
University of Mississippi University of Mississippi 

eGrove eGrove 

Electronic Theses and Dissertations Graduate School 

2014 

Analysis And Design Of Low Profile Multiband Multifunctional Analysis And Design Of Low Profile Multiband Multifunctional 

Antenna Arrays Antenna Arrays 

Walker F. Hunsicker 
University of Mississippi 

Follow this and additional works at: https://egrove.olemiss.edu/etd 

 Part of the Electromagnetics and Photonics Commons 

Recommended Citation Recommended Citation 
Hunsicker, Walker F., "Analysis And Design Of Low Profile Multiband Multifunctional Antenna Arrays" 
(2014). Electronic Theses and Dissertations. 982. 
https://egrove.olemiss.edu/etd/982 

This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been 
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more 
information, please contact egrove@olemiss.edu. 

https://egrove.olemiss.edu/
https://egrove.olemiss.edu/etd
https://egrove.olemiss.edu/gradschool
https://egrove.olemiss.edu/etd?utm_source=egrove.olemiss.edu%2Fetd%2F982&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/271?utm_source=egrove.olemiss.edu%2Fetd%2F982&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/etd/982?utm_source=egrove.olemiss.edu%2Fetd%2F982&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu


 
 
 
 
 
 

ANALYSIS AND DESIGN OF LOW PROFILE MULTIBAND MULTIFUNCTIONAL 

ANTENNA ARRAYS 

 

 

 

 

 

A Thesis submitted in partial fulfillment of the 
 requirements for the degree of Doctor of Philosophy 

 in Engineering Science 
The University of Mississippi 

 

 

 

 

 

by 

WALKER F. HUNSICKER 

May 2015 

 



 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright Walker F. Hunsicker 2015 

 ii

ALL RIGHTS RESERVED



 
 
 
 

ABSTRACT 

Light-weight phased array antennas for aerospace and mobile applications require 

utilizing the same antenna aperture to provide multiple functions with dissimilar radiation pattern 

specifications (e.g., multiband operation for communications and tracking). Multi-functional 

antennas provide advantages over aggregate antenna clusters by reducing space requirements, 

and can aid in the optimal placement of all required apertures to provide adequate isolation 

between channels. Furthermore, the combination of antenna apertures into a common geometry 

mitigates co-site installation issues by addressing interference within the integrated radiator 

design itself as opposed to the extensive analysis which is required to configure multiple 

radiators in close proximity. The combination of multiple radiators into a single aperture can 

only be achieved with the proper selection of antenna topology and accompanying feed network 

design. This research proposes a new technique for the design of multiband arrays in which a 

common aperture is used. Highlighted by this method is the integration of a tri-band array 

comprised of an X-band (12 GHz) microstrip patch array on a superstrate above printed dual-

band (1 and 2 GHz) slot loop antenna arrays in an octave-spaced lattice. The selection of a 

ground backing reflector is considered for improved gain and system packaging, but restricts the 

utility of the design principally due to the λ/4 depth of the ground plane. Therefore, a novel 

multiband high impedance surfaces (HIS) is proposed to load the slot apertures for reduced 

height. The novel techniques proposed here will enable the design of a low profile and conformal 

single aperture supporting multi-band and multi-functional operations. 
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LIST OF ABBREVIATIONS AND SYMBOLS 

a  Period of the unit cell 

Al  Periodic table symbol for the element aluminum 

AMC   Artificial magnetic conductor  

AUT  Antenna under test 

C  Capacitance 

Co-Pol  Copolarized Field 

E  Electric field 

EBG   Electronic band-gap 

F/B  Front to back Ratio 

g  Gap between patches  

GSM  Global system for mobile communications 

h  Height of antenna stackup   

H  Magnetic field 

HIS  High impedance surface 

IDC                  Interdigitated capacitance  

l  Length of slot 

L  Inductance 

M  Magnetic source 

MS  Microstrip 
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PBC   Periodic boundary condition  

PCB  Printed circuit board 

PCS  Personal communications service 

PEC  Perfect electric conductor 

Radar  Radio detection and ranging  

RF  Radio frequency 

t  Thickness of dielectric board  

TE  Transverse electric 

TM   Transverse magnetic 

UWB   Ultra-wideband  

w  Width of patch 

X-pol  Cross polarized field 

Z  Impedance 

Γ, X, and M Transition points on dispersion diagram   

β  Wavenumber 

ε  Permittivity 

μ  Permeability 

ω  Angular frequency 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  Background and Previous Related Research 

In aerospace and wireless communications, there is a pressing need to minimize the size, 

weight and power requirements of antenna arrays, while simultaneously requiring multiple 

radiation functions using the same physical aperture. For example, the array may require shared 

aperture capability to facilitate full-duplex operation with polarization diversity, and multiple 

isolated frequency bands for communications, telemetry, Radar, etc. One approach for designing 

multi-band array antennas is to use a single wideband radiating aperture and process the received 

signals with an integrated front-end comprised of wideband power dividers and feeds to the 

elements. Thus, ultra-wideband (UWB) antenna elements have been designed and fabricated that 

can potentially provide a shared aperture capability [1-3]. However, these antennas require 

expensive, heavy, and bulky front-ends to channelize the signals into multiple frequency bands 

required for communications and radar signal processing, where narrow bandwidths are typically 

allocated for each function. The associated complexity of receiver design escalates considerably 

if UWB operation is required in an array configuration.  

The concept of array antennas with widely separated frequency bands (e.g. PCS, GSM 

communications bands, L and S radar bands) which share the same physical aperture, is a 

challenging problem, and has been largely unexplored. A novel design of dual-band, dual-
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linearly polarized microstrip antenna arrays for synthetic aperture Radar applications, with a 

frequency ratio of about 1:3, has been presented in [4], utilizing stacked microstrip dipoles and 

square patches as the radiating elements at S- and X-bands, respectively. Another novel antenna 

element design for dual-band shared-aperture array configuration uses interleaved printed 

dipoles with balanced individual feeds for each band [5]. The folded dipoles are resonant at 

octave-separated frequency bands, and printed on photographic paper using low-cost 

photolithography and ink-jet printing technology.  This work was extended to the design of a 

dual-band printed slot array consisting of isolated square slot loops covering each band. Each 

slot element is fed through coupling to a microstrip line on the other side of the slot substrate, as 

described in [6]. The integration of a X-band patch array and beamformer conforming to the 

specific topology allowed by the lower frequency elements to create a single multi-band, multi-

functional aperture was proposed in [7].  

 

1.2 Major Challenges 

 

1.2.1 Integrated Multiband Arrays with a Common Aperture 

The techniques for the integration of three antenna arrays into a basic unit structures is 

proposed. Contrasting printed and slot antenna technologies, a method will be proposed to enable 

the use of a shared ground structure for the integration of multiple antenna types. Through a 

combination of topology assessment, material parameters, and novel feed design approach, a 

new multiband design technique is contributed. 
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1.2.2 Low Frequency EBG Ground Plane for Slot Antennas  

The introduction of the artificial magnetic surface in [8,9] can reduce the profile of 

reflector backed antennas [10]. However, the design of these surfaces for low frequency 

applications is a complex process due to material properties, bandwidth reduction, and the large 

size of the periodic cells relative to the antenna dimensions. To achieve bulk magnetic 

characteristics the size of the unit cell in proportion to resonant wavelength must be small. 

Further complexities arise in the need to populate full surfaces with all the geometric intricacies 

for full wave analysis. However, the benefit from such implementation is size reduction of the 

aperture for potential conformal applications. The multiband system proposed here will use an 

artificial magnetic conductor (AMC) ground plane developed in this research to operate in two 

different bands with one octave of separation as a contribution to shared aperture antenna 

technologies. 

 

1.3  Summary of Proposed Research 

The goal of this research is to provide the necessary techniques for the integration of 

multi-band multi-functional antenna array systems through the selection of antenna topologies to 

provide a single common aperture. Chapter 2 will focus on the topology of the antenna and how 

partitioning of the aperture can provide multiband capacity. Chapter 3 describes the radiation 

mechanism of the slot loop antenna and how it is functionally used in the design. Chapter 4 will 

develop the low band high impedance surface needed to reduce the antenna thickness and 

demonstrate the capability to operate at two resonances. Chapter 5 will present the high 

frequency array that is superficially installed on the loop antennas and the analysis of measured 

performance.  
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CHAPTER 2 

 

MULTIBAND MULTIFUNCTIONAL ANTENNA DESIGN 

 

2.1 Practical Limitations of Antenna Installation 

For antenna installations where volume and area are limited, special techniques are 

required to achieve both multiband and multifunction operations. One such concept is a shared 

aperture in which a common surface is partitioned to support multiple antenna types and 

modalities. The first condition is the geometry of the aperture must accommodate the lattice 

structure of each array such that none of the node positions of adjacent arrays will intersect with 

antennas of the neighboring band. The second consideration is enforcing geometric symmetry 

throughout the partition comprised by the unit cell of greatest size. Such a condition allows the 

concatenation of sub-array panels to produce the complete antenna. Commonly, antennas are 

located on the exposed exterior surface of a vehicle or device that is metallic, plastic, or of some 

form of composite material. Future discussion will assume some form of metallic ground plane is 

available for practical implementation. Given a metallic surface and functional antenna need, the 

challenge would be the selection or design of the optimal topology of the array elements to 

provide the desired performance. Furthermore, these elements should be arranged such that 

grating lobes and other undesirable effects from sparsely populated elements are avoided. The 

common approach to the given design paradigm is to select an array element capable of 
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supporting all the necessary frequencies of operation using wideband radiators. The complexity 

of the array integration becomes packaging the element with the requirement to conform to λ/2 

spacing at the highest frequency of interest. At this spacing the wavelength corresponds to the 

minimum physical separation so element overlap is of great concern. Finally, with a fully 

populated array the issue of mutual coupling is significant which can lead to poor scanning 

performance.  

