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ABSTRACT 

Cadherins are calcium dependent glycoproteins whose homophilic interactions mediate 

cell-cell adhesion in solid tissues. They are comprised of an extracellular region, a transmembrane 

region and a cytoplasmic region. The extracellular region plays a critical role in cadherin-mediated 

cell adhesion, and has five tandemly repeated ectodomains (EC1-EC5), with three calcium binding 

sites situated in each interface between the domains. Dimerization of cadherin occurs through 

formation of adhesive interactions between extracellular domains of cadherins from neighboring 

cells. Adhesive interaction occurs at the interfaces of EC1 domains of two molecules originating 

from different cell surfaces. Dimerization is critically dependent on the binding of calcium. Neural 

and epithelial cadherin (NCAD and ECAD) are very similar in sequence comparison, but differ in 

kinetics of dimer assembly and dimer affinity in the presence or absence of calcium. The single 

most obvious difference in the strand swapped interface is a proline in NCAD and a glutamate in 

ECAD in position 16. Our hypothesis is that the slow kinetics of dimer disassembly of NCAD is 

due to the steric restrictions of proline in position 16 of NCAD. The purpose of this research is to 

mutate the proline, in position 16 to alanine (P16A), in NCAD to decrease the steric hindrance and 

study the effects of the mutation. Stability studies assess the effect the mutation has on the folding 

properties of the protein. Calcium binding experiments demonstrate whether the mutation affects 

the binding affinity of calcium.  From the results, P16A lowers the stability of the protein, Ca2+ 

binding affinity, and dimerization kinetics of NCAD.  
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CHAPTER I 

 

INTRODUCTION 

Cell adhesion is the interaction that occurs between cell surfaces and the extracellular 

matrix which enables development, formation, and maintenance of tissues in multicellular 

organisms. In addition, for tissues to form properly, cells must adhere to other cells in an organized 

fashion.  In order for cell-cell adhesion to occur in adherens junctions, tight junctions, and 

desmosomes, cell-cell adhesion transmembrane proteins are required. Most cell adhesion 

molecules are transmembrane glycoproteins belonging to one of these five families: cadherins, 

mucins, integrins, selectins, and immunoglobins. These families are either calcium dependent or 

independent molecules and have specific functions for cell adhesion 1-3.   

Classical cadherins are calcium dependent glycoproteins whose homophilic interactions 

mediate cell-cell adhesion in solid tissues4. Cadherins are responsible for maintaining the integrity 

of multicellular tissues, selecting cell-cell adhesion (cell sorting), and playing important roles in 

embryogenesis 5-9. Any abnormalities can affect long term potentiation and synapse duration. 

Regarding metastasis of cancer, cadherin dysfunction occurs through genetic mutations, low 

expression, and changes in the tumor microenvironment 10-14. Because of the importance of 

cadherin in normal tissue function and maintenance, research in our laboratory is focused on 

understanding the molecular basis of cadherin function.  We use biophysical approaches to study 

the linkage between calcium binding and dimerization equilibria and kinetics in neural- and 

epithelia-cadherins, the two most prominent members of the classical cadherin family. 
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 Cadherins have a similar structure comprised of three parts: an amino-terminal 

extracellular region, a transmembrane segment, and a conserved carboxyl terminal intracellular 

region Figure 1.  The extracellular region consists of five extracellular domains (EC1-EC5), 

approximately 100 amino acid residues each.  Cadherins allow adherent cells to communicate due 

to tension communicated through cadherin EC domains to the cytoplasmic domain.  The C-domain 

of cadherin is connected to the actin cytoskeleton through the catenin network. Each EC domain 

has seven (A-G) antiparallel β-strands.  Between successive EC domain is an interface which binds 

three calcium ions 15-16.   

 

Figure 1: Cadherin is a transmembrane protein, consisting of ~650 amino acids, that communicates 

adhesion to the actin cytoskeleton through a catenin network.  Modular EC domains (blue) with three 

calcium ions (orange) bound at the interface between each modular domain. The cytoplasmic domain 

(green bar) is shown with cytoplasmic proteins called catenins (orange).  
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NEURAL AND EPITHELIAL CADHERIN 

 Type I or classical cadherins are located in adherens junctions and are named according to 

the cell type in which they predominate. Neural cadherin (NCAD) and epithelial cadherin (ECAD) 

are the most studied members of the cadherin family. They are very similar in sequence and 

structure, but have different dimerization affinity and kinetics. While ECAD is the predominant 

classical cadherin in epithelial cells, like NCAD, it is also located in the central nervous system.  

