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ABSTRACT 

 
Twin-screw extruder has attracted considerable attention in the pharmaceutical industry 

as an alternative processing instrument due to its advantages compared to other conventional 

equipment, such as economical processing, small footprint, reduced in-process times, solvent-

free and continuous processing. These superiorities have led to the application of twin-screw 

extruder to produce numerous dosage forms, including pellets, tablets and films. Many other 

formulations production can also be beneficial from the introduction of twin-screw extruder to 

the process.  

Nanocrystal formulations are promising drug delivery systems owing to their ability to 

enhance the bioavailability and maintain the stability of poorly water-soluble drugs. However, 

conventional methods of preparing nanocrystal formulations, such as spray drying and freeze-

drying, have some drawbacks, including high cost, time and energy inefficiency, traces of 

residual solvent. In this study, twin-screw extruder was combined with high pressure 

homogenizer to successfully produce nanocrystal solid dispersions (NCSDs). The process could 

successfully overcome the limitation of conventional methods. 

Dry granulation process is necessary for some moisture sensitive APIs. However, the 

widely applied dry granulation technologies, slugging and roller compaction, have some 

limitations: single batch operation, low manufacturing throughput, high amounts of fines and 

dust, inferior tensile strength of final tablet and loud operation. The previously unreported study 

of applying twin screw extruder to the dry granulation process was successfully conducted. The 
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continuous processing nature, simplicity of operation and easiness of optimization made (twin-

screw dry granulation) TSDG quite competitive compared to other conventional dry granulation 

techniques. 

Kollidon® SR is a polyvinyl acetate (PVAc) and polyvinyl pyrrolidone (PVP) based 

polymer. The plastic PVAc and sticky PVP make Kollidon® SR an extraordinary option for 

direct compression of high hardness and low friability tablet. In addition, the low glass transition 

temperature (Tg) of about 35 oC should make Kollidon® SR a perfect candidate for twin screw 

extruder. But this application is rarely reported. This study demonstrated Kollidon® SR could be 

successfully processed by twin-screw extruder to produce tablets, which is compared to the 

direct compressed counterpart. The physicochemical properties of both products were analyzed. 

The drug release mechanism was determined. 
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INTRODUCTION 
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1.1. Hot Melt Extrusion 

In the plastics industry, Hot melt extrusion (HME) has been utilized since the late 1930s, 

and still dominates the production of numerous plastic products. The technique was introduced in 

pharmaceutical industry after approximately four decades [1-6]. Since then, HME has attracted 

considerable attention in the pharmaceutical industry due to its inherent advantages, such as 

being a solvent-free, continuous process with no time consuming steps, ease to scale up, 

compared to other conventional techniques [7, 8]. Generally speaking, HME is a process that raw 

materials (mixture of APIs, excipients and other additives) are propelled with spinning screw(s) 

under high shear and temperature, and products are collected through a die block with a specific 

shape (Figure 1-1) [7, 9-12]. However, the application of HME is not limited to extrudates. 

Instead, HME has been modified, or combined with downstream processing equipment, to make 

a variety of dosage forms, including pellets [13], tablets [14], transdermal films [15, 16], 

implants [17], granules[18-21] and solid lipid nanoparticles (SLN) [22, 23]. 

HME, as a fusion based method to produce solid dispersions, could not avoid the intrinsic 

limitation of this type of techniques. Fusion based technique is simply a process to heat the raw 

materials to a specific high temperature and then cool the materials at a controlled rate [24-30]. 

Thus, the thermal stability of the material to be processed is be a prerequisite [1, 31-36]. 

Otherwise, the high temperature applied may cause the unacceptable thermal degradation of the 

materials used [37]. As a result, HME could barely utilized for processing of heat sensitive 

substances, such as proteins and peptides. 
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Figure 1-1. HME equipment and process parameters traditionally monitored during 

pharmaceutical HME. (1. Feeding system; 2. Feeding hopper; 3. Temperature controlled barrel 

with 1 or 2 screws; 4. Die; 5. Heating and cooling device; 6. Screw-driving unit).[10] 

 

1.1.1. Twin Screw Extruder 

Based on number of screws, hot melt extruder can be classified into two categories: 

single screw extruder (SSE) and twin screw extruder (TSE) (Figure 1-2) [8, 13, 38-41]. As the 

names straightforwardly indicate, SSE utilize one rotating screw and TSE has two screws side by 

side in the barrel. SSE is the most widely used extrusion extruder, especially in plastics industry, 

due to the advantage of mechanical simplicity and more affordable cost. However, TSE is still 

the more popular system in the pharmaceutical industry, owing to a series of benefits, including 
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high kneading/dispersing capacities, shorter transit time, less tendency to over-heat and easier 

material feeding. [6] 

TSE can further be divided into two categories based on the direction of screw rotation 

(co-rotating or counter-rotating). Counter-rotating design works best for situation that very high 

shear force or dispersion of particles in a blend is needed. Co-rotating design is suitable for the 

needs of high screw speeds, high production and self-wiping. 

 

 

Figure 1-2. Cross-section of single- and twin-screw extruders. [8] 

 

1.2. Solubility Threshold 

More than 40 % of drugs developed by the pharmaceutical industry are poorly soluble in 

water [42, 43]. With the introduction of high-throughput screening (HTS) methods for the 
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discovery of new drugs [44], the amount of poorly water-soluble drugs is increasing rapidly. 

Most drugs are administrated orally, as it is the most common and convenient route for drug 

delivery, so poor solubility often leads to poor gastrointestinal absorption, and thus poor 

bioavailability [35, 45]. Solubility is also a critical parameter to be considered in parenteral 

formulations [46]. Thus, enhancement of the dissolution rate of poorly soluble drugs remains one 

of the most challenging tasks for pharmaceutical scientists.  

 

1.2.1. Dissolution Rate Improvement 

Various approaches have been employed to improve the dissolution rate of certain poorly 

water-soluble drugs. For example, salt formation is a chemical method used to make a drug into 

a prodrug to improve the dissolution rate [47]. However, this method can only be applied to 

weakly acidic or basic drugs, not those with neutral pH [35]. Incorporating drug molecules into 

cyclodextrin is also an effective way to enhance their dissolution rate, but this method requires a 

certain molecular size and conformation [48, 49]. The currently available dissolution rate 

enhancement methods are limited to drugs with certain properties, such as acid-base property, 

molecular size and conformation. 

 

1.2.2. Solid Dispersion 

Production of a solid dispersion (SD) is one of the most extensively studied methods of 

improving the dissolution rate of poorly soluble drugs [50-56]. A SD can be defined as a solid 

system of a poorly water soluble drug or drugs dispersed in an inert carrier, with the drug usually 

in the amorphous state [35, 57]. The amorphous form of drug usually has more free energy than 
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the crystalline counterpart, which leads to an increased dissolution rate [58]. However, this high 

free energy also tends to create thermodynamic instability, which is a major drawback of 

amorphous SDs. Recrystallization is usually observed during the storage of SDs [58-60]. 

 

1.2.3. Nanocrystal Solid Dispersion 

In order to solve the recrystallization problem, initially formulating drugs into a 

crystalline state in a smaller size is a feasible method. It has been reported that the micronization 

of drug powders to particle sizes of between 1 and 10 μm is not sufficient to overcome 

bioavailability problems of very poorly soluble drugs [61], so the natural progression is to move 

from micronization to nanonization, the production of nanocrystals [62-75]. Nanocrystals are 

crystals with a particle size below 1000 nm. The reduction in particle size increases the surface 

area, which directly affects the dissolution rate. Thus, by decreasing the particle size, a higher 

dissolution rate can be achieved. This can be explained with the help of the Noyes–Whitney 

equation:  

𝑑𝑊

𝑑𝑡
=

𝐷𝐴(𝐶𝑠−𝐶)

𝐿
 [76] 

where dW/dt is the rate of dissolution, A is the surface area of the solid, C is the 

concentration of the solid in the bulk dissolution medium, Cs is the concentration of the solid in 

the diffusion layer surrounding the solid, D is the diffusion coefficient, and L is the diffusion 

layer thickness. 

However, it has been reported that decreasing the particle size below a critical value of 1–

2 μm increases the saturation solubility [61]. This can be derived from the Kelvin equation, 

below, which is usually used to describe the vapor pressure of a curved droplet but can also be 
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used to describe the dissolution process, in which Ƥ and Ƥo represent the actual and saturated 

dissolution pressure:  

ln
𝑝

𝑝0
=

2γ𝑉𝑚

𝑟𝑅𝑇
 [77] 

where Ƴ is the surface tension, Vm is the molar volume of the liquid, R is the universal 

gas constant, r is the radius of the particle, and T is the temperature. As can been seen from the 

equation, Ƥ directly depends on r. A decrease in r means a decrease in the particle size, which 

will increase the saturated dissolution pressure and thus increase the saturated solubility. 

 

1.2.4. Production of Nanocrystal Solid Dispersion 

The methods for production of nanocrystals can be divided into two basic types: bottom-

up technologies (controlled precipitation/crystallization) and top-down technologies (media 

milling/high pressure homogenization [HPH]) (Figure 1-3) [70, 72]. Currently, five nanocrystal 

products have been approved by the US FDA, all of which are based on top-down technologies 

(four of these products are prepared by wet-ball milling and one is prepared by high-pressure 

homogenization) [73], which indicates that the top-down process is more industrially feasible 

[65]. After completion of these processes, the drugs are present in a suspended state as a 

nanosuspension (NS). However, it is usually important for the NS to be transformed into a solid 

product, both for physical stability and patient convenience [66, 73]. The most widely used 

processes for transformation include freeze-drying and spray-drying [78]. However, these two 

methods have several disadvantages, such as high cost, time and energy inefficiency, and 

residual solvent trace [1]. There is therefore a need for a new technology to complete the 

transformation process. HME is considered as a promising technique for this objective based on 



8 

the advantage mentioned in section 1.1. In addition, the preparation of nanocrystal solid 

dispersions (NCSDs) by combing HPH and HME is not yet explored much [79].  

 

 

Figure 1-3. Bottom up or top down approach to preparing nanocrystals.[70] 

 

1.3. Granulation 

Based on Perry’s Chemical Engineer’s Handbook, granulation process was defined as 

“any process whereby small particles are gathered into larger, permanent masses in which the 

original particles can still be identified” [80]. Granulation is widely utilized in numerous 

industries, such as agriculture, mining, chemical, pharmaceutical and food industry [81]. The 

application of granulation process in pharmaceutical industry was triggered by the invention of 

tablet press in 1843 [82]. Nowadays, granule has become a very important intermediary before 

tablet compression and capsule filling [83-85]. The main purpose of granulation in 

pharmaceutical industry is to convert small API and excipient particles into larger agglomerates, 
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which have some beneficial physicochemical properties, such as better flow properties, more 

uniform drug distribution, reduced dust, prevention of segregation, increased compactability and 

enhanced appearance of product [86-89]. 

 

1.3.1. Wet Granulation 

Wet granulation, which is employed to produce 70% of the worldwide industry’s 

granules [86], is the most popular granulation technique in pharmaceutical industry, owing to 

lots of available knowledge and equipment. In general, wet granulation comprises of several 

steps: liquid binder addition, agglomeration, drying and screening [90-93]. The aggregation of 

primary particulates is achieved by the liquid binder [90]. Melt granulation is considered as a 

particular form of wet granulation as the mechanism of these two methods are similar [83, 94]. 

