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ABSTRACT

The Graphics Processing Unit (GPU) has become a more important component in

high-performance computing systems as it accelerates data and compute intensive appli-

cations significantly with less cost and power. The GPU achieves high performance by

executing massive number of threads in parallel in a SPMD (Single Program Multiple Data)

fashion. Threads are grouped into workgroups by programmer and workgroups are then

assigned to each compute core on the GPU by hardware. Once assigned, a workgroup is fur-

ther subgrouped into wavefronts of the fixed number of threads by hardware when executed

in a SIMD (Single Instruction Multiple Data) fashion.

In this thesis, we investigate the impact of thread (at workgroup and wavefront level)

scheduling on overall hardware utilization and performance. We implement four different

thread schedulers: Two-level wavefront scheduler, Lookahead wavefront scheduler and Two-

level + Lookahead wavefront scheduler, and Block workgroup scheduler. We implement and

test these schedulers on a cycle accurate detailed architectural simulator called Multi2Sim

targeting AMD’s latest Graphics Core Next (GCN) architecture.

Our extensive evaluation and analysis show that using some of these alternate mecha-

nisms, cache hit rate is improved by an average of 30% compared to the baseline round-robin

scheduler, thus drastically reducing the number of stalls caused by long latency memory op-

erations. We also observe that some of these schedulers improve overall performance by an

average of 17% compared to the baseline.

ii



DEDICATION

I dedicate this thesis to my loving parents. To my father, who serves as a contant source of

inspiration and to my mother, whose kindness and grace never ceases to amaze me.

iii



ACKNOWLEDGEMENTS

Foremost, I would like to express my thanks and sincere appreciation to my advisor

Dr. Byunghyun Jang for the unwavering support and encouragement during my Masters

study. His patience, availability and immense knowledge of computer architecture and GPU

computing helped me at all points of my graduate study and research.

I would also like to thank the rest of my thesis committee, Dr. Philip Rhodes and

Dr. Jianxia Xue, whom I’ve also been blessed with the opportunity to learn and get advice

from. Their immense knowledge of cloud computing, parallel computing, graphics, among

other topics have helped me grow my toolset as a young scientist.

I thank my department chair, Dr. Conrad Cunningham and the rest of our amazing

faulty and staff. Thank you for your support and the wonderful job at the department.

To my fellow labmates at the Heterogeneous Systems Research Lab: Kyoshin Choo,

David Troendle, Mainul Hassan, Stephen Adams, William Panlener, Mengshen Zhao, Tuan

Ta, Sampath Gowrishetty, Michael Ginn and Elijah Allen, thank you for all your assistance

with my research and stimulating discussions during our meetings.

Finally, to my wonderful parents and siblings, thank you for all your advice, sacrifice,

encouragement and support thoughout my life. I couldn’t ask for a better family.

iv



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 GPU as a general-purpose co-processor . . . . . . . . . . . . . . . . . 1

1.2 Objectives of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

TECHNICAL BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 GPU computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 GPU hardware architecture . . . . . . . . . . . . . . . . . . . . . . 9

2.3 GPU thread execution model . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Multi2sim Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . 16

THREAD SCHEDULERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Lookahead wavefront scheduler . . . . . . . . . . . . . . . . . . . . . 18

3.2 Two-level wavefront scheduler . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Lookahead + Two-level wavefront scheduler . . . . . . . . . . . . . . 21

3.4 Block Workgroup scheduler . . . . . . . . . . . . . . . . . . . . . . . 21

EXPERIMENTS AND RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . 24

v



4.1 Architectural specifications . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 34

CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

vi



LIST OF FIGURES

2.1 Application acceleration using a GPU. . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Multi-core CPU and many-core GPU. . . . . . . . . . . . . . . . . . . . . . . 9
2.3 AMD Graphics Core Next (GCN) GPU architecture [3]. . . . . . . . . . . . . 10
2.4 AMD GCN Compute Unit [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 ND-Range organization [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Simplified block diagram of AMD GCN CU [33]. . . . . . . . . . . . . . . . . 14
2.7 Pipeline stages in the compute unit front-end [33]. . . . . . . . . . . . . . . . 14
2.8 Interaction between the functional and timing simulators in Multi2Sim [33]. . 16
3.1 Workgroup scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1 Dynamic instruction distribution by type of MatrixMultiplication. . . . . . . 29
4.2 Dynamic instruction distribution by type of MatrixTranspose. . . . . . . . . . 30
4.3 Dynamic instruction distribution by type of BlackScholes. . . . . . . . . . . . 30
4.4 Dynamic instruction distribution by type of BinomialOption. . . . . . . . . . 31
4.5 Dynamic instruction distribution by type of BitonicSort. . . . . . . . . . . . . 31
4.6 Dynamic instruction distribution by type of FastWalshTransform. . . . . . . 32
4.7 Dynamic instruction distribution by type of ScanLargeArrays. . . . . . . . . . 32
4.8 Dynamic instruction distribution by type of FloydWarshall. . . . . . . . . . . 32
4.9 Dynamic instruction distribution by type of RadixSort. . . . . . . . . . . . . 33
4.10 Dynamic instruction distribution by type of Reduction. . . . . . . . . . . . . 33
4.11 Dynamic instruction distribution by type of Hotspot. . . . . . . . . . . . . . 34
4.12 Dynamic instruction distribution by type of BackPropagation. . . . . . . . . 34
4.13 Cache hit ratio for a two-level+block workgroup scheduler . . . . . . . . . . 36
4.14 Cache hit ratio for a lookahead+block workgroup scheduler . . . . . . . . . . 37
4.15 Cache hit ratio for a two-level + lookahead wavefront scheduler . . . . . . . 38
4.16 Cache hit ratio for a round-robin wavefront scheduler + block workgroup sched-

uler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.17 Idle cycles for a two-level wavefront scheduler . . . . . . . . . . . . . . . . . 40
4.18 Idle issue cycles for a lookahead wavefront scheduler . . . . . . . . . . . . . . 41
4.19 Idle cycles for a two-level + lookahead wavefront scheduler . . . . . . . . . . 42
4.20 Idle cycles for a block workgroup scheduler . . . . . . . . . . . . . . . . . . . 43
4.21 Measured IPC for a two-level wavefront scheduler . . . . . . . . . . . . . . . 44
4.22 Measured IPC for a Lookahead wavefront scheduler . . . . . . . . . . . . . . 45
4.23 Performance for a Lookahead + two-level wavefront scheduler . . . . . . . . 46
4.24 Performance for a block workgroup scheduler . . . . . . . . . . . . . . . . . . 47

vii



CHAPTER 1

INTRODUCTION

1.1 GPU as a general-purpose co-processor

The performance improvement of traditional CPUs over generations is slowly declining as

microprocessor manufacturers are faced with obstacles such as the frequency and power

walls. This implies that multi-core CPU is limited by the amount of task-level parallelism

present in applications. Recently the Graphics Processing Unit (GPU) is emerging as an

excellent general-purpose co-processor for data-intensive tasks. This parallel machine was

originally designed to perform graphics rendering and had fixed function hardware. However,

recent advances has been made in hardware and software of GPU to perform non-graphics

computation - leading to a new computing paradigm called General Purpose Computation

on Graphics Processing Units (GPGPU).

