by classical mechanics, symplectic geometry formalizes the geometry of the phase

space of a Hamiltonian system. Although symplectic manifolds do not, in general, represent

the phase space of a physical system, the existence of a symplectic form ω on a manifold

M can induce similar dynamical objects on M . For smooth functions H : M → R, we get

the existence of a volume-preserving vector field XH on M whose flow is analogous to the

evolution of a conservative classical mechanical system.

The flow of XH is not only volume-preserving, but it also preserves ω. In 1985, Gromov [8]

proved that maps which preserve ω must satisfy much more rigid conditions than preserving

volume. His non-squeezing theorem shows that, for the unit ball B ⊂ R2n and the cylinder

of radius r

Z(r) = {(x1, . . . xn, y1, . . . , yn) ∈ R2n :
n∑
i=1

x2
i + y2

i ≤ r2}

if r < 1, then there does not exist a symplectomorphism φ such that φ(B) ⊂ Z(r).

Another important distinguishing feature of symplectic manifolds is that, by Darboux’s the-

orem, there do not exist any local invariants. Global invariants such as the Ekeland-Hofer

capacity cEH and the Hofer-Zehnder capacity cHZ are the main invariants considered in

modern symplectic geometry [10], although they are difficult to compute. One alternative

quantity, the Ekeland-Hofer-Zehnder capacity cEHZ , considers characteristics γ on M , which

are given by the image of the flow of XH on ∂M . This quantity is attained by taking

the symplectic action of closed characteristics γ, A(γ) and minimizing it. Ostrover [1] in-

troduced this quantity and showed that, on bounded convex domains K ⊂ R2n, we have

cHZ(K) = cEH(K) = cEHZ(K).
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Additionally, Ostrover showed that cEHZ admits a continuous extension to non-smooth con-

vex domains. In order to compute such capacities, one must understand the nature of charac-

teristics on non-smooth convex domains. We will outline the notion of a characteristic in the

non-smooth case, using the technology introduced by Künzle ([12],[13]). We will then show

that, for a generic polytope Σ ⊂ R4, there exists a unique characteristic passing through

each point in ∂Σ.

1.1 Linear Symplectic Geometry

Many objects and concepts in Euclidean geometry can be expressed by using the Euclidean

inner product on Rn. We will see that a symplectic structure on R2n exists if a certain

anti-symmetric bilinear form on R2n exists.

Proposition 1.1.1. [10, p. 1] A finite dimensional real vector space V is symplectic if there

exists a bilinear form ω : V × V → R such that

1. ω(u, v) = −ω(v, u), u, v ∈ V (antisymmetry)

2. The map φ : V → V ∗ given by

v 7→ ω(v, ·) (nondegeneracy)

is a linear isomorpism.

We call such a bilinear form ω on V ×V a symplectic form, and note that ω exists on V only

if V is even-dimensional. Now we will show that the typical symplectic structure on R2n is

given by a matrix deformation of the Euclidean inner product.

Proposition 1.1.2. [10, p. 1] If

J =

 0 I

−I 0
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where I is the real, n× n identity matrix, then the bilinear form ω0 on R2n given by

ω0(u, v) := 〈Ju, v〉

where 〈·, ·〉 denotes the Euclidean inner product on R2n, is a symplectic form on R2n.

We call the symplectic form above generated by J the standard symplectic form on R2n.

Since J is skew-symmetric, observe that for every vector v ∈ R2n, we have ω0(v, v) = 0.

Proposition 1.1.3. [10, p.8] Let H : R2n → R be a smooth function. Then,

1. There exists a unique vector field XH on R2n such that

ω0

(
XH(x), v

)
= −dH(x)v

for all v ∈ R2n and x ∈ R2n.

2. XH is given by

XH(x) = J∇H(x), x ∈ R2n

By the nondegeneracy of ω0, we get the uniqueness of XH(x), and by the definition of the

gradient we get the explicit form XH(x) = J∇H(x). We call H a Hamiltonian on R2n, and

XH its Hamiltonian vector field.

1.2 Smooth Energy Surfaces in (R2n, ω0)

We will now consider hypersurfaces in R2n which are analogous to the fixed energy levels of

the phase space of a physical system.

Definition 1.2.1. [10, p. 19] Let H be a Hamiltonian on (R2n, ω0). We call S ⊆ R2n a

regular energy surface if H−1(c) = S and dH(x) 6= 0, for all x ∈ S.
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Definition 1.2.2. [10, p. 19] The tangent space of a regular energy surface S ⊂ R2n at x

is the set

TxS = {v ∈ R2n : dH(x)v = 0}

For an energy surface S ⊂ R2n, we have that for every x ∈ S, TxS is 2n− 1 dimensional. By

the nondegeneracy of ω0 and the rank-nullity theorem, when we restrict ω0 to TxS, we will

get a one-dimensional kernel.

Definition 1.2.3. [10, p. 22] The characteristic line bundle of a regular energy surface

S is the set

LS = {(x, ξ) ∈ TS : ω0(ξ, v) = 0 ∀v ∈ TxS}

Since XH flows tangent to level sets of H, then for all x ∈ S we have that XH(x) ∈ TxS. By

the definition of XH , we see that

ω0(XH(x), v) = −dH(x)v

and by definition of TxS, we have −dH(x)v = 0 for all v ∈ Tx.

1.3 Non-smooth Energy Surfaces in (R2n, ω0)

We will now illustrate some difficulties in considering a concept analogous to characteristics

of non-smooth convex domains. The `2 unit ball Σ0 ⊂ R2 is given by a level set of the

Hamiltonian H(x, y) = |x|+ |y|. On the interior of a one-dimensional face F1 ⊂ ∂Σ0, points

are given locally by the smooth function H1(x, y) = x+ y and so the tangent space at each

relative interior point is well defined. Then, characteristics passing through relative interior

points x ∈ F1 are given by integral curves of XH1(x) = J∇H1(x).

Similarly, we can derive the characteristics passing through points of an adjacent face F2.
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J∇H1

∇H1

J∇H2

∇H2

However, at a vertex x0 ∈ ∂Σ0, the tangent space at x0 is undefined and the outward normal

direction is not given by a single vector. Fortunately though, in this one-dimensional example,

the adjacent faces fill in the unique characteristic passing through x0.

Now we consider a pathological non-smooth energy surface in dimension four, which demon-

strates a problem with uniqueness of characteristics at corners. From an example given in
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[12], we consider the hypercube

C =
{

(p1, p2, q1, q2) ∈ R4 : pi, qi ∈
[−1

2
,
1

2

]}

We can generate a two-dimensional corner F = F1∩F2 by considering the intersection of two

top-dimensional faces F1, F2 given by the normal vectors s1 = (1, 0, 0, 0) and s2 = (0, 1, 0, 0)

and their corresponding affine hyperplanes Aff (F1) = {s1 · x = 1}, Aff (F2) = {s2 · x = 1}.

Note that

ω0(s1, s2) = ω0(s1, s1) = ω0(s2, s2) = 0

Note that ω0 vanishes on Span+{s1, s2}, which is a cone analogous to the outward normal

direction. Then, we have that Span+{Js1, Js2} not only generates the characteristic direction

(a rotation of the normal direction Span+{s1, s2}), but is also in the space tangent to F

(orthogonal to normal direction).

F1 ∩ F2

s1

s2

θ

x0

Figure 1.1: At x0 ∈ Int (F1 ∩ F2), there exists a one-dimensional family of characteristics
passing through x0, parameterized by θ. Although in this example we have a two-dimensional
family of characteristic directions given by Span+{Js1, Js2}, this figure reflects the actual
definition of a generalized characteristic which has a normalization constraint.

Therefore, we have constructed a pathological convex domain C on which there exists faces

where uniqueness of characteristics is false. In the main result, we will restrict our attention

6



to a generic class of polyhedral sets with the property of being “symplectic-faced” which do

not suffer from such obstructions to uniqueness. Before we show our main result, we will put

a topology on the space of polyhedral sets in R4 generated by m normal vectors, denoted

P̃ 4
m, and then construct an open, dense set of symplectic-faced polyhedral sets.

Theorem 1.3.1. There exists an open and dense set F ⊂ P̃ 4
m such that for every SΣ ∈ F

we have that Σ is symplectic-faced.

For symplectic-faced 4-polytopes Σ, in addition to uniqueness of characteristics, for any

x ∈ ∂Σ we will demonstrate the existence of a characteristic which passes through x.

Theorem 1.3.2. Let Σ be a symplectic-faced 4-polytope. Then, for x0 ∈ ∂Σ, there exists a

generalized characteristic X of Σ and ∃ε > 0 such that

i x0 ∈ X

ii for any other generalized characteristic X0 of Σ with x0 ∈ X0, we have Bε(x0) ∩X0 =

Bε(x0) ∩X.

For each face F in a polytope, we can consider the space of possible characteristic directions,

denoted Char (F ). We will show that if the dimension of Char (F ) is strictly less than two,

then we have uniqueness of characteristics within the relative interior of F . For symplectic-

faced 2n-polytopes, we will show that every face has this uniqueness property within its

relative interior.

Theorem 1.3.3. Let F be a face of a symplectic-faced 2n-polytope. Then dim (Char (F )) = 0

or dim (Char (F )) = 1.

We will then generalize our result of existence and uniqueness of characteristics to the relative

interior ri (F ) of low-codimension faces F of symplectic-faced 2n-polytopes.

Theorem 1.3.4. Let Σ be a symplectic-faced 2n-polytope and let x0 ∈ ri (F ) for F a face

of Σ with codim (F ) ≤ 4. Then, there exists a generalized characteristic X of Σ and ∃ε > 0

such that

7



i x0 ∈ X

ii for any other generalized characteristic X0 of Σ with x0 ∈ X0, we have Bε(x0) ∩X0 =

Bε(x0) ∩X.
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2 POLYTOPES

A (convex) polytope can be seen either as the convex hull of a finite set or as a bounded inter-

section of half-spaces. Since piecewise-linear energy surfaces are the boundaries of polytopes,

in Section 2.1 we will introduce some fundamental facts about polytopes and their repre-

sentation as an intersection of half-spaces. In Section 2.2, we construct an object dual to a

polytope which, in Section 3.1, will be helpful in determining the direction of a characteristic.

In Section 2.3, we will introduce the first fundamental concept needed to adapt our notion

of a characteristic to the nonsmooth structure of a polytope. The “corners” which exist on

the boundary of a polytope Σ force any characteristic of Σ to be nonsmooth, which turns

our characteristic’s differential equation of ẋ = J∇H(x) into a differential inclusion. Before

we can present the differential inclusion, in this section we must first formalize a notion of

being normal to Σ (like how ∇H is normal to an energy surface) at “corners” by defining

an outward normal cone.

2.1 Polyhedral Sets in Rn

Definition 2.1.1. A polyhedral set Σ is a finite intersection of closed half-spaces in Rn

(n ≥ 1), i.e. there exists a finite set SΣ ⊆ Rn such that

Σ =
⋂
s∈SΣ

K(s, αs)

where

K(s, αs) = {x ∈ Rn : x · s ≤ αs}

9



We say that Σ is generated by SΣ and {αs}SΣ
. Additionally, we define the supporting

hyperplane H(s, αs) of the halfspace to be the set

H(s, αs) = {x ∈ Rn : x · s = αs}

Definition 2.1.2. [6, p. 52] If, for a polyhedral set

Σ =
⋂
s∈SΣ

K(s, αs) (2.1.1)

we have |SΣ| = 1, or if for every s̃ ∈ SΣ we have

Σ $
⋂

s∈SΣ\{s̃}

K(s, αs)

then we call Equation 2.1.1 an irreducible representation of Σ.

Definition 2.1.3. For a polyhedral set Σ ⊆ Rn with an irreducible representation generated

by SΣ and {αs}SΣ
, we define a facet generated by s ∈ SΣ to be the set

Fs = H(s, αs) ∩ Σ

Definition 2.1.4. Two distinct facets F, F̃ are adjacent if F ∩ F̃ 6= ∅

Definition 2.1.5. An affine subspace of Rn is a set of the form A = x+L, where x ∈ Rn

and L is a linear subspace of Rn.

Definition 2.1.6. For an affine subspace A = x+ L ⊂ Rn we define dim (A) := dim (L).

Definition 2.1.7. Let S ⊆ Rn be a set and let A be the collection of affine subspaces of Rn

containing S. Then, we define the affine hull of S to be

Aff (S) =
⋂
A

A

10



Definition 2.1.8. Let S ⊆ Rn be a convex set. Then, we define the dimension of S to be

the quantity

dim (S) = dim (Aff (S))

Definition 2.1.9. For Σ ⊆ Rn a polyhedral set, a face F of Σ is a set

F =
⋂
SF

Fs

such that SF ⊆ SΣ is nonempty. If dim (F ) = d, we may refer to F as a d-face.

Proposition 2.1.10. Let Σ be a polyhedral set and let F be a face of Σ. Then, Σ\F is

convex.

Proof. For x, y ∈ Σ distinct, denote

[x, y] = {αx+ (1− α)y : α ∈ [0, 1]}

]x, y[= {αx+ (1− α)y : α ∈ (0, 1)}

By [6, p. 30], F is a face of Σ if and only if for two distinct points y, x ∈ Σ, ]x, y[∩F 6= ∅

implies that [x, y] ⊂ F . Let x, y ∈ Σ\F be distinct. By Σ convex, we know that [x, y] ⊂ Σ.

Since x, y /∈ F , then we cannot have [x, y] ⊂ F and therefore we have ]x, y[∩F = ∅, as

desired.

Since each face of a polyhedral set in Rn is of dimension at most n − 1, then every face

has empty interior under the standard topology of Rn. Additionally, every point in a face

is a limit point of that face, so the boundary of a face must be the entire face. We will

now introduce the notion of relative interior of a face and relative boundary of a face by

considering the ambient affine space in which a face lies.

Definition 2.1.11. The relative interior ri (F ) of a face F is the interior of F ⊆ Aff (F )

under the subspace topology of Aff (F ) ⊆ Rn.

11



Definition 2.1.12. The relative boundary rb (F ) of a face F is the boundary of F ⊆

Aff (F ) under the subspace topology of Aff (F ) ⊆ Rn.

Proposition 2.1.13. [6, Corollary 5.7] Let F , G be two distinct faces. Then, ri (F )∩ri (G) =

∅.

It is convenient to prove the existence of an irreducible, “normalized” form of a polytope’s

half-space representation, since such a form is unique and will provide computational sim-

plicity.

Proposition 2.1.14. If Σ is a polyhedral set with 0 ∈ Int (Σ) and Σ is generated by SΣ,

{αs}SΣ
, then there must exist a set S̃Σ such that

Σ =
⋂
s∈S̃Σ

K(s, 1)

Proof. Want to first show that all {αs}SΣ
are nonzero. Suppose there exists at least one

αs0 = 0. By SΣ, {αs}SΣ
irreducible, H(s, αs0) ∩ Σ = H(s, 0) ∩ Σ is a facet of Σ. Since

0 ∈ H(s, 0), this means 0 ∈ ∂Σ, but we assumed 0 ∈ Int (Σ), so this is impossible. Suppose

we have at least one αs0 < 0. However, then 0 /∈ Σ, so this is also impossible.

So, we can construct a set

S̃Σ =
{ 1

αs
s
}
SΣ

and since K(s, αs) = K( 1
αs
s, 1), we still have

Σ =
⋂
s∈SΣ

K(
1

αs
s, 1)

Proposition 2.1.15. Let Σ ⊆ Rn be a polytope. If S and S̃ are both irreducible unit gener-

ating sets of Σ, we must have S = S̃.

12



Proof. Note that the collection of facets F of a polytope Σ depends only on the set Σ and

not on its half-space representation. By [6, Theorem 8.2], since both S and S̃ are irreducible,

we must have

F =
{
H(s, 1) ∩ Σ

}
s∈S

=
{
H(s̃, 1) ∩ Σ

}
s̃∈S̃

Let m := |S| = |S̃|. Using I = {1, . . . ,m}, we can make a choice of indexing for all s ∈ S

and all s̃ ∈ S̃ so that

Σ ∩H(si, 1) = Σ ∩H(s̃i, 1)

for all i ∈ I. Then, we must have

Σ ∩H(si, 1) = Σ ∩H(si, 1) ∩H(s̃i, 1) ⊆ H(si, 1) ∩H(s̃i, 1)

and since each Σ ∩ H(si, 1) is a facet of Σ, it must have dimension n − 1, which means

n > dim(H(si, 1) ∩H(s̃i, 1)) ≥ n − 1. Then we must have H(si, 1) = H(s̃i, 1) for all i ∈ I,

which implies that S = S̃.