 

2.2 Multiband Aperture Design Approach  

The concept of array antennas with widely separated frequency bands (e.g. PCS, GSM 

communications bands, L, S, and X radar bands) which share the same physical aperture, is a 

challenging problem, and has been largely unexplored. The intent of this research is to provide 

design guidance on the implementation of the high frequency array within the space constraints 

imposed by the low frequency sub-arrays, while simultaneously satisfying the periodicity 

required for grating lobe-free operation. In this design paradigm, the high frequency element 

must conform to a specific topology allowed by the lower frequency elements. Therefore, the 

shape, orientation, and dimensions of the low frequency elements will ultimately influence the 

possible design frequency of the high frequency array, due to the requirement of λ/2 free space 

grid spacing on the latter array to avoid grating lobes. 

 

2.3 Geometry of the Unit Cell 

 The overall goal is to design a multifunctional antenna array with dual-band printed slot 

antenna arrays for the two lower most frequencies along with an integrated high frequency array 

with its own planar beamformer on the same physical aperture. The selection of the lower 
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frequencies must be made such that they are approximately one octave of separation. The choice 

of fL = 1GHz and 2 fL = 2GHz will serve as a sample case. From the wavelength λL at the lowest 

frequency corresponding to fL of 1GHz, the unit cell size ux = λL/2 can be determined. By 

comparison the next largest cell corresponds to frequency 2fL which is 2 GHz and has a unit cell 

size of λL/4 and is one half that of the 1 GHz array. Figure 2-1 illustrates the 1 GHz unit cell and 

the unit cell for the 2 GHz cell superimposed with both odd and even symmetry. Notice the odd 

spacing will co-locate the center position of both the 1 GHz and 2 GHz element for this reason a 

green “X” has been placed at the point of coincidence. 

Even Symmetry Odd Symmetry 

2 GHz Unit Cell
1 GHz Unit Cell

Combined Grids

 

Fig. 2-1 The 1 GHz unit cell and the odd (left) and even (right) symmetry of the 2 GHz lattice. 

 

For some antenna geometries the coincident condition of the grid nodes would represent an 

issue; however, for loop antennas with differing outer dimensional sizes the layout is still a valid 

option. It should be noted that future discussions will show why two concentric loops should not 
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be placed within each other to ease the integration of the higher band array. The concatenation of 

multiple arrays is also complicated by the need to extend the terminating panel by an addition 

quarter of a cell to fully populate the 2 GHz array. Figure 2-2 shows the two possible orientations 

for the 2 GHz lattice with elements shown in the unit cell layout. 
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Fig. 2-2 Unit cell with dual band slot layout shown with odd (left) and even (right) symmetry. 
 

 
 
2.4 Design of the Slot Loop Antennas 

The design shown in Fig. 2-2 illustrates two antennas that are approximately one octave 

of separation in frequency. The even symmetry condition best illustrates when the elements are 

contained within the unit cell capable of independent replication. The perimeter of each of the 

loops is roughly the free space wavelength at resonance. In the case of the 1 GHz loop it is 

approximately 300mm and for the 2 GHz loop it is 150mm. By geometric inspection the slot 

loops are then a quarter of a wavelength on each side. Figure 2-3 shows the actual size of the 

loops that when formed would resonate on the ground plane surrounded by free space. When the 

two structures are combined it is apparent that the slot loops intersect rendering the design 

inoperable.   

 7



-0.06 -0.04 -0.02 0 0.02 0.04 0.06

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
λH/4 

 x dimension (m)

 y
 d

im
en

si
on

 (
m

)

λL/4 

 

Fig. 2-3 Overlapping of slot loop antenna arrays with each operating at its own resonance. 

 

      A solution proposed is to use PCB to feed the antenna which has higher permittivity than 

free space to reduce the loop sizes until no overlap is observed. Figure 2-4 is a notional 

illustration of the effective loading with the PCB dielectric and how material permittivity can be 

used to reduce the physical size while keeping the electrical length of the perimeter the same. 

The design proposed incorporates a second dielectric adding a superstrate to the adjoining side of 

the slot that will fully enclose the loop. The use of two identical dielectric boards will not only 

improve the balance of the field distribution in the slot due to symmetry but will also become 

part of the stackup utilized by the multiband design. Figure 2-5 illustrates the material stackup of 

the slot loop antenna that is embedded within the shared ground plane of the two dielectrics. For 

clarity the dielectric boards have been omitted to show the top layout view. Since slot antennas 

support an electric field distribution in the gap opening, an interface is required to provide 

connection to the system. This can be accomplished using a balun to provide a differential feed 

or through induction by proximity coupling to a microstrip line. The coaxial transmission 
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connection terminating at layer 2 uses a microstrip stub and has a center conductor that is 

soldered to it on layer 1. Two feed arrangements are proposed for this stub fed design which 

allow connection from the edge with microstrip line or from below with a coaxial transition to 

the inductive stub.  
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Fig. 2-4 Dielectric loading of resonant slot loop to reduce the physical size. 

 

 

λRES/4

Fig. 2-5 Material stackup and layout for a resonant slot loop antenna over a ground plane. 
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2.5 Partition Assessment for Tri-band Capacity  

Assessing the relative proportion of the slot area to the expanse of ground plane available 

in the even layout of Fig. 2-2 it is clear that there is a capacity to introduce the additional high 

frequency array elements as proposed. The exact area available for each element is to be 

considered prior to element selection and design. The principal consideration is no high 

frequency array element should be overlapping either with the 1 GHz or the 2 GHz slot. The 

useable area is therefore contained by the edges formed by the innermost loop boundary of the 

two elements, respectively shown in Figs. 2-6 and 2-7.      
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Fig. 2-6 Surface partition line formed by the inner loop of the 1 GHz array. 
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Fig. 2-7 Surface partition line formed by the interior edge of the 2 GHz arrays. 

 

The small areas between the partition lines in the plots represent the forbidden regions for which 

the high frequency elements are restricted.  If geometric symmetry is to be preserved within the 2 

GHz lattice then each line must be mirrored to form the complete set of restriction boundaries as 

shown in Fig. 2-8. This set of small square and rectangular regions which are formed between 

these edges govern the design of the higher frequency array.    
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Fig. 2-8 Implied symmetry projected from the 2 GHz lattice. 

 

From the given parameters the tabulation of maximum element extent can be computed and aid 

in the selection of possible elements types. Figure 2-9 illustrates how the relative orientation of a 

patch antenna changes with frequency and lattice position. Only those elements that do not 

overlap are considered valid candidates. Examination of the 12 GHz lattice shows the patches 

maintain adequate clearance to the slot loop antenna using the even layout hence it is chosen to 

populate the high frequency array as shown in Fig. 2-10.  The symmetry of the unit cell sub-

array can then be exploited to create a full array without violation of the periodicity of any of the 

internal bands. A representative 3 x 3 array is shown in Fig. 2-11 to illustrate the concept.  
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Fig. 2-9 Geometric analysis of the high frequency array options showing that the 12 GHz even 

case is a valid configuration. 
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Fig. 2-10 Unit cell layout of tri-band array using the 12 GHz array and even symmetry. 
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Fig. 2-11 Concatenation of 3 x 3 unit cells to form a tri-band array layout  
(1 GHz, 2 GHz, and 12 GHz). 
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2.6 Design Flow 

The design process for integration of the three antenna arrays is summarized in Fig. 2-12. 

The resonances of two lowest frequencies can be approximately multiples but it is critical to 

emphasize that to ensure lattice alignment they are exactly the octave spacing. The initial step is 

to determine the resonant size of the loop constructed using the PCB materials for both of the 

lowest frequencies. The calculation of the overlap can then be determined. If overlap does exist, 

then the loop size is reduced iteratively by increasing the permittivity which influences the 

physical size at resonance. The process is then repeated until both designs can be placed on the 

same ground plane and achieve an acceptable mutual coupling value. Finally, the arrangement of 

the high frequency array can be analyzed to determine the maximum extent of the element size. 

It is at this point the antenna type should be chosen to minimize impact of the low frequency 

array through undesired blockage.  

 

Analyze Design  
Loop fLOW

Array Frequencies (fLOW ,2*fLOW ,fHIGH ) 

Elements 
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Analyze Design  
Loop 2*fLOW

Increase  
Permittivity 

Y 

N
Analyze Dual  
Band Design 

Acceptable 
Compute Maximum 

Dimension of fHIGH Element

High 
Mutual 

Coupling

Fig. 2-12 Tri-band array design process. 

