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ABSTRACT

Cooperative communication techniques have been introduced in wireless networks to

achieve spacial diversity-gain via the readiness of multiple users (via relays) to assist a source

forwarding its data to a final destination. Cooperative communication techniques have shown

their capability in improving system reliability and extending coverage area, and hence, it is

believable that they will act as a promising technology for the coming fifth-generation (5G).

Nevertheless, most existing work reported in literature on performance studies of wireless

cooperative-based systems are based on the assumptions that the multipath fading channels

among systems cooperating nodes are quasi-static (i.e., fading channels coefficients are con-

stant over a number of consecutive signaling periods) and channel-state-information (CSI)

estimation processes at systems receivers are perfect. Nowadays, however, there is an in-

creased number of users riding high-speed public transportation vehicles and demanding

wireless data services through their own terminals. As a result of such high mobility wireless

terminals, the assumption of time-selective (i.e., non quasi-static) fading is more realistic.

This time-selective fading environment would severely deteriorate the performance of exist-

ing wireless cooperative systems that have been already designed based on the assumption

of quasi-static fading (low users speeds). Further, due to impairments associated with prac-

tical receiver tracking-loops implementation issues, it is more general to assume that CSI

estimations at systems receiving sides are imperfect.

The scope of this dissertation is to provide comprehensive performance evaluation

study for several emerging models of wireless amplify-and-forward (AF) cooperative-based

communication systems that operate under the effects of the more general scenarios of high

nodes mobility (time-selective fading) and imperfect channel estimations. This performance

evaluation study is conducted by deriving closed-form expressions for different performance
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metrics; including error probability, outage probability and channel capacity. Monte Carlo

simulations are also provided to complement and validate the analytical analyses. All of the

obtained results in this dissertation are novel and general for mobile as well as non-moving

nodes and for imperfect as well as perfect CSI estimations. Moreover, in this dissertation

we develop innovative and applicable solutions and receiver designs that are capable of

mitigating the detrimental impacts of the high nodes mobility on the performance of the

cooperative system models under study.
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PREFACE

Modern wireless communication systems require reliable communication with very

low error rates, in order to achieve very high data rates, and simple designs with less pro-

cessing at mobil nodes. Achieving these requirements is mainly challenged by the multipath

fading nature of the wireless channels, which greatly affects the quality of received signals

and impairs overall system performance. Alleviating these multipath fading detrimental im-

pacts in wireless systems is possible by employing diversity. The idea of diversity is based

on transmitting same information-bearing signals over multiple independent fading chan-

nels and then combining all received replicas via appropriate diversity combining receiver.

This technique has great capability of reducing the probability of having deep fading and of

improving the combined received signal quality. Diversity techniques have been intensively

studied in literature and several approaches have been proposed, which are already employed

in current communication systems. One of these approaches is what so called antenna di-

versity (or spacial diversity), in which spaced sufficiently far enough multiple antennas can

be located at the transmitter, the receiver or both. Based on where antennas are located

in communication systems terminals, antenna diversity techniques can be classified into

receive-diversity, using single transmit antenna and multiple receive antennas (so-called as

single-input-multiple-output (SIMO) systems), and transmit-diversity, using multiple trans-

mit antennas and single receive antenna (so-called as multiple-input-single-output (MISO)

systems). Moreover, the combination of both is applicable and the resulted system is what

so called multiple-input-multiple-output (MIMO) system. In SIMO systems, efficient com-

bining methodologies are required at the receiving side to combine all received signals and
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obtain the intended diversity gain. Among these combining methodologies that have been

widely studied in communications literature are maximal-ratio-combining (MRC), equal-

gain-combining (EGC) and selection-combining (SC). In MISO systems, diversity gain can

be achieved at receiving sides if transmit data symbols are distributed among the transmit

antennas in an efficient design that guarantees propagating them over multiple independent

channels. Among these efficient designs is space-time-coding (STC). In STC-based com-

munication systems, transmit data stream is encoded across transmit antennas and several

signaling periods such that redundant reception of same information-bearing data symbols

over independent fading channels is guaranteed. In MIMO systems design problems, there

is a tradeoff between improving overall system performance (via extracting spacial diversity

gain) or achieving higher spectral efficiency and data throughput (via extracting spacial mul-

tiplexing gain). Employing STC in MIMO systems is an oriented design approach toward

maximizing system diversity gain and improving its performance. On the other hand, de-

signing and employing vertical Bell-labs-layered-space-time (V-BLAST) receiving equalizers

in MIMO systems is an oriented design approach toward maximizing system throughput.

Achieving MIMO spacial diversity and/or multiplexing gains at some wireless devices

might be impractical due to their size, cost and energy limitations. Therefore, during the

past decade, an alternative of what so-called cooperative communication has been proposed

to achieve diversity without modifications on power and size constraints of mobile wireless

terminals. This could be achieved by allowing multiple users (called relays) to cooperate

and effectively share their antennas, as a virtual antenna array, and other resources to assist

the source node (transmitter) forwarding its data to a final destination. In general, two

common scenarios of relaying can be applied in cooperative networks; amplify-and-forward

(AF) and decode-and-forward (DF). In AF system, the relays only amplify the received

signals broadcasted from the source and retransmit them to the ultimate destination without

any detection or decoding of the original data. In DF systems, the received signals at the

relays are decoded to recover the information bearing data, and then retransmitted once again
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toward the destination. It has been demonstrated that cooperative diversity techniques can

achieve a diversity gain equal to the number of paths between the source and the ultimate

destination even though all cooperating nodes are equipped with single antennas. Further,

the transmission of space-time-codes over wireless cooperative networks has gained great

interest in the research community. By this combination, the STC transmit diversity gain

achieved at the receiving node can be increased proportionally with the number of the

relays without affecting the design of the STC decoders. Recently, cooperative diversity is a

promising technique that has found its way in several recent mobile wireless communication

systems, e.g., IEEE 802.11s and 3GPP LTE. It is also expected to be included as a feature

in the coming fifth-generation (5G) standards.

Performance analysis of cooperative diversity systems has attracted a huge research

interest in the communications literature community. Nevertheless, most of reported research

results are based on the the assumptions that the fading channels among the cooperating

nodes are quasi-static (i.e., their fading coefficients are assumed to be constant over a num-

ber of consecutive signaling periods) and the channel-state-information (CSI) estimation

processes at the systems receivers (the relays and destination) are perfect. However, in prac-

tical wireless networks applications, these assumptions are not fairly realistic. For example,

nowadays, number of users using wireless terminals while they are riding high-speed public

transportation vehicles (e.g., cars, buses, trains, subways, or airplanes) is increasing. In such

high mobility wireless systems, and according to Jakes’ autocorrelation model, increasing

the relative speed between any two communicating nodes reduces the correlation between

any two time-adjacent coefficients of their fading channels. This is basically as a result of

the increased Doppler spread by nodes mobility. For example, a mobile moving at a speed

of 70 mph, transmitting a data rate of 10 kilo-symbols-per-second (ksps) and operating at

a carrier frequency of 5 GHz can introduce a Doppler shift of 550 Hz. Furthermore, the 3G

European cellular standard (i.e., higher data-rate systems) works on trains as fast as 300

mile-per-hour (mph), which introduces a Doppler shift of up to 800 Hz for a carrier frequency
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of 2 GHz. There are also some military applications like unmanned airborne vehicles (UAV)

systems in which higher Doppler shifts is encountered. Therefore, in all of these applications,

the assumption of time-selective (non quasi-static) fading is more realistic. Moreover, due

to impairments associated with practical receiver implementation issues, it is more practical

to assume that estimated fading channel coefficients at systems receivers are corrupted by

estimation errors (i.e, CSI estimation is imperfect). These facts motivate us to investigate

in this dissertation the impact of high nodes mobility (the time-selective fading) and the

imperfect CSI estimation on the performance of different cooperative based wireless com-

munication system scenarios and to propose innovative and realistic solutions to overcome

with these impacts. This dissertation is partitioned into two main parts and each part is

divided into chapters. In the following, we summarize the research contribution behind this

dissertation by providing a summery for each part conducted work.

In Part I of this dissertation, we are concerned in analyzing and investigating the

performance of wireless amplify-and-forward (AF) cooperative communication systems with

single-antenna nodes under the impacts of the time-selective fading (due to high nodes mo-

bility) and the imperfect CSI estimation. This part includes three main research problems.

In the first one (chapter 2), we consider such a time-selective fading AF cooperative sys-

tem model but with multiple relays, variable amplification gains at the relays, negligible

CSI estimation errors (perfect estimation) at the receivers, and regular cooperative protocol

(in which all relays signals are combined at the destination via MRC combining). In this

chapter, we analyze the performance of this cooperative based system model in terms of

three metrics; the bit error rate (BER), the outage probability and the system Shannon

capacity. More specifically, we derive novel closed-form tight approximate expressions for

the per-block-average of these three performance metrics, which are further verified through

exact Monte Carlo simulations. The derived expressions in this chapter are general functions

of both the cooperating nodes speeds (in terms of the links correlation parameters) and the
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receivers’ tracking loops CSI estimation rates1 (in terms of the transmitted block length).

Thus, these expressions are valid for mobile as well as static nodes for both low and high

CSI estimation rates. We use these expressions to analytically investigate the system per-

formance under the impacts of several nodes mobility scenarios. Further, these expressions

are used to investigate the role of the receiver’s tracking loops speeds in mitigating the high

nodes mobility impact on the system performance. In the second research problem of part

I (chapter 3), we consider same cooperative based system model considered in chapter 2,

but, along with the practical assumption of nodes mobility (time-selective fading), we follow

the more realistic assumption of imperfect CSI estimation at the relays and the destination

receivers. Under these assumptions, we, in chapter 3, similarly analyze the overall sys-

tem performance by deriving closed-form expressions for the system per-block-average BER,

outage probability, and Shannon capacity. The performance metric expressions obtained

in chapter 3 are functions of the fading channels correlation parameters as well as of the

channel estimation errors, and thus, they generalize their corresponding performance metric

expressions in chapter 2. It should be noted that the regular cooperative protocol (which is

employed in chapters 2 and 3 of part I of this dissertation) has a drawback that the second

phase data transmission from the relays to the destination requires number of orthogonal

channels equivalent to the number of the system relays. This yields an inefficient use of

the system channel resources and reduction in its spectral efficiency. An alternative to the

regular cooperative protocol that can tackle this problem without reducing the achieved full

diversity gain is the best-relay-selection. In this protocol, the relay that achieves the highest

effective signal-to-noise-ratio (SNR) at the destination is the only relay that retransmits to

the destination. By this scheme, the number of the required transmission channels is dropped

to two, and thus, results in reduced required channel resources. However, in communication

systems literature, performance evaluation of best-relay-selection cooperative based systems

has been conducted with negligible nodes mobility and imperfect channel estimation effects.

1By CSI estimation rate we mean how much the receivers’ tracking loops are fast enough to catch up and
estimate the fading channels coefficients over the individual signaling periods.
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Thus, chapter 4 of this dissertation is dedicated to fill this literature gab by evaluating the

performance of the best-relay-selection cooperative protocol considering both practical as-

sumptions of mobile nodes and imperfect channel estimation. In chapter 4, we consider same

system model as in chapter 3, but instead of employing the regular cooperative scheme we

employ the best-relay-selection one and analyze its overall performance by deriving novel

and general closed-form expressions for its BER, outage probability and Shannon capacity.

Part II of this dissertation includes four research problems, in which, we provide ana-

lytical symbol error probability (SEP) performance evaluation and improvement for wireless

multiple-relay fixed-amplification-gain AF cooperative communication systems that employ

Alamouit-type orthogonal-space-time-block-code (OSTBC) transmission at the source and

operate in high mobility environment along with either perfect or imperfect CSI estima-

tion. In chapter 6, we consider such a mobile cooperative system model with perfect CSI

estimation assumption and employ the classical Alamouti space-time decoder (ALD) at

the destination. We then show that the time-selective fading (or the high nodes mobility)

destroys the orthogonality and the optimality of this ALD decoder as a result of its out-

put correlated and non-separable (with inter-transmit-antenna-interference (ITAI)) decision

statistics. Starting from these decision statistics, we derive exact general conditional SEP

expression for the system under study and use it to semi-analytically evaluate the system

average SEP performance. We show that this ALD based system average SEP performance

is severely affected by high nodes mobility and experiences irreducible error floors. In order

to overcome with this nodes mobility effect, in chapter 7, we design a zero-forcing-space-

time-decoder (ZFSTD) that could be employed at the system destination (instead of the

ALD) such that it is capable of providing decision statistics without ITAI terms. In chapter

7, we evaluate the average SEP performance of this proposed ZFSTD based system and

show its perfect immunity against the high nodes mobility by completely suppressing the

error floors. We also show, however, that this proposed ZFSTD has a drawback that its

achieved error performance improvement over that of the ALD system comes at the expense

xix



of additional decoding complexity at the destination. Therefore, in order to address this

drawback, we propose in chapter 7 another space-time decoder that has high capability of

reducing the nodes mobility impact on the system error performance, but without any ad-

ditional decoding complexity (i.e., has decoding complexity level equal to that of the ALD

but with improved error performance). In particular, we derive the decoding matrix of this

proposed decoder, employ it at the destination and show that it achieves the required target

by providing separable decision statistics and improved error performance. The proposed

decoder in chapter 8 is sub-optimal because it provides correlated statistics, and hence, we

refer to it as sub-optimal-space-time-decoder (SOSTD). In chapter 9 of the dissertation, we

generalize the ALD system model studied in chapter 6 by assuming (along with assumption

that the system fading channels are time-selective) that the channel estimation processes at

the system relays and destination are imperfect. For this extended system, we derive tight

approximate expression for its conditional SEP performance, which generalizes the one de-

rived in chapter 6 and helps in investigating the impact of both nodes mobility and channel

estimation errors on the performance of mobile AF cooperative communication systems that

employs Alamouti-type OSTBC coding and decoding.
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Part I:

Amplify-and-Forward (AF) Cooperative Communication Systems with Mobile Nodes and

Imperfect CSI Estimation
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CHAPTER 1

Introduction

1.1 Literature Review

Performance evaluation of wireless cooperative communication networks under the

impact of the more practical scenarios of imperfect (or outdated) channel estimation and/or

time-selective fading (due to high nodes mobility or Doppler spread effect) has been consid-

ered in several locations in literature. In [1] and [2], the effects of practical channel estimation

schemes, in terms of estimator design and pilot symbol spacing based upon realistic channel

models, on the performance of quasi-static fading AF cooperative communication systems

have been investigated. In [3], the impact of both imperfect channel estimation and Doppler

spread on the performance of a single-relay AF cooperative system has been studied, where

closed-form expression for the system symbol error rate (SER) performance has been de-

rived. The authors of [4] have considered dual-hop AF cooperative system with quasi-static

fading environment and investigated the effect of the imperfect channel estimation at the

relay’s receiver on the system error and outage probabilities. In [5], the authors have de-

rived closed-form SER expressions for a multiple-relay DF cooperative network operating in

time-selective fading environment but with perfect channel estimation. The work in [6] has

focused on studying the harmful effects of the unknown and time-varying fading channels

on the information rate of a single-relay AF cooperative system. The results reported in

[3] and [5] have shown that the imperfect channel estimation and/or the time-selective fad-

ing assumptions severely degrade the coherent-detection error performance of the systems

under study, where such degradation is mainly represented by irreducible error floors. It is

worthwhile to mention that the analyses in [3]–[6] are conducted under the employment of
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the pilot-symbol-assisted modulation (PSAM) technique to model the time-selective (time-

varying) fading channles. In literature, PSAM technique has been proposed to estimate the

gains of the time-varying fading channels and it is practically implemented by periodically

inserting known pilot symbols to the transmitted data sequences [7], [8]. An alternative to

PSAM, to model the time-varying fading channels or the channel estimation processes, is the

first-order autoregressive (AR1) model. The information theoretic results reported in [9] have

shown that the AR1 model is a sufficiently accurate model for the time-varying fading chan-

nels. The issue of estimating the parameters of the AR1 model have been studied in several

places in literature [10], [11], [12]. In [10] and [11], the work is devoted to channel estimation

and tracking of the AR1 model parameters in non-cooperative based systems. In [12], the

authors have analysed these estimation and tracking processes for an AF cooperative system

based on Kalman filter (KF) based algorithm. In [13], outdated channel estimates (due to

feedback delay) have been assumed and modeled via the AR1 process, and its impact on the

performance of relay selection AF cooperative system has been evaluated. In this modeling

of the outdated channel estimates, the AR1 process is utilized to represent the correlation

between the delayed (estimated) and the current (actual) fading channel coefficients. In [14]

and [15], the AR1 model has been exploited to model the time-varying fading channels (by

expressing the correlation between the actual time-adjacent channel coefficients) in cooper-

ative systems. In [14], a partially coherent detector for AF and DF single-relay cooperative

network has been proposed to mitigate the error floors appeared in case of coherent detec-

tions. In [15], the authors have considered a multiple-relay AF cooperative diversity system

and employed the differential coherent detection at the destination in order to overcome with

the time-varying fading channels impact. In the system model assumed in [15] the CSI is

not required at the relays and the destination and the amplification gains at the relay nodes

are not adaptive to the channel gains (i.e., fixed gains).
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1.2 Work Summery

Based on the above aforementioned literature review and to the best of our knowl-

edge, none of the work reported has addressed the performance evaluation of a multiple-relay

AF wireless cooperative communication system with maximal-ratio-combining (MRC) at the

destination under the effect of the time-selective fading and CSI estimation rates (i.e., how

much the receivers are fast enough to track and estimate the channel gains over individual

time slots). In the first three chapters of this part, we consider such a system model with

a source node (S), M -relays (R1, R2, · · ·, RM) and a destination node (D) and use the AR1

process to model the system time-selective fading channels among the communicating nodes.