Definition 2.1.16. For a polyhedral set Σ with 0 ∈ Int (Σ), we define the unit generating

set of Σ to be the unique set S1
Σ that generates the irreducible representation of Σ:

Σ =
⋂
s∈S1

Σ

K(s, 1)

Definition 2.1.17. A polytope is a bounded polyhedral set. If for a polytope Σ we have

dim (Σ) = d, then we call Σ a d-polytope.

In order to easily discriminate between characteristics contained in the relative interior or

relative boundary of a given face, we observe that the relative interior of a face is given

geometrically by an intersection of hyperplanes which generate the face, and an intersection

of open half-spaces from the remaining hyperplanes. We can then concisely express this as

13



a system of equalities and strict inequalities, using the normal vectors in our polytope’s

half-space representation.

Proposition 2.1.18. Let Σ be a polyhedral set with unit generating set SΣ and let F be a

face of Σ. Then, x ∈ ri (F ) if and only if x · s = 1 for all s ∈ SF and x · s̃ < 1 for all

s̃ ∈ SΣ\SF .

Proof. Let F = ∩SF
Fs be a face of Σ. Then, by Definition 2.1.9 and Definition 2.1.16 we

know that

F =

(⋂
SF

H(s, 1)

)⋂ ⋂
SΣ\SF

K(s, 1)

 (2.1.2)

Aff (F ) =
⋂
SF

H(s, 1) (2.1.3)

It suffices to show that

x ∈ F, and ∃ε > 0 such that Bε(x)
⋂

Aff (F ) ⊆ F

if and only if

x ∈

(⋂
SF

H(s, 1)

)⋂ ⋂
SΣ\SF

Int
(
K(s, 1)

)
First we show “⇐= ”. Since SΣ\SF is finite, then ∩SΣ\SF

Int
(
K(s, 1)

)
= Int

(
∩SΣ\SF

K(s, 1)
)

.

Since x ∈ Int (∩SΣ\SF
K(s, 1)), we can take ε > 0 such that Bε(x) ⊆ ∩SΣ\SF

K(s, 1). By Eqns

2.1.2 and 2.1.3, we then have that Bε(x)
⋂

Aff (F ) ⊆ F .

Now we show “ =⇒ ”. Let x ∈ F . By Eqn 2.1.2 and Eqn 2.1.3, we know x ∈ Aff (F ) ∩(⋂
SΣ\SF

K(s, 1)
)

. It remains to be shown that x is an interior point of
(⋂

SΣ\SF
K(s, 1)

)
.

Suppose not. Then, x is a boundary point of
(⋂

SΣ\SF
K(s, 1)

)
, i.e. x ∈ H(ŝ, 1) for all ŝ in
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a nonempty set X ⊆ SΣ\SF . Then, we have that

x ∈

( ⋂
s∈SF∪X

H(s, 1)

)
∩

 ⋂
SΣ\(SF∪X)

Int
(
K(s, 1)

)
Which, by the previous direction, shows that for the face

F̃ =

( ⋂
SF∪X

H(s, 1)

)
∩

 ⋂
SΣ\(SF∪X)

K(s, 1)


we have x ∈ ri (F̃ ). This implies that F̃ 6= F , and by Prop 2.1.13, we have ri (F̃ )∩ ri (F ) = ∅.

However, by hypothesis we had that x ∈ ri (F ), a contradiction. Therefore, x must be an

interior point of
(⋂

SΣ\SF
K(s, 1)

)
.

2.2 Polar of a Polytope

Since certain “corners” of the boundary of a polytope Σ can be generated by many adjacent

facets (e.g. 0-faces, 1-faces in a 4-polytope), a characteristic which begins in such a corner

has many possible faces to move into in forward time. Theorem 3.1.23 establishes the criteria

for a characteristic to move into a certain face, from a corner, using dot-product inequalities

of nearby normal vectors. These inequalities can be realized geometrically as a particular

arrangement of hyperplanes which intersect a new polytope, Σ◦, which is dual to the original

polytope Σ. We will show that we can transform Σ into its dual Σ◦ by taking the convex

hull of SΣ (normal vectors become 0-faces).

Definition 2.2.1. Let K ⊆ Rn. We define the polar of K to be the set

K◦ = {y ∈ Rn : x · y ≤ 1,∀x ∈ K}

Definition 2.2.2. Let K ⊆ Rn. We say that K and K◦ are mutually polar if (K◦)◦ = K.

Theorem 2.2.3. [6, Theorem 6.1] For any subset M ⊆ Rn, we have:
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i If M is bounded, then 0 ∈ Int (M◦).

ii If 0 ∈ Int (M), then M◦ is bounded.

Theorem 2.2.4. Let Σ be a polytope with 0 ∈ Int Σ. Then, Σ and Conv (SΣ) are mutually

polar polytopes.

Proof. By [6, Theorem 9.2], a bounded intersection of half-spaces and a convex hull of a finite

set are both polytopes. Applying [6, Theorem 6.1], we get that 0 ∈ Int (M◦) and applying

[6, Theorem 9.1] we get that Σ and Conv (SΣ) are mutually polar.

We have shown that the dual of a polytope Σ can be obtained by taking the convex hull

of SΣ. Similarly, we can focus our attention on a face F of Σ and find a “conjugate” face

F∆ ⊆ Σ◦.

Definition 2.2.5. Let F be a face of a polytope Σ. Then, we define the conjugate of F to

be the set

F∆ = {y ∈ Σ◦ | ∀x ∈ F : x · y = 1}

Proposition 2.2.6. [6, Theorem 6.6] If Σ and Σ◦ are mutually polar polytopes, and F is a

face of Σ, then F∆ is a face of Σ◦.

Theorem 2.2.7. [6, Theorem 9.8] Let F be a face of a d-polytope Σ. Then, F∆ is a face of

Σ◦ with dimension

dim(F∆) = d− 1− dim(F )

Proposition 2.2.8. Let F = ∩SF
Fs be a face of a polytope Σ. Then,

F∆ = Conv (SF )
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Proof. First we show “⊆”. By the definition of F∆, we have F∆ ⊆ Σ◦. By Theorem 2.2.4,

we then have “⊆”.

Let y ∈ Conv (SF ). Then, by Theorem 2.2.4 we have that y ∈ Σ◦. Since any element of a

convex hull of finitely many points can be expressed as a convex combination of those points,

we can write y =
∑

SF
αss with

∑
SF
αs = 1, αs ≥ 0. Then, for any x ∈ F =

⋂
Fs we must

have x · s = 1, and so

x · y =
∑
SF

αs(x · s) = 1

2.3 The Normal Cone of a Polyhedral Set

In the case of an energy surface Σ0 ⊆ R2n and a point x ∈ Σ0, we know that ∇H(x) is normal

to Σ0 at x. Additionally, if we take J∇H(x), we get a vector pointing in the direction of the

Hamiltonian vector field constrained to flow in Σ0. In the case of a piecewise-linear energy

surface, we will similarly be interested in the direction normal to the surface in order to

determine the direction of a characteristic. With the challenge of having “corners” present

in a polytope, we encounter places on the boundary of a polytope for which the normal

direction is a space spanned by several vectors.

For a facet Fs in a polytope Σ, the outward normal direction to Fs is given by the normal

vector s. For a lower dimensional face, a notion of “outward normal” cannot be expressed

by a single vector. We will define the outward normal cone of a set, and then show that for

∂Σ, the outward normal cone is generated by the normal vectors of neighboring facets.

Definition 2.3.1. The outward normal cone of a convex set K ⊆ Rn at x is

NK(x) =
{
v ∈ Rn : (x− y) · v ≥ 0, ∀y ∈ K

}

17



Definition 2.3.2. The unit normal cone of a convex set K ⊆ Rn at x is

nK(x) = {v ∈ NK(x) : |v| = 1}

Theorem 2.3.3. If Σ ⊂ Rn is a polyhedral set with irreducible unit generating set S1
Σ, then

for x ∈ ∂Σ, we have

NΣ(x) = Span+ (Sx)

where

Sx = {s ∈ S1
Σ : s · x = 1}

Proof. We will first show that NΣ(x) ⊆ Span(Sx), followed by Span+(Sx) ⊆ NΣ(x). Then,

we will show that, for ξ ∈ Span(Sx) with ξ · t ≥ 0 for all t ∈ Sx, we must have n · ξ ≤ 0 for

all n ∈ NΣ(x). Finally, we will show that NΣ(x) ⊆ Span+(Sx).

We show our first claim by showing that, for any n ∈ NΣ(x), we must have n ∈ (〈Sx〉⊥)⊥.

Let σ ∈ 〈Sx〉⊥. We claim that there exists a real number t > 0 such that y := x + tσ ∈ Σ

and ỹ := x− tσ ∈ Σ. We show this by finding a real number t such that:

y · s ≤ 1 (2.3.1)

ỹ · s ≤ 1 (2.3.2)

for all s ∈ Sx and

y · s ≤ 1 (2.3.3)

ỹ · s ≤ 1 (2.3.4)

for all s̃ ∈ SΣ\Sx. Expanding Eqn 2.3.1, we have:

(x+ tσ) · s = x · s+ t(σ · s) = 1
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by σ ∈ 〈Sx〉⊥. So, Eqn 2.3.1 is satisfied for any t > 0. Similarly, Eqn 2.3.2 is satisfied for any

t > 0. In Eqn 2.3.3, Since x · s < 1 for all s ∈ SΣ\Sx and since SΣ\Sx is finite, there must

exist δ > 0 such that x · s̃ = 1− δ > 0 for all s̃ ∈ SΣ\Sx. Then, expanding Eqn 2.3.3 we have:

x · s̃+ t(σ · s̃) = 1− δ + t(σ · s̃)

If we take t such that t(σ · s̃) < δ, then Eqn 2.3.3 and Eqn 2.3.4 are both satisfied and we

must have that y, ỹ ∈ Σ. If we let n ∈ NΣ(x), then by definition of NΣ(x), by y, ỹ ∈ Σ, and

by t > 0 we have:

n · (x− y) = n · (−tσ) = −t(n · σ) ≥ 0

(n · σ) ≤ 0

Similarly, we have

n · (x− ỹ) = t(n · σ) ≥ 0

n · σ ≥ 0

Since we have both n · σ ≥ 0 and n · σ ≤ 0, we must have n · σ = 0. This implies that

n ∈ (〈Sx〉⊥)⊥, which also means that n ∈ Span(Sx), as desired.

Now we show our second claim. Consider v =
∑

s∈Sx
kss ∈ Span+ (Sx). Let y ∈ Σ. Then, we

have

v · (x− y) = (
∑
s∈Sx

kss) · x− (
∑
s∈Sx

kss) · y =
∑
s∈Sx

ks(s · x− s · y)

We know that s · x = 1 for all s ∈ Sx and since y ∈ Σ, we know s · y ≤ 1 for all s ∈ Sx. Since

ks ≥ 0 for all s ∈ Sx, we have that v · (x− y) ≥ 0, and therefore Span+ (Sx) ⊆ NΣ(x).

To begin showing our third claim, let ξ ∈ Span(Sx) be such that ξ · s ≤ 0 for all s ∈ Sx and

let n ∈ NΣ(x). We proceed by first showing the existence of an ε > 0 such that x + εξ ∈ Σ.
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It suffices to show that there exists an ε > 0 such that

s · (x+ εξ) ≤ 1 (2.3.5)

for all s ∈ Sx and that

s̃ · (x+ εξ) ≤ 1 (2.3.6)

for all s̃ ∈ SΣ\Sx.

Expanding the left hand side of 2.3.5, we have

s · x+ ε(s · ξ) = 1 + ε(s · ξ)

and since, by hypothesis s · ξ ≤ 0, then Eqn 2.3.5 holds for all ε > 0. Expanding the left

hand side of 2.3.6, we get

= s̃ · x + ε(s̃ · ξ)

We know that s̃ · x < 1, so there exists δ > 0 such that

= (1− δ) + ε(s̃ · ξ)

If s̃ · ξ ≤ 0, then we are done since (1− δ) + ε(s̃ · ξ) ≤ 1. If not, then we take ε > 0 such that

ε(s̃ · ξ) < δ, and Eqn 2.3.6 is satisfied. By Eqns 2.3.5 and 2.3.6, we have

x+ εξ ∈ Σ. Then, by the definition of NΣ(x), we must have

n · (x− (x+ εξ)) = −ε(n, ξ) ≥ 0

and so ε(n · ξ) ≤ 0. Since ε > 0, then we have n · ξ ≤ 0 as desired.
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To show our final claim, we define the following sets:

S := Span+(Sx)

S := {K(u, 0) : S ⊆ K(u, 0)}

Ξ := {ξ ∈ Span (Sx) : ξ · s ≥ 0 ∀s ∈ Sx and ξ · n ≤ 0 ∀n ∈ NΣ(x)}

K := {Kξ(u, 0) : ξ ∈ K(u, 0) for at least one ξ ∈ Ξ}

We make the following observation: since S is a closed convex set, then Conv (S) = S.

Then, by [4, Theorem 14], we have that S =
⋂
K∈S K. Therefore, we want to show that⋂

Ξ,KK
c
ξ ⊆

⋂
K∈S K. Let v ∈

⋂
Ξ,KK

c
ξ . Then, v ∈ Kc

ξ , for all ξ ∈ Ξ and all Kξ ∈ K. Suppose

there exists a half space K̃S ∈ S for which v /∈ K̃S. Since S ⊆ NΣ(x), then there does not

exist any Kξ ∈ K with S ⊆ Kxi, there must exist some ξ̃ ∈ Ξ such that ξ̃ ∈ K̃c
S. However,

then both v, ξ ∈ K̃c
S, but by hypothesis, we assumed that v ∈

⋂
Ξ,KK

c
ξ . So we must have

that v ∈
⋂
K∈S K, as desired.

Finally, in since in our third claim we showed that NΣ(x) ⊆
⋂

Ξ,KK
c
ξ , and since

⋂
Ξ,KK

c
ξ ⊆ S,

we must have that NΣ(x) ⊆ S. Combined with our second claim, we have that NΣ(x) =

S.

The following corollary expresses that, for a face of a polyhedral set, the normal cone at

every point in F is identical and equals the positive span the generating normal vectors.

Corollary 2.3.4. Let Σ be a polyhedral set and let F be a face of Σ. Then, for x, x̃ ∈ ri (F ),

we have

NΣ(x) = NΣ(x̃) = Span+ (SF )

Proof. Let x ∈ F . By the definition of a face, x ∈ F ⇐⇒ x · s = 1 for all s ∈ SF . Then,

Sx = SF ∀x ∈ F , and by Theorem 2.3.3, we have NΣ(F ) = Span+ (SF ). Similarly, by x̃ ∈ F ,

we have Sx̃ = SF and so NΣ(F ) = Span+ (SF ).
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By Corollary 2.3.4, we can now identify each face F of a polyhedral set Σ with the normal

cone associated to any point in F .

Definition 2.3.5. Let Σ be a polyhedral set and F a face of Σ. The normal cone of F is

the set

NΣ(F ) = Span+ (SF )

In order to easily compute a normal cone’s dimension for a particular face, we can express

face membership as a matrix equation and appeal to the rank-nullity theorem.

Definition 2.3.6. Let Σ ⊆ Rn be a polyhedral set and let F be a face of Σ. Then, the

normal matrix F of F is the |SF | × n matrix with elements of SF as row vectors.

Proposition 2.3.7. Let Σ ⊆ Rn be a polyhedral set and let F a face of Σ. Then,

i dim (null (F)) = dim (F )

ii dim (rank (F)) = dim (NΣ(F ))

Proof. First we show (i). For some w ∈ Rn, we have

Aff (F ) = {v ∈ Σ : Fv = 1}

= null (F) + w (2.3.7)

then

dim (Aff (F )) = dim (null (F) + w)

= dim (null (F))

and by Definition 2.1.8, dim (F ) = dim (Aff (F )).

Now we show (ii). By (i) and applying the rank-nullity theorem to the linear map F , it suffices

to show that Aff (NΣ(F )) = 〈NΣ(F )〉. Note that by Theorem 2.3.3, we have 0 ∈ NΣ(F ). Let
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A be an affine space containing NΣ(F ). By definition of an affine space, ∃x ∈ Rn and there

exists a subspace L ⊆ Rn such that A = x + L. Since 0 ∈ NΣ(F ), then 0 ∈ A and ∃` ∈ L

such that x + ` = 0, which implise ` = −x. Since L is a vector space we must have x ∈ L,

which implies that x+ L = L and therefore A = L.