However, the limitation of wet granulation is also obvious, such as multiple unit feature, time 

inefficiency, high cost, large space requirement and especially unsuitability for moisture 

sensitive APIs [90-92]. Thus an alternative technology of dry granulation is necessary [95]. 

 

1.3.2. Dry Granulation 

Unlike wet granulation, dry granulation employs dry binders and high mechanical force 

to enable the agglomeration process [83, 90, 96]. Slugging and roller compaction are two widely 

used dry granulation techniques in the pharmaceutical industry (Figure 1-4) [86, 90, 95-98]. 

Slugging wa the favorable dry granulation technique in the 1950s-1970s in the pharmaceutical 

industry [96]. In this process, the primary powders are compressed into large tablets or slugs, 

followed by the milling and sieving process. The quality of granules highly depends on the flow 
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ability of raw materials, which may cause the inhomogeneity problem [86]. Other disadvantages 

of slugging include: single batch processing, low manufacturing throughput, frequent 

maintenance and so on. Compared to slugging, an auger-feed system is utilized in roller 

compaction to constantly deliver raw material, which can ensure the good content uniformity of 

granules. In addition, roller compaction is a highly efficient and continuous process, which has a 

much higher output than slugging. Thus, roller compaction is considered as a more competitive 

dry granulation technique in pharmaceutical plants. Although roller compaction shows many 

advantage over slugging, it is not perfect. It has been reported that this method also comprises 

some disadvantages, including relative high amount of fines and dust [86, 99-101], inferior 

tensile strength of final tablet [88, 89, 98, 100] and loud operation environment [86]. Therefore, 

there is an increasing need for an alternative dry granulation technique that can solve the 

problem mentioned above.  

 

1.3.3. Twin Screw Granulation 

The benefits of TSE have led to innumerable application in the pharmaceutical industry, 

including wet granulation [18, 21] and melt granulation [20, 102]. The only difference between 

twin screw granulation (TSG) and TSE is that the die is removed during the process to prevent 

the extreme densification of material inside the barrel. The successful application of twin screw 

extruder on wet and melt granulation can be a positive indication that dry granulation could also 

be efficaciously accomplished utilizing this technique. 
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Figure 1-4. Schematic diagram of dry granulation and two different techniques. [90] 

 

1.4. Kollidon® SR 

Kollidon® SR (Figure 1-5) is one type of polyvinyl acetate (PVAc) and polyvinyl 

pyrrolidone (PVP) based polymer, which is especially appropriate for the production of pH-

independent sustained release formulations [62]. The two major compositions of Kollidon® SR 

are 80 % of PVAc and 19 % of PVP (Kollidon® 30). Other than that, about 0.8 % of sodium 

laury sulfate (SLS) and 0.2 % of silica serve as stabilizers for the whole physical mixture [103]. 

The plastic nature of PVAc guarantees the production of coherent tablet even under low 

compression forces. In addition, the sticky PVP can tightly bind materials together. Combining 
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these properties together, Kollidon® SR shows the outstanding property of compression and 

production of high hardness and low friability tablet. Moreover, the excellent flowability of 

Kollidon® SR itself, as well as the potential to improve the flowability of other material added to 

the formulation, make Kollidon® SR a competitive candidate for direct compression, Therefore, 

numerous sustained release tablets have been produced using Kollidon® SR by direct 

compression method [104-107]. 

 

 

Figure 1-5. Chemical structure of Kollidon SR. 

 

1.4.1. Processing Kollidon® SR by Twin Screw Extruder 

The application of Kollidon® SR on HME was rarely reported. This phenomenon is quite 

eccentric, because the low glass transition temperature (Tg) of about 35 oC should make this 

polymer a perfect contender for HME. To the author’s knowledge, only two manuscripts, whose 

topic was on utilization of Kollidon® SR for HME, were published [108, 109]. 
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CHAPTER 2. 

CONJUGATION OF TWIN SCREW EXTRUTION WITH HIGH PRESSURE 

HOMOGENIZATION: A NOVEL METHOD OF PREPARING NANOCRYSTAL SOLID 

DISPERSIONS 
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2.1. Objective 

The primary objective of this study was to develop a new method of preparing a NCSD 

by applying TSE after HPH. The first step was to prepare a NS using HPH. The resulting 

suspension was extruded utilizing TSE with the help of a selected polymer (Soluplus®) to obtain 

a NCSD. In addition, various physical and chemical properties were evaluated within the NCSD. 

Finally, the stability of the NCSD was studied. 

 

2.2. Materials 

Efavirenz (EFZ) was purchased from Ria International LLC (East Hanover, NJ, US). SLS 

was purchased from Fisher Scientific (Hanover Park, IL, US). Kollidon® 30 and Soluplus® were 

kindly donated by BASF SE (Ludwigshafen, Germany). All other reagents used in this study 

were of analytical grade. 

 

2.3. Methods 

2.3.1. Preliminary Study 

A preliminary study was carried out to evaluate the formulation and process parameters 

to be used in the preparation of the NCSD. The three most critical parameters in the HPH process 

were found to be drug concentration, homogenization pressure, and time, while in the TSE 

process, the parameters taken into consideration were the ratio of NS to polymer, feeding rate, 

barrel temperature, screw configuration, screw speed, and zone for NS addition. All of these 

parameters were optimized to successfully prepare a NCSD by HPH-TSE technique. 
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2.3.2. Preparation of EFZ NS 

EFZ NS was prepared by HPH technique. Briefly, different concentrations of EFZ 

powder (2 % and 4 %, w/v) were poured into an aqueous surfactant solution (Kollidon® 30, 1.0 

% w/v and SLS 0.5 % w/v) [110], and further mixed on a magnetic stirrer at 500 rpm for 12 h in 

order to achieve complete dispersion of EFZ in the solution. After dispersion, the mixtures were 

homogenized using a T25 digital ULTRA-TURRAX® basic homogenizer (IKA-Werke, Staufen, 

Germany) at 15000 rpm for 5 min. The resulting suspension was further homogenized using an 

EmulsiFlex-05 high-pressure homogenizer (Avestin Inc., Ottawa, Canada) at 1500 bar for 

selected cycles. 

 

2.3.3. Preparation of EFZ NCSD 

NCSD was prepared by mixing aqueous phases of NS and polymer (Soluplus®) using an 

11-mm co-rotating twin-screw extruder (Thermo Fisher Scientific, Waltham, MA, US). The 

extruder consists of eight zones, the individual temperature of which, excluding zone 1, can be 

precisely controlled. The barrel was maintained within a temperature range of 100–140 °C. 

Soluplus® was fed into the extruder via an 11-mm single screw feeder (Thermo Electron, 

Karlsruhe, Germany) at a feeding rate of 1 % (approximately 1.2 g/min). NS was injected into 

zone 5 using a 520S pump (Watson Marlow, Golden, Colorado, US) at 0.3 rpm (approximately 

0.6 g/min). The screw speed was set at 50 rpm. 
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2.3.4. Characterization and Evaluation 

2.3.4.1. Solubility of EFZ 

The solubility of EFZ was assessed at room temperature. EFZ (20 mg) was added to glass 

vessels containing 20 mL of ultra-purified water. The glass vessels were then placed on an MTS 

2/4 microtiter shaker (IKA, Wilmington, NC, US), which was operated at a speed of 200 min-1 

for 24 h. The samples were then withdrawn and centrifuged at 6000 rpm for 5 min. The 

supernatant was analyzed using a GENESYS 6 UV-Vis spectrophotometer (Thermo Scientific, 

Madison, WI, US). The experiment was then repeated at least three times for all the samples. The 

means and standard deviations were then calculated. 

 

2.3.4.2. Particle Size and Zeta Potential 

As stated above, particle size can significantly affect the dissolution velocity and 

saturation solubility. Zeta potential is one of the critical parameters affecting the stability of NS 

[111]. These two parameters were measured using a Zetasizer Nano ZS (Malvern Instruments, 

Worcestershire, UK). The NS sample was first diluted with sufficient ultra-purified water, then 

the diluted sample was transferred to a cuvette for measurement. Dynamic light scattering was 

used to measure the Z-average (particle size) and polydispersity index (PDI). Laser doppler 

micro-electrophoresis was used to measure the zeta potential. The parameters used for 

measurement were scattering angle of 173°, refractive index of 1.33, viscosity of 0.89 cP, and 

temperature of 25 °C. 
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2.3.4.3. Loss on Drying 

Soluplus® was extruded using identical processing conditions to those used for NCSD, 

then NCSD and Soluplus® were subjected to a loss on drying (LOD) test using a MB45 Moisture 

Analyzer (Ohaus, Switzerland) by heating at 110 °C for 10 min. 

 

2.3.4.4. Differential Scanning Calorimetry 

A Diamond DSC (PerkinElmer, Shelton, CT, US) was used to measure the degree of 

crystallinity of the samples. The instrument’s Pyris manager software was utilized to analyze the 

data. About 2–5 mg of sample was weighed and hermetically sealed in an aluminum pan. The 

heating rate was set at 20 °C/min from 20 to 200 °C under an inert atmosphere of nitrogen at a 

flow rate of 20 mL/min. 

 

2.3.4.5. Drug Content 

The extrudate was first milled to a fine powder. Accurately weighed powder (10 mg) was 

dissolved in 10 mL of methanol, and then diluted 10 times with methanol. The sample was 

analyzed by UV-Vis spectrophotometry. 

 

2.3.4.6. Scanning Electron Microscopy 

Scanning electron microscopy (SEM) was used to determine the morphology of pure EFZ 

and EFZ NCSD. Adhesive carbon tape was used to mount the sample onto an aluminum stage, 

then the samples were sputter coated with gold under an argon atmosphere using a Hummer 6.2 

Sputter Coater (Ladd Research Industries, Williston, VT, US). The coater was kept in a high-
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vacuum evaporator equipped with an omni-rotary stage tray to guarantee a uniform coating. 

Finally, images were captured using a JSM-5600 scanning electron microscope (JEOL USA, 

Inc., Waterford, VA, US) at an accelerating voltage of 5 kV. 

 

2.3.4.7. In Vitro Drug Release Study 

The dissolution media used was 900 mL of 0.2 % SLS in 0.1 M HCl (pH 1.2, simulated 

gastric medium) [112]. SR8-plus™ dissolution apparatus (Hanson, Chatsworth, CA, US) was 

maintained at 37 ± 0.5 °C and the paddle speed was set at 50 rpm. Milled extrudates equivalent 

to 10 mg of EFZ were filled into capsules (size 0) for dissolution. Samples were collected at 

intervals of 5, 15, 30, 60, and 120 min through a stainless steel cannula with a 0.2-µm nylon 

filter tip attached to a 2.5-mL syringe. The samples were analyzed directly using a UV-Vis 

spectrophotometer. 

 

2.3.4.8. UV Analysis 

Samples were analyzed using a GENESYS 6 UV-Vis Spectrophotometer (Thermo 

Scientific, Madison, WI, US) at a wavelength of 247 nm. The standard curve was linear over the 

range of 1–50 μg/mL with an R2 equal to 0.9998. 

 

2.3.4.9. Stability Test 

Stability studies were conducted to determine the effect of storage on the physical and 

chemical properties of the drug in two formulations (see Table 2-1 for formulation 

compositions). Milled extrudates were stored in screw-capped glass vials at real-time storage 
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conditions (25 °C/60 % relative humidity [RH]). Samples were taken at 1, 2, 3, and 6 month 

intervals and characterized by dissolution and micromeritics studies. For the micromeritics 

studies, the extrudates were dispersed in ultra-purified water and then vortexed for 30 sec. The 

resulting dispersions were then analyzed using a Zetasizer Nano ZS (Malvern Instruments, 

Worcestershire, UK). 