Unlike the work in [15], we consider variable amplification gain at the relays, coherent MRC

detection at the destination where the CSI knowledge is required at the system receivers.

We first derive novel expressions for the direct and the ith indirect (end-to-end) paths in-

stantaneous SNRs, which are general for the links temporal characteristics. We then exploit

the moment generating function (MGF) approach to derive the probability density functions

(pdf) of the upper bounded total effective SNR obtained at the output of the MRC desti-

nation. We use same pdf to derive general closed-form expressions for the per-block-average

system BER, considering binary phase shift keying (BPSK) transmission, outage probabil-

ity, and system Shannon capacity as well as their asymptotic limits. Using these derived

expressions, we analytically and numerically investigate the impact of different nodes mobil-

ity scenarios as well as the effect of CSI estimation rates on the overall system performance.

These analyses are conducted in this part for both assumptions of perfect (in chapter 2) and

imperfect (in chapters 3 and 4) channel estimations. The analyses conducted in chapter 3,

are repeated in chapter 4 but considering the best-relay-selection (BRS) scheme instead of

the regular one. The remainder of this part of this dissertation is organized as follows. In

chapter 2 we present the multiple-relay system and channel model and discusses the AR1

process used to model the fading channels, the variable-gains considered at the relays, and

the CSI estimations at the relays and the destination. In this chapter, we employ the regular
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cooperative protocol and analyze the overall system performance considering perfect channel

estimation at the network’s receivers. Chapter 3 extends the analysis in chapter 2 by follow-

ing the more general assumption of imperfect channel estimation. In chapter 4, we reanalyze

the performance of the system model under study but by employing the best-relay-selection

cooperative protocol instead of the regular one along with imperfect channel estimation.
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CHAPTER 2

Regular M -Relay Variable-Gain AF Cooperative Systems With Mobile Nodes and Perfect

CSI Estimation: SNR Derivation and Performance Analysis

2.1 Chapter Overview

In this chapter, we consider a dual-hop multiple-relay variable-gain amplify-and-

forward (AF) cooperative system with maximal ratio combining (MRC) at the destination

and investigate the effects of both the cooperating-nodes mobility and the receivers’ estima-

tion rates of the channel state information (CSI) on its performance. By CSI estimation rates

we mean how much the receivers’ tracking loops are fast enough to catch up and estimate the

fading channels gains over the individual signaling periods. Also, the estimation processes

at the network’s receivers (the relays and the destination) are assumed to be perfect, i.e.,

the channel estimation error is negligible. In addition, we employ in this chapter the regular

cooperative protocol, in which all relays are active and participate in the relaying process

via orthogonal transmissions. The fading links between any two cooperating nodes in this

network are assumed to be frequency-flat (frequency-nonselective), time-selective (as a result

of the nodes mobility), Rayleigh, independent but not identically distributed (i.n.i.d), and

modeled by a first-order autoregressive (AR1) process.

Under these considerations, we first derive exact expressions for the destination’s

effective signal-to-noise-ratios (SNRs) through the direct (source-to-destination) and the

ith-indirect (end-to-end) paths. Moreover, we derive approximate closed-form expression for

the probability density function (pdf) of the total effective SNR at the destination’s MRC

output. Using this pdf, We derive closed-form tight approximate expressions for the system’s

per-block-average bit error rate (BER), outage probability, and system capacity in Shannon’s
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sense. These expressions are generic enough and valid for time-selective as well as quasi-static

fading links for both low and high CSI estimation rates. We analytically show that, due to

relatively high speeds of the cooperating-nodes, the system BER, outage probability, and

capacity are severely degraded and, in some particular network circumstances, experience

asymptotic limits. When both of the source and the destination are static, the system

performance does not experience asymptotic limits even though the relays are in motion.

On the other hand, despite that the relays are static, the mobility of either the source or

the destination severely impact the system performance by asymptotic limits. Moreover, the

difference between the impact of the source mobility and the destination mobility depends

on the symmetrical conditions of the network two hops fading gains powers.

Moreover, we assume the scenario that the relays and the destination receivers are

equipped with fast tracking and estimation loops, and show that the harmful impact of

the nodes mobility (or the time-selective fading) can be completely eliminated. Simulation

and numerical results are also provided to verify the accuracy of the derived analytical

expressions.

2.2 System and Channel Model

2.2.1 Signal and link model

As depicted in Fig. 2.1, we consider a mobile cooperative network with a source

node S communicates with a destination node D via a direct link (S-D) and M dual-hop

indirect paths through M AF relays Ri, i = 1, 2...,M (S-Ri-D). We assume that the source

transmits consequent data blocks each withN symbols length. Over the kth signaling-period,

two phases of transmissions are accomplished throughout the network. In the first phase of

cooperation, the source broadcasts the signal x(k), and with average transmit energy Es, to

the destination and the relays. The received signals at the destination and at the ith relay
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Figure 2.1. System model: M -relay regular-protocol amplify-and-forward wireless coopera-
tive network with time-selective fading channels.

during this phase are, respectively, given by

rs,d(k) = hs,d(k)x(k) + ns,d(k) (2.2.1)

and,

rs,i(k) = hs,i(k)x(k) + ns,i(k). (2.2.2)

For AF relaying, the ith relay multiplies its received signal rs,i(k) by the amplifying gain

Gi(k) and, in the second phase of cooperation, retransmits it toward the destination as

xri(k) = Gi(k)rs,i(k). In this chapter we consider regular cooperative protocol, and thus

these transmissions from all relays are required to be orthogonal (either via TDMA, FDMA
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or CDMA) in order to travel through independent paths. However, the received signal at

the destination from the ith relay can be written as

ri,d(k) = hi,d(k)xri(k) + ni,d(k). (2.2.3)

The gains hs,d(k), hs,i(k) and hi,d(k) represent the small-sale fading coefficients corresponding

to the kth transmitted symbol during the S-D, S-Ri and Ri-D fading links, respectively,

which are distributed as complex Gaussian (i.e., Rayleigh envelope and uniform phase).

Each of ns,d(k), ns,i(k) and ni,d(k) is a zero-mean circularly symmetric complex Gaussian

(ZMCSCG) additive white noise with varianceNo (CN (0, No)) and they, respectively, corrupt

S-D, S-Ri and Ri-D links.

Because we consider mobile network, we assume that the relative speed between any

two communicating nodes is significant, and according to Jakes’ model [16], the variation in

the time-adjacent channel gains of their associated fading links can be considered significant.

In order to take this variation into account, we assume that each fading link between any

two communicating nodes is characterized as time-selective and modeled by the first-order

autoregressive (AR1) process [9] as

ha,b(k) = ρa,bha,b(k − 1) +
√
1− ρ2a,bea,b(k) (2.2.4)

where the pair a, b denotes for one of the following pairs; s, d, s, ri and ri, d. The random

process ea,b(k) represents the varying component of the associated link and assumed to

be ZMCSCG with a density of CN (0, σ2
a,b). The coefficient ρa,b, ∈ [0, 1], represents the

correlation parameter of the associated link and takes values between 0 and 1. According to

Jakes’ autocorrelation model [16], it is function of the communicating nodes relative speed

ν, the transmitted symbol duration Ts, the carrier frequency fc and the speed of light c as

ρ = J0

(2πfcνTs
c

)
(2.2.5)
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where J0(.) is the zeroth-order Bessel function of the first kind. It is clear from (2.2.5) that,

at a certain value of the carrier frequency fc, the parameter ρ is inversely proportional with

the relative speed ν while it is directly proportional with the transmission data-rate Rs =
1
Ts
.

Tables 2.1 and 2.2 shows different practical values for ρ as a function of the relative speed

and the transmission data-rate at carrier frequencies of fc = 1.9 GHz and fc = 5 GHz,

respectively.

Table 2.1. Different Correlation parameter values obtained using (2.2.5) for different relative
speeds in mph and transmission data rates in kbps with carrier frequency of 1.9 GHz.

speed ( mph) 10 kbps 44 kbps 64 kbps 144 kbps 1400 kbps

0 1 1 1 1 1
30 0.99968357 0.99998365 0.99999227 0.99999847 0.99999998
50 0.99802311 0.99989784 0.99995171 0.99999046 0.9999999
80 0.99494306 0.99973848 0.99987639 0.99997558 0.99999974
120 0.98863989 0.99941163 0.99972188 0.99994506 0.99999942
250 0.95116121 0.99744757 0.99879317 0.99976156 0.99999748

Table 2.2. Different Correlation parameter values obtained using (2.2.5) for different relative
speeds in mph and transmission data rates in kbps with carrier frequency of 5 GHz.

speed ( mph) 10 kbps 44 kbps 64 kbps 144 kbps 1400 kbps

0 1 1 1 1 1
30 0.99780966 0.9998868 0.9999465 0.99998943 0.99999989
50 0.9863496 0.99929263 0.99966563 0.99993395 0.9999993
80 0.9652415 0.99818963 0.99914411 0.99983091 0.99999821
120 0.922647 0.99592897 0.99807477 0.99961956 0.99999597
250 0.68579394 0.98239063 0.99165738 0.99834931 0.99998253

It should be noted that the set of the signals in (2.2.1), (2.2.2), and (2.2.3) summarizes

the operations taking place for the kth transmitted symbol from the source (x(k)). This is

because of our consideration that each fading link between any two nodes is time-selective,

and consequently, the transmitted symbol at the kth signaling period experiences its own

corresponding channel gains over the network.

10



2.2.2 Channel estimation and estimation-rate concept

Because the fading links in our network are time-selective (i.e., time varying), we

assume that the relays and the destination estimation (or tracking) loops can not catch up

with their time-varying channel gains over the individual signaling periods. However, we

assume that these loops update their estimations only once every N transmitted symbols,

and therefore, they can estimate (using a pilot signal1) the fading gain over the first signaling

period of each transmitted block from the source (i.e., ha,b(1) ∀ a, b) as ĥa,b(1)). We can now

mean by CSI estimation rate as how much the receivers’ tracking loops are fast enough to

catch up with the rapid time-varying channel gains. In percentage, we quantify the CSI

estimation rate as ( 1
N
)100%. For example, 100% estimation rate means that the receivers

can perfectly track and estimate all of the individual adjacent channel gains (i.e., N =1). In

this chapter, we assume perfect-estimation of the fading links’ gains, therefore, we can write

ĥa,b(1) = ha,b(1) (the estimation error is negligible).

2.2.3 The amplification-gain

We consider variable amplification gains at the relays such that the instantaneous CSI

is required at each relay. As stated in [18], the amplification gain is constrained to satisfy

the following average energy constraint

E(|xri(k)|2) = Es. (2.2.6)

Therefore, the amplification-gain at the ith relay of our time-selective fading system model,

corresponding to the kth transmitted symbol, that can satisfy the constrain in (2.2.6) can

be given by

Gi(k) =

√
Es

|hs,i(k)|2Es +No

. (2.2.7)

1The work in [17] is conducted in the CSI estimation over wireless relying systems.
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It is clear that the amplification-gain in (2.2.7) requires estimating hs,i(k). However, because

the relays update their estimations only once every N transmitted symbols, the ith relay

uses the estimated channel gain hs,i(1) instead of hs,i(k) to compute the amplification-gain

in (2.2.7) as

Gi(k) =

√
Es

|hs,i(1)|2Es +No

. (2.2.8)

It is clear that the amplification-gain in (2.2.8) does not satisfy the required constraint in

(2.2.6) unless the relative speed between the source and the ith relay is zero (or the S-Ri

fading link is quasi-static with ρs,i = 1).

2.2.4 Regular cooperative protocol and Maximal Ratio Combining destination

In our network model, we assume that the destination employs MRC receiver, which

combines the direct-path received signal with the M orthogonal received signals forwarded

from the M relays. In addition, we assume symbol-by-symbol coherent detection process

for the resulted MRC combined signal, i.e., MRC symbol-by-symbol detection. For such a

detection process for the kth transmitted symbol x(k), it is required from the destination to

obtain estimated versions of ha,b(k) ∀ a, b to be used in the MRC combining [19]. However,

because, as we assumed above, the network receivers only estimates the gains ha,b(1) ∀ a, b,
the destination receiver uses these estimated gains, instead of ĥa,b(k), for the MRC detection

process of x(k). As will be shown later, this leads to sever performance degradation that

represents the impact of the nodes’ mobility (or of the time-selective fading).

2.3 Preliminary Results: Effective SNR and pdf

First, in order to mathematically show the time-selective fading impact on the desti-

nation received signals and to simplify the derivations of the effective SNRs, we derive, with

the help of (2.2.4), the following relationship between ha,b(k) and ha,b(1)

ha,b(k) = ρk−1
a,b ha,b(1) +

√
1− ρ2a,b

k−1∑
j=1

ρk−j−1
a,b ea,b(j) (2.3.1)
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2.3.1 destination direct-path effective SNR

First, by substituting (2.3.1), with the s, d pair, into (2.2.1), we can expand rs,d(k),

showing the different noise terms, as

rs,d(k) = ρk−1
s,d hs,d(1)x(k)︸ ︷︷ ︸
desired signal

+ x(k)
√
1− ρ2s,d

k−1∑
j=1

ρk−j−1
s,d es,d(j)︸ ︷︷ ︸

nodes’ mobility noise

+ ns,d(k)︸ ︷︷ ︸
white noise

. (2.3.2)

Since ns,d(k) and es,d(j) are independent ZMCSCG processes and the process es,d(j) is i.i.d,

the sum of the noise terms in (2.3.2) is also ZMCSCG and has a variance, σ2
effs,d

, which can

be evaluated as

σ2
effs,d

= Es(1− ρ2a,b)
k−1∑
j=1

ρ
2(k−j−1)
a,b Var{ea,b(j)}+Var{ns,d(k)}

= (1− ρ
2(k−1)
s,d )σ2

s,dEs +No. (2.3.3)

From (2.3.2) and (2.3.3), we can obtain the direct path destination SNR, corresponding to

the kth signaling period, γs,d(k) as

γs,d(k) =
desired signal instantaneous power

effective noise power
=

|ρk−1
s,d hs,d(1)x(k)|2

σ2
effs,d

=
ρ
2(k−1)
s,d |hs,d(1)|2Es

(1− ρ
2(k−1)
s,d )σ2

s,dEs +No

. (2.3.4)

It should be noted that if the S-D link is quasi-static, i.e., ρs,d = 1, then the nodes’ mobility

noise in (2.3.2) reduces to zero. Moreover, under such special case, γs,d(k) in (2.3.4) reduces

to γs,d =
|hs,d(1)|2Es

No
, which is a well know expression.