Since A was arbitrary, then

Aff (NΣ(F )) =
⋂

NΣ(F )⊆L

L

and an intersection of subspaces must also be a subspace, therefore we must have Aff (NΣ(F )) =

〈NΣ(F )〉.
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3 GENERALIZED CHARACTERISTICS OF A POLYTOPE in R4

Defining the characteristic line bundle of a smooth energy surface Σ0 ⊂ R2n required the

existence of a symplectic structure on R2n. Since a nonsmooth energy surface Σ ⊂ R2n has

points at which a tangent space cannot be defined, the characteristic line bundle of Σ cannot

be defined. However, at each point x ∈ Σ we can make use of the existence of a symplectic

matrix J on R2n to rotate the outward normal cone at x, giving a family of possible directions

analogous to the direction of a characteristic flow.

With the prevalence of “corners” in a polytope Σ, a characteristic path beginning in at x in a

corner F has a variety of adjacent faces in which to move, including a direction tangent to F

(provided that F is not a 0-face). In Section 3.1, we define the characteristic of a nonsmooth

energy surface, and formalize the distinct trajectories of a characteristic path “gliding” along

F (flowing tangent to F ), and “bouncing” off of F (flowing transverse to F ).

In Section 3.2, we define a generic class of polytopes Σ which has the property that for

x ∈ Σ, locally there exists a unique generalized characteristic X such that x ∈ Int (X). This

is accomplished by determining the trajectory of a generalized characteristic path γ, given

that γ(0) ∈ ri (F ) for F a 3-face, followed by determining the trajectory of γ for F a 2-face,

and so on.

3.1 Generalized Characteristics

Definition 3.1.1. The characteristic cone of a convex set K ⊆ R2n at x ∈ ∂K is

JNK(x) = {Jv : v ∈ NK(x)}
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Definition 3.1.2. The unit characteristic cone of a convex set K ⊆ R2n at x ∈ ∂K is

JnK(x) = {Jv : v ∈ nK(x)}

Definition 3.1.3. A convex body K ⊆ Rn is a convex set with 0 ∈ Int (K) and for which

dim (K) = n.

Proposition 3.1.4. Let K ⊆ Rn be a convex body with x ∈ K. If v ∈ NK(x) and −v ∈

NK(x), then we must have v = 0.

Proof. Let v ∈ NK(x) and −v ∈ NK(x). Then, by definition of NK(x), we must have

(x− y) · v ≥ 0 ∀y ∈ K

(x− y) · v ≤ 0 ∀y ∈ K

which implies that (x − y) · v = 0 for all y ∈ K. Since x is fixed and x · v = y · v, then

the linear functional ξ(y) given by ξ(y) = v · y must be constant on K. By K a convex

body, we have 0 ∈ Int (K) and since ξ is constant on K, we must have ξ(y) = ξ(0) = 0

for all y ∈ K. By K a convex body, there exists an open ball Br(0) ⊆ K. For any basis

{wi} ⊆ Rn, we can choose k > 0 such that {kwi} ⊆ B(0, r). Then, by ξ identically zero on

K and {kwi} ⊆ B(0, r) ⊆ K, we have that ξ is identically zero on Rn, and so v ∈ (Rn)⊥,

which implies that v = 0.

With the characteristic direction encoded in the cone JNK(x) and then normalized in the

cone JnK(x), we can now define a generalized characteristic. Since the corners of ∂Σ make up

a set of measure zero in ∂Σ, and since any characteristic path γ which intersects a corner of

∂Σ cannot be differentiable, then we must require γ to be differentiable almost everywhere.

In contrast to the characteristic equation for a smooth energy surface in the introduction,

γ will need to satisfy a characteristic differential inclusion. This definition of a generalized

characteristic will resemble that of K’́unzle [12, p. 176].
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Definition 3.1.5. A generalized characteristic path of a convex body K ⊆ R2n is a

Lipschitz continuous function γ : I → ∂K (for some interval I ⊆ R) for which we have:

γ̇(t) ∈ JnK(x) for almost all t ∈ I

We call Im (γ) a generalized characteristic of K.

The definition of a generalized characteristic on a polytope Σ shows us that the direction

γ̇(t) of a generalized characteristic path γ must lie in the unit characteristic cone at γ(t).

However, at corners of ∂Σ, γ may not remain tangent to ∂Σ in forward time, since JnΣ(x)

will not be orthogonal to the normal cone at γ(t). In order to determine γ̇ for γ lying in a

face F ⊂ ∂Σ, we will also need for γ̇ to be orthogonal to NΣ(F ).

Definition 3.1.6. For a 2n-polytope Σ, the characteristic cone restricted to a face

F ⊆ Σ is

Char (F ) = JNΣ(F ) ∩NΣ(F )⊥

Definition 3.1.7. Let γ be a generalized characteristic path of a polytope Σ with γ(0) ∈ ri (F )

for some face F of Σ. We say that a face F+
γ(0) is a forward face of F if the quantity

t := inf {t > 0 : γ(t) /∈ ri (F )}

exists and γ(t) ∈ F+
γ(0). We say that a face F−γ(0) is a backward face of F if the quantity

t := sup {t < 0 : γ(t) /∈ ri (F )}

exists and γ(t) ∈ F−γ(0).
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Definition 3.1.8. Let F be a face of Σ. If γ is a generalized characteristic for which γ(0) ∈

ri (F ) and for which there exists a nonzero v ∈ R2n such that

γ(t) = γ(0) + tv, t ∈ (t, t); t 6= t

then we say that γ glides in F via v.

A generalized characteristic path γ gliding in F would represent the simplest possible trajec-

tory in F , rather than any type of non-linear trajectories which may exist for dim (Char (F )) >

1. We will establish two types of generalized characteristic paths γ in a face F : bounce-only

(Im (γ) intersects F transversely) and glide-only (Im (γ) intersects F tangentially).

Definition 3.1.9. Let F be a face of Σ. If there exists v ∈ R2n such that every generalized

characteristic path γ with γ(t0) ∈ ri (F ) glides in F via v, then we say that F is glide-only

via v.

Definition 3.1.10. Let F be a face of Σ. If, for every open interval I, there does not exist

a generalized characteristic path γ such that γ|I ⊆ F , then we say that F is bounce-only.

Proposition 3.1.11. If F is a 0-face of a 2n-polytope Σ, then Char (F ) = 〈0〉.

Proof. Since F is a 0-face, by Equation 2.3.7 of Proposition 2.3.7 and the rank-nullity theo-

rem, we have that rank (F) = 4, which implies that NΣ(F )⊥ is zero dimensional.

Using the concept of Char (F ), we can now associate dim
(

Char (F )
)

with the type of

generalized characteristic paths allowed on F .

Proposition 3.1.12. Let F be a face of a 2n-polytope Σ. Then, Char (F ) = 〈0〉 if and only

if F is bounce-only.
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Proof. “ =⇒ ” Suppose there exists an interval I such that γ|I ⊆ F . Then, we know for all

s ∈ SF ,

γ(t) · s = 1

γ̇(t) · s = 0 for almost all t ∈ I

So, we must have γ̇(t) ∈ JNΣ(F ) ∩NΣ(F )⊥ a.e., which by hypothesis implies that γ̇(t) = 0

a.e. However, by definition of a generalized characteristic we must have |γ̇(t)| = 1 a.e., which

is impossible.

“ ⇐= ” By Proposition 3.1.11, we only need to consider the case of ri (F ) 6= ∅, i.e. F not

a 0-face. Suppose Char (F ) not zero-dimensional and take v ∈ Char (F ) such that |v| = 1.

Let x ∈ ri (F ). Then, by v ∈ Char (F ) and by Σ bounded, we can take ε > 0 such that for

t ∈ [0, ε] we have

(x± tv) · s = 1 ∀s ∈ SF

(x± tv) · s̃ < 1 ∀s̃ ∈ SΣ\SF

However, the function γ(t) := x + tv for t ∈ (−ε, ε) is a generalized characteristic path for

which γ(t) ∈ F on an interval. This contradicts that F is bounce-only, and therefore we

must have that Char (F ) is zero-dimensional.

Proposition 3.1.13. A face F is glide-only via kv ∈ R2n for some k ∈ R>0 if and only if

Char (F ) = Span+{v}

Proof. Let γ be a generalized characteristic path of Σ for which γ(0) ∈ ri (F ) and for which

t0 6= t0.

“ =⇒ ”
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First we show “⊇”. By F glide-only via kv, we have γ̇(t) = kv for t ∈ (t0 + t0, t0 + t0) .

By the definition of a generalized characteristic, v ∈ JnΣ(F ) ⊆ JNΣ(F ). By γ(t) ∈ F for

t ∈ (t, t), we know for all s ∈ SF :

s · γ̇(t) = 0

s · kv = 0

and so v ∈ NΣ(F )⊥. Now we show ”⊆”. Let v ∈ Char (F ). Then, for t ∈ (t, t) and for all

s ∈ SF :

(
γ(0) + tv

)
· s = γ(0) · s+ tv · s

= 1

Note that ∃δ > 0 such that for all s̃ ∈ SΣ\SF , we have γ(0) · s̃ < 1− δ < 1. If we take ε > 0

such that ε < min
{∣∣∣ δ

tv·s̃

∣∣∣ : s̃ ∈ SΣ\SF
}

, then for t ∈ (−ε, ε), we have that

(
γ(0) + tv

)
· s̃ < 1

Therefore, the function γ̃ given by

γ̃(t) := γ(0) + tv for t ∈ (−ε, ε)

is a generalized characteristic path and glides in F via v, and by F glide-only via v, we must

have tv = tv. So, have v ∈ 〈v〉.

“⇐= ”

By definition of a generalized characteristic path, we have γ̇(t) ∈ JNΣ(F ) for almost all

t ∈ (t, t). Additionally, we have γ̇(t) ∈ NΣ(F )⊥ for almost all t ∈ (t, t). So, γ̇ ∈ Char (F )
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which means that for almost all t ∈ (t, t), we have γ̇(t) ∈ 〈v〉. Additionally, by definition of a

generalized characteristic path, we must have that |γ̇| = 1. Since 〈v〉 is generated by a single

vector, we know ∃k ∈ R such that γ̇(t) = σ(t)kv for σ(t) = ±1 . Because γ̇ ∈ JN(F ) then

by Proposition 3.1.4, σ(t) must equal a constant σ ∈ {−1, 1}. By γ absolutely continuous,

for ε ∈ (t, t):

γ(ε)− γ(0) =

∫ ε

0

σkv dt

γ(ε) = γ(0) + ε(σkv)

so F must be glide-only via v.

We will now see that the interior of top-dimensional faces (facets) possess the simplest

generalized characteristic paths. This is visually clear, because JnΣ(x) and NΣ(F ) each

consist of a single vector and they are mutually orthogonal.

Theorem 3.1.14. Every facet Fs of a 2n-polytope Σ is glide-only via kJs, for some k ∈ R>0.

Proof. By Proposition 3.1.13, it suffices to show that Char (Fs) = Span+{Js}. By Theorem

2.3.4, we know that NΣ(Fs) = Span+{s} and so JNΣ(Fs) = Span+{Js}. Additionally, we

have that s · Js = 0 which implies that 〈Js〉 = NΣ(Fs)
⊥. Therefore, we must have that

Char (Fs) = Span+{Js}, as desired.

Understanding a glide-only face F helps in understanding characteristics which intersect the

lower-dimensional faces lying on its boundary. In particular, since we have shown that every

facet Fs possesses a constant vector field in ri (Fs) which determines every generalized char-

acteristic lying in ri (Fs), we can now work towards understanding generalized characteristics

in the lower dimensional faces of Σ. This is because every lower dimensional face must lie in

rb (Fs), for some facet Fs.

We will first define regions of rb (F ), for a glide-only face F , based on where characteristics

in F intersect rb (F ) transversely, and whether they intersect in forward/backward time of a
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generalized characteristic path. We will then understand how these regions can be attached

to one another at their respective boundaries.

Definition 3.1.15. If F is a glide-only face, then the forward fence of F is the set

F+ = {∪γ ri (F+
γ(0)) : γ a generalized characteristic path with γ(0) ∈ ri (F ) and γ(t) ∈ ri (F+

γ(0))}

and the backward fence of F is the set

F− = {∪γ ri (F−γ(0)) : γ a generalized characteristic path with γ(0) ∈ ri (F ) and γ(t) ∈ ri (F−γ(0))}

F−

F+

Figure 3.1: The backward and forward fence of a glide-only 3-face.

In Figure 3.1, the interior of this polyhedron represents the relative interior of a glide-only

facet in a 4-polytope. The forward flow on the inside of the polyhedron is transverse to the

red forward fence, and the backward flow is transverse to the blue backward fence. The

polyhedron is extruded out by the green direction in order to see the flow lines, but in reality

the edges of the red and blue fence must be glued together. Notice that the edges on the

outside of the two fence portions are not included in either fence (colored in green). This is

because the flow is not transverse to these outside edges, therefore the relative interior of

these edges is not included in either fence. For the same reason, the vertices outside of each

fence are not included in either fence.
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Definition 3.1.16. If F is a glide-only face, then the boundary of the forward fence F+

is the set

bd (F+) = {∪γ rb (F+
γ(0)) : γ a generalized characteristic path with γ(0) ∈ ri (F ) and γ(t) ∈ ri (F+

γ(0))}

and the boundary of the backward fence F− is the set

bd (F−) = {∪γ rb (F−γ(0)) : γ a generalized characteristic path with γ(0) ∈ ri (F ) and γ(t) ∈ ri (F−γ(0))}

We will now define the closure of the forward and backward fence of a glide-only face F ,

in order to decompose rb (F ) into two closed sets which correspond with either forward or

backward flow.

Proposition 3.1.17. The set

F+ = F+ ∪ bd (F+)

is the closure of F+ in Aff (F ) and the set

F− = F− ∪ bd (F−)

is the closure of F− in Aff (F ).

Proof. Let Fi ⊆ F+ be a face of Σ. By definition of F+, we have that rb (Fi) ⊆ F+ and

ri (Fi) ⊆ F+. Note that a polytope Σ has a finite number of faces and the closure of a

finite union is the union of closures. Then, it suffices to show that for each Fi ⊆ F+, we have

cl (Fi) = rb (Fi)∪ri (Fi). By definition of rb (Fi) and ri (Fi), we know that the closure of Fi in

Aff(Fi) is equal to rb (Fi)∪ri (Fi). Under the subspace topology of Aff (F ) inherited from R2n,

we have that
(

rb (Fi)∪ ri (Fi)
)
∩Aff (F ) is closed in Aff (F ). Since F = rb (Fi)∪ ri (Fi), this

is the smallest closed set containing F . Therefore, cl (Fi) = rb (Fi) ∪ ri (Fi), as desired.

Proposition 3.1.18. For a glide-only face F , we have F+ ∩ F− = ∅.
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Proof. Suppose not, i.e. suppose that there exist faces Fγ(0) ⊂ F−, Fγ̃(0) ⊂ F+ such that

ri (Fγ(0))∩ ri (Fγ̃(0)) 6= ∅. These faces have corresponding generalized characteristic paths γ, γ̃

with initial conditions γ(0), γ̃(0) ∈ ri (F ) and by the contrapositive of Proposition 2.1.13, we

have that γ(t), γ̃(t̃) ∈ ri (Fγ(0)) = ri (Fγ̃(0)).

Since ri (Fγ(0)) = ri (Fγ̃(0)) is a convex set and F a glide-only face via the vector v ∈ R2n,

then for any α ∈ [0, 1], we must have

α
(
γ(0) + tv

)
+ (1− α)

(
γ̃(t̃) + t̃v

)
∈ ri (Fγ(0)) = ri (Fγ̃(0))(

αγ(0) + (1− α)γ̃(0)
)

+
(
αt+ (1− α)t̃

)
v ∈ ri (Fγ(0)) = ri (Ft̃)

If ∃α ∈ [0, 1] such that

αt+ (1− α)t̃ = 0

then we would have αγ(0) + (1 − α)γ̃(0) ∈ ri (Fγ(0)) and αγ(0) + (1 − α)γ̃(0) ∈ ri (Fγ̃(0)),

which is impossible since Fγ(0),Fγ̃(0) are distinct faces and by Proposition 2.1.13, we must

have ri (Fγ(0)) ∩ ri (Fγ̃(0)) disjoint. Consider α = −t̃
t−t̃ . Since −t̃ > 0 and t − t̃ > 0, we indeed

have α ∈ [0, 1].