GPGPU has been very successful and many applications in various fields have been

successfully accelerated. However, it is still far from mature and computer architects are

constantly finding new ways to improve it in order to achieve its peak potential. A particu-

larly challenging problem in GPGPU is under-utilization of compute cores in current GPU

architectures. This underutilization can be caused by different factors. Two major factors
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are in memory subsystem and thread scheduling. Memory subsystem performance is affected

by various reasons which make it hard for the GPU to hide long latency memory operations

due to cache performance. Cache performance is affected by various reasons but a major

factor in cache performance is the locality present in applications. The more the spatial and

temporal locality present in application, the better the cache performs and the number of

long latency operations to main memory can be reduced.

In a single threaded application running on a single core processor, the locality present

in the cache can be preserved because no other threads compete for resources. However, for

architectures like the GPU where thousands of threads run simultaneously, the contention

for cache resources easily increases and as a result the locality1 present in the application

can be destroyed leading to inefficient cache performance [29] [32].

This destruction of locality by many threads must be mitigated in order to achieve

better cache performance and increased utilization of the GPUs execution units. One way

to do this is by improving scheduling mechanism of the units of work (thread) to the GPU

cores. A better scheduler would assign threads to the GPU cores in such a way that as much

locality as possible is preserved throughout program execution.

Apart from helping to preserve the locality in the cache, the scheduler algorithm can

also improve efficiency by increasing the achieved instruction scheduling width per cycle. If

we increase the rate of thread assignment to the execution units, we in turn increase their

utilization.

1.2 Objectives of Thesis

GPUs use the abundance of parallelism found in data-parallel applications to tolerate mem-

ory access latency by interleaving the execution of wavefronts2. These wavefronts may be

1Phenomenon describing the same value or related storage locations being frequently accessed.
2A wavefront consists of exactly 64 threads. A workgroup is also a group of threads, but its size is

configurable by the user up to 256 threads.
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from the same workgroup or from different workgroups running on the same core [6]. While

this approach works, its effectiveness is dependent on what scheduling algorithm is used to

assign the workgroups and wavefronts to the cores. The default scheduler used in today’s

GPUs is a round-robin scheduler [10][15]. All active wavefronts in the core proceed at roughly

the same speed using this algorithm. Given the abundance of threads in the core, the GPU

hides long latency operations by scheduling more threads when there is a stall. However,

since all the warps proceed at roughly the same speed, they typically all reach these long

latency operations at roughly the same time causing the core to stall and valuable execution

cycles to be wasted - leading to underutilization of resources.

The main objective of this research is to investigate and demonstrate the impact these

scheduling decisions have on the GPU performance. To this end we implement alternative

thread scheduling algorithms and compare their performance to that of the default round-

robin scheduler used in production GPUs. Some of the contributions in our work are:

• Schedulers: We design a novel Lookahead scheduler that aims to performance of our

target GPU architecture when it is unsaturated. We also, investigate the performance

of schedulers proposed in related research on our target architecture.

• Micro-architecture: For our work, we use a micro-architecture based off AMD’s South-

ern Islands micro-architecture. This architecture features Branch and Scalar functional

units as well as an execution pipeline not present in architectures used in similar stud-

ies. These present new challenges to the algorithms proposed in previous work. To

our knowledge, this is the first time this kind of work has been done using Southern

Islands.

• Architectural simulator: We use a detailed cycle-accurate architectural simulator called

Multi2Sim [33]. This simulator fully models the architectural pipeline in detail and to

our knowledge no similar studies have been done using it.

• GPU workload: Previous research we could find showed the impact of scheduling
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decisions in cases where the GPU cores were saturated with a massive number of

threads. While we do that, we also show the impact of these decisions in cases where

the GPUs cores are unsaturated. We consider this case in order to provide another

performance comparison point between the various schedulers.

To demonstrate the performance impact of thread scheduling on modern GPU perfor-

mance, we followed a step-by-step, modular approach to our study. First, we characterized

benchmarks to understand the behavior of the default round-robin scheduler. This char-

acterization provided insight that inspired the design and implementation of a lookahead

scheduler. This scheduler looks at the next fetch buffers (section 2.3.3) to find a valid in-

structions to schedule if none is found in the fetch buffer chosen in the current clock cycle.

We then implemented a two-level wavefront scheduler proposed in related research. To in-

crease the locality preserved in the cache, we implemented a block workgroup scheduler.

This scheduler assigned assigns a block of sequential workgroups to each core. Different

combinations of these schedulers were also studied.

To understand the impact of our proposals, we profiled several benchmarks with a

widely varying instruction mix characteristics. The results were then analyzed compared to

that of the baseline scheduler. Chapter 3 discusses the different schedulers and in Chapter

4, we discuss the obtained results.

1.3 Related work

Several researchers have identified the aforementioned problems with GPU core underuti-

lization and thread scheduling inefficiency. As a result, there has been efforts to find ways to

solve these issues. Lakshminarayana et al study the effects of thread and memory scheduling

on GPU performance in their work. They vary the fetch and memory scheduling policies

and analyze the performance of GPU kernels [15].

Chen et al report that the traditional round-robin scheduling algorithm used in GPUs
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are inefficient in handling instruction execution and memory accesses with disparate la-

tencies. They propose a wavefront scheduling algorithm that enables flexible round-robin

distance for efficiently utilizing multi-threaded parallelism and they use a program-guided

priority shift among concurrent threads (wavefronts) to allow for more overlaps between

short-latency compute instructions and long-latency memory accesses [10].

Narasiman et al propose two-level warp 3 scheduling [21]. They observe that a schedul-

ing policies such as the round-robin policy usually result in warps arriving at the same long

latency operations at about the same time and this results in having no more warps to

occupy the execution units, thus unable to hide this long latency memory operation. To

increase the number of active functional unit cycles, they split all concurrently executing

warps into fetch groups. Warps in a single fetch group are prioritized until they reach a

single stalling point (long latency operation). Then the next fetch group is chosen and the

execution continues in the same manner. The warps within the fetch group are scheduled

in round robin order and the switch from one fetch group to another is also done in round

robin fashion [21]. The motivation of this scheme is that each fetch group reaches a long

latency operation at different points. As a result, when warps in one fetch group are stalled,

warps from a different fetch group can execute thereby tolerating the long latency operation

[21].

Rogers et al propose the idea of Cache-Conscious Wavefront scheduling. To do this,

they use an adaptive mechanism that makes use of an intra-wavefront locality detector

to capture locality lost by other schedulers due to excessive contention for cache capacity

[27]. Their scheme shapes the access pattern to avoid thrashing in the L1 cache. Their

policy improves the performance of the cache and as a result increases the utilization of the

execution units. Adwait et al propose a CTA aware two level warp scheduling as well as

a locality aware scheduler. Their two level warp scheduler works similar to that proposed

by nasariman et al while their locality aware scheduler works by prioritizing execution of a

3A warp is a group of 32 threads
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group of CTAs in the core. The motivation is to further exploit the locality between nearby

warps [14].