Because |hs,d(1)| is Rayleigh, γs,d(k) has an exponential pdf, which can be given as

fγs,d(k)(γ) =
1

γs,d(k)
exp

(− γ

γs,d(k)

)
(2.3.5)
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where

γs,d(k) = E[γs,d(k)] =
ρ
2(k−1)
s,d EsE[|hs,d(1)|2]

(1− ρ
2(k−1)
s,d )σ2

s,dEs +No

and E denotes the statistical mean operator.

2.3.2 destination end-to-end path effective SNR

We start deriving the effective SNR at the destination through the ith-relay indirect

path (or the ith end-to-end path) and corresponding to the kth transmitting symbol, γs,i,d(k),

by first substituting (2.2.2) into (2.2.3) to write ri,d(k) as

ri,d(k) = Gi(k)x(k)hs,i(k)hi,d(k) + Gi(k)hi,d(k)ns,i(k) + ni,d(k). (2.3.6)

By expanding hs,i(k) and hi,d(k) as in (2.3.1) and then substituting the obtained expansions

into (2.3.6), we can expand ri,d(k) showing the desired signal and the overall noise terms as

ri,d(k) =

desired signal︷ ︸︸ ︷
Gi(k)ρ

k−1
s,i ρ

k−1
i,d hs,i(1)hi,d(1)x(k)

overall effective noise︷ ︸︸ ︷
+Gi(k)x(k)ρ

k−1
s,i hs,i(1)

√
1− ρ2i,d

k−1∑
j=1

ρk−j−1
i,d ei,d(j))

+ρk−1
i,d hi,d(1)

√
1− ρ2s,i

k−1∑
j=1

ρk−j−1
s,i es,i(j) + ni,d(k)

+
√
1− ρ2s,i

k−1∑
j=1

ρk−j−1
s,i es,i(j)

√
1− ρ2i,d

k−1∑
j=1

ρk−j−1
i,d ei,d(j)

+Gins,i(k)
(
ρk−1
i,d hi,d(1) +

√
1− ρ2i,d

k−1∑
j=1

ρk−j−1
i,d es,i(j)

)
. (2.3.7)
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Similarly, the overall effective noise term in (2.3.7) is ZMCSCG, which we can obtain its

variance, σ2
effs,i,d

, as

σ2
effs,i,d

= (1− ρ
2(k−1)
s,i )σ2

s,iρ
2(k−1)
i,d EsG2

i (k)|hi,d(1)|2 + (1− ρ
2(k−1)
i,d )σ2

i,dρ
2(k−1)
s,i Es

×G2
i (k)|hs,i(1)|2 + G2

i (k)ρ
2(k−1)
i,d |hi,d(1)|2No +No. (2.3.8)

From (2.3.7), we can obtain γs,i,d(k) as

γs,i,d(k) =

∣∣Gi(k)ρ
k−1
s,i ρ

k−1
i,d hi,d(1)hs,i(1)x(k)

∣∣2
σ2
effs,i,d

=

(
G2
i (k)ρ

2(k−1)
s,i ρ

2(k−1)
i,d

∣∣hi,d(1)|2∣∣hs,i(1)|2Es

)/(
(1− ρ

2(k−1)
s,i )σ2

s,iρ
2(k−1)
i,d

×EsG2
i (k)|hi,d(1)|2 + (1− ρ

2(k−1)
i,d )σ2

i,dρ
2(k−1)
s,i EsG2

i (k)|hs,i(1)|2 + G2
i (k)ρ

2(k−1)
i,d

×|hi,d(1)|2No +No

)
. (2.3.9)

It it obvious that the SNR in (2.3.9) is instataneous (random variable) in terms of the

estimated channel gains hs,i(1) and hi,d(1), and obtaining its pdf from this form is not easily

tractable. Therefor, in the following we rewrite (2.3.9) in more tractable form that helps in

obtaining its pdf in closed-form expression. By substituting the amplification-gain given by

(2.2.8) into (2.3.9), and after doing some manipulations and simplifications, we can write

γs,i,d(k) in the following form

γs,i,d(k) =
γs,i(k)γi,d(k)

βi(k)γs,i(k) + γi,d(k) + φi(k)
(2.3.10)

where

γs,i(k) =
Esρ

2(k−1)
s,i |hs,i(1)|2

(1− ρ
2(k−1)
s,i )σ2

s,iEs +No

(2.3.11)

γi,d(k) =
Esρ

2(k−1)
i,d |hi,d(1)|2

(1− ρ
2(k−1)
i,d )σ2

i,dEs +No

. (2.3.12)
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βi(k) =
(1− ρ

2(k−1)
i,d )σ2

i,dEs +
(
No/ρ

2(k−1)
i,d

)
(1− ρ

2(k−1)
i,d )σ2

i,dEs +No

(2.3.13)

φi(k) =
(1− ρ

2(k−1)
s,i )(1− ρ

2(k−1)
i,d )σ2

s,iσ
2
i,dE

2
s + (1− ρ

2(k−1)
i,d )σ2

i,dNoEs +N2
o(

(1− ρ
2(k−1)
s,i )σ2

s,iEs +No

)(
(1− ρ

2(k−1)
i,d )σ2

i,dEs +No

) (2.3.14)

The SNRs γs,i(k) and γi,d(k) represent the effective SNRs of S-Ri andRi-D links, respectively.

The SNR expression in (2.3.10) is novel and has not been reported in literature before. It

is function of the indirect links correlation parameters, ρs,i and ρi,d, which are dependent on

the mobile cooperating-nodes speeds. As a special case, when the links of the ith indirect

path are quasi-static, i.e., (ρs,i = ρi,d = 1) the expression in (2.3.10) reduces to

γs,i,d =
γs,iγi,d

γs,i + γi,d + 1
(2.3.15)

where γs,i =
Es|hs,i|2

No
and γi,d =

Es|hi,d|2
No

. The SNR in (2.3.15) is well know in literature for

dual-hop AF cooperative network over quasi-static fading links [20] and [21], and it is clear

that it is not function of the symbol position k because, in the quasi-static fading assumption,

all of the transmitted symbols experience equal channel gains over time.

Simplifying γs,i,d(k) from the form in (2.3.9) to the form in (2.3.10) is intended in

order to simplify the problem of obtaining mathematically tractable closed-form expression

for its pdf. This is possible if we first propose the following upper-bound 2 on γs,i,d(k) as

γs,i,d(k) ≤ min(γs,i(k), γi,d(k)). (2.3.16)

In this chapter, we continue our analysis based on approximating γs,i,d(k) by it upper bound

as

γs,i,d(k) ≈ γup,i(k) = min(γs,i(k), γi,d(k)) (2.3.17)

2This approximation has been applied in several locations in literature (see e.g., [19] and [22]) on the
end-to-end effective SNR in (2.3.15) for the quasi-static fading case.
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which has the following exponential pdf

fγup,i(k)(γ) =
1

γup,i(k)
exp(− γ

γup,i(k)
) (2.3.18)

where

γup,i(k) =
γs,i(k)γi,d(k)

(γs,i(k) + γi,d(k))
. (2.3.19)

2.3.3 MRC destination overall SNR

In regular cooperative protocol, all relays in the network participate in the trans-

mission process and forward their amplified signals toward the destination. The destination

combines all these signals with the direct path signal using MRC. The overall (total) effective

SNR at the output of the destination’s MRC combiner, corresponding to the kth transmitted

symbol, can be written now as

γtot(k) = γs,d(k) +
M∑
i=1

γs,i,d(k). (2.3.20)

By approximating γs,i,d(k) as in (2.3.17), we can approximate γtot(k) in (2.3.20) as

γtot(k) ≈ γtot,up(k) = γs,d(k) +
M∑
i=1

γup,i(k) (2.3.21)

It is clear that γtot,up(k) is a sum of independent exponential random variables, and by using

the moment generating function (MGF) approach, we can find its pdf fγtot,up(k)(γ) as

fγtot,up(k)(γ) = L−1{Mγtot,up(k)(s)} (2.3.22)

where L−1 denotes the Inverse Laplace Transform (ILT) and MX(s) = E[e−sx] is the MGF.

Given that fact that the MGF of an exponential random variable with mean λ is given as
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1
1+λs

, we can obtain Mγtot,up(k) as

Mγtot,up(k)(s) = Mγs,d(k)(s)
M∏
i=1

Mγup,i(k)(s) =
1

(1 + sγs,d(k))
∏M

i=1(1 + sγup,i(k))
. (2.3.23)

We can now decompose Mγtot,up(k)(s) in (2.3.23) into its partial fraction terms as

Mγtot,up(k)(s) =
ξup

1 + sγs,d(k)
+

M∑
i=1

ξup,i
1 + sγup,i(k)

(2.3.24)

where

ξup = Mγtot,up(k)(s)(1 + sγs,d(k))|s=− 1
γs,d(k)

=
γMs,d(k)∏M

i=1(γs,d(k)− γup,i(k))
(2.3.25)

and

ξup,i = Mγtot,up(k)(s)(1 + sγup,i(k))|s=− 1
γup,i(k)

=
γMup,i(k)

(γup,i(k)− γs,d(k))
∏M

i=1,i �=j(γup,i(k)− γup,j(k))
. (2.3.26)

By substituting (2.3.24) into (2.3.22) and solving for the ILT based on the fact that L−1{ 1
1+as

} =

1
a
exp(−x

a
), we can obtain fγtot,up(k)(γ) in its ultimate closed-form as

fγtot,up(k)(γ) =
ξupe

(
−γ

γs,d(k)

)
γs,d(k)

+
M∑
i=1

ξup,ie

(
−γ

γup,i(k)

)
γup,i(k)

. (2.3.27)

As a special case of quasi-static fading environment within the network, i.e., ρs,d = ρs,i =

ρi,d = 1, (2.3.27) reduces to [23, Eq. (17)]. This means that our derived pdf in (2.3.27)

generalizes what has been obtained in the literature from the quasi-static fading case to the

more general case of time-selective fading.

In the next section, we use the pdf in (2.3.27) to derive analytical closed-form general

expressions for the system per-block-average BPSK BER, outage probability, and Shannon
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capacity as well as their corresponding asymptotic limits.

2.4 System Performance Evaluation

In this section we use the pdf given by (2.3.27) to derive closed-form analytical expres-

sions for the system per-block-average BER considering BPSK transmission at the source,

outage probability, and Shannon capacity. These expressions are functions of the number of

relays (M), the CSI estimation rates at the network receivers (in terms of the block length

N), and the relative speeds among the cooperating nodes in terms of the time-selective fading

links’s correlation parameters ρa,b ∀(a, b).

2.4.1 Error probability

In this subsection, we consider BPSK transmission over the network and derive lower-

bound closed-form expression for the per-block-average BER at the output of the BPSK

demodulator that follows the MRC combiner. Since BPSK modulation scheme is considered,

the kth transmitted symbol x(k) is given as ±√
Es and the conditional BER is given by

Q
(√

2γtot(k)
)
where Q(x) is the Q-function. Assuming equiprobable N symbols in the

transmitted block, the per-block-average BER can be given as

P e =
1

N

N∑
k=1

E[Q
(√

2γtot(k)
)
] =

1

N

N∑
k=1

(∫ ∞

0

Q
(√

2γ
)
fγtot(k)(γ) dγ

)
. (2.4.1)

If we consider the approximated total SNR γtot,up(k), along with its pdf in (2.3.27), in

evaluating (2.4.1) instead of the γtot(k), we can obtain the lower-bound per-block-average
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BER as

P e,Low =
1

N

N∑
k=1

(∫ ∞

0

Q
(√

2γ
)
fγtot,up(k)(γ) dγ

)

=
1

N

N∑
k=1

(
ξup

γs,d(k)

∫ ∞

0

Q
(√

2γ
)
e

−γ
γs,d(k) dγ

+
M∑
i=1

( ξup,i
γup,i(k)

∫ ∞

0

Q
(√

2γ
)
e

−γ
γup,i(k) dγ

))

=
1

2N

N∑
k=1

(
ξup

[
1−

√
γs,d(k)

1 + γs,d(k)

]
+

M∑
i=1

ξup,i

[
1−

√
γup,i(k)

1 + γup,i(k)

])
.

(2.4.2)

The integrals in (2.4.2) were evaluated using the by-parts integration technique. In order to

analytically support our claims about the performance degradation due to the nodes mobility

(i.e., time-selective links), it is informative to derive the asymptotic BER floor, which can be

found by evaluating the limit in (2.4.2) at very high values of the per-symbol average SNR

i.e., Es

No
. To simplify the evaluation of this limit we need first to write (2.4.2) in terms of Es

No
.

By substituting the expressions of γs,d(k), γs,i(k), and γi,d(k), from (2.3.10), (2.3.11) and

(2.3.12), respectively, into (2.4.2), and after doing some manipulations and simplifications,

we obtain3

P e,Low =
1

2N

N∑
k=1

(
αM

⎡⎣1−
√√√√ αEs

No

ζ Es

No
+ 1

⎤⎦ M∏
i=1

(
ηi

Es

No
+ βi

μi
Es

No
+ λi

)

−
M∑
i=1

(⎡⎣1−
√√√√ δi

Es

No

χi
Es

No
+ βi

⎤⎦ (δi)
M(κEs

No
+ 1)

μi
Es

No
+ λi

M∏
j=1,j �=i

(
ηj

Es

No
+ βj

νi,j
Es

No
+ ωi,j

)))
(2.4.3)

3The parameters ξup and ξup,i in (2.4.2) are also functions of γs,d(k), γs,i(k) and γi,d(k) (see (2.3.25) and
(2.3.26).
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where

ζ = α + κ

μi = αηi − δiκ

λi = αβi − δi

χi = ηi + δi

νi,j = δiηj − δjηi

ωi,j = δiβj − δjβi

α = ρ
2(k−1)
s,d E[|hs,d(1)|2]

κ = 1− ρ
2(k−1)
s,d

η� = ρ
2(k−1)
s,� (1− ρ

2(k−1)
�,d )E[|hs,�(1)|2]

+ρ
2(k−1)
�,d (1− ρ

2(k−1)
s,� )E[|h�,d(1)|2]

β� = ρ
2(k−1)
s,� E[|hs,�(1)|2] + ρ

2(k−1)
�,d E[|h�,d(1)|2]

δ� = ρ
2(k−1)
s,� ρ

2(k−1)
�,d E[|hs,�(1)|2]E[|h�,d(1)|2], ∀� = 1, 2, · · ·,M.

