
University of Mississippi University of Mississippi

eGrove eGrove

Electronic Theses and Dissertations Graduate School

2015

Implementation Of A Raptorq-Based Protocol For Peer To Peer Implementation Of A Raptorq-Based Protocol For Peer To Peer

Network Network

Yuzhu Bai
University of Mississippi

Follow this and additional works at: https://egrove.olemiss.edu/etd

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Bai, Yuzhu, "Implementation Of A Raptorq-Based Protocol For Peer To Peer Network" (2015). Electronic
Theses and Dissertations. 520.
https://egrove.olemiss.edu/etd/520

This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more
information, please contact egrove@olemiss.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by eGrove (Univ. of Mississippi)

https://core.ac.uk/display/288062836?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://egrove.olemiss.edu/
https://egrove.olemiss.edu/etd
https://egrove.olemiss.edu/gradschool
https://egrove.olemiss.edu/etd?utm_source=egrove.olemiss.edu%2Fetd%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=egrove.olemiss.edu%2Fetd%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/etd/520?utm_source=egrove.olemiss.edu%2Fetd%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu

IMPLEMENTATION OF A RAPTORQ-BASED PROTOCOL FOR PEER TO PEER

NETWORK

A Thesis
presented in partial fulfillment of requirements

for the degree of Master
in the Electrical Engineering
The University of Mississippi

by

Yuzhu Bai

Aug 2015

Copyright Yuzhu Bai 2015
ALL RIGHTS RESERVED

ABSTRACT

The object of this thesis is to develop and test a Ruby based implementation of the

RaptorQP2P protocol. The RaptorQP2P protocol is a novel peer-to-peer protocol based on

RaptorQ forward error correction. This protocol facilitates delivery of a single file to a large

number of peers. It applies two levels of RaptorQ encoding to the source file before packet

transmission. Download completion time using RaptorQP2P was found to be significantly

improved comparing to BitTorrent.

We developed a Ruby interface to the Qualcomm proprietary RaptorQ software de-

velopment kit library. Then we achieved the two levels of RaptorQ encoding and decoding

with the Ruby interface. Our implementation uses 5 threads to implement RaptorQP2P fea-

tures. Thread 1 runs as a server to accept the connection requests from new peers. Thread

2 works as a client to connect to other peers. Thread 3 is used for sending data (pieces) and

thread 4 is to receive data from neighboring peers. Thread 5 manages the piece map status,

the peer list, and choking of a peer.

We first tested communication modules of the implementation. Then we set up

scheduled transmission tests to validate the intelligent symbol transmission scheduling de-

sign. Finally, we set up a multi-peer network for close to practical tests. We use 5 Raspberry

Pi single-board computers to act as 1 seeder and 4 leechers. The seeder has the whole file

and delivers the file to the 4 leechers simultaneously. The 4 leechers will also exchange part

of the file with each other based on what they have received.

Test results show that our implementation attains all the features of RaptorQP2P:

the implementation uses two levels RaptorQ encoding; a peer is able to download a piece

from multiple neighbors simultaneously; and a peer can send the received encoded symbols

of a piece to other peers even if the peer does not have the full piece yet.

ii

DEDICATION

To my family.

iii

ACKNOWLEDGEMENTS

I would like to sincerely thank my advisor, Prof. John N. Daigle, for his profes-

sional guidance and enormous patience throughout my graduate study at the University of

Mississippi. My grateful appreciations also go to Prof. Feng Wang, Prof. Ramanarayanan

Viswanathan, Dr. Xiao Di and Prof. Lei Cao for the many helpful comments and suggestions

on my research.

I would like to thank Dr. Xiao Di, Prof. Lei Cao, Prof. Ramanarayanan Viswanathan

and my family for supporting me to pursue a degree in Master of Science.

Finally, I am most grateful to my family and all my friends in Oxford, Mississippi

for all their help in every way possible. A special gratitude must go to Dr. Xiao Di for his

selfless support and invaluable suggestions.

iv

TABLE OF CONTENTS

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF FIGURES . vi

LIST OF TABLES . viii

INTRODUCTION . 1

RUBY INTERFACE TO RAPTORQ LIBRARIES 5

RAPTORQP2P . 23

IMPLEMENTATION OF RAPTORQP2P . 27

TEST RESULTS OF RAPTORQP2P . 42

CONCLUSION AND FUTURE WORK . 48

BIBLIOGRAPHY . 49

APPENDICES . 52

SOURCE CODES . 53

VITA . 65

v

LIST OF FIGURES

2.1 Communication Architecture with RQ Encoder and RQ Decoder 6

2.2 Processing Flow for RQ Encoder and Decoder 6

2.3 Workflow of RQ Encoder Interface Function StringSimpleSend() 10

2.4 Workflow of RQ Decoder Interface Function FileSimpleDecode() 12

2.5 Wrapping the RaptorQ library with SWIG 15

2.6 RQ Encoder Interface Test . 16

2.7 RQ Decoder Interface Test . 17

2.8 Run Time of RQ Encoder on Raspberry Pi 18

2.9 Run Time of RQ Encoder at Different Symbol Sizes on Raspberry Pi 19

2.10 Run Time of RQ Decoder on Raspberry Pi 20

2.11 Encoded Symbols for Decoding Overhead-Failure Probability Test 21

3.1 Two Level RaptorQ Encoding . 25

4.1 Simplified Flowchart of RaptorQP2P . 29

4.2 Multi-threading in The Implementation . 31

4.3 System Module Structure of RaptorQP2P . 32

4.4 Internal Communication. 34

4.5 Packet Format . 35

4.6 Piecemap Format . 36

4.7 Piece Request Format . 36

vi

4.8 Message process. 40

5.1 Raspberry Pi . 43

5.2 Communication Test. 43

5.3 Scheduled Transmission Test. 45

5.4 Download Time Test. 47

vii

LIST OF TABLES

2.1 Essential Functions in RQ Encoder library 7

2.2 Essential Functions in RQ Decoder library 8

2.3 Decoding Overhead-Failure Probability Test 22

viii

CHAPTER 1

INTRODUCTION

The objective of this thesis is to develop and test a Ruby based implementation of

RaptorQP2P protocol. The RaptorQP2P protocol is a novel peer-to-peer protocol based

on the RaptorQ Forward Error Correction (FEC) for reliable sharing of large files over the

Internet [1]. The RaptorQ is a type of fountain code and belongs to the family of Raptor

codes [2]. The primary application of RaptorQ is application layer forward error correction

(FEC).

In this work, we utilize the Qualcomm proprietary RaptorQ software development

kit library (RaptorQ SDK) to achieve RaptorQ encoding and decoding. We developed a

collection of C functions that provide access to functions in the RaptorQ library. Then a

Ruby interface to the collection of C functions was developed. This combination forms a

rapid prototyping kit for implementing RaptorQ based content delivery. Run time for major

subcomponents was quantified through a series of tests performed on Mac OS and Raspberry

Pi platforms. Test results of RaptorQ library run times and peer to peer file distribution are

presented.

The implementation in this thesis facilitates delivery of a single file to a large number

of peers. We built a Raspberry Pi based research platform that enables us to

• download and upload data from any peer;

• trace and record data transmitted from any of the peers in the network; and

• calculate both the downloading and uploading time of a peer.

1

The remainder of this chapter gives an introduction to RaptorQ FEC and then briefly

describes the RaptorQP2P protocol. An outline for the remainder of the thesis is also

provided.

1.1 RaptorQ FEC

RaptorQ Forward Error Correction (FEC) belongs to the family of Raptor codes. It

is a type of fountain code [3]. Fountain codes are also called rateless erasure codes, and the

first practical fountain code is LT codes, which were invented by Luby in 1998 [4].

In a general LT coding scheme, the original file is divided into blocks and each block is

then divided into source symbols. Each encoded symbol is generated as a linear combination

of source symbols. The number of encoded symbols is theoretically limitless. In the decoding

part, the decoder is able to recover the original block when a sufficient number of distinct

symbols is received. These symbols can be any set of the generated encoding symbols as

long as they are slightly longer in length than the original block [4]. LT codes are proved to

be very efficient as the source data grows. That is, the average overhead required to recover

source data decreases with increasing block size [5].

Following Luby’s work, Shokrollahi [3] developed Raptor codes as an extension of LT

codes. Raptor codes can be viewed as a combination of LT-code and LDPC code [6]. In the

Raptor coding scheme, some intermediate symbols are generated from the source symbols

by a high-rate LDPC code in the pre-coding stage. These intermediate symbols are then

encoded by LT-code. The fountain property of Raptor codes is provided in the LT-coding

stage. Raptor codes are proved to outperform LT codes on a wide variety of noisy channels

[7].

RaptorQ code is a new variant of Raptor codes. Comparing to standardized Rap-

tor codes, RaptorQ code has several improvements to the encoding and decoding processes.

First, before the intermediate symbols are generated, RaptorQ augments FEC source blocks

with additional padding symbols to ensure faster encoding and decoding [6]. Second, Rap-

2

torQ adopts a two stage pre-coding algorithm (LDPC and HDPC) to generate the inter-

mediate symbols. Third, the RaptorQ uses a modified more efficient encoding process in

the second encoding step. Finally, the RaptorQ code operates over the finite field GF(256)

instead of the standardized Raptor code operating over Galois field GF(2) [3]. All the above

features not only offer RaptorQ a better coding performance, but also allow RaptorQ to

support larger source symbol block sizes. Specifically, RaptorQ supports up to 56,403 source

symbols in a source block, and can generate as many as 16,777,216 encoded symbols for one

source block [3].

The RaptorQ code also has a smaller decoding overhead requirement comparing to

standardized Raptor codes. For example, the first widely adopted Raptor code, the Raptor

10 code, requires an overhead of 24 to achieve a failure probability of 10−6 while the RaptorQ

code ensures a failure probability of less than 10−6 with an overhead of 2 symbols.

1.2 RaptorQP2P

The RaptorQP2P protocol facilitates reliable peer-to-peer sharing of large files over

networks [1]. It utilizes two levels of RaptorQ encoding and an intelligent symbol scheduling

algorithm to remedy some limitations of the BitTorrent protocol. The RaptorQP2P protocol

can be viewed as an extension of the BitTorrent protocol, which was designed by Bram Cohen

in 2001. In order to clarify the motivation for RaptorQP2P, we will review BitTorrent first.

BitTorrent is a peer-to-peer file sharing protocol that efficiently distributes large files

over the Internet. In a traditional client-server protocol, the central server is responsible

for delivering all the content to clients (peers). On the contrary, a peer-to-peer protocol

enables the transfer of data from one peer to another. Some limitations of the servers and

the network can be highly reduced in this way. Besides the peer-to-peer feature, BitTorrent

protocol introduced a piece selection strategy to decide what data to request and a peer

selection strategy to decide which peers to transfer pieces [8]. The piece selection strategy

in BitTorrent begins by selecting pieces at random and then switches to rarest-first. The

3

peer selection strategy, which is known as tit-for-tat, always unchokes peers with highest

data rate every ten seconds. These two strategies guarantee good performance when the

network is in steady state. However, in the real world, the peers and the network are always

changing. The overall system performance may be significantly less than optimal [1].

With above findings, Su, Wang, Daigle and Shan proposed a novel protocol named

RaptorQP2P, which is based on RaptorQ coding, to overcome the limitations of BitTorrent.

The RaptorQP2P protocol encodes the source file with two levels of RaptorQ before trans-

mission: the file is firstly RaptorQ encoded to generate a group of source blocks and repair

blocks, and then each block is RaptorQ encoded to generate source symbols and repair sym-

bols. These symbols are then distributed over the Internet. A peer is able to reconstruct

a block after collecting enough distinct symbols for the block. When the peer possesses

enough distinct blocks, the file can be recovered. By utilizing RaptorQ codes, the RaptorQ

protocol allows multiple peers to send symbols (slices) of the same block (piece) to a peer

simultaneously. This is a significant advantage over BitTorrent. Moreover, to maximize the

utilization of peers’ upload capacities, this protocol also allows opportunistic transmissions,

where a peer can send the received encoded symbols of a piece to other peers even if the

peer does not have all the slices of that piece. A more detailed description of RaptorQP2P

is given in Chapter 3.

