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ABSTRACT 

 

 Forensic science is the cornerstone of criminal investigations. Due to the 

overexposure of forensic science in the media, the true nature of forensic science is often 

overlooked. Forensic science is a rigorous exacting science that applies methods developed in the 

wider scientific community to the analysis of evidence collected from crime scenes.  As far back 

as the 6th century people were using forensics to solve crimes. Since then the science behind 

forensic science has increased exponentially with new methods being researched and developed. 

This research aims to address two of the larger subsections of forensic science, arson and drug 

detection. The number of arson cases each year continues to grow and cause hundreds of thousands 

of dollars of damage. The study conducted in this research aimed to create a preliminary database 

of evaporated gasoline samples using the internal standard di-n-decyl sulfide. This study shows 

that by using the internal standard, di-n-decyl sulfide, and the changes that occur in the gas 

chromatograms of gasoline samples that are evaporated, forensic chemists can assist arson 

investigators by determining fuel grades, sample origins (gas stations), and gasoline evaporation 

levels. The remaining studies performed in this research deal with the detection of drugs in 

biological matrices. A method was developed using matrix assisted laser desorption ionization, or 

MALDI, to detect the presence of caffeine in fingerprints, sweat, and saliva. An improved method 

for the detection of marijuana in hair was also performed in this research. The new method 

developed in this study required fewer analysis hours and detected comparable concentrations (120 

pg/mg ± 10 pg/mg) of marijuana metabolites in hair compared to current methods found in 
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literature. Forensic science is an expanding field that requires the assistance from researchers to 

create new methods and improve old methods.  
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CHAPTER 1 

HISTORY AND IMPORTANCE OF FORENSIC SCIENCE 

 

1.1 INTRODUCTION 

This chapter has been written for those people that don’t appreciate or know what 

forensic science really is. It will define forensic scientists and examine its evolution from as early 

as the 6th century to the present. This chapter will further touch on some of the famous court 

cases, policy changes, and accrediting bodies that have helped influence people’s trust in the 

criminal justice system.  

 

1.2 WHAT IS FORENSIC SCIENCE? 

The term forensics has various meanings. The earliest definition, “of the forum,” originated 

from Rome. Criminal cases were presented to the public in the forum. The accuser and accused 

were allowed to introduce their cases to the public. The person with the best argument would win 

the case. Although modern forensics has evolved significantly from Roman times, there are aspects 

in common. 

In modern times, the word forensics is an accepted shortened term of forensic science. It is 

the use of science to determine the guilt or innocence of those who are accused of breaking the 

laws. Forensic scientists use a wide range of scientific disciplines to do their jobs including, 

pathology, chemistry, biochemistry, physics, and mathematics. 
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A major commonality that modern day forensics shares with its Roman counterpart is the 

requirement of presenting evidence in front of the public. Forensics scientists are required to 

appear before the judge and defend the evidence that they have analyzed. Evidence can vary 

widely, from blood spatter patterns, to a deceased body, or even potentially illicit substances. 

Forensic scientists are required to have a firm knowledge of their specialty and are required to use 

science to support their methods. Failure to use scientifically sound techniques could result in the 

conviction of the innocent. [1] 

 

1.3 FORENSICS AS AN APPLIED SCIENCE 

Forensics is a multi-disciplinary science that encompasses nearly all sub categories in the 

wider scientific community. Physicists, biologist, chemists, archeologist, geologists, and even 

mathematicians make up the ranks of a forensic laboratory. These scientists apply the knowledge 

and specialized training of their specialties in order to effectively analyze evidence. 

Trace evidence is a forensic division with a wide range of duties. Trace evidence is 

comprised of all the small traces that are transferred from one object to another during contact. 

Trace evidence includes hair, fibers, gunshot residue, soil, wood, paint, and many more. This 

division of forensics uses skills from biology, chemistry, geology, and other disciplines to analyze 

the evidence and connect it to the person or object that left it behind. 

Forensic DNA experts continually stay abreast of their ever-improving field. They adopt 

newly validated testing reagents, testing methods, DNA genetic markers, and other advances made 

in their field. DNA related research is a rapidly expanding field that works to sequence genomes, 

clone animals, discover the genetics of cancer and more. Applying DNA advancements to 

forensics has resulted in an increase in the conviction rate of criminals, a decrease in the conviction 
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rate of the innocent, and an increase in the exoneration of those falsely incarcerated. [1] 

Drug chemists or forensic chemists make up a majority of many crime laboratories. These 

chemists are tasked with identifying and classifying unknown drugs found at a crime scene or on 

a suspect. There are wide varieties of techniques that make up a drug chemists’ arsenal. Forensic 

chemists use color tests, chromatography, spectrometry, spectroscopy, and spectrophotometry 

among others to analyze the vast number of cases that come their way. Due to the high number of 

drug cases, drug chemists do not have the time to conduct research to advance their field. They 

rely on research scientists to develop new or advanced methods in order to improve their craft. 

Arson analysis is a current changing field of forensic science. In previous years, arson 

investigation was one of the least scientific fields. Investigators used intuition and ‘rules of thumb’ 

passed down over the years to analyze crime scenes. Early arson investigators used instinct and 

non-science based logic to determine how fires behaved and what marks it left on the crime scene. 

Recent high profile mistakes are causing the arson division of the forensic laboratory to receive a 

personnel update. It is has been recently recognized that scientists with chemistry or physics 

degrees perform more accurate fire analysis than arson investigators. It is through the application 

of knowledge on how fire behaves and how materials can affect fires that will elevate arson 

investigation from a science light division to a science full division. 

 

1.4 HISTORY OF FORENSIC SCIENCE 

Forensic science has a vast and rich history. As early as the 6th century archeologists have 

been able to find evidence of civilizations, those in Egypt and the Mesopotamia, that used 

forensics. Also in the 6th century, the Chinese developed and wrote a book on forensic medicine. 

Despite the lack of modern day advances, those civilizations were able to use observation and logic 
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to determine cause of death. 

Unfortunately, not all civilizations were as advanced. Before forensics became widely 

accepted and used peacekeepers and police, some societies had less sophisticated methods of 

determining guilt. When a person was accused of a crime, they were taken in for questioning. 

Questioning in those days was a violent and brutal affair. For capital crimes such as murder, 

thievery, or arson, the accused were tortured. If they confessed, they were found guilty, but if they 

held out and didn’t confess, they were found innocent. It wasn’t until the 18th century that forensics 

started to play a larger role in determining the guilt or innocence criminals. 

It is said that one of the forefathers of modern day forensics is none other than Sherlock 

Holmes, a character in a popular detective series authored by Sir Arthur Conan Doyle in the late 

19th century. Sherlock utilized his knowledge of science and inductive reasoning to reach his 

conclusions. Inductive reasoning is the extrapolation of observed information used to arrive at 

conclusions about unobserved events. Forensics is based around these principles. Forensic 

scientists gather information from crime scenes and use those facts to paint a picture of what 

occurred. The main difference between Sherlock and modern day forensic scientists is the 

advancements in science. 

During the mid-19th to the mid-20th century, the field of forensics saw a rapid expansion of 

scientific techniques at its disposal. Mathieu Orfila is one of the first contributors to the 

advancement of science that spurred the forensic approach to investigating. In the early 19th 

century Orfila, a native of Spain, published the first treatise on poison detection and their effect on 

animals. Orfila was a renowned medical professor and is considered the father of forensic 

toxicology. His rigorous scientific study of poisons, their effect on the body, and how to detect 

them in the deceased started the process of legitimizing the use of science in criminal cases. [2] 
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While around the same time that Orfila was characterizing poisons, two men were working 

on characterizing human identification. In 1879 Alphonse Bertillon, a French criminologist and 

anthropologist, started developing the field of anthropometry. Anthropometry is a systematic 

recording of specific body measurements. Bertillon believed that an individual’s measurements 

were unique and the person could be identified by them. There were several flaws in his logic, but 

when combined with emerging photographic technology it was considered the most accurate 

technique for nearly twenty years. [3] 

In the early 20th century three separate men, Sir William James Hershel, Dr. Henry Faulds, 

and Sir Francis Galton, took a different approach to individual identification than Bertillon. 

Hershel and Faulds pioneered the development of fingerprints for identification. Hershel, a British 

officer in India, used fingerprints for contracts. Twenty years later Faulds a Scottish scientist 

proposed that fingerprints could be used for forensic work. Sir Francis Galton compiled all of the 

knowledge and understandings of fingerprints and wrote them into a book. He also proposed a 

technique that identifies and compares common patterns in fingerprints, forming a classification 

system, which is still used today. For his research into and classification of fingerprints, Galton is 

known as the father of forensic fingerprints. [4] 

In 1925 Calvin Goddard, a U.S. army colonel, turned a medical degree and a gun hobby 

into one of the most known forensic fields. Goddard developed the techniques for bullet 

comparison that are used today. He determined that the markings, commonly referred to as 

striations, left on a bullet from the barrel of the gun left distinct patterns that could be traced back 

to a gun. Using a bronchoscope and cystoscope from his medical days, Goddard was able to see 

inside the barrel of a gun and confirm that the markings made on the gun came from defects within 

the barrel itself. Along with the characterizations of striations on the bullets, Goddard also 
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modified the comparison eyepiece for the microscope to allow for the simultaneous analysis of 

two separate bullets. This contribution is a cornerstone of many comparison forensic disciplines 

including, ballistics and hair and fiber analysis. [5] 

Dr. Karl Landsteiner made an important discovery in 1901. He discovered that blood could 

be grouped in to different categories; A, B, AB, and O. Dr. Leone Lattes, a professor at the Institute 

of Forensic Medicine in 1915, expanded on Landsteiner’s work and applied it to the growing field 

of forensics. He developed a simple test that could determine the blood type of a dried bloodstain. 

Testing for blood type is still done today in order to rule out suspects who have the incorrect blood 

type. [6] 

Despite all the advances going on and the leaps in forensic disciplines, the police had to 

seek out qualified assistance on their own. For the larger more metropolitan cities with a larger 

budget, this wasn’t an issue. They were able to seek out and hire these pioneers of the field and 

their students. Smaller towns with less money had to rely on applying these new methods 

themselves, without an expert present. 

In 1910 Edmond Locard, a French doctor and criminalist started a process that would 

drastically increase the number of experts and the areas they could serve. Locard began his career 

assisting a criminologist and professor, Alexadre Lacassagne, before collaborating with Alphonse 

Bertillon. During the First World War, Locard worked with the French Secret Service as a medical 

examiner. After the war, Locard started the first forensic laboratory in Lyon France. He was given 

two attic rooms of the police stations, two assistants, a microscope, and a rudimentary 

spectrometer. With his great enthusiasm for forensics, Locard was able to make lasting impressions 

that still govern forensics today. [7] 

Locard’s Exchange Principle is the governing principle of present day forensics and the 
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first thing learned when studying the subject. The principle states that when a person interacts with 

an object they leave a trace of themselves behind while taking a trace of the object with them. This 

principle sparked the formation of the trace evidence unit in the forensic laboratory. This unit deals 

exclusively with finding and characterizing the miniscule traces left behind at crime scenes. It can 

also be described as the principle behind crime scene analysis. [7] 

In the early 1900s, Americans started to embrace the forensics movement. The first crime lab was 

created in Los Angeles, California in 1923. In 1930, Goddard founded the Scientific Crime 

Detection Laboratory at Northwestern University’s School of law in Chicago, Illinois. The Federal 

Bureau of Investigation (FBI), in 1932, organized a national crime laboratory in Washington DC 

to provide forensic services to all the law enforcement agencies in the nation. The FBI succeeded 

and their forensic laboratory is now one of the largest forensic laboratories in the world. [5] 

The largest single advancement in modern forensics had nothing to do with forensics. In 

1953, Watson and Crick were able to determine the structure of DNA leading to rapid 

advancements in that field. In 1984 Alec Jefferies, a British geneticist developed genetic 

fingerprinting. This technique allowed DNA to be used as a form of identification for an individual. 

Two years later Kary B. Mullis developed polymerase chain reaction (PCR). It allows for the rapid 

multiplication of small amounts of DNA. This advancement allowed for the testing of trace 

amounts of DNA by forensic laboratories on blood smears or single blood droplets. [8] 

Advancements in the science that drives forensic analysis is an ongoing process. In 200 years, the 

world went from torturing confessions out of suspects, to the sophisticated DNA testing done 

today. The foundation of forensics has been laid by several of the leading scientists. Scientists of 

today can only continue the trend, creating stronger and more reliable forensics for the future. 
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1.5 FORENSICS BEFORE THE SCIENCE 

Forensics is a powerful force in the criminal justice system. It has the power to convict a 

person or set them free. Forensic science and scientists are not infallible. Each needs continual 

improvement in order to make forensic science and scientists more reliable. The following cases 

illustrate what happens when forensic science or scientists fail to properly do their job. 

On June 30 1987, a fire broke out on the second floor of an apartment complex in Columbus 

Grove, Ohio. Cynthia Collins, a two-year-old girl died of asphyxia due to smoke inhalation during 

the fire. Her mother Hope Collins was spending the night with her boyfriend after a late night 

party. Ms. Collins told police that she asked Kenny Richey, and he agreed to watch her daughter 

in exchange for staying the night at her apartment. 

When the Fire Chief initially investigated the scene, he declared the fire accidental. He blamed it 

on an electrical fan, which was removed from the Collins apartment. Since the death of a small 

child resulted from the fire, the Fire Chief ordered the Assistant State Fire Marshal Robert Cryer 

to also look at the scene and form his own conclusions. Cryer looked over the crime scene and 

declared the fire intentional. 

The prosecution believed that Kenny Richey was the arsonist and began building a case 

against him. It turned out the Kenny Richey had an ex-girlfriend who lived in the apartment below 

Hope Collins. The prosecution alleged that in a fit of anger over his ex-girlfriend dating someone 

new, Richey set fire to the apartment above hoping that the fire would spread downwards and 

injure the new couple. They claimed that Richey stole gasoline and paint thinner from a nearby 

greenhouse, climbed up to Hope Collins apartment, poured the gasoline and lighter fluid in the 

living room, and set it on fire all before escaping back over the balcony with the empty cans. 

The prosecution questioned witnesses from the party Hope Collins attended who claimed 
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Richey, his ex-girlfriend, and her new boyfriend were at the party. Richey met his ex-girlfriend 

when she moved into the apartment complex around June 15, fifteen days before the fire. On June 

24, nine days later, Richey caught his then girlfriend sleeping with another man. Richey attacked 

this man with a knife and a fight occurred which resulted in Richey breaking his hand. 

Witnesses at the party claimed that the ex-girlfriend brought a new man to the party, and 

asked him to date her in front of Richey. The witnesses were divided on what happened next. Some 

witnesses said that Richey became upset over the new relationship, and others said that the three 

discussed it and that Richey accepted the situation. Other witnesses claimed they overheard 

Richey, or Richey spoke directly to them, state if he couldn’t have his ex-girlfriend then no one 

could. He then threatened to burn down his ex-girlfriend’s apartment complex. 

Hope Collins claimed that Richey asked to stay the night in her apartment around 2AM 

and she refused. At 3AM Hope Collins’ boyfriend drove up and asked if she wanted to go with 

him. Hope granted Richey’s request to stay in her apartment if he would watch her daughter. At 

4:15 AM neighbors called police about flames coming out of the Collins’ apartment. Richey was 

seen coming out of the apartment and firefighters had to restrain him from going back into the 

apartment. The same witnesses that claimed that Richey was planning on burning down the 

apartment complex, told investigators that Richey drank a beer and laughed over the fire while 

boasting about doing a good job. 

Richey admitted to the police that he had stolen two plants from a nearby greenhouse. A 

witness at the party told police that Richey offered to steal her a couple of plants from the same 

greenhouse. The greenhouse owner told police that he kept paint thinner and gasoline in the 

greenhouse, but wouldn’t be able to tell them if anything was missing. 

During the investigation, the State retrieved six samples of debris from the fire. The first 
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issue with the samples was that they were not taken immediately from the crime scene. A piece of 

carpet from the crime scene was obtained two days after the fire from the local dump. The carpet 

was then left in the sheriff’s parking lot for three weeks before being tested, where it sat close to 

gasoline pumps. The state also obtained a wood chip sample from inside Hope Collins apartment 

three weeks after the fire. 

The Assistant State Fire Marshal, Robert Cryer, concluded from his assessment of the 

Collins apartment that burn patterns indicated an accelerant was poured on the deck and living 

room carpet. An expert for the prosecution agreed with Cryer that the fire was arson and 

accelerants were used. A piece of the carpet retrieved also contained traces of gasoline, and the 

wood chips from the deck contained paint thinner as confirmed by gas chromatography. 