Lemma 3.1.19. Let F be a glide-only face. Then we must have

i F+ ∩ bd (F−) = ∅

ii F− ∩ bd (F+) = ∅

Proof. Suppose not, i.e. suppose that there exists y ∈ F+ ∩ bd (F−). Then, there exists

a generalized characteristic path γ with γ(0) ∈ ri (F ) and there exists a face F+
γ(0) with

y ∈ F+
γ(0). Additionally, there exists a a generalized characteristic path γ̃ with γ̃(0) ∈ ri (F )

and a face F−γ̃(0) with y ∈ rb (F−
t̃0

).

Take ε > 0 so that Bε(γ(0)) ∩ Aff (F ) ⊆ F . Then, by y ∈ rb (F−γ̃(0)), we know that ∃x ∈

ri (F−γ̃(0)) such that x ∈ Bε(y) ∩ rb (F ) (where Bε(y) is an open ball in R2n). Consider the
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isometry φ on R2n given by a translation:

φ(w) = w − tJv

Since y ∈ F+
γ(0), we know y = (γt) and so

φ(y) = γ(t)− tJv = γ(0)

and

φ(x) = γ̃(t̃)− tJv

Since φ is an isometry and d(x, y) < ε, we must have that d
(
φ(y), φ(x)

)
= d
(
γ(t0), φ(x)

)
<

ε, which implies that φ(x) ∈ ri (F ). Since translations of absolutely continuous functions by

a vector are again absolutely continuous, the function φ̃(t) := φ(x) + tJv is a generalized

characteristic path with φ̃(0) = φ(x) ∈ ri (F ). However, we have φ̃(t0) = x ∈ ri (F−γ̃(0)), which

implies that x ∈ F+ and x ∈ F−, and by Proposition3.1.18, this is impossible.

By a symmetric argument, we get (ii).

Lemma 3.1.20. Let F be a glide-only face and let d(p, q) be the Euclidean metric on R2n.

If x ∈ F+, then the quantity

dx := inf{d(x, y) : y ∈ F−}

exists and is nonzero. Likewise, if x̃ ∈ F−, then the quantity

dx̃ := inf{d(x̃, y) : y ∈ F+}

exists and is nonzero.

Proof. First we will show that x /∈ F+. By Proposition 3.1.18, we know that x /∈ F+.

By Lemma 3.1.19, we know that x /∈ bd (F+). Since x /∈ F+ and x /∈ bd (F+), then by
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Proposition 3.1.17, we know that x /∈ F+ and so dx 6= 0. Since F+ is a compact set in R2n

and d(x, ·) is a continuous function, then by the extreme value theorem the infimum must

be attained. By a similar argument, for x̃ ∈ F−, we have that dx̃ exists and is nonzero.

Now we prove a theorem that shows the impossibility of a pathological generalized charac-

teristic which begins in F+ for some glide-only face F , but which returns to ri (F ) infinitely

often and in arbitrarily small amounts of forward time.

Lemma 3.1.21. Let γ be a generalized characteristic and let F be a glide-only face. If

γ(0) ∈ ri (F ) then ∃ε > 0 such that

t0 ∈ (t, t+ ε) =⇒ γ(t0) /∈ ri (F )

and ∃ε > 0 such that

t0 ∈ (t− ε, t) =⇒ γ(t0) /∈ ri (F )

Proof. Suppose that there does not exist such an ε > 0. Consider {εn}∞n=1 > 0 with εn ↓ 0.

Then, by assumption for each n ∈ N, ∃δn > 0 such that δn < εn and γ(a + δn) ∈ ri (F ).

Consider t+ δn < 0 from Definition 3.1.7. We then have that either

|t+ δn| > δn or |t+ δn| ≤ δn

Suppose that “>” is true; we would then have that −δn > t+ δn. However, −δn ∈ {t <

0 : γ(t + δn + t) /∈ ri (F )} and by Definition 3.1.7, we must have −δn ≤ t+ δn. Then,

|t+ δn| ≤ δn for all n, and so as n→∞, we have that |t+ δn| ↓ 0. Then, by continuity of γ,

we must have that

γ
(
t+ δn + t+ δn

)
→ γ(t) ∈ F+

γ(0)

Consider

dγ(t) := inf{d(γ(t, y) : y ∈ F−}
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which exists and is nonzero by Lemma 3.1.20. If we take N large enough so that δN+t+ δn <

d, then by γ Lipschitz, we have

||γ
(
t+ δn + t+ δn

)
− γ(t)|| < δN + t+ δn

< d (3.1.1)

However, γ
(
t+ δn + t+ δn

)
∈ F− and Eqn 3.1.1 violates that d is a minimum.

By a symmetric argument, we get the existence of ε > 0.

The previous lemma allows us to demonstrate that, from a facet F1 into the interior of a

(2n− 2)-dimensional face F , characteristics will bounce into the “next” facet, F2.

Theorem 3.1.22. Let F be a (2n−2)-face which is bounce-only and such that F = F1∩F2,

where F1 and F2 are distinct facets. If F ⊆ F+
1 and γ is a generalized characteristic path

with γ(0) ∈ ri (F1) and γ(t) ∈ ri (F ), then, ∃δ > 0 such that

Im (γ)|(t, t+δ) ⊆ ri (F2)

Proof. Let x ∈ ri (F ). Take ε = min {ε, ε∗}, where ε is the quantity from Lemma 3.1.21 and

ε∗ > 0 is such that Bε∗(x) ∩ (F ∪ F2) ⊆ ri (F ) ∪ ri (F2). Suppose first that

Im (γ)|(t,t+ε) ⊆ ri (F )

However, since F is bounce-only, then by Proposition 3.1.12, this is impossible. Additionally,

by Lemma 3.1.21, we have that Im (γ) ∩ ri (F1) = ∅, so there must exist t0 ∈ (t, t+ ε) such

that γ(t0) ∈ ri (F2). We can write t0 as t0 = t + δ for some 0 < δ < ε, and by F2 glide-only,
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we know ∃t0 < 0 such that γ(t0 + t0) /∈ ri (F2). If |t0| = δ, then γ(t̃) ∈ ri (F2) for values of t̃:

t̃ ∈ (t0 + t0, t0) ⇐⇒ t̃ ∈ (t+ δ − δ, t+ δ)

⇐⇒ t̃ ∈ (t, t+ δ)

as desired. Therefore, we want to show that |t0| = δ, i.e. that |t0| ≤ δ and that |t0| ≥ δ. By

t0 a least upper bound, we have that δ ≥ |t0|. It remains to show that δ ≤ |t0|.

Suppose not, i.e. that δ > |t0|. Take η = min {δ − |t0|, εt0}, where εt0 > 0 is the quantity

from Lemma 3.1.21, given by the intial condition γ(t0) ∈ ri (F2). Then, by Lemma 3.1.21,

we have that Im (γ)|(t, t+η) ∩ ri (F2) = ∅, and therefore we must have Im (γ)|(t, t+η) ⊆ ri (F ).

However, by F bounce-only, γ cannot be contained in ri (F ) for any interval of time.

Therefore, we must have that δ = |t0|, and so Im (γ)|(t, t+δ) ⊆ ri (F2).

The following theorem gives the necessary and sufficient conditions for a generalized charac-

teristic to bounce into or out of a face F which lies on the relative boundary of a glide-only

face F g. The theorem admits a geometric realization involving certain supporting hyper-

planes of the relevant faces’ conjugate faces, and this interpretation will be used later in

determining the bouncing into/out of edges in a generic 4-polytope (see Lemma 3.2.14).

Theorem 3.1.23. Let F =
⋂
g∈G F

g be a face of a polytope Σ, where each F g is a glide-only

face of Σ via g. Then,

i F ⊆ (F g)+ if and only if v · g > 0 for all v ∈ NΣ(F )\NΣ(F g).

ii F ⊆ (F g)− if and only if v · g < 0 for all v ∈ NΣ(F )\NΣ(F g).

Proof. “ =⇒ ”

Suppose not, i.e. suppose that there exists a v ∈ NΣ(F )\NΣ(F g) such that v · g ≤ 0. By Cor

2.3.4, NΣ(F ) = Span+(SF ), so for the case of v · g = 0, we must have that either s · g = 0 for

all s ∈ SF\SF g or that ∃s̃ ∈ SF\SF g such that s̃·g < 0. For the case of v ·g < 0, we would also

have that ∃s̃ ∈ SF\SF g such that s̃ · g < 0. So, it suffices to show the impossibility of having
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s · g = 0 for all s ∈ SF\SF g and the impossibility of there existing such an s̃ ∈ SF\SF g .

Suppose that s · g = 0 for all s ∈ SF\SF g . By definition of (F g)+, for any y ∈ F there exists

a generalized characteristic path γ such that γ(0) ∈ ri (F g) and γ(t) = y. By F g glide-only

via g, we have that, for ε ∈ (0, t):

γ(ε) = γ(0) + εg

and γ(ε) ∈ ri (F g). However, s · g = 0 implies that

γ(ε) · s = 1 ∀s ∈ SF\SF g

but by Proposition 2.1.18, this contradicts that γ(ε) ∈ ri (F g).

Now we show that the case in which ∃s̃ ∈ SF\SF g such that s̃ · g < 0 is impossible. Consider

y, γ as in the previous case. By s̃ · g < 0, by Proposition 2.1.18 and since t > 0, we must

have that y · s̃ < 1. However, by Proposition 2.1.18 this contradicts that y ∈ F .

“⇐= ”

Take x ∈ ri (F ). We want to show that there exists an ε > 0 such that for t ∈ (0, ε), we

have x − tg ∈ ri (F g). By Proposition 2.1.18 we know that x · s = 1 ∀s ∈ SF and x · s̃ < 1

∀s̃ ∈ SΣ\SF . First, we show that if a quantity t > 0 is such that

t < max

{∣∣∣∣x · s̃− 1

g · s̃

∣∣∣∣ : s̃ ∈ SΣ\SF g , g · s 6= 0

}

then we have that (x− tg) · s̃ < 1 ∀s̃ ∈ SΣ\SF g . We consider each possibility of the sign of

g · s̃, for s̃ ∈ SΣ\SF g .

Let s̃ ∈ SΣ\SF g be such that g · s̃ = 0. By hypothesis, we have s̃ ∈ SΣ\SF and by

x ∈ ri (F ) we have x · s̃ < 1. Then, for any value of ε > 0 and any t ∈ (0, ε), we must
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have (x− tg) · s̃ = x · s̃ < 1.

Now, let s̃ ∈ SΣ\SF g be such that g · s̃ < 0. Then, we see that

(x− tg) · s̃ = x · s̃− tg · s̃ < 1

−tg · s̃ < 1− x · s̃

t <
x · s̃− 1

g · s̃

and since x · s̃ − 1 < 0, we see that x·s̃−1
g·s̃ > 0, so for any t ∈ [0, x·s̃−1

g·s̃ ), we have that

(x− tg) · s̃ < 1.

Finally, let s̃ ∈ SΣ\SF g be such that g · s̃ > 0. Then, we see that

x · s̃− tg · s̃ < 1

−tg · s̃ < 1− x · s̃

t >
x · s̃− 1

g · s̃

Since x·s̃−1
g·s̃ > 0, then for any t > 0, we have that (x− tg) · s̃ < 1.

So, if we let

ε := max

{∣∣∣∣x · s− 1

g · s

∣∣∣∣ : s ∈ SΣ\SF g , g · s 6= 0

}
then, for t ∈ (0, ε), we have that

(x− tg) · s < 1 ∀s ∈ SΣ\SF g

(x− tg) · s = 1 ∀s ∈ SF g

which implies that, for t ∈ (0, ε), we have x− tg ∈ ri (F g).
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3.2 Flow on a Symplectic-Faced 4-Polytope

For any point x in a smooth energy surface, the IVP existence/uniqueness coming from

the characteristic equation guarantees the existence and uniqueness of a characteristic curve

which intersects x. For a polytope Σ, however, we may have even-dimensional faces, such as

the 2-faces of the hypercube, for which there is not a unique characteristic direction. On such

faces, we have a 1-dimensional family of characteristic directions which makes uniqueness of

characteristics impossible.

However, we can restrict our attention to the family of 4-polytopes for which even-dimensional

faces are bounce-only. Making this assumption, Theorem 3.1.14, Theorem 3.1.22 and Theo-

rem 3.1.23 give us the existence and uniqueness of characteristics on facets and 2-faces. All

that remains is to determine the existence and uniqueness of characteristics which intersect

1-faces (edges) and 0-faces (vertices).

3.2.1 Genericity of Symplectic-Faced Polyhedral Sets

We will now proceed to define a class of polyhedral sets in R4, for which we can prove the

existence and uniqueness of generalized characteristics.

Definition 3.2.1. A polyhedral set Σ ⊂ R2n is symplectic-faced if for every 2k-face F of

Σ with 0 < k < n, we have that F is bounce-only.

Proposition 3.2.2. Let Σ ⊂ R4 be a polyhedral set. Then, Σ is symplectic-faced if and only

if for every 2-face Fs ∩ Fs̃ of Σ, we have Js · s̃ 6= 0.

Proof. For a polyhedral set Σ ⊆ R4, Σ is symplectic-faced if and only if every 2k-face F

of Σ is bounce-only, for 0 < k < 2. Then, Σ is symplectic-faced if and only if every 2-face

is bounce-only. Let F = Fs ∩ Fs̃ be a 2-face of Σ. Note that, by Corollary 2.3.4, we have

40



JNΣ(F ) = Span+ ({Js, Js̃}) and so

F bounce-only ⇐⇒ JNΣ(F ) ∩N⊥Σ (F ) = 〈0〉

⇐⇒ there does not exist a nonzero v ∈ JNΣ(F ) ∩N⊥Σ (F )

⇐⇒ ∀k1, k2 ≥ 0, we have (k1Js+ k2Js̃) · s 6= 0, (k1Js+ k2Js̃) · s̃ 6= 0

⇐⇒ Js · s̃ 6= 0 and Js̃ · s 6= 0

as desired.

Definition 3.2.3. We denote the collection of polyhedral generating sets with size

m to be the set

P̃4
m = {SΣ ⊂ R4 : Σ a polyhedral set , |SΣ| = m}

and we denote the collection of SΣ with |SΣ| = m and Σ a polytope by P4
m ⊂ P̃4

m.

In order to prove our genericity result, we will be considering a particular function which

computes the dot product of pairs of potential normal vectors of a polyhedral set. This

function will be defined on pairs of factors in a product of Euclidean spaces. However, in

order to establish a association between generating sets and a list of vectors, we must ensure

that each list of m vectors is a set of m vectors. Therefore, from the product of Euclidean

spaces, we must define and delete a closed subspace Dnm which accounts for ordered lists of

vectors with repeated entries.

Definition 3.2.4. The fat diagonal Dnm of
∏mRn is the following closed subspace:

Dnm =
{

(v1, v2, . . . , vm) ∈
m∏

Rn : vi = vj for at least one pair of i, j with i 6= j
}

Once we have defined the set of ordered lists of normal vectors, we can then take a quotient

by permutations of these lists to obtain a collection of unordered normal vectors. Note that
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the following space R̃4
m is an example of a symmetric product and is metrizable, by a paper

from K. Borsuk and S. Ulam[5].

Definition 3.2.5. Let Sm be the symmetric group on m letters. Then we define the topological

space

R̃4
m =

(
(
∏m

i=1 R4
i )\D4

m

)/
Sm (3.2.1)

Where
∏m

i=1 R4
i is equipped with the product topology and R̃4

m is equipped with the quotient

topology.

Proposition 3.2.6. The quotient map

q :
( m∏
i=1

R4
i

)
\D4

m → R̃4
m

is open.

Proof. Let X := (
∏m

i=1 R4) and let q̃ : X → X
/
Sm be the induced quotient map. Note that

for any Y ⊂ R̃4
m, we have q−1(Y ) = q̃−1(Y ) ∩ (D4

m)c. Since (D4
m)c is open, it suffices to show

that q̃ is an open map. Let U ⊂ X be open. Then, we know that U =
∏m

i=1 Ui such that

each Ui is open in R4
i . By definition of q̃, we know that

q̃(U) =
⋃
x∈U

{[x]}

We will first show that
⋃
x∈U{[x]} is open in X

/
Sm by showing that q̃−1

(⋃
x∈U{[x]}

)
is open

in X. By definition of the quotient map under the action of Sm, we know that

q̃−1
( ⋃
x∈U

{[x]}
)

=
⋃
σ∈Sm

σ(U)

We now show that σ(U) is open in X for each σ ∈ Sm. Let σ ∈ Sm. Since each factor in the

product space X is homemorphic to R4, and since each Ui is open in R4
i , we know that Uσ(i)

is also open in R4
σ(i). Therefore, since σ(U) =

∏m
i=1 Uσ(i), we know that σ(U) is open in X.
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Then we have that q̃(U) is open in X
/
Sm .