1.3 Organization of Thesis

The remainder of this thesis is structured as follows. Chapter 2 introduces the inter-

face design and some tests for the RaptorQ libraries from Qualcomm. Chapter 3 gives a brief

review of the RaptorQP2P. Chapter 4 describes the practical implementation of this proto-

col. Chapter 5 shows test results of the RaptorQP2P implementation. Chapter 6 concludes

the thesis with a discussion on the future work.

4

CHAPTER 2

RUBY INTERFACE TO RAPTORQ LIBRARIES

This chapter provides a thorough discussion of our Ruby interface to the functions of

the RaptorQ libraries which were provided by the Qualcomm Technologies, Inc. We begin

by describing the Qualcomm RaptorQ software development kit in Section 2.1. In Section

2.2, we explain how the interface was designed for the library. In Section 2.3, we present a

series of tests of our interface and the library.

2.1 The RaptorQ Library

The Qualcomm proprietary RaptorQ SDK is a specification-compliant implementa-

tion of the RaptorQ code specified in [3]. It consists of a RQ Encoder library and a RQ

Decoder library, where each provides functions that enables us to build RaptorQ encod-

ing/decoding applications.

Figure 2.1 illustrates a system-level view of communication between the RQ Encoder

and RQ Decoder. This architecture is also adopted in our implementation of RaptorQP2P.

In this architecture, the sender application retrieves and presents blocks of source data to an

RQ Encoder to generate repair data (encoded data). Both the source data and repair data

are passed to the sender transport layer for packetizing and transmission. At the receiver end,

the receiver transport layer collects the packets and deliver them to the receiver application.

When the RQ Decoder receives enough data (whether source or repair), it is able to recover

the original source file. The benefit of using RaptorQ FEC in this architecture is that the

RaptorQ FEC technology provides packet-level erasure protection against the loss of packets.

In the above RaptorQ scheme, the original source file is first divided into a number

of source blocks. Each source block is further partitioned into equal-sized source symbols.

5

Sender
Application

Sender
Transport

RaptorQ
RQ-Encoder

Source
Data

Receiver
Application

Receiver
Transport

RaptorQ
RQ-Decoder

Recovered
Data

Sender Network Receiver

Figure 2.1. Communication Architecture with RQ Encoder and RQ Decoder.

Figure 2.2 shows a typical processing flow of the RQ Encoder and Decoder, which is also

adopted in our implementation. The sender application passes source blocks to the RQ En-

coder to generate intermediate blocks. The intermediate blocks are to be used to generate

repair symbols. When the RQ Decoder have received enough symbols, whether source sym-

bols or repair symbols, the original source blocks can be recovered. The Qualcomm RaptorQ

SDK provides a series of functions to accomplish the above process. Our interface design is

to wrap these functions in such a way that a single call in Ruby script operates the encoding

or decoding process. Before discussing the interface design, we will introduce the RQ library

first.

RQ DecoderRQ Encoder

Sender
Application

Source Block

Repair
Symbols

Generate
Intermediate Block

RaptorQ
RQ-Encoder

Generate Repair
Symbols

Sender Transport

Receiver
Transport

Source and Repair
Symbols with ID

Source Block

Recover
Source Block

RaptorQ
RQ-Decoder

Receiver
Application

Figure 2.2. Processing Flow for RQ Encoder and Decoder.

6

The RQ Encoder Library consists of 11 functions, but only 7 of them are crucial

to fulfill a RaptorQ encoding process. Our interface for the encoder part integrates the 7

functions into one single function StringSimpleSend(). This function takes in the source

data as a string and returns encoded symbols. Table 2.1 gives a brief introduction to the 7

functions.

Table 2.1. Essential Functions in RQ Encoder library

Function Purpose

DFRQEnclnit() Initialize the working block memory.

DFRQEncReset() Reset the working block memory.

DFRQEncPrepare() Prepare for the generation of an intermediate
block.

DFRQEncInitSrcBlock() Initialize a source block for the generation of
intermediate block.

DFRQEncGenIntermediateBlock() Generate an intermediate block.

DFRQEncGenRepairSymbols() Generate repair symbols.

DFRQEncGetSourceSymbols() Produce source symbols.

The RQ Decoder Library consists of 11 functions, whereas 7 of them are crucial

to fulfill a RaptorQ decoding process. We also integrated the 7 functions into one single

function, named FileSimpleDecode(). This function takes in the received symbols and tries

to reconstruct the source data. Table 2.2 briefly introduces these functions.

2.2 Interface Design for the RaptorQ Library

In our implementation of the RaptorQP2P protocol, we achieve the two level Rap-

torQ encoding (which is an essential to the RaptorQP2P) via the RaptorQ libraries. These

libraries provide a set of C functions (described in Section 2.1) that enables us to build

our own RaptorQ encoding and decoding applications. While Ruby is well known for rapid

prototyping, we choose to implement the RaptorQP2P in Ruby.

7

Table 2.2. Essential Functions in RQ Decoder library

Function Purpose

DFRQDecMemRequest() Request the memory needed for decoder op-
eration.

DFRQDecInit() Initialize the decoder block.

DFRQDecReset() Reset the decoder block.

DFRQDecAddRcvSymbolIDs() Inform the RQ Decoder of the ESIs (Encod-
ing Symbol ID) of received symbols.

DFRQDecPrepare() Prepare for the reconstruction of a source
block.

DFRQDecInitRcvBlock() Initialize a receive block for the recovery of a
source block.

DFRQDecRecoverSource() Recover a source block.

To simplify the prototyping, we developed a collection of C functions that provide

access to functions in the RQ library. In the encoding part, function StringSimpleSend()

was developed as a full RaptorQ encoding function utilizing the APIs. In the decoding part,

function FileSimpleDecode() was developed to achieve the RaptorQ decoding function. We

call these two functions Interface Functions. The interface functions are then wrapped by

SWIG along with the APIs for Ruby access.

2.2.1 Interface Function Design

The API functions introduced in sections 2.1 contain a number of memory-level op-

erations. This makes it complicate if we try to fulfill the RaptorQ encoding and decoding

by calling these functions directly from Ruby. Therefore we developed interface functions in

C to achieve the full RaptorQ encoding and decoding functions.

The first interface function developed by us is StringSimpleSend(). The formal vari-

ables for this function are as follows:

• Symbol size. This is an integer-valued variable that gives the length of every symbol

8

in bytes. The idea is to give the user the freedom to partition the file according to his

own objectives.

• Source data pointer. This is a pointer to the input data, namely the source data to

be encoded. The source data is a binary string that is passed from another function.

• Data size. This integer-valued variable tells the length of the input string (source

data) in bytes. It is essential for function StringSimpleSend() to obtain both the

pointer and length of source data because the source data is treated as a binary string,

and it can be complicate to find out the length of a binary string in C. Directly passing

in the string length helps to simplify the development process.

• Encode ratio. This is an integer-valued variable no less than 100, typically set to be

200, 300, 400, etc. The literal meaning of encode ratio is the percentage protection

to be applied to the source data. For example, Encode ratio = 100 stands for a 100%

protection where all the output symbols will be source symbols and there is no repair

symbols. Encode ratio = 200 means as many repair symbols as source symbols will be

generated.

• Output file name. This is a character-valued variable indicating the output file name.

The source symbols partitioned from source data will be written into file Output file

name.src, and the generated repair symbol will be written into file Output file name.rep.

The work flow of StringSimpleSend() is shown in Figure 2.3. This figure also shows

the corresponding API functions that are called in each step. At the very beginning, the pro-

gram allocates the working memory and calls DFRQEncInit() to initialize the RQ Encoder.

Then the RQ Encoder is reset by DFRQEncReset(). After that, the interface function calls

DFRQEncPrepare() and DFRQEncIntSrcBlock() to prepare for and initialize intermediate

block generation. When all the preparation jobs are finished, intermediate blocks are gen-

erated by DFRQEncGenIntBlock(). Source symbols and repair symbols can be generated

9

by DFRQEncRepairSymbols() and DFRQGetSourceSymbols(). When the operation on one

block of data is finished, the program moves on to next block if there are any.

RQ ENCODER LIBRARY

START

Allocate Memory

END

Initialize RQ Encoder

Reset RQ Encoder

Prepare for Intermediate
Block Generation

Initialize Source Block
Parameters

Generate Intermediate Block

Generate Symbols

More Source
Blocks?

No

Same SymbolsPerBlock
and SymbolSize?

Yes

Yes

Same Library Mode and
Enough Memory?

Yes

No

No

DFRQEncInit

DFRQEncReset

DFRQEncPrepare

DFRQEncInitSrcBlock

DFRQEncGenIntBlock

DFRQEncRepairSymbols

DFRQGetSourceSymbols
OR

Figure 2.3. Workflow of RQ Encoder Interface Function StringSimpleSend()
(Adopted from Qualcomm RaptorQ RQ Encoder Developer’s Guide).

The decoding interface function developed by us is FileSimpleDecode(). This function

tries to recover the original data from a bunch of symbols. The recovered data will be

returned in a file after a successful decoding, or the function will return a failure status. The

formal variables for this function are as follows:

• Symbol size. This integer-valued variable corresponds to the symbol size defined in

10

the encoding process.

• Input file name. This is a character-valued variable. All the incoming symbols will

be stored in a binary file in the name of Input file name.

• Output file name. This is also a character-valued variable indicating the output file

name of the decoder. The recovered data will be written into file Output file name if

the decoding process succeeds.

• File size. This integer-valued variable indicates the size of the original source data.

It helps to determine the memory space and number of symbols needed for decoding

operation.

• Number of extra symbols. This is an integer-valued variable no less than 0. The

number of extra symbols stands for the difference of number of received symbols and

the number of original source symbols. If the number of source symbols is k and we

received k + 1 symbols, then the number of extra symbols equals 1.

The work flow of FileSimpleDecode() is shown in Figure 2.4. At the beginning, the

API function DFRQDecMemRequest() gets memory block sizes so that the program is able

to allocate memory. After that DFRQDecInit() initiates and DFRQDecReset() resets the

decoder. Then some preparation work is done by DFRQDecPrepare(). The received block

parameters is initialized by DFRQDecInitRcvBlock(). When the preparation is finished, the

program tries to recover the source block. If the recovery succeeded, the recovered block will

be written into an output file. The program moves on to next block if there is any.

2.2.2 Wrapping C Functions with Ruby Using SWIG

We use the software development tool Simplified Wrapper and Interface Generator

(SWIG) to generate the interface between Ruby and the C functions. SWIG is a software

development tool for building scripting language interfaces to C and C++ programs [9].

11

RQ DECODER LIBRARYSTART

Get memory block sizes

END

Allocate Decode, Receive and Temporary Block

Initialize Decoder

Reset Decoder

Add ESIs

Prepare for source block recovery

Initialize receive block parameters

More Source
Blocks?

No

Same
erasure
pattern?

Yes

Yes

Same Library
Mode and Enough

Memory?
Yes

No

No

DFRQDecMemRequest()

Recover Source Block

Free all blocks

Get new block sizes
& Reallocate Temp
and Receive Blocks

Yes

No

Same Symbol Size?

DFRQDecInit()

DFRQDecReset()

DFRQDecAddRcvSymbolIDs()

DFRQDecPrepare()

DFRQDecInitRcvBlock()

DFRQDecRecoverSource()

Figure 2.4. Workflow of RQ Decoder Interface Function FileSimpleDecode()
(Adopted from Qualcomm RaptorQ RQ Encoder Developer’s Guide).

It can be used to connect programs written in C and C++ with a variety of high-level

programming languages, such as Perl, Python, Ruby, and Tcl. In this section, we’ll show

the process of wrapping function StringSimpleSend() along with RQ encoder library into

dynamic libraries that can be used by Ruby. First we will create our own C library that

includes the RQ encoder library, then we make an interface file for SWIG. Finally we will

produce desired dynamic library (*.so) with SWIG. The process to wrap the other interface

function FileSimpleDecode() is similar. With the help of SWIG, we are able to call the C

functions directly from a Ruby script as long as the generated dynamic library is required.

The detailed steps are as follows:

Step 1 Create the C library.

Before wrapping the RQ libraries we need to build our own C library first. Since our

functions are already designed in Subsection 2.2.1, we list the sample header file as

follows:

12

1 /∗ F i l e : Str ingSimpleSend . h ∗/
2 #include ” . . / i n c lude /RaptorRQEncoderAPI . h”
3 char ∗Str ingSimpleSend (int packetS ize , int f i l e S i z e , char ∗ i nSt r ing ,

char ∗outFileName , int t r an s f e rPe r c en t) ;

Listing 2.1. Header file of our C library

and Listing 2.2 shows the sample C codes.