These two cadherins can be expressed in the same neuron at different synapses. ECAD is found in 

inhibitory synapses and NCAD in excitatory synapses. Inhibitory synapses contain a relatively 

constant calcium concentration and are located in dendritic shafts, soma, and proximal axonal 

regions of neurons17-18. Excitatory synapses are located in dendritic spines and the calcium 

concentration fluctuates depending on the signaling event. Their localization at distinct synapses 

indicates they have unique applications. Altered metabolism of N-cadherin results in synaptic 

dysfunction, a primary feature of Alzheimers disease 40.  In additional to their neurological roles, 

abnormal expression of N-cadherin by carcinoma cancer cells can contribute to invasiveness and 

metastasis by making the cells more motile 38-39.   

SEQUENCE 

 NCAD12 and ECAD12 have a very similar amino acid sequence with only a few 

differences. These differences may play a vital role in monomer-dimer equilibrium. The EC1 and 

EC2 domain sequences for both proteins were aligned using LALIGN19 (Table 1). Based on this 

program, ECAD12 and NCAD12 have a highly conserved level of sequence homology. The 

comparison sequence shows that EC1 domain is 57% identical and 27% similar, linker 1 region is 

86% identical and 14%, similar, EC2 domain is 54% identical and 23% similar, and linker 2 region 

is 71% identical and 29% similar. Overall, these 2-domain constructs are 81% identical or similar.  
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ECAD  DWVIPPISCPENEKGEFPKNLVQIKSNRDKETKVFYSITGQGADKPPVGVFIIERETGWL 

      :::::::. ::: .: ::..::.:.:.:::. .. ::.:: :::.::.:.:::.  .: :  

NCAD  DWVIPPINLPENSRGPFPQELVRIRSDRDKNLSLRYSVTGPGADQPPTGIFIINPISGQL 

                

ECAD  KVTQPLDREAIAKYILYSHAVSSNGEAVEDPMEIVITVTDQNDNRPEFTQEVFEGSVAEG 

      .::.::::: ::.. : .:::. ::. ::.:..:::.: :.::::::: ..:..::: ::  

NCAD  SVTKPLDRELIARFHLRAHAVDINGNQVENPIDIVINVIDMNDNRPEFLHQVWNGSVPEG 

               

ECAD  AVPGTSVMKVSATDADDDVNTYNAAIAYTIVSQDPELPHKNMFTVNRDTGVISVLTSGLD 

      . ::: :: :.: ::::  :. :. . : :.:: :  :  ::::.: .:: : ....:::  

NCAD  SKPGTYVMTVTAIDADDP-NALNGMLRYRILSQAPSTPSPNMFTINNETGDIITVAAGLD 

               

ECAD  RESYPTYTLVVQAADLQGE---GLSTTAKAVITVKDINDNAP 

      ::.   :::..::.:..:.   :::.:: ::::: :.::: :   

NCAD  REKVQQYTLIIQATDMEGNPTYGLSNTATAVITVTDVNDNPP 

      

Table 1: Sequence comparison of ECAD 12 and NCAD 12.  Top line is the ECAD 12 sequence (red) 

and bottom line is the NCAD 12 sequence (black).  Black double dots represent identical amino acids 

residues. Similar residues are shown in black single dots.   

 

DIMERIZATION AFFINITY 

  Dimerization of cadherin occurs through formation of adhesive interactions (being direct 

noncovalent interactions such as ionic interaction, hydrophobic interactions, or hydrogen bonding) 

between extracellular domains of cadherin from neighboring cells. Adhesive interactions occur at 

the interfaces of EC1 domains of two molecules originating from different cell surfaces. In order 

to make this adhesive interaction, three calciums bind between each pair of domains. Calcium 

binding creates a conformational strain on the “closed” monomer. To relieve this strain, the N-

terminal βA-strand of one cadherin protomer docks the side chain of its tryptophan in position 2 

(W2) into the hydrophobic pocket in EC1 of its adherent partner from the opposing cell surface 

(Figure 2). This structure is known as strand-swapping dimer. A mutation of W2 results in a loss 

in dimerization capability21-23. Binding calcium regulates the biological function of cell adhesion 

by stabilizing and rigidifying the EC domains, and facilitating the dimer formation.  The presence 
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of calcium rigidifies the linker regions between successive domains into a proper orientation 

(~90o), and maintains the overall domains in certain conformational flexibility as well 24.  

+

 

 
 

Figure 2: Calcium-dependent Strand-Swap Dimer Mechanism. The apo monomer consists of domains 

EC1 and EC2 without the presence of calcium. W2 on βA strand is docked into its own hydrophobic 

pocket. When three calciums are added between domains EC1 and EC2, it causes a conformational strain 

in the “closed” Ca2+ saturated monomer (darker EC1). To relieve this strain, the W2 βA strand docks into 

the neighboring monomer’s hydrophobic pocket.  Thus, creating the strand-swap dimer.  