Police immediately suspected 18-year-old Kenny Richey and he was arrested on July 1, 

nearly three weeks before any testing was done. In his statement to police, Richey claimed he was 

drunk and did not know how the fire started. He also claimed that he knew two-year-old Cynthia 

Collins was in the apartment, and had checked on her during the party. Richey also made 

threatening statements toward the prosecution and witnesses. 

The defense in the case claimed that no arson had taken place, and that conflicting circumstantial 

evidence and faulty forensic evidence and practices lead to a false conclusion. The forensic 

analysis of the evidence used a chromatographic technique that had not been reviewed by any of 

his peers or published in the wider scientific community. Unfortunately, for Richey, the defense 

in his first trial was incompetent and it wasn’t until his later retrial that he received competent 

representation. 

During a retrial in 2008, a specialist in fire reconstruction refuted Cryer’s claim that 

accelerant had been used. The specialist stated that the burn patterns occur naturally in areas with 
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plenty of oxygen beneath the fire, such as the deck where the fire burn the hottest, and that ten 

gallons of fuel would have been needed to produce the burn pattern. Experts for the defense also 

asserted that there was no accelerants found on Richey’s clothing, and that Cryer initially declared 

that the fire was accidental and allowed the owner to gut the apartment instead of sealing the scene 

and preserving vital evidence. The defense also claimed that Richey was in a plaster cast for a 

broken wrist and would have found it difficult to climb into and out of the Collin’s apartment. The 

defense also learned, and presented it at retrial, that the fire chief had been called to Collin’s 

apartment three times in the preceding weeks because of mysterious smoke. The last hole in the 

prosecution’s case came from their star witness recanting her statements. 

Ohio Prosecutor Dan Gershutz told reporters ‘Even though this new evidence may establish 

Mr. Richey’s innocence, the Ohio and United States constitutions nonetheless allow him to be 

executed because the prosecution did not know the scientific testimony offered at the trial was 

false and unreliable’. The state of Ohio denied all attempts made by Richey to appeal his case until 

ordered to by the Ohio Supreme Court. Richey plead ‘no contest’, neither innocent nor guilty, for 

his retrial and was released from prison. This case was a horror show of faulty evidence collection 

and analysis techniques, along with a strong bias where the prosecution believed that Richey was 

guilty from the onset of the investigation. [9] 

Faulty techniques and ineffective sample gathering and storage are not the only issues that 

a forensic laboratory can face. On occasion, it is the forensic scientist who cause issues, and it is 

usually not limited to a single case. Instead, the problems are linked to every case the forensic 

scientist was responsible for analyzing. 

From 2005 to 2015, New Jersey State Police employed lab technician Kamalkant Shah. 

Shah’s job was to analyze seized drug evidence to determine the identity and legality of the 
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evidence. In 2015, Shah was observed faking test results for drug evidence. Shah was immediately 

removed from his job, but now all cases in which he worked are being questioned. 

The New Jersey State Police now has to address the major issue of retesting evidence that 

Shah ‘analyzed’. In many of these cases, there is insufficient or no samples available for reanalysis. 

Currently, New Jersey has no policies in place to deal with the above-mentioned issue. It is likely 

that those convicted in cases with no or insufficient evidence remaining will be released regardless 

of actual guilt or innocence. At this time, no charges have been filed against Shah. [11] 

In 2012, it was discovered that Annie Dookhan, a Massachusetts state lab drug analyst, 

forged results for analyses that she performed. It is alleged that Dookhan would forge results for 

prosecutors she was friendly with and for offenders she believed were guilty and should go to jail. 

During her employment for the Massachusetts state crime lab, Dookhan analyzed over 40,000 

samples in thousands of cases. The result from each of the 40,000 pieces of evidence are now being 

questioned. 

Dookhan was known throughout the state crime lab and prosecution offices as being able 

to analyze samples three times the speed of her colleagues. In 2010, Dookhan was audited due to 

her fast analysis times. No wrongdoing was found during the investigation. However, a year later, 

she was observed forging a coworker’s signature and improperly handling evidence. Dookhan was 

eventually suspended from her job and then fired after all of her misdeeds became known. Her 

mishandling of evidence, forging results, and blatant bias has earned Dookhan a jail sentence. Over 

300 prisoners have had their convictions overturned because Dookhan ‘analyzed’ the evidence in 

their case. 

After Dookhan’s deceptions were found, a thorough examination of the Massachusetts 

state crime lab was conducted. An analyst in the same lab as Dookhan was found to have forged 
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her college transcripts. She graduated as a sociology major, but claimed that she was a chemistry 

major. She gave expert testimony on an additional 190,000 cases when she was not properly 

qualified resulting in an audit of her cases as well as Dookhan’s cases. [12] 

In a different lab, but still in the Massachusetts state crime lab, another analyst was found 

who tampered with evidence. Unlike Annie Dookhan, Sonja Farak did not forge evidence results 

to convict drug dealers; she tampered with drug evidence in order to steal the drugs. Farak was a 

drug addict who used her job to supply her habit. She was arrested and convicted of tampering 

with evidence and received an 18-month jail sentence. [13] 

Massachusetts and New Jersey aren’t the only states facing issues with their forensic 

scientists. Texas has also shared in the misery when they discovered a forensic scientist who was 

forging results in 2013. South Carolina had a forensic scientist who was forced to resign after her 

training and work quality were called into question in August of 2014. In February of 2014, Florida 

dealt with a supervisor who would replace illicit drugs with over the counter pills. Continuing the 

forensic laboratory issues of 2014 New York is facing an audit of cases due to an analyst 

inaccurately weighing a drug sample. [13,14,15] 

It is cases like these, where forensic scientists fail to live up to the high standards necessary 

for the positions, which calls for more stringent oversight and faster analytical tests. Forensic 

laboratories are inundated with cases at a rate far faster than they can process. This overload of 

cases causes laboratories to hire less qualified scientists and to have less supervision over the 

scientists. Steps need to, and are being undertaken to address the underlying causes to prevent 

more bad scientists from making their way into forensic laboratories. 

A case that highlighted major issues within the forensic science community, the police 

departments, and the interaction of the two was the high profile case of OJ Simpson in 1994. On 
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June 12 1994, Nicole Brown Simpson and her friend Ronald Goldman were found murdered 

outside of Nicole’s home. 

When police began investigating the crime, OJ Simpson, Nicole’s ex-husband, was the 

main suspect. The prosecution built what they thought was a strong case against Simpson. Simpson 

had bought a midnight flight to Chicago the night of the murder. Once Simpson returned, 

investigators found a bloodied glove at the crime scene, blood in Simpson’s car, droplets leading 

into his home, and blood on a sock inside his house. DNA analysis of the various blood evidence 

was able to link OJ Simpson, Nicole Brown Simpson, and Richard Goldman to all pieces of 

evidence. 

The prosecution thought they had an easy case with solid evidence. Unfortunately, for them 

problems resulting from the beginning of the investigation and continuing throughout case left the 

defense plenty of opportunities to question the validity of the evidence. The defense claimed that 

the collection and analysis of the blood samples led to invalid or tampered results. 

Sloppy documentation and collection of the evidence started with the first officer on scene. 

A bloody fingerprint was found on the gateway leading to Nicole’s house and was described by 

the first officer on scene but never photographed or collected by latter crime scene technicians. 

The fingerprint was never collected and it’s only mention comes from the initial officers report. 

The fact that a crucial piece of evidence was neglected and lost to the elements was just a small 

part of the defense’s case. 

The defense alleged that the evidence used to build the prosecution’s case was sloppily 

collected and mishandled during analysis. Technicians who documented the crime scene did not 

use scales or position markers in the photographs. These failings in proper protocol made it 

difficult to ascertain where the photos were taken and make measurements from the photos. 
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Different pieces of evidence was gathered and placed in the same bag leading to cross 

contamination. Wet items were prematurely bagged and not allowed to dry causing possible 

chemical changes or mold growth to occur. Even the body of Nicole Brown Simpson was 

contaminated when someone covered it with a blanket found in her house. On top of all the 

blunders caused by the forensic technicians, the Los Angeles police offers compounded the 

situation by trampling through the scene leaving bloody footprints in their wake. 

Issues with the evidence did not stop after it was collected. Investigators improperly 

handled the evidence before turning it over to the forensic laboratory. Evidence was carried around 

in pockets where it could degrade instead of being turned over immediately to the forensic 

laboratory for proper storage and preservation. Known blood samples provided by OJ Simpson 

were spilled in the same laboratory where additional DNA evidence from the crime scene was 

analyzed shortly thereafter. The forensic laboratory even ‘lost’ 1.5mL of Simpson’s known blood 

sample. The person who collected the blood from Simpson estimated 8 mL had been taken, but 

the forensic laboratory could only account for 6mL. 

The defense even accused investigators of planting DNA evidence that linked back to OJ 

Simpson. With the careless gathering of evidence and lack of proper documentation, many pieces 

of evidence were not fully logged or described when collected. The sock collected at Simpson’s 

home that contained DNA evidence linked to his ex-wife was not noted to have blood on it at the 

time it was collected. Investigators even went back to the scene weeks after the crime occurred 

and collected more blood evidence that was linked back to Simpson. 

Though it could not be proven that evidence had been planted or tampered with, the defense was 

able to plant a seed of doubt in the jury’s minds. They were able to show that the investigators and 

forensic scientists who worked on the case used improper handling and analytical techniques when 
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processing the evidence. The lack of standards and approved procedures led to a not guilty verdict 

in the OJ Simpson double murder case. 

One of the largest issues in the Simpson case was the lack of accreditation of the forensic 

laboratory that processed the DNA. At the time of the case, only a handful of labs around the 

country were accredited for DNA analysis. , The Los Angeles forensic laboratory and their police 

department did not have the proper procedures or training in place to adequately handle DNA. 

This case is a clear example of why training, procedures, and reviews are necessary to keep a 

forensic laboratory creditable and working at maximum efficiency. [16,17] 

 

1.6 FORENSIC SCIENCE NOW 

Crime is a fascinating subject. It has spawned books, movies, and television shows. A genre 

of television shows are made of forensic driven crime procedurals. These shows draw in millions 

of people and allows them to experience “forensics” in the comfort of their home. This elevates 

forensics to a household term, but spreads misconceptions that have wide spread consequences. 

Forensic science is an exacting science that requires immense attention to detail and 

rigorous application of proven scientific methods. Forensic scientists need to be methodical and 

detailed in their approach for evidence as their work is intended to be used in court and could be 

the deciding factor in a case. Because of this, courts hold forensic scientists to high standards. 

The techniques found in forensic examinations come from the wider science community. 

They are thoroughly examined and peer reviewed before making their way into a forensic 

laboratory. Only established methodology that has been proven to work consistently is 

implemented in the forensic laboratory. 

When forensic scientists run into a problem that their established protocols can’t solve, 
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they turn to research scientists and the work that they do. Forensic scientists comb the literature 

looking for peer-reviewed methods that they can apply in their lab. Issues with this problem-

solving strategy can often arise during court testimonies. It is the responsibility of the scientist to 

convince the attorneys and judge that the method used is a scientifically sound and accepted 

method in the science community. If the method isn’t accepted by the judge, the evidence could 

be deemed inadmissible. 

Forensics hinges on convincing a judge or jury that the facts presented are true and reliable. 

When put in a courtroom forensic scientists become expert witnesses. The courts in the U.S. have 

worked at defining what an “expert witness’ truly is. 

In 1923, a young man by the name of James Alphonzo Frye was tried for murder. Frye 

underwent a lie detector test, also known as a systolic blood pressure test. It’s believed that when 

a person lies it causes a physical reaction that can be picked up by monitoring blood pressure. 

Frye’s expert witness tried to testify that the lie detector test administered showed that Frye was 

telling the truth when he claimed innocence. The courts, however, refused to allow the testimony. 

The courts declared that evidence must be analyzed using “well recognized scientific principle or 

discovery, the thing from which the deduction is made must be sufficiently established to have 

gained general acceptance in the particular field in which it belongs.” [18] 

Frye was used by the courts to try to add structure to what expert testimony could consist 

of and eliminated most of the lengthy hearings that validated techniques prior to this ruling. A 

failing of this ruling is that it did not define what “general acceptance” was or how to define a 

“particular field.” Rapidly changing or innovative methods were also ill defined. Scientists and 

others found the Frye rulings ill-equipped to deal with the rapid changes in forensics and 

susceptible to judicial interpretations. [18] 
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Congress adopted the Federal Rules of Evidence in 1975. This document set out to define 

what could and could not be used as evidence in a court of law. Rule 702 states: “If scientific 

technical, or other specialized knowledge will assist the trier of fact to understand the evidence or 

to determine a fact in issue, a witness qualified as an expert by knowledge, skill, experience, 

training or education, may testify thereto in the form of an opinion or otherwise.” [19] 

Opinions of the new rules were once again clouded with confusion. It could not be 

determined if these rules were a reiteration of the Frye ruling, a new standard altogether, or a 

hybrid Frye standard. One of the main similarities between the Frye standard and Rule 702 is that 

the qualifications of the expert and the admission of evidence was not clearly defined. 

In order to settle the disagreements between scholars, litigations, and judges, the federal 

court stepped in in 1993 to review a Ninth Circuit Court of Appeals decision, a step below the 

Supreme Court, in Daubert v. Merrell Dow Pharmaceuticals. This case involved two mothers who 

claimed that the medicine given to them from Merrell Dow Pharmaceuticals to help reduce 

morning sickness had caused birth defects in their children. [20] 

The prosecution had an expert who claimed that the structure of the drug was similar to a 

teratogen, a compound that causes birth defects and that their reanalysis of published studies 

showed a statistical correlation between the drug and children born with birth defects. The expert 

witness for Merrell Dow Pharmaceuticals argued that the published studies that the prosecution 

had reanalyzed did not show a significantly greater rate of birth defect in women taking the drug 

versus those not taking the drug. 

The lower courts ruled that evidence based on unpublished reanalysis of data that was not 

subjected to peer review was not acceptable evidence. The Ninth Court affirmed the decision of 

the lower court and upheld the verdict that the data did not have the general acceptance of its 
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scientific community and was therefore inadmissible. 

The Supreme Court ordered the Ninth Court of Appeals to hand over all the documents of 

the case and formed a committee of unbiased sources including the American Association for 

Advancement of Science, The National Academy of Sciences and other groups of scientists and 

law professors to review the case. The ultimate finding of the Supreme Court was that Rule 702 

did not incorporate the Frye general acceptance standard and the Rule 702 incorporated a flexible 

reliability standard instead. 

The Daubert case firmed up some of the guidelines of Rule 702 for admitting scientific 

expert testimony. The Supreme Court decided that the judge was the gatekeeper for expert 

testimony. The decision on whether the testimony was scientifically sound or not would be decided 

by the judge of the case. This means that the judge is required to make sure that the expert’s 

testimony remains relevant to the case and has scientific backing from the community. The also 

ruled that results will be considered scientific knowledge if the expert can demonstrate that they 

were produced from sound scientific methods. [20,21] 

Today forensic science is becoming more regulated and assimilated across the country in order 

to provide better service to the police districts they serve. The forensic landscape has changed from 

one in which the experts were the pioneers of the field, into one in which more and more scientists 

are needed to analyze all the evidence gathered. This has led to regulatory agencies being formed 

to ensure that forensic laboratories meet certain basic guidelines. [21] 

 

1.7 ACCREDITED CRIME LABS 

Around the same time that Congress was considering the Federal Rules of Evidence, the 

FBI held a meeting with forty-seven of the nation’s forensic laboratory directors. The meeting was 
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a large success and plans were made to organize an association of directors. A year after the first 

meeting the American Society of Crime Laboratory Directors (ASLCD) was formed. [22] 

At the same time, the Forensic Science Foundation created a voluntary proficiency test that 

measured the competence of forensic scientists. The results of this test showed distressing results. 

The competency levels of test takers were not as high as anticipated and led to the questioning of 

the quality of work performed at crime laboratories across the nation. 

One of the first duties of the newly formed ASCLD was to address this concerning problem. 

The Committee on Laboratory Evaluation and standards was formed to form and implement a 

program that would insure a minimum standard of work for all forensic laboratories. The 

committee decided that individual certification, self-assessment, and an external peer review was 

adequate to determine the competency of a laboratory. 

In 1982, the first eight labs were accredited in Illinois. Since that date, 392 labs have been 

accredited by ASCLD. Of those laboratories, 349 are local, state, or federal government 

laboratories, 18 are international laboratories, and 25 are private laboratories [22]. 