1 /∗ F i l e : Str ingSimpleSend . c ∗/
2 #include ” . . / i n c lude /RaptorRQEncoderAPI . h”
3 #include ” Str ingSimpleSend . h”
4 char ∗Str ingSimpleSend (int packetS ize , int f i l e S i z e , char ∗ i nSt r ing ,

char ∗outFileName , int t r an s f e rPe r c en t)
5 {
6 . . .
7 }

Listing 2.2. Sample codes of our C library

Notice that the RQ Encoder API is included by our own library in this way.

Step 2 Create the interface file.

An interface file as the input to SWIG is also needed. This interface file tells SWIG

to create a Ruby module called StringSimpleSend which wraps functions designed in

Step 1. All the functions listed in StringSimpleSend.h will be wrapped.

1 /∗ F i l e : Str ingSimpleSend . i ∗/
2 %module Str ingSimpleSend
3 %{
4 #inc lude ” . . / i n c lude /RaptorRQEncoderAPI . h”
5 #inc lude ” Str ingSimpleSend . h”
6 %}

Listing 2.3. Interface file to SWIG

Step 3 Wrap the C library.

Now we can use SWIG to wrap our C library so that function StringSimpleSend() can

be called directly in Ruby. To run SWIG against the interface file, type:

1 $ swig −ruby Str ingSimpleSend . i

Listing 2.4. Generate wrap file with SWIG

13

This will generate StringSimpleSend wrap.c, which can be compiled into a shared li-

brary that can be used in Ruby. This step will also create an extconf.rb which configures

a Makefile to build the extension. To create the extension:

1 $ ruby extcon f . rb
2 $ make
3 $ make i n s t a l l

Listing 2.5. Commands to generate dynamic library

After a successful make, we should be able to find a file named StringSimpleSend.so.

This is the dynamic library containing function StringSimpleSend() that can be called

by Ruby.

The above process is summarized in Figure 2.5. An example of using function

StringSimpleSend() in Ruby to encode a file is as follows:

1 # Fi l e : Encode Example . rb
2 r e qu i r e ” . / Str ingSimpleSend ”
3 i nF i l e = F i l e . open (”IMG 0325 . jpg ” , ” rb”)
4 r e s u l t = Str ingSimpleSend : : Str ingSimpleSend (6000 , i nF i l e . s i z e , i nF i l e . read

, ”Encoded” , 200)

Listing 2.6. Using the interface in Ruby

In the above example, Ruby passes source data inFile.read along with necessary variables to

function StringSimpleSend(). All the encoding process is then finished within the C function.

The generated source symbols and repair symbols will be written into file Encoded.src and

Encoded.rep, respectively.

2.3 Functional Verification Test of Interface

The first sets of tests we made was to verify the function of our interface. The main

idea is to read the source data from a file via Ruby, then pass the source data as a binary

string into our interface function to generate source symbols as well as repair symbols. These

symbols will be exported in the form of a source symbol file (*.src) and a repair symbol file

(*.rep). If our interface design was correct, we should be able to recover the source file from

either the source symbol file or the repair symbol file via our decoding interface function

14

StringSimpleSend.so

SWIG

Figure 2.5. Wrapping the RaptorQ library with SWIG.

FileSimpleDecode(). Decoding from the source symbol file can be viewed as the best case

in a real communication, meaning the receiver end received all the source symbols. Instead,

decoding from the repair symbol file is similar to the worst case in real communication,

meaning the receiver end didn’t receive any source symbol so that all the received symbols

are repair symbols. Figure 2.6 illustrates the data flow of encoder interface tests. The test

code below gives an example of encoding file IMG 0325.jpg.

1 # Fi l e : Encode Example . rb
2 r e qu i r e ” . / Str ingSimpleSend ”
3 i nF i l e = F i l e . open (”IMG 0325 . jpg ” , ” rb”)
4 r e s u l t = Str ingSimpleSend : : Str ingSimpleSend (6000 , i nF i l e . s i z e , i nF i l e . read

, ”Encoded” , 200)

Listing 2.7. Encoding a file in Ruby

In the above test code, Ruby reads source data from file IMG 0325.jpg and pass it

into function StringSimpleSend() for RaptorQ encoding. The coding ratio is set to 200%,

which means if the source data was divided into k source symbols, another k repair symbols

15

will be generated. After the program finished executing, we get two files IMG 0325.jpg.src

and IMG 0325.jgp.rep containing the source symbols and repair symbols, respectively.

Read data into string
File.read

Ruby

Generate
Source Symbols

RaptorQ
RQ-Encoder

Generate
Intermediate Block

RaptorQ
RQ-Encoder

Generate Repair
Symbols

Repair
Symbols

Source
Symbols

IMG_0325.
jpg.src

IMG_0325.
jpg

IMG_0325.
jpg.rep

Figure 2.6. RQ Encoder Interface Test.

Figure 2.7 shows the data flow of decoder interface test. In this test example, Ruby

passes the repair symbol file IMG 0325.jpg.rep along with several parameters into function

FileSimpleDecode(). This function recovers source symbols from the repair symbols and

writes them into file IMG 0325.jpg(Recovered). We made a bit-to-bit comparison between

the original file IMG 0325.jpg and the recovered file IMG 0325.jpg(Recovered) and the result

turned out to be exactly the same, meaning that both the encoder and decoder interfaces

work properly. The test code is as follows:

1 # Fi l e : Decode Example . rb
2 r e qu i r e ” . / Fi leDecode ”
3 s t a tu s = FileDecode : : Fi leSimpleDecode (5998 , ”IMG 0325 . jpg . rep ” , ”IMG 0325 .

jpg (Recovered) ” , 5982057 , 0 , 1)

Listing 2.8. Decoding a file in Ruby

A few more tests with different data formats were made afterwards. We tested ASCII

files (*.txt), video files (*.flv, *.rmvb, etc), compressed files (*.zip, *.rar, etc). The interface

functions were proved to be correctly designed.

16

File name and other
parameters

Ruby

Recover
Source Symbols

RaptorQ
RQ-Decoder

Source Symbols

IMG_0325.jpg
(Recovered)

IMG_0325.
jpg.rep

Figure 2.7. RQ Decoder Interface Test.

2.4 Encoding/Decoding Time Test

One of the most significant properties of RaptorQ is linear encoding and decoding

time. With the help of the interface designed in Section 2.2, we made a series of tests in

Ruby to verify the linearity of the RaptorQ libraries. The testbed is a Raspberry Pi, a

single-board computer with ARM1176JZF-S 700 MHz processor and 512 MB RAM.

The first collection of tests were made to test the encoding time of the RQ library. We

chose 6 files at the size of 0.14 MB, 2 MB, 6 MB, 12 MB, 18 MB and 24 MB. For each file,

we generated 200% repair symbols and recorded the running time. Each test was repeated

100 times and taken average. The pseudo code of our test code is listed as Algorithm 1. The

source code can be found in the Appendices. Figure 2.8 shows that the run time of the RQ

Encoder Library is linear according to the file size.

Algorithm 1 Encoding Time Test

1: for fileNumber = 1..6 do
2: time = 0
3: for i = 0..99 do
4: Encode file with the number of fileNumber
5: time← time + encoding time
6: end for
7: runT ime(fileNumber) = time/100
8: end for

We also made a comparison between the run time of Ruby and that of the C library. In

17

Figure 2.8, the blue dashed line presents the run time in C while the red dashed line presents

the run time in Ruby. They both appear to be linear according to the file size. Moreover,

we found a small gap between the run time in Ruby and the library. In order to determine

the cause of this gap, we created a variation of interface function StringSimpleSend(). The

variation takes in the name of the source file instead of the source data string. In the

comparison of encoding time between Ruby and that of the variation interface function, the

gap disappeared. This indicates that the gap between the run time in Ruby and C is caused

by passing the data string from Ruby to C.

0 5 10 15 20 25
0

2000

4000

6000

8000

10000

12000

14000

File Size (MB)

T
im

e(
m

s)

Encoding Time vs File Size, Symbol Size 1K

Run Time in C
Run Time in Ruby

Figure 2.8. Run Time of RQ Encoder on Raspberry Pi.

Another test of the encoding time was made for different symbol size settings. Dif-

ferent symbol sizes also lead to different number of symbols for the same file. For example,

a 6 MB file is partitioned into 6,000 symbols when symbol size is set to 1 KB, but is only

partitioned into 100 symbols at symbol size of 60 KB. In our test, we chose 5 files at the

18

size of 2 MB, 6 MB, 12 MB, 18 MB and 24 MB. For each file, run time was obtained at the

symbol size of 1 KB, 4 KB, 16 KB and 60 KB, respectively. Figure 2.9 shows the run time of

RQ Encoder at different symbol size settings. The blue dashed line presents the run time of

each file when symbol size is 1 KB. The red dashed line presents the run time of symbol size

4 KB, the green dashed line stands for symbol size of 16 KB and black is 60 KB. We found

that there is no significant difference of run time when symbol size varies. In other words,

the encoding time of RQ Encoder is dominated by the source data size, and both Figure 2.8

and Figure 2.9 show the linearity of the RQ library’s encoding time.

0 5 10 15 20 25
0

2000

4000

6000

8000

10000

12000

14000

File Size (MB)

Ti
m

e(
m

s)

Encoding Time vs File Size and Symbol Size

Symbol Size 1K
Symbol Size 4K
Symbol Size 16K
Symbol Size 60K

Figure 2.9. Run Time of RQ Encoder at Different Symbol Sizes on Raspberry Pi.

Decoding time of the RQ library was also tested. With the repair symbols generated

19

in the encoding test, we examined the run time of the RQ decoder. Figure 2.10 shows the

run time of RQ Decoder at different symbol size settings. The blue dashed line presents the

decoding time of each file when symbol size is 1 KB. The red dashed line shows the decoding

time of symbol size 4 KB, the green dashed line stands for symbol size of 16 KB and black

is 60 KB. We can see that the run time of the RQ decoder is also linear regarding to the file

size.

0 5 10 15 20 25
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

File Size (MB)

T
im

e(
m

s)

Decoding Time vs File Size and Symbol Size

Symbol Size 1K
Symbol Size 4K
Symbol Size 16K
Symbol Size 60K

Figure 2.10. Run Time of RQ Decoder on Raspberry Pi.

2.5 Decoding Overhead-Failure Probability Test

According to the specification of the RQ code provided in [3], the RQ code overhead-

failure curve mimics that of a random fountain code over GF(256) [2] but is steeper than

that of all the other fountain codes. e.g. When the number of source symbols K is set to 200

over a channel with up to 10% packet loss, R10 codes need an extra 24.5% repair symbols

to ensure a 10−6 failure probability, but RaptorQ only need 12.5% [2].

20

Theoretically, when the number of symbols received is only slightly larger than the

number of source symbols, the source file can be recovered. In [2], the failure probability of

RaptorQ code was simulated with disparate overhead and turned out to be better than that of

the random fountain over GF(256). More specifically, RaptorQ code with zero overhead (the

number of received symbols equals the number of source symbols) has a failure probability

no more than 1%, and with one overhead the failure probability is anticipated to be less

than 0.003%. Since these results were given by simulations, we decide to test the failure

probability with the RQ library in practice.

For the setup of this test, we choose a file at the size of 6.0 MB and set the symbol

size to be 60 KB. Thus we have 100 source symbols for this file. Next, we generate 900

repair symbols using the RaptorQ Encoder library so that we have 1000 symbols in total.

As shown in Figure 2.11, the ESIs (Encoded Symbol Identifier) are arranged from 0 to 999,

where the first 100 symbols with ESIs from 0 to 99 are source symbols, and the rest are

repair symbols.

Figure 2.11. Encoded Symbols for Decoding Overhead-Failure Probability Test.

We designed three packet selection strategies to produce different collections of sym-

bols for decoding. First selection mode is Continuously-Select. For example, we choose 100

symbols with ESIs from 0 to 99, or from 1 to 100. In this scenario, we can have 900 different

combinations with the 1000 symbols. The second mode is Modulo-Select, where we select

symbols with ESIs that modulo a certain number. For example, if we are doing a Modulo

5 selection, symbols with ESIs of 0, 5, 15, 20, ..., etc, will be selected. The last mode is

Random-Select that randomly select symbols from the 1000 symbols. Table 2.3 shows our

test results with above three selection modes. Of all the symbol selection modes, the prob-

ability of success decoding turns out to be greater than 99.99% when decoding with one

21

overhead symbol.