Let U ⊂ R̃4
m be open. Since q−1(U) = q̃−1(U)∩ (D4

m)c, then we have that q−1(U). Therefore,

we have that q is an open map.

We will now formally establish our identification of polyhedral generating sets with elements

of R̃4
m.

Proposition 3.2.7. There exists a bijective map φ : P̃4
m → R̃4

m.

Proof. Let Σ ∈ P̃4
m. Then, we can define the function φ : P̃4

m → R̃4
m given by SΣ 7→

[(s)]s∈SΣ
. First we show that φ is injective. Let SΣ, SΣ̃ ∈ P̃4

m. Then, for some (s1, . . . , sm) ∈(∏m
i=1 R4

i

)
\D4

m, we have

φ(SΣ) = φ(S̃Σ) = {σ
(
s1, . . . , sm

)
}σ∈Sm

By definition of φ, we must have SΣ = SΣ̃ = {s1, . . . , sm}, so we have injectivity. Now we

show surjectivity. Let [(s1, . . . , sm)] ∈ R̃4
m, for some (s1, . . . , sm) ∈

(∏m
i=1 R4

i

)
\D4

m. Since the

list (s1, . . . , sm) contains distinct vectors from R4, then we have that {s1, . . . , sm} is a set of

m vectors from R4. Therefore, for the set S, the intersection ∩s∈SK(s, 1) is a polyhedral set

in R4 with generating set S, and we have φ(S) = [(s1, . . . , sm)].

Lemma 3.2.8. Let P̃ 4
m := φ(P̃4

m). Then, there exists an open set F ⊆ P̃ 4
m such that for

every SΣ ∈ F̃ , we have that Σ is symplectic-faced.

Proof. First we construct F . Since being symplectic-faced checks a J-orthogonality condition

on 2-faces of a polyhedral set Σ, and since 2-faces are generated by a pair si, sj ∈ SΣ, we

will consider the collection of index-pairs in order to label pairs of normal vectors. Define

N2 := {(i, j) ∈ {1, 2, . . . ,m}2 : i 6= j}
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and let (i, j) ∈ N2. To check for J-orthogonality, we define the continuous function f(i,j) :

R4
i × R4

j → R given by

f(i,j)(si, sj) = si · Jsj

Since each f(i,j) is continuous, we know that for any (i, j) ∈ N2, the set f−1
(i,j)({0}c) =

U
(i,j)
i × U (i,j)

j is open in (R4
i × R4

j)\D4
2. Additionally, since N2 is finite, we know that

F̃ :=
m∏
k=1

(
∩(i,j)∈N2 U

(i,j)
k

)

is open in (
∏m

i=1 R4)\D4
m. By Proposition 3.2.6, we know that F := q(F̃) is open in R̃4

m.

Now, let SΣ ∈ F̃ and let N ⊂ N2 be the set of (i, j) such that for the facets Fsi , Fsj

of Σ, we have that Fsi ∩ Fsj is a 2-face. Then, for any (i, j) ∈ N , by definition of F̃ we

have (si, sj) ∈ f−1({0}c). By Proposition 3.2.2, this implies that Σ is symplectic-faced, as

desired.

Theorem 3.2.9. There exists an open and dense set F ⊂ P̃ 4
m such that for every SΣ ∈ F

we have that Σ is symplectic-faced.

Proof. By Lemma 3.2.8, we know that the set F is open in P̃ 4
m. Now it remains to show that

F is dense in P̃ 4
m. Consider the collection N2 and the function f(i,j) from the proof of Lemma

3.2.8. We have that each f−1
(i,j)({0}c) is open and dense in (R4

i × R4
j)\D4

2 and since N2 is a

finite set, then we have that F̃ is dense in
∏m

i=1 R4\Dm4 .

By Proposition 3.2.6, we have that q(F̃) is open in R̃4
m. Additionally, since q is surjective

and F̃ is dense in
∏m

i=1 R4
i \D4

m, we have that

q(F̃) = q
( m∏
i=1

R4
i \D4

m

)
= P̃ 4

m

This implies that P̃ 4
m ⊆ q(F̃) = F , and so we have that F is dense in P̃ 4

m.
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3.2.2 Edges of a Symplectic-Faced 4-Polytope

Edges are the first type of face we’ve encountered with a characteristic dimension that allows

either bounce-only or glide-only behavior. In fact, the cross-polytope in R4 is an example of

a polytope which contains both bounce-only edges and glide-only edges. Due to edges being

one-dimensional, a characteristic trajectory in a glide-only edge is constrained to simply flow

from an initial vertex to a terminal vertex. For the case of a bounce-only edge however, we

must show the less obvious fact that there exists a unique facet from which we bounce into

the edge, followed by a bounce out to a unique facet.

Definition 3.2.10. In a 4-polytope Σ, we call a 0-face of Σ a vertex, a 1-face of Σ an

edge, a 2-face of Σ a face and a 3-face of Σ a facet.

Proposition 3.2.11. An edge E of a 2n-polytope is either bounce-only or glide-only.

Proof. By Proposition 2.3.7, we must have that dim
(
NΣ(E)⊥

)
= 1 and so dim Char (E) ≤ 1.

By Proposition 3.1.12 and 3.1.13, we then have that E can only be either glide-only or

bounce-only.

By Theorem 3.1.23, showing that a characteristic must flow from a particular facet into an

edge requires a geometric argument involving affine spaces intersecting the conjugate face of

an edge. The conjugate face of an edge will be a polygon in a three-dimensional space, and

in the future we will consider the affine plane containing this polygon.

Proposition 3.2.12. Let E be an edge of a 4-polytope Σ. Then, there exists an affine plane

PE ⊆ R4 such that Aff (Conv (SE)) = PE.

Proof. By Theorem 2.2.8, we know that E∆ = Conv (SE) and by Theorem 2.2.7, we then

have that dim(Conv (SE)) = 2. Since Conv (SE) is 2-dimensional, its affine hull must be an

affine plane in R4.

In our geometric representation of Theorem 3.1.23 as applied to bounce-only edges, we will

investigate hyperplanes which intersect N⊥Σ (E) and the plane PE from Proposition 3.2.12.
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For bounce-only edges, the following proposition will force the line N⊥Σ (E) and the plane PE

to both lie in the ambient three-dimensional space 〈JNΣ(E)〉, which we will later show to

force intersection between N⊥Σ (E) and PE.

Proposition 3.2.13. If E is an edge of a 4-polytope Σ, then we have N⊥Σ (E) ⊆ 〈JNΣ(E)〉.

Proof. Since dim
(
NΣ(E)⊥

)
= 1 and dim

(
JNΣ(E)

)
= 3, we cannot have “⊇”. Since

NΣ(E)⊥ and 〈JNΣ(E)〉 are both vector spaces, if there exists a nonzero v ∈ NΣ(E)⊥ ∩

〈JNΣ(E)〉, then 〈v〉 = NΣ(E)⊥ and we have proven our claim.

By Proposition 2.3.7, we have that dim (JNΣ(E)) = 3 and so m := |SE| ≥ 3. Suppose that

m is odd. Then, if we enumerate elements of SE = {si}1≤i≤m we can construct an m ×m

skew-symmetric matrix M = [si · Jsj]. An odd-dimensional skew-symmetric matrix must

have a nontrivial kernel, i.e. there must exist a nonzero m × 1 vector [k`]1≤`≤m such that

Mk = 0. Therefore, for every i ∈ {1, . . . ,m}, we have si ·
∑m

j=1 kjJsj = 0 which implies that

v :=
∑m

j=1 kjJsj is our desired vector.

Now suppose that m > 3 and is even. Since E is an edge, we know that rank E = 3 and

SE is linearly dependent. Then, ∃š ∈ SE such that for ŠE := SE\{š} we have Span (SE) =

Span (ŠE). If we enumerate elements of ŠE = {ši}1≤i≤m−1 we can construct an (m − 1) ×

(m − 1) skew-symmetric matrix M̌ = [ši · Jšj]. Since m − 1 odd, then by our previous

case there must exist a nonzero (m − 1) × 1 vector [ǩ`]1≤`≤m−1 such that M̌ǩ = 0. Since

Span (SE) = Span (ŠE), then v̌ :=
∑m−1

j=1 ǩjJšj ∈ 〈JNΣ(E)〉 is our desired vector.

We will now show the existence of vectors s, s for which Js, Js are the glide vectors of two

(and only two) facets generating an edge E, one of which posseses a characteristic bouncing

into F , and one of which posseses a characteristic bouncing out of E.

Lemma 3.2.14. If E =
⋂
Fi is a bounce-only edge of a symplectic-faced 4-polytope Σ, then

∃!s ∈ SE such that s · Js < 0 for all s ∈ SE\{s} and ∃!s ∈ SE such that s · Js > 0 for all

s ∈ SE\{s}
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Proof. By Proposition 3.2.13, we know that NΣ(E)⊥ ⊆ 〈JNΣ(E)〉 and by Proposition 3.2.12,

we know that there exists an affine plane JPE with JE∆ ⊆ JPE. Since NΣ(E)⊥ contains

the origin and JPE does not, then we have that NΣ(E)⊥ ∩ JPE contains at most one point.

Suppose that this intersection is empty. Then, we have that NΣ(E)⊥ and JPE are parallel,

i.e. that there exists a vector v ∈ 〈JNΣ(E)〉 such that

NΣ(E)⊥ ⊆ {x ∈ 〈JNΣ(E)〉 : x · v = 0} (3.2.2)

JPE = {x ∈ 〈JNΣ(E)〉 : x · v = 1} (3.2.3)

Line 3.2.2 implies that v ∈ NΣ(E), i.e. v =
∑

SE
kss. We observe that 1∑

SE
ks
v ∈ Conv (SE),

and by Proposition 2.2.8, we have 1∑
SE

ks
v ∈ E∆ and therefore 1∑

SE
ks
Jv ∈ JE∆ ⊆ JPE.

However, by Line 3.2.3, we then have that

v · 1∑
SE
ks
Jv = 1

v · Jv =
∑
SE

ks

and this is impossible, since v · Jv = 0 and
∑

SE
ks > 0. Therefore, there must exist a vector

e ∈ NΣ(E)⊥ ∩ JPE.

JPE

NΣ(E)⊥

JE∆

e
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Since E is bounce-only, we have that JNΣ(E)∩NΣ(E)⊥ = 〈0〉. Since JE∆ ⊆ JNΣ(E), then

we must have e ∈ JPE\JE∆.

For s ∈ SE, let Ps denote the plane

Ps := {x ∈ 〈JNΣ(E)〉 : x · s = 0}

and since ∀s ∈ SE, we have Js · s = 0, then Js ∈ Ps ∩ JPE and so the set

Ls := Ps ∩ JPE

is a line lying in the plane JPE. Observe that, since e ∈ NΣ(E)⊥, and since for any s ∈ SE

we have s ·Js = 0, then each Ls has e, Js ∈ Ls. If we let P+
s , P−s denote the closed upper and

lower halfspaces determined by Ps, respectively, then we can similarly define L+
s = P+

s ∩JPE

and L−s = P−s ∩ JPE.

Consider the collection of half-planes of JPE, determined by SE:

V := {L+
s , L

−
s }s∈SE

We now show that there exist exactly two elements s, s ∈ SE such that for Vs, Vs ∈ V , we

have JE∆ ⊆ Vs, JE
∆ ⊆ Vs.

First, we map JPE to R2 by translating e to the origin:

f : JPE → R2

w 7→ w − e

and we let JE∆
e := f(JE∆

e ). Since 0 and JE∆
e are disjoint, closed convex sets, then by the

Hahn-Banach separation theorem, there exists v ∈ R2 such that for

Lv := {w ∈ R2 : w · v = 1}
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we have 0 ∈ L−v and JE∆
e ⊆ L+

v . Then, we can define the function

g : R2\{0} → Lv

given by

w 7→ kw : kw · v = 1

f
(
JPE

)

NΣ(E)⊥

JE∆
e

f(e)

JE∆
e

f
(
JE∆

)

Lv

Observe that g is continuous, g preserves convex sets, and that the continuous image of a

compact set is compact. Since Lv is one-dimensional, we then have that the compact, convex

set g(JE∆
e ) must be parameterized by an interval I. Let β : R→ Lv be a parameterization

such that I = β
(

[a, b]
)

for a < b.

Since g(JE∆
e ) = β

(
[a, b]

)
, then there exists only one real number c ∈ β(Lv) with g−1(β(c)) ∈

JE∆
e and such that for sufficiently large M > 0, JE∆

e ⊆ g−1
(
β
(

[c, c + N ]
))
∀N > M , in

particular, c = a. Similarly, there exists only one c ∈ β(Lv) with g−1(β(c)) ∈ JE∆
e and such

that for sufficiently large M > 0, JE∆ ⊆ g−1
(
β
(

[c−N, c]
))
∀N > M , in particular, c = b.

Since g−1
(
β(a)

)
, g−1

(
β(b)

)
are limit points of g−1

(
β
(

[a, b]
))

, then g−1
(
β(a)

)
∩ JE∆

e ⊆

∂JE∆
e and g−1

(
β(b)

)
∩ JE∆

e ⊆ ∂JE∆
e .

We claim that g−1
(
β(a)

)
∩ JE∆

e , g
−1
(
β(b)

)
∩ JE∆

e each consist of a single point, i.e. that

each is a vertex of JE∆
e . Suppose not, i.e. that there exists g−1

(
β(a)

)
∩ JE∆

e such that x =

αf(Js1) + (1−α)f(Js2) for some α ∈ (0, 1) and for some adjacent vertices Js1, Js2 ∈ JE∆.

Then, we must have that

f−1(〈x〉) ⊆ {v ∈ 〈JNΣ(E)〉 : v · s1 = 0}
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However, this would imply that Js2 ·s1 = 0, which violates that Σ is symplectic-faced. There-

fore, g−1
(
β(a)

)
∩JE∆

e must be a single point. By a similar argument, we get that g−1
(
β(b)

)
consists of one point. Therefore, we must have f−1

(
g−1
(
β(a)

))
= Js, f−1

(
g−1
(
β(b)

))
= Js

for some s, s ∈ SE.

For the two elements s, s, we now show that either JE∆ ⊆ L−s and JE∆ ⊆ L+
s , or that

JE∆ ⊆ L+
s and JE∆ ⊆ L−s . Assume not, i.e. WLOG that JE∆ ⊆ L+

s , JE∆ ⊆ L+
s . Then, we

have

Js · s ≥ 0 Js · s ≥ 0

Which, by skew-symmetry of J , implies that Js · s = 0. Then, for any x such that

x ∈ {αJs+ (1− α)Js : α ∈ [0, 1]}

we have x · s = 0, which implies that x ∈ Ls. By a previous argument, we know that

{αJs+ (1− α)Js : α ∈ [0, 1]} ⊆ ∂JE∆

and so this set is an edge of JE∆. However, this implies that the facets Fs and Fs are

adjacent, and Js · s = 0 violates that Σ is symplectic-faced.

So, WLOG, there must exist s, s ∈ SE such that JE∆ ⊆ L−s and such that JE∆ ⊆ L+
s , as

desired.

Theorem 3.2.15. Let E be a bounce-only edge of a symplectic-faced 4-polytope Σ. Then,

there exists a unique s ∈ SE such that E ⊂ F+
s and there exists a unique s ∈ SE such that

E ⊂ F−s .

Proof. By Lemma 3.2.14 and Theorem 3.1.23, there exist two unique vectors s, s ∈ SE, for

which we have E ⊂ F+
s and E ⊂ F−s .
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3.2.3 Vertices of a Symplectic-Faced 4-Polytope

Due to having the highest dimension conjugate face, demonstrating the existence of flow

through a vertex proves to be the most challenging. In order to prove the existence of flow

through a vertex, we will need to introduce some concepts from graph theory (Appendix A)

and apply it to the conjugate face of a vertex (a polyhedron). Before introducing all of the

technology needed in the existence argument, we will first show the uniqueness of a glide-only

face which flows into a vertex. In particular, for a vertex V , we first show that if generalized

characteristic paths from both a facet and an edge exist and intersect V transversely, then

they cannot both intersect V in forward/backward time. This will then be generalized to

give a unique glide trajectory (to/from either facet or edge) which begins/terminates in V .