 

 As described above the extracellular domains of classical cadherin interact through direct 

noncovalent interactions: ionic interaction, hydrophobic interactions, and hydrogen bonding. The 

strand-swapped adhesive interaction occurs at the interfaces of EC1 domains of two molecules 

originating from different cell surfaces, and as such is called a trans dimer. The lateral interaction 

is another type of dimerization. It occurs between the interface of EC1 domain of molecule A 

and EC2 domain of molecule B in a parallel orientation from the same cell surface. The “front-

to-back” contacts are called lateral or cis interfaces because the protomers come from the same 

cell. A hydrophobic surface on the “back” of EC1, away from the site of strand exchange, 

interacts with a hydrophobic region at the bottom of EC2. Lateral interactions have been observed 

Ca2+ 
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in N-, E- and C- cadherin molecules in crystal structures, but do not always agree in this form42-

44. The data were entirely structural and there was no corroborating biological evidence 45. Ozawa 

et al used an immunoprecipitation approach to analyze lateral dimer formation by E-cadherin. 

Yet, Ozawa reported that the lateral dimerization was not sufficient for adhesive activity 41. Thus, 

the functional significance of lateral interactions is still debated because the formation of lateral 

dimers is extremely low affinity under in vitro conditions.  

DIMERIZATION KINETICS 

 Both NCAD and ECAD form adhesive dimers through the mutual exchange of the βA 

strand, but differ in dimerization kinetics. NCAD (25uM) dimerization affinity is four times higher 

than ECAD (100uM)20. Studies have shown that ECAD forms dimer that is in rapid exchange with 

monomer with or without the presence of calcium. NCAD also forms dimer in rapid exchange 

with monomer in the presence of calcium. However, in the absence of calcium there is very slow 

monomer dimer exchange in NCAD such that a kinetically trapped dimer is formed 25. To explain 

the rapid exchange between monomer and dimer in ECAD, a low affinity dimeric intermediate 

structure called “X-dimer” was proposed 26. X-dimer (also called the initial encounter complex) is 

a transition state complex that functions as an intermediate structure between monomer and the 

strand swapped dimer. The closed monomer state has its W2 buried into its own hydrophobic 

pocket.  The closed dimer state is the strand-swapped dimer in which EC1 domains of the two 

interacting protomers are in direct contact.  W2 residues are docked inside of their partner’s 

hydrophobic pocket. EC2 domains are not in direct contact.  To form the closed dimer, βA-strand 

of each protomer must open by breaking noncovalent forces before reforming them in the adhesive 

dimer partner. In both states, the closed monomer and closed dimer, the W2s are not exposed to 

solvent46 and are either docked inside their own or their partner’s hydrophobic cleft. Therefore, 
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forming an initial-encounter complex is necessary to keep the βA-strand buried either in closed 

monomer form or in closed dimer form. Meanwhile, forming an X-dimer lowers the activation 

barrier of assembly and disassembly of dimers.  

 Harrison’s X-dimer model for ECAD drew special attention to lysine 14 as a key player in 

the stabilization of the X-dimer intermediate.  NCAD and ECAD both have a basic amino acid at 

position 14, and are positively charged. In ECAD, K14 interacts with D138 on the opposing 

protomer which interacts in the X-dimer. Beyond the apparent importance of K14 in the structural 

data, its function was studied with the K14 to glutamate mutant (K14E).  This mutant showed very 

slow kinetics of dimerization with no apparent effect upon the dimerization affinity28.   

In NCAD, there is no structural data to support the role for R14 interactions in the rapid 

kinetics of dimerization of NCAD in the presence of calcium. Kinetics studies were performed to 

investigated the role of R14 in the rapid dimerization of NCAD with and without calcium 27-28. 

Several mutants (arginine mutated to serine R14S, glutamate R14E, and alanine R14A) were 

prepared with “X-dimer” forming capabilities. The loss of R14 did not slow dimerization unless it 

was mutated to glutamate, which drastically slowed down dimerization in the presence of calcium.  

 Because mutation of the basic residue in position 14 to an acid residue has a profound effect 

on the dimerization kinetics of ECAD and NCAD, interest has been placed on the dimerization 

interface region, which is roughly amino acids 10-18 in the sequence of ECAD and NCAD, as an 

important contributor to dimerization kinetics. In that particular region, there happens to be several 

prolines in positions 10, 16, and 18. However, the prolines in position 10 and 18 are conversed in 

both sequences (ECAD and NCAD). Only the proline in position 16 is different. This proline at 

position 16 could be the reason for the slow dimerization in NCAD. The purpose of this research 
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is to mutate the proline in position 16 to an alanine (P16A), to decrease steric hindrance, and study 

the kinetic effects. 