In order to analytically support our claims about the performance degradation due to the

nodes’ mobility and the constrained CSI estimation rates, it is informative to derive the

irreducible BER floor, which can be found by evaluating the limit of (2.4.3) at very high

values of the per-symbol average SNR, Es

No
, as

lim
Es
No

→∞
P e,Low =

1

2N

N∑
k=1

(
αM

[
1−

√
α

ζ

] M∏
i=1

(
ηi
μi

)

−
M∑
i=1

κ(δi)
M

[
1−

√
δi
χi

]∏M
j=1,j �=i

ηj
νi,j

μi

)
. (2.4.4)
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2.4.2 Outage probability

For our M -relay cooperative network model, the mutual information between the

source and the destination, corresponding to the kth transmitted symbol, can be expressed

as [18]

I(k) =
1

M + 1
log2(1 + γtot(k)). (2.4.5)

The reason for the 1
M+1

factor in (2.4.5) is that the transmission process in a regular cooper-

ative protocol takes place inM+1 orthogonal channels or time-slots. The outage probability

for the kth transmitted symbol, say Pout(k), is defined as the probability that the channel

mutual information, I(k), falls below the required rate R, which can be expressed as

Pout(k) = Pr{I(k) ≤ R} = Pr{γtot(k) < γth} =

∫ γth

0

fγtot(k)(γ) dγ (2.4.6)

where γth = 2(M+1)R − 1. By assuming equiprobable N symbols in the transmitted block,

we can obtain the per-block-average outage probability for our system model as

Pout =
1

N

N∑
k=1

(∫ γth

0

fγtot(k)(γ) dγ

)
. (2.4.7)

By using the pdf given by (2.3.27) in evaluating (2.4.7), we can obtain the lower-bound

per-block-average outage probability as

Pout,Low =
1

N

N∑
k=1

(∫ γth

0

fγtot,up(k)(γ) dγ

)

=
1

N

N∑
k=1

(
ξup

γs,d(k)

∫ γth

0

e

(
−γ

γs,d(k)

)
dγ +

M∑
i=1

ξup,i
γup,i(k)

∫ γth

0

e

(
−γ

γup,i(k)

)
dγ

)

=
1

N

N∑
k=1

(
ξup

(
1− e

−γth
γs,d(k)

)
+

M∑
i=1

(
ξup,i

(
1− e

−γth
γup,i(k)

)))
. (2.4.8)

and then by substituting the expressions of γs,d(k), γs,i(k), and γi,d(k), from (2.3.10), (2.3.11)

and (2.3.12), respectively, into (2.4.8), and after some manipulations and simplifications, we
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can write Pout,Low in terms of Es

No
as

Pout,Low =
1

N

N∑
k=1

(
αM

(
1− e

−κ Es
No

+1

αEs
No

γth
) M∏

i=1

(
ηi

Es

No
+ βi

μi
Es

No
+ λi

)

−
M∑
i=1

((
1− e

− ηi
Es
No

+βi

δi
Es
No

γth
)
(δi)

M(κEs

No
+ 1)

μi
Es

No
+ λi

M∏
j=1,j �=i

(
ηj

Es

No
+ βj

νi,j
Es

No
+ ωi,j

)))
.

(2.4.9)

Due to the assumption of the time-selective fading, the outage probability performance also

experiences outage floor, which can be obtained as

lim
Es
No

→∞
Pout,Low =

1

N

N∑
k=1

(
αM

(
1− e−

κ
α
γth

) M∏
i=1

(
ηi
μi

)

−
M∑
i=1

(
κ(δi)

M

μi

(
1− e

− ηi
δi

γth

) M∏
j=1,j �=i

ηj
νi,j

))
. (2.4.10)

2.4.3 System Shannon capacity

The system Shannon capacity is an important performance measure because it gives

information about the maximum allowable transmission rate under which error free com-

munication system could be designed. In cooperative networks with regular protocol, the

average Shannon’s sense channel capacity can be expressed as [18]

C =
B

M + 1

∫ ∞

0

log2(1 + γ)fγ(γ) dγ (2.4.11)

where B is the channel bandwidth in Hz. The reason for the 1
M+1

factor is that the trans-

mission process takes place in M + 1 orthogonal frequency channels or time-slots. For our

network model, the system Shannon capacity corresponding to the kth transmitted symbol

is given as

C(k) =
B

M + 1

∫ ∞

0

log2(1 + γ)fγtot(k)(γ) dγ. (2.4.12)
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Unlike the BER and the outage probability, using the pdf given by (2.3.27) in (2.4.12) leads

to the upper bound capacity. Therefore, using (2.3.27) for the pdf in (2.4.12), and then

taking the average overall the block (assuming equiprobable transmission) gives the upper

bound per-block-average capacity as follows

Cup =
1

N

N∑
k=1

(
B

M + 1

∫ ∞

0

log2(1 + γ)fγtot,up(k)(γ) dγ

)

=
B

N(M + 1)

N∑
k=1

(∫ ∞

0

log2(1 + γ)
ξupe

−γ
γs,d(k)

γs,d(k)
dγ

+
M∑
i=1

∫ ∞

0

log2(1 + γ)
ξup,ie

−γ
γup,i(k)

γup,i(k)
dγ

)
.

(2.4.13)

By evaluating the last integrals in (2.4.13) in closed-form as in [24, Eq. (38)], we can obtain

Cup as

Cup =
B log2(e)

N(M + 1)

N∑
k=1

(
ξupe

1/γs,d(k)E1

(
1

γs,d(k)

)

+
M∑
i=1

ξup,ie
1/γi,up(k)E1

(
1

γi,up(k)

))
(2.4.14)

where E1(x) =
∫∞
1

e−xt

t
dt. Similarly, by substituting the expressions of γs,d(k), γs,i(k),

and γi,d(k), from (2.3.10), (2.3.11) and (2.3.12), respectively, into (2.4.14), and after some

manipulations and simplifications, we can write Cup in terms of Es

No
as

Cup =
B log2(e)

N(M + 1)

N∑
k=1

(
αMe

κ Es
No

+1

αEs
No E1

(
κEs

No
+ 1

αEs

No

) M∏
i=1

(
ηi

Es

No
+ βi

μi
Es

No
+ λi

)

−
M∑
i=1

(
e

ηi
Es
No

+βi

δi
Es
No E1

(
ηi

Es

No
+ βi

δi
Es

No

)
(δi)

M(κEs

No
+ 1)

μi
Es

No
+ λi

M∏
j=1,j �=i

(
ηj

Es

No
+ βj

νi,j
Es

No
+ ωi,j

)))
.

(2.4.15)
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The limit of (2.4.15) as Es

No
→ ∞ also exists and given by

lim
Es
No

→∞
Cup =

B log2(e)

N(M + 1)

N∑
k=1

(
αMe

κ
αE1

(
κ

α

) M∏
i=1

(
ηi
μi

)

−
M∑
i=1

(
e

ηi
δiE1

(
ηi
δi

)(
(δi)

Mκ

μi

) M∏
j=1,j �=i

(
ηj
νi,j

)))
. (2.4.16)

This means that the time-selective fading also impacts the system channel capacity by a

ceiling.

All of the above derived expressions are novel and have not reported in literature

before and they are general for the network fading links temporal characteristics in terms

of their corresponding correlation parameters that are dependent on the cooperating-nodes

speeds. They are also functions of the receivers’ CSI estimation rates, in terms of the block

length N . Therefore, these expressions are useful in investigating the system performance

under the effects of different nodes mobility scenarios and CSI estimation rates.

2.5 Nodes Mobility and CSI Estimation Rates Effects

In this section, we investigate the effects of different cooperating-nodes mobility sce-

narios and CSI estimation rates on the system performance analyzed in Sec. 2.4. We provide

our results based on the obtained expressions for the lower bounds per-block-average BER

and outage probability and the upper bound per-block-average channel capacity and their

corresponding asymptotic limits.

2.5.1 Nodes mobility effects

All nodes static

From (2.2.4), when the relative speed between any two nodes in the network is zero,

i.e., the two nodes are static, the correlation parameter of their corresponding fading link is

one, and hence, this link is considered quasi-static. Therefore, in our network model, when

all of the nodes are static (zero speeds), all of the network links are considered quasi-static
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because ρs,d = ρs,� = ρ�,d = 1, ∀�. Considering this condition in (2.4.3), (2.4.9) and (2.4.15),

we obtain the lower bound per-block-average quasi BER, the lower bound per-block-average

quasi outage probability and the upper bound per-block-average quasi channel capacity,

respectively, as follows

P
quasi

e,Low =
(α′)M

2

⎡⎣1−
√√√√ α′ Es

No

α′ Es

No
+ 1

⎤⎦ M∏
i=1

(
β′
i

λ′i

)

−
M∑
i=1

(
1

2

⎡⎣1−
√√√√ δ′i

Es

No

δ′i
Es

No
+ β′

i

⎤⎦ (δ′i)
M

λ′i

M∏
j=1,j �=i

(
β′
j

ω′
i,j

))
(2.5.1)

P quasi
out,Low = (α′)M

(
1− e

− γth

α′ Es
No

) M∏
i=1

(
β′
i

λ′i

)

−
M∑
i=1

((
1− e

−β′iγth
δ′
i
Es
No

)
(δ′i)

M

λ′i

M∏
j=1,j �=i

(
β′
j

ω′
i,j

))
(2.5.2)

and,

C
quasi

up =
B log2(e)

M + 1

(
α′Me

1

α′ Es
No E1

(
1

α′ Es

No

) M∏
i=1

(
β′
i

λ′i

)

−
M∑
i=1

(
e

β′i
δ′
i
Es
No E1

(
β′
i

δ′i
Es

No

)
(δ′i)

M

λ′i

M∏
j=1,j �=i

(
β′
j

ω′
i,j

)))
(2.5.3)

where

λ′i = α′β′
i − δ′i

ω′
i,j = δ′iβ

′
j − δ′jβ

′
i

α′ = E[|hs,d(1)|2]

β′
� = E[|hs,�(1)|2] + E[|h�,d(1)|2]

δ′� = E[|hs,�(1)|2]E[|h�,d(1)|2] ∀� = 1, 2, · · ·,M.
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It should be noted that the limits of (2.5.1) and (2.5.2) as Es

No
→ ∞ are zero (floor disappears),

while the limit of (2.5.3) as Es

No
→ ∞ is infinity (ceiling disappears), as both are expected

since the nodes mobility impact is absent.

Mobile relays, static source and destination

Corollary 2.5.1. In amplify-and-forward regular cooperative networks with direct link and

adaptive-gains at the relays employing MRC at the destination, even though the relays are

in motion, the system does not experience BER floor, outage floor or capacity ceiling as long

as both of the source and the destination are static.

Proof. When the source and the destination are static, the correlation parameter of the

direct link ρs,d equals 1. On the other hand, because of the relays mobility, the first and the

second fading hops of the �th indirect path are time-selective, i.e., ρs,� and ρ�,d are < 1 ∀�.
Considering this condition in (2.4.3), (2.4.9) and (2.4.15) reduces them, respectively, to

P e,Low =
1

2N

N∑
k=1

(
(α′)M

⎡⎣1−
√√√√ α′ Es

No

α′ Es

No
+ 1

⎤⎦ M∏
i=1

(
ηi

Es

No
+ βi

α′ηi Es

No
+ (α′βi − δi)

)

−
M∑
i=1

(⎡⎣1−
√√√√ δi

Es

No

χi
Es

No
+ βi

⎤⎦ (δi)
M

α′ηi Es

No
+ (α′βi − δi)

M∏
j=1,j �=i

(
ηj

Es

No
+ βj

νi,j
Es

No
+ ωi,j

)))
(2.5.4)

Pout,Low =
1

N

N∑
k=1

(
(α′)M

(
1− e

− γth

α′ Es
No

) M∏
i=1

(
ηi

Es

No
+ βi

α′ηi Es

No
+ (α′βi − δi)

)

−
M∑
i=1

(
1− e

− ηi
Es
No

+βi

δi
Es
No

γth
)

(δi)
M

α′ηi Es

No
+ (α′βi − δi)

M∏
j=1,j �=i

(
ηj

Es

No
+ βj

νi,j
Es

No
+ ωi,j

))
(2.5.5)
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and,

Cup =
B log2(e)

N(M + 1)

N∑
k=1

(
(α′)Me

1

α′ Es
No E1

(
1

α′ Es

No

) M∏
i=1

(
ηi

Es

No
+ βi

α′ηi Es

No
+ (α′βi − δi)

)

−
M∑
i=1

(
e

ηi
Es
No

+βi

δi
Es
No E1

(
ηi

Es

No
+ βi

δi
Es

No

)
(δi)

M

α′ηi Es

No
+ (α′βi − δi)

M∏
j=1,j �=i

(
ηj

Es

No
+ βj

νi,j
Es

No
+ ωi,j

)))
(2.5.6)

Now, by taking the limits of (2.5.4) and (2.5.5) as Es

No
→ ∞ we obtain zero4, and the limit

of (2.5.6) as Es

No
→ ∞ we obtain infinity5. This means that these three performance criteria

do not experience asymptotic limits, which completes the proof.

Despite that both scenarios 1 and 2 do not provide asymptotic limits, this does not

mean that they provide same results in terms of the BER, outage and capacity over all the

non-infinite SNR range because (2.5.4), (2.5.5) and (2.5.6) quantitatively differ from (2.5.1),

(2.5.2) and (2.5.3), respectively. Later in the numerical results section, we will show that

scenario 2 provides worse BER, outage and capacity performance than scenario 1 due to the

mobility of relays.

Static relays, either source or destination is mobile

Corollary 2.5.2. In amplify-and-forward regular cooperative networks with direct link and

adaptive-gains at the relays employing MRC at the destination, even though all the relays are

static, the system performance is severely degraded by BER floor, outage floor and capacity

ceiling as long as either the source or the destination is in motion.

Proof. This scenario is divided into two cases:

The first case is when the source node is in motion and the other nodes are static;

i.e., ρ�,d = 1 while ρs,d and ρs,� are < 1 ∀�. In this case the BER, the outage probability and

4We can also obtain same results by substituting κ = 0 in (2.4.4) and (2.4.10).
5We can also obtain same result by substituting κ = 0 in (2.4.16).

28



the system capacity are, respectively, given by (2.4.3), (2.4.9) and (2.4.15), and their corre-

sponding limits are, respectively, given by (2.4.4), (2.4.10) and (2.4.16) with the following

modified parameters: δ� = ρ
2(k−1)
s,� E[|hs,�(1)|2]E[|h�,d(1)|2], η� = (1 − ρ

2(k−1)
s,� )E[|h�,d(1)|2], and

β� = ρ
2(k−1)
s,� E[|hs,�(1)|2] + E[|h�,d(1)|2].
The second case is when the destination node is in motion and the other nodes are

static; i.e., ρs,� = 1 while ρs,d and ρ�,d are < 1 ∀�. Similarly, the BER, the outage probability

and the system capacity are, respectively, given by (2.4.3), (2.4.9) and (2.4.15), and their

corresponding limits are, respectively, given by (2.4.4), (2.4.10) and (2.4.16) but with the fol-

lowing modified parameters: δ� = ρ
2(k−1)
�,d E[|hs,�(1)|2]E[|h�,d(1)|2], η� = (1−ρ2(k−1)

�,d )E[|hs,�(1)|2]
and β� = E[|hs,�(1)|2] + ρ

2(k−1)
�,d E[|h�,d(1)|2.

From the above two cases we conclude that the BER and the outage floors and the

capacity ceiling exist, which completes the proof.

We can conclude from the last proof that when the two hops of the network indirect

paths are symmetrical, i.e., E[|hs,�(1)|2] = E[|h�,d(1)|2], ∀�, then either the source mobility or

the destination mobility, with same speed, provides same system performance. In addition,

the source mobility degrades the performance more than the destination mobility when the

powers of the first hop fading gains are greater than that of the second hop, i.e, E[|hs,�(1)|2] >
E[|h�,d(1)|2], ∀�. On the other hand, the destination mobility degrades the performance more

than the source mobility when the powers of the first hop fading gains are less than that of

the second hop, i.e, E[|hs,�(1)|2] < E[|h�,d(1)|2], ∀�.