 

Table 2-1. Formulation compositions of NS and extrudate. 

Formulation 

Soluplus® Kollidon® 30 SLS EFZ 

% (w/w) 

% (w/v) for NS, 

% (w/w) for 

extrudate 

% (w/v) for NS, 

% (w/w) for 

extrudate 

% (w/v) for NS, 

% (w/w) for 

extrudate 

NS 

A N/A 1.0 0.5 2.0 

B N/A 1.0 0.5 4.0 

Extrudate 

A 98.25 0.5 0.25 1.0 

B 97.25 0.5 0.25 2.0 

EFZ: efavirenz; NS: nanosuspension; SLS: sodium lauryl sulfate. 

 

2.4. Results and Discussion 

2.4.1. Preparation of EFZ NS 

Three different drug loadings (2%, 4%, and 8% w/v) were assessed to determine the 

highest drug content that can be used for NS. Before the HPH process, a regular homogenizing 

process (using a ULTRA-TURRAX® basic homogenizer) was carried out to pre-treat the EFZ 

dispersion. This method significantly reduced the processing time for HPH as the size reduction 



20 

was partially completed. The 2% formulation did not block HPH during processing. However, 

HPH blockage was observed during the first few cycles of 4% formulation processing. This issue 

was easily fixed by pre-treating the formulation using a regular homogenizer. However, this was 

not true in the case of the 8% formulation as it blocked the HPH during processing, even after 

pretreatment, indicating that 8% drug loading was too high for the HPH used in this study. Thus, 

the highest drug loading that was used was 4%. 

Different cycles of homogenization were carried out to determine the optimum 

homogenization parameters (Figure 2-1). The particle size of NS A (2% drug loading) was stable 

at around 320 nm after 20 homogenization cycles. Even after a few more homogenization cycles, 

there was no significant decrease in the particle size. Apart from particle size, polydispersity 

index (PDI) is also a very important parameter for NSs. A small PDI value indicates a narrow 

size distribution, whereas a high PDI value indicates a broad size distribution. Usually, a PDI 

value below 0.5 is acceptable [113]. The HPH process was optimized and after 25 

homogenization cycles for NS A the PDI value decreased to below 0.5. Similarly, the HPH 

process was optimized for NS B (4% drug loading), and after 45 homogenization cycles the 

particle size was stable at around 350 nm and the PDI value was below 0.5. It has been 

previously reported that a zeta potential of ±20 mV is sufficient to make a dispersion physically 

stable [114]. In this study, the zeta potentials for all resulting homogeneous materials were in the 

range of -20 to -30 mV, indicating that Kollidon® 30 and SLS were able to maintain the zeta 

potential within the desired range. 
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Figure 2-1. Particle size vs. cycle curves for nanosuspension A and B. 

 

2.4.2. Selection of Suitable Polymers 

The first step of the TSE process was to choose an appropriate polymer. It is critical that 

the selected polymer is stable at the extrusion temperature and has the appropriate thermoplastic 

behavior to make extrusion possible (extrudable) [115]. The glass transition temperature (Tg) is 

an important parameter affecting the extrudability of polymers because a high Tg will require a 

high temperature for processing, and in such situations the API may degrade [116]. As per the 

literature, the suitable Tg range for the TSE process is considered to be between 50 – 180 °C 

[117]. 

However, in this study, the Tg requirement is even more stringent. EFZ is a poorly water-

soluble (9.2 μg/mL, pH 8.7, 25 °C) lipophilic (log P = 5.4) drug with a crystalline state. The 

melting temperature (Tm) of EFZ is around 140 °C [118]. To maintain the crystalline state of 

EFZ, the TSE operating temperature must be kept below 140 °C. Generally, the extrusion 
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process is carried out at least 20–40 °C above the Tg [119], thus there is a need to choose a 

polymer with a Tg below 100 °C. It is also important that the polymer is soluble in water in order 

to produce a homogeneous NCSD. Finally, there is a period when only the polymer is present in 

the barrel, so the operation temperature for the pure polymer is another important parameter.  

Only a few polymers satisfy the above-mentioned requirements, including Soluplus®, a 

graft copolymer composed of polyvinyl caprolactam–polyvinyl acetate–polyethylene glycol. It is 

polymeric solubilizer with an amphiphilic chemical structure, making it an excellent solubilizer 

for poorly water-soluble drugs in aqueous media. Furthermore it has a low Tg of about 70°C, 

which also makes it a suitable choice for this study [120]. The approximate temperature range for 

pure Soluplus® for use in TSE was reported to be in the range of 120–200 °C [121]. 

 

2.4.3. Experimental Set Up 

A schematic illustration of NCSD production by HPH-TSE technique is shown in Figure 

2-2. Two parts were included in this system, a high-pressure homogenizer and a twin-screw 

extruder. For this study, we used a modified screw configuration, as shown in Figure 2-3.  

The first zone of the extruder was used for feeding the polymer (Soluplus®) into the 

extruder barrel using a feeding hopper. The elements used in this section were 2.0 L/D feed 

screws (conveying elements), which had sufficient free volume to take in the purging material 

for cleaning after processing. The 1.0 L/D feed screws in zone 2 were used to compact the 

polymer and transport it forward. The temperature of 140 °C applied to this section assisted in 

the melting of the polymer, thus decreasing the torque in the next mixing zone. The temperature 

of zone 3 was set at the same value as that of zone 2. Three kinds of mixing elements with 30°, 

60°, and 90° offset angles were successfully assembled and installed in the barrel. This setting 
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provided enough energy for the melting of the polymer and avoided any rapid increase in the 

torque. Zones 4 and 5 were both formed of conveying elements, and the NS can be injected in 

any one of these zones. The temperatures were set at 120 and 110 °C for zones 4 and 5, 

respectively, to avoid transformation of EFZ from the crystalline to the amorphous state. The 

water of the NS was expected to evaporate rapidly when the NS came into contact with the hot 

barrel and the molten polymer, and the EFZ nanocrystals would remain on the molten polymer. 

However, instant and complete evaporation of water was difficult to achieve, and a back-flow 

phenomenon was observed after NS injection. Therefore, zone 5 was selected for the injection of 

the NS in order to provide more time and space for contact with the molten polymer, and to 

reduce the back-flow of the NS. The 90° mixing elements in zone 2 also assisted in this function. 

This screw configuration forced unevaporated NS to move back and forth between zone 4 and 

zone 5 until complete evaporation of water was achieved. Furthermore, this process would 

increase the contact between NS and the polymer, thus providing better distribution. Mixing 

elements with offset angles of 30° and 60° were used in zone 6. The kneading of these elements 

contributed to the homogeneous distribution of the matrix material. A 90° offset angle was not 

used in these mixing elements in order to avoid the generation and use of too much mechanical 

energy with the EFZ nanocrystals, which may result in the transformation of the crystalline state. 

The temperature for zone 6 and the remaining subsequent zones was set at 130 °C, which would 

further eliminate the remaining water in the matrix material. In zones 7 and 8, 1.0 L/D feed 

screws were used to convey the matrix material to the die. Solidified extrudates coming out of 

the die were milled and processed for further analysis. 
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Figure 2-2. Schematic representation of continuous preparation of a nanocrystal solid dispersion 

using HPH and TSE. 

 



25 

 

Figure 2-3. Screw configuration used in the preparation of nanocrystal solid dispersions by twin-

screw extrusion. 

 

2.4.4. Crystallinity and Morphology of Extrudate 

Differential scanning calorimetry was used to confirm the crystallinity of EFZ after 

extrusion (Figure 2-4). A single sharp endotherm peak was observed for pure EFZ at about 140 

°C (Figure 2-4a), which was identical to that of EFZ form I [118]. Since the drug loading in the 

extrudate was low, the thermograph was magnified, as shown in Figure 2-4b. The endotherm 

peak around 140 °C reappeared in both extrudate A and B. This indicated the EFZ maintained 

crystallinity after the extrusion. 
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Figure 2-4. Evaluation of crystallinity using differential scanning calorimetry. (a) Comparison of 

pure efavirenz, extrudate A (1.02 % drug loading), extrudate B (2.06 % drug loading), and 

Soluplus®. (b) Magnified differential scanning calorimetry thermograph for comparison of 

extrudates A and B. 

 

SEM was used to determine the morphology and distribution of the EFZ particles (Figure 

2-5). Pure EFZ existed as sharp and long needles (Figure 2-5a). The particle size of EFZ was 

around 20 μm. After HPH and HME, the particle size of EFZ was further decreased to less than 

1000 nm. The distribution of EFZ nanocrystals on Soluplus® is quite uniform (Figure 2-5b). The 
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distance between different EFZ nanocrystals prevents them from coming into contact with each 

other and the size consistency will prevent the occurrence of Oswald ripening [122]. These 

features thus establish the conjugated HPH-TSE technique as a novel process to decrease the size 

of EFZ crystals that also aids in the uniform distribution of EFZ nanocrystals. 

 

   

Figure 2-5. Scanning electron microscopy images of (a) pure efavirenz and (b) efavirenz 

nanocrystal solid dispersion (nanocrystals are marked by arrows). 

 

2.4.5. Drug Content and Residual Moisture 

After extrusion, both extrudates were analyzed for drug content. The drug loadings of 

extrudate A and B were around 1.02% and 2.06%, respectively. The drug contents of extrucate A 

and B were 102.47 ± 1.87% and 102.78 ± 4.69%, respectively (Figure 2-6). This indicated that 

all the EFZ in the NS was enveloped in Soluplus®. Considering the low drug loading in the 

extrudates, EFZ nanocrystals were regarded as homogeneously distributed in the extrudates. 

The mean LOD values for the Soluplus® extrudate A, and extrudate B were 2.10, 2.24, 

and 2.26, respectively (Table 2-2), which indicates that there were no significant differences in 
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residual moisture between these three samples (p value > 0.05). Thus, it can be concluded that all 

the water that was added during the process was evaporated. 

 

 

Figure 2-6. Drug content for nanocrystal solid dispersion extrudate A and B. 

 

Table 2-2. LOD for NCSD and Soluplus® extrudates 

Extrudate LOD (%) 

Soluplus® 2.10 ± 0.16 

A 2.24 ± 0.07 

B 2.26 ± 0.12 

                              LOD: loss on drying 
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2.4.6. In Vitro Drug Release 

In vitro drug release was assessed for pure EFZ and both the extrudates (Figure 2-7). As 

the aqueous solubility of EFZ is very low (recorded as 5.26 ± 2.3 μg/mL), 0.2% SLS was added 

to the dissolution media in order to increase the saturation solubility of EFZ, as well as to 

maintain the sink condition. 

Owing to the poor solubility and wettability, only 14.04 ± 0.80% of pure EFZ was 

released after 120 min of dissolution. Both extrudate A and B showed markedly enhanced 

dissolution rates with 96.86 ± 0.99% and 96.20 ± 1.26% drug release overserved for extrudate A 

and B, respectively. It is evident that HPH-TSE successfully increased the dissolution rate. This 

effect could have partially resulted from decreasing the particle size, or from the increase in the 

wettability of EFZ caused by Soluplus®. 