Minseouk et al propose a lazy CTA 4 scheduler which works by restricting the amount

of thread blocks allocated to each core. The lazy CTA scheduler works by predicting the

optimal number of CTAs that should be scheduled on the core in order to make more

efficient use of resources on the core. They also propose a block CTA scheduler which

works by scheduling blocks of consecutive CTAs to the same core with the aim of exploiting

the locality between ctas [17]. Similar to other proposals, their work enhances per core

performance by reducing cache contention and improving latency hiding capability.

Gebhart et al point out that the massive multi-threading of a GPU requires a com-

plicated thread scheduler as well as a large register file which is expensive to access both in

terms of energy and latency. To mitigate these drawbacks, they propose the idea of regis-

ter file caching to replace accesses to the large main register file with accesses to a smaller

memory containing the immediate working set of the active threads. Similar to the afore-

mentioned works, they also present the idea of a two-level wavefront scheduler. Though they

approach the issue from a view of energy consumption reduction, their ideas can also be

leveraged to work from a standpoint of increasing GPU resource utilization [11].

4CTA: Cooperative Thread Array. This is a group of thread blocks (warps). It is NVIDIA’s terminology
for a Workgroup.
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CHAPTER 2

TECHNICAL BACKGROUND

In this chapter, we discuss technical background that will help readers understand

our work. This chapter is organized as follows. In section 2.1 we discuss the basics of

GPU computing. In section 2.2 we present the GPU architecture used in our work. Next,

we discuss the thread execution model in the GPU. Lastly, in section 2.4, we discuss the

architectural simulator used for our work.

2.1 GPU computing

Recently, the graphics processing unit (GPU) has become an integral part of mainstream

computing systems. Over past couple of years, there has been steady and substantial in-

crease in the performance and capabilities of GPUs. Modern GPUs are not only powerful

graphics engines but are also highly parallel programmable processors whose peak arithmetic

computing capability and memory bandwidth substantially out-pace its CPU counterpart.

This rapid increase in both programmability and capability of modern GPUs enabled the

research community to successfully map a broad range of computationally demanding, com-

plex problems to the GPU. This effort to use the GPU for general purpose computing is

called general purpose computing on a graphics processing unit (GPGPU) [24]. Figure 2.1
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Figure 2.1. Application acceleration using a GPU.

shows how a GPU is used to accelerate an application.

Not all general purpose applications are suitable for GPU acceleration. In order for an

application to benefit from GPGPU it is recommended to have the following characteristics.

• Data parallel: This means that a processor can execute the operation on different data

elements simultaneously. For an application to map to the GPGPU computing model,

it has to have this property [7].

• Throughput intensive: This means that the application is going to process a lot of

elements. This property enables the algorithm to take advantage of the GPUs massive

number of compute cores [7].

CPUs consist of a few computation cores that are optimized for sequential processing.

On the other hand GPUs consist of thousands of light-weight cores that are optimized for

performing multiple ALU operations simultaneously. Figure 2.2 illustrates the difference

in the number of cores found in a GPU compared to in a CPU. In traditional graphics

applications, programmer writes a single program, and the GPU runs multiple instances

of the program in parallel, drawing massive number of pixels in parallel [22]. This parallel

8



Figure 2.2. Multi-core CPU and many-core GPU.

execution of threads is the idea used in the GPGPU computing paradigm. The GPU executes

multiple instances of a non-graphics program, operating on different data points [23].

By successfully mapping many general purpose applications to the GPU, scientists

have gotten impressive results that show the GPU outperforms the CPU by a huge margin

for certain applications. Meel et al report up to 150x speedup for Molecular Dynamics

simulations [34]. For image correlation, Lu et al report achieved speedups of up to 130x [19].

In addition to these works, similar results have been published by other research.

2.2 GPU hardware architecture

With high demand of real time graphics rendering and general purpose computation support,

GPU hardware has evolved from a fixed-function special-purpose processor to a full-fledged

parallel programmable processor [24]. The GPU targeted in this thesis work, named Graphics

9



Figure 2.3. AMD Graphics Core Next (GCN) GPU architecture [3].

Core Next (GCN) architecture developed by AMD, is one of such architectures.

The GCN architecture is a completely new architecture designed with a focus on

improved general purpose workload performance and better power efficiency while improv-

ing graphics experience [33]. It implements a parallel micro-architecture that provides an

excellent platform for both graphics and general-purpose applications [3]. In this new ar-

chitecture, all levels of the GPU from the ISA to the processing elements, to the memory

system have been redesigned [33]. To improve performance, AMD shifted from VLIW archi-

tecture to scalar-vector hybrid architecture. The reason for this was that while VLIW is very

good for processing graphics instructions, it is not good at handling the scalar instructions

often found in general purpose applications. This is because VLIW bundles instructions

during compilation but dependencies among scalar instructions limits bundling, leading to

underutilization of the execution units and wasted clock cycles at run time.

Figure 2.3 illustrates GCN GPU architecture. It consists of a command processor

that communicates with the host (CPU) and schedules on-chip workloads. Commands from

10



Figure 2.4. AMD GCN Compute Unit [2].

this unit are received by the ultra-threaded dispatch processor which then distributes the

work across the compute units (CUs). The CU is a key new component responsible for

GCN’s improved performance. It is a basic building block of GCN architecture consisting

of four SIMD engines together with other functional units. Figure 2.4 shows the details of a

GCN CU.

CUs are independent of each other and operate in parallel. Each CU contains in-

struction logic (fetch, buffer, decode, issue), scalar and vector ALU units with private scalar

GPRs and vector GPRs respectively, a high-bandwidth, low-latency local memory (Local

Data Store (LDS) in AMD’s terminology), and a read/write L1 cache. 4 CUs also share and

instruction and constant cache. A read/write L2 cache, a global memory, and memory con-

trollers support the CUs and provide support for the data accessibility necessary to support

kernel execution [3].
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Figure 2.5. ND-Range organization [1].

2.3 GPU thread execution model

2.3.1 Kernel Execution

An instance of a kernel is called an ND-Range. An ND-Range, shown in figure 2.5, is com-

prised of workgroups and these workgroups are further comprised of work-items (threads).

The program and execution models of an ND-Range are mapped onto the hardware when it

is launched by the graphics device driver. The ultra-threaded dispatcher consumes pending

workgroups from the running ND-Range and schedules them to available compute units.

The compute units partition the workgroups into wavefronts (sets of 64 work-items). Wave-

fronts execute instructions in SIMD (single instruction multiple data) fashion. The wavefront

scheduler in a CU is responsible for scheduling wavefronts among its 4 SIMD execution units

as the units become available. Each SIMD execution unit contains 16 lanes (stream cores).

Each SIMD core executes one instruction for 4 work-items, at speed of 1 cycle per work-item,

from a wavefront mapped to it. This is done in a time- multiplexed manner and as a result,

each SIMD can execute a wavefront in 4 cycles [2][33].

Work-items within a workgroup can share information using a mapped portion of the
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local memory present on a CU. Each work-item has its private memory which is physically

mapped to a portion of the register file. If the work-item uses more memory than allocated

on the register file, register spills occur and are handled by using privately allocated portions

of global memory.

2.3.2 Workgroup scheduling

When GPU starts execution of the kernel, the workgroups in the NDRange are mapped

to the different CUs available on the GPU. This scheduling is done by the ultra threaded

dispatcher, The ultra thread dispatcher consumes pending workgroups and assigns them to

the CUs when they become available. The default scheduling is done in round robin and

first available fashion. This can be implemented in a way that all available compute units

are stored in a list and the workgroups are assigned to the compute units in this list in round

robin fashion. This list of available compute units is updated every cycle with compute units

that become newly available.