The guidelines that ASCLD follows for accreditation of its laboratories and forensic 

scientists allow for ethical scientist, competent and proficient labs, who are good at 

communication. An ethical forensic science is one who is unbiased and fair, who analyzes the 

evidence without trying to prove the guilt or innocence of a suspect. A good forensic scientist also 

does not make conclusions or testify on evidence outside of their expertise. Forensics is a massive 

field, and impossible for one person to be an expert of everything. 

ASLCD accreditation is important to crime labs around the world. With their stamp of 

approval lawyers, judges, and juries can feel safer accepting their testimony as it is backed up by 

a stringent accreditation process to ensure that crime labs are staffed and run properly. [22] 
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1.8 ACCREDITED ACADEMIC PROGRAMS 

 

In 1999, the National Institute of Justice (NIJ) published an article titled Forensic Science: 

Review of Status and Needs. This article laid out the needs, educational and training, that the 

forensic scientists needs before stepping in to a laboratory. The list of needs was large and detailed, 

and the NIJ put it to the science community that there needed to be standards in forensic science 

education. The NIJ took it one-step further and set up a group that outlined sample curriculums 

and guidelines for universities with a forensic program in 2003. 

In 2004, the Forensic Science Education Programs Accreditation Commission (FEPAC) was 

established by the American Academy of Forensic Sciences (AAFS). FEPAC performs a similar 

job as the American Society of Crime Laboratory Directors (ASLCD). The program works with 

universities around the United States who are interested in offering or maintaining an undergrad 

forensic science program. FEPAC provides a uniform and rigorous accreditation process that 

ensures quality education for the graduates. [23] 

While crime labs do not require its applicants to graduate from accredited schools, those who 

do are considered a step ahead of the game. Graduates from accredited programs come with a 

grounding in chemistry, biology, biochemistry, genetics, and math that are often requirements for 

the various forensic laboratory sections. Accredited programs have emphases in forensics, and are 

required to cover topics such as an introduction to law, courtroom testimony, ethics, quality 

assurance, and a survey of forensics science. Along with the academic topics required, accredited 

schools are also required to require an internship at an accredited forensic laboratory. 

Through accreditation, universities can begin properly training forensic scientists before they 
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step into the workforce. The goal of FEPAC and ASCLD is to hire and maintain a higher quality 

forensic scientist. These higher standards will work towards reducing the number of wrongful 

convictions by ensuring that high standards are required and met in forensic laboratories. 

 

1.9 NATIONAL COMMISSION ON FORENSIC SCIENCE 

In 2013 the Department of Justice (DOJ) and the National Institute of Standards and 

Technology (NIST) banded together to form a commission, the National Commission on Forensic 

Science (NCFS), to improve forensic science by improving the intersections between forensic 

science and the criminal justice system. This new program meant to ensure the quality of forensic 

science includes forensic scientists at the local, state, and federal level, along with prosecutors, 

defense attorneys, and judges from across the nation. [24] 

According to its charter the objectives of the NCFS includes providing “recommendations 

and advice to the Department of Justice (DOJ) concerning national methods and strategies for: 

strengthening the validity and reliability of the forensic sciences (including medico-legal death 

investigation); enhancing quality assurance and quality control in forensic science laboratories and 

units; identifying and recommending scientific guidance and protocols for evidence seizure, 

testing, analysis, and reporting by forensic science laboratories and units; and identifying and 

assessing other needs of the forensic science communities to strengthen their disciplines and meet 

increasing demands generated by the criminal and civil justice systems at all levels of government” 

(NCFS Charter 2013). [25] 

The National Commission on Forensic Science joins the American Society of Crime 

Laboratory Directors and the Forensic Science Education Programs Accreditation Commission as 

another group dedicated to improving the quality of forensic science and its reliability to the 
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criminal justice system. Forensic science continually looks to its past, looking for ways to improve 

itself. The forensics of the future is a better forensics thanks to these programs that insure that the 

quality and competency of forensic scientists is maintained and continually improved. [25] 

 

1.10 FORENSIC SCIENCE OF TOMORROW 

From humble beginnings of detecting poison in a dead body and using fingerprints as 

identification, forensics has exploded in the twenty first century. Forensics is now recognized 

worldwide as an authority on determining the facts of a crime. Specialized forensics now deal with 

art, computers, ear prints, botany, engineering, linguistics, and even social work. These are only a 

few areas that forensics has impacted. 

How forensics will progress from here comes down to research preformed. Forensics is an 

ever changing, ever growing field that implements new and improved techniques to more 

accurately analyze evidence. Without research into forensics, the field would have never reached 

the point where it is today. The future of forensics rests in the hands of today’s scientists. 
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CHAPTER 2 

GC-MS CHEMICAL FINGERPRINT COMPARISON OF EVAPORATED AND 

UNEVAPORATED FUEL SAMPLES USING THE INTERNAL STANDARD, 

DI-N-DECYL SULFIDE 

 

2.1 ABSTRACT 

Due to the variety of methods used to commit arson, identifying the accelerant used poses 

a challenge for investigators. In this study, gasoline samples taken from gas stations in the Oxford, 

MS area were analyzed to understand the effect evaporation has on the chromatograms of samples 

evaporated to predetermined levels. To quantitatively measure the concentration of compounds in 

the samples, the internal standard di-n-decyl sulfide was chosen for this study since it 1) allows 

for important peak ratios to be calculated 2) has a retention time outside of the target peak range 

3) is relatively inexpensive 4) and is less hazardous than other internal standards studied. Three 

grades of gasoline from two different gasoline stations with octane ratings of 87, 89, and 93 were 

analyzed in duplicate. All samples were measured with and without the internal standard. The 

gasoline samples were evaporated to 25, 50, 75, 83, 91, and 99% levels to investigate a broad range 

of states of evaporation. Without an internal standard, the composition of each gasoline sample 

chromatogram appears to change significantly as gasoline is evaporated. The internal standard 

concentration of the lighter compounds reduces while the heavier compounds increase relatively 
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before reducing at 99% evaporated. There is little change in spectral data when gasoline sample 

spectra alone (no internal standard) are compared to the results with the internal standard. Since 

the concentrations are measured in relative abundance, the heavier molecules appear on the 

chromatogram as the lighter molecules (those that elute first from the GC column) disappear from 

the chromatogram as they are evaporated from the samples. The internal standard also allows for 

the comparison of compound abundance in samples that can lead toward origin identification. Each 

gas station uses a different makeup of gasoline during production, and analysis of the 

chromatograms indicate these differences. This study proves that by using the internal standard, 

di-n-decyl sulfide, and the changes that occur in the gas chromatograms of gasoline samples that 

are evaporated, forensic chemists can assist arson investigators by determining fuel grades, sample 

origins (gas stations), and gasoline evaporation levels.  

 

2.2 INTRODUCTION 

This research was designed to initiate the creation of a database of chromatograms of 

various grades and brands of gasoline using gas chromatography-mass spectrometry (GC/MS). 

This study also sought to identify an internal standard that would allow for quantitative analysis 

of gasoline with the intent to determine the origin of unevaporated gasoline samples. Results from 

this study can be used to help solve future arson cases. 

  Arson, as defined by the Uniform Crime Reporting program under the FBI, is “any willful 

or malicious burning or attempting to burn, with or without intent to defraud, a dwelling, public 

building, motor vehicle or aircraft, personal property of another” [26]. In 2011 alone, there were 

52,333 arson cases reported throughout the country. From 2011 to 2012 crimes, involving arson 
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increased by 3.2%, and this was only for the first six months of 2012. Within those first six months, 

three of the countries’ regions reported an increase in arson. The Midwest reported an 11% 

increase; the West reported a 6.4% increase; and the Northeast reported a 5.7% increase in arson 

cases [26]. Arson cases are continually rising. Because of this increase, it is important for forensic 

scientists to be able to determine the cause of these fires in an efficient manner. In the investigation 

of arson, it is extremely difficult to identify the accelerants used at the scene of the crime, partly 

due to the fact that they can evaporate over time [27, 28]. Studies show that gasoline is the most 

common accelerant used for arson [28,29,30]. Being able to link the gasoline type found at the 

scene of the crime to a container of gasoline found at a suspect’s house could assist arson 

investigators in solving more arson cases. [31,32,33,34,35,36,37,38,39,40] 

Gasoline was first distilled in the mid 1800’s as a byproduct to kerosene production. At the 

time there was no use for gasoline, and it wasn’t until the late 1800’s and the invention of the 

automobile that gasoline found its usefulness. [41] As the popularity of the automobile increased 

and the demand for gasoline also increased, scientists began experimenting with the composition 

of gasoline. 

The efficiency of gasoline is measured using an octane rating scale. The octane rating is a 

measure of a gasoline’s compressibility and resistance to premature ignition. Gasoline octane 

ratings are determined by using isooctane and heptane as a reference mixture. Pure isooctane has 

an octane rating of 100 and mixtures of isooctane and heptane are analyzed to determine their 

ability to resist premature ignition. The properties of gasoline are measured in the same manner as 

the isooctane and heptane mixtures in order to determine their properties. Gasoline is assigned and 

octane rating based on the isooctane/heptane mixture that most closely matches its properties. A 
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gasoline with an octane rating of 90 would have the same properties of a mixture that contains 

90% isooctane and 10% heptane. It is possible for gasoline to have an octane rating higher than 

100, as some fuels are better able to resist premature ignition than pure isooctane, but the standard 

octane rating for gasoline is 83 in the United States. [42,43,44,45,] 

In a typical engine, a gasoline/air mixture is heated due to compression, and is ignited by 

a spark from the spark plug causing the gasoline/air mixture to rapidly burn, creating carbon 

dioxide and hydrogen that expands and forces the cylinder to cycle creating mechanical force. If 

the composition of the gasoline is not correct it can cause the gasoline/air mixture to ignite 

prematurely or not at all, leading to damage to the engine. Car manufactures design engines that 

work best with the standard gasoline octane ratings widely used in the intended country. At the 

same time gasoline manufacturers develop gasoline blends that burn more cleanly and efficiently 

to cause less damage and buildup on engines. [46,47,48,49] 

 Unprocessed gasoline from refineries mostly consists of hydrocarbons with four to twelve 

carbons per molecule. The structures of the hydrocarbons fall into three categories; alkanes, 

hydrocarbon molecules with only single bonds; cycloalkanes, hydrocarbon molecules that contain 

carbons bound in a ring with only single bonds; and alkenes, hydrocarbon molecules that contain 

at least one double bond. The ratios of the hydrocarbons differ based on the initial crude oil used, 

the refinery processing the crude oil, and the octane rating of the gasoline being produced. After 

refining the gasoline from crude oil it is further processed via a chemical transformation such as 

catalytic reforming, catalytic cracking, and alkylation among others. These chemical processes 

convert lower quality hydrocarbons to higher quality hydrocarbons needed to raise the gasolines 

octane rating. In addition to the chemical processes, gasoline refineries also add chemicals to 
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increase the octane rating, reduce the oxidation potential for gasoline, and even reduce carbon 

buildup on the inside of the engine. Each major brand of gasoline has different additives or 

different amounts of common additives added to the final gasoline product. These additives, along 

with the slight differences produced during refining cause gasoline samples from different gas 

stations to have slightly different gas chromatograms when analyzed. These differences can aid 

forensic scientists in determining the origin of the gasoline, or determining if two samples 

originated from the same source, gas station or refinery. [50,51,52] 

 

2.2.1 GAS CHROMATOGRAPHY (GC) 

Gas chromatography (GC) is a separation technique used to separate mixtures of volatile 

chemicals or compounds. The chemicals are separated using a dual phase method. These phases 

interact together to move the analytes at different speeds which creates separation. 

Chromatography contains a mobile phase and a stationary phase.  

 
Figure 1. Gas Chromatograph schematic 

 

In gas chromatography, the mobile phase is an inert gas that moves the analyte molecules 

through the column to the detector. The mobile phase gases are usually nitrogen, helium, or 

hydrogen, and do not interact significantly with the analyte molecules or the stationary 

phase/column. The column is the crucial component in the separation of mixtures. It interacts with 
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the various analytes in the mixture in different ways resulting in different retention times for the 

different components of the mixture. Typical GC columns are tens of meters long with a 

micrometer inner diameter and are called capillary columns. These columns are most useful for 

small sample volumes. Overloading a column can cause insufficient separation. The inside coating 

of these columns, consists of very high weight polymers, especially long chain substituted 

silicones. The majority of capillary columns contain a polar stationary phase that separates the 

analyte molecules based on their polarity. Analyte molecules with similar polarities are separated 

based on size differences. Heavier molecules take longer to travel through the column than lighter 

molecules. Molecules with similar polarities are also separated by boiling point differences. The 

column is heated in a controlled manner during analysis.  

Gas chromatography can also determine the amounts of the individual components of the 

analyte molecules. Detectors on a GC not only record the time an analyte takes to transverse the 

column, but they also record the amount of the analyte that reaches the detector by monitoring the 

amount of time spent in the column and abundance of compound that passes the detector. When a 

standard is used, the concentration of the unknown analyte can be calculated from the collected 

data. 

Gas chromatography is a useful separation technique used in analytical chemistry. When 

gas chromatography is combined with other techniques, it provides more information that can be 

used to accurately identify analytes. GC can be coupled with mass spectrometry, flame ionization, 

and other devices that allow different chemical information to be gathered depending on the sample 

to be analyzed. [53] 
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2.2.2 MASS SPECTROMETRY (MS) 

Mass spectrometry (MS) is used to separate different positively charged ions based on their 

mass and charge. According to Jim Clarke, four stages occur in MS. The first stage is ionization. 

In this stage, the molecule is bombarded with electrons to form a positive ion. The second stage is 

acceleration, where the newly formed ions are accelerated with a magnetic or an electric field until 

all of the ions have the same kinetic energy. The third stage is deflection, where ions are deflected 

by a magnetic field based on their mass and charge. The lower the mass of the ion the more the 

ion will be deflected. The fourth and final stage is detection of the ions that are moving through 

the instrument which are electrically detected. When MS is coupled with gas chromatography, it 

has been widely used by many researchers for identification and quantification purposes [54]. 

Quadrupole mass spectrometry is a commonly used mass separator in mass spectrometry. 

It consists of four rods set up in a square configuration as seen in figure 2. Two sets of opposite 

rods oscillate between positive and negative voltages. The oscillation of the voltages causes the 

charged ions to travel in a spiral trajectory as they are alternatively attracted and repelled by the 

sets of charged metal rods. At a given voltage the path of the spiraling ions is only stable for a 

specific mass to charge ratio. Only ions with the appropriate mass to charge ratio will reach the 

detector. All other ions will collide with the rods or the walls of the quadrupole and be lost. The 

voltage applied to the quadrupole can be changed during analysis, allowing for a range of mass to 

charge ratios to be detected. [54] 
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Figure 2. Schematic of a quadrupole mass spectrometer 

2.2.3 INTERNAL STANDARD 

Internal standards are used to help reduce the uncertainties and variabilities in results 

produced during sample preparation and sample loading. An internal standard is a compound that 

is similar in chemical characteristics to the target analyte that can be introduced to the sample 

during sample preparation.  Internal standards are useful for samples like gasoline due to the 

complex makeup and the required dilution of the samples prior to analysis. An internal standard 

reduces the need for multiple external standards and adjusts for slight variations and human errors 

during sample preparation. Many of the studies that have been researched in the literature have not 

included an internal standard during sample preparation. These studies are intended to qualitatively 

study gasoline, while this study aims to to compare peak ratios as the gasoline samples are 

evaporated [29,30,53,55,56,57]. The addition of an internal standard to samples at different levels 

increases the accuracy in determining the differences in peak abundances and quantifying the 

compounds in gasoline. An internal standard will also provide a reference to measure accurate 

retention times and changes in peaks heights.  The use of internal standards provides both 
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qualitative and quantitative results that can assist in characterizing components of different 

gasoline samples. 

 

2.3 MATERIALS AND METHODS  

 

2.3.1 MATERIALS 

Gasoline samples were obtained from a Texaco and Shell gas station in Oxford, MS during 

the summer and winter of 2013. Samples of three gasoline grades, (87, 89, and 93) were collected 

from both gas stations and were divided into two batches totaling twelve samples. The samples 

were all collected from the gas stations on the same day. Samples for the winter testing were 

collected from the same gas stations as those used in the summer testing. Along with the gasoline 

samples carbon disulfide (Fisher Scientific C184-500) and di-n-decyl sulfide (Fisher Scientific 50-

700-8680) were used as the solvent and internal standard, respectively. 