Although the same percentage drug release was reached at 120 min, it was observed that 

the release from extrudate B was slower than that from extrudate A. The difference in the 

dissolution velocity may be because of the different ratios of Soluplus® and EFZ. In extrudate B, 

EFZ was surrounded by a relatively smaller amount of Soluplus® compared to that in extrudate 

A. The different appearances of milled extrudates A and B supported this assumption (Figure 2-

8). In extrudate A, EFZ nanocrystals were completely covered by Soluplus®. Therefore, the 

milled extrudate A was the same yellowish color as the pure Soluplus®. However, the appearance 

of extrudate B was white, which may be because of the uncovered EFZ. This difference will 

result in slower wetting of EFZ, thus decreasing the dissolution velocity of extrudate B. 

However, the differences between these two formulations were not significant. The 

similarity factor (f2) was calculated to determine the similarity between the two formulations. 

The equation used to calculate f2 is:  
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𝑓2 = 50 × 𝑙𝑜𝑔 {[1 + (1 𝑛⁄ ) ∑ (𝑅𝑡 − 𝑇𝑡)2
𝑛

𝑡=1
]

−0.5

× 100} 

Where Rt and Tt are the dissolution value at time point t of the reference and test product, 

respectively. According to US FDA guidance for industry, two dissolution profiles are 

considered similar when the f2 value is greater than 50 [123]. The calculated f2 value was 55.0, 

which indicated that the two formulations were similar. 

 

 

Figure 2-7. In vitro drug release profiles for pure efavirenz, extrudate A and extrudate B. 

 

   

Figure 2-8. Appearance of milled (a) extrudate A, (b) extrudate B, and (c) Soluplus®. 
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2.4.7. Stability Testing 

Stability testing was conducted for both formulations by storing at 25 °C/60% RH for a 

period of 6 months. At various time points, samples were removed from storage and tested for in 

vitro drug release and micromeritics. 

The release profiles for both the extrudates (A and B) were unchanged over the storage 

period of 6 months (Figure 2-9). The f2 values were calculated versus the initial samples for both 

the extrudates (Table 2-3). All the f2 values were greater than 50, which indicated that the release 

profiles obtained for both the extrudates at each time point were similar to the initial release 

profiles.  

 

Figure 2-9. In vitro release profiles of (a) extrudate A stored at 25 °C/60% relative humidity. 
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Figure 2-9. In vitro release profiles of (b) extrudate B stored at 25 °C/60% relative humidity. 

 

Table 2-3. f2 Values of extrudates with different storage times 

 

f2 

1 month 2 months 3 months 6 months 

Extrudate A 54.5 65.5 66.7 53.8 

Extrudate B 63.9 52.9 58.7 70.7 

 

Comparison of particle size, PDI, and zeta-potential was conducted for the extrudates at 

each time point (Table 2-4). There was no significant change observed at any time point. (P 

value > 0.05). All the above data indicates that the EFZ NCSD prepared by HPH-HME 

technique possesses good stability for a period of 6 months at 25 °C/60% RH. 
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Table 2-4. Comparison of particle size, PDI, and zeta-potential with different storage times. 

Item Time 

Particle Size 

(nm) 

PDI 

Zeta-Potential 

(mV) 

Extrudate A 

Initial 28.04 ± 1.35 0.184 ± 0.03 -16.82 ± 1.21- 

1 Month 28.04 ± 0.17 0.183 ± 0.03 -17.86 ± 1.73 

2 Months 29.78 ± 6.81 0.190 ± 0.04 -17.13 ± 1.32 

3 Months 29.60 ± 4.33 0.179 ± 0.02 -17.26 ± 1.51 

6 Months 29.05 ± 0.26 0.186 ± 0.01 -18.13 ± 5.92 

Extrudate B 

Initial 34.11 ± 5.03 0.193 ± 0.04 -14.38 ± 2.10 

1 Month 30.82 ± 2.78 0.189 ± 0.02 -15.07 ± 1.68 

2 Months 30.67 ± 2.93 0.186 ± 0.03 -14.68 ± 1.52 

3 Months 39.66 ± 5.75 0.185 ± 0.03 -13.75 ± 1.87 

6 Months 32.94 ± 0.88 0.189 ± 0.01 -13.93 ± 0.76 

      PDI: polydispersity index. 
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CHAPTER 3. 

EFFECTS OF PROCESSING ON A SUSTAINED RELEASE FORMULATION 

PREPARED BY TWIN SCREW DRY GRANULATION 
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3.1. Objective 

The objective of this study was to apply twin-screw dry granulation (TSDG) technology 

to produce a sustained-release dry granule formulation, and subsequently compress the sustained 

release tablets. Theophylline was used as a model drug in this research. Design of experiment 

(DoE) was applied in the process to understand the effect of different processing parameters on 

the dry granule properties and optimize these factors. 

 

3.2. Materials 

Theophylline was purchased from Ria International LLC (Saint Louis, MO, US). 

Caffeine citrate was supplied by Fisher Scientific (Pittsburgh, PA, USA). Acetaminophen was 

kindly contributed by Mallinckrodt Inc. (Raleigh, NC, USA). Chlorpheniramine maleate was 

obtained from Medchemexpress LLC (Princeton, NJ, USA). Hydroxypropyl cellulose (KlucelTM 

EF) was generously gifted by Ashland Specialty Ingredients (Wilmington, DE). Ethyl cellulose 

(Ethocel Standard 10) was kindly donated by Dow chemical company. Magnesium stearate was 

purchased from Spectrum Laboratory Products Inc. (Gardena, CA, US). All the other reagents 

used in this study were of the analytical grade. 

 

3.3. Methods 

3.3.1. Preliminary Study 

Four different APIs (Theophylline, Caffeine citrate, Acetaminophen and 

Chlorpheniramine maleate) at three levels of drug loading (30, 40 and 50 %, respectively) were 
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tested for the feasibility of being applied in TSDG. Different formulation parameters, such as 

polymer ratio, lubricant concentration was pretested for their influence on the quality of 

granules. 

 

3.3.2. Design of Experiment 

A Resolution V Irregular Fraction Design was created using Design-Expert® 8.0.6 (Stat-

Ease, Inc., Minneapolis, MN, USA), with three numeric factors (screw speed, feeding rate and 

barrel temperature) and one categorical factor (screw configuration), which all varied over only 

two levels. Flow properties (angle of repose and flowability index), particle size distribution, and 

dissolution time were selected as response variables to optimize the process. 

 

3.3.3. Twin Screw Dry Granulation 

Theophylline was selected as a model drug for this study based on the result of 

preliminary study. All the ingredients were passed through US # 35 mesh screen in order to 

remove any aggregates that might be formed. Theophylline (50% w/w) was premixed with 

KlucelTM EF (25% w/w) and Ethocel (25% w/w) using a MaxiblendTM V-shell blender 

(GlobePharma, New Brunswick, NJ) at 25 rpm for 20 min. Magnesium stearate (0.2% w/w) was 

then added and mixed for 4 min. Dry granulation was prepared using an 11-mm co-rotating twin-

screw extruder (Thermo Fisher Scientific, Waltham, MA, USA) without a die. The extruder 

consists of eight zones, the individual temperature of which, excluding zone 1, can be precisely 

controlled. The barrel was maintained within a temperature range of 70–110 °C. The physical 

mixture was fed into the extruder using an 11-mm single-screw feeder (Thermo Electron, 



37 

Karlsruhe, Germany) at a selected feeding rate of 3 or 10% (approximately 1.42 or 5.09 g/min). 

The screw speed was set at either 50 or 100 rpm. The materials were collected at the end of the 

extruder after the steady state of was achieved. The collected samples were stored in 

polyethylene bags for further processing and analysis. 

 

3.3.4. Particle size distribution 

The particle size distribution was determined by utilizing the sieve analysis method. The 

granules were divided into three portions by two USA standard test sieve, # 35 (500 µm) and # 

12 (1.68 mm). The large size granules (over 1.68 mm) were retained at the upper sieve (# 12), 

the medium size granules (between 500 µm and 1.68 mm) were retained at the lower sieve (# 

35), the fines (under 500 µm) which were not retained by either sieve were collected by the wax 

paper under the sieves. Each portion of granules were weighed, and the percentile weight 

distribution was calculated accordingly.  

 

3.3.5. Flow Properties 

3.3.5.1. Angle of Repose 

The fixed funnel method was applied to measure Angle of repose. The material was 

poured through a funnel to form a cone. In order to minimize the impact falling particles, the 

height of funnel was gradually elevated to ensure the tip of funnel was held close to the rising 

cone with no touch. Stop pouring the material when the predetermined width of the pile was 

reached. The height and the radius of the base of the cone was measured. The equation to 

calculate the Angle of repose (θ) is as follows: 
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𝑇𝑎𝑛 (𝜃) =  
ℎ

𝑟
 

Where, h is the height of the formed cone and r is the radius of the base of the cone, 

respectively. 

 

3.3.5.2. Flowability Index 

The flowability index was measured using a Flodex powder flowability index test 

instrument (Hanson Research, Chatsworth, CA, USA). The height of funnel was adjusted in the 

way that the funnel bottom was close to but not touching the material surface. 10 g of material 

was poured into the central of the cylinder through the funnel. 30 sec was allowed after loading 

was completed for the possible flocculation of individual material or whole load. 16 mm flow 

disk was used for previously untested material. Slowly turn on the release lever to open the hole 

in the disk without vibration. The test was considered positive when the open hole on the disk 

was observable from the top of cylinder. Repeat tests with disk possessing smaller holes for 

positive results until negative result was achieved. Repeat tests with disk possessing larger holes 

for negative results until positive result was achieved. The smallest hole that the sample could 

fall freely for three successive tests was considered the flowability index [124]. 

 

3.3.6. Differential Scanning Calorimetry 

Approximately 2-5 mg samples of interest were weighed and hermetically sealed in an 

aluminum pan. A Diamond DSC (PerkinElmer, Shelton, CT, USA) was used to measure the 

degree of crystallinity of the samples. The instrument’s Pyris manager software (Shelton, CT, 
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USA) was utilized to analyze the data. The heating rate was set at 20 °C/min from 20 to 300 °C 

under an inert atmosphere of nitrogen at a flow rate of 20 mL/min. 

 

3.3.7. Tablet Compression 

200 mg obtained granules were mixed with 0.3% magnesium stearate just prior to manual 

direct compression on a MCTMI single punch tablet press (GlobePharma Inc., New Brunswick, 

NJ, USA). A 0.375 inch flat round punch was used, and a compression force of 150 kg/cm was 

applied. 

 

3.3.8. Scanning Electron Microscopy 

The morphology of all samples (granules, tablets and raw material) was determined by 

utilizing scanning electron microscopy (SEM). Samples was mounted onto an aluminum stage 

by an adhesive carbon tape, and then sputter coated with gold under an argon atmosphere using a 

Hummer 6.2 Sputter Coater (Ladd Research Industries, Williston, VT, US). The coater was kept 

in a high-vacuum evaporator equipped to guarantee a uniform coating. Finally, images were 

captured using a JSM-5600 scanning electron microscope (JEOL USA, Inc., Waterford, VA, US) 

at an accelerating voltage of 5 kV. 

 

3.3.9. In Vitro Drug Release Study 

Both tablets and granules equivalent to 100 mg of theophylline were checked for in-vitro 

drug release. The dissolution media used was 900 mL 0.1 N HCl (pH 1.2, simulated gastric 

medium). SR8-plus™ dissolution apparatus (Hanson, Chatsworth, CA, US) was maintained at 
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37 ± 0.5 °C and the paddle speed was set at 50 rpm. Granules were filled into capsules (size 0) 

for dissolution. The UV spectra were collected by an in-site Rainbow UV-Vis probes (Pion Inc., 

Billerica, MA, USA) at λmax 270 nm every 5 min for first 1 h, then every 15 min until 2 h. 