Algorithm 1 First available workgroup scheduling

while programIsExecuting do
while isWaitingWorkgroups do

if computeUnitIsAvailable then
assignWorkgroupToComputeUnit

end if
end while

end while

2.3.3 Wavefront scheduling

After command to begin kernel execution is received, the kernel is fetched into the instruction

cache and the compute unit begins sending instructions to their respective execution units

(e.g SIMD units, scalar ALU, memory units, etc). Each CU runs one or more workgroups

at a time and since all work-items in the workgroup run identical code, they are combined

13



Figure 2.6. Simplified block diagram of AMD GCN CU [33].

Figure 2.7. Pipeline stages in the compute unit front-end [33].

into sets of 64. A set of 64 work-items is called a wavefront. Each CU can work on multiple

wavefronts in parallel, simultaneously executing different instruction types [3].

The compute unit front end is responsible for scheduling wavefront instructions to

their respective execution units. Figure 2.6 shows the location of the front end in a simplified

illustration of a CU. Figure 2.7 shows the details of a compute unit front end.

The front end consists of a set of wavefront pools, a fetch stage, a set of corresponding

fetch buffers, and an issue stage. The number of wavefront pools and fetch buffers equals

the number of SIMD units. When a workgroup is first mapped to a compute unit, its
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corresponding wavefronts are assigned to an available wavefront pool (all wavefronts in the

workgroup are assigned to the same wavefront pool). During the fetch stage, the oldest

wavefront in the pool is selected, instruction bytes are read from instruction memory at the

wavefront’s current program counter, and these bytes are put in the corresponding fetch

buffer. In the next cycle, the fetch stage operates on the next wavefront pool containing an

available wavefront, following a round-robin order [33].

In the issue stage, instructions are consumed from the fetch buffer in a round-robin

order. These instructions are then distributed to the private issue buffers of their corre-

sponding execution units where they wait for execution. Arithmetic vector instructions are

sent to the SIMD unit mapped to the wavefront pool it was fetched from. Any other type

of instruction is sent to shared instances of the scalar, branch, LDS or vector memory units.

Algorithm 2 Round-Robin wavefront scheduling

while programIsExecuting do
activeFetchBuffer = currentGPUcycle mod numWavefrontPools
while issuedInstructions < maxInstructionsPerType do

fbEntries = numberOfInstructionsInActiveFetchBuffer
oldestInst = NULL, i = 0
while i < fbEntried do

inst = instructionAtIndex i inActiveFetchBuffer
if inst isInvalidForAnyReason then

continue
i + +

end if
if instructionIsOlderThan oldestInst or oldestInst = NULL then

oldestInst = inst
end if
i + +

end while
if oldestInst 6= NULL and destinationIssueBufferIsNotFull then

issueTheInstructionToAppropriateIssueBuffer
end if

end while
end while
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Figure 2.8. Interaction between the functional and timing simulators in Multi2Sim [33].

2.4 Multi2sim Simulator

Multi2Sim is a cycle accurate simulation framework for CPU-GPU heterogeneous comput-

ing. It currently models superscalar, multithreaded, and multicore CPUs as well as GPU

architectures. At the time of this writing, it currently models Nvidia Fermi, AMD GCN and

AMD Evergreen architectures.

The framework consists of four independent software modules. They include a dis-

assembler, functional simulator (emulator), timing simulator (detailed/ architectural) and a

visual tool. These modules can work independently or communicate with each other. For

this research, the architectural simulator was used.

The functional simulator is basically an emulator that reproduces the behavior of a

program giving the illusion that it is running on a given micro-architecture. It can be used

to execute a program from start to completion, or serve as an interface for the architectural

simulator.

The architectural simulator models hardware structures and keeps track of their access

times. Among the modeled hardware components include pipeline stages, pipe registers,

instruction queues, functional units, cache memory, etc. The flow of instructions used in

the architectural simulator is obtained from calls to the functional simulator. The figure 2.8

illustrates the interaction between the architectural and functional simulators.
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Instructions are executed in order. When the architectural simulator detects free

space in the fetch/decode pipe register, it fetches a new instruction from the address deter-

mined by the program counter. It calls for the execution of this new instruction from the

functional simulator which then returns all information about the emulated instruction.

After the information about the emulated instruction is received by the architectural

simulator, the instruction is propagated through the pipeline stages where it accesses different

models of hardware resources (functional units, effective address calculators, data caches, etc)

with potentially different latencies [33].
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CHAPTER 3

THREAD SCHEDULERS

The goal of the thesis was to investigate the impact of various thread scheduling

schemes on GPU performance. To this end, we implemented the following schedulers on the

Multi2Sim architectural simulator.

• Lookahead wavefront scheduler

• Two-level wavefront scheduler

• Two-level + Lookahead scheduler

• Block Workgroup scheduler

The wavefront schedulers focus on improving the issue stage in the CU front end. For

workgroup scheduling, focus is placed on improving the ultra threaded dispatcher logic. In

the following sections, we discuss these schedulers and give details of their implementation.

3.1 Lookahead wavefront scheduler

The default (i.e., baseline) round-robin wavefront scheduler tries to issue a wavefront from a

chosen fetch buffer in a particular cycle for each type of instruction. If there is an unsuccessful
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issue, the scheduler waits till the next cycle to try to issue from the next fetch buffer.

However, there may be valid instructions in the other fetch buffers ready to be issued. The

proposed lookahead scheduler aims to exploit this and searches other fetch buffers for a valid

instruction if there is an unsuccessful issue from the current fetch buffer. This search is done

for all instruction types. Algorithm 3 shows the algorithm for this scheduler.

Algorithm 3 Lookahead wavefront scheduling

while kernelIsExecuting do
success = 0, j = 0
while j < numWavefrontPools do

while issuedInstructions < maxInstructionsPerType do
fbEntries = numberOfInstructionsInActiveFetchBuffer
oldestInst = NULL, i = 0
while i < fbEntries do

inst = instructionAtIndex i inActiveFetchBuffer
if inst isInvalidForAnyReason then

i + +
continue

end if
if instIsOlderThan oldestInst or oldestInst = NULL then

oldestInst = inst
end if
i + +

end while
if oldestInst 6= NULL and destinationIssueBufferIsNotFull then

issueTheInstructionToAppropriateIssueBuffer
sucess + +
issuedInstructions + +

end if
end while
if success = 1 then

break
end if
setActiveFetchBuffer to theNextFetchBuffer ifNotY etV isited
j + +

end while
end while
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3.2 Two-level wavefront scheduler

This scheduler is based on the ideas proposed in several papers [21] [14]. The key idea is

to split in-flight wavefronts into fetch groups. Wavefronts in a fetch group are scheduled in

round robin order until all the wavefronts in the fetch group stall. The next fetch group is

then selected and the wavefronts from it are scheduled again in round robin fashion. This is

continued in this manner, hence the name - two-level wavefront scheduling. In the proposed

two-level scheduler, we use each fetch buffer as a fetch group. Wavefronts from each fetch

buffer are scheduled in round-robin order until they all stall. Then the next fetch buffer

(i.e., fetch group) is selected for scheduling. Algorithm 4 details our implementation of the

two-level wavefront scheduler.