 

2.3.2 SAMPLE PREPARATION WITHOUT INTERNAL STANDARD 

Gasoline samples were transferred to glass vials with air tight caps for storage between 

evaporation levels. The sample vials were marked every 25% based on volume in order to visibly 

determine evaporation levels during the experiment. Gas chromatograms and mass spectra were 

taken at 0, 25, 50, 75, and 99% evaporation levels for all samples. Samples obtained in the winter 

of 2013 were also evaluated at 83% and 91% due to the rapid decrease in volatile compounds 

between 75% and 99% evaporation levels. 

The samples at all evaporation levels were prepared using the same preparation method. In 



 

 

33 

 

a clean beaker, 1 mL of carbon disulfide was mixed with 7µL of the gasoline sample. GC-MS 

sample injections were performed either, manually or automatically as subsequently described. 

After a successful gas chromatogram and mass spectra were obtained, the caps were left off the 

sample vials in a fume hood. The samples were all allowed to evaporate in an open-air environment 

at room temperature for 2 hours to a month. Once the desired evaporation level was reached, 

samples were capped to prevent over-evaporation until analysis could be performed. [36] 

 

2.3.3 SAMPLE PREPARATION WITH INTERNAL STANDARD 

Winter samples were also analyzed with an internal standard solution of 0.01M di-n-decyl 

Sulfide. The samples prepared with internal standards were also prepared by diluting 7µL of the 

gasoline samples with 1mL of carbon disulfide. 40µL of the internal standard solution was added 

to the gasoline and carbon disulfide sample. Di-n-decyl sulfide was used in this research for its 

ability to elute during gasoline analysis, its increased safety, and its ease of use when compared to 

deuterated analogs of compounds found in gasoline. 

 

2.3.4 MANUAL INJECTION 

For manual injection, a glass syringe was used to inject samples onto the GC-MS. The 

syringe was washed with 5µL of carbon disulfide, 3 to 4 times. To ensure that the previous samples 

did not contaminate the sample of interest, the syringe was washed with the sample mixture 3 to 4 

times. After washing, 1µL of the mixture was carefully drawn into the syringe, making sure all air 

bubbles were removed. The sample was then injected into the GC-MS and the start button was 

pushed after a 3 second wait.  
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2.3.5 AUTO SAMPLER INJECTION 

An auto sampler was used for a large portion of samples including most of the internal 

standard samples. The auto sampler was programmed to rinse the syringe three times with 5µL of 

carbon disulfide before washing the syringe three time with 2.5µL of the sample. To eliminate all 

air bubbles, 1µL of the sample was drawn up by the syringe rapidly for 10 strokes before a final 

volume of 1µL was obtained. The syringe was then plunged into the injection port on the GC. A 

programmed three-second delay was observed after the syringe’s plunger was depressed and the 

instrument began its readings. The auto sampler parameters were set up to mimic the manual 

injection parameters as closely as possible.  

 

2.3.6 INSTRUMENTAL PARAMETERS 

The GC-MS analysis was conducted using a Thermo Scientific Trace GC Ultra and a 

Thermo Scientific ITQ1100 mass spectrometer. Separation was achieved on a 30m x 250µm x 

0.25µm column. 1µL sample volumes were placed into auto sampler vials and each sample was 

injected into a splitless injector with 1 mL of constant H2 as the carrier gas [5]. The inlet 

temperature was set at 230°C to vaporize the gasoline molecules. The mass spectrometer had a 

source temperature of 300°C and was set for full scan over an m/z range of 33-300 atomic mass 

units in electron ionization mode. The oven temperature was initially held at 37°C for 2 min, 

ramped at 5°C/min to 120°C, and then ramped at 12°C/min to 280°C, where it was held for a final 

4 min. The first ramp elutes the compound of interest, and the second ramp cleans and prepares 

the column for the next sample. Sample preparation was conducted during this time. Before any 
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samples were run, a blank was run followed by carbon disulfide alone. 

 

2.4 RESULTS AND DISCUSSION  

 

2.4.1 WITHOUT INTERNAL STANDARD 

The analysis of both the Shell and Texaco gasoline samples allowed for easy identification 

of each peak. The major peaks found in these samples, with retention times of 1) 3.34 minutes, 2) 

4.92 minutes, 3) 7.64 minutes, and 4) 11.46 minutes were identified by the NIST library as 1) 2-

methyl-1-nitropropane, 2) toluene, 3) xylene, and 4) tri-methyl benzene, respectively (Figure 3). 

These peaks are found in various concentrations in all brands and grades of gasoline.  

When comparing the unevaporated chromatogram with the 99% evaporated chromatogram (Figure 

4), most of the major peaks present in the unevaporated sample are no longer detectable in the 99% 

evaporated chromatogram. Tri-methyl benzene is the only original major peak that appeared at the 

99% evaporated level. The slight difference in retention times (RT) in the chromatograms is the 

result of a shorter column following instrument maintenance. 
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Figure 3. Chromatogram of Texaco grade 87 unevaporated gasoline without the internal standard. The NIST library 

was used to assign the most abundant peaks. (1: 2-Methyl-1-Nitropropane, 2: Toluene, 3: Xylene, 4: Tri-Methyl 

Benzene) 

By observing evaporation patterns and attenuation rates of the samples, the volatility of the 

gasoline components can be determined. The peaks that attenuate and disappear the fastest 

represent compounds that have smaller mass to charge ratios and appear to be more volatile. The 

2-methyl-1-nitropropane peak at 3.34 min in Figure 4 is the first major peak to evaporate fully 

throughout the evaporation process. It is the lightest peak examined in this study and is absent in 

the 75% evaporated sample. The evaporation levels of Texaco 93 are compared in Figure 5. 2-

methyl-1-nitropropane is present in the 75% evaporated sample. The concentration of 2-methyl-1-

nitropropane is greater in the Texaco 93 gasoline when compared to the Texaco 87 gasoline as 

evident by the amount of time needed to evaporate out the compound. When adding the internal 

standard (Figure 9) to the sample the 2-methyl-1-nitropropane peak in Texaco 93 is calculated to 

be six times the height of the 2-methyl-1-nitropropane in Texaco 87. 
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Figure 4. Chromatogram of Texaco grade 87 gasoline at 0%, 75% and 99% evaporation levels without internal 

standard. (1: 2-Methyl-1-Nitropropane, 2: Toluene, 3: Xylene, 4: Tri-Methyl Benzene) 

 

 
Figure 5. Chromatogram of Texaco grade 93 gasoline at 0%, 75% and 99% evaporation levels without internal 

standard. (1: 2-Methyl-1-Nitropropane, 2: Toluene, 3: Xylene, 4: Tri-Methyl Benzene) 

 

The results in Figure 4 and Figure 5 show 2-methyl-1-nitropropane is the most volatile 

compound found in the Texaco grade 87 gasoline sample since it was the first component to 

completely evaporate out of the Texaco 87 gasoline samples. Another key observation of the 

gasoline sample minus internal standard results shows many new developing peaks between 11.5 

and 22.5 minutes as the 99% evaporation level is achieved. As the evaporation level increases 
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without an internal standard, it appears that these peaks between 11.5 and 22.5 minutes are 

increasing in concentration and are becoming more abundant. Without an internal standard, it is 

difficult to determine the significance of the peaks between 11.5 and 22.5 minutes. Research done 

without an internal standard presents a problem in working with evaporated gasoline samples. The 

abundance indicated on the chromatogram only shows a frozen frame of the composition of the 

gasoline. To obtain the entire and accurate picture of the attenuation of old peaks and the 

generation of new peaks during gasoline evaporation studies, a reference should be used.  

  

2.4.2 WITH AN INTERNAL STANDARD 

The internal standard chosen for this research was di-n-decyl sulfide. Di-n-decyl sulfide 

was researched to be a safer option than internal standards containing benzene and toluene, which 

are carcinogens. Compared to other internal standards used in the literature, di-n-decyl sulfide is 

relatively inexpensive and has a retention time of 30.46 minutes which is outside the target peak 

range of gasoline samples. 4x10-4 M was determined to be the optimal concentration of the internal 

standard used in the sample.  

When examining the chromatograms without the internal standard in Figure 4, the 

concentration of the peaks between the retention times of 11.5 min and 22.5 min are increasing as 

the gasoline evaporates to 99%. The two chromatograms of Texaco 87 unevaporated and 99% 

evaporated with internal standard (Figure 6) also show that the peaks between 11.5 min and 22.5 

min are increasing in concentration. As the gasoline samples evaporate the lighter compounds 

evaporate first. This causes the remaining compounds to become more concentrated in the 

remaining gasoline samples. This results in an increase in the heavier compounds before 
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decreasing as they eventually evaporate. Table 1 shows three heavier compounds that are relatively 

low in concentration when compared to the four compounds analyzed in this study.  The compound 

at 14.31 minutes appears as if it is at the threshold of evaporating. It has just begun to evaporate 

out of the remaining sample, while the compounds at 14.70 minutes and 15.36 minutes have not 

yet begun to evaporate. This is observed by the 60-70% increase in concentration of the compounds 

at 14.70 minutes and 15.36 minutes, while the compound at 14.31 minutes decreased by about 

15%. 

 
Figure 6. Chromatograms of Texaco grade 87 gasoline at 0% and 99% evaporation levels with internal standard.  

(1: 2-Methyl-1-Nitropropane, 2: Toluene, 3: Xylene, 4: Tri-Methyl Benzene, 5: Di-n-Decyl Sulfide) 

Retention time (min) 0% evaporation level 99% evaporation level 

14.31 0.067 0.057 

14.70 0.022 0.031 

15.36 0.065 0.107 
Table 1. Peak ratios using area under the curve of Texaco 87 at 0% and 99% evaporation 
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Figure 7. A comparison of unevaporated Texaco 87 gasoline with and without internal standard to show the internal 

standard does not chemically interact with the gasoline. (1: 2-Methyl-1-Nitropropane, 2: Toluene, 3: Xylene, 4: Tri-

Methyl Benzene, 5: Di-n-Decyl Sulfide) 

Figure 7 compares the chromatograms of Texaco 87 with and without the internal standard, 

di-n-decyl sulfide. The internal standard can be used to quantify the various peaks as the gasoline 

sample evaporates. Addition of the internal standard to the gasoline sample does not change the 

composition of the sample. This was an important factor in choosing di-n-decyl sulfide as the 

internal standard. It is easy to handle and makes the results easy to view and interpret. 

In the chromatograms without the internal standard (Figure 8), the comparison of the 

Texaco 87 and Texaco 93 gasoline samples show that 2-methyl-1-nitropropane is the most 

abundant compound in the higher-octane gasoline, while it is the smallest analyzed compound in 

the lower-octane fuel. High 2-methyl-1-nitropropane propane levels are added to gasoline to 

increase the efficiency of the fuel. However, it is difficult to determine an accurate concentration 

of 2-methyl-1-nitropropane in the gasoline samples without the use of an internal standard. 

With the internal standard added, as seen in Figure 9, a more elevated level of 2-methyl-1-

nitropropane (1) is present in the higher-grade fuel compared to the lower grade fuel than initially 
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thought. The peak ratio between the internal standard and the 2-methyl-1-nitropropane peak for 

the lower octane fuel (Texaco 87) is 0.53 compared to 3.19 for the higher grade fuel (Texaco 93). 

The 2-methyl-1-nitropropane (1) in the 93 grade is so prominent that it makes accurate comparison 

of the concentration of the other compounds in both grades difficult to determine. When the 2-

methyl-1-nitropropane (1) peak is subtracted and the chromatogram’s y- axis is zoomed in, there 

are lower peak ratios of the heavier target peaks in the higher-grade fuel (Figure 10). Xylene has 

a peak ratio of 0.86 in Texaco 87 and 0.16 in Texaco 93, while tri-methyl benzene has a peak ratio 

of 0.54 in Texaco 87 and 0.11 in Texaco 93. 

 
 Figure 8. Chromatogram comparison of Texaco 93 and 87 gasoline that shows the relative  

abundance of 2-Methyl-1-Nitropropane in Texaco 93. (1: 2-Methyl-1-Nitropropane,  

2: Toluene, 3: Xylene, 4: Tri-Methyl Benzene, 5: Di-n-Decyl Sulfide) 

This data supports published reports that the higher-grade fuels use lighter hydrocarbon 

compounds to improve gas efficiency and more complete combustion of the fuel. The less 

expensive 87-grade fuel undergoes less refinement and is more concentrated with the heavier 

compounds making it less efficient. 
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Figure 9. Chromatogram comparison of Texaco 87 and 93 gasoline shows a significant difference in the relative  

abundance of the peaks in the lower and higher grades of gasoline (1: 2-Methyl-1-Nitropropane, 2: Toluene, 

3: Xylene, 4: Tri-Methyl Benzene, 5: Di-n-Decyl Sulfide) 

 
Figure 10. Chromatograms comparing Texaco 93 and 87 without the large propane peak to illustrate that the 

differences between the heavier compounds of the two grades (1: 2-Methyl-1-Nitropropane, 2: Toluene, 3: Xylene, 

4: Tri-Methyl Benzene, 5: Di-n-Decyl Sulfide) 

Shell gasoline is similar to Texaco gasoline as seen in Figure 11. Shell 93 has an increased 

concentration of 2-methyl-1-nitropropane (1), and a decreased concentration of heavier 

compounds when compared to Shell 87. This difference is easier to see in Shell gasoline due to 

the smaller concentration of 2-methyl-1-nitropropane (1) when compared to Texaco gasoline. 
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Unlike Texaco gasoline Shell’s ratio of toluene (2), xylene (3) and tri-methyl benzene (4) is similar 

between the two grades.  

 
Figure 11. Chromatogram comparison of Shell 87 and 93 gasoline with internal standard that shows a significant 

difference in the relative abundance of the lower and higher grades of gasoline. (1: 2-Methyl-1-Nitropropane, 2: 

Toluene, 3: Xylene, 4: Tri-Methyl Benzene, 5: Di-n-Decyl Sulfide) 

 

 
Figure 12. Chromatogram comparison of Texaco 93 and Shell 93 gasoline with internal standard that shows the 

difference in the composition of the two brands (1: 2-Methyl-1-Nitropropane, 2: Toluene, 3: Xylene, 4: Tri-Methyl 

Benzene, 5: Di-n-Decyl Sulfide) 
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 Texaco 93 Shell 93 

2-Methyl-1-Nitropropane 3.22 1.46 

Toluene 0.88 0.51 

Xylene 0.13 0.45 

Tri-Methyl Benzene 0.11 0.26 
Table 2. Peak ratios of 2-Methyl-1-Nitropropane, Toluene, Xylene, and Tri-Methyl Benzene in Texaco 93 

and Shell 93 gasoline to show the differences in concentrations between the two gas stations 

Figure 12 and Table 2 show the different composition ratios between Texaco 93 and Shell 

93. The 2-methyl-1-nitropropane peak for Texaco 93 is more than twice the size of the same peak 

in Shell 93. The toluene peak in Texaco 93 is almost twice the size of its counterpart in Shell 93, 

but the xylene and tri-methyl benzene peaks are both smaller in size in the Texaco 93 gasoline 

compared to Shell 93. The 2-methyl-1-nitropropane ratio is a good indicator of gasoline grade and 

brand. In high grade gasoline, 2-methyl-1-nitropropane has a significantly larger ratio when 

compared to the toluene ratio. In the lower grade gasoline, the toluene ratio is larger than the 2-

methyl-1-nitropropane ration (Figure 13 and Table 3). The brand of gasoline can be determined 

by comparing the 2-methyl-1-nitropropane ratio with the toluene ratio. In Texaco 93 gasoline, the 

ratio between 2-methyl-1-nitropropane and toluene is 3.7 and the ratio in Shell 93 is 2.9. In Texaco 

87 the ratio is 0.46 and in Shell 87 it is 0.64. These differences can be used to distinguish the two 

gasoline brands. While the 93 grade has obvious concentration differences between the two brands, 

the 87 grade has more subtle differences. Figure 13 and Table 3 shows the differences between 

Texaco 87 and Shell 87. It’s here that the internal standard is most useful in distinguishing the 

brand of the gasoline. The ratios of the compounds and the internal standard are higher across the 

board for shell 87 gasoline. In addition the ratio of 2-methyl-1-nitropropane to toluene is 0.46 in 

Texaco 87 and 0.64 in Shell 87. The differences are subtle, but the internal standard makes 
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determining the origin of the gasoline sample easier.  