Tablets were directly dropped into dissolution vessel for test. The UV spectra were collected at 

λmax 270 nm using the same instrument every 15 min for first 1 h and then for every 30 min 

until 24 h. 

 

3.4. Results and Discussion 

3.4.1. Preliminary Study 

3.4.1.1. Lubricant 

While conducting the preliminary study, a grinding noise, which was never found during 

the Hot-Melt Extrusion (HME) process, was heard. This noise indicated the existence of some 

friction in the twin screw extruder. In HME, the flexible nature of melt will not cause any 

rubbing at powder-instrument interfaces (wall friction) [125]. The lubrication effect of the melt 

itself will also prevent the abrasion between the screw and barrel. However, in the TSDG 

process, all materials were kept in solid state, friction could occur universally where the contact 

of equipment and material occurred. Thus, addition of dry lubricant was necessary to both 

protect the instrument and prevent the contamination of products. Magnesium stearate, which 

was widely used dry lubricants in the pharmaceutical industry, was applied to the formulation. It 

was found that magnesium stearate was able to eliminate the noise mentioned above. 

Nevertheless, too much amount of magnesium stearate may significantly decrease the yield of 

granule, even results in entire fines. This phenomenon was resulted from the nature of lubrication 
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effect. The lubricant molecules will form some oriented monolayer or multilayer boundary, 

which will prevent the additional contact between instruments and powder particles. However, 

too much lubricant or long time mixing with API and excipients will results in the boundary 

formed between particles, thus prevention of agglomeration of powder particles. In this case, a 

moderate quantity of 0.2% magnesium was selected and added to the formulation at the final 

stage of mixing. 

 

3.4.1.2. Polymer and Excipient Ratio 

Hydroxypropyl cellulose (HPC), which is a thermoplastic polymer, has been previously 

studied as dry binders for both tablet compression [126-128] and roller compaction [129]. 

Ethylcellulose (EC), which is a water-insoluble polymer has applied to prepare lots of sustained 

release formulation [130-132]. Thus, the combination of HPC (dry binder) and EC (release 

controller) was selected for the excipients for preparation of sustained release dry granulation. 

Two ratios of EC and HPC (1:1 and 3:1) were studied to optimize the blend of polymers. The 1:1 

combination exhibited a better probability to produce medium size granule. Therefore, 1:1 ratio 

of EC and HPC was used as excipients for this study. 

 

3.4.1.3. API and Drug Loading 

Four different APIs (Chlorpheniramine maleate, Acetaminophen, Caffeine citrate and 

Theophylline) with a broad melting point range from 140 °C to 270 °C were selected as 

candidates for TSDG process. Physical mixture with each API at three drug loadings (30, 40 and 

50%, respectively) was prepared for the test of feasibility to be applied in TSDG (Table 3-1). All 
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the tests were conducted at same feeding rate, screw speed, screw configuration and barrel 

temperature. 

 

Table 3-1. Candidate of APIs. 

No. Drug name BCS 

MP Literature 

/Measurement 

1 

Chlorpheniramine 

maleate 

I 142/139.26 °C 

2 Acetaminophen I 169/172.7 °C 

3 Caffeine Citrate I 

235.6 - 

236.2/168.69 °C 

4 Theophylline I 273/276.77 °C 

 

Each product after TSDG was tested with DSC to detect the crystallinity of API (Figure 3-

1). All the DSC thermograms showed a single sharp endotherm peak, which demonstrated the 

preservation of the crystallinity after TSDG. 
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Figure 3-1. DSC thermograms of four API and products after TSDG. Formulation A: 30 % drug 

loading, formulation B: 40% drug loading, C: 50% drug loading. 
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Figure 3-1. DSC thermograms of four API and products after TSDG. Formulation A: 30 % drug 

loading, formulation B: 40 % drug loading, C: 50 % drug loading. 

 

The morphology of products obtained was summarized in Table 3-2. It was obvious that 

the low drug loading PM tended to achieve more robust and greater size granule after TSDG. 

However, none of these four APIs could form granule at high drug loading of 50%. That’s 

because more binder was presented in the low drug loading formulation. The higher binder ratio 

could more effectively assisted the agglomeration of raw materials, thus granulation. Due to the 

low ratio of binder in the 50% formulation, the raw material could not accumulate together to 

form granules, hence presented as fine powders. From the API aspect, Acetaminophen and 

Caffeine citrate showed the best ability to be granulated. More sturdy and bigger size granules 

were attained at 30% drug loading. On the contrary, 30% of chlorpheniramine maleate and 

theophylline could only achieve smaller and long strip shape granule. The theophylline granule is 

even weaker than the chlorpheniramine maleate granule. For the 40% drug loading, 

Acetaminophen and Caffeine citrate still can form some long striped shape granule. However, 

barely any granule could be seen from the chlorpheniramine maleate and theophylline 



45 

formulation. In summary, higher drug loading will hinder the formation of granulation. And 

theophylline was the most difficult one to be granulated among these four APIs. If dry 

granulation could be accomplished for the most difficult formulation combination, it could be 

much easier for another recipe. Therefore 50% drug loading of theophylline was designated for 

the DoE study of processing parameters optimization. 

 

Table 3-2. Morphology of 4 APIs at 3 different drug loading after TSDG. 

 30% 40% 50% 

Chlorpheniramine 

maleate 

   

Acetaminophen 

   

Caffeine Citrate 

   

Theophylline 

   

 



46 

3.4.2. DoE Set up 

Other than the formulation parameters, processing parameters are also critical to the final 

product quality. To determine the appropriate ranges of experimental design, a series of 

processing parameters were tested. From these initial results, four processing parameters (screw 

configuration, screw speed, barrel temperature and feeding rate) were selected and the operation 

ranges were shown in Table 3-3. Two screw configurations utilized in the experimental design 

were shown in Figure 3-2. For screw configuration 1, only one mixing zone, which was 

comprised of 7 mixing elements with 60° offset angles, was presented at zone 5. For screw 

configuration 2, another small mixing zone, which was comprised of 5 mixing elements with 30° 

offset angles, was added at zone 7. The barrel temperature profile was shown in Table 3-4. The 

highest temperature was set at zone 5 to assist the granulation process. 

 

 

Figure 3-2. Screw configuration utilized in TSDG. 
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Table 3-3. Experimental factors and ranges of variation. 

Type 

Independent Variable 

(Factor) 

Symbol Unit 

Upper 

Level (+1) 

Lower 

Level (-1) 

Categorical Screw Configuration A N/A 

Two 

Mixing 

Zone 

One 

Mixing 

Zone 

Numeric 

Barrel Temperature (Zone 5) B oC 110 90 

Screw Speed C Rpm 100 50 

Feeding Rate D % 10 3 

 

Table 3-4. Barrel Temperature Setting. 

 

Zone 8 Zone 7 Zone 6 Zone 5 Zone 4 Zone 3 Zone 2 

oC 

Temperature 

(-1) 

70 70 80 90 80 70 70 

Temperature 

(+1) 

90 90 100 110 100 90 90 

 

Twelve runs of experimental design were proposed using a Resolution V Irregular 

Fraction Design (Table 3-5). This experimental design was selected because it would allow of 

estimation of all main effects. The two-factor interactions will be aliased only by three-factor or 

higher interactions [133]. This design was considered as an excellent design, which was a 

worthwhile alternative to the full factorial design, to reduce the number of runs and still obtain 

clean results. 
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Table 3-5. Experimental Design. 

Std Run A B C D 

2 1 +1 110.00 50.00 3.00 

4 2 +1 90.00 100.00 3.00 

12 3 -1 110.00 100.00 10.00 

5 4 -1 110.00 100.00 3.00 

1 5 -1 90.00 50.00 3.00 

8 6 +1 90.00 50.00 10.00 

7 7 -1 90.00 50.00 10.00 

9 8 -1 110.00 50.00 10.00 

11 9 +1 90.00 100.00 10.00 

6 10 +1 110.00 100.00 3.00 

10 11 +1 110.00 50.00 10.00 

3 12 -1 90.00 100.00 3.00 

 

3.4.3. Characterization of crystallinity 

Theophylline was categorized as a Biopharmaceutics Classification System (BCS) I drug. 

Thus the crystallinity of theophylline was expected to be maintained in order to prevent the 

potential thermal stability problem [134]. The crystallinity of theophylline as pure drug and in all 

twelve runs was confirmed by utilizing DSC (Figure 3-3). A single sharp endotherm peak at 

around 275 oC, as well as a small endotherm peak at about 288 oC, was observed for pure 

theophylline. This demonstrated the API we used was belong to the theophylline anhydrous form 

I [59, 135]. After TSDG, the big endotherm peaks of all runs were preserved, however it was 
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compressed to around 270 oC. In the meantime, the small endotherm peak also shifted a little bit 

to lower temperature. These results confirmed that the crystallinity of theophylline was preserved 

after TSDG, Nevertheless, some interaction between theophylline and polymers was likely to 

occur [136]. 

 

 

Figure 3-3. DSC thermograms. 

 

3.4.4. The effects of the processing parameters on the particle size distribution 

Each run of samples was separated into three portions: the large size granules (over 1.68 

mm), the medium size granules (between 500 µm and 1.68 mm) and the fines (under 500 µm). 

The granule size distribution results for all runs were shown in Table 3-6. The medium size 

granules are the most important part for the tableting process. In addition, fines are also very 
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important to the compression and compaction features, since the vacant space between granules 

could be occupied by them. However, the amount of fines should not be over 10% [137]. It was 

also mentioned that a small amount of fines could improve the appearance of tablet [87]. Thus, 

both the medium size granule and fines were selected as dependent variable (response) in the 

Resolution V Irregular Fraction Design. The regression equations for both medium size granules 

and fines fraction were calculated from the experimental results. The coefficients and the 

statistical significance were summarized in Table 3-7. It should be mentioned that only the 

parameters related to independent variables (factors) and models were given. The full regression 

equation was shown under each section. 

 

Table 3-6. DoE Results. 

Run 
Fines (< 

500µm)/% 

Medium 

Size Granule 

(500 µm - 

1.68 mm)/% 

Large Size 

Granule 

(> 1.68 

mm)/% 

Angle of 

Repose/o 

Flowability 

Index/mm 

Dissolution Time 

for Maximum 

Drug Release/h 

1 2.69 32.29 65.02 28.92 20 13 

2 74.63 25.37 0 31.23 22 23 

3 6.88 70.42 22.7 27.6 14 16 

4 13.74 59.23 27.03 30.65 24 12 

5 25.24 56.15 18.61 27.02 20 23 

6 12.41 51.49 36.1 26.67 22 16 

7 12.46 64.76 22.78 25.49 9 15 

8 4.98 53.84 41.18 26.93 14 10 

9 29.39 57.93 12.68 29.18 20 18 

10 23.71 66.98 9.31 28.48 22 20 

11 0.61 11.45 87.94 30.14 34 16 

12 30.36 59.43 10.21 29.24 20 21 
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Table 3-7. Statistical analysis and regression coefficients of the particle size distribution. 