 15



  2.7 Array Feed Structure 

The aperture arrangement techniques developed in previous sections demonstrate the 

initial steps in the design of a tri-band array. The next consideration is the microwave feeds 

which are required to facilitate connection between the system and individual elements.  For the 

antenna to be multifunctional it must have the ability to scan each array independently. This 

requires channelized feeds to each of the elements and distribution from three separate 

beamformers. The slot loop antenna described in Section 2.4 requires an additional system 

ground plane behind the slot loop to provide shielding for the system as well as to increase 

forward gain. The forced separation between the two ground planes not only increases the 

overall thickness of the structure but also increases the design complexity of the feed networks 

since all of the RF distribution must span this void. The coaxial transmission line solution 

introduced in Section 2.4 and shown in Fig. 2-5 was again used for the high frequency array but 

modified to interface a stripline feed network. Figure 2-13 is a notional representation of the 

material stackup required for RF distribution. The stripline feed network can be incorporated 

when board 3 is added to the original loop design. The combination of boards 2 and 3 then form 

the two symmetric dielectric and grounding structures supporting the stripline feed network. The 

additional ground plane requires a second loop profile be removed from Layer 4 to prevent 

shorting of the 1 and 2 GHz antennas. The two stripline ground planes on layers 2 & 4 are 

connected with a via fence that surrounds the trace paths. The use of a via wall with sufficient 

density (~λ/10) should provide isolation between adjacent channels and decrease mutual 

coupling. The system connection consists of a coaxial feed line that shares a common ground 

with layer 4 when soldered. The center pin of this coax is connected to the stripline on layer 3 by 

soldering through an access hole on top of the board to feed a corporate distribution network on 
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the same layer. Each of the patch antennas on layer 1 is then fed by a coaxial pin originating on 

layer 3 at each of the terminating branches of the divider.  

Access 
Hole 

Loop 
Opening 

 

Fig. 2-13 Material stackup for RF signal distribution (not-to-scale). 

 

The feed network for the high band array is complicated further by the total number of elements 

requiring an individual coaxial connection to be made.  To reduce the total number of coax feeds 

required, the high frequency elements will be fed using a stripline 2 x 2 corporate feed network 

integrated into the stackup. Although this will widen the phase center distribution for the sub-

array and lead to grating lobe onset at lower scan angles, the scope of this work will focus on a 

fixed beam without allowance for electronic scanning. Figure 2-14 shows the stripline feed 

network. The attachment of the coaxial transmission line is made at the input port. The 

distribution points are attached to a probe feed pin that is used to excite the patch antenna on 

layer 1 and shown in Fig. 2-15.  The isolation of the feed and the slots is improved by adding a 

via fence between layers 2 and 4. The via fence was created by generating a contour offset by 

2mm from the stripline network then populating the vias along it at 2mm spacing. In Chapter 4, 
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the focus will be on the reduction of the separation distance between the slot plane and system 

ground by incorporation of an artificial magnetic conducting material. 

 

Antenna Probe 
Feeds 

Vias 

Sub-array feed

Stripline Trace

Top View at Board 2 (fully transparent)  

Fig. 2-14 Stripline corporate feed network for the high frequency array.  

 

 

Fig. 2-15 Stripline corporate feed network for the 2 x 2 X-band patch array. 
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CHAPTER 3 

 

INTEGRATION OF CAVITY BACKED SLOT ANTENNAS 

 

3.1 Slot Antennas Integration 

Slot antennas are unique in that they can be integrated into a metallic ground medium to 

form an aperture making them both structurally stable and conformal to a variety of installations. 

The partitioning of the ground plane to support arrays of multiple antenna topologies discussed 

in Chapter 2 further increases their utility. One consequence of the slot antenna extending 

through the ground plane is that it behaves as a bi-directional radiator and produces a main beam 

in both directions normal to the ground surface. The undesired radiation which propagates in the 

backward direction must be attenuated or reflected to prevent electromagnetic interference 

within the system. By inserting a metal ground plane below the slot, the back lobe will be 

reflected and hence increase the forward gain if constructive addition with forward radiation is 

achieved. Chapter 3 will focus on the design of slot loop antenna, placement of the reflector, and 

integration of the two bands into the unit cell.  

 

3.2 Linear Slot Antenna  

A slot antenna is formed when a specific shape of metallization is removed from the 

ground plane to support a resonant mode and radiation. The linear slot antenna located in an 
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infinite PEC ground plane represents the simplest case of this type of radiator. The radiated fields 

from the linear slot antenna shown in Fig. 3.1 are produced by an impressed x- directed electric 

field in the aperture of the form: 

( )xzlkEg ˆsin 0 −=E                                         (3-1) 

 

l

l

l−

 

Fig. 3-1 Electric and magnetic radiators. 

 

Mathematically, the slot in an infinite PEC ground plane is equivalent to a magnetic dipole 

radiating into both half spaces [11]. In fact, the dipole antenna shown in the left of Fig. 3-1 is the 

dual of the magnetic dipole (slot).  The derived field components subject to the boundary 

conditions provides some additional insight into radiation mechanism of the half wavelength slot 

where the radiated electric field is specified as:   

( )
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For the magnetic dipole the directed fields are constant in the xy plane; however, the electric 

fields produced in the two half spaces y < 0 and y > 0 are reversed in relation to each other as a 

result of satisfying the boundary conditions at y = 0 crossing the slot antenna interface. The plots 

shown in Fig. 3-2 indicate the magnetic dipole (slot in a PEC) has E field symmetry due to this 

boundary.  

φE
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Electrically Small Dipole

Eφ

 

Small Magnetic Dipole

 
Eφ

 

Small Slot in PEC Ground Plane

 
Fig. 3-2 Fields for the electric dipole, magnetic dipole, and slot in PEC ground plane. 
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Fig. 3-3 Magnetic source and electric fields at the slot interface. 

 
 
Figure 3-3 illustrates the electrically small magnetic dipole source embedded in the PEC ground 

plane. For each half space the real and image electric fields are shown. The imaged electric field 

produced by a magnetic source is therefore equal to the real field but is opposite in amplitude. It 

is clear from the right side of the figure that the electric field should be continuous across the slot 

such that both electric fields are the same. Therefore for each half space a magnetic source of 

equal magnitude but opposite polarity is required to construct the radiated field of an equivalent 

slot. 
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3.3 Slot Loop Antennas  

The previous formulation is now considered for the slot loop antenna which is formed by 

the distribution of four magnetic sources [12]. Since phase variation must be considered vectors 

are required to describe the source coordinates. 

( ) 8,cosˆ 021 λβ ≤′′−== xxMxMM                               (3-3) 

( ) 8,sinˆ 034 λβ ≤′′=−= yyMyMM                                          (3-4) 
 

The arrangement of the sources is shown in Fig. 3-4, and has been re-oriented to match the 

subsequent simulations and measurements. 

y

x
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'

M3

M2
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Fig. 3-4 Distribution of magnetic sources used to construct the slot loop radiated fields. 

 

Since the analytical form is based upon four equally impressed sources, some variation can be 

expected when the antenna is excited using an inductive stub feed. To determine the effect a 

simulation of the magnetic current distribution was performed in FEKO.  Figure 3-5 shows the 

square slot loop geometry formed into the surface of a finite electric ground plane with a 50Ω 

air-suspended microstrip line used as the source. The equivalent magnetic currents within the slot 

can be seen in Fig. 3-5 superimposed on the 3D rendering.  Figure 3-6 is a plot of the simulated 

electric fields within the gap for each of the loop edges. The two complementary plots show the 

magnetic distribution is sinusoidal as predicted and consistent with the resonance of a one 

wavelength slot loop antenna. 
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Fig. 3-5 Magnetic currents superimposed on the slot loop antenna. 

 

Fig. 3-6 Simulated magnitude of electric field in the slot loop.  

 25



3.4 Slot Loop Antenna Measurements 

A dual band slot antenna was constructed as a test article for measurements. The smallest 

size capable of preserving all the features is based on the half wavelength dimension of the unit 

cell at the lowest operating frequency at 1 GHz. A secondary grid comprised of a sub-array of 

four 2 GHz elements was also created in a symmetric configuration. The slot antennas are 

formed in a common ground plane by etching the copper that lies between two 60mil Rogers 

Corp RO3035 dielectric boards.  The upper dielectric board referred to as the superstrate 

supports the antenna feed lines which are 50Ω microstrip. These transmission lines use the same 

copper ground plane as loop geometries and are terminated along the board edge into end launch 

3.5mm coaxial connectors for each antenna. By locating these five ports along the edge rather 

than from below as illustrated in Fig. 2-11, the interference from the test cable is reduced for the 

bi-directional and experimental cases to follow. The antenna was designed and simulated in 

HFSS to refine the dimensions in Fig. 3-7.    
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Fig. 3-7 Unit cell of dual band antenna optimized in HFSS simulation. 
 
 
The reflection coefficient comparison of the measured versus simulated antenna design is shown 

in Fig. 3-8. The bandwidth of the measured antenna is 39.36 MHz centered at 0.984 GHz. The 

corresponding simulated bandwidth of the antenna is 44.00 MHz centered at 1.008 GHz. The 

performance difference between the measured and simulation data is minor but does show 

manufacturing variation which can detune the design from the intended resonant frequency. The 

slight shift of the two reflection curves is likely due to the etch process creating a larger loop 

than modeled. This increase in dimension would lower the resonance frequency at each band.   