PROLINE 

 Proline has intrinsic roles in protein function and stability. Proline is the only amino acid 

where the side chain is directly connected to the protein backbone in two places, α-C and amide 

N.  As such, proline is a secondary amine, forming a five-membered nitrogen-containing ring. 

Often proline is found in β turns in proteins, structures that are known to be evolutionarily 

conserved 29. X-pro peptide bonds exist in cis and trans configurations. The trans configuration is 

preferred over the cis because there is less steric hindrance between the amide hydrogen and the 

previous α carbon.  Conversely, the cis configuration becomes more prevalent as the solvent 

becomes more polar 30. In native proteins that contain X-pro bonds, prolines are either completely 

cis or trans configuration. Isomerization of these conformations can be slow and be the rate 

determining step in protein folding. 

 There have been many studies demonstrating the critical roles of prolines. Green et al. 

showed that deletion of six amino acids in a surface loop converted a monomeric protein into a 

stable dimer 31.  Findings by Baldwin et al. demonstrated that mutation of two prolines in cis pro 

bonds, 93 and 114, in Ribonuclease A destabilized the protein 32. Likewise, Marqusee et.al argued 

that proline 114, in Ribonuclease A, facilitates domain swapping 33. In our lab, it has been shown 

that mutating two prolines, positions 5 and 6 in NCAD, were necessary for stabilizing the dimer 

relative to the monomer to promote dimerization 34-35.  

SCOPE OF WORK 

It has already been stated that proline plays a vital role in protein folding and stability and 

dimer assembly. Proline can be easily substituted for other small amino acids using site-directed 
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mutagenesis of the gene that codes for the protein. The purpose of this research is to mutate 

proline16 to alanine (P16A), in NCAD12 to decrease the steric hindrance and study the effects of 

the mutation on the structure and function of NCAD12. Stability studies assess the effect the 

mutation has on the folding and stability of the protein. Calcium binding experiments demonstrate 

whether the mutation affects the binding affinity for calcium. 

 

Figure 3: Amino acids Proline and Alanine at pH 7. Proline has a ring structure compared to the 

methyl group located on Alanine. By mutating proline to an alanine, NCAD12 becomes more flexible 

to rotate.  

 

 

 

 

 

 

 

 

 

 

PROLINE ALANINE 
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CHAPTER II 

 

METHODS AND MATERIALS 

PROTEIN EXPRESSION  

For the expression of NCAD12-P16A (P16A), LB agar plates and LB agar plates with a 

Kanamycin (Kan) resistant had to be prepared. These plates were prepared in two 250 ml 

Erlenmeyer flasks by mixing 100 ml water, 2.0 g tryptone, 1.0 g yeast extract, 1.0 g NaCl, and  

1.5 g agar. The solutions were covered with aluminum foil, labeled, taped with autoclave tape, and 

autoclaved. Once the solutions were autoclaved, they cooled on the benchtop at room temperature 

until they reached 55oC. To one flask, 100 ul of Kan stock (100 ug/ml) was added. Labeled plates 

(LB or LB/Kan) were poured with the appropriate solution (LB or LB/Kan) and allowed to solidify 

overnight on the benchtop at room temperature. The next day all plates were parafilmed and stored 

in the refrigerator until needed. A sample of NCAD12-P16A expression cell line was taken from 

the -80oC freezer. With a sterile inoculating loop, NCAD12-P16A expression line E.coli cells  

(BC21-DE3) were streaked on a LB/Kan plates. The plates were incubated overnight at 37oC and 

checked for colony growth the next day. A 50 ml liquid media solution, in a 250 ml Erlenmeyer 

flask, was prepared similar to LB/Kan agar except no agar was added. The solution cooled, then a 

colony was chosen from the streaked plate and used to inoculate the media as the overnight culture. 

The culture was placed in the incubator overnight at 37oC and rotated at 200 rpm. In two 2.5 L 

Fernbach flasks, the large expression culture, 1 L sterile LB was prepared. Each flask contained 1 

Lwater, 20 g tryptone, 10 g yeast extract, and 10 g NaCl. The solutions were covered with  
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aluminum foil, labeled, taped with autoclave tape, and autoclaved. Once the solutions were 

autoclaved, they cooled on the benchtop until they reached 55oC. A volume of 1 mL of Kan stock 

was added to each flask. The solutions cooled on the benchtop overnight at room temperature. To 

each flask, 15 mL of 20% glucose, 37.5 mL of 1M-potassium phosphate and 5 mL of overnight 

culture were added. These large expression cultures were placed in the incubator for three hours 

at 37°C and rotated at 200 rpm. After the three hours the absorbance was checked at 600 nm and 

blanked against the LB only media.  The absorbance was checked every 15 minutes in order to 

accurately identify the 0.5 AU induction period. Once the A600 is near ~0.3 AU, the growth rate 

rapidly increases. After four hours, the cultures were induced at A600 0.4526. A volume of 1 mL 

of IPTG was added to induce each culture. The cultures were incubated and grown for two hours 

at 37°C and rotated at 200 rpm.  The liquid cultures were transferred to 1L bottles and centrifuged 

at 4oC at 3000 rpm for 20 minutes. The supernatant was decanted and a pellet remained in the 

bottle. The pellet was re-suspended using 10 mL of 20 mM HEPES, 100 mM KCl, pH 7.4 buffer.  