Variables 

Angle of repose 1/√𝐹𝑙𝑜𝑤𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 

Coefficient P Coefficient P 

Model  0.0332  0.0007 

Intercept 28.01  0.23  

A 0.42 0.1032 -0.027 0.0003 

B 0.50 0.0697 -0.016 0.0006 

C 0.75 0.0248 0.000 1.0000 

D -0.54 0.0567 0.016 0.0007 

 

R2 = 0.9694 

Pred R2 = 0.5107 

R2 = 0.9998 

Pred R2 = 0.9936 

 

3.4.4.1. Medium size granules 

The percentage of medium size granules in all 12 runs varied in a wide range of 11.45 – 

70.42%, where run 1, 2 and 11 showed the least medium size granule yield (less than 35%), and 

run 3,7 and 10 could achieve the highest amount of medium size granule (Over 60%). The 

regression  equation for the percentage of medium size granules was created as follows: 

% 𝐌𝐞𝐝𝐢𝐮𝐦 𝐬𝐢𝐳𝐞 𝐠𝐫𝐚𝐧𝐮𝐥𝐞

= +𝟓𝟔. 𝟎𝟕 − 𝟏𝟎. 𝟐𝟓 ∗ 𝐀 − 𝟎. 𝟔𝟗 ∗ 𝐁 + 𝟔. 𝟖𝟑 ∗ 𝐂 + 𝟑. 𝟏𝟓 ∗ 𝐃 + 𝟑. 𝟏𝟔 ∗ 𝐀 ∗ 𝐂

+  𝟓. 𝟏𝟗 ∗  𝐁 ∗  𝐂 −  𝟔. 𝟑𝟓 ∗  𝐁 ∗  𝐃 +  𝟕. 𝟎𝟎 ∗  𝐂 ∗  𝐃 +  𝟖. 𝟖𝟕 ∗  𝐀 ∗  𝐁 ∗  𝐂 

Based on the ANOVA analysis, the p value of the model was 0.0347, which indicated the 

model was reliable. The most significant factors for the percentage of medium size granule was 
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found to be screw configuration and screw speed. The relationship between the response and 

these two factors could be better understood by the contour plot shown in Figure 4. Figure 3-4a 

and 3-4b were both obtained at the feeding rate of 10%. The only difference was the screw 

configuration: one mixing zone for Figure 4a and two mixing zones for Figure 3-4b. 

 

  
                                             a                                                                              b 

Figure 3-4. Contour plots showing the effect of screw speed on percentage of medium size 

granules (a) one mixing zone configuration, (b) two mixing zone configuration. 

 

It was obvious that the Figure 3-4a showed more medium size granule than Figure 3-4b, 

which meant the one mixing zone configuration is beneficial for the generation of this mid-size 

portion particles. This result was in accordance with the negative coefficient (-10.25) in front of 

A. This phenomenon could be explained by the effect of the second mixing zone. It was reported 

by Dhenge et al. that the second mixing zone could either decrease or increase the size of 

agglomerated granule by the first mixing zone. This size alteration was owing to several 

functions of the second mixing zone: shearing, deformation, breaking, mixing, re-granulation 

and consolidation [138]. In our circumstances, if the granule generated by the first mixing zone 

was not strong enough, it could be broken down into smaller granule or fines. On the contrary, if 
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the previously obtained granule had adequate strength, it would be further combined to form 

bigger granule. In either situation, the amount of medium size granule would decrease. Hence the 

second mixing zone was considered as a hindrance of the medium size granule. 

Both Figure 3-4a and 3-4b showed the same tendency that the increased screw speed 

would lead to higher percentage of medium size granule. At first glance, it seemed to conflict 

with the data of Tu et al., who claimed the increasing screw speed would decrease the granule 

size[139]. However, it was same when the large size granule was taken into consideration as 

well. From the regression equation of large size granule (data not shown), the negative 

correlation was found between large size granule amount and screw speed. Hence it could be 

roughly equivalent to the condition, which the increased screw speed would cause the decrease 

of large size granule and increase of medium size granule, i.e., decrease the whole granule size. 

The possible mechanism should be the mean residence time decreases with increasing screw 

speed, resulting in less kneading effect on powder particles, thus generating smaller granules. 

 

3.4.4.2. Fines 

The fines amount also varied largely among 12 experimental design (0.61 – 74.63%). 

Similar to medium size granules quantity, the regression equation was also given for percentage 

of fines. However, based on the Box-Cox Plot, it was recommended by the software to do the 

square root transformation for the response, which was presented as  y’ =  √𝑦 + 𝑘, k = 0 in this 

case. Hence the new regression equation was shown as follows: 

√% 𝐅𝐢𝐧𝐞𝐬 = +𝟑. 𝟗𝟔 + 𝟎. 𝟏𝟗 ∗ 𝐀 − 𝟏. 𝟏𝟏 ∗ 𝐁 + 𝟎. 𝟕𝟓 ∗ 𝐂 − 𝟎. 𝟖𝟑 ∗ 𝐃 − 𝟎. 𝟒𝟑 ∗ 𝐀 ∗ 𝐁 + 𝟎. 𝟔𝟐

∗ 𝐀 ∗ 𝐂 
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The p value of 0.0018 was a visible sign that the model was dependable. Based on the 

significant effect (Table 3-7), barrel temperature, screw speed and feeding rate all had significant 

effect on fines amount (p < 0.05). The regression results could be visually assessed by the 

contour plot as shown in Figure. 5. 

Figure 3-5a and 3-5b was gained under screw speed of 100 rpm with two different screw 

configuration. Negative correlation could be found for percentage of fines with barrel 

temperature and feeding rate. The decrease of fines could also be thought as the increase of 

granulated particles. Therefore, this phenomenon was transformed to the situation that higher 

feeding rate and barrel temperature would lead to more granules. Osborne et al. [140] and Palzer 

et al. [141] both stated the contact points between powder particles might sinter together to form 

solid bridges when the temperature was increased to close the the glass transition temperature. 

The solid bridge would bond the particles together to form strong agglomerates, i.e. granules. In 

this case, the increased temperature would support the formation of granules. The same 

relationship between granule and feeding rate was also observed by a lot of authors [19, 142, 

143]. Higher feeding rate would cause more powder in the barrel, thus easier for them to be 

condensed and compacted into granules. 

Unlike the two factors mentioned above, screw speed positively affect the percentage of 

fines (Figure 3-5c and 3-5d). This effect could be easily explained by the mechanism mentioned 

in the medium size granule part. The increased screw speed would decrease the particle size, thus 

generating more fine particles. 
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                                     a                                                                    b 

 
                                    c                                                                     d 
Figure 3-5. Contour plots showing the effect of barrel temperature, screw speed and feeding rate 

on percentage of fines: (a) & (c) one mixing zone configuration, (b) & (d) two mixing zone 

configuration. 

 

3.4.5. The effects of the processing parameters on the flow property 

One of the most important objectives of granulation was to improve the flow property of 

raw materials. This increased flow property could have numerous advantages, such as consistent 

tablet properties, more uniformed formulation and high production speed. Therefore, the 

assessment of flow property of granule became a very important step to examine the effect of 

granulation operation. Angle of repose was the most widely used method to determine the flow 
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property. However, it was also mentioned the data obtained from angle of repose was not a 

dependable because this method did not mimic the powder’s behavior in the instrument [124]. 

To solve this problem, another technique called flowability index was developed to characterize 

the flow property. In this study, both methods were utilized to test the flow property of samples. 

The data gained was further apply to experimental design to obtain the regression equation. The 

coefficients and the statistical significance were summarized in Table 3-8. 

 
Table 3-8. Statistical analysis and regression coefficients of the flow property. 

Variables 

Angle of repose 1/√𝐹𝑙𝑜𝑤𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 

Coefficient P Coefficient P 

Model N/A 0.0332 N/A 0.0007 

Intercept 28.01 N/A 0.23 N/A 

A 0.42 0.1032 -0.027 0.0003 

B 0.50 0.0697 -0.016 0.0006 

C 0.75 0.0248 0.000 1.0000 

D -0.54 0.0567 0.016 0.0007 

 

R2 = 0.9694 

Pred R2 = 0.5107 

R2 = 0.9998 

Pred R2 = 0.9936 

 

3.4.5.1. Angle of repose 

The angle of repose for samples of 12 runs dispersed in a very narrow range. Other than 

run 2, 4 and 11, all runs shows excellent flow property (25o < angle of repose < 30o). The 

resultant regression equation was created as follows: 
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𝐀𝐧𝐠𝐥𝐞 𝐨𝐟 𝐫𝐞𝐩𝐨𝐬𝐞

= +𝟐𝟖. 𝟎𝟏 + 𝟎. 𝟒𝟐 ∗ 𝐀 + 𝟎. 𝟓𝟎 ∗ 𝐁 + 𝟎. 𝟕𝟓 ∗ 𝐂 − 𝟎. 𝟓𝟒 ∗ 𝐃 + 𝟎. 𝟓𝟐 ∗ 𝐀 ∗ 𝐃

− 𝟎. 𝟔𝟕 ∗ 𝐁 ∗ 𝐂 − 𝟎. 𝟔𝟎 ∗ 𝐂 ∗ 𝐃 − 𝟎. 𝟕𝟕 ∗ 𝐀 ∗ 𝐁 ∗ 𝐂 

The p-value was given as 0.0332, which demonstrated the model was reliable. Screw 

speed showed the most significant effect on angle repose (p < 0.05). However, the effect of 

barrel temperature and feeding rate were also not negligible (p < 0.10). 

The positive coefficient for screw speed implied the increase of screw speed would cause 

the high angle of repose, which represented the low flow property. While the feeding rate 

exhibited a negative coefficient, which meant the higher feeding rate would lead to lower angle 

of repose and better flow property. Both of these parameters corresponded with the fins amount 

very well. Increasing screw speed or decreasing feeding rate would result in more fines, leading 

to poorer flow property and higher angle of repose. Nevertheless, the positive constant in front of 

barrel temperature, which represented higher temperature would increase angle of repose and 

decrease flow property of granules, seemed to be conflict with data achieved from the percentage 

of fines. This could be explained by the granule shape. In spite of particle size, particle shape 

was also quite a critical parameter to affect the flow property. It was observed the granule 

produced in higher temperature would be more tend to be in a long stripe shape, which was 

definitely had poor flow property. The effect of aforementioned parameters on angle of repose 

was plotted into contour as showing in Figure 3-6. 
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                                           a                                                                            b 

 
                                           c                                                                             d 

Figure 3-6. Contour plots showing the effect of barrel temperature, screw speed and feeding rate 

on angle of repose: (a) & (c) one mixing zone configuration, (b) & (d) two mixing zone 

configuration. 

 

3.4.5.2. Flowability Index 

The flowability index was defined as the smallest hole through which the core cylinder of 

powder could overcomes the side internal friction and pass. Based on this definition, flowability 

index was similar to angle of repose: higher number presented lower flow property. It was 

mentioned a good range of flowability index was l0–24 mm [124]. For this parameter, an inverse 

square root transformation was suggested by the software, resulting in the regression equation as: 
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𝟏

√𝑭𝒍𝒐𝒘𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝒊𝒏𝒅𝒆𝒙

= +𝟎. 𝟐𝟑 − 𝟎. 𝟎𝟐𝟕 ∗ 𝑨 − 𝟎. 𝟎𝟏𝟔 ∗ 𝑩 + 𝟎. 𝟎𝟏𝟔 ∗ 𝑫 + 𝟓. 𝟒𝟖𝟐𝒆 − 𝟎𝟎𝟑 ∗ 𝑨 ∗ 𝑩

− 𝟎. 𝟎𝟐𝟕 ∗ 𝑨 ∗ 𝑫 − 𝟐. 𝟔𝟎𝟐𝒆 − 𝟎𝟎𝟑 ∗ 𝑩 ∗ 𝑪 − 𝟎. 𝟎𝟏𝟒 ∗ 𝑩 ∗ 𝑫 + 𝟐. 𝟐𝟗𝟔𝒆 − 𝟎𝟎𝟑

∗ 𝑪 ∗ 𝑫 

This model accompanied with a p-value of 0.007 implied its high confidence level. Screw 

configuration, barrel temperature and feeding rate were found to have significant effect on 

flowability index. However, the complicated transformation did make the relationship between 

different factors unclear. Hence it is best to look into the contour plot to better understand the 

effect of different factors (Figure 3-7). 