Table 2.3. Decoding Overhead-Failure Probability Test

Selection Mode Overhead Tries Failures Failure Probability

Continuously Select 0 900 4 0.44%

Continuously Select 1 900 0 0

Modulo 5 0 500 3 0.6%

Modulo 4 0 600 5 0.83%

Modulo 3 0 700 7 1%

Modulo 2 0 800 3 0.375%

Random Select 0 1000 2 0.2%

Random Select 1 100000 1 0.001%

22

CHAPTER 3

RAPTORQP2P

This chapter reviews the RaptorQP2P protocol. The RaptorQP2P protocol was

designed by Z. Su, F. Wang and J. Daigle [1] in 2014. Different from BitTorrent, which was

the most popular peer-to-peer protocol, RaptorQP2P utilizes a two level RaptorQ encoding

and an intelligent symbol scheduling algorithm to overcome some shortages of the BitTorrent

protocol. To illustrate the protocol clearly, we first briefly introduce terminology and then

give a detailed review on the RaptorQP2P protocol.

3.1 RaptorQP2P Terminology

The downloading of RaptorQP2P is initiated from a torrent file. The torrent file

provides information of the object file and the IP address of the tracker.

The tracker is a server that provides the information of all the peers currently down-

loading/uploading the file. Each peer contacts the tracker before joining the network. The

tracker returns a list of current peers and puts that peer into the peer list.

Peers are the users who participate in distributing a file. The peers may be divided

into two types. One is the leecher, which does not have the whole file yet. The other is

seeder, which has finished downloading but stays in the network to further help the file

distribution. Only leachers will download the file content from other peers but both leachers

and seeders can upload the file content to other peers. Each peer will maintain several peers

as its neighbors. A neighbor is a peer that has exchanged a piecemap with current peer.

Piecemap is a data structure that keeps the information of the pieces that the peer

has already downloaded. It indicates the downloading progress of this peer. In RaptorQP2P,

23

piece sizes can be selected. For the comparison to BitTorrent, we divide the original file into

pieces in the length of 1600 KB. Each piece is further divided into 100 source symbols. A

symbol is the smallest unit of transmission in RaptorQP2P.

A swarm is the set of all the peers that participate in the file distribution.

If peer A does not have a certain piece but peer B has, then we say peer A is interested

in peer B.

If peer A decides not to send data to peer B, peer A chokes peer B. If peer A decides

to send data to peer B, peer A unchokes peer B.

After a peer receives the peer list from tracker, it tries to establish connections with the

peers in the peer list. When a connection is established, the two peers exchange piecemaps

with each other. A peer considers the collection of peers with whom it has exchanged

piecemaps its potential neighbors. Among these potential neighbors, a peer uploads symbols

to at most five of them. These five peers are neighbors of this peer.

3.2 RaptorQP2P Protocol Review

The RaptorQP2P protocol features two levels of RaptorQ encoding. Figure 3.1 shows

a demonstration of the two level RaptorQ encoding. At the top layer, the entire file is

RaptorQ encoded to yield a collection of source blocks and repair blocks, and then each source

and repair block is RaptorQ encoded independently to yield a collection of source symbols

and repair symbols for the block. The symbols are independently transferred among the peers

and when a sufficient number of distinct symbols for a particular block have been received,

whether source or repair, the block can be reconstructed. The file can be reconstructed using

a sufficient arbitrary number of distinct blocks.

The mechanism of RaptorQP2P is as follows: a leecher processes the .torrent file to

get necessary information, including the IP address of the tracker. Then the leecher will

contact the tracker to obtain a list of peers currently in the swarm. Next, the leecher selects

a number of peers from the list and tries to connect to them. When peers are connected

24

Figure 3.1. Two Level RaptorQ Encoding.

to each other, they will exchange their piecemaps to determine whether or not they have

interest so that peer can request missing pieces from others.

By utilizing RaptorQ codes, the RaptorQP2P protocol allows multiple peers to send

the same piece to a peer simultaneously, which can be automatically optimized by the Rap-

torQ coding as discussed in Chapter 1. Moreover, to maximize the utilization of peers’

upload capacities, RaptorQP2P also allows opportunistic transmissions, where a peer can

send the received encoded symbols of a piece to other peers even if the peer does not have

the full piece yet. These two properties helps the RaptorQ to surpass BitTorrent under most

dynamic situations.

In order to ensure that different neighbors generate and send different encoded sym-

bols so as to avoid duplications, RaptorQP2P introduced an intelligent symbol scheduling

algorithm. In this algorithm, when a peer connects to a new neighbor, it will assign an empty

neighbor slot to the neighbor and inform the neighbor its neighbor slot number during the

initial piecemap exchange. If the neighbor has a full piece that the peer does not have, the

neighbor will only send those symbols encoded from that piece whose symbol numbers must

be equal to the neighbor’s slot number after taking mod on the number of the peer’s neighbor

slots. By doing this can guarantee that the encoded symbols received from one neighbor are

different from those received from another neighbor. In addition, to deal with peer churns,

25

when requesting a piece from a neighbor, a peer includes the maximum symbol number that

it has received so far for the piece, so that if a neighbor leaves after sending some encoded

symbols, the new neighbor can continue sending later symbols starting from the maximum

symbol number indicated during the piece request.

26

CHAPTER 4

IMPLEMENTATION OF RAPTORQP2P

This chapter discusses the implementation of RaptorQP2P in detail. The program

is developed in Ruby. Section 4.1 discusses the essential features required in the implemen-

tation. Section 4.2 introduces our architectural design for the implementation. Section 4.3

introduces some internal protocols. Section 4.4 discusses our implementation in detail.

4.1 Implementation Requirement

As an implementation of the RaptorQP2P, our program is able to distribute a file to

a number of peers over the internet. Below are the basic features required in our implemen-

tation.

• A peer processes a torrent file to get necessary information. Since the downloading is

initiated from a torrent file, a peer should be able to achieve all the information needed

to start downloading from the torrent file. The torrent file contains the IP address of

the tracker, the number of blocks, number of symbols in a block and symbol size.

• A tracker keeps the IP addresses of all the peers in the swarm. When a peer joins the

swarm, the tracker acknowledges the IP address of this peer, puts the IP address in the

peer list, and monitors the activeness of this peer. A peer needs to send the tracker a

signal every few seconds to keep ”alive”. If a tracker does not receive the ”alive” signal

from a peer for a certain time, this peer will be eliminated from the peer list.

• The source file is applied a 2-level RaptorQ encoding. The first-level encoding par-

titions the source file into blocks and generate some repair blocks. The second-level

27

encoding is applied to each block independently producing source symbols and repair

symbols. Symbols are the smallest unit of transmission in RaptorQP2P.

• Download is initiated by a single peer. Though there might be multiple seeders in

practical downloading, RaptorQP2P has the ability to initiate and accomplish a file

distribution from a single seeder.

• Peers can join and leave the swarm dynamically. The status of the whole swarm is

monitored by the tracker.

• Peers in swarm download data from each other. This is a basic feature of any peer-to-

peer protocol. A peer is able to download data from and upload data to other peers

in a swarm. Moreover, a peer is also able to refuse to upload data to a certain peer in

the swarm, known as choking that peer.

• Download at any given peer is completed when a sufficient number of distinct blocks

have been received. Because of the fountain property of RaptorQ, a peer is able to

recover a block when it collected enough distinct symbols for that block. Next, when

the peer possesses enough blocks, it can recover the whole source file and complete the

download. This peer will then be able to generate any symbol of any block. If this

peer keeps staying in the swarm, it will become a seeder.

• Multiple peers can send symbols from the same piece to a peer simultaneously. This

property is supported by utilizing RaptorQ codes.

• A peer can send the received symbols of a piece to other peers even before the peer

has the full piece.

• Duplicate reception of pieces is avoided by using the symbol scheduling algorithm of

RaptorQP2P. In the RaptorQP2P, a peer assigns distinct slot numbers to its neighbors,

and the neighbors send certain symbols according to that slot number.

28

We use Ruby for the implementation because it has good interface for socket pro-

gramming and we have already used it successfully for experiment with RaptorQ libraries.

4.2 Systematic Design

Based on the analysis in Section 4.1, we are able to delineate the logic model of

our program. We will discuss the systematic design for the implementation in this section,

including the program workflow, program organization and multi-threading.

4.2.1 Program Workflow

The workflow of our program can be easily summarized from Section 4.1. The

flowchart can be as simple as Figure 4.1. In this flowchart, the program reads a torrent

file to get the IP address of the tracker and some necessary information of the object file,

e.g. file name, file size, number of pieces, etc. Then the peer connects to the tracker to get

the IP address and port numbers of other peers and then starts downloading or uploading.

Start

Read .torrent file

Connect to tracker

Connect to peers

Download/Upload

End

Figure 4.1. Simplified Flowchart of RaptorQP2P.

Figure 4.1 is simple and seems easy to be implemented. However, when we get to

the detailed design, things become complicated. We want the program to be able to accept

connection requests from other peers even when itself is trying to connect to a peer; we

29

want the program to upload pieces when itself is downloading; we want a peer to choke the

neighbor with lowest upload rate and maximize its own download rate. In additional, we

want the program be able to do all the above tasks simultaneously. Considering all the above

factors, we introduce a multi-threading into our implementation.

4.2.2 Multi-threading

As discussed in Section 4.1 and Section 4.2.1, our implementation is expected to be

able to perform (at least) the following 7 tasks: communicate with the tracker, connect to

other peers, accept connection requests from other peers, download pieces, upload pieces,

encode and decode pieces, and management related tasks. We re-organize these tasks as

follows:

• Thread 1 runs as a server. This thread accepts connection requests from other peers

and returns objects of the sockets.

• Thread 2 connects to other peers. The input of this thread is a list of peers (IP

addresses) to connect to, and output is objects of the sockets to the peers.

• Thread 3 sends data in the outgoing buffer.

• Thread 4 receives data from the sockets with high priority and writes them into the

incoming buffer.

• Thread 5 performs all the management related tasks.

Thus we have 5 threads for different tasks, as shown in Figure 4.2. Thread 1 runs

as a server to accept the connection requests from other peers. Thread 2 works as a client

to connect to other peers. Both threads 1 and 2 return an object that contains the socket

identification of the corresponding peer. Thread 3 is used for sending data (pieces) and

thread 4 is to receive data from neighbors. Thread 5 manages the piece map status, updates

the peer list, prepare the pieces, and decides whether to choke a peer or not.

30

Figure 4.2. Multi-threading The Implementation.

4.2.3 Program Organization

Now we have the basic workflow and thread arrangement for the implementation.

Considering the task similarity and co-operation between the threads, we organize the pro-

gram as 4 modules. Each module accomplishes a task required by the features of protocol.

We also introduced a standalone program, the tracker, to maintain the information of the

swarm. Figure 4.3 presents the RaptorQP2P system structure. In the first level, there are

four modules: torrent file processing, communication with tracker, membership management

and file transmission. The file transmission module can be further divided into four parts as

piecemap management, neighbor management, strategy management and data transmission.

Specifically, the strategy management consists of piece selection and choke/unchoke strategy.

We discuss the details (function, input and output) of these modules as follows:

Torrent File Processing This module initiates the downloading/uploading. It is the first

module to be called in the program. The input of this module is the torrent file. It

reads this torrent file to get essential information for downloading. The output of this

module is the information from the torrent file, such as the IP address of the tracker,

file name, file size, number of pieces, etc.

Communication With Tracker This module is called after module Torrent File Process-

31

RaptorQP2P

Torrent file
processing

Communication
with tracker File transmissionMembership

management

Piecemap
management

Strategy
management

Piece slection Choke/Unchoke
strategy

Neighbor
management Data Transmission

Figure 4.3. System Module Structure of RaptorQP2P.

ing. The first task of this module is to connect to the tracker and fetch a peer list of the

swarm, then this module keeps sending a live signal to the tracker every 10 seconds.

The input of this module is the IP address of the tracker and the output is an array

of the peers (in the swarm).

Potential Neighbor Management Module This module simply tries to make connec-

tion with all the peers in the peer list (from module Communication with tracker). It

sends a connection request to every peer and wait for connection acknowledgement.