2.5.2 Receivers’ CSI estimation rates effect

In Sec. 2.4 all of the derived expressions are functions of the transmitted block

length N . This parameter reflects the CSI estimation rate which is quantified as 1
N
100%

(as discussed in subsection 2.2.2). As we have shown above, due to the cooperating-nodes

mobility, the system performance is degraded and in some scenarios it is severely degraded by

asymptotic limits. In order to reduce these degradations, we can increase the relays and the
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destination receivers CSI estimation rates (i.e., reducing N in our analytical expressions).

It will be shown, in the numerical results section, that increasing this rate improves the

performance and reduces the asymptotic limits. The effect of 100% CSI estimation rates is

stated in the following corollary.

Corollary 2.5.3. In amplify-and-forward regular cooperative networks with direct link and

adaptive-gains at the relays employing MRC at the destination while nodes are in motion

(time-varying links), if all of the network receivers (the relays and the destination) have

100% CSI estimation rates, the system performance degradation in terms of BER, outage

probability and capacity, that is generated due to the nodes mobility, is completely removed

and the performance reduces to that of the all nodes static scenario.

Proof. By substituting N = 1 into the expressions given by (2.4.3), (2.4.9) and (2.4.15) and

computing their first summation, these expressions, respectively, reduce into (2.5.1), (2.5.2)

and (2.5.3), which completes the proof.

It should be noted that 100% CSI estimation rate can be achieved in the case of

time-varying fading links by transmitting a non-informative pilot signal accompanied with

each transmitted symbol in the block (via training). However, this is not feasible because

it causes a tremendous amount of reduction in the spectral efficiency and tremendously

increased overhead. Another way to achieve that is by equipping the relays and the desti-

nation receivers by fast tracking loops (i.e., more complex receivers) that can catch up with

the rapid time-varying channel gains. The work in [25] is devoted to tracking and estimation

of time-varying fading links.

2.6 Numerical Results and Simulation

In this section, we present numerical results for the under study system per-block-

average BPSK BER, outage probability and Shannon capacity using (2.4.3), (2.4.9) and

(2.4.15), respectively, and verify them by exact simulation results. We consider σ2
s,d = σ2

s,i
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= σ2
i,d = 1, E[|hs,d(1)|2] = 1 and R = 1. In all of the plots, Es

No
represents the per symbol

average SNR (in dB) where Es is the transmit energy per symbol which is assumed to be 1.

Fig. 2.2 compares between the approximate theoretical and the exact simulation re-

sults obtained for the network per-block-average BER performance. The source is mobile

while the other nodes are static. It is clear that increasing the number of relays,M , improves

the BER performance since the MRC diversity gain and the virtual antenna gain are mono-

tonically increasing functions of M . However, for any number of relays, the performance

experiences error floor at high values of SNR due to the effect of the source mobility and

the constrained CSI estimation rates of 2%. We can also notice that, as compared with the

exact simulation, the tightness of the derived lower-bound, in particular, at medium and

high SNR regions.

Fig. 2.3 shows the BER performance (using the theoretical lower bound) for M =1

and 3 under the different nodes mobility scenarios that have been discussed in subsection

2.5.1. It is obvious from this figure that when all of the nodes are static (all of the network

fading links are quasi-static), the BER performance does not experience floor because the

effect of the nodes mobility is absent. Also, when both of the source and the destination are

static, the relays mobility degrades the BER performance, as compared with the all nodes

static case, but it does not causes asymptotic error floor. On the other hand, a severe BER

performance degradation with error floor occurs when either the source or the destination is

in motion. Furthermore, the mobility of all the nodes provides the worst BER performance.

Fig. 2.4 shows that the difference between the impacts of the source and the des-

tination mobilities depends on the network symmetrical properties. It is clear that, when

the channel is symmetrical (i.e., in each indirect path, the powers of the first hop fading

gains equals that of the second hop), the impacts of the source mobility and the destination

mobility are equivalent. On the other hand, the impact of the source mobility is greater than

that of the destination mobility when the powers of the first hops fading gains are greater

than that of the second hops and the opposite is true.

31



Figure 2.2. BPSK BER versus Es/No with 2% CSI estimation rates (N = 50) for num-
ber of relays M = 1, 2 and 3. In dB: E[|hs,d(1)|2] = 1, E[|hs,�(1)|2] = {1.5, 2.5, 3.5} and
E[|h�,d(1)|2] = {2.5, 3.5, 4.5}. The Source is mobile and the other nodes are static corre-
sponding to correlation parameters of ρs,d = ρs,� = 0.9997 and ρi,d = 1.

In Fig. 2.5, we show the effect of the receiving nodes’ CSI estimation rates on the

BER performance. Increasing this rate means increasing the abilities of the relays and the

destination receivers’ tracking loops to catch up with the rapid time-varying channel gains.

We can notice from this figure that the BER performance is improved and the severe impact

(error floor) of the cooperating-nodes high speeds is reduced by increasing the CSI estimation

rates. In addition, when the CSI estimation rates are 100%, the impact of the nodes mobility

on the BER performance vanishes and the performance is improved and matches with that

of the all static nodes case.

Fig. 2.6 compares between the approximate theoretical and the exact simulation

results obtained for the network per-block-average outage probability. It is clear that the
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Figure 2.3. BPSK lower bound BER versus Es/No with 5% CSI estimation rates (N = 20).
In dB: E[|hs,d(1)|2] = 1, E[|hs,�(1)|2] = {1.5, 2.5, 3.5} and E[|h�,d(1)|2] = {4.5, 5.5, 6.5}. The
corresponding correlation parameter is 0.9986.

lower bound is tight at medium and high SNR regions. At low values of the SNR, the outage

performance degrades with increasing M because the data transmission over the network

requires M+1 orthogonal channels or time slots which consequently reduces the network

mutual information. However, for any number of relays, the outage performance experiences

outage floor at high values of SNR due to the effect of the source mobility and the constrained

CSI estimation rate of 2%.

Fig. 2.7 shows the outage performance under the different mobility scenarios that have

been discussed in subsection 2.5.1. When all of the nodes are static, the outage performance

does not suffer from outage floor. Also, the outage performance does not suffer from outage

floor in the case of mobile relays and static source and destination, but it is worse than that
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and M = 2. In dB: first hop=second hop: E[|hs,�(1)|2] = E[|h�,d(1)|2] = {0.5, 0.8, 01.2},
first hop>second hop: E[|hs,�(1)|2] = {4.5, 5.5, 6.5} and E[|h�,d(1)|2] = {1.5, 2.5, 3.5}, second
hop>first hop: E[|hs,�(1)|2] = {1.5, 2.5, 3.5} and E[|h�,d(1)|2] = {4.5, 5.5, 6.5}. The corre-
sponding correlation parameter is 0.9989.

of the all static nodes case. We can also notice that, a severe outage performance degradation

occurs when either the source or the destination is in motion as compared with the above

cases.

In Fig. 2.8, we show the effect of the receiving nodes CSI estimation rates on the

outage performance. It is obvious that increasing the CSI estimation rates reduces the outage

floor that is generated from the destination mobility, and this floor is completely eliminated

by 100% CSI estimation rates. Also, it is clear that the outage performance degradation due

to the relays mobility is reduced by increasing the CSI estimation rates.

Fig. 2.9 compares between the approximate theoretical and the exact simulation
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Figure 2.5. BPSK lower bound BER versus Es/No for M = 3. In dB: E[|hs,d(1)|2] = 1,
E[|hs,�(1)|2] = {4.5, 5.5, 6.5} and E[|h�,d(1)|2] = {1.5, 2.5, 3.5}. The corresponding correlation
parameter is 0.9969..

results obtained for the network per-block-average normalized capacity (C/B) where the

tightness of the derived upper bound is clear at medium and high per-symbol average SNR

values. The reason for capacity decreasing with increasing M is the M + 1 orthogonal

frequency channels or time slots that are required for data transmission from the source to

the destination through the network. Due to the source speed of 20 mph and the low CSI

estimation rates of 2%, the normalized capacity cannot exceed a certain capacity ceiling.

In Fig. 2.10 we show the difference between the impact of the destination mobility and

the relays mobility on the capacity performance. It is clear that when both the destination

and the source are static, the capacity performance does not experience capacity ceiling even

though all of the relays are in motion. It is also obvious that the mobility of the destination
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Figure 2.6. Outage probability versus Es/No with 2% CSI estimation rates (N = 50). In dB:
E[|hs,d(1)|2] = 1, E[|hs,�(1)|2] = {2.5, 3.5} and E[|h�,d(1)|2] = {3.5, 4.5}. The Source is mobile
and the other nodes are static corresponding to correlation parameters of ρs,d = ρs,� = 0.9997
and ρi,d = 1.

severely degrades the capacity performance by a ceiling particulary at relatively high speed

(e.g. 75 mph as compared with 10 mph).

In Fig. 2.11 we show the effect of the CSI estimation rates on the system capacity

performance. We can notice from this figure that by increasing the CSI estimation rates, the

capacity performance is also improved and the capacity ceiling, due to the source mobility,

reduces. Furthermore, 100 % CSI estimation rates completely eliminates the capacity ceiling

and improves the capacity performance to be as similar as that of the all nodes static case.
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Figure 2.7. Theoretical lower bound outage probability versus Es/No with M = 2 and 2%
CSI estimation rate. In dB: E[|hs,d(1)|2] = 1, E[|hs,�(1)|2] = {1.5, 2.5} and E[|hs,�(1)|2] =
{4.5, 5.5}. The corresponding correlation parameter is 0.9980.

2.7 Conclusion

In this chapter, we have considered a multiple-relay amplify-and-forward coopera-

tive network over time-selective (due to nodes’ mobility) Rayleigh fading links with MRC

diversity and analyzed its performance by deriving closed-form expressions for the per-block-

average of the BER, the outage probability and the system Shannon capacity. The first-order

autoregressive process (AR1) has been used to model the fading link between any two nodes

in the network. The derived expressions are general functions of both the cooperating-nodes

speeds, in terms of the links correlation parameters, and the receivers’ tracking loops CSI

estimation rates, in terms of the transmitted block length. Due to the nodes mobility the sys-

tem performance degraded and experiences asymptotic limits which have been also derived.
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Figure 2.8. Theoretical lower bound outage probability versus Es/No with M = 2. In dB:
E[|hs,d(1)|2] = 1, E[|hs,�(1)|2] = {1.5, 2.5} and E[|hs,�(1)|2] = {4.5, 5.5}. The corresponding
correlation parameter is 0.9980.

As a special case, when all of the cooperating-nodes are static, these expressions reduce to

their correspondences in the quasi-static fading links case and hence the asymptotic limits

are absent. Moreover, the effects of different nodes mobility scenarios on the system perfor-

mance have been analytically investigated and novel useful observations have been obtained.

For example, the mobility of the relays degrades the performance with no asymptotic limits

if both the source and the destination are static, but the mobility of either the source or

the destination severely impacts the performance with asymptotic limits no matter what the

relays mobility situations are. We also have shown that the difference between the impacts of

the source and the destination mobilities depends on the network power symmetrical proper-

ties. In addition, the scenario of equipping the receivers with fast tracking loops feature has
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{3.5, 4.5}. The Source is mobile and the other nodes are static corresponding to correlation
parameters of ρs,d = ρs,� = 0.9997 and ρi,d = 1..

been assumed where such assumption clearly improves the system performance and reduces

the asymptotic limits. In 100% CSI estimation rates case, the system performance reduces

to that of the quasi-static fading case whatever the cooperating-nodes situation either mo-

bile or static. Comprehensive numerical results have been presented to show the system

performance and demonstrate how it is affected by the analyzed scenarios of nodes mobility

and CSI estimation rates. We also have provided Monte-Carlo computer simulation results

to verify the accuracy of the analytical results.
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CHAPTER 3

Regular M -Relay Variable-Gain AF Cooperative Systems with Mobile Nodes and

Imperfect CSI Estimation: SNR Derivation and Performance Analysis

3.1 Chapter Overview

Similarly as in chapter 1, we consider in this chapter a multiple-relay amplify-and-

forward wireless cooperative system with mobile nodes (i.e., time-selective fading), regular

protocol and MRC destination but, unlike chapter 1, we consider imperfect channel es-

timation at the relays and the destination receivers. By this we add additional realistic

assumption along with that of nodes’ mobility. For such a system model and assumptions,

we first derive novel exact closed-form expressions for the destination’s direct-path and end-

to-end instantaneous signal-to-noise ratios (SNRs) along with their pdfs. These SNRs are

function of the links’ correlation parameters and the estimation errors variances. After that,

we obtain closed-form expression for the pdf of the total effective SNR at the destination’s

MRC output. This pdf generalizes the one derived in chapter 1 for the case of perfect channel

estimation. In this chapter, we also derive closed-form tight approximate expressions for the

system per-block-average BPSK BER, outage probability, and Shannon capacity, which also

generalize the ones derived in chapter 1 for the perfect channel estimation case. Finally, we

provide numerical results for these derived expressions along with their exact simulation.

3.2 System and Channel Model

In this chapter, we consider the same system and channel model and assumptions as

in chapter 1 but we assume here that the estimation error at the network receivers (the relays

and the destination) is significant, i.e., imperfect channel estimation is assumed. Therefore,
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the estimated channel gain over the first signaling period ĥa,b(1) is related to the actual one

ha, b(1) as follows

ha,b(1) = ĥa,b(1) + hεa,b(1) (3.2.1)

where hεa,b(1) is the estimation error, which is assumed to be ZMCSCG with variance σ2
ea,b

,

i.e., ∼ CN (0, σ2
ea,b

). In addition, we consider in this chapter that the ith relay computes

the amplification gain that satisfies the power constraint described in (2.2.6). Therefore, we

consider the following amplification gain at the ith relay

Gi(k) =

√
Es

E(hs,i(k))Es +No

. (3.2.2)

It should be noted that the gain in (3.2.2) is assumed to require from the relays to estimate

the average power of the channel gains over the individual signaling periods.