When looking into Figure 3-7a (one mixing zone), it was found higher temperature and 

lower feeding rate would result in higher flowability index, thus poorer flow property. This result 

was the same with the angle of repose. In Figure 7b, the effect of barrel temperature was still the 

same. Interestingly, the effect feeding rate showed different effect at different conditions. When 

barrel temperature was below 95 oC, feeding rate barely had any effect on flowability index. This 

was because the ability of higher feeding rate to decrease fines was offset by the second mixing 

zone. However, when the temperature was over 95 oC, higher feeding rate was more tend to 

increase the portion of large size granule, thus lead to higher flowability index. When comparing 

Figure 3-7a and 3-7b, it was found the granules produced with two mixing zone configuration 

would have less flow property, which correlate with the fact the second mixing zone will create 

more fines or large size granules. 
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                                           a                                                                           b 

Figure 3-7. Contour plots showing the effect of barrel temperature and feeding rate on 

percentage of medium size granules (a) one mixing zone configuration, (b) two mixing zone 

configuration. 

 

3.4.6. In-vitro drug release study 

The simulated gastric solution (0.1 N HCl, pH = 1.2) was utilized in the dissolution study 

as dissolution medium. Ten runs of samples released more than 95% drug in 23 hours (Run 2 and 

Run 5 > 94%). The maximum drug release time for tablets varied from 10 to 23 hours (Figure 3-

8 and Table 3-6). The regression equation suggested by Design Expert software was shown as 

follows: 

𝐃𝐢𝐬𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐓𝐢𝐦𝐞

= +𝟏𝟔. 𝟗𝟐 + 𝟐. 𝟏𝟑 ∗ 𝐀 − 𝟐. 𝟒𝟐 ∗ 𝐁 + 𝟏. 𝟔𝟐 ∗ 𝐂 − 𝟎. 𝟕𝟓 ∗ 𝐃 + 𝟏. 𝟑𝟕 ∗ 𝐀 ∗ 𝐁

+ 𝟏. 𝟔𝟑 ∗ 𝐁 ∗ 𝐂 + 𝟐. 𝟓𝟎 ∗ 𝐁 ∗ 𝐃 

The p-value provided for this model was 0.0056 (Table 3-9), Three factors (screw 

configuration, barrel temperature and screw speed) were discovered to have significant effect on 

dissolution time. The positive coefficient of screw configuration and screw speed implied that 

when two mixing zone configuration and high screw speed were applied, the dissolution time of 
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tablet would increase, that was slower release. However, when the higher temperature was 

utilized, the release would be faster. Actually, this result was totally opposite to what have been 

expected, which was based on the granule properties mentioned above. The only explanation 

could be the tableting process had done some change to the granule property.  

 

Table 3-9. Dissolution time statistical analysis and coefficients of regression. 

Variables 

Dissolution time for maximum drug release (h) 

Coefficient P 

Model  0.0056 

Intercept 16.92  

A 2.12 0.0065 

B -2.42 0.0019 

C 1.62 0.0164 

D -0.75 0.1401 

 

R2 = 0.9726 

Pred R2 = 0.7537 
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Figure 3-8. In-vitro release profiles of a tablets from 12 runs of samples. 

 

To confirm the aforementioned assumption, the dissolution of primary granules was 

conducted as well. The time for 80% drug release of both tablets and granules were compared. 

80% percent drug release was selected because the release time for different runs of samples at 

this level showed enough distinction degree. The result was summarized in Table 3-10. It was 

quite noticeable that the dissolution time could be divided into two groups. In addition, the 

release time for tablet and granule from same run of experiment was opposite. In detail, 

counterpart (capsule) of fast release tablet will release slow, vice versa. 

This negative correlation of tablet and capsule release time was quite interesting. The 

principle under this phenomenon could be explained by the effect of binder. When the big size or 

strong granule was formed (these two parameters usually have positive correlation based on our 

observation), which release relatively slow, more binder in the formulation would be occupied in 
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the granule. The binder outside of granule would be in small amount. In this case, when the 

tablet was compressed, the binder to connect granules together would not be enough, which 

meant the adhesion of granules would be weak. The tablet would be more easily to disintegrated 

into granules, and release faster because of the enhanced surface area. This hypothesis was 

supported by the SEM photograph taken for granules and tablets (Figure 3-9). All the images 

were taken at 25 times magnification. As can be seen from the picture, from run 11 to run 2, the 

granule size decreased gradually, simultaneously, the diminution of cleavage on the counterpart 

tablet was apparent. The cleavage was a very clear sign of the weak adhesion among granules. 

Thus, the hypothesis should be reasonable. 

 

   
                                         a                                                                          b 

   
                                         c                                                                           d 

Figure 3-9. SEM photograph of granules and tablets: (a) & (b) Run 11, (c) & (d) Run 3 
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                                        e                                                                                f 

Figure 3-9. SEM photograph of granules and tablets: (e) & (f) Run 2. 

 

Table 3-10. 80% drug release time for tablet and capsule. 

 

Tablet (h) Capsule (min) 

F1 3.2 

Release Time < 4 

h 

25 

Release Time > 

15 min 

F3 3.1 15 

F7 2.5 25 

F8 2.9 17.5 

F11 3.8 29 

F2 6.9 

Release Time > 4 

h 

7 

Release Time < 

15 min 

F4 4.5 14 

F5 6 7 

F6 4.7 13 

F9 4.5 9 

F10 6.3 10 

F12 7 14 
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3.4.7. Optimization of processing parameters 

From a serial of experiments, the relationship between different factors and responses 

was quite clear. However, it was too complicated to analyze them together (Table 3-11). What’s 

worse, some of the parameters required by different responses conflict with each other. For 

example, less amounts of fines and larger quantity of medium size granules were both preferred, 

but screw speed have opposite effect on these two responses. Therefore, a sophisticated model to 

optimize the factors was necessary. Luckily enough, all the models we obtained from the 

software had high R2 and pred R2, which guaranteed the possibility of utilizing these models to 

do the optimization. Based on the previous description and experiment data, the goal was set as, 

fines (5-10%), Medium size granules (60-80%), Angle of repose (25-30o), Flowability index (10-

24 mm), Dissolution time (12-16 h). The desirability plot was given in Figure 3-10. The 

conclusion could be drawn was high feeding rate and screw speed should be utilized. Relatively 

low barrel temperature was beneficial for the goal. Only one mixing zone configuration should 

be applied. 

 

Table 3-11. Summarization of relationship between factors and responses. 

 % Fines 

% Medium 

size 

granules 

Angle of 

repose 

Flowability 

index 

Release 

time 

Screw 

configuration 
N/A - N/A + + 

Barrel 

temperature 
- N/A + + - 

Screw speed + + + N/A + 

Feeding rate - N/A - - N/A 
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Figure 3-10. Desirability plot of set goals. 
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CHAPTER 4. 

COMPARISON OF DRUG RELEASE FROM KOLLIDON® SR MATRICES 

PREPARED BY A DIRECT COMPRESSION METHOD AND TWIN SCREW 

EXTRUSION TECHNOLOGY 
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4.1. Objective 

The major objective of the present project was to produce sustained-release tablets by 

both direct compression and HME technique. The physicochemical properties of both products 

were analyzed to determine the drug release mechanism. Theophylline (Figure 4-1) was chosen 

for this study for two reasons. Firstly, theophylline was a Biopharmaceutics Classification 

System (BCS) class I drug, which means it has high solubility and permeability. This property 

will make the observation of the sustained release effect easier. Secondly, the melting of 

theophylline is over 270 oC, which can effectively prevent the unexpected API transformation 

from crystalline to amorphous state in HME. Because this conversion may interrupt the analysis 

about effects of two techniques. 

 

 

Figure 4-1. Chemical structure of theophylline. 
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4.2. Materials 

Theophylline was purchased from Ria International LLC (Saint Louis, MO, US). 

Kollidon® SR was generously gifted by BASF SE (Ludwigshafen, Germany). Magnesium 

stearate was purchased from Spectrum Laboratory Products Inc. (Gardena, CA, US). Food Color, 

Blue (Liquid) was purchased from PCCATM (Houston, TX, US). All the other reagents used in 

this study were of the analytical grade. 

 

4.3. Methods 

4.3.1. Twin Screw Extrusion 

All the ingredients were passed through US # 35 (500 µm) mesh screen, in order to 

remove any aggregates that might be formed. Theophylline (30% w/w) was premixed with 

Kollidon® SR (70% w/w) using a MaxiblendTM V-shell blender (GlobePharma, New Brunswick, 

NJ) at 25 rpm for 20 min. These binary physical mixtures (PM) were extruded using a HAAKE 

MiniLab II counter-rotating twin screw extruder (Thermo Fisher Scientific, Waltham, MA, USA) 

at a screw speed of 100 rpm and barrel temperature of 100 °C to obtain resultant extrudates 

(Ext). The Ext were collected at the end of the extruder after the steady state of was achieved. 

Half of the Ext were milled and passed through USA standard sieve # 35 to achieve Milled 

Extrudates (ExtM). Either Ext or ExtM were stored separately in polyethylene bags for further 

processing and analysis. 
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4.3.2. Differential Scanning Calorimetry 

Approximately 2-5 mg samples of interest were weighed and hermetically sealed in an 

aluminum pan. A Diamond DSC (PerkinElmer, Shelton, CT, USA) was used to measure the 

degree of crystallinity of the samples. The instrument’s Pyris manager software (Shelton, CT, 

USA) was utilized to analyze the data. The heating rate was set at 20 °C/min from 20 to 300 °C 

under an inert atmosphere of nitrogen at a flow rate of 20 mL/min. 

 

4.3.3. Tablet Compression 

100 mg obtained PM or ExtM were mixed with 0.3% magnesium stearate just prior to 

manual direct compression on a MCTMI single punch tablet press (GlobePharma Inc., New 

Brunswick, NJ, USA). An 8 mm flat round punch was used, and a compression force of 120 

kg/cm was applied. 

 

4.3.4. In Vitro Drug Release Study 

The compressed ExtM tablets (ExtT), direct compressed tablets (DCT), theophylline, Ext, 

PM, ExtM equivalent to 30 mg of theophylline were evaluated for in-vitro drug release. The 

dissolution media used was 900 mL 0.1 N HCl (pH 1.2, simulated gastric medium). SR8-plus™ 

dissolution apparatus (Hanson, Chatsworth, CA, US) was maintained at 37 ± 0.5 °C and the 

paddle speed was set at 50 rpm. PM and ExtM were filled into capsules (size 0) for dissolution. 

Tablets and Ext were directly dropped into dissolution vessel for test. Samples were collected at 

intervals of 1/6, 1/2, 1, 2, 4, 8, 12 and 24 h through a stainless-steel cannula with a 0.2-μm nylon 

filter tip attached to a 2.5-mL syringe. The samples were analyzed directly using a GENESYS 6 
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UV–vis spectrophotometer (Thermo Scientific, Madison, WI, US) at a wavelength of 270 nm. 

The standard curve was linear over the range of 1–50 μg/mL with an R2 equal to 0.9996. 