Lemma 3.2.16. Let Fs be a facet of Σ and let Eg be a glide-only edge of Σ, for which there

is a vertex V of Σ such that V ⊆ Fs ∩ Eg. Then at most one of the following is true:

i V ⊆ F+
s (or V ⊆ F−s )

ii V ⊆ (Eg)+ (resp. V ⊆ (Eg)−)

Proof. Suppose both (i) and (ii) are true. Since Eg is one-dimensional, we must have either

V = Fs ∩ Eg or V ⊆ Eg ⊆ Fs. First, we show that (i) and (ii) cannot both be true in the

case that V = Fs ∩ Eg.

By V ⊆ (Eg)+ and by Theorem 3.1.23, we have that

n · g > 0 ∀n ∈ NΣ(V )\NΣ(Eg)

Since Eg 6⊂ Fs and V ⊆ Fs, then s ∈ NΣ(V )\NΣ(E). Additionally, we know that g = Jn̂ for

some n̂ ∈ NΣ(Eg), and so

s · Jn̂ > 0

Js · n̂ < 0 (3.2.4)
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By V ⊆ F+
s and by Theorem 3.1.23,

ñ · Js > 0 ∀ñ ∈ NΣ(V )\ Span+{s} (3.2.5)

Since Eg 6⊂ Fs, we have NΣ(Eg) ⊆ NΣ(V )\ Span+{s} and so if we take ñ := n̂, then by

Equations 3.2.4 and 3.2.5, we have that ñ · Js > 0 and ñ · Js < 0, a contradiction.

Now we show that (i) and (ii) cannot both be true for the case that Eg ⊆ Fs. Take x ∈

ri (Eg), y ∈ ri (Fs) such that for the generalized characteristic paths γx, γy with

γx(0) = x γy(0) = y

we have t := tγx = tγy . Since V consists of a single point, v ∈ V , we have that γx(t) = v =

γy(t) and so

x+ tg = y + tJs

x = y + tJs− tg (3.2.6)

Note that the function

γ(t) :=
1

2
γx(t) +

1

2
γy(t)
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is a generalized characteristic path with γ(0) ∈ ri (Fs). Additionally, by Eqn 3.2.6 we have

that

γ(t) = y + tJs− t

2
g

= v − t

2
g

= x+ tg − t

2
g

= x+
t

2
g

and we know that x + t
2
g ∈ ri (Eg). However, for t ∈ (0, t), γ(t) glides via Js, and this

contradicts that γ is a generalized characteristic path with γ(t) ∈ ri (Eg) and Eg glide-only

via g, since g 6= Js.

Theorem 3.2.17. Let V be a vertex of Σ and let F g, F g̃ be glide-only faces of Σ. If V ⊆

(F g)+ and V ⊆ (F g̃)+, or if V ⊆ (F g)− and V ⊆ (F g̃)−, then F g = F g̃.

Proof. Suppose V ⊆ (F g)+, V ⊆ (F g̃)+ and F g 6= F g̃. First we consider the case that

there exists at least one s0 ∈ SF g\SF g̃ and at least one s̃0 ∈ SF g̃\SF g (i.e. SF g 6⊂ SF g̃ and

SF g 6⊂ SF g̃). Take x ∈ ri (F g), y ∈ ri (F g̃) such that for the generalized characteristic paths

γx, γy with

γx(0) = x γy(0) = y

we have t := tγx = tγy . Then,

γx(t) = v = γy(t) where V = {v}
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Then

v · s̃ = 1 ∀s̃ ∈ SF g̃\SF g

(x+ tg − tg̃) · s̃ = 1

since x · s̃ < 1, since g = Jn for some n ∈ NΣ(F g), and since g̃ = Jñ for some ñ ∈ NΣ(F g̃),

we have

g · s̃ > 0 ∀s̃ ∈ SF g̃\SF g

n · Js̃ < 0 (3.2.7)

We know that ñ =
∑

S
F g̃
ksJs̃ with ks ≥ 0 and for every s̃ ∈ SF g̃ ∩ SF g , we have n · Js̃ = 0

by Js̃ ∈ Span+{SF g̃}⊥ ⊆ Char (F g̃). So, by Inequality 3.2.7, we have

n · Jñ < 0 (3.2.8)

Similarly, since v = y + tg̃, we get

ñ · Jn > 0 ∀s ∈ SF g\SF g̃

However, this contradicts Inequality 3.2.8. Therefore, we must have F g = F g̃.

Now, suppose WLOG that SF g ( SF g̃ . If F g, F g̃ are both facets then our initial assumption

of F g 6= F g̃ is impossible and we must have F g = F g̃. Otherwise, Lemma 3.2.16 implies that

F g and F g̃ are both edges. However, this is impossible by Proposition 2.1.13.

Now we employ some directed graph technology (see Appenix A) to begin our argument of

the existence of flow through a vertex. Polytopes naturally possess a graph structure, where

we identify vertices with 0-faces and edges with 1-faces. We will make use of this structure,

54



however, we will be doing this in the dual polytope, Σ◦. Therefore, we will be associating

graph vertices with facets of Σ and edges with (2n− 2)-faces of Σ.

Definition 3.2.18. Let Σ be a 2n-polytope and let F ⊂ Σ be a face. The conjugate graph

generated by F , denoted GF is the graph given by

V (GF ) = {vs ∈ V (GΣ) : Fs adjacent to F}

and

E(GF ) = {vsvt : dim (Fs ∩ Ft) = 2n− 2}

By the symplectic-faced property of a polytope, we get a sign relation on codimension-2 faces,

given by Js · s̃, where Fs and Fs̃ are facets. This sign relation provides a natural orientation

to the graph of a conjugate face, considering that the conjugate face of a codimension-2 face

is an edge.

Definition 3.2.19. Let Σ be a symplectic-faced 2n-polytope. We define the conjugate di-

graph DΣ generated by Σ to be the following orientation of GΣ:

A(DΣ) = {vsvt : Js · t > 0}

Similarly, we can define the conjugate digraph generated by a face F ⊂ Σ to be the digraph

DF given by the same orientation on F∆.

Using this directed structure, we will show that the direction of arcs can imply the existence

of a desired supporting hyperplane, as those implicitly seen in Theorem 3.1.23. From this

point forward, unless otherwise noted, we will let V be a vertex of a symplectic-faced 4-

polytope Σ and we will let DV be the conjugate digraph generated by V . Before we proceed

to associate graph-theoretic features of DV with the flow of generalized characteristics, we

will first prove a general fact about polytopes which shows that a particular hyperplane

supporting adjacent vertices implies that the hyperplane will support the entire polytope.
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Lemma 3.2.20. Let v0 be a vertex of a d-polytope Σ and let H be a hyperplane of Rd with

v0 ∈ H, given by

H = {x ∈ Rd : x · w = α}

for some s ∈ Rd and some α ∈ R. Let V be the set of all vertices v of Σ with the property

that Conv ({v, v0}) is a 1-face of Σ. If, for the open half-space

H+ = {x ∈ Rd : x · w > α}

we have that V ⊂ H+ (or H−), then Σ\{v0} ⊂ H+ (resp. H−).

Proof. Translating by −v0, WLOG v0 = 0 and α = 0.

First, for a vertex v ∈ V , define R+
v := {kv : k ≥ 0} to be the nonnegative ray generated

by v. For a face F of Σ for which 0 ∈ F , we can define a polyhedral set F̃ which contains F .

Let KF be the set of all s′ ∈ SΣ\SF such that for the facet Fs′ of Σ, we have 0 ∈ Fs′ . Then,

we define

F̃ :=
(⋂
SF

H(s, 0)
)
∩
(⋂
KF

K(s′, 0)
)

(3.2.9)

where we recall from Definition 2.1.1 that H(s, 0) is a hyperplane with normal vector s, and

K(s, 0) is a half-space with normal vector s. We will first show that for each k-face Fk ⊂ ∂Σ

(1 ≤ k ≤ d− 1) adjacent to 0, we have

F̃k ⊂ CFk
:= Conv

( ⋃
v∈V ∩Fk

R+
v

)

We proceed by induction on k. For the base case of k = 1, we have that F1 is an edge of Σ,

and therefore V ∩F1 = {v} for a single nonzero vertex of Σ. Because V ∩F1 = {v} and since

R+
v is a convex set, we must have CF1 = R+

v . Note that, since ∩SF1
H(s, 0) is one-dimensional,
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for any nonzero x ∈ F̃1 we have x = cv for some c ∈ R. For c ≥ 0, we also have cv ∈ F̃1.

Additionally, since v ∈ ∩KF1
K(s′, 0), we cannot have −cv ∈ F̃1 for any c > 0. Therefore, we

must have x ∈ R+
F1

.

Now, for our induction hypothesis assume that for each k-face Fk ⊂ ∂Σ (1 ≤ k ≤ d − 1)

adjacent to 0, we have F̃k ⊂ CFk
. Let x ∈ ∂F̃k+1 ⊆ ∩SFk+1

H(s, 0). By Proposition 2.1.18,

there must exist at least one s′ ∈ KFk+1
such that

x ∈
( ⋂
SFk+1

∪{s′}

H(s, 0)
)
∩
( ⋂
KFk+1

\{s′}

K(s, 0)
)

Since dim (
⋂
SFk+1

∪{s′}H(s, 0)) = k and by Equation (3.2.9), this implies that x ∈ F̃ i
k for

some k-face F i
k of Σ adjacent to 0.

F̃ 1
1

F2

F̃2

F̃ 2
1

Figure 3.2: Edges F 1
1 , F 2

1 adjacent to F2 have polyhedral sets F̃ 1
1 , F̃ 2

1 which generate the
polyhedral set F̃2.

Then, if {F i
k}I is the collection of k-faces adjacent to both Fk+1 and 0, by our inductive hy-

pothesis we have that ∂F̃k+1 ⊂
⋃
I CF i

k
. By [15, Lemma 1.4.1], we know that Conv (∂F̃k+1) =

F̃k+1. Therefore, we will finish our induction argument by showing that Conv
(⋃

I CF i
k

)
⊂

CFk+1
. Since F i

k ⊂ Fk+1 for each i ∈ I, we have that V ∩F i
k ⊂ V ∩Fk+1 for each i. Therefore,

for each i we must have

Conv
( ⋃
V ∩F i

k

R+
v

)
⊂ Conv

( ⋃
V ∩Fk+1

Rv

)
= CFk+1
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and so ⋃
I

CF i
k
⊆ CFk+1

which completes our induction argument.

We will now use a similar argument to show that Σ ⊆ ∪VR+
v . Let KΣ be the set of s′ ∈ Σ for

which Fs′ is adjacent to 0. Then we can define the following polyhedral set which contains

Σ:

Σ̃ :=
⋂
KΣ

K(s, 0)

Using an argument similar to one above, we will show that ∂Σ ⊂ ∪KΣ
F̃s. Let x ∈ ∂Σ. By

Proposition 2.1.18, there exists at least one s′ ∈ KΣ such that x ∈ H(s′, 0)
⋂

(∩KΣ\{s′}).

This implies that x ∈ F̃s′ for some s′ ∈ KΣ, and so we have that ∂Σ ⊂ ∪KΣ
F̃s′ . Since

Conv (∂Σ) = Σ, and since V ∩ Fs′ ⊆ V for each s′ ∈ KF , we have that Σ̃ ⊆ Conv (∪VR+
v ),

as desired.

Figure 3.3: The convex hull of rays emanating from the origin contains the entire polyhedron.

Let x ∈ Σ\{0}. Since Σ ⊆ Conv (∪VR+
v ), then by [6, Theorem 2.2], x can be written as a

convex combination x =
∑n

i=1 αiyi for some {yi} ⊆ ∪VR+
v , with at least one yi′ nonzero and

at least one αi′ > 0. Since each αi ≥ 0, since each yi = kivi for some ki ≥ 0, vi ∈ V \{0} and

since V ⊂ H+, we have that x · w > 0. Therefore, we have that Σ\{0} ⊂ H+.
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Theorem 3.2.21. If the vertex representation of a facet Fs in DV is a source (sink) in DV ,

then V ⊂ F+
s (V ⊂ F−s ).

Proof. Consider the affine hyperplane HV := Aff (V ∆) in 〈NΣ(V )〉 and the hyperplane HJs

given by

HJs := {x ∈ 〈NΣ(V )〉 : x · Js = 0}

Since Js·s = 0 and by the symplectic-faced property of Σ, for any s̃ ∈ V with dim (Fs ∩ Fs̃) =

2 we have Js̃ · s 6= 0, then we know HJs 6= HV . Since dim (〈NΣ(V )〉) = 4, we have that

PJs := HJs ∩HV is two-dimensional. By Theorem 3.1.23, it suffices to show that V ∆ ⊂ P+
Js.

Suppose that the vertex representation vs ∈ V (DV ) of a facet Fs is a source in DV . Let S̃

be all s̃ ∈ SV for which dim (Fs ∩ Fs̃) = 2. By vs a source and by Definition 3.2.19, we know

that Js · s̃ > 0, for all s̃ ∈ S̃ and therefore we have S̃ ⊂ P+
Js. Since V ∆ is a polytope and

since PJs is a hyperplane in Aff (V ∆), then by Lemma 3.2.20, we have V ∆ ⊂ P+
Js.

We have shown that sinks and/or sources of DV represent facets whose glide-only trajectories

flow into V , and now we will show that certain cycles in DV represent glide-only edges whose

trajctories flow into V .

Proposition 3.2.22. Let E ⊂ Σ be an edge adjacent to V . If the subdigraph DE ⊂ DV is a

cycle, then E is glide-only and either V ⊂ E+ or V ⊂ E−.

Proof. By Proposition 3.2.11, E is either glide-only or bounce-only, so suppose E is bounce-

only. By Definition 3.2.19, by DE a cycle, and by Σ symplectic-faced, for each vertex s ∈ SE,

there must exist s, s ∈ SE such that Js · s < 0, Js · s > 0. However, by Theorem 3.1.23, this

implies that there does not exist a facet F such that E ⊂ F+, and this contradicts Theorem

3.2.15. Therefore, E cannot be bounce-only and so E is glide-only. Since E is one-dimensional

and glide-only, then we must have either V ⊂ E+ or V ⊂ E−.
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Our main theorem will be an algorithm that searches the directed graph DV for either

sources, sinks, or cycles, in order to find glide-only faces which flow into V . The algorithm

will first consider a cycle in DV (if one exists), then it will consider the two hemispheres of

DV created by this cycle. Inside of each hemisphere, we will search for nested cycles until we

find either a source/sink or we find that the cycle bounds a face of DV . The following lemma

corresponds with our main algorithm terminating: when we are unable to find smaller cycles.

Lemma 3.2.23. Let C be a directed topological cycle of a topological planar digraph D for

which π(D) is homeomorphic to a disk. If H
C̊

does not contain a cycle C1 with C1 6= C.

Then, either

i HC̊ contains a vertex which is a sink or a source in D

ii HC̊ is empty

Proof. If V (HC̊), A(HC̊) are both empty then we are done. Therefore, we will first consider

the case that V (HC̊) is nonempty and consider the subdigraph D̃ of D with vertex set

V (D̃) :=
{
v ∈ V (D) : vu ∈ A(D) for some u ∈ V (HC̊)

}⋃
V (HC̊)

and arcs of D̃ are given by

A(D̃) := A(D)\A(C)

Figure 3.4: From D, we can construct a digraph D̃ which deletes the arcs of the cycle
bounding D, but which keeps the arcs attaching to points on the interior of D.
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Since D̃ is a subdigraph of H
C̊

and since C is the only cycle in H
C̊

, then we have that D̃ is

acyclic, and therefore D̃ must have a sink and a source. By definition of A(D̃), if any vertex

in V (HC̊) is a sink/source of D̃, then this vertex is also a sink/source in D. Now, suppose

that no vertex v ∈ V (HC̊) is a sink or a source of D̃, i.e. suppose that for any source/sink

v, v of D̃, we must have v, v ∈ V (C). We will first show that for a source v ∈ V (C), there

exists a path v · · · vi · · · v in D̃ for i ≥ 1 and for some sink v ∈ V (D̃). Since v is a source and

by definition of D̃, there must exist v1 ∈ V (HC̊) such that vv1 ∈ A(D̃) and we take P = vv1.