3.3 Preliminary Results: Effective SNR and pdf

First, by substituting (3.2.1) into (2.3.1), we can write a relationship between the

actual channel gain over the kth signaling period ha,b(k) and the estimated one over the first

signaling period ĥa,b(1) as

ha,b(k) = ρk−1
a,b ĥa,b(1) +

√
1− ρ2a,b

k−1∑
j=1

ρk−j−1
a,b ea,b(j)︸ ︷︷ ︸

ĥa,b(k)

+ ρk−1
a,b hεa,b︸ ︷︷ ︸
hεa,b

(k)

(1) (3.3.1)

where ĥa,b(k) is estimated version of ha,b(k) and hεa,b(k) is its estimation error. In the next

section we use the relationship in (3.3.1) to expand the destination to mathematically show

the nodes-mobility (or the time-selective fading) and the imperfect-CSI estimation impacts

on the destination received signals and SNRs.
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3.3.1 destination direct-path effective SNR

First, with the help of (3.3.1), we can expand the received signal at the destination

through the direct path, rs,d(k), given in ((2.2.1)), showing the desired signal terms and the

noise terms generated from the time-selective fading, imperfect-CSI estimation and additive

white noise, as

rs,d(k) = ρk−1
s,d ĥs,d(1)x(k)︸ ︷︷ ︸
desired signal

+

time-selective fading noise︷ ︸︸ ︷√
1− ρ2s,d

k−1∑
j=1

ρk−j−1
s,d ea,b(j)x(k)+

estimation error noise︷ ︸︸ ︷
ρk−1
s,d hεs,d(1)x(k)

+

white noise︷ ︸︸ ︷
ns,d(k)︸ ︷︷ ︸

overall effective noise

(3.3.2)

Because es,d(j), hεs,d(1) and ns,d(k) are independent ZMCSCG processes, the overall effective

noise term in (3.3.2) has a variance of

σ2im

effs,d
= (1− ρ

2(k−1)
s,d )σ2

s,dEs + ρ
2(k−1)
s,d σ2

es,d
Es +No. (3.3.3)

From (3.3.2), we can write the direct-path effective SNR in case of imperfect-estimation,

γims,d(k), as

γims,d(k) =
|ρk−1

s,d ĥs,d(1)x(k)|2
σ2im
effs,d

=
ρ
2(k−1)
s,d |ĥs,d(1)|2Es

((1− ρ
2(k−1)
s,d )σ2

s,d + ρ
2(k−1)
s,d σ2

es,d
)Es +No

. (3.3.4)

Because |ĥs,d(1)| is Rayleigh, γims,d(k) in (3.3.4) has an exponential pdf, which can be

given as

fγim
s,d(k)

(γ) =
1

γims,d(k)
exp

(− γ

γims,d(k)

)
(3.3.5)

where

γims,d(k) = E[γims,d(k)] =
ρ
2(k−1)
s,d Es

((1− ρ
2(k−1)
s,d )σ2

s,d + ρ
2(k−1)
s,d σ2

es,d
)Es +No

.
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3.3.2 destination end-to-end path effective SNR

In order to derive the end-to-end effective SNR in the case of imperfect estimation,

say γims,i,d(k), we first expand hs,i(k) and hi,d(k) as in (3.3.1) and then substitute the obtained

expansions into (2.3.6) to expand ri,d(k) as

ri,d(k) =

desired signal︷ ︸︸ ︷
Gi(k)ρ

k−1
s,i ρ

k−1
i,d ĥs,i(1)ĥi,d(1)x(k)

overall effective noise︷ ︸︸ ︷
+Gi(k)x(k)ρ

k−1
s,i ĥs,i(1)

(√
1− ρ2i,d

k−1∑
j=1

ρk−j−1
i,d ei,d(j) + hεi,d(1)

)
+ ρk−1

i,d ĥi,d(1)

×(√1− ρ2s,i

k−1∑
j=1

ρk−j−1
s,i es,i(j) + hεs,i(1)

)
+
(√

1− ρ2i,d

k−1∑
j=1

ρk−j−1
i,d ei,d(j)

+hεi,d(1)
)(√

1− ρ2s,i

k−1∑
j=1

ρk−j−1
s,i es,i(j) + hεs,i(1)

)
+ Gi(k)ns,i(k)

(
ρk−1
i,d ĥi,d(1)

+
√
1− ρ2i,d

k−1∑
j=1

ρk−j−1
i,d ei,d(j)hεi,d(1)

)
+ ni,d(k). (3.3.6)

The effective noise term in (3.3.6) is a also ZMCSCG process, which we can obtain its

variance σ2im

effs,i,d
as

σ2im

effs,i,d
= ((1− ρ

2(k−1)
s,i )σ2

s,iEs + ρ
2(k−1)
s,i σ2

es,i
Es +No)ρ

2(k−1)
i,d G2

i (k)|ĥi,d(1)|2

+((1− ρ
2(k−1)
i,d )σ2

i,dEs + ρ
2(k−1)
i,d σ2

ei,d
Es)ρ

2(k−1)
s,i G2

i (k)|ĥs,i(1)|2

+No + (1− ρ
2(k−1)
s,i )σ2

s,i((1− ρ
2(k−1)
i,d )σ2

i,dEs + Esρ
2(k−1)
i,d σ2

ei,d
)G2

i (k)

+(1− ρ
2(k−1)
i,d )ρ

2(k−1)
s,i σ2

es,i
σ2
i,dEsG2

i (k) + ρ
2(k−1)
s,i σ2

es,i
ρ
2(k−1)
i,d σ2

ei,d

×EsG2
i (k) + (1− ρ

2(k−1)
i,d )σ2

i,dNoG2
i (k) + ρ

2(k−1)
i,d σ2

ei,d
NoG2

i (k). (3.3.7)

From (3.3.6), we can obtain γims,i,d(k) as

γims,i,d(k) =

∣∣Gi(k)ρ
k−1
s,i ρ

k−1
i,d ĥi,d(1)ĥs,i(1)x(k)

∣∣2
σ2im
effs,i,d

. (3.3.8)
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In order to write the SNR in (3.3.8) in more tractable form that helps in evaluating its pdf,

we need first to evaluate the amplification gain described in (3.2.2). Because we assume

imperfect estimation in this chapter, the gain in (3.2.2) can be rewritten as

G im
i (k) =

√
Es

E(ĥs,i(k))Es +No

(3.3.9)

With the help of (3.3.1), we can write ĥs,i(k) = ρk−1
s,i ĥs,i(1) +

√
1− ρ2s,i

∑k−1
j=1 ρ

k−j−1
s,i es,i(j),

and thus, its energy E(ĥs,i(k)) can be given as

E(ĥs,i(k)) = ρ
2(k−1)
s,i |ĥs,i(1)|2 + (1− ρ

2(k−1)
s,i )σ2

s,i. (3.3.10)

By substituting now (3.3.10) into (3.3.9), we can obtain G im
i (k) in its ultimate form as

G im
i (k) =

√
Es

(ρ
2(k−1)
s,i |ĥs,i(1)|2 + (1− ρ

2(k−1)
s,i )σ2

s,i)Es +No

(3.3.11)

Now, by substituting (3.3.11) for the amplification gain in (3.3.8), and after doing some

manipulations and simplifications, we can write γims,i,d(k) in the following intended ultimate

form

γims,i,d(k) =
γims,i (k)γ

im
i,d(k)

γims,i (k) + γimi,d(k) + Ψi(k)
(3.3.12)

where

γims,i (k) =
Esρ

2(k−1)
s,i |ĥs,i(1)|2

((1− ρ
2(k−1)
s,i )σ2

s,i + ρ
2(k−1)
s,i σ2

es,i
)Es +No

and

γimi,d(k) =
Esρ

2(k−1)
i,d |ĥi,d(1)|2

((1− ρ
2(k−1)
i,d )σ2

i,d + ρ
2(k−1)
i,d σ2

ei,d
)Es +No

46



are the effective SNRs of S-Ri and Ri-D links, respectively, and

Ψi(k) =
(
(1− ρ

2(k−1)
s,i )σ2

s,iE
2
s

(
(1− ρ

2(k−1)
i,d )σ2

i,d + ρ
2(k−1)
i,d σ2

ei,d
+
No

Es

)
+ (1− ρ

2(k−1)
i,d )

×σ2
i,dEs

(
ρ
2(k−1)
s,i σ2

es,i
Es +No

)
+ ρ

2(k−1)
s,i σ2

es,i
ρ
2(k−1)
i,d σ2

ei,d
E2

s + ρ
2(k−1)
i,d σ2

ei,d
EsNo

+N2
o

)/(((
1− ρ

2(k−1)
s,i )σ2

s,iEs +No + ρ
2(k−1)
s,i σ2

es,i
Es

)(
(1− ρ

2(k−1)
i,d )σ2

i,dEs +No

+ρ
2(k−1)
i,d σ2

ei,d
Es

))
. (3.3.13)

As a special case of quasi-static fading (ρa,b = 1 ∀(a, b)) and perfect channel estimation

(σ2
es,i

= σ2
ei,d

= 0), the effective end-to-end SNR in (3.3.12) also reduces to (2.3.15).

The cdf and the pdf of γims,i,d(k), in (3.3.12), can be evaluated in exact form, with the

help of [26], respectively, as

Fγim
s,i,d(k)

(γ) = 1− 2(γim)3s,i(k) exp

(
−
(
γims,i(k) + γimi,d(k)

γims,i(k)γ
im
i,d(k)

)
γ

)√
γ2 +Ψi(k)γ

γims,i(k)γ
im
i,d(k)

×K1

(
2

√
γ2 +Ψi(k)γ

γims,i(k)γ
im
i,d(k)

)
(3.3.14)

and

fγim
s,i,d(k)

(γ)=
2

γims,i(k)
exp

(
−
(
γims,i(k) + γimi,d(k)

γims,i(k)γ
im
i,d(k)

)
γ

)[
2γ +Ψi(k)

γimi,d(k)

Ko

(
2

√
γ2 +Ψi(k)γ

γims,i(k)γ
im
i,d(k)

)
+

(
γims,i(k) + γimi,d(k)

γims,i(k)γ
im
i,d(k)

)√
(γ2 +Ψi(k)γ)γ

im
s,i(k)

γimi,d(k)

K1

(
2

√
γ2 +Ψi(k)γ

γims,i(k)γ
im
i,d(k)

)]
(3.3.15)

where Kn(k) is the nth order modified bessel function of the second kind, γims,i(k) = E[γims,i (k)]

and γimi,d(k) = E[γimi,d(k)]. In order to simplify the following analysis, we propose to approx-

imate (as similar as the approximation we have considered in (2.3.17)) γims,i,d(k) in (3.3.12)
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as

γims,i,d(k) ≈ γimup,i(k) = min(γims,i (k), γ
im
i,d(k)) (3.3.16)

which we obtain its pdf as

fγim
up,i(k)

(γ) =
1

γimup,i(k)
exp(− γ

γimup,i(k)
) (3.3.17)

where

γimup,i(k) =
γims,i(k)γ

im
i,d(k)

(γims,i(k) + γimi,d(k))
. (3.3.18)

In the following we continue our analysis based on this approximation, which, as will be

shown later in the numerical results section, helps in obtaining tight closed-form system

performance expressions.

3.3.3 MRC destination Overall SNR

Because the destination combines all received signals through the direct and the

end-to-end paths via MRC, we can write the effective SNR at the MRC output in case of

imperfect-estimation as

γimtot(k) = γims,d(k) +
M∑
i=1

γims,i,d(k) (3.3.19)

If we consider now the approximation of γims,i,d(k) as in (3.3.16), we can approximate γimtot(k)

in (3.3.19) as

γimtot(k) ≈ γimtot,up(k) = γims,d(k) +
M∑
i=1

γimup,i(k) (3.3.20)

By following same MGF method we have followed to obtain the pdf in (2.3.27), we can

obtain the pdf of γimtot,up(k) in (3.3.20) as

fγim
tot,up(k)

(γ) =
ξimupe

(
−γ

γim
s,d

(k)

)

γims,d(k)
+

M∑
i=1

ξimup,ie

(
−γ

γim
up,i

(k)

)

γimup,i(k)
(3.3.21)
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where

ξimup =

(
γims,d(k)

)M∏M
i=1(γ

im
s,d(k)− γimup,i(k))

(3.3.22)

and

ξup,i =

(
γimup,i(k)

)M
(γimup,i(k)− γims,d(k))

∏M
i=1,i �=j(γ

im
up,i(k)− γimup,j(k))

. (3.3.23)

In case of perfect estimation assumption, the pdf in (3.3.21) reduces to the one in (2.3.27).

3.4 System Performance Evaluation

In this section we use the pdf in (3.3.21) to derive closed-form expressions for the per-

block-average BPSK BER, outage probability and Shannon capacity of the system model

described in Sec 3.2. These obtained expressions generalize the ones derived in chapter 1 for

the case of perfect-estimation.

3.4.1 Error probability

By using the pdf given by (3.3.21) in evaluating (2.4.1), and solving the integration

by parts and then doing some manipulation and simplifications, we obtain closed-form ex-

pression for the lower bound per-block-average BPSK BER, of our system model in case of

error estimation, in terms of Es

No
as

P
im

e,Low =
1

2N

N∑
k=1

(
α̃M

⎡⎣1−
√√√√ α̃Es

No

ζ̃ Es

No
+ 1

⎤⎦ M∏
i=1

(
η̃i

Es

No
+ β̃i

μ̃i
Es

No
+ λ̃i

)

−
M∑
i=1

(⎡⎣1−
√√√√ δ̃i

Es

No

χ̃i
Es

No
+ β̃i

⎤⎦ (δ̃i)
M(κ̃Es

No
+ 1)

μ̃i
Es

No
+ λ̃i

M∏
j=1,j �=i

(
η̃j

Es

No
+ β̃j

ν̃i,j
Es

No
+ ω̃i,j

)))
(3.4.1)
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where

ζ̃ = α̃ + κ̃

μ̃i = α̃η̃i − δ̃iκ̃

λ̃i = α̃β̃i − δ̃i

χ̃i = η̃i + δ̃i

ν̃i,j = δ̃iη̃j − δ̃j η̃i

ω̃i,j = δ̃iβ̃j − δ̃jβ̃i

α̃ = ρ
2(k−1)
s,d E[|ĥs,d(1)|2]

κ̃ = (1− ρ
2(k−1)
s,d )σ2

s,d + σ2
es,d

η̃� = ρ
2(k−1)
s,� ((1− ρ

2(k−1)
�,d )σ2

�,d + σ̃2
e	,d

)E[|ĥs,�(1)|2]

+ρ
2(k−1)
�,d ((1− ρ

2(k−1)
s,� )σ2

s,� + σ2
es,	

)E[|ĥ�,d(1)|2]

β̃� = ρ
2(k−1)
s,� E[|ĥs,�(1)|2] + ρ

2(k−1)
�,d E[|ĥ�,d(1)|2]

δ̃� = ρ
2(k−1)
s,� ρ

2(k−1)
�,d E[|ĥs,�(1)|2]E[|ĥ�,d(1)|2], ∀� = 1, 2, · · ·,M.

Similarly as the BER in (2.4.3), the BER in (3.4.1) also experiences asymptotic floor, which

can be given as

lim
Es
No

→∞
P

im

e,Low =
1

2N

N∑
k=1

(
α̃M

[
1−

√
α̃

ζ̃

] M∏
i=1

(
η̃i
μ̃i

)

−
M∑
i=1

(
κ̃(δ̃i)

M

μ̃i

[
1−

√
δ̃i
χ̃i

] M∏
j=1,j �=i

η̃j
ν̃i,j

))
(3.4.2)

It is worthwhile to mention that this floor is not only due to the assumption of time-selective

fading within the network but also due to that of imperfect channel estimation at the network

receivers.
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3.4.2 Outage probability

By using the pdf given by (3.3.21) in evaluating (2.4.7), and after doing some manip-

ulation and simplifications, we can obtain closed-form expression for the system per-block-

average outage probability in the case of imperfect-estimation as

P im
out,Low =

1

N

N∑
k=1

(∫ γth

0

fγim
tot,up(k)

(γ) dγ

)

=
1

N

N∑
k=1

(
α̃M

(
1− e

− κ̃ Es
No

+1

α̃ Es
No

γth
) M∏

i=1

(
η̃i

Es

No
+ β̃i

μ̃i
Es

No
+ λ̃i

)

−
M∑
i=1

((
1− e

− η̃i
Es
No

+˜βi

˜δi
Es
No

γ̃th
)
(δ̃i)

M(κ̃Es

No
+ 1)

μ̃i
Es

No
+ λ̃i

M∏
j=1,j �=i

(
η̃j

Es

No
+ β̃j

ν̃i,j
Es

No
+ ω̃i,j

)))
(3.4.3)

which is also suffers from floor, as a result of the time-selective fading and the imperfect-

estimation, that can be given as

lim
Es
No

→∞
P im
out,Low =

1

N

N∑
k=1

(
α̃M

(
1− e−

κ̃
α̃
γth

) M∏
i=1

(
η̃i
μ̃i

)

−
M∑
i=1

(
κ̃(δ̃i)

M

μ̃i

(
1− e

− η̃i
˜δi
γth

) M∏
j=1,j �=i

(
η̃j
ν̃i,j

)))
. (3.4.4)

3.4.3 System Shannon capacity

By using the pdf given by (3.3.21) in evaluating the first line in (2.4.13), and per-

forming some manipulation and simplifications, we can obtain closed-form expression the
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upper-bound per-block-average capacity in the case of imperfect-estimation as

C
im

up =
1

N

N∑
k=1

(
B

M + 1

∫ ∞

0

log2(1 + γ)fγim
tot,up(k)

(γ) dγ

)

=
B log2(e)

N(M + 1)

N∑
k=1

(
α̃Me

κ̃ Es
No

+1

α̃ Es
No E1

(
κ̃Es

No
+ 1

α̃Es

No

) M∏
i=1

(
η̃i

Es

No
+ β̃i

μ̃i
Es

No
+ λ̃i

)

−
M∑
i=1

(
e

η̃i
Es
No

+˜βi

˜δi
Es
No E1

(
η̃i

Es

No
+ β̃i

δ̃i
Es

No

)
(δ̃i)

M(κ̃Es

No
+ 1)

μ̃i
Es

No
+ λ̃i

M∏
j=1,j �=i

(
η̃j

Es

No
+ β̃j

ν̃i,j
Es

No
+ ω̃i,j

)))
(3.4.5)

The capacity in (3.4.5) is limited by a ceiling as a result of both time-selective fading and

imperfect-estimation, which can be given as

lim
Es
No

→∞
C

im

up =
B log2(e)

N(M + 1)

N∑
k=1

(
α̃Me

κ̃
α̃E1

(
κ̃

α̃

) M∏
i=1

(
η̃i
μ̃i

)

−
M∑
i=1

(
e

η̃i
˜δiE1

(
η̃i

δ̃i

)(
(δ̃i)

M κ̃

μ̃i

) M∏
j=1,j �=i

(
η̃j
ν̃i,j

)))
. (3.4.6)

3.5 Numerical Results and Simulation

Fig. 3.1 is a plot for the theoretical lower-bound BPSK BER performance of the

system model described in Sec. 3.2 (using (3.4.1)) along with the exact simulation. The

plotted error floors in this figure are using (3.4.2). The tightness of the lower-bound is

obvious, in particular, at medium and high average SNR regions. It is also clear that the

BER performance experiences error floor due to the source mobility along with constrained

CSI estimation rates of 2% (N = 50). In case of imperfect channel estimation, the error

floor increases, which means further performance degradation.