 
Figure 13. Chromatogram comparison of Texaco 87 and Shell 87 gasoline with internal standard that shows the 

difference in the composition of the two brands (1: 2-Methyl-1-Nitropropane, 2: Toluene, 3: Xylene, 4: Tri-Methyl 

Benzene, 5: Di-n-Decyl Sulfide) 

 

 Texaco 87 Shell 87 

2-Methyl-1-Nitropropane 0.42 0.68 

Toluene 0.92 1.07 

Xylene 0.86 1.03 

Tri-Methyl Benzene 0.54 0.62 
Table 3. Peak ratios of 2-Methyl-1-Nitropropane, Toluene, Xylene, and Tri-Methyl Benzene in Texaco 87 and Shell 

87 gasoline to show the differences in concentrations between the two gas stations 

Figure 14 compares all the evaporation levels for the Texaco 87 grade sample. Initially the 

peaks evaporate off slowly with the lighter compounds evaporating first. Table 3 provides 

additional insight into what is happening in Figure 14. The ratio of the peak compared to the 

internal standard was determined for the four major peaks at all evaporation levels. From 

unevaporated to 50% evaporated, the chromatograms retain their characteristic peaks that identify 

it as gasoline. After 50% evaporated, the samples slowly lose the lighter compounds until the 

samples are no longer identifiable as gasoline. Using an internal standard to build a library of 

gasoline chromatograms at different evaporation levels can alleviate this issue. The heavier 
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compounds with retention times greater than 10 minutes are detectable in the sample until the 

gasoline is completely evaporated and this technique can aid in the identification of different 

brands and grades of gasoline.  Figure 15 shows that Shell 87 gasoline evaporate in a similar 

manner as Texaco 87. Both brands of gasoline lose 2-methyl-1-nitropropane peak around 50% 

evaporated. At the 91% evaporation level, tri-methyl benzene was the only remaining peak of those 

examined in this study.  

 

 
Figure 14. Comparison of all evaporation levels of Texaco 87 with internal standard. All chromatograms are 

measured in relative abundance (1: 2-Methyl-1-Nitropropane, 2: Toluene, 3: Xylene, 4: Tri-Methyl Benzene, 5: Di-
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n-Decyl Sulfide) 

 
Figure 15. Comparison of all evaporation levels of Shell 87 with internal standard. All chromatograms are measured 

in relative abundance (1: 2-Methyl-1-Nitropropane, 2: Toluene, 3: Xylene,  

4: Tri-Methyl Benzene, 5: Di-n-Decyl Sulfide) 

Compared to the 87 octane gasoline, the 93 octane gasoline retains its characteristic chromatogram 

for longer than the 87 grade. It begins to lose its characteristic chromatogram at 75-83% evaporated 

as seen in Figure 16 and Figure 17. After 25% evaporated the 2-methyl-1-nitropropane (1) peak is 

so diminished that it is difficult to determine the origin of the gasoline. Evaporated gasoline is not 

suitable for origin determination. This is another benefit to developing a database of gasoline 

samples of all evaporation levels. The database can be used to determine if a gasoline sample is 
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suitable for origin determination.  

 
Figure 16. Comparison of all evaporation levels of Shell 87 with internal standard. All chromatograms are  

measured in relative abundance (1: 2-Methyl-1-Nitropropane, 2: Toluene, 3: Xylene,  

4: Tri-Methyl Benzene, 5: Di-n-Decyl Sulfide) 
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Figure 17. Comparison of all evaporation levels of Shell 93 with internal standard. All chromatograms are  

measured in relative abundance (1: 2-Methyl-1-Nitropropane, 2: Toluene, 3: Xylene,  

4: Tri-Methyl Benzene, 5: Di-n-Decyl Sulfide) 

 

Graphs of the ratios between the major peaks and the internal standard for Texaco 87 can 

be seen in Figures 18. This graph was created using JMP software from the data in Table 4. The 

JMP software plotted the ratios of 2-methyl-1-nitropropane, toluene, xylene, and tri-methyl 

benzene with the internal standard against the percent of evaporated gasoline. The software was 

also used to add a smoothed trend line that allowed the evaporation of the compounds of Texaco 

87 to be visualized. The graph generated using the JMP software shows that as the gasoline 
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samples evaporated, the higher molecular weight compounds increased in concentration before 

eventually decreasing towards zero. This phenomenon is due to the complexity of gasoline and the 

limitations of gas chromatography. Gas chromatography analyzes only the volatile compounds in 

gasoline. Though the mixture has a large number of volatile compounds it is also composed of 

nonvolatile compounds that are not present in the chromatogram. As these nonvolatile, and lower 

mass compounds, evaporate the concentration of higher mass compounds appear to increase. The 

loss of the lower mass compounds results in the decrease in total sample volume during the 

evaporation process while the number of moles of higher mass compounds remains constant. If 

the number of moles of solute in a solution remains constant as the solution decreases, the molarity 

of the higher mass compounds would increase. Because of the inherent concentration issues during 

the gasoline evaporation process, an internal standard useful for the quantification of evaporated 

samples. However, the application of an internal standard to determine the small differences 

between gasoline brands could be a useful arson investigators tool. 
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Figure 18. A graph of the major peaks in gasoline as the sample evaporated fully for Texaco 87-1 and Texaco 87-2 

 

Retention Times 

(Minutes) 

Texaco 87-1 

0% 25% 50% 75% 83% 91% 99% 

2-Methyl-1-Nitropropane 0.42 0.41 0.31 0.05 0.01 0 0 

Toluene 0.92 1.04 1.03 0.25 0.11 0.01 0 

Xylene 0.86 1.06 1.42 0.65 0.78 0.05 0 

Tri-Methyl Benzene 0.53 0.65 1.01 0.54 0.9 1.25 0 

 

Texaco 87-2 

0% 25% 50% 75% 83% 91% 99% 

2-Methyl-1-Nitropropane 0.46 0.37 0.36 0.06 0.01 0 0 

Toluene 1.08 0.95 1.1 0.25 0.09 0 0 

Xylene 1.01 0.93 1.4 0.58 0.96 0.02 0 

Tri-Methyl Benzene 0.62 0.57 0.95 0.43 1.21 1.26 0.06 
Table 4. Peak ratios of major peaks in Texaco 87-1 and Texaco 87-2 when compared to the internal standard. 

 

2.5 CONCLUSION 

This study aimed to 1) establish a preliminary database of gasoline chromatograms with an 

internal standard, 2) identify an internal standard to use in the analysis of the gasoline samples, 
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and 3) assist arson investigators by reducing problems associated with analyzing accelerants at 

arsons. Using two brands of gasoline a preliminary database was established. Texaco and Shell 

gasoline samples were evaporated with and without internal standards. The internal standard used 

in this study, di-n-decyl sulfide, was ultimately used due to its safety and low cost when compared 

to deuterated compounds. After numerous tests an internal standard concentration of 4x10-4 M was 

found that would allow for its use in all grades of gasoline despite the concentration differences. 

The peak ratios calculated with the internal standard allowed for the concentration of the different 

components of gasoline to be compared. It was found that different brands of gasoline have 

differing peak ratios and these differences can be used to help determine the origin of gasoline 

samples. The internal standard also allows for the standardization of gasoline chromatograms, 

allowing for easier comparison between different samples. This data can be used by arson 

investigators to assist in the identification of gasoline used as an accelerant at arson scenes, and 

possibly help them identify the origin of the gasoline. 



 

 

 

53 

 

 

 

CHAPTER 3 

 

METHOD DEVELOPMENT FOR THE DETERMINATION OF CAFFEINE IN PRESSED 

FINGERPRINTS USING MATRIX ASSISTED LASER DESORPTION IONIZATION 

 

3.1 ABSTRACT 

 Fingerprints play a major role in identifying suspects in criminal cases. Due to the 

variability of ridge formation and the minute details used in fingerprint comparison the odds of 

two people having the same fingerprints as someone else is very improbable. For decades 

fingerprints have been limited to a comparative identification source in crime laboratories. Recent 

studies have shown that fingerprints contain a wealth of chemical information that could give 

investigators valuable information ranging from recent drug use to traces of explosives. The 

purpose of this study was to show proof of concept that drug metabolites can be detected from the 

fingerprints of a suspect. Fingerprints along with sweat and saliva were collected from volunteers 

and analyzed using matrix assisted laser desorption ionization (MALDI) to test for the presence of 

caffeine. Samples were taken both during the normal course of the day and timed periods after 

consumption of caffeine to determine if caffeine could be qualitatively determined using MALDI.  

3 matrix application methods were investigated with the best method yielding a calibration curve 

with and R2 value of 0.97. Initial results show that MALDI was able to detect caffeine in 

fingerprints for 2-5 hours after consumption. These results show that MALDI is capable of 
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detecting drugs that have been consumed and excreted in the sweat that forms fingerprints. Work 

can now begin on optimizing these methods to facilitate illicit drug detection and quantification in 

fingerprints. 

 

3.2 INTRODUCTION 

 

3.2.1 FINGERPRINTS IN FORENSICS 

 Fingerprint examination is one of the oldest divisions of forensic investigation. 

Fingerprints have been used as a means of identification for thousands of years. The first recorded 

use of fingerprints for identification was discovered in Chinese records from around 200 BCE, 

where fingerprints were used for identification in a robbery case. [59] As the worlds understanding 

of science, and fingerprints, increased so did their use in solving crime. Fingerprints are one of the 

most common types of evidence collected at crime scenes today. [59] 

The ability to detect, collect, and analyze fingerprints has increased since ancient times. 

Forensic scientists no longer have to rely on collecting fingerprints left in blood, paint, or malleable 

materials that could be seen with the naked eye. Fingerprints not visible to the naked eye can be 

visualized with powders, chemicals, and other techniques that allow forensic scientists to use these 

fingerprints for identification. [60] A large amount of fingerprints collected by forensic scientists 

turns out to be unusable for identification purposes due to insufficient ridge detail for comparison. 

The prints that cannot be used for identification have no further use in current forensic laboratories 

because fingerprints are only used for identification. There is a wealth of chemical information 

that could be gleaned from these unusable fingerprints. 
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3.2.2 BIOLOGY OF FINGERPRINTS 

 Fingerprints are composed of small friction ridges that have evolved to enhance humans’ 

ability to grasp and pick up objects. [61] Friction ridges are developed in the womb and babies are 

born with the fingerprints that they will have for their entire life barring accidents. It is generally 

accepted, though not thoroughly understood, that friction ridges are caused as the basal layer of 

skin grows at an accelerated rate when compared to the upper layers of the epidermis and the layers 

of the dermis. Since the basal layer is the innermost layer of the epidermis, the layer right before 

the dermis begins, the excess growth is believed to buckle and fold causing ridges to form on the 

outermost layer of skin. The skin on the hand and feet, despite having friction ridges not present 

on the rest of the skin, contains a multitude of sweat glands essential for forming the fingerprints 

that forensic scientists collect and process. [62] 

 

3.2.3 SWEAT AND SWEAT SOLUBLE DRUGS 

Sweat glands are biological features found on the surface of the skin that secrete a mostly 

water discharge primarily for temperature regulation. The cells in the human body require a narrow 

optimal temperature range to function and the human body has developed a complex system 

comprised of sweat glands to maintain this optimal temperature. If the body begins to overheat 

sweat glands will excrete a watery discharge that when it evaporates off the skin it will absorb 

energy and cause the skin to cool [63] 

Sweat is a complex secretion that is composed almost entirely of water and waste materials. 

The composition of sweat various from person to person and day to day. Sweat contains waste 

materials that the body wants to get rid of including salts, minerals, lactic acid, and various organic 

compounds. [64,65] Many drugs of abuse are water soluble and can partition into sweat as they 
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travel through the blood stream. It is possible to detect trace amounts of these drugs by analyzing 

sweat samples. [66,67] 

 Research has been conducted into the viability and sensitivity of detecting drugs in sweat 

compared to more traditional testing of urine and blood. Urine analysis can detect drugs as they 

are metabolized and excreted as waste after ingestion with most drugs being excreted within 48 

hours. [68] Drug analysis of blood is useful for determining current level of intoxication as it 

measures the amount of illicit drugs and metabolites present in the blood at the time of collection.  

 Sweat analysis is gaining momentum as an alternative to urine or blood analysis. Collection 

of sweat for analysis is preformed using a patch that subjects wear over a period of time that 

absorbs any sweat produced. The patches are more tamper resistant than urine analysis and less 

invasive than both urine and blood analysis. Some of the largest issues with sweat analysis is the 

low level of illicit drugs and their metabolites excreted in sweat and the potential of removal during 

the collection phase. Drugs of abuse including cocaine, opiates, methamphetamines, cannabinoids, 

and others have been studied using sweat patches and sweat wipes have been analyzed and shown 

to be present in sufficient quantities for identification using GC-MS and LC-MS. [69,70,71,72,73] 

 

3.2.4 CAFFEINE 

Caffeine is a commonly consumed chemical found in a wide variety of food and drinks. It 

is a central nervous system stimulant and primarily acts as an antagonist of the adenosine receptors 

in the brain which blocks drowsiness brought on by adenosine. Caffeine is absorbed in the stomach 

and intestines and reaches peak concentration levels 15-45 minutes after ingestion. Caffeine travels 

through the body via the circulatory system and has a half-life of approximately 6 hours. [74] 

The metabolism of caffeine follows a couple different pathways in the body. Caffeine can 
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undergo N-3 demethylation to paraxanthine, which occurs 70-80% of the time. Caffeine can also 

undergo reactions that converts it to theobromine and theophylline, which occurs about 12-14% 

and 4-5% of the time respectively. Caffeine is metabolized in the liver and can partition into all of 

the tissues of the body, before it is excreted by the kidneys. [74] Caffeine was used in this study 

because it is not a controlled substance, it is a lower molecular weight molecule similar to common 

controlled substances, and it is widely available. 

 
Figure 19. Molecular structure of caffeine. 

 

3.2.5 MATRIX ASSISTED LASER DESORPTION IONIZATION (MALDI) 

Matrix assisted laser desorption ionization (MALDI) is a soft ionization technique that 

allows for the analysis of molecules without fragmentation and is usually combined with time-of-

flight (TOF) mass spectrometry. Samples analyzed using MALDI are coated with a matrix that is 

energized during ionization. MALDI ionization works by pulsing a laser at the matrix coated 

analyte on a metal plate. The energy from the laser energizes the matrix/analyte sample and 

aerosolizes small droplets. The matrix/analyte droplets are charged, and as the matrix evaporates, 

the charge is retained by the analyte. This charge allows the analyte to be accelerated towards the 

mass analyzer. All analytes have the same acceleration when entering the time of flight mass 

spectrometer. The differing mass to charge ratios of these charged species result in separation of 

the charged fragments in the flight tube. The different charged fragments are measured as the 
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charged fragments with the smaller mass to charge ratios hit the detector first. [75,76] 

 
Figure 20. A schematic of the Matrix Assisted Laser Desorption Ionization – Time of Flight 

(MALDI-TOF) instruments, with a close up depicting the ionization of the sample/matrix. 