We now construct P recursively. Given vi in P , if there exists an arc viu ∈ A(D̃) for some

u ∈ V (D̃), take vi+1 = u and let P = vv1 · · · vivi+1, otherwise let P = vv1 · · · vivi+1 with

vi+1 as the terminal vertex of P . Since D̃ is finite and acyclic, we know that P is finite and

we know that P consists of distinct vertices, i.e. P is indeed a path. By definition of P , its

terminal vertex must be some sink v of D̃ and so by assumption v ∈ V (C). However, since

C is a cycle with v, v ∈ V (C), then there exist vertices ui ∈ V (C) such that vu1u2 · · · v is a

path in D (or possibly vv ∈ A(C)). So, we can construct a path C1 = vv1 · · · vu1 · · · v.

v1

v2

v3

Figure 3.5: The existence of a path between cycle vertices v1 and v3 (left, in blue) implies
the existence of a smaller cycle inside of H

C̊
(right, in blue)

However, C1 6= C and C1 is a cycle, which is impossible. Therefore, there must exist a vertex

in V (HC̊) which is either a sink or source of D.

The following lemma corresponds with the iteration of our algorithm: finding a smaller cycle

which bounds a strictly smaller number of faces of DV .
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Lemma 3.2.24. Let C be a directed topological cycle of a connected topological planar digraph

D for which π(D) is homeomorphic to a disk. If H
C̊

contains a cycle C1 such that C1 6= C,

then fH
C̊1

< fH
C̊

.

Proof. By Proposition A.2.13, we know that H
C̊

is connected. Since H
C̊

is planar and con-

nected, then by [11, p.65-66] the Euler characteristic χ of H
C̊

is given by

χ = v − e+ f = 1

Let v1, e1, f1 be the number of vertices, edges and faces of H
C̊1

(respectively). Note that

since C1 6= C, then v1 ≤ v, e1 < e. By Proposition A.2.13 and H
C̊1

planar, for the Euler

characteristic of H
C̊1

given by χ1, we have χ1 = 1.

Let the vertices, edges and faces of H
C̊1

be given (respectively) by v1 = v − k, e1 = e −m

and f1 = f − n for some 0 ≤ k ≤ v, 1 < m ≤ e, 0 ≤ n ≤ f . Then, we must have

χ1 =v1 − e1 + f1 = 1

v − k − e+m+ f − n = 1

1 +m− k − n = 1

m− k = n

Since deleting a vertex deletes at least two edges, we must have m ≥ 2k and so we are

done.

Proposition 3.2.25. Let V be a vertex of a symplectic-faced 4-polytope Σ. Then, DV is

planar.

Proof. By Theorem 2.2.7, DV is the graph of a 3-polytope. By Steinitz’ Theorem [16, The-

orem 4.1], we then have that DV is planar.

Theorem 3.2.26. For a vertex V of a symplectic-faced 4-polytope Σ, there exist unique

glide-only faces Fs, Fs of Σ such that V ⊂ F+
s and V ⊂ F−s .
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Proof. If DV is acyclic, then by Proposition A.1.15, DV has a source and a sink. By The-

orem 3.2.21 and Theorem 3.2.17, there is only a single source in DV and it is the vertex

representation of a facet Fs, with the property that V ⊂ F+
s . Similarly, there is only a single

sink in DV which is the vertex representation of a facet Fs with the property that V ⊂ F−s .

Suppose now that DV has at least one cycle, C. Let π be an embedding of DV into S2 and let

∞ ∈ S2 for which ∞ /∈ π(G). Since π(C) is homeomorphic to S1, then by the Jordan Curve

Theorem [11, p.75], S2 = π(C)+ ∪ π(C)− where π(C)+, π(C)− are each homeomorphic to a

closed disk with boundary π(C) and such that ∞ ∈ π(C)+. Consider the underlying graph

of (π(C)+)◦, HC̊+
. By Lemmas 3.2.23 and 3.2.24, we will have one of three possible cases.

Figure 3.6: The cycle C (light blue) cuts the polyhedron V ∆ into two hemispheres
π(C)+, π(C)−, each of which is homeomorphic to a closed disk with boundary π(C).

Case 1: HC̊+
is empty, which by definition implies that C bounds a face of DV and by Propo-

sition 3.2.22, H
C̊+

is the representation of a glide-only edge F0 of Σ, and so we have either

V ⊂ F+
0 or V ⊂ F−0 .

Case 2: HC̊+
contains a sink or a source v. We will now show that v is also a sink/source in DV ,

and WLOG we will consider the case that v is a sink in DV . Suppose not, i.e. suppose that

there exists a vertex v0 ∈ V (DV )\V (H
C̊+

) such that vv0 ∈ A(DV ). However, by continuity

∃y ∈ π
(
fvv0((0, 1))

)
such that for some edge E ⊂ C and some x ∈ E we have π(x) = y and

this contradicts that π is the embedding of a planar digraph DV .
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By Theorem 3.2.21, v is the vertex representation of a facet F0 for which either V ⊂ F+
0 or

V ⊂ F−0

Case 3: HC̊+
contains a cycle C1 6= C, and by Lemma 3.2.24 we have fH

C̊1

< fH
C̊

. We then

must have that HC̊1+
meets the criteria of Case 1, 2, or 3, and we can iterate the procedure

of examining HC̊i+
and checking for a sink/source in HC̊i+

or a smaller cycle Ci+1. Since a

cycle must bound at least one face and Ci+1 must bound strictly fewer faces than Ci , we

know that this procedure will eventually find either a sink/source (representing a facet F0)

or find a face which represents a glide-only edge F0 of Σ.

We can proceed similarly for HC̊−
and we will find a facet or glide-only edge F1 for which

either V ⊂ F+
1 or V ⊂ F−1 . By Theorem 3.2.17, we know F1, F0 are the only such glide-only

faces.

3.2.4 Existence/Uniqueness of Generalized Characteristics in a Symplectic-Faced 4-Polytope

Before we demonstrate the existence/uniqueness of generalized characteristics passing through

a point x ∈ ∂Σ, we will identify two natural “small” generalized characteristics which begin

and end in face(s) containing x.

Definition 3.2.27. Let F g be a glide-only face of a symplectic-faced 2n-polytope. A gen-

eralized characteristic X = Im (γ) of Σ is a short GC of F g if γ(t0) ∈ ri (F g) for some

t0 ∈ Int (Iγ) and Iγ = (t0, t0).

Proposition 3.2.28. Let x0 ∈ ri (F g) for some glide-only face F g of a symplectic-faced

2n-polytope. Then, there exists a unique short GC X of F g for which x0 ∈ ri (F g).

Proof. By F g a glide-only face, we can construct a GCP γ : (t, t)→ ∂Σ with γ(0) ∈ ri (F g)

given by

γ(t) = γ(0) + tg
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for any t ∈ [t, t] and we then have that Xγ is a short GC with x0 ∈ Int (Xγ). Let Xγ0 be a

short GC with x0 ∈ Int (Xγ0). By definition of a short GC containing x0, there must exist

t0 ∈ Iγ0 such that γ0(t0) = x0 ∈ ri (F g). By definition of glide-only via g, we also have that

γ0(t) = γ0(t0) + tg

for t ∈ [t0, t0]. Since γ(0) = x0 = γ0(t0) and g is a nonzero vector, we must have that t0 = 0,

and therefore Xγ = Xγ0 .

Proposition 3.2.29. Let x0 ∈ ri (F ) for some bounce-only face F of a symplectic-faced 4-

polytope Σ. Then, there exists a unique pair of short GCs X−, X+ such that x0 ∈ X− ∪X+.

Proof. By definition of a symplectic-faced polyhedral set, by Theorem 3.1.14, and by Propo-

sitions 3.1.11 and 3.2.11, this claim needs to be shown for the case of F a face, F an edge, or

F a vertex. By Theorems 3.1.22, 3.2.15, 3.2.26, there exists a unique pair of glide-only faces

F g, F g̃, there exists points y0, ỹ0 ∈ F g, F g̃ and there exists t > 0 such that

y0 + tg = x0 = ỹ0 − tg̃

By Proposition 3.2.28, there exists a unique pair of short GCs X−, X+ for which y0 ∈ X−,

ỹ0 ∈ X+. Since y0, ỹ0 were arbitrary and X−, X+ are unique for any y0 ∈ ri (F g), ỹ0 ∈ ri (F g̃),

then our claim is shown.

Theorem 3.2.30. Let Σ be a symplectic-faced 4-polytope. Then, for x0 ∈ ∂Σ, there exists a

generalized characteristic X of Σ and ∃ε > 0 such that

i x0 ∈ X

ii for any other generalized characteristic X0 of Σ with x0 ∈ X0, we have Bε(x0) ∩X0 =

Bε(x0) ∩X.

Proof. Let Σ be a symplectic-faced 4-polytope. Then, we know that x0 ∈ ri (F ) for a glide-

only or bounce-only face F of Σ. In the case that F is a glide-only face, by Proposition 3.2.28,
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there exists a unique short GC X such that x0 ∈ X. Let X0 be a generalized characteristic

of Σ with x0 ∈ X0. Since x ∈ ri (F ), there exists an ε > 0 such that Bε(x0) ⊆ ri (F ). Then,

by definition of a glide-only face, we have Bε(x0) ∩X0 = Bε(x0) ∩X.

In the case that F is a bounce-only face, by Proposition 3.2.29, there exists a unique pair of

short GCs X−, X+ of F g, F g̃ (respectively) such that x0 ∈ X− ∪X+. By x0 ∈ ri (F ), ∃ε > 0

such that Bε(x0) ∩ (F g ∪ F ∪ F g̃) ⊆ ri (F g) ∪ F ∪ ri (F g̃). Then, by definition of a glide-only

face, we have Bε(x0) ∩ (X− ∪X+) = Bε(x0) ∩X0.
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4 GENERALIZED CHARACTERISTICS OF SYMPLECTIC-FACED POLYTOPES IN

R2n

In order to generalize the previous uniqueness/existence results of generalized charachteristics

of symplectic-faced polytopes to higher dimensions, one must first establish the same bounce-

only/glide-only dichotomy present in R4. In 6-polytopes, one can not immediately rule out

the possibility of a 3-face admitting a 2-dimensional family of characteristic directions. In

this chapter, we will show that the bounce-only/glide-only dichotomy which was immediate

in symplectic-faced 4-polytopes also extends to faces of a symplectic-faced 2n-polytope. Once

the bounce-only/glide-only dichotomy is established for symplectic-faced 2n-polytopes, we

will then take the existence/uniqueness arguments used for edges E of symplectic-faced 4-

polytopes and generalize them to codimension-three faces of a symplectic-faced 2n-polytope.

4.1 Bounce-only / Glide-only Dichotomy in R2n

For our general argument, we will return to the setting of conjugate faces. The following

proposition shows us that a characteristic vector of a face F can be scaled in a way that

places it inside the conjugate face F∆.

Proposition 4.1.1. Let F be a face of a polytope Σ for which dim (Char (F )) ≥ 1. Then,

there exists an affine hyperplane HF in 〈JNΣ(F )〉 such that for v ∈ Char (F ), there exists

k > 0 such that kv ∈ JF∆ ⊂ HF .

Proof. By Theorem 2.2.7, we know thatHF := Aff (JF∆) is an affine hyperplane in 〈JNΣ(F )〉.

Let v ∈ Char (F ) be nonzero. Then, v =
∑

SF
ksJs for some ks ≥ 0. Take k := 1∑

S ks
. Since

kv ∈ Conv (JSF ), then by Proposition 2.2.8, we have kv ∈ JF∆ ⊂ HF .

67



When working in the conjugate face of an odd-dimensional face F of Σ, the following lemma

gives us a particular correspondence between boundary faces of JF∆ and even-dimensional

faces of Σ.

Lemma 4.1.2. Let F be a face of a 2n-polytope Σ with dim (F ) odd and dim (F ) < 2n− 2.

Then, for any y ∈ rb (JF∆), there exists an even dimensional face F0 of Σ such that JF∆
0 ⊆

rb (JF∆) and y ∈ JF∆
0 .

Proof. By Proposition 2.2.8 and Theorem 2.2.7, we know that rb (JF∆) is the boundary of a

(codim (F )−1)-polytope. Then, dim (rb (JF∆)) = codim (F )−2 must be odd, and so facets

of JF∆ are of odd-dimension. Let y ∈ rb (JF∆). Then, by Corollary 6.5 ([6], p. 41), there

exists a face F0 of Σ such that F∆
0 is a facet of rb (JF∆) and y ∈ F∆

0 .

By Theorem 2.2.7 and Corollary 6.5 ([6], p. 41), we get that

dim (F0) = dim ((F∆
0 )∆) = 2n− 1− dim (F∆

0 )

and since dim (F∆
0 ) is odd, F0 ⊂ Σ is even-dimensional.

The following theorem establishes the bounce-only/glide-only dichotomy of symplectic-faced

2n-polytopes.

Theorem 4.1.3. Let F be a face of a symplectic-faced 2n-polytope. Then dim (Char (F )) = 0

or dim (Char (F )) = 1.

Proof. Let cF := codim (F ), dF := dim (F ) and chF := dim (Char (F )). By Proposition

3.1.11, by Theorem 3.1.14, and by definition of a symplectic-faced polytope, it remains to

show our claim for the case of 3 ≤ dF ≤ 2n−3 and dF odd, which implies that 3 ≤ cF ≤ 2n−3

and cF is odd.

Consider the case that chF = cF = dF . Then, we have that 〈JNΣ(F )〉 = NΣ(F )⊥. However,

there must exist s, s̃ ∈ SF such that dim (Fs ∩ Fs̃) = 2n− 2, and Js ∈ NΣ(F )⊥ implies that

Js · s̃ = 0, which violates that Σ is symplectic-faced.
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Now consider the case that chF ≥ 2 and let v ∈ Char (F ). We will show that ∃w ∈ NΣ(F )⊥∩

rb (kJF∆) for some k > 0. By Proposition 4.1.1, ∃k > 0 such that kv ∈ JF∆ and for the

hyperplane HF from Proposition 4.1.1 with kv ∈ HF , we have HF ∩ NΣ(F )⊥ 6= ∅. Let

AF := HF ∩ NΣ(F )⊥. Since kv ∈ AF , we know AF isn’t empty. Note that HF is given

by exactly one linear constraint in 〈JNΣ(F )〉 and since cF ≥ 3 and chF ≥ 2, we know

NΣ(F )⊥ ∩ 〈JNΣ(F )〉 is given by at most chF − 2 constraints. Therefore, AF is given by at

most chF − 1 constraints, which means that dim (AF ) ≥ 1.

We will now show that AF must intersect rb (JF∆). If kv ∈ rb (JF∆), we are done. Suppose

not, i.e. suppose that kv ∈ ri (JF∆). Since JF∆ is compact and AF is unbounded, then

there must exist z ∈ AF ∩ (JF∆)c. By AF convex, we have that αkv + (1 − α)z ∈ AF for

all α ∈ [0, 1]. Then, there must exist α̃ ∈ (0, 1) such that w := α̃kv + (1− α̃)z ∈ rb (JF∆).

Since w ∈ AF , we know that w ∈ NΣ(F )⊥, and so w ∈ NΣ(F )⊥ ∩ rb (JF∆).

Now we will show that the existence of such a w violates that Σ is symplectic-faced. By

Lemma 4.1.2, there exists a (cF − 2)-dimensional face G of JF∆ such that G = JF∆
0 for

some even-dimensional face F0 of Σ. By Proposition 2.2.8, we know G = Conv (JSF0),

JF∆ = Conv (JSF ) and since G ⊂ JF∆, we have SF0 ⊂ SF . Then, we must have w ∈

NΣ(F )⊥ ⊂ NΣ(F0)⊥. Additionally, we know w ∈ Conv (JSF0) and so by Proposition 2.2.8,

we have w ∈ Char (F0). However, F0 is even-dimensional and having dim (Char (F0)) > 0

violates that Σ is symplectic-faced.

4.2 Flow in a Symplectic-Faced Polytope in R2n

In Chapter 3, the flow occuring transverse to a codimension-2 face in a symplectic-faced

2n-polytope Σ was described by Theorem 3.1.14, Lemma 3.1.21 and Theorem 3.1.22. By Σ

symplectic-faced, any flow transverse to a codimension-3 face will originate from the relative

interior of a facet. We will now generalize the previous result of existence/uniqueness of flow

from a facet to an edge in a symplectic-faced 4-polytope to the case of a facet flowing to a

codimension-3 face in a symplectic-faced 2n-polytope.
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Theorem 4.2.1. Let F be a face of a symplectic-faced 2n-polytope Σ with codim (F ) > 1.