In Fig. 3.2, we plot the exact simulation outage probability for the system model

under study along with the theoretical lower-bound outage expression given by (3.4.3) and

the outage floor expression given by (3.4.4). Similarly, this figure shows that the outage

performance is degraded due to nodes mobility, imperfect estimation and low CSI estimation
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Figure 3.1. BPSK BER versus Es/No with 2% CSI estimation rates (N = 50) and M = 1, 2
and 3. In dB: E[|hs,d(1)|2] = 1, E[|hs,�(1)|2] = {1.5, 2.5, 3.5} and E[|h�,d(1)|2] = {2.5, 3.5, 4.5}.
The Source is mobile and the other nodes are static corresponding to correlation parameters
of ρs,d = ρs,� = 0.9997 and ρi,d = 1. In case of imperfect channel estimation: σ2

ea,b
=

0.02 ∀(a, b).

rate of N = 30. Moreover, in case of quasi-static fading (all nodes are static), the outage

floor is removed as long as the estimation is perfect.

Fig. 3.3 is a plot for the system normalized Shannon capacity expression given by

(3.4.5), verified via exact simulation, and the capacity ceiling expression given by (3.4.6)

for 1% CSI imperfect estimation rate (N = 100). First, we can notice the tightness of

the theoretical derived expressions as compared with the exact simulation. In addition, for

higher nodes mobility the capacity ceiling decreases.
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In dB: E[|ĥs,� (1)|
2] = {1.5,2.5,3.5}, E[|ĥ�,d (1)|

2] = {2.5,3.5,4.5}, N=30 and M=2

Exact simualtion
Theory, M=1 and 2
Outage floors

All nodes are static: imperfect estimation

All nodes are static: perfect estimation

Mobile source

Figure 3.2. Per-block-average outage probability versus Es/No with and N = 30 and M = 1
and 2. In dB: E[|hs,d(1)|2] = 1, E[|hs,�(1)|2] = {1.5, 2.5} and E[|hs,�(1)|2] = {2.5, 3.5}. The
corresponding correlation parameter is 0.9990. In case of imperfect estimation: σ2

ea,b
=

0.03 ∀(a, b).

3.6 Conclusion

In this chapter, we have analyzed the performance ofM -relay AF cooperative network

taking into account the impacts of the nodes mobility, the estimation errors, and the speed of

the receivers’ tracking loops. We have derived exact expressions for the destination’s SNRs,

through the direct and the end-to-end paths, and approximate expressions for the system

average BER, outage probability, and capacity. The derived expressions are general, which

are valid for mobile and static nodes, imperfect and perfect channel estimations, and slow

and fast receiver’s tracking loops. Numerical and simulation results have been presented to

show the system performance and demonstrate how it is affected by the different scenarios
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Figure 3.3. Per-block-average upper-bound normalized capacity versus Es/No with N = 100
and M = 1, 2 and 3. In dB: E[|hs,d(1)|2] = 1, E[|hs,�(1)|2] = {1.5, 2.5, 3.5} and E[|hs,�(1)|2] =
{2.5, 3.5, 4.5}. Imperfect estimation with σ2

ea,b
= 0.01 ∀(a, b).

of nodes mobility and channel estimation rates.

55



CHAPTER 4

Best-Relay-Selection M -Relay Variable-Gain AF Cooperative Systems with Mobile Nodes

and Imperfect CSI Estimation: SNR Derivation and Performance Analysis

4.1 Chapter Overview

In this chapter, we consider the variable-gain M -relay amplify-and-forward (AF)

cooperative system with best-relay-selection protocol, in which the relay (the best) that

achieves the highest effective signal-to-noise-ratio (SNR) at the destination only retransmits

to the destination, and investigate its performance under the impacts of the nodes’ mobility

and the channel estimation error. Specifically, we derive approximate closed-form expression

for the pdf of the total effective SNR at the output of the destination’s MRC combiner.

Starting from this pdf, we derive closed-form tight approximate expressions for this system

per-block-average BER, outage probability, and Shannon capacity. Our analysis reveals that

due to the cooperating-nodes mobility and error estimation, the best-relay-selection coopera-

tive system performance is severely degraded and experiences asymptotic limits. In addition,

as compared with the regular cooperative system, we found that the best-relay-selection pro-

tocol provides higher asymptotic error floors. We finally provide simulation and numerical

results to verify the accuracy of the derived analytical expressions.

4.2 System and Channel Model

Here, we consider the same system model as in chapter 2 but, instead of employing the

regular cooperative protocol, we employ the best-relay-selection one [27]. In this protocol,

the destination selects the signal from the relay that achieved the highest effective SNR and

combine it with the direct-path signal via MRC (see Fig. 4.1).
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Figure 4.1. System model: M -relay best-relay-selection amplify-and-forward wireless coop-
erative system with time-selective fading channels.

4.3 Total SNR Derivation and Probability Density Function

In the best-relay-selection protocol, the MRC receiver at the destination combines

the received signal through the direct-path with the signal from the relay the achieves the

highest effective SNR at the destination. Therefore, under this protocol along with the

assumption of imperfect channel estimation at the network receivers, the total effective SNR

at the output of the MRC combiner corresponding to the kth signaling period, say γim,br
tot (k),

can be expressed as [28]

γim,br
tot (k) = γims,d(k) + γmax(k) (4.3.1)

where

γmax(k) = max
i

(
γims,i,d(k)

)
. (4.3.2)
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The SNRs γims,d(k) and γims,i,d(k) are given in (3.3.4) and (3.3.12), respectively. If we sub-

stitute for γims,i,d(k) in (4.3.2) by its approximation γimup,i(k) as described in (3.3.16), we can

approximate γim,br
tot (k) in (4.3.1) as

γim,br
tot (k) ≈ γim,br

tot,up(k) = γims,d(k) + γmax,up(k) (4.3.3)

where

γmax,up(k) = max
i

(
γimup,i(k)

)
. (4.3.4)

In this chapter we continue our analysis based on the approximated total SNR γim,br
tot,up(k)

instead of γim,br
tot (k), which we need now to find closed-form expression for its pdf, say

fγim,br
tot,up(k)

(γ). To accomplish this purpose, in the following we use the MGF method. First,

the MGF of γim,br
tot,up(k) can be given as

Mγim,br
tot,up(k)

(s) = Mγim
s,d(k)

(s)Mγmax,up(k)(s) (4.3.5)

where

Mγim
s,d(k)

(s) =
1

1 + γims,d(k)s
(4.3.6)

and Mγmax,up(k)(s) is the MGF of γmax,up(k), which can be obtained as

Mγmax,up(k)(s) =

∫ ∞

0

e−sγfγmax,up(k)(γ) dγ (4.3.7)

where fγmax,up(k)(γ) is the pdf of γmax,up(k), which can be obtained as

fγmax,up(k)(γ) =
d

dγ

(
Pr{γmax,up(k) < γ})= d

dγ

( M∏
i=1

Pr{γimup,i(k) < γ})
=

d

dγ

( M∏
i=1

∫ γ

0

fγim
up,i(k)

(γ) dγ
)
. (4.3.8)
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By substituting (3.3.17) into (4.3.8) and evaluating the integration, we can obtain the pdf

fγmax,up(k)(γ) as

fγmax,up(k)(γ) =
d

dγ

( M∏
i=1

(
1− e

− γ

γim
up,i

(k)
))

(4.3.9)

and after doing some manipulations it can be written as

fγmax,up(k)(γ) =
M∑
i=1

(−1)i+1

M−i+1∑
�1=1

M−i+2∑
�2=�1+1

· · ·
M∑

�i=�i−1+1

×
(
K

i∏
j=1

exp

(
−γ γ

im
s,�j

(k) + γim�j ,d(k)

γims,�j(k)γ
im
�j ,d

(k)(k)

))
(4.3.10)

where

K =
i∑

j=1

γims,�j(k) + γim�j ,d(k)

γims,�j(k)γ
im
�j ,d

(k)
. (4.3.11)

By substituting (4.3.10) into (4.3.7) and evaluating the integration, we can obtain the MGF

Mγmax,up(k)(s) as

Mγmax,up(k)(s) =
M∑
i=1

(−1)i+1

M−i+1∑
�1=1

M−i+2∑
�2=�1+1

· · ·
M∑

�i=�i−1+1

( K
K + s

)
. (4.3.12)

By substituting now (4.3.6) and (4.3.12) into (4.3.5), we obtain Mγim,br
tot,up(k)

(s) as

Mγim,br
tot,up(k)

(s) =
M∑
i=1

(−1)i+1

M−i+1∑
�1=1

M−i+2∑
�2=�1+1

· · ·
M∑

�i=�i−1+1

⎛⎝ 1
γim
s,d(k)

1
γim
s,d(k)

+ s

⎞⎠( K
K + s

)
.

(4.3.13)
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Now, by finding the inverse Laplace Transform of (4.3.13), using the partial fractions method,

we obtain fγim,br
tot,up(k)

(γ) in its ultimate form as

fγim,br
tot,up(k)

(γ)=
M∑
i=1

(−1)i+1

M−i+1∑
�1=1

M−i+2∑
�2=�1+1

· · ·
M∑

�i=�i−1+1

(
K

1−Kγims,d(k)
(
e−Kγ − e

− γ

γim
s,d

(k)
))

.

(4.3.14)

As a special case of quasi-static fading (ρa,b = 1 ∀(a, b)) and perfect channel estimation

(σ2
ea,b

= 0 ∀(a, b)), the best-relay-selection case pdf in (4.3.14) reduces to [28, Eq. (16)].

In the next section, we the pdf in (4.3.14) to analyze the performance of our AF wire-

less cooperative system with best-relay-selection protocol and imperfect channel estimation.

This analysis is in terms of the per-block-average lower-bound BPSK BER, lower-bound

outage probability and upper-bound Shannon capacity.

4.4 System Performance Evaluation

4.4.1 Error probability

By assuming equiprobable N symbols in the transmitted block with BPSK modula-

tion and using the pdf given by (4.3.14), we can obtain the lower-bound per-block-average

BER at the output of the MRC combiner for the best-relay-selection protocol with imperfect-

estimation as

P
im,br

e,Low =
1

N

N∑
k=1

(∫ ∞

0

Q
(√

2γ(k)
)
fγim,br

tot,up(k)
(γ)

)

=
1

N

N∑
k=1

( M∑
i=1

(−1)i+1

M−i+1∑
�1=1

M−i+2∑
�2=�1+1

· · ·
M∑

�i=�i−1+1

( K
1−Kγims,d(k)

×
(∫ ∞

0

Q
(√

2γ(k)
)
e−Kγ dγ −

∫ ∞

0

Q
(√

2γ(k)
)
e
− γ

γim
s,d

(k) dγ

)))
.

(4.4.1)

60



By solving the last two integrals in (4.4.1) by parts technique and after doing some ma-

nipulations and simplification, we can obtain P
im,br

e,Low in its ultimate form in terms of Es

No

as

P
im,br

e,Low =
1

2N

N∑
k=1

M∑
i=1

(−1)i+1

M−i+1∑
�1=1

M−i+2∑
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· · ·
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(
1−

√√√√ 1

1 +
∑i

j=1

χ̈	j
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No

+λ̈	j

ω̈	j
Es
No

× κ̈s,d
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No
+ 1

κ̈s,d
Es

No
+ 1− α̈s,d

Es

No

∑i
j=1

χ̈	j
Es
No

+λ̈	j

ω̈	j
Es
No

+
α̈s,d

Es

No

∑i
j=1

χ̈	j
Es
No

+λ̈	j

ω̈	j
Es
No

κ̈s,d
Es

No
+ 1− α̈s,d

Es

No

∑i
j=1

χ̈	j
Es
No

+λ̈	j

ω̈	j
Es
No

×
√√√√ α̈s,d

Es

No

(α̈s,d + κ̈s,d)
Es

No
+ 1

)
(4.4.2)

where

χ̈�j = α̈s,�j κ̈�j ,d + α̈�j ,dκ̈s,�j

λ̈�j = α̈s,�j + α̈�j ,d

ω̈�j = α̈s,�j α̈�j ,d

α̈a,b = ρ
2(k−1)
a,b E[|ĥa,b(1)|2]

κ̈a,b = (1− ρ
2(k−1)
a,b )σ2

a,b + ρ
2(k−1)
a,b σ2

ea,b
, ∀� = 1, 2, · · ·,M. (4.4.3)

As a result of the nodes’ mobility (or the time-selective fading within the network) and the

imperfect channel estimation, the BER performance of the best-relay-selection protocol also

degraded at high Es

No
values and suffers from irreducible floor, which is given by

lim
Es
No

→∞
P

im,br

e,Low =
1

2N

N∑
k=1

M∑
i=1

(−1)i+1

M−i+1∑
�1=1

M−i+2∑
�2=�1+1

· · ·
M∑

�i=�i−1+1

(
1− κ̈s,d

κ̈s,d − α̈s,d

∑i
j=1

χ̈	j

ω̈	j

×
√√√√ 1

1 +
∑i

j=1

χ̈	j

ω̈	j

+
α̈s,d

∑i
j=1

χ̈	j

ω̈	j

κ̈s,d − α̈s,d

∑i
j=1

χ̈	j

ω̈	j

√
α̈s,d

α̈s,d + κ̈s,d

)
. (4.4.4)
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It is worthwhile to mention that in the literature (e.g. [28]), it has been shown that the best-

relay-selection protocol provides better BER performance over the regular protocol over

the entire range of Es

No
. However, this is no longer valid under the nodes’ mobility and the

imperfect-CSI impacts. As will be shown later in the numerical results section, the error floor

in (4.4.4) has larger values than that in (3.4.2), which means that the best-relay-selection

protocol provides worse BER performance than that of the regular protocol at the high

values of Es

No
under our system model assumptions.