 

4.3.5. Scanning Electron Microscopy 

The surface morphology of all samples (theophylline, Kollidon® SR, Ext, ExtT, DCT) 

and interior structure of tablets (ExtT and DCT) were determined by utilizing scanning electron 

microscopy (SEM). Samples was mounted onto an aluminum stage by an adhesive carbon tape, 

and then sputter coated with gold under an argon atmosphere using a Hummer 6.2 Sputter Coater 

(Ladd Research Industries, Williston, VT, US). The coater was kept in a high-vacuum evaporator 

equipped to guarantee a uniform coating. Finally, images were captured using a JSM-5600 

scanning electron microscope (JEOL USA, Inc., Waterford, VA, US) at an accelerating voltage 

of 5 kV. 

 

4.3.6. Dynamic Vapor Sorption 

The water sorption behavior of API, polymer, tablets, milled and primary extrudates were 

determined by Intrinsic DVS (Surface measurement systems, London, UK). 20 ± 0.5 mg samples 

were exposed to the controlled relative humidity profile (0-100-0%) at a constant temperature 

(37 °C), and the weight changes were measured by a CahnD200 ultra-microbalance (±0.01 mg 

mass resolution). The dm/dt mode was used in all the steps, and the limitation was set at 0.01 

%/min to detect the equilibrium (the instrument would start next step when the samples dm/dt 

value equal or less than 0.001%/min). At first step, sample was dried at 0% RH, and the 
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equilibrated mass at 0% RH was used as reference mass. The water sorption isotherms were 

calculated using the equilibrated sample mass from each step [144]. 

 

4.3.7. Water Sorption Pathway 

2 mL of food color was uniformly mixed with the 898 mL above mentioned dissolution 

media in the in vitro drug release study section. All dissolution apparatus and parameters were 

set identically as the in vitro drug release study. Tablets were directly dropped into dissolution 

vessel for test. Soaked tablets were removed from the dissolution media at intervals of 1, 2, 4, 8, 

12 and 24 h. The outside surface of tablets was dried quickly utilizing paper towels. The tablets 

were then evenly split into two parts. The cross sections of each tablets were photographed for 

comparison. 

 

4.4. Results and Discussion 

4.4.1. Characterization of Crystallinity 

The crystallinity of theophylline as pure drug and in ExtM and PM was confirmed by 

utilizing DSC (Figure 4-2). A single sharp endotherm peak at around 275 oC was observed for 

pure theophylline. This demonstrated the API we used was belong to the theophylline anhydrous 

form I [135]. After HME, the endotherm peak could still be seen from the DSC thermogram, 

however it was compressed to around 255 oC. These results confirmed that the crystallinity of 

theophylline was preserved after HME. Nevertheless, some interaction between theophylline and 

Kollidon® SR was likely to occur [136]. 
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Figure 4-2. DSC thermograms of theophylline, Kollidon® SR, PM and ExtM. 

 

4.4.2. In-vitro Drug Release 

The release profile of all samples was summarized in Figure 4-3. Obviously, the pure 

theophylline achieved the fastest release rate, owing to its high solubility. More than 95% of 

drug was released in just 30 min, and full drug release was attained in the dissolution period. The 

release of PM was quite similar to that of theophylline, while a little bit slower. 95% drug release 

was achieved at 1 h time point, and about 97% of drug was released at 24 h. This could be the 

result of release-retardation effect of Kollidon® SR. The release rate of ExtM was faster than the 

ExtT in first 8 h, because the higher surface area of ExtM could have more contact with 

dissolution medium. Interestingly, the dissolution curve of ExtM and ExtT overlapped 

completely after 8 h, which indicated all materials of ExtT were exposed to dissolution medium, 

just like what happened in ExtM. This should be because ExtT expanded enough to make room 

for dissolution medium to get inside the tablets (disintegration was not observed during whole 

dissolution process). Ext exhibited the slowest release profile. Less than 15% of theophylline 
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release was observed after 24 h dissolution. This was because of the highly condensed nature of 

Ext. When materials were pushed out of the die, the high pressure existing at this area would 

compact the material a lot, which resulted in increased density and less cavity [145]. These 

properties would prevent the diffusion of dissolution medium into the center of Ext, thus 

decrease the release. 

 

Figure 4-3. In-vitro release profiles. 

 

Slower release of theophylline in ExtT, compared to that of DCT, was anticipated in the 

beginning. Because theophylline was expected to be better covered by Kollidon® SR after HME 

process, which would slow down the release of API. Actually, this was true when the release of 

PM and ExtM was compared. However, the ExtT and DCT dissolution result was totally 

reversed. This may be owing to the water sorption ability of these two tablets. The morphology 

of tablets before and after dissolution were compared (Figure 4-4). ExtT swelled much more than 

the DCT did, which indicated the ExtT could absorb more water into itself, hence increased 

release. 
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                                      a                                                                              b 

   

                                      c                                                                                 d 

Figure 4-4. Macro photograph of tablets morphology before and after dissolution of: (a) & (b) 

ExtT, (c) & (d) DCT. 

 

4.4.3. Water Sorption Ability 

Macro image of tablets was just a subsidiary characterization method of water sorption 

behavior. Thus, the DVS was utilized to directly detect this property. The study condition was set 

at 37 oC and 100% RH to mimic the dissolution condition. It is necessary to point out that the RH 

achieved at stable state was only 98%, which may due to the instrument limit. This condition 

might have some effect on the results at some point. The water sorption behavior of each 

samples was summarized in Figure 4-5 and Table 4-1. Theophylline barely absorbed any water 

during the process. Only 0.22% gain in weight was recorded by the instrument. Kollidon® SR, on 
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the contrary, absorbed moisture equal to around 33% of its own weight. The moisture sorption 

data correlated very well with the dissolution data. More water sorption would lead to faster and 

higher drug release. The only exception would be ExtT and ExtM. Both of them achieved 96% 

of drug release, but the water sorption amount was different. This could be explained by the 

different time range of two experiments. These two materials obtained the same drug release at 8 

h in dissolution study. But the water sorption study lasted less than 5 h. 

 

  

a 

    

                                       b                                                                                c 

Figure 4-5. Dynamic vapour sorption measurements of: (a) theophylline, (b) Ext, (c) DCT 
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                                       d                                                                              e 

    

                                        f                                                                               g 

Figure 4-5. Dynamic vapour sorption measurements of: (d) ExtT, (e) ExtM, (f) PM, (g) 

Kollidon® SR. 
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Table 4-1. Maximum water sorption and time duration data. 

 

Maximum water sorption 

% 

Time of water sorption 

min 

Theophylline 0.22 17.24 

Ext 11.68 277.89 

DCT 14.02 254.56 

ExtT 16.58 267.77 

ExtM 21.57 218.01 

PM 22.10 220.03 

Kollidon® SR 33.29 365.15 

 

4.4.4. Water Sorption Pathway 

The DVS study had clearly revealed the correlation of sample water sorption ability with 

API release speed as well as extent, i.e., theophylline in ExtT released more and faster than that 

of DCT. To better understand the process of drug release at real time, the water sorption pathway 

study was also conducted. In short, the original dissolution medium was dyed to blue color so 

that the pathway that the dissolution medium was absorbed by both tablets could be easily 

recorded and compared. The cross-section comparison of both tablets at different time points was 

shown as in Figure 4-6. The picture was adjusted by photoshop to provide better contrast 

between wetted and unwetted part. From the picture, it was clear that the water entered both 

tablets from the out layer to inner layer. However, at the endpoint of 24 h, ExtT was fully soaked 

by the water, which make the whole tablet blue. However, DCT still showed some of the original 

color of material at the same time point. This result conformed with the DVS study result very 
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well, which was ExtT absorbed more water than DCT. At each time point, more area of ExtT, 

compared to that of DCT, was wetted by the water at the same time point. This phenomenon 

indicated the water is more difficult to diffuse into DCT than ExtT. 

 

 

Figure 4-6. Dissolution Medium Sorption Pathway 

 

4.4.5. Tablet Structure Test 

To better explain this phenomenon above mentioned, both the surface structure and 

interior structure of ExtT and DCT were checked with SEM (Figure 4-7). From the surface 

structure perspective, more amount and bigger size crevices was found on the ExtT. Water could 

easily enter in the center of the tablets, and absorbed by Kollidon® SR in situ. However, the 

crevice on DCT was less and smaller, which limited the entrance of water directly. Diffusion was 

the major mechanism for water absorption, which was less efficient. The interior structure was 

achieved by manually breaking tablets, no knifes were used. However, the fracture face of DCT 

was quite smooth, as cut by knife. This indicated the strength of connection between particles is 

quite similar to the particle interior strength. Thus, when broken by hand, either the individual 
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particle could be broken or particles could be departed from each other. In comparison, 

individual particles could be easily distinguished in ExtT. This indicated the connection between 

particles is much weaker than the strength of particles itself. In the dissolution scenario, water 

could easily pass through the particle gap of ExtT, instead of DCT. Thus, the absorption of 

dissolution medium is much faster in ExtT than DCT.  

Thus, it could be concluded that release of theophylline in the formulation mainly 

depended on water absorbed by the Kollidon® SR. The process could be in 4 steps. Firstly, water 

entered the system either by absorption of Kollidon® SR or the crevice of tablet surface. 

Secondly, water moved inward the tablet through the particle gap, Thirdly, theophylline was 

solubilized by the water absorbed. Lastly, theophylline diffused out and released. 

      
                                          a                                                                      b 

      
                                         c                                                                        d  

Figure 4-7. Surface structure of a) DCT, b) ExtT and Interior structure of c) DCT, d) ExtT 

 



81 

 

 

 

 

 

 

 

 

 

CHAPTER 5. 

SUMMARY AND CONCLUSION 
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Over the last few decades, twin screw extruder (TSE) has attracted considerable attention 

in the pharmaceutical industry as an alternative processing instrument due to its advantages 

compared to other conventional equipment, such as economical processing, small footprint, 

reduced in-process times, solvent-free and continuous processing. These superiorities have led to 

the application of twin-screw extruder to produce numerous dosage forms, including pellets, 

tablets and films. Many other formulations production can also be beneficial from the 

introduction of twin-screw extruder to the process. In a series of studies, the application of TSE 

has extended for a further step. 

In chapter 2, The use of a novel conjugation of HPH and HME techniques to 

continuously produce NCSD was investigated. This technique helps to overcome the nanocrystal 

formulation problems that are associated with the conventional methods. By using this technique, 

an increase in the dissolution rate was achieved as a result of the decreased particle size and 

increased surface area, and also owing to the improved wettability. The good stability was 

attributed to the maintained crystalline state of the drug. 

In chapter 3, the previously unreported study of applying twin screw extruder to the dry 

granulation process was successfully conducted. The effect of various factors on the granule 

properties was clearly revealed by performing a Resolution V Irregular Fraction Design. 

Automatic Optimization of processing parameters to achieve the setting goal was achieved by 

utilizing the obtained model. In general, TSDG was demonstrated to be an alternative method to 

prepare dry granules. The continuous processing nature, simplicity of operation and easiness of 

optimization made TSDG quite competitive compared to other conventional dry granulation 

techniques. 
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In chapter 4, the different behavior of ExtT and DCT under the same dissolution 

environment were compared. The mechanism behind this different behavior was further 

investigated by the water absorption study, dissolution medium absorption tracking study as well 

as the tablet structure analysis. In general, different structures determined the different water 

sorption property of tablets, which finally resulted in different dissolution behavior.  
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