Since the loop geometry is embedded in the ground plane between the two laminated dielectric 

slabs, inspection of the loop dimensions and slot opening could not be verified with any non-
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destructive techniques. An additional observation of the reflection coefficient shows that a 

second resonance centered around 2GHz is well matched producing another radiating mode of 

the slot loop at the next octave, however the presence of this band is unintended. The presence of 

this second resonance is undesired since it will be parasitic of the 2 GHz antenna array and 

receive that interference at the 1GHz port. One solution is to include a filter at the 1GHz 

elements to reject this power. However, the preferred method is an improved design of the loops 

such that coupling is mitigated in the design itself. Such studies will be the subject of future 

efforts where more defined frequencies, bandwidth, and gain performance are specified. 
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Fig. 3-8 Reflection coefficient comparison of horizontal polarized loop.  
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The antenna pattern measurements were performed using a cylindrical near field scanner which 

rotates the AUT on a fixed pedestal as vertical raster scans are collected on the circumference of 

a virtual cylindrical volume. The near field probe measurements collected along this grid are 

then processed into far field patterns using a spatial Fourier transform [13]. The advantage of this 

technique is that the measurements are automated and can be collected over a full rotation of the 

antenna. The limited extent of measurement in the vertical plane requires a second measurement 

to be performed to determine the full pattern of the elevation plane. To improve the consistency 

in the pattern measurements a special polyethylene mounting fixture was fabricated and attached 

to a rigid dielectric pole to maintain a repeatable spatial reference of the slot loop antenna 

throughout the experiment. Furthermore, the special fixture was designed with two attachment 

holes capable of orienting the antenna in a horizontal polarization to perform the ±180° azimuth 

pattern measurements as well as rotation by 90° to perform the ±180° elevation pattern 

measurements. The fixture was aligned such that the ground plane containing the slot loops was 

aligned directly over the center of rotation of the cylindrical pedestal axis. The fixture was 

attached to a plastic post approximately 3 feet in height to allow for an extended vertical scan. 

Horizontal polarization was only necessary and was used consistently throughout the following 

series of measurements.  
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Fig. 3-9 Measurement setup for the 1 GHz linear horizontally polarized antenna in cylindrical 
near field scanner.  

 
 
The slot loop within the ground structure has bi-directional radiation so the gain in both 

directions is comparable based on the simulation and measured data as shown in Figs. 3-10 and 

3-11. 
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Fig. 3-10 Azimuth (E plane) pattern of the horizontal polarized loop alone at 1 GHz.  
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Fig. 3-11 Elevation (H plane) pattern of the horizontal polarized loop alone at 1 GHz.  
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The maximum gain predicted by the simulation was 3.95dBi versus the 4.13dB measured peak of 

the elevation pattern. The measured beamwidth of the azimuth pattern is 83.6° with an elevation 

beamwidth of 86.8°. The measured data processed from cylindrical near field measurement of 

the elevation pattern shows some deviation in the pattern beyond -50° so the predicted 

simulation beamwidth of 100.8° was not achieved likely due to some measurement or processing 

error that led to increased pattern loss in that region. 

 

3.5 Reflector Backed Slot Antenna Measurements 

To reduce the undesired effects of the radiation in the backward direction, a system 

ground plane should be added to shield electronics and increase the forward gain. The spacing 

between the plane containing the slots and the ground plane should be established at λ/4 of the 

resonant frequency. However, this is difficult due to the presence of both the 1GHz and 2GHz 

slot arrays. One option shown in Fig. 3-12 is to locate the reflecting plate at one quarter 

wavelength below the loop at the lowest frequency 1GHz. The resulting separation would be 

equivalent to one half wavelength separation at 2GHz a condition that leads to destructive 

interference, poor performance, and increased overall depth of the antenna system. The second 

option is to set the design overall thickness to one quarter wavelength height at 2 GHz.  The 

following experimental measurements detail the impact of the aluminum ground reflector on the 

performance of the single 1 GHz elements reflection coefficient, radiation patterns, and 

maximum gain.  
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h

 
Fig. 3-12 Measurement setup for the reflector backed antenna at plate height h=λ1GHz/4. 

 
 
The inspection of the reflection coefficient data in Fig. 3-13 shows the loop antenna radiating bi-

directionally with no reflector structure has the strongest resonance and widest bandwidth. The 

reflector plate was then assembled on the test stand with the antenna as shown in Fig. 3-12. The 

measured input reflection was measured for three heights of the reflector: λ/30, λ/8, and λ/4 at 1 

GHz. When the reflector is located at the height of λ/30, the close proximity creates a shorting 

condition that not only detunes the resonance but also limits the radiation bandwidth. The λ/8 

height case which reduces the overall height maintains a radiation bandwidth of 31 MHz 

however the center frequency of that resonance has been shifted up to 1.02 GHz. Finally, the 
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case with the reflector located at a height of λ/4 decreases the bandwidth slightly to 30 MHz but 

maintains the desired resonance at 0.99 GHz. 

The impact of the reflecting ground plane on azimuth radiation patterns is shown in Fig. 

3-14 for the four cases measured at 1.0 GHz.  When the reflector is positioned at the height of 

λ/30 below slot, the close proximity of the electrically conducting plate effectively shorts out the 

slot resulting in very little radiation. Thus the poor impedance match for this condition and 

detuning results in a maximum gain of only -1.37 dBi at 1 GHz. The optimal physical position of 

the reflector in relation to the loop antenna is theoretically at λ/4. The measured gain at this 

spacing shows that a maximum gain of 7.55 dBi is greater than that of the loop alone while the 

resonant frequency is slightly detuned but still matched at 1GHz. The backlobe radiation from 

this case is also reduced by 6.05 dBi when compared with the loop antenna alone. 
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Fig. 3-13 Measured input reflection for the reflector backed antenna versus plate height. 
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In the third case the plate was repositioned to a height of λ/8 to determine its impact on the 

radiation patterns and maximum gain. For reasons expressed in the previous discussion, this 

height was considered as a compromise to provide a reflector at λ/4 for the 2 GHz slot loop array 

with reduced design height. The measurements of the azimuth radiation patterns show that the 

beamwidth of the λ/4 reflector compared to λ/8 is decreased from 70.0° to 66.4° although the 

maximum gains are numerically equivalent. The asymmetry of the azimuth patterns in Fig. 3-14 

is due to the antenna being horizontally polarized and test cable with swept elbow scattering in 

the -90° angular range. It is evident from Figs. 3-14 and 3-15 that the backlobe radiation is 

reduced in all of the cases with a ground plane (plate), but the forward gain can only be increased 

when the reflected wave adds constructively.  The measured data was then verified using an 

HFSS simulation of the dual band antenna with reflector located at λ/8. The resulting simulation 

required mesh containing 1.47M tetrahedra and used 62.1GB of system RAM to converge to a 

Δs=0.007 in 21 adaptive passes. Figure 3-16 is a comparison of the measured and simulated 

reflection at the 1 GHz element input. The azimuth and elevation plots for this case are shown in 

Figs. 3-17 and 3-18. 
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Fig. 3-14 Measured azimuth (E plane) patterns of the horizontal polarized antenna at 1 GHz. 
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Fig. 3-15 Measured elevation (H plane) patterns of the horizontal polarized antenna at 1 GHz. 
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Fig. 3-16 Comparison of the antenna reflection coefficient with λ/8 reflector heights. 
 

The variation in the two reflection curves is likely due to the low number of adaptive (iterative) 

passes (runs) in HFSS. Since the mesh is adaptively refined, a significant focus is dedicated to 

the loop antennas and their inductive feeds. If significant RAM had been available it is 

conceivable that increasing the mesh density would converge to a closer match. Moreover, the 

same resonance shift between the simulation and measurement was observed since the identical 

antenna was used for the reflector backed experiment.  
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Fig. 3-17 Azimuth pattern of the horizontally polarized 1 GHz antenna with ground reflector at λ/8. 
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Fig. 3-18 Elevation pattern of the horizontally polarized 1 GHz antenna with ground reflector at λ/8. 
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The measurement of the 2 GHz array was also performed to determine the effect of the 

aluminum reflector on the pattern gain. Since the 2 GHz array is comprised of 4 elements, all of 

the ports must be tested. One solution is using a four way power divider to determine the 

combined pattern with unity excitation. Upon review of data from this exercise it was concluded 

that the 4 test cables driving each port were poorly matched leading to an irregular main beam 

pattern. The alternative was to measure each of the 2 GHz antenna array elements independently 

and preserve the coherent pattern data for synthesis in post processing. The exercise required 

four measurements on two polarizations for the antenna alone and with the reflecting ground 

plane. Due to the amount of collection required only the azimuth axis was scanned on the 

cylindrical pedestal limiting the available elevation data to ±60°. The azimuth and elevation 

pattern measurements for the loop alone and with the aluminum reflector at λ/4 (2 GHz) height 

are shown in Figs. 3-19 and 3-20 respectively. A gain increase of 2.2dB was realized by 

including the reflector and the backlobe has been reduced by more than 10dB. The presence of 

the large second lobe in the elevation scan is principally due to the test stand beneath the 

antenna. Since the vertical raster of the cylindrical scan is limited, this truncation of the data 

leads to greater inaccuracy as the pattern approaches -60° and +60°. 
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Fig. 3-19 Azimuth pattern of the 2 GHz array with and without ground reflector at λ/4. 
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Fig. 3-20 Elevation pattern of the 2 GHz array with and without ground reflector at λ/4. 
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The pattern gain enhancement as a result of the reflecting plate has been shown to 

improve the antenna performance albeit at the cost of increased overall thickness. The fact that 

the reflecting surface must be placed a fractional distance proportional to two different 

wavelength requires special design consideration. The small shift in resonant frequency of the 