Algorithm 4 Two level wavefront scheduling

while kernelIsExecuting do
stall = 1
while issuedInstructions < maxInstructionsPerType do

fbEntries = numberOfInstructionsInActiveFetchBuffer
oldestInst = NULL, i = 0
while i < fbEntries do

inst = instructionAtIndex i inActiveFetchBuffer
if inst isInvalidForAnyReason then

i + +
continue

end if
if instIsOlderThan oldestInst or oldestInst = NULL then

oldestInst = inst
end if

end while
if oldestInst 6= NULL and destinationIssueBufferIsNotFull then

issueTheInstructionToAppropriateIssueBuffer
issuedInstructions + +
stall = 0

end if
end while
if stall = 1 then

setActiveFetchBuffertotheNextFetchBuffer
end if

end while
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3.3 Lookahead + Two-level wavefront scheduler

This scheduler combines the lookahead and two-level wavefront schedulers. Here, scheduling

is done in a round robin fashion from a particular fetch buffer until all the wavefronts in the

fetch buffer stall. However, if there is an unsuccessful issue for a particular instruction type,

the scheduler checks for that instruction type in the other fetch buffers. It is important to

note that this lookahead portion does not permanently change the selected fetch buffer for

issue. It just checks them for valid instructions and schedules if it finds one, reverting to

the originally selected fetch buffer after this search. Algorithm 5 shows the operation of this

scheduler.

3.4 Block Workgroup scheduler

The aim of the block workgroup scheduler is to exploit the spatial locality between work-

groups. The default first-available policy destroys this locality and ends up scattering these

workgroups among the compute units. Our workgroup scheduler addresses this issue by

assigning contiguous workgroups to each CU. We use a delayed WG scheduling in situa-

tions where a calculated destination compute unit is not available. By delayed, we mean

that we put off scheduling the workgroup to that CU until it becomes available. Figure 3.1

illustrates the difference between the default first-available workgroup scheduler and our

workgroup scheduler.

Algorithm 6 describes the operation of this scheduler.
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Algorithm 5 Lookahead wavefront scheduling

while kernelIsExecuting do
success = 0, j = 0, stall = 0
while j < numWavefrontPools do

while issuedInstructions < maxInstructionsPerType do
fbEntries = numberOfInstructionsInActiveFetchBuffer
oldestInst = NULL, i = 0
while i < fbEntried do

inst = instructionAtIndex i inActiveFetchBuffer
if inst isInvalidForAnyReason then

i + +
continue

end if
if instIsOlderThan oldestInst or oldestInst = NULL then

oldestInst = inst
end if
i + +

end while
if oldestInst 6= NULL and destinationIssueBufferIsNotFull then

issueTheInstructionToAppropriateIssueBuffer
sucess + +
issuedInstructions + +

end if
end while
if success = 1 then

break
end if
setActiveFetchBuffer to theNextFetchBuffer ifNotY etV isited
j + +

end while
if stall = 1 then

setActiveFetchBuffertotheNextFetchBuffer
end if

end while
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Figure 3.1. Workgroup scheduling

Algorithm 6 Block workgroup scheduling

while kernelIsExecuting do
i = 0
while count(waitingWorkgroupList) 6= 0 do

wg = waitingWorkgroupList[i]
destinationComputeUnit = floor(workgroupID/(numberOfWorkgroups/numberOfCUs))
if destinationComputeUnitIsAvailable then

removeWorkgroupFromWaitingListAndAssignToComputeUnit
i = 0

else
i + +

end if
end while

end while
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CHAPTER 4

EXPERIMENTS AND RESULTS

In this chapter, we present the experimental results and analysis of the proposed thread

schedulers. This chapter is organized as follows. In section 4.1 we present the architectural

configuration used in our experiments. Next, we discuss the performance metrics and bench-

marks used in our experiments in section 4.2 and 4.3 respectively. Finally we elaborate and

compare the performance of each scheduler in section 4.4.

4.1 Architectural specifications

Table 4.1 shows in-depth architectural parameters used in our experiments. These param-

eters closely resemble the hardware specification of AMD HD 7970 (Southern Island). The

configuration uses 32 compute units and clock frequency of 925MHz. As units, BufferSize

is measured in instructions, IssueWidth is the number of instructions that can be issued in

a cycle for that execution unit, and latency is the number of cycles to take for an operation

to complete.
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Table 4.1. GPU architectural configuration

Device BranchUnit
Frequency 925 Width 1
NumComputeUnits 32 IssueBufferSize 1

DecodeLatency 1
ComputeUnit DecodeBufferSize 1

NumWavefrontPools 4 ReadLatency 1
NumVectorRegisters 65536 ReadBufferSize 1
NumScalarRegisters 2048 ExecLatency 16
MaxWorkGroupsPerWavefrontPool 10 ExecBufferSize 16
MaxWavefrontsPerWavefrontPool 10 WriteLatency 1

WriteBufferSize 1
FrontEnd

FetchLatency 1 LDSUnit
FetchWidth 1 Width 1
FetchBufferSize 10 IssueBufferSize 1
IssueLatency 1 DecodeLatency 1
IssueWidth 5 DecodeBufferSize 1
MaxInstIssuedPerType 1 ReadLatency 1

ReadBufferSize 1
SIMDUnit MaxInflightMem 32

NumSIMDLanes 16 WriteLatency 1
Width 1 WriteBufferSize 1
IssueBufferSize 1
DecodeLatency 1 VectorMemUnit
DecodeBufferSize 1 Width 1
ReadExecWriteLatency 8 IssueBufferSize 1
ReadExecWriteBufferSize 2 DecodeLatency 1

DecodeBufferSize 1
ScalarUnit ReadLatency 1

Width 1 ReadBufferSize 1
IssueBufferSize 1 MaxInflightMem 32
DecodeLatency 1 WriteLatency 1
DecodeBufferSize 1 WriteBufferSize 1
ReadLatency 1
ReadBufferSize 1 LDS
ALULatency 4 Size 65536
ExecBufferSize 32 AllocSize 64
WriteLatency 1 BlockSize 64
WriteBufferSize 1 Latency 2

Ports 2

4.2 Performance metrics

Three performance metrics are used in this research. We explain each metric in the following

sections.

4.2.1 Cache hit rate

Cache is a fast on-chip memory space between processor and main memory [31]. This cache

memory is to exploit temporal and spatial locality present in programs by keeping frequently

used data or instructions in faster space. The cache hit rate is denoted as the fraction of
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cache accesses that result in a hit 1 as calculated in equation 4.1 [13]. Since our target GPU

(i.e., AMD GCN) has a private L1 cache per CU, we get an average hit rate of all the L1

caches using equation 4.2.

Hit rate =
number of cache hits

total number of cache accesses
(4.1)

Average hit rate =

∑k−1
i=0

number of cache hitsi
total number of cache accessesi

number of CUs
(4.2)

where k is the compute unit index

Theoretically, the higher the hit rate, the faster the program executes because it

yields less number of trips to high-latency main memory. Conversely, the lower the hit ratio,

the more long latency requests that have to be made to main memory, thus resulting slower

execution time.