Then, the solution was frozen at -20°C. 

PROTEIN PURIFICATION 

 The frozen solution was thawed, then sonicated to lyse the cells and release the protein. 

The cells were centrifuged at 13,000 rpm and 4oC for 45 minutes. The supernatant was decanted 

and saved. The following steps involved further purifying the protein. A volume of 15 ml solution 

of 10% Triton-X was added to the pellet and incubated at room temperature for 10 mins. The re-

suspended pellet was centrifuged at 4oC at 3000 rpm for 20 minutes. The supernatant was decanted 

as previously stated. A volume of 15 ml of 1% Triton-X was added to the pellet. A stirring rod 

was used to dissolve the pellet and incubated at room temperature for 10 mins. The re-suspended 

pellet was centrifuged at 4oC at 3000 rpm for 20 minutes. The supernatant was decanted as 
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previously stated. This step was repeated. The pellet was dissolved in 15 ml of His-Tag binding 

buffer with 6 M urea added. Then, the solution was placed in the cold room overnight with a stir 

bar.  

To further purify NCAD12-P16A using solvents with different binding affinities, His-tag 

chromatography was used. The solution was centrifuged at 4oC at 3000 rpm for 20 minutes. The 

supernatant was save because it contained the protein that would be used on the His-tag column. 

Before the column could be used, it had to be equilibrated by running 25 ml of 6 M Urea Binding 

Buffer through the column. Once this was completed, 5 ml of the protein was loaded into the 

column and the flow through was collected. Next, 5 ml of His-tag binding buffer was loaded onto 

the column and the flow through was collected (~5 ml increments). This step was repeated three 

more times. Then, 20 ml of wash buffer was loaded onto the column and the flow through was 

collected (~5 ml increments). Finally, 30 ml of elution buffer was loaded onto the column and the 

flow through was collected (~5 ml increments). This entire process was repeated for the remainder 

of the crude protein sample. In order to determine which His-tag fractions contained protein, the 

absorbance (at 280 nm) of each fraction was taken after being blanked against the appropriate 

buffer.   

The Elution Buffer fractions with the highest absorbance were combined into one sample. 

The sample was dialyzed in trypsin digest buffer to equilibrate the protein via buffer exchange for 

ideal conditions for trypsin digestion. The sample was placed into a 12 cm molecular porous 

membrane, which was clipped at both ends. Membranes were then immersed in 2 L of Trypsin 

Digest Buffer (140 mM NaCl, 20 mM Tris, 10 mM CaCl2, 1 mM DTT, and 5% glycerol, pH 7.9) 

with a stir bar on speed 3 and placed in the cold room overnight (covered with aluminum foil). 

The sample was removed and placed into a conical. Eight micro-centrifuge tubes were labeled (1-
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8). To each tube, 250 ul of immobilized trypsin and 750 ul of trypsin dialyzed protein were added. 

The tubes were vortexed and centrifuged for 5 mins at room temperature. The supernatant was 

decanted, and the process was repeated two more times.  Next, the digested protein was dialyzed 

in 500 ml of SEC buffer (10 mM HEPES, 140 mM NaCl, pH 7.4). The buffer was changed every 

2 hours to ensure buffer exchange happened between trypsin digestion and the standard apo-buffer 

which will be used in future studies. After dialysis, the protein concentration (~38 uM) was 

determined by checking the absorbance, using UV-vis spectroscopy, at 280nm (ε280 = 15,900 ± 

400 M-1cm-1)47. The protein was then aliquoted into 1.5 ml micro-centrifuge tube and frozen for 

later use.   