 

3.2.6 CURRENT RESEARCH INTO DRUG DETECTION IN FINGERPRINTS 

 Fingerprints have played a large role in forensics since 1892 when Sir Francis Galton wrote 

the first book on fingerprints and how to use them for identification, but only recently has scientists 

started analyzing the composition of fingerprints for more information into the lifestyle of the 

owner of the fingerprint. Fingerprints are primarily composed of sweat and contain water-soluble 

metabolic waste with a makeup based on the individual’s consumption. Techniques and 

experiments are being developed to determine the extent of data that can be gathered from the 

chemical composition of fingerprints. [77] 

 In 2007, Richard Leggett et al of the United Kingdom began looking into fingerprints and 

their analysis with gold nanoparticles. Leggett group was interested in determining drug usage of 

an individual based on metabolites found in fingerprints. The research team developed a gold 

nanoparticle ligand system that binds to metabolites of drugs and can be detected by fluorescence 

spectroscopy. Use of the gold nano particle allowed for more antibodies to bind to the fingerprint 

allowing for lower detection rates. The use of this technique allowed for the preservation of 
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fingerprint ridge detail. [78] 

 Also in 2009, Benton et al in Singapore researched the detection of nicotine from contact 

with smokers and secondhand smoke. Moving slightly away from looking at secretions of 

metabolites from fingerprints, this research was focused on determining if the concentration of 

external contamination from person to person contact, contact of contaminated surfaces, or second 

hand smoke was present in significant concentrations to render a non-smokers fingerprint 

indistinguishable from a smokers fingerprint. It was found that passive smoking caused significate 

contamination only from less than 0.1 meter away. Handshakes between a smoker and a non-

smoker indicated a small transfer of nicotine, but it was not found to be significantly different from 

the baseline levels found in non-smokers fingerprints. [79] 

 In 2010 Hazarika et all of the United Kingdom researched an immunoassay based 

technique to detect metabolites of heroin and cocaine with brightfield and fluorescence 

microscopy. Unlike the Leggett research group, Hazarika’s research group focused on using 

antibodies bound to magnetic particles for detection of illicit drug metabolites. The binding of the 

antibody/magnetic particle system produced a visible color reaction from a grey fingerprint to a 

yellow-brown fingerprint upon its binding to the metabolites. The presence of the metabolites was 

confirmed using brightfield and fluorescence microscopy. The research indicated that metabolites 

of heroin and cocaine could be detected separately and simultaneously while leaving the 

fingerprint with enough detail for comparison purposes. [80] 

 In 2013 Kuwayama et al of Japan conducted research on the measurement of caffeine and 

it’s metabolites in fingerprints as a function of time after coffee ingestion. Fingerprints from 

subjects were taken after 1, 3, 5, and 7 hours. The fingerprints were studied using LC-MS. This 

research was conducted as a precursor to analysis of illicit drugs and their metabolites in 
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fingerprints. The researchers were able to detect caffeine and it’s metabolites over the seven hour 

period and were able to see a significant change in the amount of caffeine before and after the 

intake of coffee. Unlike previous methods the fingerprint is destroyed and cannot be used for 

further comparison identification. [81] The Kuwayama’s research group also studied the detection 

of commercially available cold medicines and their metabolites in fingerprints. They were able to 

detect ibuprofen, dihydrocodeine, chlorpheniramine, methylephedrine, and their metabolites in 

fingerprints up to 7 days after ingestion. Analysis of fingerprints was faster and less invasive than 

blood analysis without loss of detectability. [82] 

 

3.3 METHOD 

 

3.3.1 SELECTION OF MALDI MATRIX 

Detecting drugs in fingerprints using MALDI-TOF is an exacting process. MALDI 

analysis is typically performed on molecules with higher masses such as proteins. The illicit drugs 

of interest and the caffeine used in the method development all have smaller masses that make 

them more difficult to detect. Most of the common matrices used in MALDI analysis produce 

peaks in the mass range of the analytes of interest. Two matrices were tested in the laboratory to 

determine the viability in detecting caffeine in fingerprints. 2,5-dihydroxybenzoic acid (DHB) and 

α-cyano-4-hydroxycinnamic acid (CHCA) were both tested due to their use in literature to detect 

low to mid-range weight molecules. After preliminary experiments and analysis were performed 

on DHB and CHCA only CHCA yielded peaks from caffeine and was subsequently chosen for all 

further testing. Although not an issue in this study, CHCA can affect other drug detection protocols 

by MALDI in that the matrix mass peaks fall within the mass range of the analytes examined. 
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3.3.2 DETERMINATION OF IMAGE RESOLUTION 

The MALDI instrument used in this study was equipped with imaging capabilities that 

were used in this research. The imaging software uses camera-guided positions to overlay the data 

onto a photo of the target plate. Figure 21 demonstrates how the imaging software creates a grid 

for analysis. The laser pulses 100 time in the squares formed by the grid in a randomized pattern 

before averaging the results. After the data is collected, it is overlaid on top of the image used to 

create the grid where mass to charge ratios can be selected to create intensity maps like the one 

shown in Figure 21. The images can detail the concentration intensity for a chosen target peak for 

the entire plate. This allows comparisons to be made visually before analyzing the data. Four 

resolution settings for the imaging of caffeine were tested to determine the optimal resolution and 

data collection time required for future images. The optimal resolution was determined to be 

200x200.  

 
Figure 21. Visual representation of how the MALDI grid is laid out for imaging analysis 

 

3.3.3 DETERMINATION OF MATRIX APPLICATION AND CALIBRATION CURVE 

The main compound studied in this research was caffeine. Caffeine is a common ingredient 

in many foods and drinks, and is already a part of a large portion of the population diets. A caffeine 

standard was used to create a calibration curve to attempt to quantify the data obtained using 

MALDI imaging, and a caffeine standard was used during each analysis for confirmation that the 
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peaks analyzed in fingerprints and biological fluids were caffeine. The resultant mass spectra 

generated from the Thermo Scientific ITQ1100 mass spectrometer, Figure 23, was confirmed 

using NIST library reference spectra. 

Caffeine standard was purchased from Sigma Aldrich (CAS Number: 58-08-2). Standard 

solutions of caffeine were dissolved in methanol and spotted onto a metal MALDI target plate and 

allowed to dry. To determine the best method to quantitatively measure caffeine using MALDI 

three matrix application techniques were investigated. The first method involved dissolving the 

matrix and caffeine standard together in methanol. The matrix/caffeine standard solution was 

spotted on the target plate and allowed to crystalize. The second method investigated involved 

dissolving caffeine standard in methanol and spotting it on the target plate. The matrix was applied 

via spray coating after the methanol had evaporated from the target plate. This method proved 

troublesome as the methanol had a tendency to disperse over a large area. After thorough literature 

research the third matrix application method was investigated. This method involved spotting 

droplets of water onto the target plate and then spotting the caffeine standard, which was dissolved 

in methanol, directly in the water droplets. The matrix was once again applied via spray coating 

after the solvents had evaporated off the target plate. The addition of the water droplet allowed the 

caffeine standard to remain in the desired location and not spread to the other samples causing the 

target plate to be redone. Calibration curves were formed using the three types of matrix 

applications. Each calibration curve contained a blank and test spots with the concentrations of 

0.001 M, 0.01 M, 0.1 M, and 1 M.  
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3.3.4 CALCULATION OF CALIBRATION CURVE 

Data was obtained for each of the three methods investigated. A total of 8,000 spectra were 

generated for the 15 spots. Each spectra was checked for caffeine peaks. A portion of the spectra, 

especially those in the blanks, contained no caffeine data. Those that did contain caffeine data were 

recorded and condensed into a single table for each spot. The spots were then analyzed using JMP 

software. The data from the four concentrations, 0.001 M, 0.01 M, 0.1 M, and 1 M, were graphed 

to look at the distribution and spread of intensities. The JMP software was also used to calculate 

the mean, standard deviation, standard error mean, and the mean of the top and bottom 95% of the 

data. The software also determined and displayed the outlier points for each spot. 

 

3.3.5 SAMPLE COLLECTION AND PREPARATION 

Three volunteers were selected for this study. Volunteer 1 consumed a small 12 ounce cup 

of coffee and a small sip of diet coke, 2 hours and 10 minutes before sampling, respectively. 

Volunteer 2 consumed a 20 ounce bottle of Mello Yellow 2 hours prior to sampling. Volunteer 3 

consumed a 16 ounce Monster Energy drink at the time of sampling and consumed no other 

caffeine 224 hours prior to sampling. Biological samples including saliva, sweat, fingerprint 

residue, and pressed fingerprints were taken from Volunteer 1 and 2 during a typical day. The 

saliva and pressed fingerprints were applied directly to the target plate. The sweat residue was 

collected by rubbing a cotton swab along parts of the body including the neck and arms. The 

fingerprint residue was collected by rubbing a cotton swab along the palms and fingers. The 

residues were collected over a 5 minute period before soaking in methanol for 30 minutes. After 

soaking, the residues were spotted on the target plate alongside the saliva, pressed fingerprints, 
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and caffeine standard.  

 

3.3.6 MALDI DATA COLLECTION 

Fingerprints were placed on the plate with a minimum of fifteen seconds of contact, and 

biological fluids were spotted on the target plate and allowed to dry. After all solvents had 

evaporated the matrix, α-cyano-4-hydroxycinnamic acid (CHCA), was sprayed onto the plate in 

thin layers until covered. After the plate was fully dry, it was placed into the Bruker Autoflex II 

MALDI-TOF instrument for analysis. Sections of the target plate with analyte were selected for 

analysis using the instrumental software. The areas were measured in 200x200 squares, where 100 

spectra were collected and averaged. During analysis on the MALDI instrument the ion source 1, 

the ion source 2, and the lens was set at 20.00 kV, 18.45 kV, and 8.30 kV respectively. The laser 

strength was set between 75% and 78% strength. Masses were detected in the range of 100 m/z 

and 1000 m/z. Once all spectra were obtained the software was able to overlay the obtained data 

to form the imaging results that showed the concentrations of the samples.  

 

3.4 RESULTS AND DISCUSSION   

 

3.4.1 DETERMINATION OF IMAGE RESOLUTION 

An aspect of the imaging software explored is the resolution capabilities. The software 

allows the user to specify the resolution used during analysis. Lower resolution decreases both the 

data collection speed time and the image quality by a significant factor. Figure 22 shows the results 

of the resolution optimization tests. Box 1, Box 2, Box 3, and Box 4 represent a sample analyzed 

at 1000x1000, 600x600, 200x200, and 100x100 resolutions, respectively. The resolutions detail 
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the dimensions of the grid overlaid on the sample by the software. 100 spectra are gathered in each 

square and averaged to form the final spectra. Box 4 offered the best resolution of the settings 

examined and took nearly 19 hours to complete the analysis. Conversely, Box 1 offered the worst 

resolution and took less than a half hour to complete. The resolution settings of 200x200, Box 3, 

was chosen for this study since it yielded satisfactory images that took only 4 hours to complete 

compared to the 19 hours needed to analyze images with 100x100 resolution.  

 
Figure 22. Caffeine resolution test for MALDI imaging with (1) 1000x1000,  

(2) 600x600, (3) 200x200, and (4) 100x100 resolution 

 

3.4.2 MATRIX APPLICATION METHOD 

 

 
Figure 23. MALDI imaging results of matrix application techniques and calibration curves 

 Three matrix application methods were examined to help select the most appropriate 

quantitative analysis method for this study (Figure 23). The first application method, the matrix α-

cyano-4-hydroxycinnamic acid (CHCA) dissolved in methanol, was added to the caffeine standard 
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and spotted on the target plate. Once the solvent evaporated, the caffeine crystalized on the target 

plate in an irregular and unreproducible manner. In the second and third method, the CHCA was 

sprayed onto the target plate creating an even coating layer. The second method involved carefully 

spotting and re-spotting caffeine standard solution dissolved in methanol until usable spots were 

achieved. When various concentrations of caffeine standard solutions dissolved in methanol were 

spotted on the target plate, the solutions spread uncontrollably across the target plate. The irregular 

distribution of sample on the target plate made accurate and precise measurements difficult. The 

third application method tested was similar to the second application method tested. The third 

application method involved the addition of water. The water was spotted on the target plate and 

the caffeine standard solution was then spotted directly into the water droplet. The cohesive 

properties of the water molecules helped to contain the standard solution to a small area on the 

target plate. The confinement of the caffeine standard by the water allowed the caffeine to dry in 

a uniform layer. The even distribution of sample on the MALDI target plate made the idea of 

generating a calibration curve plausible. The caffeine standard solution was confirmed using 

Thermo Scientific Trace GC Ultra and Thermo Scientific ITQ1100 mass spectrometer (Figure 24). 
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Figure 24. GC/MS Results of caffeine used in this study 

 

 
Figure 25. Distribution analysis of 0.001M, 0.01M, 0.1M, and 1M caffeine for the calibration spots  

where the matrix was dissolved with the caffeine standard and spotted on the plate.  
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Figure 26. Distribution summaries of .001M, 0.01M, 0.1M, and 1M caffeine for the calibration spots  

where the matrix was dissolved with the caffeine standard and spotted on the plate.  

Figures 25, 27, and 29 illustrate the scope of the data generated during analysis using MALDI 

imaging. Each figure is broken down into 200x200 nm squares, and each square generates a 

spectra. That spectra was then analyzed to obtain the intensities of the caffeine peaks. After 

analyzing each spectra for the spots using the first application method, where the matrix, CHCA, 

was dissolved with the caffeine standard and spotted on the plate, the resulting intensities can be 

seen in Figure 25. Figure 25 plots the intensities obtained from all concentrations versus the mass 

to charge ratio of the detected species. The figure shows the large amount of overlap each 

concentration has, with a large concentration of intensities between 0 and 2000. Figure 26 breaks 

the data in Figure 25 down into each individual concentration. It displays the distribution of 

intensities along with average intensity and standard deviation. Examining at the averages for the 

concentrations reveals why dissolving the matrix with the standard and spotting them together is 

not the best method to use for creating a calibration curve. The averages were 662, 965, 1037, and 

842 for the concentrations 0.001 M, 0.01 M, 0.1 M, and 1 M respectively. The method proves to 
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be useful for qualitative analysis, but not quantitative analysis.  

 The data for the matrix application method where the caffeine standard was spotted and a 

sprayed matrix coat was applied, as seen in Figure 27, show several differences compared to the 

data from the first method. The data have more outliers in the higher intensities. The data is also 

more distributed over the intensity range, but the different concentrations have little separation and 

significant overlap. This can be seen in their average intensities, found in Figure 28, which are 

1245, 1507, 1638, and 1743 for the concentrations 0.001 M, 0.01 M, 0.1 M, and 1 M respectively. 

The data create a linear calibration curve, Figure 31, with an R2 value of 0.95. The method produces 

usable results for a calibration, but applying the standards to the target plate make this method less 

desirable than the third method, where water was spotted on the target plate first.  

 
Figure 27. Distribution analysis of .001M, 0.01M, 0.1M, and 1M caffeine for the calibration spots 

where the caffeine standard was spotted and a sprayed matrix coat was applied. 
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Figure 28. Distribution summaries of .001M, 0.01M, 0.1M, and 1M caffeine for the calibration 

where the caffeine standard was spotted and a sprayed matrix coat was applied. 

 The third matrix application method, where first water was spotted and then the caffeine 

standard was spotted and a sprayed matrix coat was applied, produced the best data out of the three 

application methods. While there is some overlap, in Figure 29 individual concentrations (as 

represented by the colored dots) appear in distinguishable bands. The addition of the water to the 

target plate before spotting the caffeine standard allowed the standard to spread evenly over the 

target plate and form a more uniform spot for analysis. These results can be seen in Figure 22 and 

are also shown in Figure 30. The distribution plots for the different concentrations show the 

positive correlation between increasing intensities with higher caffeine concentrations. The 

averages are 490, 673, 1206, and 1501 for the concentrations 0.001 M, 0.01 M, 0.1 M, and 1 M 

respectively. The calibration curve generated from these averages had an R2 value of 0.97. These 

results produce a reproducible and useable calibration curve that can be used to determine the 

concentration of unknown caffeine samples. The ease of sample preparation along with the more 

uniform distribution of the standard over the spot method led to the spray method being chosen as 
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the best method for forming a calibration curve using MALDI imaging.  

 

Figure 29. Distribution analysis of .001M, 0.01M, 0.1M, and 1M caffeine for the calibration 

where first water was spotted and then the caffeine standard was spotted and a sprayed matrix coat was applied. 

 
Figure 30. Distribution summaries of .001M, 0.01M, 0.1M, and 1M caffeine for the calibration 

where first water was spotted and then the caffeine standard was spotted and a sprayed matrix coat was applied. 
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Figure 31. Calibration curves of the MALDI data obtained from the different matrix application methods. 

 

3.4.3 SAMPLE COLLECTION 

After the intricacies of the method were determined, samples were collected to determine 

if caffeine could be detected in biological fluids and fingerprints. Three volunteers were selected 

for this study. Volunteer 1 consumed a small 12 ounce cup of coffee and a small sip of diet coke, 

2 to 3 hours and 10 minutes prior to sampling, respectively. Volunteer 2 consumed a 20 ounce 

bottle of Mello Yellow 2 hours prior to sampling. Volunteer 3 consumed a 16 ounce Monster 

Energy drink at the time of sampling after refraining from caffeine for 24 hours. Samples from 

Volunteer 1 and 2 were collected to represent the caffeine concentrations for a typical day in a 

person’s life. Samples from Volunteer 3 were collected to show the changes in concentration levels 

detected by MALDI after caffeine consumption. 
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Figure 32. Analysis of saliva, fingerprints, and sweat from Volunteer 1 and 2  

collected using a cotton swab, and pressed fingerprints. 

In Figure 32, the pressed fingerprint 1, fingerprint residue 1, and sweat residue 1 showed 

very little caffeine present while the saliva 1 sample revealed, as expected, a high concentration of 

caffeine. This is due to the rate that caffeine travels throughout the body. Volunteer 1 did not have 

enough time between caffeine consumption and sample collection for the body to process the 

caffeine and for the caffeine to travel throughout the body to the sweat glands.  

In contrast, Volunteer 2 consumed caffeine 2 hours prior to sample collection. Which 

allowed sufficient time for the body to metabolize some of the caffeine and for the caffeine to 

travel throughout the body to the sweat glands. This conclusion is supported by the higher 

concentrations of caffeine present in the pressed fingerprint 2, fingerprint residue 2, and sweat 

residue 2. The decreased amount of caffeine present in the saliva of Volunteer 2 when compared 

to Volunteer 1 is also attributed to the different ingestion times of the caffeinated beverages.  
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Figure 33 shows the change in concentration levels of caffeine as the body metabolizes 

caffeine. The caffeine levels in the fingerprints can be seen to increase after only 5 minutes. The 

caffeine levels peak around 30 minutes and begin to return to original levels over the next 5 hours. 