The input of this module is an array of IP addresses (of the peers in the swarm), and

the output is TCP sockets of the peers.

File Transmission Module This core module fulfills the data transmission (download and

upload) in RaptorQP2P. It keeps track of the piecemap status of the file being down-

loaded, decides which peer becomes a neighbor, performs piece selection and choke/un-

choke decision and finally send/receive data from other peers.

The File Transmission Module is the very core and most complicate one in the system.

We divide it into following 4 sub-modules:

32

Piecemap Management This sub-module manages the piecemap of object file. At the

very beginning, it examines the buffer memory of downloaded pieces. During the

runtime of the program, this module keeps track of every downloaded piece and updates

the piecemap. The piecemap is a data structure indicating which pieces are already

downloaded.

Neighbor Management Any peer in the swarm that has established a socket connection

with local peer is considered as a potential neighbor. A peer often keeps a large

set of potential neighbors, but only simultaneously upload/download to/from a small

subset of them, which are called active neighbors [10]. Neighbor management not only

determines which peers (from the peer list) are to become potential neighbors, but also

chooses active neighbors from the potential neighbors. This sub-module operates on

an array of peers, and the membership management module makes socket connections

accordingly.

Strategy Management There are basically two strategies in the RaptorQP2P. One is the

tit-for-tat strategy, which chokes an active neighbor with lowest transimission rate.

The other strategy is the intelligent symbol scheduling, which allocate slot number to

active neighbors and request symbols accordingly.

Data Transmission This sub-module takes care of the data transmission part. For down-

load, it periodically check and read from the sockets; for upload, it writes the data

from the buffer to destination sockets.

4.2.4 Internal Communication

This subsection discusses the internal communication of RaptorQP2P. The input and

output of each module is shown in Figure 4.4. The red lines indicates the data direction

with arrows, and the comments beside red lines summarize the data content. We can see

the initiate input is a torrent file to the torrent file processing module. The torrent file

33

processing module outputs the tracker IP address to communication with tracker, and other

information to piecemap management module. The output of the piecemap management

is piecemap, and the output of Tracker Communication module is peer list. Both of these

two outputs go to the membership management module. The membership management

module then returns member list, piecemap, IP address and port number to the neighbor

management module. Neighbor management module outputs the piecemap to piece selection

module. After piece selection module makes decision, it tells the data transmission module

to request and receive symbols from other peers. The choke/unchoke module monitors the

transmission rate, decides which peers to choke or unchoke, and sends the decision to the

neighbor management module.

RaptorQP2P

Torrent file
processing

Communication
with tracker

File
transmission

Membership
management

Piecemap
management

Strategy
management

Piece slection Choke/Unchoke
strategy

Torrent file
name Tracker IP Peers list

Neighbor
management

Data
Transmission

Member list
Piecemaps

IP, port

File name
File size
Number of Src
Symbols
Etc.

Piecemap

Transmission
rate

Choke/
Unchoke

Piecemap

Piece
selection

Neighbors’ IP,
port number

(from Neighbor
Mgt)

Figure 4.4. Internal Communication.

4.3 Internal Protocols Design

In the previous section, we divided the program into 4 modules and discussed the

input and output of each module. Now we consider the data structure and communication

protocol between peers. This section discusses the internal communication protocols and

data structures that are vital to the implementation.

• Packet Format:

34

The basic communication unit between peers is a packet. All the packets transferred

between peers must be of the same format. Herein we define a packet format that

consists of three parts: data type part, length part, and payload. As shown in Figure

4.5, the data type part is 3 Bytes and the data length part is 8 Bytes, the rest are

for the payload. The data type part specifies the type of this packet. For example,

DAT means this packet contains a data symbol, REQ means this packet is a request

message. Data length part points out the length of the payload in this packet.

Figure 4.5. Packet Format.

• Piecemap Format:

In the traditional BitTorrent protocol, piecemap uses 1 bit for each piece to indicate

whether this piece is possessed or not. But in RaptorQP2P, it is far from enough just

know the piece level. In the intelligent symbol scheduling algorithm of RaptorQP2P, a

peer downloads symbols with respect to their symbol IDs (also know as ESI, Encoded

Symbol ID). This drives us to design an appropriate data structure for the piecemap

which could efficiently record which and how many symbols are currently received.

Figure 4.6 is the piecemap data structure designed by us. In this structure, every

contiguous 6 Bytes indicates the status of a single piece. Of these 6 Bytes, the first

byte has values among 0, 1 and 2. 0 means no symbols of this piece has been received

yet, and 1 means the whole piece has been received. The first byte equals 2 means

part of this piece was received. The following 5 bytes indicate how many symbols with

that particular ESI was received. For example, 2, 30, 55, 0, 0, 0 means for this particular

piece, 30 symbols with ESI modulo 5 and 55 symbols with ESI modulo 5 remaining 1

has been received.

35

Figure 4.6. Piecemap Format.

• Request Packet Format:

RaptorQP2P operates on the symbol-level requesting, so we need to design the request

packet format. Figure 4.7 gives an example of a request packet. The first 11 bytes are

for the header. In the payload part, the request for a piece is fulfilled by 3 contiguous

bytes. The first byte tells which piece, the second byte tells which slot, and the third

byte tells which symbol to begin.

Figure 4.7. Piece Request Format.

4.4 Implementation of Modules

4.4.1 Torrent File Processing Module

The Torrent File Processing is realized by function read torrent file(). This function

takes in the torrent file name and returns 5 variables: tracker IP, file name, file size, symbols

size and number of source symbols.

36

4.4.2 Server Module

The server module acts as a server accepting connection requests from other peers.

It utilizes the function listen to peers() to fulfill this task. The usage of the server module

is listed below. Function listen to peers() is called in the new started thread listen. There

is a loop in this function listening to port 4481. If the thread receives a connection request,

the request will be accepted immediately and an object of the TCP socket is returned.

1 l i s t e n = Thread . new {
2 s e r v e r = TCPServer . new(4481)
3 l i s t e n t o p e e r s (se rver , members , lock , l o c a l i p)
4 }

Listing 4.1. Ruby peseudo code for server module

4.4.3 Connect Module

The connect module acts as a client requesting connections requests to other peers. It

utilizes the function connect to peers() to fulfill this task. The usage of the connect module

is listed below:

1 connect = Thread . new {
2 conne c t t o p e e r s (pee rL i s t , members , lock , l o c a l i p)
3 }

Listing 4.2. Ruby peseudo code for connect module

4.4.4 Send Module

The send module checks the send buffer of each peer in a loop. The buffer is a queue

structure. If there is data to be sent, this module writes the first 1024 bytes of the buffer into

corresponding socket. These data will then be removed from the buffer to avoid duplication.

The Ruby codes in Listing 4.3 fulfill the function of a send module. We create a new thread

(line 1) to repeatedly check the data length of the send buffer of each peer (lines 3-13). If

the length of the buffer is greater than 0, a packet will be written into the corresponding

socket (line 7). This packet will then be removed from the buffer (line 9).

1 send = Thread . new {
2 loop do

37

3 for i in 0 . . (ne ighbors . pee r s . length −1)
4 i f ne ighbors . pee r s [i] . sendBuf . l ength > 0
5 lock . synchron ize {
6 # Send one packe t each time .
7 ne ighbors . pee r s [i] . s ocke t . wr i t e (ne ighbors . pee r s [i] . sendBuf

[0 . . (1 0+ pLength)])
8 # Remove processed data from bu f f e r
9 ne ighbors . pee r s [i] . sendBuf = ne ighbors . pee r s [i] . sendBuf [(11+

ne ighbors . pee r s [i] . sendBuf [3 . . 1 0] . t o i) . . −1]
10 }
11 else
12 puts ”No data to send to socke t #{ne ighbors . pee r s [i] . ip }”
13 end
14 end
15 end
16 }

Listing 4.3. Ruby peseudo code for send module

4.4.5 Receive Module

The receive module checks the socket of each peer in a loop. If there were data

coming, this module reads 1024 bytes from the socket and hands the data to the message

process module. The Ruby codes in Listing 4.4 fulfill the function of a receive module. As

Listing 4.4 shows, the loop (lines 2-12) in the receiving thread repeatedly checks the status

of each socket. If there were data in the socket (line 4), the module reads 1024 bytes and

write them into the corresponding buffer (line 6).

1 r e c e i v e = Thread . new {
2 loop do
3 for i in 0 . . (ne ighbors . pee r s . length −1)
4 i f ne ighbors . pee r s [i] . s ocke t . ready ?
5 lock . synchron ize {
6 ne ighbors . pee r s [i] . rcvBuf << (ne ighbors . pee r s [i] . s ocke t .

r e adpa r t i a l (1024) rescue ni l)
7 }
8 else
9 puts ”No data from socket #{ne ighbors . pee r s [i] . ip }”

10 end
11 end
12 end
13 }

Listing 4.4. Ruby peseudo code for receive module

38

4.4.6 Message Process Module

The message process module checks the receiving buffer of each peer periodically.

Whenever there is something in the buffer, these data are processed as Figure 4.8 shows.

There is a public buffer shared by both the message process module and the receive module.

The structure of this buffer is a queue. Each time the receive module writes the received

packet into this buffer, the received packet is always added to the tail of the queue. In

contrast to that, the message process module always takes packets from the head of the

queue. The message process module is able to find the length of each packet from the first

11 bytes of this packet. So when the buffer length is less than the packet length, the message

process module will skip current cycle.

1 msgproc = Thread . new {
2 loop do
3 i f peerObj . rcvBuf . l ength > 0
4 i f packe t p roc e s s (peerObj . rcvBuf , f i leName , peerObj , l o ck) == 0
5 lock . synchron ize {
6 # Remove processed data from buf
7 peerObj . rcvBuf = peerObj . rcvBuf [11+peerObj . rcvBuf [3 . . 1 0] . t o i

. . −1]
8 }
9 end

10 else
11 puts ”No data from socket #{peerObj . ip }”
12 end
13 end
14 }

Listing 4.5. Ruby peseudo code for message process module

4.4.7 Piece Request Module

A peer analyzes the piece maps received from its K neighbors and allocates each of

its neighbors a slot number. The slot numbers are assigned 0 to K-1. If the peer requests a

piece that the neighbor has, the neighbor will only send the symbols whose ID number mod

K is equal to the slot number.

39

Figure 4.8. Message process.

40

4.5 Summary

In this chapter, we provided a detailed introduction to our Ruby implementation of

RaptorQP2P, including required features, program workflow, multi-threading, and program

organization. We organized the program as 4 main modules and 4 sub-modules. We also dis-

cussed the internal communication and internal protocols design. We explained the module

design at code level. All the source codes can be found in appendices. In the next chapter,

we will introduce some tests for our implementation.

41

CHAPTER 5

TEST RESULTS OF RAPTORQP2P

We made a series of tests for our implementation of the RaptorQP2P. This chapter

introduces these tests in detail. In Section 5.1, we describe the testbed setup. In Section

5.2, we tested communication modules of our implementation. In Section 5.3, we discussed

scheduled transmission test, which validates our intelligent symbol scheduling design. Fi-

nally, Section 5.4 introduces our multi-peer test, which is the most close to practice test.

5.1 Testbed Setup

Our testbed is Raspberry Pi, a sigle-board computer with ARM1176JZF-S 700 MHz

processor and 512 MB RAM [11]. Figure 5.1 shows the Raspberry Pi 1 model B+ released in

February 2012. We choose the Raspbian operation system, which is a free operating system

based on Debian [12]. During our test, we need to operate on up to 5 Raspberry Pis at one

time. We use VNC (Virtual Network Computing) to remotely control the Raspberry Pis

from another computer [13].

5.2 Communication Test

The first test is made to validate the server module, connect module and message

process module of our program. We set up two peers, peer A and peer B. As Figure 5.2

shows, a tracker and the two peers are connected to the same network. The test takes place

as follows:

In the beginning, there is only a tracker online until Peer A joins. Peer A gets the

Tracker’s IP address from a torrent file, so that it is able to connect to the tracker and get

the peer list. However, the peer list from the tracker is null because there was no other

42

Figure 5.1. Raspberry Pi (Adopted from Wikipedia).

Implementation of
RaptorQP2P

Implementation of
RaptorQP2P

Server Module

Message
Process Module

Connect
Module

Message
Process Module

Peer A Network Peer B

Connect
Module Server Module

Tracker

Figure 5.2. Communication Test.