If Fs, Fs̃ are facets of Σ for which F ⊂ F+
s (F ⊂ F−s ) and F ⊂ F+

s̃ (resp. F ⊂ F−s̃ ), then

we must have Fs = Fs̃.

Proof. WLOG, suppose that F ⊂ F+
s and F ⊂ F+

s̃ for s 6= s̃. Then, by Theorem 3.1.23, we

have that

Js · s̃ > 0

s · Js̃ > 0

However, these inequalities contradict the skew-symmetry of J . Therefore, we must have

s = s̃.

Theorem 4.2.2. Let DF be the conjugate digraph of a face F of a symplectic-faced 2n-

polytope Σ, and let Fs be a facet of Σ with s ∈ SF . Then, vs is source (sink) of DF if and

only if F ⊂ F+
s (F ⊂ F−s ).

Proof. First we show “ =⇒ ”. By Lemma 3.2.20, we have that Js · s̃ > 0 for all facets

Fs̃ adjacent to F . Then, by Theorem 3.1.23, we have F ⊂ F+
s . Now we show “ ⇐= ”. By

Theorem 3.1.23, we have that Js · s̃ > 0 for all vertices vs̃ ∈ DF . In particular, we have that

Js · s̃ > 0 for all vertices vs̃ which are adjacent to vs, and so by definition of DF , we have

that vs is a source of DF .

4.2.1 Codimension 3 Faces

By Theorem 4.1.3, we know that a codimension-three face F is either glide-only or bounce-

only. Since the behavior of generalized characteristics in the relative interior of glide-only

faces is already well understood in arbitrary dimension, we will generalize the existence result

of Theorem 3.2.15 to bounce-only faces of codimension-three. We do this by demonstrating

that the original three-dimensional picture of 〈JNΣ(F )〉 (first seen in Lemma 3.2.14) is still

relevant in the setting of a 2n-polytope.
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Proposition 4.2.3. Let F be a bounce-only face of a symplectic-faced 2n-polytope Σ for

which codim (F ) = 3. Then, we have that dim (N⊥Σ (F ) ∩ 〈JNΣ(F )〉) ≥ 1.

Proof. The proof of Proposition 3.2.13 proves exactly this claim by showing the existence of

a nonzero vector v ∈ N⊥Σ (F ) ∩ 〈JNΣ(F )〉 given that, for the matrix (F) from Proposition

2.3.7, we have rank (F) = 3 .

Theorem 4.2.4. Let F be a bounce-only face of a symplectic-faced 2n-polytope Σ for which

codim (F ) = 3. Then, there exists a unique s ∈ SF such that F ⊂ F+
s and there exists a

unique s ∈ SF such that F ⊂ F−s .

Proof. By Proposition 4.2.3 and since Σ is symplectic-faced, we must have 1 ≤ dim (N⊥Σ (F ) ∩ 〈JNΣ(F )〉) <

3. By selecting a nonzero vector v ∈ N⊥Σ (F ), the line 〈v〉 has properties identical to the line

N⊥Σ (F ) in the proof of Lemma 3.2.14, and we can guarantee the existence of our desired

s, s ∈ SF . By Theorem 4.2.1, we know that these s, s are unique.

4.2.2 Codimension 4 Faces

For a codimension-4 face F of a 2n-polytope Σ, the same proof of Theorem 3.2.26 can still

find a unique pair of glide-only faces adjacent to F , given by either a source/sink of DF or by

2-faces of DF which are bounded by a directed cycle. However, since 2-faces of DF (which are

the conjugate faces of codimension-3 faces of Σ) no longer represent one-dimensional faces

(edges) of Σ, the existence of a glide-only codimension-three face E does not immediately

guarantee that F ⊂ E+ or F ⊂ E−. We will now show that glide-only codimension-three

faces do indeed have flow transverse to F .

Proposition 4.2.5. Let Σ be a symplectic-faced 2n-polytope and let F be a face of Σ with

codim (F ) = 4. Suppose E, Ẽ are glide-only faces of Σ with codim (E) = 3 and such that

F ⊂ E+ and F ⊂ Ẽ+ (or F ⊂ E− and F ⊂ Ẽ−). Then, we must have E = Ẽ.

Proof. Suppose that E is glide-only via g, Ẽ is glide-only via g̃ and E 6= Ẽ. WLOG, assume

that F ⊂ E+ and F ⊂ Ẽ+. First we will show that g ∈ ri (JE∆) and g̃ ∈ ri (JẼ∆). WLOG,
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we consider g first. Suppose g ∈ rb (JE∆). By Proposition 2.2.8, we know that JE∆ is a

polygon, and so g = αJs1 + (1 − α)Js2 for some s1, s2 ∈ SE. However, by E glide-only via

g, we would have that g · s1 = 0, which violates that Σ is symplectic-faced. Therefore, we

must have g ∈ ri (JE∆) and g̃ ∈ ri (JẼ∆). Additionally, by Proposition 2.1.13, we know that

g /∈ JẼ∆.

We know that g =
∑

s∈SE
ksJs and g̃ =

∑
s̃∈SẼ

ks̃Js̃. By Theorem 3.1.23 and skew symmetry,

we have

g ·
( ∑
s̃∈SẼ

ks̃s̃
)
> 0

( ∑
s∈SE

ksJs
)
· g̃ < 0 (4.2.1)

(4.2.2)

However, by F ⊂ Ẽ+ and Theorem 3.1.23, we have

( ∑
s∈SE

ksJs
)
· g̃ > 0

which contradicts Inequality 4.2.1. Therefore, we must have E = Ẽ.

Lemma 4.2.6. Let Σ be a symplectic-faced 2n-polytope and let F be a face of Σ with

codim (F ) = 4. Let E be a face adjacent to F with codim (E) = 3. If the subdigraph DE ⊂ DF

is a directed cycle, then E is glide-only and either F ⊂ E+ or F ⊂ E−.

Proof. If DE is a directed cycle, then for every vertex representation of a facet vs ∈ V (DE),

we have d−(vs) ≥ 1 and d+(vs) ≥ 1, and so by Theorem 4.2.2, we know that each vs is neither

a source nor a sink. Therefore, E is not in the forward or backward fence of any facet Fs.

By Theorem 4.2.4, we must then have that E is not bounce-only, and so by Theorem 4.1.3,

we must have that E is glide-only.
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If E is glide-only, then there exists g ∈ JNΣ(E) such that g · s = 0 for all s ∈ SE. By

Proposition 2.2.8, we then have that g · x = 0 for all x ∈ E∆. Consider the plane

Hg = {x ∈ Aff (F∆) : x · g = 0}

Since Hg ∩ Aff (E∆) is two-dimensional with both Hg and Aff (E∆) two-dimensional, then

we must have that Hg = Aff (E∆). Additionally, since E∆ is a facet of F∆, we have that

Hg ∩ F∆ = E∆.

By Theorem 3.1.23, we must show that F∆\E∆ ⊂ H+
g or F∆\E∆ ⊂ H−g . Suppose not,

i.e. suppose that there exists y, ỹ ∈ F∆\E∆ such that g · y > 0 and g · ỹ < 0. Note that,

since E∆ is a face of F∆, by Proposition 2.1.10 we have that F∆\E∆ is convex. Then,

by convexity of F∆\E∆ and the intermediate value theorem, there exists α̃ > 0 such that

α̃y + (1 − α̃)ỹ ∈ F∆\E∆ and
(
α̃y + (1 − α̃)ỹ

)
· g = 0. However, this contradicts that

α̃y+(1− α̃)ỹ /∈ E∆. Therefore, for all x ∈ F∆\E∆, we must have either x ·g > 0 or x ·g < 0,

as desired.

Theorem 4.2.7. Let Σ be a symplectic-faced 2n-polytope and let F be a face of Σ with

codim (F ) = 4. Then, there exist unique glide-only faces Fs, Fs of Σ such that F ⊂ F+
s and

F ⊂ F−s .

Proof. By Proposition 2.2.8, we know that F∆ is a 3-polytope and so by Steinitz’ Theorem

[16, Theorem 4.1], DF is a planar digraph. By Theorem 4.2.2 and Lemma 4.2.6, the proof

of Theorem 3.2.26, along with Theorem 4.2.1 and Proposition 4.2.5 guarantees the existence

and uniqueness of the desired glide-only faces Fs, Fs.

Proposition 4.2.8. Let Σ be a symplectic-faced 2n-polytope and let x0 ∈ ri (F ) for F a

bounce-only face of Σ with codim (F ) ≤ 4. Then, there exists a unique pair of short GCs

X−, X+ such that x0 ∈ X− ∪X+.

Proof. By definition of a symplectic-faced polyhedral set, by Theorem 3.1.14, this claim needs

to be shown for the case of codim (F ) = 2 and codim (F ) = 3. By Theorems 3.1.22, 4.2.4 and
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4.2.7 there exists a unique pair of glide-only faces F g, F g̃, there exists points y0, ỹ0 ∈ F g, F g̃

and there exists t > 0 such that

y0 + tg = x0 = ỹ0 − tg̃

By Proposition 3.2.28, there exists a unique pair of short GCs X−, X+ for which y0 ∈ X−,

ỹ0 ∈ X+. Since y0, ỹ0 were arbitrary and X−, X+ are unique for any y0 ∈ ri (F g), ỹ0 ∈ ri (F g̃),

then our claim is shown.

Theorem 4.2.9. Let Σ be a symplectic-faced 2n-polytope and let x0 ∈ ri (F ) for F a face

of Σ with codim (F ) ≤ 4. Then, there exists a generalized characteristic X of Σ and ∃ε > 0

such that

i x0 ∈ X

ii for any other generalized characteristic X0 of Σ with x0 ∈ X0, we have Bε(x0) ∩X0 =

Bε(x0) ∩X.

Proof. Let Σ be a symplectic-faced 2n-polytope and let x0 ∈ ri (F ) for F a face of Σ with

codim (F ) ≤ 3. Then, we know that x0 ∈ ri (F ) for a glide-only or bounce-only face F of

Σ. In the case that F is a glide-only face, by Proposition 3.2.28, there exists a unique short

GC X such that x0 ∈ X. Let X0 be a generalized characteristic of Σ with x0 ∈ X0. Since

x ∈ ri (F ), there exists an ε > 0 such that Bε(x0) ⊆ ri (F ). Then, by definition of a glide-only

face, we have Bε(x0) ∩X0 = Bε(x0) ∩X.

In the case that F is a bounce-only face, by Proposition 4.2.8, there exists a unique pair of

short GCs X−, X+ of F g, F g̃ (respectively) such that x0 ∈ X− ∪X+. By x0 ∈ ri (F ), ∃ε > 0

such that Bε(x0) ∩ (F g ∪ F ∪ F g̃) ⊆ ri (F g) ∪ F ∪ ri (F g̃). Then, by definition of a glide-only

face, we have Bε(x0) ∩ (X− ∪X+) = Bε(x0) ∩X0.
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Appendix A Graph Theory

A.1 Graphs and Digraphs

The following facts are taken from Digraphs: Theory, Algorithms and Applications [3], pages

2-19.

Definition A.1.1. A graph G is a non-empty finite set V (G) of elements called vertices

and a finite set of E(G) of unordered pairs of distinct vertices, called edges.

Definition A.1.2. A digraph D is a non-empty finite set of vertices V (D) and a finite set

of ordered pairs of distinct vertices A(D), whose elements are called arcs.

Definition A.1.3. For an arc (u, v) ∈ A(D), we say that the vertices u, v ∈ V (D) are the

end-vertices of (u, v), and we say that u is the tail of (u, v), v is the head of (u, v).

Definition A.1.4. A digraph H is a subdigraph of D if V (H) ⊆ V (D), A(H) ⊆ A(D)

and every arc in A(H) has both end-vertices in V (H).

Definition A.1.5. Let v ∈ V (D). The in-degree d−(v) of v is the number of arcs of D

whose head is v. The out-degree d+(v) of v is the number of arcs of D whose tail is v.

Definition A.1.6. We say v ∈ V (D) is a source in D if d−(v) = 0 and we say v is a sink

in D if d+(v) = 0.

Definition A.1.7. A walk in D is a sequence

W = x1x2x3 . . . xk−1xk
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of xi ∈ V (D) such that xixi+1 ∈ A(D) for every 1 ≤ i ≤ k− 1. We say that W is a (x1, xk)-

walk. Similarly, we can define a walk in a graph G for xi ∈ V (G) and xixi+1 ∈ E(G).

Definition A.1.8. A path is a walk W with distinct vertices.

Definition A.1.9. A graph G is connected if for every vertex u, v ∈ V (G) there exists a

(u, v)-walk in G.

Definition A.1.10. A cycle of a digraph D is a (x1, xk) walk for which x1 = xk and {xi}

are distinct for 1 ≤ i ≤ k − 1

Definition A.1.11. A digraph D is acyclic if it contains no cycles.

Definition A.1.12. A digraph D is an orientation of a graph G if D is obtained from G

by replacing each edge of G by the ordered pair (x, y) or (y, x). If D is an orientation of a

graph G, we say such a graph G is oriented.

Definition A.1.13. The underlying graph UG(D) of a digraph D is the unique graph G

such that D is an orientation of G.

Definition A.1.14. A digraph D is said to be connected if UG(D) is connected.

Proposition A.1.15. ([3], p. 13) Every acyclic digraph has a source and a sink.

A.2 Topological Graphs

Definition A.2.1. ([7]) A topological graph G is a topological space G = V ∪ E, where

1. V is a finite discrete set

2. E is a finite disjoint union of intervals called edges

3. For each edge e ⊂ E, there is a continuous map fe : [0, 1]→ G mapping (0, 1) homeo-

morphically onto e and sending {0, 1} to V .
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Definition A.2.2. A topological subgraph H = VH∪EH of a topological graph G = V ∪E

is a topological graph with

1. VH ⊂ V

2. EH = {e ⊂ E : fe({0, 1}) ⊂ VH}

Definition A.2.3. Given a topological graph G, we define the underlying graph of G to

be the graph UG(G) given by

1. V (UG(G)) = V

2. E(UG(G)) = {v1v2 : v1, v2 ∈ V and ∃ edge e ⊂ E such that v1, v2 ∈ fe({0, 1})}

Note that we will refer to both a topological graph and its underlying graph as G, and we

will refer to the vertices and edges of UG(G) as V (G), E(G) respectively.

Definition A.2.4. A topological graph is said to be connected if its underlying graph is

connected.

Definition A.2.5. A topological cycle is a topological graph which is homeomorphic to

S1.

Definition A.2.6. A topological graph G is planar if there exists a map π : G → S2 such

that π(G) is homeomorphic to G (i.e. π is an embedding).

Definition A.2.7. Let (G, π) be a planar topological graph. We call each region in π(G)c a

face of G.

Definition A.2.8. Let (G, π) be a planar topological graph. We use fG to mean the number

of faces of G.

By the Jordan Curve Theorem ([11], p. 249), we can define a particular region of the plane

cut out by the embedding of a cycle.
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Definition A.2.9. Let (G, π) be a planar topological graph and C a cycle of G. We define

C̊ to be the bounded open domain with ∂C̊ = π(C).

Definition A.2.10. Let (G, π) be a planar topological graph and X a subset of S2. We define

the underlying topological graph HX of X to be the topological subgraph HX ⊂ G such

that π(HX) = X ∩ π(G).

Definition A.2.11. A topological digraph is a topological graph whose underlying graph

is oriented.

Definition A.2.12. A directed topological cycle is a topological cycle whose underlying

digraph is a cycle.

Proposition A.2.13. Let (D, π) be a planar topological digraph whose underlying digraph

is connected. If C is a directed topological cycle of D, then H
C̊

is connected.

Proof. Let u, ũ ∈ V (H
C̊

). Since D is connected, there exists a path P = uu1u2 . . . ũ for

ui ∈ V (D). If all ui ∈ V (H
C̊

), then we are done. Consider each sub-path Pi = vi1v
i
2 . . . v

i
ni

of P such that for all vertices vijof Pi, we have vij /∈ V (H
C̊

). Let N be the number of such

sub-paths Pi. Since D is planar and since C̊ is homemorphic to a closed disk, then for each

i there must exist {ui, ũi}Ni=1 ⊂ C and paths P̃i in H
C̊

such that P can be written as

P = uP̃0 · · ·u1P1ũ
1P̃1u

2P2ũ
2 · · ·unPnũnP̃nũ

However, all of ui are in a cycle C, and so we can construct a path P̃ from P by replacing

each Pi with the unique path in C which has initial vertex ui and terminal vertex ũi. Then,

P̃ is a path from u to ũ with vertices contained in H
C̊

.
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