Volunteer 3 did not consume any sources of caffeine, food or drink, during the sampling period. 

The increase in concentration of caffeine is due to the consumed Monster Energy drink only. These 

results are consistent with the metabolism of caffeine that has been reported in the literature [83] 

 
Figure 33. Analysis over a period of 5 hours of Volunteer 3’s fingerprints 

after the ingestion of a 16 ounce Monster® energy drink. 

3.5 CONCLUSION 

 MALDI analysis is a powerful tool that allows for sensitive analysis of samples with 

minimal sample preparation. The results observed in this research show that trace amounts of 

caffeine could be found in fingerprints and other biological matrices. This research is the first step 

in developing methods to detect sweat soluble drugs of abuse in fingerprints found at crime scenes. 

Additional work will be performed in order to detect and quantify metabolites of illicit drugs in 
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fingerprints, sweat, and saliva. Once these new noninvasive methods are fully developed, they can 

be used to assist the criminal justice system in determining abuse and intoxication levels of 

individuals using marijuana or other illegal or prescription drugs.  
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CHAPTER 4 

 

METHOD IMPROVEMENT FOR DETECTION OF 

∆9 –TETRAHYDROCANNABINOL IN HAIR 

 

4.1 ABSTRACT  

Marijuana one of the most commonly used drugs in the United States and is one of the 

most analyzed illicit drug in forensic laboratories [83]. Despite the increasing number of states that 

have legalized marijuana it is still illegal at the federal level. Current drug testing methods for the 

detection of marijuana usage can detect marijuana metabolites in blood and urine samples of 

suspected marijuana users. Current analytical methods are useful in determining recent use of 

marijuana but have a limited window for detection in blood and urine samples of 2 days and 2 

months respectively. Hair analysis for marijuana is an option for analysts that need to test for prior 

marijuana usage of suspects or personnel that ingested the drug months before drug samples could 

be taken for blood or urine analysis. The difficulty with current hair analysis techniques is the 

lengthy time needed for sample preparation which include washing, drying, pulverization or other 

hair size reduction techniques, and digestion. The purpose of this study is to reduce the preparation 

time needed for marijuana analysis from 2 days to 2-5 hours making hair analysis a more practical 

option for the backlogged forensic laboratories. The methods in this research aimed to reduce the 

amount of time needed for drying and to determine the best method of hair preparation for 
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extraction. Results from this study suggest that the total hair sample preparation time can be 

reduced by nine hours or more without sacrificing detection limits. The different methods had an 

average concentration of 120 pg/mg ± 10 pg/mg with 50pg/mg being the cutoff recommended by 

the Society of Hair Testing [84]. The more than 1 day in time savings and unchanged detection 

limits offered by these methods could result in an increase in hair analysis in forensic laboratories 

across the United States.  

 

4.2 INTRODUCTION  

 

4.2.1 WHAT IS CANNABIS?  

Marijuana, or cannabis, is one of the most commonly used street drugs in the United States 

of America [83]. According to the National Institute on Drug Abuse, roughly 50% of adults have 

used marijuana at one point during their lifetime [85].  Under the Controlled Substance Act of 

1970, marijuana was declared a ‘Schedule I’ drug and illegal to possess or ingest in the United 

States. A ‘Schedule I’ drug is a drug that has a high potential for abuse and no medical use [86].  

Marijuana has not always been an illegal drug. Its use has been recorded for thousands of 

years. Early use of the plant was recorded dating back to the end of the Stone Age. People living 

in Central Asia used one species of the plant to make rope and clothing as well as food. They also 

discovered another species of the plant that had psychoactive properties. The names given to these 

two plants eventually morphed into the modern day names of hemp and cannabis. Written accounts 

of cannabis use as a fiber, food source, and psychoactive drug, can be found throughout the 

writings of many different cultures around the world. The Greeks mostly used cannabis for its 

practical uses and had little contact with it as a drug. There are accounts of the plant’s use in the 
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Middle East, Africa, Asia, and Europe indicating that cannabis is a plant that can be found in many 

differing cultures around the world. [87] 

In 1973, a Swedish botanist formally studied cannabis creating a new genus, Cannabis, in 

which there are multiple subspecies due to human cultivation. The three main subspecies are 

Cannabis Sativa, Cannabis Indica, and Cannabis Ruderalis. As scientists began to study the plants 

of the Cannabis genus, they were able to isolate compounds that distinguished the plants from 

others with similar familiar characteristics, such as varieties of hops, mulberries, or hackberries. 

These compounds are collectively known as cannabinoids. There are over 100 naturally occurring 

cannabinoids divided into 8 main classes, as shown in Table 5, determined by the way the base 

structure of the compound is cyclized. [87,88] 

Cannabigerol 

CBG 

 

Cannabichromene  

CBC 
 

Cannabidiol 

CBD 

 

Tetrahydrocannabinol 

and Cannabinol  

THC, CBN 

 

Cannabielsoin 

CBE 

 

iso- 

Tetrahydrocannabinol 

iso-THC 
 

Cannabicyclol 

CBL 

 

Cannabicitran 

CBT 

 
Table 5. The eight main classifications of cannabinoids and their base structure. 

Cannabinoids are comprised of psychoactive and non-psychoactive compounds. The most 

well-known cannabinoid is ∆9-tetrahydrocannabinol or ∆9-THC. The cannabinoid is the primary 

https://en.wikipedia.org/wiki/File:CBG-type_cannabinoid.png
https://en.wikipedia.org/wiki/File:CBC-type_cannabinoid.png
https://en.wikipedia.org/wiki/File:CBD-type_cannabinoid.png
https://en.wikipedia.org/wiki/File:CBE-type_cannabinoid.png
https://en.wikipedia.org/wiki/File:Iso-CBN-type_cannabinoid.png
https://en.wikipedia.org/wiki/File:CBL-type_cannabinoid.png
https://en.wikipedia.org/wiki/File:CBT-type_cannabinoid.png


 

 

 

79 

chemical found in marijuana that is consumed recreationally throughout the United States. The 

metabolites of ∆9-THC are the main chemicals targeted for drug screenings for marijuana use. 

Selective cultivation of Cannabis plants been undertaken to increase and decrease the amount of 

∆9-THC found in the plant. Plants with higher ∆9-THC concentrations produce stronger 

psychoactive symptoms, while plants with lower ∆9-THC concentrations are typically used for 

medicinal purposes.  

Cannabis plants have a long history of use as medicine. Greek physicians prescribed 

Cannabis for a variety of medical ailments including stomach issues. The majority of Greek uses 

of Cannabis did not employ the psychoactive properties of the plant. Cannabis’s psychoactive 

properties are activated by high temperature, such as baking or smoking. Writings detailing the 

Greek use of the plant did not include heat in its preparation. Arabic speaking scholars wrote of 

their medicinal practices, which were based on Greek physicians. Little knowledge or use of the 

psychoactive properties of Cannabis appeared in text until the twelfth century. After the twelfth 

century, there was an increase of recorded accounts of the psychoactive properties of Cannabis, 

but the main use of the plant remained as food and textile products. [87] 

 
Figure 34: Major pathway of tetrahydrocannabinol (THC) metabolism. Tetrahydrocannabinolic acid (THCA), found 

in marijuana plants, is decarboxylated to THC through heat before being metabolized further in the liver via a 

cytochrome p450 gene to the psychoactive metabolite 11-nor-9-carboxy-THC [89] 
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 Tetrahydrocannabinolic acid, THCA, is a non-psychoactive cannabinoid found in live 

Cannabis plants. As Cannabis plants are harvested THCA is converted to tetrahydrocannabinol, 

THC, through decarboxylation. The application of heat, through smoking or baking, can accelerate 

the decarboxylation process. THC is the main psychoactive component of Cannabis and is 

metabolized to 11-hydroxy-THC in the liver by the cytochrome p450 enzymes, CYP2C9, 

CYP2C19, and CYP3A4. 11-hydroxy-THC is further oxidized to 11-nor-9-carboxy-THC, the 

main metabolite detected in drug panels designed to screen for Cannabis use. THC and its 

metabolites travel throughout the body via the circulatory system and interact with cannabinoid 

receptors, CB receptors, in the central and peripheral nervous systems. [90,91,92,93,94] 

 

4.2.2 HISTORY OF AMERICAN LAWS REGARDING CANNABIS  

Cannabis traveled to the Americas with the Spaniards and made its way into what is now 

the United States. It has been used in textiles such as rope, fabric, and paper since the 1600s. [95] 

Early American physicians even included Cannabis in their medicines that they sold to the public 

at large. Before 1910, Cannabis was referred to by its Latin name in America. As Mexican 

immigrants moved into the United States, the commonly used name of Cannabis began to shift 

slowly towards marijuana. Along with a name change, Mexican immigrants brought with them the 

practice of smoking marijuana. Prior to this, most Americans only ingested Cannabis in liquids or 

foods.  

In the early 1900s, states began to take notice of marijuana use and enacted laws to regulate 

the possession, use, and sale of the plant. After the 18th amendment was appealed and prohibition 

ended the federal government turned their attention to marijuana with the 1937 Marijuana Tax. 

The increased government oversite and restriction on marijuana came at the start of the Great 

Depression in the 1930s. The government blamed marijuana smoking for corrupting the minds and 
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bodies of those who smoked it, unfairly targeting Blacks and Mexicans who were its largest 

consumers.  

Henry Anslinger, the first director of the Federal Bureau of Narcotics, led the campaign 

against marijuana. Anslinger used the newly emerging silent movies, radio interviews, and 

newspaper articles to spread misinformation and fear against the plant, despite Cannabis already 

being accepted by the majority of Americans. Due to the rising tensions caused by the Great 

Depression, recent Mexican immigration, and continued racism of White Americans, Anslinger 

was able to turn a country against a plant by continually referring to it by its Mexican name and 

creating an association between the plant and the recent immigrants. By the time, White Americans 

realized the drug they were making illegal was Cannabis it was too late. By 1936, every state had 

laws regarding the plant, and in the 70’s and 80’s the federal government made marijuana illegal. 

[95,96] 

In 1970, the government passed the Comprehensive Drug Abuse Prevention and Control 

Act of 1970, and in 1973, the Drug Enforcement Administration (DEA) was created. The Act of 

1970 classified marijuana as a ‘Schedule I’ drug. Drugs in this schedule have a high potential for 

abuse and no medical use. It is illegal to possess or use drugs in this schedule. [95] 

As the federal government began to increase the penalties for having or using marijuana, 

several states started relaxing the penalties for possessing small amounts of the drug. States also 

began to acknowledge once again the use of marijuana for medicinal purposes. This has caused a 

rift between state laws and federal law, especially in recent years as states have started legalizing 

recreational use of the drug. Since marijuana is still illegal on the federal level and in several states, 

research is ongoing to improve and increase marijuana analytical detection methods.  
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4.2.3 DETECTION OF THC IN BIOLOGICAL FLUIDS  

Testing for marijuana drug use is typically preformed using urine samples. Urine requires 

a noninvasive collection method and is generally easier to obtain. THC and its metabolites can 

take several hours to appear in urine after ingestion. Positive results can typically be found for up 

to a week after a single use. Chronic users of marijuana can have metabolites present in their urine 

for a couple of months after they discontinue using the drug. The main metabolite found in Urine 

is the non-psychoactive metabolite 11-nor-9-carboxy-THC. Due to the long retention time of 

marijuana metabolites in urine, it is impossible to measure impairment based on urine analysis 

alone. [97] 

Blood is an alternative biological matrix that can be tested for marijuana use. It has several 

advantages over urine testing. Blood will contain traces of ∆9-THC, the psychoactive cannabinoid 

in marijuana, which can be used to indicate recent usage of the drug and can be used to measure a 

person’s level of intoxication. ∆9-THC travels quickly through the blood and will be metabolized 

within 12-24 hours. After 24 hours, it is unlikely that any ∆9-THC will be found in a blood sample. 

Chronic users of the drug can build up plasma concentrations that could interfere in the 

determination of the timing of the most recent dose. Because obtaining a blood sample is also an 

invasive procedure that requires a medical professional, urine samples are used more frequently 

than blood samples in crime laboratories to test for marijuana usage. [98] 

Another less commonly used biological matrix used in drug testing is hair. Hair is less 

commonly tested when compared to urine and blood samples because it details long-term use of 

the drug instead of immediate or recent use. THC and its metabolites can deposit into hair follicles 

as the hair is growing. Once incorporated into hair, the drug doesn’t change form and will remain 

with the individual until their next haircut or the hair falls out. Since the average growth of hair is 
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known, hair can be used to determine patterns of usage. Hair testing can also be used to determine 

usage of marijuana that occurred outside of the window of detection for the other methods. [97]  

 

4.2.4 DETECTION OF DRUGS IN HAIR  

 Hair is a unique biological matrix that covers the majority of the human body in varying 

forms of thickness. The largest concentration of hair follicles are located on the head. Hair is 

comprised of keratin proteins, a fibrous structure protein. Hair, along with nails, are a unique part 

of the body because after growing past the skin the cells will remain unchanged. Unless changed 

by external chemical or physical means a shaft of hair will retain the chemical make-up it had at 

formation. [98,99] 

 Hair growth occurs in three distinct phases. The anagen phase is the first and the longest 

phase of hair growth. For 2-6 years, hair actively grows and has a steady flow of blood to nourish 

and promote growth. The catagen phase is a 2-4 week phase where the hair is beginning to die and 

lose contact with its blood supply. The final phase is the telogen phase where the hair is dead and 

a new hair begins to grow in the same follicle pushing the old hair out. During growth, hair follicles 

are nourished and supplied by the blood stream. As the blood flows to the hair and nourishes, waste 

material can be deposited in the growing hair shaft.  

Current methods for testing hair samples for drug use are prohibitive to most non-specialist 

laboratories, especially in the forensic laboratory sector. The process for prepping the hair for 

extraction and the extraction procedure can be time consuming and take multiple days. Hair needs 

to be washed to remove all external contaminates and dried before extraction under current 

methods. After washing and drying, the keratin structure must be broken down to extract the drugs 
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trapped in the hair shaft. Work is ongoing to make drug analysis of hair a more efficient and 

reasonable method for use in crime labs. [100,101,102,103] 

 

4.2.5 LIQUID-LIQUID EXTRACTION 

 Liquid-liquid extraction is a technique that separates compounds based on their solubility 

in two immiscible liquids. In hair drug analysis, liquid-liquid extraction is used to extract the ∆9-

THC from the keratin proteins that are broken down during digestion. [104] 

 
Figure 35. A visual representation of liquid-liquid extraction 

 

 

4.2.6 LIQUID CHROMATOGRAPHY (LC)  

Liquid chromatography (LC) is a separation technique used to separate mixtures of 

chemicals or compounds. The chemicals are separated using a dual phase method. These phases 

interact together to move the analytes at different rates through a column, which creates separation. 

The two phases in chromatography are a mobile phase and a stationary phase.  
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Figure 36. Schematic of a liquid chromatograph 

 

In liquid chromatography, the mobile phase is a solvent or solvent gradient, while the 

stationary phase is a column. The mobile phase consists of solvents that can either remain the same 

concentration (isocratic) during the analysis, or change concentration (gradient) during analysis. 

Solvent manipulations allow for simultaneous analysis of compounds with dissimilar polarities. 

The solvents are chosen based on the polarity and potential interactions with the sample. The 

purpose of the mobile phase is to move the analyte molecules through the column to the detector.  

The column interacts with the analytes causing the molecules to travel through the length 

of the column at different speeds where they reach the detector at different times. The solvents 

help move the analytes through the column. A gradient solvent flow can be used when a sample 

consists of analytes of different polarities requiring more than one solvent to carry all constituents 

to the detector.  

This technique can also determine the amounts of the individual components of the analyte 

molecules. Detectors on a LC will not only record the time an analyte takes to reach the column, 

but it will also record the relative intensity of the analyte that reaches the detector. When a standard 

is used, the concentration of the unknown analyte can be determined. 

Liquid chromatography is a technique that is becoming more commonly used in chemistry. 

While it is useful on its own, when it is combined with other techniques, it provides more 
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information that can be used to accurately identify analytes. LC is commonly coupled with mass 

spectrometry to provide separation of a sample before mass data is gathered.   