43

peer in the swarm at that time. But after Peer A’s communication with tracker, the tracker

records the IP address of Peer A and puts it into the peer list. Peer A now stays in the

swarm as a server because its peer list is empty, making Peer A has no peer to connect to.

Then Peer B joins the network. Peer B also gets the Tracker’s IP address from a torrent

file. After the communication between Peer B and the Tracker, Peer B acquires a peer list

containing Peer A’s IP address. Thus the next move of Peer B is to send a connection

request to Peer A, according to the IP address from the Tracker. Peer A will accept Peer

B’s request and a TCP socket communication is established. In our test, Peer B will send a

packet containing its piece map. When Peer A receives the packet, it passes it to the message

process module. The message Process Module will find out that a piece map is within the

packet. It will update Peer B’s piece map and send its own piece map to Peer B in return.

Peer B also updates its information of Peer A with the help of the Message Process Module.

Communication between Peer A and Peer B is now established, and they have each other’s

piece map information.

5.3 Scheduled Transmission Test

The scheduled transmission test was made for functional verification of our imple-

mentation. This test examines the slot assignment algorithm and symbol-level transmission

design. We introduced a time scheduling method to control the time slot that each peer

joins the swarm. In this test, we omitted the torrent file part.

The time scheduling for this test is designed as Figure 5.3 shows. In time slot 0,

there is a Seeder in the swarm. This seeder has all the pieces of the object file. At time

slot 1, Leecher A joins the swarm and requires symbols from Seeder. Since the Seeder is

the first neighbor of Leecher A and has all the symbols, it is assigned slot number 0 by

Leecher A. Thus the Seeder uploads symbols with ESIs that modulo 5 to Leecher A. We

call these symbols 0-symbols for short. In time slot 2, Leecher B joins the swarm. At this

time, Leecher A already has some 0-symbols of piece 0, so that Leecher B can require piece

44

0 from both Leecher A and Seeder. Leecher B finds out that it can acquire any symbols (of

piece 0) from Seeder but only can acquire 0-symbols from Leecher A, so Leecher B assigns

slot number 0 to Leecher A and slot number 1 to Seeder. With slot number 0 from Leecher

B, Leecher A uploads the 0-symbols it currently owns to Leecher B. On the other side, the

Seeder sends the symbols with ESIs that divided by 5 with remainder of 1 to Leecher B.

We call these symbols the 1-symbols (Similarly, we have 2-symbols whose ESIs divided by 5

with the remainder of 2). In this way, Leecher B downloads symbols for piece 0 from both

Seeder and Leecher A simultaneously. The same thing happens if another peer Leecher C

joins the swarm after time slot 2, which was not shown in Figure 5.3. Leecher C will find

that it could download 0-symbols from Leecher A, 1-symbols from Leecher B and 2-symbols

from Seeder, simultaneously.

Time Slot 0

Time Slot 1

Time Slot 2

S1
Seeder

Leecher A

Leecher B

Seeder

Seeder

...

...

...

...
Leecher A

... ...

Figure 5.3. Scheduled Transmission Test.

We use the Time.parse and sleep method in Ruby to achieve time synchronization

and scheduling. Before Leecher A and Leecher B join the swarm, they receive the Seeder’s

time and sleep for a certain period before requiring symbols. Listing 5.1 below gives the

example. In this code, the time of Seeder is read from the socket, and a time to begin

download is read from file StartTime.txt. For Leecher A, we set the variable bufferTime to

be 10, so Leecher A will begin download at startTime+10. For Leecher B, we set bufferTime

to 10.1, which means Leecher B will begin download 100 ms after Leecher A.

1 startTime = F i l e . read (”StartTime . txt ”)
2 bufferTime = 10

45

3 rcv t ex t , sender = socket . recvfrom (300)
4 seederTime = Time . pase (r c v t e x t)
5 puts ” going to s l e e p ”
6 s l e e p (startTime − seederTime + bufferTime)
7 puts ”woke up now”
8 seede r . requireSymbols ()

Listing 5.1. Time Scheduling in Ruby

5.4 Multi-peer Test

The multi-peer test is close to a real world model. In this test, we have 5 Raspberry

Pis performing 5 peers (1 seeder and 4 leechers).

At the beginning of the test, only the seeder has the whole source file. Each leecher

has a torrent file that contains the IP address of the tracker. The Ruby control program

manages the join and leave time for group of peers. The swarm is initiated by a single

leecher, which connects to the seeder, and starts the download. After a waiting period the

second leecher joins and gets the IP address of the seeder and the 1st peer from the tracker.

The 2nd leecher then connects to both the seeder and 1st leecher. This goes on until all the

5 peers joins the network.

At the end of the transmission, all the peers in the swarm have enough pieces to

recover the source file. We monitored the downloading time, which is from a peer joins the

swarm till it collects enough symbols to recover the source file. Figure 5.4 presents the test

results. For a file at the size of 6.0 MB, we compared the average downloading time of each

peer at different situations. As Figure 5.4 shows, the average download finishing time of all

the peers decreases as the number of peers increases.

46

1 2 3 4
16

16.2

16.4

16.6

16.8

17

17.2

17.4

17.6

17.8

18

Number of Peers

T
im

e(
s)

Average Download Time vs Number of Peers

Average Download Time

Figure 5.4. Download Time Test.

47

CHAPTER 6

CONCLUSION AND FUTURE WORK

The Ruby interface development effort has resulted in an effective tool to rapidly

prototype RaptorQ-based protocols. We have used the interface successfully to implement

and test RaptorQP2P on a small network. Tests with a larger number of peers are needed

to identify potential problems with a full-scale deployment.

There are still some drawbacks when using the RaptorQ SDK. We didn’t find a

method to allow certain symbols/pieces to be generated. That is, if a peer receives a request

for the symbols with ESIs between m and m + n, it has to generate all the symbols from

0 to m + n, instead of just produce symbols m to n. This will clearly reduce the transmis-

sion efficiency. For the future work, we definitely need to find a way for certain symbols’

generation. A way to do this is to use the open source code.

We didn’t apply any selection algorithm in the potential neighbor management. Also,

our tracker only keeps the IP address of peers in the swarm. In the future, we plan to allow the

tracker monitor the bandwidth and piecemap of each peer. We believe some improvements

can be made to the potential neighbor selection with these information.

Limited by our program and hardware, we couldn’t make a fair comparison between

our implementation of RaptorQ and BitTorrent. We plan to design an approach to compare

the transmission efficiency and patterns between RaptorQP2P and BitTorrent in the future.

48

BIBLIOGRAPHY

49

BIBLIOGRAPHY

[1] Z. Su, F. Wang, J. Daigle, and H. Wang, “RaptorQP2P: Maximize the performance of
P2P file distribution with RaptorQ coding,” in Proceedings of IEEE ICC 2015, June
2015.

[2] A. Shokrollahi1 and M. Luby, “Raptor codes,” Foundations and Trends in Communi-
cations and Information Theory, vol. 6, pp. 213–322, 2009.

[3] M. Luby, A. Shokrollahi1, M. Watson, T. Stockhammer, and L. Min-
der, “Raptorq forward error correction scheme for object delivery,” In-
ternet Engineering Task Force, August 2010. [Online]. Available: http:
//tools.ietf.org/html/draft-ietf-rmt-bb-fec-raptorq-03

[4] M. Luby, “LT codes,” Proceedings 43rd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 2002.

[5] S. Puducheri, J. Kliewer, and T. Fuja, “The design and performance of distributed LT
codes,” IEEE Transactions On Information Theory, vol. 53, no. 10, October 2007.

[6] C. Bouras, N. Kanakis, V. Kokkinos, and A. Papazois, “Enhancing reliable mobile
multicasting with RaptorQ FEC,” Computers and Communications (ISCC), 2012 IEEE
Symposium on, pp. 000 082–000 087, 2012.

[7] R. Palanki and J. S. Yedidia, “Rateless codes on noisy channels,” Information Theory,
2004. ISIT 2004, 2004.

[8] P. Sandvik and M. Neovius, “The distance-availability weighted piece selection method
for bittorrent: A bittorrent piece selection method for on-demand streaming,” Advances
in P2P Systems, 2009. AP2PS ’09, pp. 198 – 202, 11-16 Oct. 2009.

[9] “Swig-1.3 documentation.” [Online]. Available: http://web.mit.edu/ghudson/trac/src/
swig-1.3.25/Doc/Manual/SWIGDocumentation.html

[10] H. Zhang, Z. Shao, M. Chen, and K. Ramchandran, “Optimal neighbor selection in
bittorrent-like peer-to-peer networks,” SIGMETRICS11, June 711, 2011.

[11] “Raspberry pi,” https://en.wikipedia.org/wiki/Raspberry Pi, [Online; accessed 15-
July-2015].

[12] “About Raspbian,” https://www.raspbian.org/RaspbianAbout, [Online; accessed 15-
July-2015].

50

[13] “VNC (virtual network computing),” https://www.raspberrypi.org/documentation/
remote-access/vnc/, [Online; accessed 15-July-2015].

51

APPENDICES

52

APPENDIX A

SOURCE CODES

A.1 Ruby codes for run time test

1 # Fi l e : testRunTime . rb
2
3 r e qu i r e ” . / Str ingSimpleSend ”
4 nRuns = 100 # nRuns denotes how many runs are taken out
5 f i l eNo = 0
6 while f i l eNo < 6
7 i = 0
8 totalTime C = 0
9 totalTime Ruby = 0

10
11 case f i l eNo
12 when 0
13 t e s t F i l e = ”StringSimpleSend wrap . c” # 143 KB
14 when 1
15 t e s t F i l e = ”IMG 0231 . jpg ” # 2 MB
16 when 2
17 t e s t F i l e = ”24MB. bz2” # 24 MB
18 when 3
19 t e s t F i l e = ”12MB. bz2” # 12 MB
20 when 4
21 t e s t F i l e = ”18MB. bz2” # 18 MB
22 when 5
23 t e s t F i l e = ”IMG 0325 . jpg ” # 6 MB
24 end
25
26 ou tF i l e = F i l e . open (” . / RunTimeTest/RunTimeTest #{ t e s t F i l e } . tx t ” , ”w”)
27 ou tF i l e . puts (”Test Time : #{Time . now}”)
28 ou tF i l e . puts (” F i l e S i z e : #{(F i l e . s i z e (t e s t F i l e) . t o f /2∗∗20) . round (1) } MB

”)
29 ou tF i l e . puts (”Number o f Runs : #{nRuns}”)
30
31 while i < nRuns
32 puts ”=================================”
33 f i l e = F i l e . open (t e s tF i l e , ” rb”)
34 t1 = Time . now . t o f
35 infoFromC = Str ingSimpleSend : : Str ingSimpleSend (1000 , f i l e . s i z e , f i l e .

read , t e s tF i l e , 200)
36 t2 = Time . now . t o f
37 var = infoFromC . s p l i t (” , ”)
38 runTime C = var [7] . t o i ∗0 .001
39 totalTime C += runTime C

53

40 totalTime Ruby += (t2−t1)
41 puts ”Run Time in C i s #{runTime C} ms”
42 puts ”Run Time in Ruby i s #{(t2−t1) ∗1000} ms”
43 puts ”Run Count:#{ i +=1}”
44 f i l e . c l o s e
45 end
46
47 avgTime C = totalTime C/nRuns
48 avgTime Ruby = totalTime Ruby/nRuns
49 ou tF i l e . puts (”Average Run Time in C: #{avgTime C} ms”)
50 ou tF i l e . puts (”Average Run Time in Ruby : #{avgTime Ruby∗1000} ms”)
51 puts ”Average Run Time in C i s #{avgTime C} ms”
52 puts ”Average Run Time in Ruby i s #{avgTime Ruby∗1000} ms”
53 outF i l e . c l o s e
54
55 f i l eNo +=1
56 end

A.2 Main Program

1 #
2 # Unive r s i t y o f Mi s s i s s i pp i , Department o f E l e c t r i c a l Engineer ing
3 # by Yuzhu Bai , ybai1@go . o l emis s . edu
4 #
5 # Model 3 : This model i s a b l e to download and upload s imu l t aneous l y .
6 # 1. Add a thread to connect to peers (in the peer l i s t) .
7 # 2.
8 #
9