4.2.2 Utilization of issue unit

The utilization of hardware issue unit (i.e., issue rate) has close relationship with hardware

resource utilization; the higher rate of instruction issue in the CU front-end, the higher uti-

lization of the CU’s resources. To have an idea of the rate of instruction issue, we keep track

of clock cycles where the issue unit in the CU successfully issues an instruction. When there

is a successful instruction issue, we call this an active issue cycle. On the contrary, when

there is no successful instruction issue, we call this an idle issue cycle. Equation 4.3 shows

the calculation of the idle issue cycles for one functional unit in the CU. For brevity, we use

IIC to refer to idle issue cycles in the following equations.

1A hit means that the data requested is found in the cache.
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Idle issue cycles(%) =
(total CU cycles− active issue cycles (for an execution unit))

total CU cycles

(4.3)

Since we have 5 functional units in a CU, we average the sum of the idle issue cycles

to each functional unit using equation 4.4 .

CUIC(%) =
branchIIC + scalarIIC + vector memoryIIC + ldsIIC + simdIIC

5
(4.4)

Finally, to get the idle issue cycles for the device, we average the CUIIC across all 32

compute units using equation 4.5.

DeviceIIC =

∑k−1
i=0 CUk idle issue cycles

number of active CUs
(4.5)

where k is the compute unit index

4.2.3 Instructions per cycle

Computer architects heavily use Instructions Per Cycle (IPC) to evaluate computer system

performance. IPC is the average number of instructions executed per clock cycle and it gives

a sense of the overall instruction throughput in the system [4]. In order for this metric to

be used to compare performance of different systems, the number of dynamic instructions

per program and clock cycle time have to be the same across the different systems. Our

experiments meet these requirements. Equations 4.6 and 4.7 show how IPC represents

system performance compared to the gold standard - execution time. Assuming two systems

A and B,
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Speedup(A) =
(time/program)B
(time/program)A

(4.6)

time/program =
instructions

program
× cycles

instruction
× time

cycle
(4.7)

Since the first and last terms are constant in our case in equation 4.7, we infer

that execution time is a function of the second term only - cycles/instruction and as such,

instructions/ cycle.

This speedup formula is justified in this study because our simulator generates deter-

ministic results (no operating system or interrupts) and provides the same results for every

run on given inputs. Instruction per program for the device and compute units are also al-

ways the same for every run on the same input. As a result, we use the IPC to evaluate the

impact of the different schedulers and gain valuable insight on the architectural performance.

4.3 Benchmarks

This section presents the benchmarks used in this research. We used two benchmark suites:

AMD SDK [3] and Rodinia [9]. For each benchmark in both suites, we used two different

input sizes to have a certain number of workgroups in the NDRange. This was done so that

we have two cases in terms of hardware occupancy - unsaturated and saturated.

• Saturated: This case uses large input sizes for the benchmarks. This was done so

that there will be a large number of workgroups in the GPU and also a large number

of workgroups per compute unit. Doing this allows us to investigate the impact of

the different thread scheduling techniques when the GPU resources are stressed to the

limit.

• Unsaturated: This case uses small input sizes for the benchmarks. This was done so

that there will be a small number of workgroups in the GPU and also a small number
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of workgroups per compute unit. Doing this allows us to investigate the impact of the

different thread scheduling techniques when the GPU resources are underutilized.

4.3.1 Benchmark descriptions

Benchmarks play very important role in computer architecture research. They allow the re-

search community to focus on a shared codebase and allow researchers to easily understand

each other’s results. If a set of benchmarks is generally accepted, it helps dispel concerns of

bias that may arise if the researcher creates their own benchmark [30]. In light of this, we

carefully chose a set of benchmarks generally accepted by the scientific community. They

were written in OpenCL and are briefly described below together with figures of the dynamic

instruction mix 2 in their kernels. Tables 4.2 and 4.3 summarize the benchmark configura-

tions. Benchmarks that contain a significant portion of vector-memory instructions - i.e.

memory intensive - during program execution are listed in the top half while non-memory

intensive benchmarks are listed in the bottom half.

• MatrixMultiplication: This benchmark performs matrix multiplication operation on

two input arrays and stores the result in an output array.

MatrixMultiplication 

LDSInstructions

Scalar ALUInstructions

Scalar Mem Instructions

Vector ALUInstructions

Vector Mem Instructions

Figure 4.1. Dynamic instruction distribution by type of MatrixMultiplication.

2The dynamic instruction mix shows how much of each type of instruction is processed during kernel
execution. For this study it enable us to see if a benchmark is memory intensive (i.e. a significant portion
of processed instructions are memory instructions.)
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• MatrixTranspose: This benchmark performs a matrix transpose on an input matrix

and stores the result in an output matrix [28].

MatrixTranspose 

LDSInstructions

Scalar ALUInstructions

Scalar Mem Instructions

Vector ALUInstructions

Vector Mem Instructions

Figure 4.2. Dynamic instruction distribution by type of MatrixTranspose.

• BlackScholes: This benchmark provides the partial differential equation for the evo-

lution of an option price under certain assumptions [5].

BlackScholes 

LDSInstructions

Scalar ALUInstructions

Scalar Mem Instructions

Vector ALUInstructions

Vector Mem Instructions

Figure 4.3. Dynamic instruction distribution by type of BlackScholes.

• BinomialOption: Option pricing is an important problem encountered in financial

engineering. This benchmark implements the binomial option pricing for the European

options [5].

• BitonicSort: This benchmark sorts an arbitrary sequence of numbers using the bitonic

sort algorithm. It works by creating bitonic sub-sequences in the original array, starting
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BinomialOption 

LDSInstructions

Scalar ALUInstructions

Scalar Mem Instructions

Vector ALUInstructions

Vector Mem Instructions

Figure 4.4. Dynamic instruction distribution by type of BinomialOption.

with sequences of size 4 and continuously merging the sub-sequences to create bigger

bitonic subsequences [5][25].

BitonicSort 

LDSInstructions

Scalar ALUInstructions

Scalar Mem Instructions

Vector ALUInstructions

Vector Mem Instructions

Figure 4.5. Dynamic instruction distribution by type of BitonicSort.

• FastWalshTransform: This benchmark implements an efficient version of the walsh

transform that can be done in O(nln(n)) complexity [5].

• ScanLargeArrays: This benchmark implements a parallel prefix-sum algorithm [12] [16].

• FloydWarshall: This benchmark implements the Floyd Warshall algorithm. This

algorithm computes the shortest path between each pair of node in a graph [20]. It

uses a dynamic programming approach that iteratively refines the adjacency matrix of

the graph in question until each entry in the matrix reflects the shortest path between

the corresponding nodes.
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FastWalshTransform 

LDSInstructions

Scalar ALUInstructions

Scalar Mem Instructions

Vector ALUInstructions

Vector Mem Instructions

Figure 4.6. Dynamic instruction distribution by type of FastWalshTransform.

ScanLargeArrays 

LDSInstructions

Scalar ALUInstructions

Scalar Mem Instructions

Vector ALUInstructions

Vector Mem Instructions

Figure 4.7. Dynamic instruction distribution by type of ScanLargeArrays.