THERMAL DENATURATION 

Thermal denaturation was monitored by AVIV 202SF circular dichroism (CD) 

spectrometer.  To determine the stability of NCAD12-P16A, a 1:20 dilution was made from the 

protein sample to obtain a protein concentration of 5 µM. The sample was placed in a 1 cm quartz 

cuvette and a spectrum (300 to 200nm) was taken using UV-vis spectroscopy. A small stir bar was 

added to the sample and the sample was placed in CD. The temperature probe was added and a 

spectrum was taken to ensure the protein signal was apparent and the temperature probe did not 

interfere with the light source. The optimum wavelength for monitoring thermal denaturation was 

227 nm. The temperature ramp was 1°C/min with a 30 second to 1 min equilibration time with a 

5 sec acquisition time at 230 nm. The temperature varied from 15oC to 95oC.  All thermal unfolding 

transitions were fit to the Gibbs Helm Holtz equation, which is: 

∆𝐺 =  ∆𝐻𝑚 (1 − 
𝑇

𝑇𝑚
) + ∆𝐶𝑝 (𝑇 − 𝑇𝑚 − 𝑇𝑙𝑛

𝑇

𝑇𝑚
)                                        (1) 



 

14 
 

where ΔHm is the enthalpy of unfolding at the melting temperature, and ΔCp is the heat capacity 

change for denaturation. The value of ΔCp was fixed to 1 kcal/molK in all fits.  ΔG is the calculated 

free energy at 25°C based on resolved parameters. 

CALCIUM BINDING 

 Calcium titrations of NCAD12-P16A were monitored by circular dichroism (CD) and 

fluorescence (FL) spectroscopy. The titrations were performed on protein concentrations of 5 uM 

in SEC buffer with a total volume of ~2000 ul. The titrations monitored by CD were done in a 1 

cm cuvette with a stirring by adding small volumes (2.5 ul, 5 ul, and 10 ul) of calcium chloride 

stocks of different concentrations (1 uM, 10 uM, 100 uM, 1M). After the calcium addition was 

made, spectra were taken from 220 to 300 nm with 5 sec averaging time. Each titration was 

performed in triplicate. CD data at wavelengths between 225 and 235 were processed and analyzed 

as individual titration curves. A second set of identical titrations was also monitored by 

fluorescence emission (FL). The protein solutions were prepared at 5 uM total protein 

concentration and titrated as mentioned previously. Emission spectra were recorded from 300 to 

425 nm with excitation wavelength set at 280 nm. The data from the CD and FL titration were fit 

individually to the Adair equation to resolve the free energy change of calcium binding as shown 

below in Eq 2: 

𝑌 =  
𝐾𝑎𝑋

1+ 𝐾𝑎𝑋
   ; Ka = exp{-ΔG˚/RT}                  (2) 

where Y bar is the fractional saturation of sites and Ka is the calcium association constant. These 

experiments will yield estimates of the midpoint of the calcium binding titrations. 
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CHAPTER III 

 

RESULTS 

PROTEIN EXPRESSION 

 The SDS-PAGE gel (Figure 4) shows the complete sequence of steps for the expression 

and purification of NCAD P16A. There is a clear expression of the recombinant protein that is a 

dominant band at ~30 kDa. Contamination bacterial proteins are obvious at higher and lower 

molecular weights. Lane 3 shows the effectiveness of the triton-x washes, which effectively reduce 

the levels of contaminating bacterial bands. Some lower molecular weight fragments are formed 

upon digestion of protein in trypsin to remove the 45 aa N-terminal extension. The relative 

concentration of expressed protein increased as the purification process progressed.  The overall 

molecular weight of NCAD P16A is ~25 kDa. The sample in lanes 6 and 7 represents the purity 

of the protein used throughout the expression and purification process.   
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Figure 4: 17% SDS-PAGE of Protein Expression and Purification. Lanes 1-7 represent the various 

steps of the protein expression and purification.  Lane 1 is the standard protein ladder.  Lane 2 is the 

pre-his tag sample that was dialyzed in Binding Buffer overnight. Lane 3 is the post-his tag sample that 

was dialyzed in Binding Buffer overnight.  Lane 4 is the combines post-his tag fractions.  Lane 5 is the 

pre trypsin dialysis. Lanes 6 and 7 are the post trypsin digestion of samples.  

 

   

THERMAL DENATURATION 

 Thermal denaturations of NCAD12 and P16A were monitored by AVIV 202SF 

spectrometer. CD signal at 227 nm was measured as a function of temperature which scanned from 

15oC to 95oC. The experiments were performed using a quartz cuvette with a 1 cm path covered 

with a temperature probe top. Each sample contained 5 uM of protein with a specific amount of 

SEC buffer for a total volume of 2000 uL of sample. Before data were acquired at each 

temperature, there was a 1 min equilibration time to stabilize the temperature. For both proteins 

(Figures 6 and 7) dependent and independent variables as the temperature increased, the protein 
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unfolded and the CD signal decreased. In NCAD12 and P16A, there was a midpoint of ~40oC for 

the first transition. The second transition had a drifting signal with an unclear unfolded baseline 

and a midpoint of ~60oC.  