10 # Fi l e : t e s t Mode l3 . rb
11
12 r e qu i r e ” . / Fi leRcv / s r c /Fi leDecode . so ”
13 r e qu i r e ” . / P2Put i l s . rb”
14 r e qu i r e ’ f i l e u t i l s ’
15 r e qu i r e ’ thread ’
16 r e qu i r e ’ socke t ’
17 r e qu i r e ’ i o /wait ’
18 puts ”==”
19 puts ”∗ ∗”
20 puts ”∗ F i l e : tes t Mode l3 . rb ∗”
21 puts ”∗ ∗”
22 puts ”∗ Unive r s i ty o f M i s s i s i p p i ∗”
23 puts ”∗ ∗”
24 puts ”==”
25
26 # Preparat ion
27 lock = Mutex . new # Mutex f o r synchron i z ing pu b l i c data .
28 ne ighbors = Membership . new
29 l o c a l i p = g e t l o c a l i p # Gets the l o c a l IP address
30 f i leName = ”IMG 0325 . jpg ”
31 F i l e . new(f i leName+’ . p i e c e s ’ , ’w+’)
32
33 # Connect to seeder

54

34
35 seede r = TCPSocket . new(’ 192 . 168 . 0 . 1 00 ’ ,4481)
36 puts ”Connected to s eede r : #{s e ede r }”
37 sock domain , remote port , remote hostname , remote ip = seede r . peeraddr
38 peerObj = Peer . new(remote ip , s e ede r)
39 ne ighbors . add peer (peerObj)
40
41 # Send p i ece r e que s t
42
43 r eqP i e c e s = Array . new
44 for i in 0 . . 9 9
45 r eqP i e c e s << i
46 r eqP i e c e s << 0
47 r eqP i e c e s << 0
48 end
49 puts r eqP i e c e s . t o s
50 sLength = reqP i e c e s . t o s . b y t e s i z e . t o s . r j u s t (8 , ’ 0 ’)
51 peerObj . socke t . wr i t e (”REQ” + sLength + reqP i e c e s . t o s)
52
53
54 # Sta r t a thread l i s t e n i n g to o ther peers .
55 l i s t e n = Thread . new {
56 puts ” Server thread i s up . L i s t en ing to port 4481 .\n”
57 s e r v e r = TCPServer . new(4481)
58 l i s t e n t o p e e r s (se rver , ne ighbors , lock , l o c a l i p)
59 }
60
61 # Sta r t a new thread f o r r e c e i v i n g .
62 r e c e i c v e = Thread . new {
63 puts ”New thread i s up f o r read ing from c l i e n t .\n”
64 s l e e p (4)
65 loop do
66 puts ’==’
67 puts ’ Rece iv ing thread i s read ing from socket . ’
68 for i in 0 . . (ne ighbors . pee r s . length −1)
69 puts ne ighbors . pee r s [i] . s ocke t . ready ?
70 i f ne ighbors . pee r s [i] . s ocke t . ready ?
71 # tempData = (ne i ghbor s . peers [i] . s o c k e t . r e a d p a r t i a l (10240) rescue

n i l)
72 lock . synchron ize {
73 ne ighbors . pee r s [i] . rcvBuf << (ne ighbors . pee r s [i] . s ocke t .

r e adpa r t i a l (10240) rescue ni l)
74 }
75 puts ” r e c e i v e bu f f e r l ength : #{ne ighbors . pee r s [i] . rcvBuf . l ength }”
76 s l e e p (0 . 0 1)
77 else
78 puts ”No data from socket #{ne ighbors . pee r s [i] . ip }”
79 s l e e p (4)
80 end
81 end
82 end
83 }
84
85 # Sta r t a new thread f o r message proce s s ing .
86 msgproc = Thread . new {
87 puts ”New thread i s up f o r p ro c e s s i ng message .\n”

55

88 s l e e p (6)
89 loop do
90
91 puts ’−− ’
92 puts ’Message p ro c e s s i ng thread i s a c t i v e . ’
93 for i in 0 . . (ne ighbors . pee r s . length −1)
94 i f ne ighbors . pee r s [i] . rcvBuf . l ength > 0
95 lock . synchron ize {
96 i f packe t p roc e s s (ne ighbors . pee r s [i] . rcvBuf , f i leName , ne ighbors

. pee r s [i] , l o ck) == 0
97 # Remove processed data from buf
98 ne ighbors . pee r s [i] . rcvBuf = ne ighbors . pee r s [i] . rcvBuf [11+

ne ighbors . pee r s [i] . rcvBuf [3 . . 1 0] . t o i . . −1]
99 end
100 }
101 else
102 puts ”No data from socket #{ne ighbors . pee r s [0] . ip }”
103 end
104
105 end
106 s l e e p (0 . 1)
107 end
108 }
109
110 # Sta r t a new thread to send data .
111 send = Thread . new {
112 puts ”New thread i s up f o r sending data . ”
113 s l e e p (4)
114 loop do
115 puts ’ ∗∗ ’
116 puts ’Data t ransmi t t ing thread i s a c t i v e . ’
117
118 for i in 0 . . (ne ighbors . pee r s . length −1)
119 i f ne ighbors . pee r s [i] . sendBuf . l ength > 0
120 lock . synchron ize {
121 puts ”#{ne ighbors . pee r s [i] . sendBuf . l ength } bytes data to send . ”
122 #IO . wr i t e (” buf ferInMain ” , ne i ghbor s . peers [i] . sendBuf) # fo r debug
123 puts pLength = ne ighbors . pee r s [i] . sendBuf [3 . . 1 0] . t o i
124 puts ne ighbors . pee r s [i] . sendBuf [0 . . 1 0]
125
126 # Send one packe t each time .
127 ne ighbors . pee r s [i] . s ocke t . wr i t e (ne ighbors . pee r s [i] . sendBuf

[0 . . (1 0+ pLength)])
128 puts ”Data sent to #{ne ighbors . pee r s [i] . ip }”
129 #IO . wr i t e (” buf ferInMain1 ” , ne i ghbor s . peers [i] . sendBuf) # fo r debug
130 # Remove processed data from buf
131 ne ighbors . pee r s [i] . sendBuf = ne ighbors . pee r s [i] . sendBuf [(11+

ne ighbors . pee r s [i] . sendBuf [3 . . 1 0] . t o i) . . −1]
132 #IO . wr i t e (” buf ferInMain2 ” , ne i ghbor s . peers [i] . sendBuf [(11+ pLength) . . −1])

fo r debug
133 #IO . wr i t e (” buf ferInMain3 ” , ne i ghbor s . peers [i] . sendBuf) # fo r debug
134 }
135 else
136 puts ”No data to send to socke t #{ne ighbors . pee r s [i] . ip }”
137 end
138 s l e e p (0 . 0 01)

56

139 end
140 s l e e p (0 . 1)
141 end
142 }
143
144 # We make main thread doing noth ing here .
145 loop do
146 puts ’Main thread i s doing nothing . ’
147 s l e e p (20)
148 end

A.3 Utility Functions for RaptorQP2P

1 #
2 # Unive r s i t y o f Miss i s s ippy , Department o f E l e c t r i c a l Engineer ing
3 # by Yuzhu Bai , ybai1@go . o l emis s . edu
4 #
5 # Sept 10 , 2014
6 #
7 #
8
9 # Fi l e : P2Put i l s s . rb

10
11 class Peer
12 def i n i t i a l i z e (ip , socket)
13 @ip = ip
14 @socket = socket
15 @req = Array . new
16 @rcvBuf = ’ ’
17 @sendBuf = ’ ’
18 end
19 a t t r a c c e s s o r : ip , : piecemap , : s ta te , : socket , : sRate , : rcvBuf , :

am choking , : am interes ted , : peer choking , : p e e r i n t e r e s t e d
20 a t t r a c c e s s o r : req , : sendBuf
21 # @state : handshaked , am choking , am unchoking
22 end
23
24 class Membership
25 def i n i t i a l i z e ()
26 @peers = Array . new
27 @sockets = Array . new
28 end
29
30 def peer s
31 @peers
32 end
33
34 def add peer (peer)
35 @peers . push (peer)
36 end
37
38 def add socket (socke t)
39 @sockets . push (socke t)

57

40 end
41
42 pub l i c : add peer , : add socket
43 end
44
45 def r e a d t o r r e n t f i l e (torrentFi leName)
46 # Input : . t o r r en t f i l e name
47 # Outputs : Tracker IP , f i l e name , symbol s i z e , number o f source symbols
48 t o r r e n tF i l e = F i l e . open (torrentFi leName)
49 trackerIP , f i leName , f i l e S i z e , symbolSize , nSrcSymbols = t o r r e n tF i l e .

r e a d l i n e s
50 t o r r e n tF i l e . c l o s e
51 puts ”−−”
52 puts ”Method : r e a d t o r r e n t f i l e () \n\n”
53 puts ”Tracker IP : #{t racker IP }”
54 puts ” F i l e Name : #{f i leName }”
55 puts ” F i l e S i z e : #{ f i l e S i z e }”
56 puts ”Symbol S i z e : #{symbolSize }”
57 puts ”Number o f Source Symbols : #{nSrcSymbols}”
58 puts ”−−\n\n”
59 return trackerIP , f i leName , f i l e S i z e , symbolSize , nSrcSymbols
60 end
61
62 def get piecemap (fi leName , nSrcSymbols , symbolSize)
63 # Input : f i l e name , number o f source symbols , s ymbo l s i z e
64 # Output : the piecemap o f the f i l e
65 puts ”−−”
66 puts ”Method : get piecemap () \n\n”
67 i f F i l e . e x i s t ?(f i leName+” . p i e c e s ”)
68 puts ”Gett ing piecemap . . . ”
69 ge t symbo l tags (f i leName+” . p i e c e s ” , symbolSize)
70 pieceMap = F i l e . read (f i leName+” . piecemap”)
71 else
72 pieceMap = ni l
73 end
74 puts ”Gets the piecemap o f f i l e #{f i leName } . ”
75 puts ”−−\n\n”
76 return pieceMap
77 end
78
79 def b in to hex (s)
80 # Converts b inary s t r i n g in t o hexadecimal .
81 s . each byte .map{ |b | b . t o s (16) } . j o i n
82 end
83
84 def get symbo l tags (f i leName , symbolSize)
85 # Gets the symbol t a g s in a f i l e .
86 # The s t r u c t u r e o f a symbol i s as f o l l o w s :
87 # (Data) (Data) (Data) . . . (Data) (Tag Byte 1) (Tag Byte 2) (Tag Byte 3) (Tag

Byte 4)
88 i = 1
89 bTag = 0
90 f i l e = F i l e . open (f i leName+” . piecemap” , ”w”)
91 while true
92 bTag = IO . binread (fi leName , 4 , (symbolSize ∗ i −4))
93 i f bTag != ni l

58

94 symbolTag = b in to hex (bTag [0]) . t o i (16) + b in to hex (bTag [1]) . t o i
(16) ∗256 + b in to hex (bTag [2]) . t o i (16) ∗256∗256 + b in to hex (
bTag [3]) . t o i (16) ∗256∗256∗256

95 f i l e . puts (symbolTag)
96 i +=1
97 else
98 break
99 end
100 end
101 f i l e . c l o s e
102 end
103
104 def l i s t e n t o p e e r s (se rver , members , lock , l o c a l i p)
105 loop do
106 Thread . s t a r t (s e r v e r . accept) do | s |
107 sock domain , remote port , remote hostname , remote ip = s . peeraddr
108 puts ”Connection reque s t from peer #{remote ip } i s accepted . ”
109 lock . synchron ize {
110 peer = Peer . new(remote ip , s)
111 members . add peer (peer)
112 }
113 puts ”Current members :\n#{members . memberl ist }”
114 =begin
115 while data = s . recvfrom (40) [0] . chomp do
116 puts ”Data from #{remote ip } :\n #{data}”
117 i f data . i n c lude ?(”bye”)
118 puts ”Communication with #{remote ip } c l o s ed ! ”
119 s . c l o s e
120 end
121 end
122 =end
123 end
124 end
125 end
126
127 def c onne c t t o p e e r s (pee rL i s t , members , lock , l o c a l i p)
128 i = 0
129 while i < pe e rL i s t . l ength do
130 unless members . memberl ist . i n c l ude ? pe e rL i s t [i]
131 puts ”Connecting to #{pe e rL i s t [i]} ”
132 begin
133 newpeer = TCPSocket . new(pe e rL i s t [i] , 4 481)
134 sock domain , remote port , remote hostname , remote ip = newpeer .