FloydWarshall 

LDSInstructions

Scalar ALUInstructions

Scalar Mem Instructions

Vector ALUInstructions

Vector Mem Instructions

Figure 4.8. Dynamic instruction distribution by type of FloydWarshall.

• RadixSort: This benchmark implements a parallel radix sort algorithm. The imple-

mentation breaks keys (32 integers) into 8-bit digits and sorts one 8-bit digit at a time,

starting with the least significant digit. It loops four times to complete sorting [5].
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RadixSort 

LDSInstructions

Scalar ALUInstructions

Scalar Mem Instructions

Vector ALUInstructions

Vector Mem Instructions

Figure 4.9. Dynamic instruction distribution by type of RadixSort.

• Reduction: This benchmark implements a parallel reduction algorithm.

Reduction 

LDSInstructions

Scalar ALUInstructions

Scalar Mem Instructions

Vector ALUInstructions

Vector Mem Instructions

Figure 4.10. Dynamic instruction distribution by type of Reduction.

• Hotspot: This benchmark, gotten from the Rodinia benchmark suite, provides an

implementation of Hotspot. HotSpot is a widely used tool to estimate the temperature

of a processor based on an architectural floorplan and simulated power measurements.

The thermal simulation iteratively solves a series of differential equations for block.

Each output cell in the computational grid represents the average temperature value

of the corresponding area of the chip [8] [26] [9].

• BackPropagation: This benchmark, gotten from the Rodinia benchmark suite, pro-

vides an implementation of Back Propagation. Back Propagation is a machine-learning

algorithm that trains the weights of connecting nodes on a layered neural network. The
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Hotspot 

LDSInstructions

Scalar ALUInstructions

Scalar Mem Instructions

Vector ALUInstructions

Vector Mem Instructions

Figure 4.11. Dynamic instruction distribution by type of Hotspot.

application is comprised of two phases: the Forward Phase, in which the activations

are propagated from the input to the output layer, and the Backward Phase, in which

the error between the observed and requested values in the output layer is propagated

backwards to adjust the weights and bias values. In each layer, the processing of all

the nodes can be done in parallel [8] [26] [9].

Backprop 

LDSInstructions

Scalar ALUInstructions

Scalar Mem Instructions

Vector ALUInstructions

Vector Mem Instructions

Figure 4.12. Dynamic instruction distribution by type of BackPropagation.

4.4 Performance Analysis

4.4.1 Impact on Cache hit rate

The block workgroup scheduler is proposed in section 3.4. This scheduler was designed to

exploit the locality among workgroups with the goal of increasing the cache hit rate. In this

34



Table 4.2. Benchmark configuration (saturated)

Benchmark Abbr. Size WG count WGs per CU NDRange
MatrixMultiplication MM 1024 256 8 1
BitonicSort Bso 2048 67584 2112 66
FastWalshTransform FWT 262144 9216 288 18
FloydWarshall FW 256 65536 2048 256
RadixSort RS 524288 256 8 8
BackProp BP 65536 8192 256 2
MatrixTranspose MT 512 4096 128 1
BlackScholes BSc 1048576 1024 32 1
BinomialOption BO 1024 1024 32 1
ScanLargeArrays Scan 524288 4113 131 5
Reduction RD 1048576 512 16 1
Hotspot HS 512 1849 58 1

Table 4.3. Benchmark configuration (unsaturated)

Benchmark Abbr. Size WG count WGs per CU NDRange
MatrixMultiplication MM 512 64 2 1
BitonicSort Bso 16 80 2,3, 10 10
FastWalshTransform FWT 4096 96 3, 12 8
FloydWarshall FW 8 64 2, 8 8
RadixSort RS 13072 64 2, 8 8
BackProp BP 512 64 2 2
MatrixTranspose MT 128 64 2 1
BinomialOption BO 64 64 2 1
ScanLargeArrays Scan 8192 65 2,3 3
Reduction RD 131072 64 2 1
Hotspot HS 128 121 4 1

section, we investigate the impact of the proposed block workgroup scheduler on L1 cache

hit rate in each compute unit. The block workgroup scheduler is implemented on top of each

proposed wavefront scheduler and its impact on cache hit rate is analyzed.

i) Two-level wavefront scheduler + block workgroup scheduler

Figure 4.13 shows the cache hit rate for this configuration. For the saturated case, an average

cache hit rate is increased by 32% from baseline configuration. For the unsaturated case,

an average of 26.4% increase in cache hit ratio across all benchmarks is measured. The
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reason for this increased cache hit ratio is due to better locality in the cache. This locality

is preserved because the threads are assigned in a contiguous manner to the compute units.

We notice a higher hit rate in the saturated case because there are more threads which leads

to more memory accesses and more opportunities for finding requested data in the cache

memory. We also notice that the hotspot kernel had an increase in cache hit rate for the

unsaturated case but not the saturated case. We suspect this is due to decrease in locality

as the global work size increases. This decrease in locality is most likely due to increase in

the strides for the memory access patterns.
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Figure 4.13. Cache hit ratio for a two-level+block workgroup scheduler
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ii) Lookahead wavefront scheduler + block workgroup scheduler

Figure 4.14 shows the cache hit rate for this configuration. For the saturated case, we

observe 40.3% increase in the hit rate when compared to the base Lookahead scheduler. For

the unsaturated case, we observe an average of 26.6% increase in cache hit rate.
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Figure 4.14. Cache hit ratio for a lookahead+block workgroup scheduler

iii) Lookahead + Two-level wavefront scheduler + block workgroup scheduler

Figure 4.15 shows the hit rates for this configuration. For the saturated case, we observe

40.1% increase in the hit rate when compared to the base two-level + Lookahead scheduler.

For the unsaturated case, we measure an average of 19.6% increase in cache hit rate.
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Figure 4.15. Cache hit ratio for a two-level + lookahead wavefront scheduler

iv) Base round-robin wavefront scheduler + Block workgroup scheduler

Figure 4.16 shows the cache hit rate for this configuration. For the saturated case, we observe

an average of 38% increase in cache hit rate. In the unsaturated case we observe an average

of 19.5% increase in the hit ratio across all benchmarks.

4.4.2 Impact on issue unit utilization

Here we show how each wavefront scheduler affects the average idle issue unit cycles in the

GPU. We also show how the block workgroup scheduler affects idle issue cycles.
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Figure 4.16. Cache hit ratio for a round-robin wavefront scheduler + block workgroup
scheduler

i) Two-level scheduler

In this two-level scheduler implementation, we use a fetch group size of 10 (equal to the fetch

buffer size). Figure 4.17 shows the normalized idle issue cycles for the profiled benchmarks.

In the saturated case, the BlackScholes, BitonicSort, FloydWarshall and BackPropagation

benchmarks show increased idle cycles in the issue unit. The other benchmarks show little

or no change from the baseline round robin scheduler. For the unsaturated case, we notice

a 7% reduction in the idle issue cycles for the MatrixMultiplication benchmark. The Back-

Propagation, Hotspot, BitonicSort and MatrixTranspose benchmarks show increase in idle
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issue cycles. The rest of the benchmarks show little or no change from the baseline scheduler.