λ/8 case along with minimal decrease in bandwidth and beamwidth are acceptable tradeoffs for 

the 75mm of height reduction in the overall design. The study of the λ/8 case will be continued 

as a comparison case with the low profile design developed in Chapter 4. 
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CHAPTER 4 

 

LOW PROFILE ANTENNA DESIGNS USING HIGH IMPEDANCE SURFACES 

 

4.1 Artificial Ground Planes 
 

Magnetic conductors do not exist in nature but their characteristic behavior can be 

artificially created when electrical conductors and dielectric bodies resonate under special 

conditions. The use of mushroom or thumbtack shaped structures over a substrate material with 

ground backing is a common example [8-10]. These structures use the parallel capacitance and 

inductance within the lattice to produce an LC resonance. The principal advantage of this design 

over corrugated surfaces is that they are much thinner than the λ/4 needed for resonance, thus 

reducing weight and bulk as well as providing high wave impedance in all directions. The 

scattering properties of the surface are also significant. Electric conductors reflect incident waves 

with a polarization inversion so the phase of the reflection is shifted by 180 degrees. When an 

antenna is placed close enough to an electric conductor, the boundary condition at the surface 

forces tangential electric fields to be zero and effectively shorts out the slot antenna. A tuned 

artificial magnetic conductor (AMC) has the same properties as the magnetic conductor so it 

produces in-phase surface reflections. The significance of this property is that the antenna can be 

placed adjacent to the AMC without shorting the electric field and any reflected power combines 

constructively with the incident radiation to increase the gain. For the loop antenna with 

tangential electric field, the overall height of the radiating structure that would be λ/4 over an 
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electric ground plane or corrugated surface can now be placed only several hundredths of a 

wavelength over the AMC surface.   

4.2 Surface Wave Propagation 

The high impedance surface (HIS) is characterized by a bandgap in which both TM and 

TE bound surface waves are suppressed [9]. For inductive materials such as metals the TM 

propagation mode has an infinite cutoff frequency and propagates at the velocity of light. The 

propagation of TE polarized surface waves are limited to only capacitive surfaces and therefore 

are not supported on bare metals. However, the addition of a dielectric layer over the metal will 

support TE propagation modes above a cutoff frequency which depends on both the permittivity 

and thickness of dielectric medium. For the electronic band gap (EBG) structure the infinite 

cutoff of the TM propagation over metal follows the light line until it reaches resonance. The 

light line refers to the group velocity of propagation in the medium and will be later explained in 

the context of the dispersion diagram. Attenuated propagation is indicated when the slope 

diverges from the speed of light. Upon reaching the resonance of the TM cutoff, the surface 

waves become trapped in the LC resonators resulting in a very low group velocity. The TE 

propagation continues to be supported, however, the cutoff frequency of this mode is beyond the 

lower cutoff of the TM suppression. The suppression of propagation that occurs in this frequency 

region is referred to as an electronic bandgap. The TM and TE polarizations form the first two 

propagating modes for the HIS structure and will be the subject of subsequent numerical studies.  

4.3 Analysis Techniques 

A variety of analytical and numerical techniques exist to analyze the surface wave 

propagation over the high impedance surface each with unique benefits. Analytical formulations 

based on the equivalent surface impedance provide additional insight into the electrical behavior 
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of a structure. Numerical solutions based on full wave electromagnetic solvers can provide 

greater accuracy and are adaptable to many complex geometries. The approximation of the 

surface resonance is a critical first step in the design process and many derivations for simple 

geometries can be found. The HIS geometry presented in Fig. 4-1 consists of a single board with 

two metalized layers. The top layer contains a periodic grid of metallic patches attached by vias 

to a ground plane on the lower layer. The gap between the patches is capacitive while the 

metallic path length through the structure between them is inductive.  

 

Fig. 4-1 Geometry of thumbtack EBG surface with equivalent circuit. 

 

 Fig. 4-2 Equivalent circuit for surface resonance. 
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The effective surface impedance model [9] uses the bulk capacitance and inductance of the 

media to determine surface impedance at resonant frequency as 

LC
LjZs 21 ω

ω
−

=                                                  (4-1) 

LC
f 12 == πω                                                          (4-2) 

 The approximation of L and C in Fig. 4-2 can be made using 

( )
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≈ −
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π
εε                                             (4-3) 

tL μ=                                                                  (4-4) 

where the width w, gap g, and lattice constant a along with the permittivity dominate the 

capacitive parameter. The Cfringe term proposed was derived using analytical techniques and 

therefore only serves as a first order (quasi-static) approximation of the capacitance in the initial 

design. The only parameter that remains is the thickness t of the board to influence the 

inductance. While this model is useful for establishing an initial design operating at a specific 

resonance, it is not capable of predicting the actual bandgap for the structure. Furthermore, the 

need to explore more sophisticated geometries requires numerical full wave solvers. Another 

modeling technique is based on using the reflection phase of the surface [10]. The HIS at 

resonance produces no phase shift in the reflected wave. Therefore, a study of reflection 

coefficient of the material can be an aid in bandgap prediction. Ansys HFSS [14] a commercial 

finite element solver can perform Floquet port analysis of a unit cell of the material. This allows 

the surface impedance and reflection parameter to be de-embedded at the material surface. At 

normal incidence a PEC surface will result in 180 degrees reflected phase and for the HIS at 

resonance the reflection will be 0 degrees. Consequently, the edges of the TM and TE band gaps 
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correspond to phase reflection between -90° and +90°. This can be an effective predictor of the 

unit cell bandwidth for a wide range of geometries [15]. Experimental procedures can also be 

used to determine the transmission characteristics over the surface. In the absence of 

computational resources, the transmission for both TE and TM propagation can be made by 

creating two samples. One will be entirely PEC and serves as a base line, while a second 

structure with HIS is measured to determine the suppression compared to the PEC case. Another 

experimental method is to use suspended microstrip that uses the HIS surface as ground medium 

[16], although this technique only predicts the bandgap and not the behavior of TM nor TE 

independently. The only technique capable of determining the surface wave modes is the 

eigenmode analysis within a full-wave solver. Using HFSS to analyze a unit cell with periodic 

boundary conditions, the first two modes of propagation within a Brillouin zone [17] can be 

determined. In a periodic medium the Brillouin zone represents the minimum region in which 

characteristic properties of the wave exist. The eigenmodes computed by this solution are 

harmonic and represented in terms of their phase velocity. By varying the phase gradient of the 

Bloch boundary conditions from 0° to 180° phase along the three axes of the Brillouin zone a 

complete characterization can be made. Figure 4-3 describes the orientation of the vectors. The 

dispersion diagram will combine the resulting eigenvalues by concatenating the results from 

Γ→X,  X → M, and  M → Γ. 
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Fig. 4-3 Brillouin region and propagation vectors within the EBG unit cell. 

Finally, the results are post processed and displayed in a dispersion diagram. The maximum 

frequency of TM propagation determines the lower bound on the bandgap while the minimum 

intersection of the TE propagation and the light line form the upper bound. The light line 

corresponds to the group velocity μεω  in the medium that bounds the phase velocity of the 

individual eigenmodes.  Figure 4-4 contains a dispersion diagram of the TM and TE propagation 

from eigenmode analysis. The grey portion of the graph corresponds to the electronic band gap 

between the two propagating modes. A bandwidth of 4.42 GHz is predicted for this design.  
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Fig. 4-4 Dispersion diagram for TE and TM propagation. 

4.4 Design of High Impedance Surface 

The design procedures for low frequency HIS require special considerations. The 

capacitance required to support the low frequency resonance is high. The increased capacitance 

can only be produced by greater element overlap. Extending the resonance to lower frequencies 

ultimately requires multiple layers of overlapping elements which adds additional thickness, 

weight, and cost. The resonance prediction of the effective surface impedance model shows that 

to decrease the frequency of the surface the capacitance and inductance must increase. The 

inductance can be increased by using a thicker substrate however this is undesirable. One 

alternative is to use a coplanar spiral inductor capable of resonance in structures as small as λ/40 

for substrate reduction [16]. The exploration of this design is one potential method of reducing 

the thickness of the antenna structure. 
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4.5 Integration of High Impedance Ground Plane with X-band Slot Antenna 

The design of the lower frequency HIS has inherent challenges related to both the 

manufacturing and test costs. Therefore, an EBG surface operating in X-band was preferred 

starting basis for experimentation due to limitation of the anechoic chamber, availability of the 

WR90 waveguide adapters, and physical size of the tested samples being smaller at high 

frequency. A fabricated HIS and antenna were produced for resonance at 10.5 GHz based on the 

surface equivalence model. The photo shown in Fig. 4-5 is a hexagonal EBG surface with 

dimensions labeled. 

 

Fig. 4-5 Hexagonal EBG surface and dimensions. 

The reflection of a wave with normal incidence is determined by loading a WR90 transmission 

line with a sample and observing the reflection from open, short, and both orientations of the 

hexagonal surface. Figure 4-6 shows the HIS sample as the termination of the waveguide. 

 

Fig. 4-6 Waveguide sample measurement setup. 
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Since the lattice is hexagonal the propagation should be measured in the three propagation 

directions of the Brillouin zone. For these measurements only the two principal Cartesian axes 

were considered and are described in Fig. 4-7. The E field of the WR90 waveguide was oriented 

in four measurement positions corresponding to û+ and û−  in the horizontal and and v̂+ v̂−  in 

the vertical to observe any changes in surface reflection properties. 