As the instrumentation continues to improve, liquid chromatography moves to the 

foreground of separation techniques. With the ability to couple LC separation techniques to all 

manners of other instrumentation, the analytical benefit of the technique is limitless. [105] 

 

4.2.7 TANDEM MASS SPECTROMETRY (MS/MS/MS) 

 Mass spectrometry is a common analytical technique that measures the mass to charge ratio 

of molecules. In a typical mass spectrometer, a molecule is ionized and then separated using one 

of several mass separation components. Depending on the type of ionization the entire molecule 

is either ionized or is fragmented and then ionized during the ionization process. The whole or 

fragmented ions are sorted based on the ratio of their mass to their ionization charge. There are 

several types of mass separators including one of the most common, quadrupole mass separator.  

 Quadrupole mass separators consist of two pairs of rods that are parallel and form a 

diamond shape. Of the four rods there are two pairs formed as seen in Figure 37. The quadrupole 

works by applying a radio frequency voltage (RF) and a direct current (DC) voltage to the pairs of 

rods. The pairs will alternate between the RF voltage and the DC voltage with the pairs never 

having the same voltage type at the same time. The alternating voltages cause the ions to form a 

spiraling trajectory as they travel towards the detector. The strength of the voltage is used to 

separator ions. Only specific ions, based on their mass-to-charge ratio, will have a stable trajectory 

and reach the detector. All other ions will have unstable trajectories and collide with the rods or 

walls of the chamber before reaching the detector. The strength of the voltages applied to the rods 

is adjusted to allow a variety of mass-to-charge ratios to reach the detector one mass-to-charge 
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ratio at a time. Quadrupoles typically cycle through voltage strengths quickly, detecting hundreds 

of mass-to-charge ratios in milliseconds. Alternatively, the quadrupole can maintain one voltage 

strength only measuring one mass-to-charge ratio, which is known as single ion monitoring.  

 Tandem mass spectrometry was used in this research and consists of three sequential 

quadrupoles run in sequence. The first quadrupole (Q1) typically uses a soft ionization source that 

does not fragment the molecule. Q1 separates out a specific set of molecules with a specific mass-

to-charge. These molecules are detected and then accelerated to the second quadrupole (q2). In q2, 

the molecules collide with an inert gas and are fragmented before being accelerated to the third 

quadrupole (Q3). Q3 is set up similarly to the first quadrupole. It separates and detects the most 

common fragments of the parent molecules. Multiple-reaction-monitoring (MRM) is a 

programmable mass selection method that allows the researcher to predetermine a set of mass-to-

charge ratios to be analyzed. MRM is similar to the traditional scanning method and single ion 

monitoring method. MRM allows for multiple ions to be analyzed one after the other in a repeating 

cycle as does the traditional scanning method. Additionally MRM allows for the ions to be 

specified as in single ion monitoring and will only monitor those specific mass-to-charge ratios. 

In triple tandem mass spectrometry quadrupoles, 1 and 2 typically use MRM methods. Quadrupole 

1 is set up to analyze and separate parent ions while quadrupole 3 is set up to analyze known 

fragments of the parent ion. This type of method allows for fast and sensitive analysis as only the 

ions of interest are detected. A drawback of the method is that all mass-to-charge ratios of interest 

need to be known before analysis. [106] 
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Figure 37. Schematic of a tandem quadrupole mass separator. After the sample is ionized, it is 

filtered in the first quadrupole, fragmented in the second quadrupole, and the fragments filtered in 

the third quadrupole. The ions are detected as they exit the first and third quadrupole. 

 

4.3 METHOD    

 Detection of THC in hair is an interest to forensic chemists and scientists who study the 

use of marijuana. The lengthy analysis time and difficulties involved with extracting THC and its 

metabolites from hair samples serve as barriers preventing hair analysis in crime laboratories. This 

study attempts to reduce the overall analysis time of THC in hair samples while improving or 

maintaining established detection limits.  

Published hair preparation methods typically require a gentle wash and an overnight drying 

of the hair before the cutting and or pulverization of the hair and the final extraction process. 

Preparation techniques were chosen for this research to determine the impact washing and drying 

had on the detection of THC metabolite. The viability of using liquid nitrogen to pulverize the hair 

samples to allow for a more homogeneous sampling of hairs from different sources is proposed 

and investigated in this study. 

 

4.3.1 WASHING 

 Approximately 0.5 g of hair obtained after a hair cut from a self-reported marijuana smoker 

was used for each sample tested. Each batch of hair was washed with dilute soap for 10 minutes. 



 

 

 

89 

After 10 minutes of washing with diluted soap, the process was repeated three additional times 

with ddH2O for 10 additional minutes per wash. A final rinse for 5 minutes included an addition 

of 5ml of dichloromethane. Once the washing process was finished, the samples were dried in an 

oven at 30°C for 2 hours until the majority of the visible moisture was gone. To determine the 

necessity of a long drying process, a set of samples underwent the entire washing process, but did 

not undergo the drying steps. An additional set of samples were not processed using the washing 

or drying step to examine the effect that washing and drying has on metabolite levels in the hair 

sample.  

 

4.3.2 EXTRACTION 

 During extraction, 50mg of hair was added to 0.5 mL of a 0.5M sodium hydroxide solution. 

The resulting solution was heated to 95-100°C for 10 minutes, resulting in a liquefied digested hair 

solution. The 3 hair preparation techniques examined for this method included 1) the 

Godfrey/Glenn liquid nitrogen or G2LN2 pulverized hair method (hair pulverized using liquid 

nitrogen and a mortar and pestle), 2) the uncut hair method (8-10 cm pieces of hair), and 3) the cut 

hair method (approximately 1cm pieces of hair). After the solution was allowed to cool, a 9/1 

hexane/ethyl acetate solution was added to extract the ∆9-THC. The samples were vortexed for 10 

minutes, and the organic phase was removed. The organic phase was evaporated under a gentle 

stream of nitrogen, and the sample was reconstituted in 100µL of acetonitrile for analysis on 

LCMS.  
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4.3.3 LC/MS/MS 

 Liquid chromatography separation was performed using a Shimadzu Nextra duel pump LC 

and a Phenomenex Synergi Hydro – RP 2.5 mm 100Å 50x4.6mm column. The instrument included 

an auto-sampler that injected 5µL of the sample into a gradient flow pumped at 0.8ml/min with a 

column temperature of 30°C. The solvents used in this analysis were solvent A, water w/ 0.1% 

formic acid, and solvent B, acetonitrile w/ 0.1% formic acid which were pumped through the 

instrument following the gradient program outlined in Table 6. The total runtime for the method 

was 10 minutes. 

Time Program 

Time (Min) A% B% 

0.0 60% 40% 

3.0 60% 40% 

3.2 10% 90% 

5.2 10% 90% 

6.0 05% 95% 

7.0 60% 40% 

7.5 60% 40% 

10.0 Stop Stop 
Table 6: The parameters for the gradient LC program during analysis of the hair samples.  

Solvent A: water w/ 0.1% formic acid. Solvent B: acetonitrile w/ 0.1% formic acid. 

 

Tandem mass spectrometry detection was performed using ABSciex QTrap 4500 ESI-QqQ 

MS. For this analysis, the instrument was operated in positive ionization mode (PIM). The source 

temperate was set at 650°C, the ion spray voltage was 5500V, and the curtain gas had a flow of 40 

liters per minute (L/min) while source gases 1 and 2 had flows of 60 and 70 L/min, respectively. 

Multiple-reaction-monitoring (MRM) was used to detect and separate tetrahydrocannabinol 

(THC) and 11-nor-9-carboxy-THC (THC-COOH) in the first quadrupole. The second quadrupole 

fragmented the two molecules of interest and the two most common fragments were detected in 

the third quadrupole as shown in Table 7. Quadrupole 1 (Q1) allowed only 315m/z and 345m/z to 
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pass to quadrupole 2 (q2). Quadrupole 3 (Q3) detected the 193.1m/z and 122.9m/z fragments from 

the parent ion of THC, and the 327m/z and 76.9m/z fragments from the parent ion of THC-COOH. 

The declustering potential (DP) was set to 76 eV. The entrance potential was set to 10 eV. The 

collision cell exit potential was set at 8, 16, or 6 depending on the size of the fragment in Q3. 

Analysis was performed using Analyst v.1.6.2 and v.1.6.3 software. 

MRMs 

 Q1 Q3 DP EP CXP 

Tetrahydrocannabinol (THC) 1   315 193.1 76 10 8 

THC 2 315 122.9 76 10 8 

11-nor-9-carboxy-THC (THC-COOH) 1 345 327 76 10 16 

THC-COOH 2 345 76.9 76 10 6 
Table 7: Summary of the parameters for tandem MS.  

 

4.4 RESULTS AND DISCUSSION 

The comparison of various hair preparation methods yielded some promising results. Four 

of the six samples types used in this study were allowed to dry in an oven at 30°C for 2 hours until 

all of the visible water was evaporated. One of the samples used was washed but not dried while 

the last set was neither washed nor dried. Table 8 contains the time needed for each method used 

in this research compared with the time taken for current literature methods.  

Method Wash Dry Cut Pulverized Total Time 

Literature 

Pulverized 
2h+ 12h+ ------- 20min 14h+ 

Godfrey/Glenn  

(G2LN2) 

Pulverized 

30min 4h ------ 30min 5h 

Washed and Dried 

[Uncut] 
30min 2h 0min ------- 2.5h 

Washed and Dried 

[Cut] 
30min 2h 5min ------- 2.5h 

Washed and Not 

Dried [Cut] 
30min 0min 5min ------- 35min 
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Not Washed or 

Dried [Cut] 
0min 0min 5min ------- 5min 

Table 8. Comparison of the time required for the various hair preparation methods. 

 

Three different hair sample preparation methods were examined in this study to maximize 

the liberation of ∆9-THC from hair samples using a sodium hydroxide solution 1) pulverized hair, 

hair samples were pulverized using liquid nitrogen and a mortar and pestle 2) uncut hair, hair left 

uncut at approximately 8-10cm lengths and 3) cut hair, hair cut into approximately 1cm strips 

using a scalpel blade as suggested in the literature. The cutting of the hair samples took only 5 

minutes and did not offer a significant amount of time saving when compared to the uncut hair. In 

addition, the uncut hair had to be tapped against the lab bench multiple time throughout the 

digestion process in order liberate all of the hair for digestion. The cut hair did not require this 

step. The pulverized hair took a significantly longer time than the other preparation methods. 

Pulverizing the hair, using the Godfrey/Glenn liquid nitrogen pulverization method (G2LN2) took 

approximately 45 minutes per sample including cleaning the mortar and pestle in-between 

samples. Due to the high air humidity, the liquid nitrogen caused the samples to become water 

logged requiring additional drying. The additional drying increased the preparation time for the 

pulverized samples by 2 hours. 

 While the G2LN2 method required twice the preparation time as the uncut and cut hair 

methods, all of which were washed and dried, the G2LN2 method is a 9+ hours improvement over 

the pulverization method used in the literature. The particles of hair produced were millimeters 

long and would lead to a better homogenization of hair samples. After slight modification, the 

G2LN2 method has great potential for future use in forensic laboratories.  

 



 

 

 

93 

 
Figure 38. The mass spectra from quadrupole 1 of THC-COOH for the different hair preparations.  

As seen in the Figures 38 each sample preparation method had detectable THC-COOH, the 

main metabolite of THC. An additional peak can be seen in the samples, with the highest 

concentration in the samples that were washed and dried and not washed or dried. This peak is 

believed to be an isomer of 11-nor-9-carboxy THC. Figure 39 shows the chemical structure of Δ9-

THC and Δ8-THC, two cannabinoids found in marijuana. The only difference between the two 

compounds is the double bond between the 9/10 carbons and 8/9 carbons in Δ9-THC and Δ8-THC, 

respectively. The metabolite studied in this research is a metabolite of Δ9-THC, the most common 
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cannabinoid in marijuana. It is thought that the additional peak in the results come from the 

metabolite of Δ8-THC, but further analysis would be needed. 

 
Figure 39. Comparison of Δ9-THC and Δ8-THC 

The concentrations of each hair preparation method can be found in Table 9. They were 

calculated using the peak heights and the calibration curve found in Figure 35. The samples had 

an average concentration of 120 pg/mg ± 10 pg/mg. The concentrations of the metabolite in each 

sample are close in value as expected, because the hair was harvested from a single donor. Of the 

six methods tested, two of the methods produced results that were below 120 pg/mg. The method 

where the hair was pulverized and the method where the hair was washed but not dried had 

concentrations of 105 pg/mg and 111 pg/mg respectively. Out of the six methods these two were 

exposed to more water, or the water was not removed completely before extraction. The pulverized 

hair sample was pulverized with liquid nitrogen, and the humidity of the room caused the sample 

to become waterlogged. A 30-minute drying process was performed to remove most of the water, 

but it was not as long as the drying session after washing. The hair sample that was washed but 

not dried had water remaining from its washing. The initial step of extraction involved an aqueous 

0.5 M sodium hydroxide solution. The water remaining in the two hair samples would have diluted 

the sodium hydroxide solution causing to become less efficient at extracting the 11-nor-9-carboxy 

THC. This loss in efficiency led to a lower concentration for the samples. The three samples 

without additional moisture have an average concentration of 127 pg/mg ± 4 pg/mg which is 
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nearly 20 pg/mg larger than the 108 pg/mg ± 3pg/mg of the two samples that had additional 

moisture during preparation.  

 
Figure 40. Calibration curve of Standard 11-nor-9-carboxy-THC that produced data for  

345m/z (11-nor-9-carboxy THC) and 315m/z (THC) molecules 

 11-nor-9-

carboxy THC 

Tetrahydro-

cannabinol 

Washed and Dried [Pulverized] 105 pg/mg 25 pg/mg 

Washed and Dried [Not Cut] 133 pg/mg 33 pg/mg 

Washed and Dried [Cut] 123 pg/mg 25 pg/mg 

Washed and Not Dried [Cut]  125 pg/mg 68 pg/mg 

Not Washed or Dried [Cut] 111 pg/mg 77 pg/mg 

Washed and Dried [Blank] 0 pg/mg 0 pg/mg 
Table 9. The concentration of the 11-nor-9-carboxy THC and Tetrahydrocannabinol detected.  
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Figure 41. The mass spectra from quadrupole 1 of THC for the different of hair preparations.  

Analysis of the samples and standards was performed using an LC/MS/MS method 

established at ElSohly Laboratories to analyze THC, its metabolites, and synthetic cannabinoids. 

The 11-nor-9-carboxy-THC metabolite was the compound of interest in the extraction and analysis 

of the hair samples. Due to the method used at ElSohly laboratories, it was possible to look at the 

results for the parent THC molecule. The presence of THC in the samples initially lead to the belief 

that there was THC present in the hair samples. Upon analyzing the standard 11-nor-9-carboxy 

THC it was found that THC was also present in the results. This indicates that during analysis 11-
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nor-9-carboxy THC is becoming decarboxylated producing the parent THC molecule. The THC 

data gathered from the 11-nor-9-carboxy THC produces a linear calibration curve similar to 

calibration curve of 11-nor-9-carboxy THC. The 11-nor-9-carboxy THC’s calibration curve has a 

slope of 0.7975 while the THC’s slope is 0.7868. Both calibration curves have an R2 value of 0.99. 

This data shows a correlation between the 11-nor-9-carboxy THC data and the THC data. This 

correlation is not seen in the sample data. The samples of hair that received no drying (washed but 

not dried and neither washed or dried) had a higher concentration of THC than the samples that 

underwent the drying step. It is possible that the natural THC found in the hair could have been 

broken down by the heat of the drying step, and the remaining THC is the product of the 

decarboxylation of 11-nor-9-carboxy THC. This would account for the increased concentration of 

THC found in the samples that did not undergo the drying step. However, more research is needed 

to determine the exact nature of the THC data.  

 

4.5 CONCLUSION 

Current literature details a lengthy method for analyzing the metabolite 11-nor-9-carboxy-

THC in hair. The aim of this study was to reduce the amount of time needed for hair analysis, 

eventually making it a more practical option for use in forensic laboratories and for use in this 

laboratory. Examination of current literature identifies the drying of the hair sample after washing 

adds an additional 12+ hours to the hair preparation step. The different sample preparation methods 

yielded 11-nor-9-carboxy-THC concentration of 120 pg/mg ± 10 pg/mg that are comparable to 

the published results. The results of this research suggest that the length of the drying time does 

not have a significant impact on the quantity 11-nor-9-carboxy-THC of detected. The time saving 

measures and comparable detection limits of the Godfrey/Glenn Liquid Nitrogen Pulverization 
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method can make the lengthy hair analysis used in crime laboratories a routine and reliable service 

just as urine and blood. 
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