This increase in issue cycles is because this scheduler was able to find only a small number

of instructions per cycle for scheduling compared to the baseline round-robin scheduler and

as a result, unable to take much advantage of the instruction level parallelism (ILP) in the

CU.
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Figure 4.17. Idle cycles for a two-level wavefront scheduler

ii) Lookahead scheduler

Fig 4.18 shows the idle issue cycles measured for the Lookahead scheduler. In the saturated

case, compared to the baseline round-robin wavefront scheduler, we noticed a reduction in
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idle issue cycles from 1% to 6.4% for half of the benchmarks. For the other half, we noticed

an increase in idle cycles ranging from 1% to 6%. On average, there was no change in the

idle issue cycles compared to the baseline wavefront scheduler for the saturated case. For

benchmarks with increased idle cycles, our experiments showed that this was due to the

reduction in cache hit rate. For the unsaturated case, we measure a best case reduction of

up to 10% in idle cycles for all the benchmarks. This is because the lookahead scheduler

reduces the penalty of having an empty fetch buffer by also searching occupied fetch buffers

for ready wavefronts in the same clock cycle and as such, better exploits the available ILP

present in the compute unit.
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Figure 4.18. Idle issue cycles for a lookahead wavefront scheduler
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iii) Lookahead + Two-level scheduler

Fig 4.19 shows the performance of the Lookahead + Two-Level scheduler compared to the

baseline. For the saturated case, the average idle issue cycles was equal to that of the

baseline scheduler for the profiled benchmarks. For the unsaturated case, we measure a

best case reduced idle issue unit cycles of up to 8% for all except one benchmark. For the

MatrixTranspose benchmark, the number of idle issue cycles is increased by 5%.
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Figure 4.19. Idle cycles for a two-level + lookahead wavefront scheduler
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iv) Block workgroup scheduler

Figure 4.20 shows the idle issue unit cycles measured when the block workgroup scheduler

is combined with each wavefront scheduler. We compare the results to the baseline first-

available workgroup scheduler. For the saturated case, we see a best case reduction of 36% in

idle issue cycles. For the unsaturated case, we see a best case reduction of 6% in idle cycles.

This performance delta between the saturated and unsaturated cases is due to the massive

number of threads found in the saturated case. This massive number of threads gives more

opportunity for exploitation of the preserved locality3 in the cache due to block workgroup

allocation.
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Figure 4.20. Idle cycles for a block workgroup scheduler

3This preserved locality was discussed in section 4.4.1
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4.4.3 Impact on IPC

In this section, we present the impact of the proposed schedulers on the overall Instructions

Per Cycle (IPC). We use the normalized IPC as a performance metric in the following charts.

We discuss the performance of the Two-level, Lookahead, Two-level + Lookahead wavefront

schedulers and the block workgroup scheduler.
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Figure 4.21. Measured IPC for a two-level wavefront scheduler

i) Two-level scheduler

Figure 4.21 shows the two-level scheduler’s impact on IPC. For the saturated case, we notice a

performance decrease of 8%. For the unsaturated case, we measure a performance decrease of
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3.6%. Using this scheduler, most benchmarks performed the same or worse than the baseline

round-robin wavefront scheduler. Again, this is due to the two-level wavefront scheduler’s

poor exploitation of the instruction-level parallelism of the GCN compute unit.
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Figure 4.22. Measured IPC for a Lookahead wavefront scheduler

ii) Lookahead scheduler

For the unsaturated case, we get a best case increase in IPC of 8% on all except two bench-

marks. For the saturated case, we measure the same performance on average across all the

benchmarks when compared to the baseline round-robin scheduler. The reason for the im-

proved performance of this scheduler in the unsaturated case is due to the mitigation of the

penalty incurred by empty fetch buffers in the CU. Figure 4.22 shows the performance of
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this scheduler.
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Figure 4.23. Performance for a Lookahead + two-level wavefront scheduler

iii) Lookahead + Two-level scheduler

Figure 4.23 shows the performance of this scheduler. For unsaturated case, we measure a

best case increase of 8%. For saturated case, we measure a performance decrease of 2%. Our

tests show that this degraded performance was due to the poor performance of the two-level

portion of this configuration.
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Figure 4.24. Performance for a block workgroup scheduler

iv) Block workgroup scheduler

Here we present the impact on IPC obtained by combining the block workgroup scheduler

with each wavefront scheduler. For the saturated case, we measure an average performance

increase of 16.5% across all the wavefront scheduler implementations. We measure an av-

erage of 16.7%, 18.4%, 14.5% and 16.3% for the Base, Lookahead, Two-level and Two-

level+Lookahead schedulers respectively.

For the unsaturated case, we measure an average performance increase of 2.3% across

all the wavefront schedulers. We measure an average of 3.5%, 2%, 2.2% and 1.5% for the

Base, Lookahead, Two-level and Two-level+Lookahead schedulers respectively. Figure 4.24

shows the performance of a block workgroup scheduler.

From our experiments, we notice that the performance of the block workgroup sched-

uler is impacted by the cache hit rate and the dynamic instruction mix in the kernel. Though

the BinomialOption, Scan, Reduction and BlackScholes kernels have much improved cache

hit rate by using block workgroup allocation, we see that the overall performance is not im-
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pacted. This is because these kernels have a very small number of vector memory instructions

and as a result, the improved cache hit rate has little to no impact on overall performance.

The Backprop and radixsort kernels have a significant amount of vector memory instructions,

but overall performance is not impacted due to no increase in cache hit ratio. Tracing the

RadixSort kernel, we see that this cache behavior is as a result of the long strided memory

accesses in the kernel. These long strides reduce the amount of locality present in the pro-

gram and as a result assigning contiguous workgroups to the same CU does not improve the

cache performance. The Hotspot kernel has a small amount of vector memory instructions

and no improved cache hit rate (in the saturated case). As expected, overall performance is

not impacted. The FastWalshTransform, BitonicSort, MatrixMultiplication, FloydWarshall

and MatrixTranspose all see improved performance using this workgroup scheduler. This

is because their kernels have a significant number of vector memory instructions combined

with an improved cache hit rate due to regular memory access patterns.
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CHAPTER 5

CONCLUSION

In this thesis, we aimed at understanding the performance impact of thread (i.e., wavefront

and workgroup) scheduling on modern GPUs. To this end, we implemented different thread

schedulers at wavefront and workgroup granularities. The proposed schedulers at wavefront

level are Two-level, Lookahead and Two-level + Lookahead schedulers. A Block Workgroup

scheduler that schedules threads at a workgroup granularity was also implemented. The

performance of these schedulers were compared to that of the default round-robin wavefront

and first-available workgroup schedulers. Through extensive experiments and evaluation, we

observed the followings.

• Checking all fetch buffers for instruction issue is helpful in hardware utilization for

unsaturated cases (i.e., small input).

• Assigning contiguous workgroups to the same CU has a huge impact on cache hit rate

as well as overall performance.

• The impact of block workgroup allocation is most beneficial in benchmarks with regular

memory access patterns

• The impact of block workgroup allocation is most beneficial in memory intensive bench-

marks.
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• Using a two-level wavefront scheduler degrades performance in an architecture like

GCN. We anticipate it would work better with architectures that fetch instructions

from a single pool of wavefronts.

Our experiments and evaluations demonstrate that on massively multithreaded GPUs,

hardware thread scheduling plays a very important role in performance, and care needs to

be taken to choose the right one for the target GPU architecture.
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