 

   Fig. 4-7 Measurement axes of the reflection coefficient. 

The magnitude of the reflected wave is shown in Fig. 4-8. The shorted waveguide shows a high 

reflection as expected. Likewise, the open condition has very little reflection. The figure also 

shows the reflection of the HIS responds to the  and  orientations differently and shifts the 

resonance as polarization vector is rotated. The presence of the HIS resonance is indicated by the 

low reflection seen between 11.0-11.5 GHz. The short condition was then used to determine the 

reflected phase of the HIS de-embedded to the surface. When the phase of the HIS is plotted in 

Fig. 4-9 it shows almost 0 degrees of reflected phase at 11.04 and 11.23 GHz which confirms the 

presence of the electronic bandgap in the surface. Furthermore, the lack of reflected energy at 

these frequencies demonstrates the EBG has achieved resonance.  

û v̂
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Fig. 4-8 Measured magnitude of S11 vs. frequency for the HIS terminations. 
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Fig. 4-9 Measurement of de-embedded phase of S11 vs. frequency for EBG terminations. 

 

The loop antenna shown in Fig. 4-10 was fabricated concurrently with the EBG test sample in 

the previous test based on the predicted resonance of the HIS and prior to the waveguide 

termination experiment. The center frequency measured without HIS loading was 10.7GHz. The 

reflection coefficient was then measured for the antenna in air with no surroundings. Next, the 

antenna was loaded with the HIS surface from below to determine the effect as separation 

distance was reduced. The mechanical setup shown in Fig. 4-11 allowed the adjustment using 

dielectric screws.    
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Fig. 4-10 Slot loop antenna on microstrip substrate. 

 

 

h 

Antenna 

Separation height (h): 
3.25mm is λ/8 
6.50mm is λ/4 

EBG Ground Plane 

Fig. 4-11 Measurement setup to determine loading effects. 

The effect of moving the EBG ground plane closer to the structure is illustrated in Fig. 4-12 

which shows an increase in loop resonant frequency as the surface height is reduced. For the 
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0.07mm separation case a thin piece of paper was inserted to prevent a short with the microstrip 

line. The added paper will contribute a small amount to the capacitance, but the loading of the 

microstrip line with the HIS is causing the field disruption and input mismatch.  
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Fig. 4-12 Measurement of reflection versus frequency for loaded conditions. 

 

Loading the slot loop antenna with the HIS shifts the resonance upward, so the antenna was 

redesigned to resonate at 11.3 GHz to fall within the EBG bandgap. The second antenna design 

iteration was measured and the results are shown in Fig. 4-13.     
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Fig. 4-13 Measured reflection versus frequency for HIS loaded antenna. 

 

The following measurements were performed on Georgia Tech Research Institute’s 1300’ 

outdoor test range at the Cobb County Research Facility which is primarily used for measuring 

high gain antennas. The low gain of the antenna and multipath introduced from the environment 

and pedestal creates the measurement noise on the patterns. The measurement setup is shown in 

Fig. 4-14. 
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Fig. 4-14 Slot antenna with high impedance ground plane on test pedestal. 

 

 

The H-plane pattern of the antenna was measured using a vertically polarized source and 

calibrated setup. The pattern labeled “Loop Only” in Fig. 4-15 indicates the dominant radiation 

from the slot occurs at -180° which corresponds to the bottom side of the loop and where the 

stub feed is located. The second case labeled as “Loop with EBG” introduces the EBG ground 

plane on the same side, covering the microstrip line, and reducing radiated gain in the -180° 

direction. It is evident that the EBG ground plane reduces the backlobe radiation from the loop 

with increased forward radiation. However, the efficiency of the antenna is reduced in part from 

the close proximity of the EBG ground plane to the antenna feed. 
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Fig. 4-15  H-Plane cut for antenna with and without EBG surface (azimuth) at 11.3GHz. 

 

The close proximity of the EBG to the microstrip line and stub feed distort the fringing fields 

which increases the impedance resulting in transmission mismatch. Future antenna design 

analysis will address these concerns by placing the microstrip stub feed on the top half of the 

loop to avoid interactions with the HIS.  

The conclusions drawn from this experiment show that the EBG can be designed for 

operation at X band. The addition of the EBG medium did not show an overall increase in 

forward gain compared to the loop case alone, but it did demonstrate the property of the EBG to 

reduce backlobe radiation by reflecting the energy forward as evidenced by the wider main 

beam. These techniques were then applied to scale the design to the lower frequencies in 

subsequent sections.  
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4.6 Low Frequency Artificial Ground Planes 
 

The resonant behavior exhibited by the artificial magnetic surface is the result of 

capacitive and inductive elements present within the structure. According to the first order model 

in Eq. 4-2 the frequency can only be reduced if the capacitance or inductance is increased. The 

capacitance can be increased by expanding the overlapping area of the cells allowing greater 

fringing of electric field but will require larger unit cell dimensions. Consequently, the lower 

aspect ratio and increased size makes characterizing the material more difficult due to the larger 

proportion of the unit cell size relative to the antenna element.  The desire to produce a HIS that 

functions at both 1 GHz and 2 GHz is a significant challenge with no known literature covering 

the topic. Therefore, this section will outline existing technologies potentially capable of dual 

band operation.   

High impedance surfaces operating at low frequency have been designed for operation at 

1 GHz but require thick low loss foam substrates to increase the inductance. One benefit of the 

additional thickness is increased bandwidth. A notable example can produce a ±90° reflection 

bandwidth of 665 MHz operating from 882 MHz to 1.547 GHz [18]. The design has the unit cell 

dimensions of 10.7mm x 10.7mm and is constructed on a foam dielectric with a thickness of 

30.5mm. The cell gap dimension was not reported but the capacitance of 0.47pF was used to 

calculate the 0.01mm separation. HFSS was then used with the Floquet port solver and periodic 

boundary conditions to reproduce the reflected phase of the design. The result of the 

computational analysis is shown in Fig. 4-16 and labeled “Simulation.” The corresponding 

measured data of the design reported in [18] is also shown and labeled “Measurement.” Since the 

design shows an appreciable bandwidth, it could potentially be extended to cover both the 1 GHz 

and 2 GHz resonances. The HFSS Optimetrics tool was then used to optimize the foam 
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thickness, cell dimension, and gap with the goal of maximizing the bandwidth. The optimized 

design shows both the 1 GHz and 2 GHz responses reside within the ±90° operational 

bandwidth. The reflection phase for this wideband design is shown in Fig. 4-16 and is labeled 

“Optimization.” The results show that the 1.1 GHz bandwidth would be sufficient to use as a 

magnetic ground plane but the design remains very thick. The λ/8 ground reflector used in 

Chapter 3, by comparison, required only 37.5mm height and uses a simple aluminum plate. 

Using the thick material in its place would increase the bulk of the design and only potentially 

reduce its height by 7mm or 20%.  Furthermore, at the ends of the operating band the reflected 

phase is no longer zero which reduces their efficiency. In practice an EBG exhibiting a 2:1 

bandwidth is only realizable at higher frequencies where the TM mode can be suppressed 

sufficiently and the first TE mode has a very high cutoff frequency. 
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Fig. 4-16 Reflection phase versus frequency of surface with 30.5mm foam substrate [18]. 
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Next, the focus was turned to reduction of the EBG substrate height. Simulations at 

various heights were performed to show the effect on the resonant frequency which coincides 

with the reflected phase of zero degrees. As expected the resonant frequency increased when the 

thickness decreased due to the loss of inductance. The full set of curves are shown in Fig. 4-17. 

The additional height is clearly necessary to produce the lower resonances. The 32mm substrate 

height case also shows the presence of a second resonance at 2.72 GHz. The presence of this 

resonance phenomenon can be exploited to produce a dual band EBG surface.  
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Fig. 4-17 Effect of ground plane height reduction on simulated resonant frequency. 
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4.7 Enhancement of Artificial Ground Planes 
 

Planar capacitive and inductive geometries have several advantages that can be used to 

enhance the resonance of the HIS. The interdigitated capacitor shown in Fig. 4-18 provides 

greater surface overlap of the cell edge which increases the capacitance between the two 

structures. The finger width, length, and gap separation are variables that allow the capacitance 

to increase without expanding the unit cell dimensions [19,20].  This also can be used to 

minimize the cell size of the EBG such that an appreciable granularity (~λ/20) can be achieved. 

Coplanar spiral inductors are another element used to improve the design performance 

[16,21,22]. The element shown in Fig. 4-19 uses the spiral arm to increase the propagation path 

within the resonant circuit. This path length adds inductance between the capacitive cell edge 

and the via connecting into the ground plane. The addition of this spiral geometry can therefore 

be used to either lower the resonant frequency or reduce the substrate height by compensating for 

lost inductance. Since these coplanar technologies do not require the soldering of lumped 

elements onto the surface, the cost to manufacture is less and when used on thin flexible 

substrates can be used in a variety of conformal applications. The goal of the following exercise 

is to determine if the substrate height can be reduced for the 1 GHz HIS.    
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finger width 
finger overlap 

Capacitive Edge 

2 Fingers 4 Fingers 6 Fingers  

Fig. 4-18  Interdigital geometry for increasing capacitance. 