 The first transitions of each protein were fit to the Gibbs Helmholtz equation with linear 

folded and unfolded baselines. The baselines contained adjustable slopes and intercepts.  The ΔCp 

was fixed to 1 kcal/Kmol. Quantitative analysis was performed on the first transition ~40 data 

points. The resolved parameters are listed in Table 2. Global Analysis was performed to fit the 

thermal denaturations for P16A and NCAD12 into a single curve fit. There was a slight decrease 

in P16A compared to NCAD12 ΔHm ~13 kcal/mol, Tm ~6oC, and ΔGo at 37oC ~1.6 kcal/mol. The 

~6oC difference in Tm is significant. Loss of Pro16 (loss of conformational restriction) decreased 

stability of EC2 (transition 1) by ~1 kcal/mol (25%).   
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Figure 5: Thermal Denaturation of NCAD12.  CD signal at 227 nm was measured over a temperature. 

Run 1 (green), Run 2 (red), Run 3 (black).  Data were fit to Gibbs Helmoltz equation (solid lines). 

Resolved parameters are listed in Table 1.    
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Figure 6: Thermal Denaturation of P16A.  CD signal at 227 nm was measured over a temperature. 

Run 1 (blue), Run 2 (yellow), Run 3 (green) Run 4 (red) Run 5 (black).  Data were fit to Gibbs 

Helmoltz equation (dashed lines). Resolved parameters are listed in Table 1.    
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 ΔHm 

(kcal/mol) 

Tm 

(ᵒC) 

ΔCp 

(kcal/mol) 

ΔGᵒ (25ᵒC) 

(kcal/mol) 

Wild Type (n=3) 72 ± 8 46.6 ± 0.7 1 ± 0 4.1 ± 0.9 

P16A (n=5) 59 ± 4 40.1 ± 0.3 1 ± 0 2.5 ± 0.4 

Table 2: Resolved parameters. Data fitted to the Gibbs Helm Holtz equation. Reported errors were 

resolved from a global analysis of replicate experiments.   

 

CALCIUM TITRATIONS 

 The calcium-dependent changes in spectra of CD and FL were monitored during calcium 

titrations. Figures 8 and 9 represent the CD and FL signals as a function of total calcium 

concentration. The spectral data at each point were corrected for offset to reduce scatter in the final 

titration data. The CD and FL signals increased (became less negative) with the addition of 

calcium. Based on the randomness and span of residuals, data fitted well to a binding model of 

equal and independent sites indicating that there was no observed cooperativity in calcium binding. 

The ΔGo values for CD and FL (Table 2) are very similar. There is a slight ΔGo increase of 0.1 

(kcal/mol) in CD compared to FL.  
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Figure 7: Calcium Titration of P16A monitored by CD.  Run 1 (red) and Run 2 (black).  The CD signal 

is plotted against total calcium concentration. Solid line is simulated based of parameters resolved from 

global analysis of at least two separate experiments. Resolved values for the change in free energy of 

binding are shown in Table 2. 
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Figure 8: Calcium Titration of P16A on FL.  Run 1 (green), Run 2 (red), and Run 3 (black).  The CD 

signal is plotted against total calcium concentration. Solid line is simulated based of parameters resolved 

from global analysis of at least two separate experiments. Resolved values for the change in free energy 

of binding are shown in Table 2. 
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 P16 A 

CD 

(n=2)   

P16 A  

FL 

(n=3)   

NCAD12 

ΔGo (kcal/mol) -5.7 ± 0.2 -5.6 ± 0.1 --------------- 

Ka 1.53 X 104 1.29 X 104 3.5 ± 1.0 X 104 

 

Table 3: Free Energies of Calcium Binding Resolved from Global Analysis of Calcium Titrations. 

Data were fit to the Adair equation. Reported errors were resolved from a global analysis of replicate 

experiments. ΔGo values were calculated at 25oC. The Ka values were compared to that of NCAD12 

from the literature 48. 
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CHAPTER IV 

 

DISCUSSION 

 A focal point of the research in the Pedigo laboratory has been to find a molecular 

mechanism that explains the striking difference in the calcium-dependent kinetics of dimerization 

of ECAD and NCAD.  Discussions in the field have been dominated by an intriguing X-dimer 

structure that may be the transition state structure between the closed monomer and closed dimer 

forms 26.  After investigation, it was determined that if an X-dimer type intermediate exists for 

NCAD, it does not require R14 for rapid monomer dimer exchange.  However, dimer exchange 

kinetics are greatly impaired by a glutamate in position 14 26-28,45.  The sensitivity to the acidic 

residue in position 14 drew our attention to this regions of the proteins, a connecting region 

between the E11, a chelating residue for calcium, and N20, the first amino acid of the βB-strand.  

Our attention was drawn to P16, a notable difference between NCAD and ECAD.  Perhaps this 

residue plays a role in the differences in dimerization kinetics between NCAD and ECAD.   