peeraddr
135 puts ”Connected to #{remote ip }”
136 # newpeer . wr i t e (”PieceMap:”+pieceMapString)
137 peer = Peer . new(remote ip)
138 lock . synchron ize {
139 peer . socke t = newpeer
140 members . add peer (peer)
141 }
142 puts ”Current members :\n#{members . memberl ist }”
143 rescue
144 puts ”Connecting to #{pe e rL i s t [i]} f a i l e d ! ”
145 end
146 end

59

147 i +=1
148 end
149 end
150
151 def send data (members , l o ck)
152 # Sends the data in each peer ’ s b u f f e r
153 loop do
154 i = 0
155 while members . memberl ist . l ength > 0 and i < members . memberl ist . l ength
156 lock . synchron ize {
157 members . memberl ist [i] . s ocke t . wr i t e (members . memberl ist [i] . b u f f e r)
158 }
159 i +=1
160 end
161 end
162 end
163
164 def peer mgmt data trans (piecemap , members , lock , p e e rL i s t)
165 nMembers = 0
166 loop do
167 puts ”Main i s up . ”
168 s l e e p (3)
169 lock . synchron ize {
170 nMembers = members . memberl ist . l ength
171 }
172 puts ”Current number o f a c t i v e members : #{nMembers}”
173 i f nMembers > 0
174 puts ”#{members . memberl ist [0] . s ocke t . c l a s s }”
175 data = members . memberl ist [0] . s ocke t . recvfrom (40) [0] . chomp
176 puts ”Data from #{members . memberl ist [0] . ip } :\n #{data}”
177 end
178 end
179 =begin
180
181 i f member . memberl ist . l ength > 0
182 data = member . memberl ist [0] . s ocke t . recvfrom (40) [0] . chomp
183 puts ”Data from #{remote ip } :\n #{data}”
184 else
185 puts ”Main : No members connected . ”
186 s l e e p (5)
187 end
188 end
189 =end
190 end
191
192 def g e t l o c a l i p
193 or ig , Socket . do no t r ev e r s e l o okup = Socket . do not r eve r s e l ookup , true

turn o f f r e v e r s e DNS r e s o l u t i o n tempor i l y
194 UDPSocket . open do | s |
195 s . connect ’ 6 4 . 233 . 187 . 99 ’ , 1
196 s . addr . l a s t
197 end
198 ensure
199 Socket . do no t r ev e r s e l o okup = o r i g
200 end
201

60

202 def s e l e c t n e i g hb o r s (members , ne ighbors , l o ck)
203 # Keep 5 peers as ne i ghbor s . Returns a l i s t o f ne i ghbors .
204 ne ighbors = members
205
206 # Change the s t a t e s o f ne i ghbors to ”unchoke ” .
207 i f ne ighbors . memberl ist . l ength > 0
208 lock . synchron ize {
209 0 . upto (ne ighbors . memberl ist . l ength) { | i | ne ighbors . memberl ist [i] .

s t a t e = ”unchoke” }
210 }
211 puts ”Neighbors s e l e c t e d .\n\n”
212 end
213 end
214
215 def update ne ighbors (members , ne ighbors , l o ck)
216 # Keep 5 peers as ne i ghbor s . Returns a l i s t o f ne i ghbors .
217 ne ighbors = members
218 # Change the s t a t e s o f ne i ghbors to ”unchoke ” .
219 # puts ne i ghbor s . member l i s t [0] . i p
220 lock . synchron ize {
221 0 . upto (ne ighbors . memberl ist . l ength − 1) { | i | ne ighbors . memberl ist [i] .

s t a t e = ”unchoke” }
222 }
223 puts ”Neighbors updated .\n\n”
224 end
225
226 def packe t p roc e s s (inSt r ing , f i leName , peerObj , l o ck)
227 i f i nS t r i n g [0 . . 2] [’DAT’]
228 puts ” I t \ ’ s data . I \ ’m going to wr i t e t h i s i n to #{f i leName } . p i e c e s ”
229 i f i nS t r i n g . l ength < i nS t r i n g [3 . . 1 0] . t o i
230 puts ”Waiting f o r whole p i e c e f i n i s h e d . ”
231 return 1
232 e x i t
233 else
234 data = inS t r i n g [11 . . (1 0+ inS t r i n g [3 . . 1 0] . t o i)]
235 puts ”data l ength = #{data . l ength }”
236 F i l e . wr i t e (f i leName+’ . p i e c e s ’ , data , F i l e . s i z e (f i leName+’ . p i e c e s ’) ,

mod : ’ a ’)
237 return 0
238 end
239 e l s i f i nS t r i n g [0 . . 2] [’PMP’]
240 i f i nS t r i n g . l ength < i nS t r i n g [3 . . 1 0] . t o i
241 return 1
242 e x i t
243 else
244 puts ’ I t \ ’ s piecemap . Updating piecemap f o r peer #{peerObj} ’
245 puts data = inS t r i n g [11 . . (1 0+ inS t r i n g [3 . . 1 0] . t o i)]
246 peerObj . piecemap = data . s p l i t (” , ”) .map{ | s | s . t o i }
247 puts peerObj . piecemap . class
248 return 0
249 end
250 else
251 i f i nS t r i n g . l ength < i nS t r i n g [3 . . 1 0] . t o i
252 return 1
253 else
254 puts ’ I t \ ’ s message . I \ ’m going to c a l l msg process ’

61

255 msg process (inSt r ing , peerObj , f i leName , l ock)
256 return 0
257 end
258 end
259 end
260
261 def t e s t msgproce s s (inSt r ing , i)
262 i nS t r i n g << i . t o s
263 end
264
265 def msg process (inSt r ing , peerObj , f i leName , l ock)
266 # puts ’ This i s msg process () : ’
267 # puts i nS t r i n g
268 case i nS t r i n g [0 . . 2]
269 when ’REQ’
270 puts ’ I t \ ’ s r eque s t . ’
271 data = inS t r i n g [1 2 . . (9+ inS t r i n g [3 . . 1 0] . t o i)]
272 peerObj . req = data . s p l i t (” , ”) .map{ | s | s . t o i }
273 puts ”peerObj . req = #{peerObj . req }”
274 prepare data (peerObj , f i leName , l ock)
275 # puts peerObj . sendBuf . l e n g t h
276 when ’CTL ’
277
278 else
279
280 end
281 end
282
283 def prepare data (peerObj , f i leName , l ock)
284 # Prepares p i e c e s r eque s t ed by peerObj , and wr i t e in t o peerObj . sendBuf
285 puts ”Now prepar ing data f o r #{peerObj . ip }”
286 for i in 1 . . peerObj . req . l ength /3
287 peerObj . sendBuf << pack p i e c e (f i leName , peerObj . req [(i −1) ∗3])
288 # puts ”Piece #{peerObj . req [i ∗3]} l oaded .”
289 end
290 puts ”Piece #{peerObj . req [(i −1) ∗3]} loaded . ” # for debug
291 IO . wr i t e (” bu f f e r ” , peerObj . sendBuf) # for debug
292 puts ”Send bu f f e r preparat ion accompl ished . ”
293 end
294
295 def pack p i e c e (f i leName , pieceNum)
296 begin
297 # puts ”temp/” + fi leName + ”.P” + pieceNum . t o s # fo r debug
298 data = IO . binread (”temp/” + fi leName + ” .P” + pieceNum . t o s)
299 sLength = data . l ength . t o s . r j u s t (8 , ’ 0 ’) # Data l en g t h
300 # sLength = data . b y t e s i z e . t o s . r j u s t (8 , ’ 0 ’) # Data l en g t h
301 return ”DAT” + sLength + data
302 rescue
303 puts ”Error read ing from f i l e #{”temp/” + fi leName + ” .P” + pieceNum .

t o s }”
304 e x i t
305 end
306 end
307
308 def d i v i d e p i e c e s (f i leName , symbolSize , outf i leName)

62

309 # The input f i l e (f i leName) shou ld be encoded f i l e s (∗ . s rc or ∗ . rep) t ha t
j u s t genera ted by encoder .

310 # This subrou t ine d i v i d e s encoded f i l e s in t o many f i l e s , each con ta in ing
only one symbol (p i e ce) .

311 i nF i l e = F i l e . open (fi leName , ” rb”)
312 content = i nF i l e . read
313 while content . l ength > 0
314 symbol = content [0 . . (symbolSize−1)]
315 puts symbol . l ength
316 content = content [symbolSize . . −1]
317 puts symbolID = bin to hex (symbol [symbolSize −4]) . t o i (16) + b in to hex

(symbol [symbolSize −3]) . t o i (16) ∗256 + b in to hex (symbol [symbolSize
−2]) . t o i (16) ∗256∗256 + b in to hex (symbol [symbolSize −1]) . t o i (16)
∗256∗256∗256

318 ou tF i l e = F i l e . open (outf i leName+” .P”+symbolID . to s , ”w”)
319 ou tF i l e . wr i t e (symbol)
320 ou tF i l e . c l o s e
321 end
322 i nF i l e . c l o s e
323 end
324
325 def c o n t i n u ou s l y s e l e c t (s ta r t , n)
326 i nF i l e = F i l e . open (”Symbols . a l l ” , ” rb”)
327 ou tF i l e = F i l e . open (” SelectedSymbols ” , ”w”)
328 i = s t a r t
329 while i < s t a r t+n
330 ou tF i l e . wr i t e (IO . binread (”Symbols . a l l ” ,59998 , 59998∗ i))
331 i +=1
332 end
333 i nF i l e . c l o s e
334 ou tF i l e . c l o s e
335 end
336
337 def mod M select (k ,m, n)
338 # Sta r t s a t k t h symbol
339 i nF i l e = F i l e . open (”Symbols . a l l ” , ” rb”)
340 ou tF i l e = F i l e . open (” SelectedSymbols ” , ”w”)
341 i = 0 # Number o f symbols
342 j = k # Symbol ID
343 while j < 1000
344 i f i < n
345 i f (j−k)%m == 0
346 outF i l e . wr i t e (IO . binread (”Symbols . a l l ” ,59998 , 59998∗ j))
347 i +=1
348 end
349 end
350 j +=1
351 end
352 i nF i l e . c l o s e
353 ou tF i l e . c l o s e
354 end

A.4 Tracker

63

1 #
2 # Unive r s i t y o f Miss i s s ippy , Department o f E l e c t r i c a l Engineer ing
3 # by Yuzhu Bai , ybai1@go . o l emis s . edu
4 #
5 # Tracker f o r RaptorQP2P .
6 # Accepts r e qu e s t s from c l i e n t s and re turns peer l i s t .
7 # Sept . 2 2014
8
9 # Fi l e : Tracker . rb

10
11 r e qu i r e ’ socke t ’
12
13 # crea t e a new TCP socke t
14 s e r v e r = TCPServer . new(4481)
15
16 loop do
17 # Wait u n t i l a c l i e n t connects .
18 puts ’Ruby : Tracker wa i t ing f o r c l i e n t . ’
19 connect ion , = s e r v e r . accept
20 puts ’Ruby : C l i en t connected . ’
21
22 # Return peer l i s t to c l i e n t .
23 p e e r l i s t = F i l e . open (” PeerL i s t . txt ” , ” r+”)
24 connect ion . wr i t e (p e e r l i s t . read)
25
26 # Add new c l i e n t i n t o peer l i s t .
27 p r i n t ’Ruby : C l i en t IP ’
28 sock domain , remote port , remote hostname , remote ip = connect ion .

peeraddr
29 # p e e r l i s t . pu ts (remote ip)
30
31 p e e r l i s t . c l o s e
32 connect ion . c l o s e
33
34 end

64

VITA

Yuzhu Bai received his Bachelor of Engineering degree in Communication Engineer-

ing in 2007 at Nanjing University of Science and Technology, Nanjing, China, and Master

of Engineering degree in Signal and Information Processing in 2011 at North China Univer-

sity of Technology, Beijing, China. In August 2011, he joined the Department of Electrical

Engineering at the University of Mississippi as a graduate student emphasizing in Telecom-

munications, where he was also a research assistant from August 2011 to June 2012. Since

January 2012, he has been a research assistant in National Center for Physical Acoustics,

University of Mississippi. His research interest includes wireless communication, signal pro-

cessing and network programming.

65

	Implementation Of A Raptorq-Based Protocol For Peer To Peer Network
	Recommended Citation

	tmp.1561730811.pdf.UaOVv