 

Cell Edge 

Inductive Path 

Pad 

 1 Turn 2 Turns 3 Turns  

Fig. 4-19  Coplanar spiral geometry for increasing inductance. 

 

 The initial design reported in section 4.5 was created on the same Rogers Corp RO3035 

material used for the antennas described in Chapter 3 using a 10.7mm unit cell dimension. The 

height of the substrate was reduced from 30.5mm to 1.524mm (60mils) and the gap size was 

increased to 4 mils which is the smallest gap that can be fabricated with available facility. The 
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four edges of the cell were then interdigitated with various numbers of fingers to determine the 

effect on the resonant frequency. The gap of 0.1016mm was retained and the finger width was 

set to 0.3mm with 2.2mm of finger overlap. Figure 4-20 summarizes the affect of increasing the 

number of fingers of the interdigitated capacitance (IDC). A frequency shift of almost 250 MHz 

is produced but was not substantial enough to create the desired 1 GHz resonance.  
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Fig. 4-20  Resonance shift of 10.7mm unit cell on 60mil RO 3035 material. 

 

The coplanar spiral was then added to the inside of the design and manually tuned for 1 

GHz response by varying the unit cell size, the interdigital capacitor parameters, and spiral 

geometry parameters. The best available design shown in Fig. 4-21 was for a cell dimension of 

15mm with a 15 fingered interdigital capacitor and three turn inductive spiral. Unfortunately, the 

bandwidth of this design was small, thus the fabrication was not attempted. The complete design 

space containing  48  points  is  illustrated  in  Fig. 4-22  where  the  vertical  axis  represents  the  
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Fig 4-21 Reflection phase of the 1 GHz interdigitated EBG cell with coplanar spiral inductor. 

 

bandwidth of the design and horizontal axis is the resonant frequency corresponding to a 

reflection phase of zero. The trend shows that as the resonant frequency decreases the operating 

bandwidth is narrowing. 

 

 64



0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

80

90

100

Resonant Frequency (GHz)

B
an

dw
id

th
 (M

H
z)

 

Fig. 4-22 Data constellation of the 1 GHz interdigitated EBG cell with coplanar spiral inductor. 

 

The thin (60mil) substrate design was preferred because it utilizes the same RO3035 

laminate used in manufacturing the antenna and could be easily created in the material stackup. 

However, the very narrow bandwidth made this impractical. Additionally, the desire to create an 

EBG with resonance at two distinct frequencies must be addressed. Therefore, a thicker Rogers 

Corp TMM10 material [23] measuring 6.35mm (250mils) was selected with a higher permittivity 

of 10.2 to extend the bandwidth. The design was then tuned for both resonances at 1 GHz and 2 

GHz. Figure 4-23 shows a reduced data set in which the first resonance falls within ±50 MHz of 

the 1 GHz goal and the corresponding variation of the second resonance.  
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Fig. 4-23  Reflection phase of dual band EBG cell with both IDC and coplanar spiral inductor. 
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The reflection phase shown in Fig 4-24 corresponds to the best candidate within the data. The 

first resonance was slightly lower than 1 GHz at 0.95 GHz and the second resonance was slightly 

higher at 2.06 GHz. This design selection was the most realistic candidate for conventional 

fabrication after running more than 386 variations of the gap and trace widths. Figure 4-25 

illustrates the 15.875mm unit cell with exploded view of the trace and two adjacent gaps  each of 

which are 3 mils. For a true grasp of the scale of the trace and gap, their footprint is the thickness 

of two sheets of copy paper. Therefore, laser oblation technology was the only option for 

fabricating this design. The LPKF U3 Protolaser system was used to fabricate the sample shown 

in Fig. 4-26 [24]. Since the material samples were only available in 6” x 6” dimensions a full 

pattern was tiled on the surface of the 250mil board. One complication of using the LPKF laser 

system is that it cannot produce holes in the thicker material and therefore vias could not be 

easily made. Instead, stainless steel screws were used as a substitute after holes were drilled with 

a standard milling machine. 
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Fig. 4-24  Reflection phase of dual band EBG with two interdigitated fingers and one turn spiral. 
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Fig. 4-25  Simulated dual band EBG cell with two interdigitated fingers and one turn spiral. 

 

 

Fig. 4-26  Fabricated dual band EBG on 250mil Rogers Corp. TMM10 material. 
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Fig. 4-27  Magnification of interdigitated edge and spiral trace at 70x. 

The laser oblation process shows that it is capable of making very fine traces and corners as 

displayed in Fig. 4-27. Since the laser strikes normal to the material surface, concave surface 

edges commonly produced with chemical etching are not an issue. This technology therefore will 
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create the geometry simulated with greater fidelity and therefore better measurement correlation 

should be expected.   

4.8 Low Frequency Artificial Ground Plane Measurement 
 
 The measurement of surface reflection at low frequency required special waveguide and 

other test adapters to perform the tests. The lowest response of the first resonance occurs at 0.91 

GHz. Therefore, the WR770 waveguide shown in Fig. 4-28 was selected to perform the 

reflection measurement. This waveguide has a cutoff at 0.77 GHz and can operate up to 1.45 

GHz before multimode propagation starts. The second resonance occurs at 2.06 GHz with the 

upper operating frequency of 2.13 GHz and will require a WR430 waveguide. Two test setups 

must be calibrated and performed independently to maintain phase accuracy.   

 

Fig. 4-28 WR770 waveguide adapter used to measure surface reflection. 
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The measured phase is first calibrated by creating a short at the waveguide face using a 

copper plate. Since the reflected phase of an electric conductor is always 180°, this measurement 

will be used to produce the reflection phase response at the material surface. 

The data shown in Fig. 4-29 indicates that the bandwidth of the lower frequency is very 

narrow but much closer to 1 GHz than expected. The second resonance is shifted up by roughly 

20 MHz but has a bandwidth consistent with simulation. The 6” x 6” was then incorporated with 

the dual band loop design to determine the effect of the HIS on radiated patterns and gain.  
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Fig 4-29 Comparison of simulation versus measured reflection phase. 
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4.9 Integration of Low Frequency Artificial Ground Plane with Loop Antennas 

The radiation patterns for both azimuth and elevation are shown in Figs. 4-30 and 4-31 

for the antenna backed with the EBG ground plane. The analysis of the patterns show a max gain 

of 5.69 dBi is achievable. The corresponding front-to-back ratio is greater than 20dB. The 

asymmetry of the azimuth pattern in the back half plane is consistent with previous 

measurements and attributed to the test cable and elbow protruding from the AUT. 
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Fig. 4-30 Azimuth (E plane) pattern of horizontal polarized antenna over dual band HIS at 
1GHz. 
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Fig. 4-31 Elevation (H plane) pattern of horizontal polarized antenna over dual band HIS at 
1GHz. 

 
 

A comparison plot for the three cases: antenna alone, antenna with ground reflector at h=1.470”, 

and the antenna with the HIS are shown in Figs. 4-32 and 4-33. Each set of measurements were 

performed on the cylindrical near field. The elevation patterns were measured by rotating the 

antenna by 90° to collect full rotation. The azimuth patterns show the maximum gain is achieved 

with the aluminum plate placed 1.470” below the antenna. The antenna backed with HIS shows 

it can achieve greater gain than the loop alone and greatest reduction in backlobe radiation. 

Furthermore, the pattern shows the absence of diffraction typical of the electric ground planes for 

the antenna with and without reflector. The HIS structure supports radiation down below the 

horizon without the asymptote seen at ±90°.   
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Fig. 4-32 Azimuth (E plane) pattern comparison of the 1GHz design performance. 
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Fig. 4-33 Elevation (H plane) pattern comparison of the 1GHz design performance. 
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The 2 GHz array was measured on the cylindrical near field and the patterns were 

synthesized for full unity excitation. The radiation patterns for both azimuth and elevation are 

shown in Figs. 4-34 and 4-35 for the antenna backed with the EBG ground plane. The analysis of 

the patterns show a max gain of 9.06 dBi is achievable. The asymmetry of the elevation pattern 

in the negative angular region is consistent with previous measurements of the antenna with 

reflector and can be attributed to the truncation of the vertical raster and reflection introduced by 

the test pedestal and positioner. 
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Fig. 4-34 Azimuth (E plane) pattern of the 2GHz array with uniform excitation. 
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Fig. 4-35 Elevation (H plane) pattern of the 2GHz array with uniform excitation. 

 
 

A comparison plot for the three cases: antenna alone, antenna with ground reflector at 

h=1.470”, and the antenna with the HIS are shown in Figs. 4-36 and 4-37. Each set of 

measurements were performed on the cylindrical near field. The azimuth patterns show the 

maximum gain is achieved with the aluminum plate placed 1.470” below the antenna. The 

antenna backed with HIS shows it can achieve greater gain than the loop alone with no patterns 

nulls in the visible region.  