  The purpose of these studies were to understand the impact P16A mutation has on the 

stability and calcium binding affinity of NCAD12. Proline is a conformationally restricted amino 

acid. By mutating it to an alanine, an amino acid with less restriction, we expected to observe 

differences in the stability and calcium binding affinity compared to NCAD12. From the results 

of these studies, we would infer the role of P16 in the wild type protein.  Thermal denaturation 

studies observed the stability of P16A in the apo state, allowing us to assess whether the mutation 

destabilized the folded structure.  In addition, denaturation studies ensured that the protein was 
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stable and behaved in an expected way in order to obtain meaningful calcium binding data. 

Calcium binding studies report the impact of the P16A mutation on the binding affinity.  Since the 

protein must be folded and bind calcium in order to form dimer, then both the stability and calcium 

binding affinity will affect dimerization affinity and kinetics. 

THERMAL DENATURATION 

 Thermal denaturation studies show that there is a decrease in the protein stability of P16A 

compared to wild type NCAD12. We assume that the protein is in its natively folded state before 

heat is applied. As more heat is applied, the protein unfolds. Previous studies have shown that EC2 

domain (~40oC) unfolds before EC1 domain (~70oC) for both NCAD and ECAD 34. There are two 

transitions observed in each graph (Figures 5 and 6). As signal increased, there was a decrease in 

temperature. The first transition, unfolding of EC2, has a distinct cooperative unfolding transition 

that appears to be completed before the second transition is observed (unfolding of EC1). The 

second transition, unfolding of EC1, has an uncooperative unfolding transition. It shifts to a higher 

temperature which indicates that there is an order to which unfolding of each domain occurs and 

EC1 unfolds after EC2.  

 Although the P16A mutation is located in EC1, it has an overall effect on the stability of 

EC2. This trend can also be seen in the E89A mutation in EC1 of NCAD12 34-36. In order to analyze 

just the unfolding of EC2, data have to be truncated in order to resolve the thermodynamic 

parameters for EC2.  Fitting of unfolding data for EC1 in NCAD12 is problematic because of the 

absence of a well resolved unfolded baseline. The Tm for P16A is ~40.1oC. This Tm value lies 

directly between NCAD12 (~46.6oC) and ECAD12 (~33.7oC)37. The ΔG˚ for NCAD12 P16A is 

2.5 ± 0.4 kcal/mol. This ΔG˚ value is more comparable to that of ECAD12 (1.9 ± 0.3 kcal/mol) 

than NCAD12 (4.1 ± 0.9 kcal/mol) which has a two times higher affinity. Overall, NCAD P16A 
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destabilizes the stability of NCAD12 in terms of Tm and ΔG˚ values. In conclusion, the P16A 

mutation in NCAD12 spans about half the differences in the biophysical parameters between 

NCAD12 and ECAD12.  One can conclude that the P16 is an important determinant of the 

differences in the stability of ECAD and NCAD, but only part of the difference.   

CALCIUM BINDING 

 The effect of P16A on calcium binding affinity showed that P16A has a lower binding 

constant compared to that of NCAD12.This is shown by observing the Ka values. P16A (1.5 ± 1.1 

X104) is roughly two folds lower than NCAD (3.5 ± 1.0 X 104). The data was fit to an equal 

independent model. Based on the residuals, the model happened to be a good fit due to the 

randomness of the data. This can also be seen in the data points following the sigmodal curve 

trend. One can conclude that calcium binds at a slower rate in P16A than NCAD12.  

 Additional studies were performed with analytical size exclusion chromatography to 

compare the dimerization kinetics, Kd value, of NCAD and P16A. In the protein solution, there 

exists monomer and dimer. From this, we can observe the rate of monomer and dimer exchange. 

P16A had a Kd value of 77M, which is compared to the NCAD12 Kd value of 25 P16A has 

a three-fold lower dimerization affinity than NCAD. P16A dimerizes at a slower rate than 

NCAD12, which makes it more comparable to ECAD (Kd = 100 M). 

 By using thermal denaturation and calcium binding studies, it appears that P16A is less 

stable and has a lower calcium binding affinity than NCAD12. In comparison of NCAD12 and 

P16A with analytical size exclusion chromatography, P16A also lowers the dimerization of 

NCAD. Overall, P16A has a significant effect on NCAD12. Further studies are needed to examine 

the kinetic effects of P16A compared to NCAD12 through other analytical SEC studies and with 

other mutants such as P16E, a mutant that would convert NCAD to ECAD at that site. These 
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studies would provide information on the role of P16 in the kinetics and equilibria of dimerization 

in NCAD12. Currently, these experiments are being studied in Dr. Pedigo’s lab.  
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