The EBG cell design demonstrated dual resonance capability that when combined with 

the slot antenna geometry reduced the system height beyond that of even the reflecting plate. The 

HIS design also showed that the challenge of fabricating small features can be overcome by 

using laser oblation technologies. The measured performance showed an increase in gain was 
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achieved for both 1 and 2 GHz antennas and is consistent with the behavior of a dual band  

AMC. 
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Fig. 4-36 Azimuth (E plane) pattern comparison of the 2GHz array performance. 
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Fig. 4-37 Elevation (H plane) pattern comparison of the 2GHz array performance. 
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CHAPTER 5 

 

INTEGRATION OF THE X-BAND ARRAY 

 

Multifunctional antenna systems service a variety of defense and commercial sectors due 

to their compact profile, integrated form, and reduced size, weight, and power. Unlike the trends 

seen in modern electronic systems where component size can decrease while increasing 

efficiency, antenna efficiency is lost as the effective aperture is reduced. To overcome this 

physical reality, modern communication systems are moving to higher frequencies that require 

smaller antennas for example the 5.8 GHz band for the 802.11G standard. Alternatively, the 

design of legacy antenna replacements often requires the capability to operate in both existing 

and future bands yet reside within the same structural foot print. In either case if multiple single 

function systems can perform the needed task, the integration of multifunctional systems in most 

cases would be avoided due to complexity and cost. Engineers are therefore driven to reduce 

both the size and power of the system components through innovative techniques to achieve 

complete integration. This section demonstrates a technique for integrating a superficial array of 

X-band patch radiators for additional antenna functionality. 
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5.1 Antenna Selection  

A variety of radiator selections are compatible with the imbedded slot loop design. The 

patch antenna represents a low-profile design which has hemispherical radiation ideal for an 

electronically scanned aperture. Furthermore, the dielectric superstrate covering the slot loop 

antenna can be used as the substrate for patch antenna. If the layout of the superficial array is 

carefully planned, both the lower frequency slot loop elements and patch array can exist with 

minimal performance impact.  The design of the array must be formulated based on knowledge 

of the lowest frequency array since the element lattice will have to conform to the greatest 

common unit cell. The cell dimension is based off of the lattice spacing that is an integer divisor 

of the 1 GHz lattice. The lower frequency topology restricts most of the options because of the 

overlap caused, but a spacing of 1/12th the spacing of the 1 GHz array allows the array to be 

fully populated without any loop antenna blockage. 

 

50Ω Coax 

h

a

W

L 

Cell 

Cell 

Fig. 5-1 Analysis of patch within a periodic domain. 
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The patch antenna shown in Fig. 5-1 was designed using HFSS, which contains a periodic 

boundary condition (PBC) option that can represent the fields of the cell interface as if the 

element was radiating within an infinite array. The cell size of   

mm
ef

cGHz 49.12
924

299792458
22

012 =
+

=
⋅

=
λ                               (5-1) 

was set for the analysis with substrate thickness h=60mil of Rogers 3035 material (εr=3.5). The 

values of L=6.30mm, W=9.47mm, and a=2.50mm were chosen based on the optimization of a 

500MHz  bandwidth of the antenna around the design frequency of 12 GHz.  

Figure 5-2 shows the reflection coefficient of the antenna in the infinite array 

environment above a conducting ground plane.  As a result all the fields in the negative half 

space are zero so only the upper half hemisphere (theta = -90,90) is shown in Figs. 5-3 and 5-4. 

The observed cross polarization values of this element were below -40dB and therefore were 

omitted from the plots for clarity. 
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Fig. 5-2  Reflection coefficient at coaxial input for antenna in infinite lattice. 
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Fig. 5-3  E plane (phi=0) pattern cut. 
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Fig. 5-4 H plane (phi=90) pattern cut. 
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The directivity of the λ/2 x λ/2 cell can be evaluated to determine the efficiency of the patch 

element. Since  

( ) ( ) dBiAD 97.4log10444
102

2

2 =⇒=⇒= ππ
λ
λπ

λ
π ,                (5-2) 

the simulated gain in the infinite environment along with the less than -40dB reflection indicates 

that the patch has near ideal behavior. 

 

5.2 Feed Network  

 The feed network that interfaces the X-band array is shown in Fig. 5-5. This design is 

based on stripline technology with a 50Ω width of 1.69mm and 0.5oz copper thickness of 17um. 

The quarter wavelength stub is 1mm in width and 3.75mm long. The shielding fence is produced 

by an offset contour of 2mm from stripline trace with vias of radius 0.25mm. The coaxial probe 

outer radius is 0.26mm with a shield radius equal to 1.24mm using Teflon insulation. The 2 x 2 

corporate network was analyzed using HFSS over the extent of the operating band. Since no 

beam steering is required, the network was optimized for minimal input reflection at all five 

ports with  uniform transmission amplitude and phase to the 4 antenna feed ports. The 

transmission line impedance versus frequency is reported in Fig. 5-6. Figure 5-7 represents 

scattering parameters of the 5 port network. 
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Fig. 5-5 Stripline corporate feed network for the nigh frequency array.  
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Fig. 5-6 Stripline corporate feed network for the 2 x 2 X-band patch array.  
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Fig. 5-7 Stripline corporate feed network for the 2 x 2 X-band patch array.  

 

5.3 Near-Field Measurements  

The simulation of the combined X-band array and associated feed network was 

intractable based on the resources available. Since great care was taken to maintain shielding 

between the adjacent 2 x 2 sub-cells, the only coupling expected will be from the antenna 

elements themselves. Therefore, only the patch array was simulated with individual coaxial port 

for each antenna [7]. The patch elements used in the design become more directive as the board 

thickness is reduced [25]. Moreover, the selection of the RO3035 material with permittivity of 

3.5 will enhance the gain while reducing the size. It should be noted that the element gain is an 

additional factor in design process because the dielectric selected for its substrate was dictated by 

the loop iteration process in Fig. 2-11. If the gain is to be greater at boresight the material 
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permittivity should be lower. Alternatively, if a lower resonant frequency is required the 

expansion of patch design size must be monitored to avoid blockage of the low frequency slot 

loops. 

The triband array incorporating two reflector backed loop antennas and X-band array was 

tested using a cylindrical near field setup illustrated in Fig. 5-8. The vertical scan travel of the 

system was 8’ so the 6” x 6” AUT was placed at the mid-point of the linear travel. The positioner 

was then incrementally rotated in azimuth plane between raster scans.  In near field testing the 

setup requires greater raster travel to compute patterns at low scan angles. Therefore, the 

maximum available raster length was used to capture the near field so the patterns could be 

projected to the lower elevations and avoid truncation ripple. Figure 5-9 illustrates the large scan 

travel required for lower angles. 

 

 

Fig. 5-8  Cylindrical near field setup. 
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Fig. 5-9  Scan limitations of the cylindrical near field setup (side view). 

 

The prototype X-band patch array contains no electronic beamformer only 36 individual coaxial 

ports to feed the 144 elements. The measurement of the full array was not practical since each of 

the 2 x 2 cell must be measured individually. To reduce the measurement time and cost, the edge 

elements shown in Fig. 5-10  were terminated with 50Ω loads. Typically these antennas are used 

as dummy elements since they improve array patterns. The row column labeling convention is 

also described in Fig. 5-10 for collected data.  The 16 sets of azimuth and elevation data were 

more than could be realistically presented so a sample element (1,1) was chosen to review the 

individual gain pattern. The principal plane cuts at 12.0 GHz are shown in Figs. 5-11 and 5-12. 
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Terminated Active

Fig. 5-10 X-band patch array with non-active elements shown with labeling convention. 
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 Fig. 5-11 Azimuth (H plane) pattern of vertically polarized X-band patch sub-array (1,1) . 
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Fig. 5-12 Elevation (E plane) pattern of vertically polarized X-band patch sub-array (1,1) . 
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Figures 5-13 and 5-14 are contour plot for the single element as well as the array with full 

illumination at 12 GHz. The results indicate the array is capable of  directive radiation without 

needing the edge elements. The principal pattern cuts for the array with unity exitation are shown 

in Figs. 5-15 and 5-16. 

 

Fig. 5-13 Measured co-polarized gain of a single sub-array 1,1 at 12 GHz. 

 

 

Fig. 5-14 Synthesized co-polarized gain of the 64 element array with unity feed at 12 GHz. 
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Fig. 5-15 Measured (H plane) gain of the 64 element array with unity feed. 
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Fig. 5-16 Measured (E plane) gain of the 64 element array with unity feed. 
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The measured results of the superficial patch array agree very well with simulation data. 

Furthermore, the slot loop antennas embedded within the ground plane did not prevent the array 

from achieving high gain. The feed network connections that originate from below the array 

allow the design to be more compact than those requiring edge feeding so multiple concatenated 

cells could be used to increase the gain. The goal of the X-band integrated antenna was 

successful and demonstrated the utility of the design practice outlined in this work.   
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CHAPTER 6 

 

CONCLUSIONS AND FUTURE WORK 

 

A novel technique was proposed that enabled the design of a low profile and conformal 

aperture supporting a tri-band array. The antennas utilized the surface area to combine three 

bands into a common aperture. The process was explained with details required for expanding to 

alternative designs. The loop antenna arrays were improved by using both a reflecting ground 

plane as well as an artificial magnetic conductor to increase the forward gain. The AMC created 

is capable of dual resonances that when combined with the slot antenna geometry reduced the 

system height beyond that of even the reflecting plate. The AMC design also showed that the 

challenge of fabricating small features can be overcome by using laser oblation technologies. 

The integration of the X-band array demonstrated that when unused aperture is available it can 

be exploited to increase the overall utility of the system. 

Future efforts surrounding this work include the design of an AMC with increased 

bandwidth at lower frequency and its integration with the tri-band technology to maximize gain 

of the loop elements. These exercises were beyond the scope of this dissertation since greater 

specificity and funds would be needed prior to design.    
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