4.4.2 Outage probability

For our M -relay cooperative network model with best-relay-selection protocol, the

mutual information between the source and the destination, corresponding to the kth trans-

mitted symbol, can be expressed as [28, Eq. (17)]

Ibr(k) =
1

2
log2(1 + γim,br

tot (k)). (4.4.5)

Unlike the factor 1
M+1

in the mutual information expression given by (2.4.5), the reason for

the 1
2
factor in (4.4.5) is that the transmission process in the best-relay-selection cooperative

protocol takes place in 2 orthogonal channels or time-slots; one for the direct-path transmis-

sion and the other for the indirect-path transmission through the best relay. We can now

write the outage probability for the best-relay-selection protocol corresponding to the kth

transmitted symbol, P br
out(k), as

P im,br
out (k) = Pr{Ibr(k) ≤ R} = Pr{γim,br

tot (k) < γbrth} =

∫ γbr
th

0

fγim,br
tot (k)(γ) dγ (4.4.6)

where γbrth = 22R−1 and R is the required rate. By assuming equiprobable N symbols in the

transmitted block and using the pdf in (4.3.14), we can obtain the lower-bound per-block-
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average outage probability for the best-relay-selection protocol as

P im,br
out,Low =

1

N

N∑
k=1

(∫ γbr
th

0

fγim,br
tot,up(k)

(γ) dγ

)

=
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×
(
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K − e
− γbrth
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(k)

1
γim
s,d(k)

))
. (4.4.7)

After doing some manipulations and simplification, we can write (4.4.7) explicitly as a func-

tion of Es

No
as

P im,br
out,Low =
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. (4.4.8)
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The limit of P im,br
out,Low as Es

No
−→ ∞ also exists and given by

lim
Es
No

→∞
P im,br
out,Low =

1

N

N∑
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(−1)i+1
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(4.4.9)

which means that the outage performance of the best-relay-selection cooperative system

also degrades at high Es

No
values when the fading links are time-selective and the estimation

processes are imperfect.

4.4.3 Shannon Capacity

The system shannon capacity of cooperative networks with best-relay-selection pro-

tocol can be described as [29]

C
br
=
B

2

∫ ∞

0

log2(1 + γ)fγtot(γ) dγ (4.4.10)

where B is the channel bandwidth in Hz and γ is the total effective SNR at the destina-

tion. Similarly as (4.4.5), the factor 1
2
in (4.4.10) is due to the two channels (or time-slots)

required for data transmission in the best-relay-selection protocol. For our time-selective

fading network model, the system Shannon capacity in case of imperfect-estimation and

best-relay-selection, corresponding to the kth transmitted symbol, can be given as

C(k) =
B

2

∫ ∞

0

log2(1 + γim,br
tot (k))fγim,br

tot (k)(γ) dγ. (4.4.11)
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If we use now the pdf given by (4.3.14) in (4.4.11) and assume equiprobable symbols in the

transmitted block, we can obtain upper-bound per-block-average system capacity as

C
im,br

up =
1

N

N∑
k=1

(
B

2

∫ ∞

0
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))
. (4.4.12)

By evaluating the last integrals in (4.4.12) in closed-form as in [24, Eq. (38)] and doing some

manipulations and simplification, we can obtain C
im,br

up in its ultimate closed-form expression

as
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. (4.4.13)

The limit of C
im,br

up as s

No
−→ ∞ also exists and given by
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(4.4.14)
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Figure 4.2. Best-relay selection BPSK BER versus Es/No with N = 25 and 1 and M = 1
and 2. In dB: E[|hs,d(1)|2] = E[|hs,�(1)|2] = E[|h�,d(1)|2] = 1. The Source is mobile and the
other nodes are static corresponding to correlation parameters of ρs,d = ρs,� = 0.999 and
ρi,d = 1. Channel estimation is perfect (σ2

ea,b
= 0 ∀(a, b)).

which means that the capacity of a cooperative system with best-relay-selection protocol

and error channel estimation degraded and bounded by a ceiling.

4.5 Numerical Results and Simulation

Fig. 4.2 is a plot for the best-relay-selection cooperative system theoretical lower-

bound BPSK BER performance along with the exact simulation and the floors. The theo-

retical lower-bound BER plot is using (4.4.9) and the floors are using (4.4.10). It is clear

from this figure that, the source mobility with low CSI estimation rate of 4% (N = 25)

causes severe BER performance degradation with error floors whatever the number of relays
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Figure 4.3. Regular and best-relay-selection cooperative protocols BPSK BER versus Es/No

with N = 50 and M = 2. In dB: E[|hs,d(1)|2] = 1, E[|hs,�(1)|2] = {1.5, 2.5} and
E[|h�,d(1)|2] = {2.5, 3.5}. Mobile nodes corresponding to correlation parameter of 0.9998.
Channel estimation is perfect (σ2

ea,b
= 0 ∀(a, b)).

is. Further, we can also notice that 100% CSI estimation rate (N = 1) completely removes

the floors despite of the source mobility.

From Fig. 4.3, we can notice that in the case that all nodes are static, the best-

relay-selection protocol outperforms the regular one over the entire SNR region where such

result is known in literature in quasi-static fading case; see [28, Figure. 4]. However, in the

case of mobile nodes, this result is no longer valid because the best-relay-selection protocol

performance is degraded much than that of regular protocol at the high SNR values. Fig.

4.4 supports this result and shows that the error floor of best-relay protocol is higher than

that of regular protocol for any ρ < 1 and N > 1 (i.e., time-selective fading and constraint
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Figure 4.4. Regular and best-relay-selection cooperative protocols BPSK error floors versus
the correlation parameter ρ for M = 2 and N = 10 and 80. In dB: E[|hs,d(1)|2] = 1,
E[|hs,�(1)|2] = {1.5, 2.5} and E[|h�,d(1)|2] = {2.5, 3.5}

CSI estimation rate). In addition, we can notice from Fig. 4.3 that the system performance

does not experience error floor as long as the source and the destination are static (relays

only are mobile), however, its performance is still worse than that for the case of all nodes

are static.

Fig. 4.5 is a plot for the per-block-average capacity performance of the best-relay-

selection protocol cooperative system for different fading environments. First, this figure

shows the tightness of the derived upper-bound in (4.4.13) as compared with the exact

simulation one. This figure also shows that as an impact of the time-selective fading (ρa,b <

1), the system capacity performance is severely degraded and bounded by a ceiling. As

special case of slow-fading environment, this ceiling is disappeared. Similarly, Fig. 4.6 shows
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Figure 4.5. Best-relay-selection per-block-average upper bound system normalized capacity
versus Es/No with B = 1, N = 50 and M = 2. In dB: E[|ha,b(1)|2] = 1 ∀(a, b).

the tightness of the derived lower bound outage probability expression in (4.4.8) in particular

at medium and high values of Es/No. This figure also shows that due to time-selective fading,

the system outage performance is also limited by floors whatever the number of relays is.

These floors become higher (i.e., severer degradation) if the time-selective fading is combined

with imperfect-estimation.

4.6 Conclusion

In this chapter, we have analyzed the BER, outage probability and Shannon capacity

of the best-relay-selection scheme employed at amplify-and-forward time-selective fading co-

operative networks with imperfect channel estimation. The obtained closed-form analytical

expressions are tight enough and valid for both time-selective and quasi-static fading envi-
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ronments for perfect and imperfect estimations. We have also shown that the time-selective

fading degrades the system performance by asymptotic limits whatever the number of relays

is.

70



Part II:

Alamouti-Type OSTBC Based Amplify-and-Forward (AF) Cooperative Communication

Systems with Mobile Nodes and Imperfect CSI Estimation

71



CHAPTER 5

Introduction

5.1 Literature Review

Cooperative communication, multiple-input-multiple-output (MIMO) links, space-

time codes, and a combination of them are among the successfully employed techniques in

modern wireless communications systems that require higher link reliability. In [30] and

[31], it has been proven that cooperative-based MIMO systems (i.e., cooperative-MIMO)

are efficient for improved system performance and higher spectral efficiency. The techniques

of Space-time-block coding (STBC) play a significant role in the developments of the new

cellular networks generations [32], in particular, the techniques of Orthogonal-STBCs (OS-

TBCs). OSTBCs are capable of providing full spacial diversity gain with low decoding

complexity that results from the optimal maximum-likelihood (ML) decoder [33] and [34].

The transmission of OSTBCs over cooperative networks has gained great interest in the

research community. By this combination, the OSTBC transmit diversity gain, achieved

at the receiving side, can be heighten by the the number of relays without destroying the

optimality and simplicity of the OSTBCs decoders [26], [35], [36]. Reported results in [26],

[35], [36] have been obtained based on the assumption that the fading channels among the

nodes are quasi-static (i.e., their channel gains are constant over a number of consecutive

signaling periods). This assumption is required in order to maintain the orthogonality of

the OSTBCs and to guarantee the optimality of their corresponding ML decoders at the

ultimate system destination. However, this assumption is not always realistic in some net-

work applications. For example, in the Fourth Generation cellular technology (4G), frequent

users’ transitions between integrated systems occur [37] which leads to time variations in the
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users’ fading channels characteristics (i.e., time-selective fading is present). Furthermore,

according to Jakes’ model [16], high relative speed between any two communicating nodes

makes their fading links characterize as time-selective. Under such fading channels condi-

tions, the channel gain matrices of the OSTBCs are no longer orthogonal, and hence, their

corresponding decoders are no longer optimal ML and experiences inter-transmit-antenna-

interference (ITAI) that appears as terms in their output decision statistics. The effect of

the time-selective fading on the performance of point-to-point (non-cooperative) communi-

cation systems that employ OSTBCs has been addressed in several locations in literature.

In [38] the Kalman filter has been introduced in the Alamouti-type OSTBC decoders to

track and estimate the time-selective fading channel gains. The proposed decoder in [38]

has not shown a capability of suppressing the ITAI terms appeared as a result of time selec-

tive fading, and thus, its error performance suffers from floor at high values of the per-bit

SNR. In [39] the authors have proposed an iterative-ITAI-cancellation based decoder that

provides improved error performance with no floors. In [40] and [41] explicit decoders that

are capable of providing separable decision statistics with removed ITAI, but at the price of

a loss in the transmit diversity gain, have been proposed. The authors of [42] and [43] have

proposed a modified OSTBC that can compensate for the performance degradation caused

by time-selective fading.

5.2 Work Summery

However, the contribution in this part of this dissertation is three-fold. Firstly, in

chapter 6, we investigate the impact of the time-selective fading in destroying the optimality

of the traditional Alamouti space-time decoder employed at the destination of a multiple-

relay cooperative-based system with Alamouti-OSTBC transmission at the source, and anal-

yse its symbol-error-probability (SEP) performance. Secondly, in chapters 7 and 8, we are

concerned in mitigating this impact of the time-selective fading on the overall system per-

formance by proposing and designing alternative and efficient space-time decoders that can
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be applied instead of Alamuoti’s decoder and provide remarkable performance improvement.

Finally, in chapter 9, we consider the same system model as in chapter 6 and, along with the

effect of the time-selective fading, we study the effect of the imperfect channel estimation on

the system SEP performance.

74



CHAPTER 6

Alamouti-OSTBC Based M -Relay Fixed-Gain AF Cooperative Systems with Mobile Nodes

and Perfect CSI Estimation: SINR Derivation and SEP Analysis

6.1 Chapter Overview

In this chapter, we study the effects of the cooperating nodes mobility on the sym-

bol error probability (SEP) performance of a multiple-relay fixed-gain amplify-and-forward

(AF) wireless cooperative network with Alamouti-type orthogonal-space-time-block-code

(Alamouti-OSTBC) transmission at the source and its traditional decoder (ALD) at the

destination. The multipath wireless environment is characterized in the small-scale fading

as Rayleigh, frequency-flat and time-selective (due to nodes mobility), and it follows the

path-loss model in the large-scale fading. We first show that the time-selective fading de-

stroys the optimality of the ALD as a result of non-independent (statistically correlated) and

non-separable decision statistics (with inter-transmit-antenna-interference (ITAI)). Then,

by dealing this ITAI as an extra noise component, in addition to the effective background

white noise, we derive exact expressions for the decision statistics’ conditional signal-to-

interference-plus-noise-ratios (SINRs). From these SINRs we obtain closed-form expression

for the system’s SEP performance conditioned on the channel gains in the end-to-end chan-

nel gain matrix. Based on this conditional SEP expression, we obtain its average by using

computer Monte Carlo simulation, which are also verified via real link-level simulation.

From these analyzed results, we observe that the SEP performance of the system

under study is severely degraded by node’s mobility, in particular, at low transmission data-

rates. This degradation is basically represented by irreducible SEP floors that appear at

high values of the per-symbol average signal-to-noise-ratio (SNR) whatever the number of
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Figure 6.1. System model: Alamouti-OSTBC Transmission overM -relay fixed-gain amplify-
and-forward wireless cooperative system with time-selective fading channels.

relays is. We also show that, as a special case of non moving nodes (i.e., quasi-static fading

network), the decision statistics’ statistical-correlation, the ITAI and the error floors reduce

to zero. This means that the ALD is in its optimal version in such situation. Moreover, in

such special case, our derived SINRs reduce to well known SNRs derived in the literature

for such a system model with quasi-static fading.

6.2 System Model

6.2.1 Fading channel model

As shown in Fig. 6.1, we consider a wireless cooperative network with M number of

relays (R�, � ∈ {1, 2, · · ·,M}) which are ready to assist a source S in forwarding its data

to a destination D via orthogonal transmissions where the direct path between S and D

is assumed to be absent. The source is equipped with two transmit antennas (e.g., corre-

sponding to a base station), while the relays and the destination are equipped with single

antenna and work as mobile terminals. We consider an aggregate fading wireless channel
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model which takes into account both large-scale and small-scale fading models. Let hi,� and

h�,d denote the channel gains for the links from the source ith transmit antenna (i ∈ {1, 2})
to the �th relay’s receive antenna and from the �th relay’s transmit antenna to the desti-

nation’s receive antenna, respectively. We assume that hi,� and h�,d have Rayleigh envelop

and uniform phase, and thus, they can be distributed as zero-mean-circularly-symmetric-

complex-Gaussian (ZMCSCG), i.e., hi,� ∼ CN (0, σ2
i,�) and h�,d ∼ CN (0, σ2

�,d). To take into

account the effect of the path-loss large-scale fading, σ2
i,� and σ2

�,d are given as 1/dns,� and

1/dn�,d, respectively, where ds,� and d�,d are the S-R� and R�-D distances and n is the path-

loss exponent. For the small scale-fading model, all of the network fading links are considered

to be frequency-flat, so we consider narrowband network scenario. In addition, the relative

speed between any two communicating nodes in the network is assumed to be significant,

and according to Jakes’ model [16], the time-adjacent channel gains of their associated fading

links can be considered uncorrelated with correlation parameter of ρ = J0(
2πfcν
Rsc

), where ν

is the relative speed, Rs = 1
Ts

is the transmission symbol rate, Ts is the signaling period

length, fc is the carrier frequency, c is the speed of light and J0(.) is the zeroth-order Bessel

function of the first kind. In other words, time-selective (time-variant) fading is present. In

this work, we adopt the first order autoregressive process (AR1) [9] to model the relationship

between any two time-adjacent channel gains as

ha,b(τ1) = ρa,bha,b(τ2) +
√

1− ρ2a,bea,b(τ2) (6.2.1)

where the pair (a, b) ∈ {(i, �), (�, d)} denotes the link between antennas a and b, and τ1 and

τ2 denote any two adjacent signaling period positions. The process ea,b(k) represents the

varying-component of the associated link and assumed to be independent and identically

distributed (i.i.d.) ZMCSCG with variance σ2
a,b, i.e., ∼ CN (0, σ2

a,b). We also assume that

ρ1,� and ρ2,� are equal and indicated as ρs,�.
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6.2.2 Alamouti space-time-encoder and signal model

As depicted in Fig. 6.1, the binary input message at the source is first modulated

1, and then, the modulated complex symbol sequence {xi} is parsed into code vectors x =

[x1, x2]
T and then arranged over space and time as Alamouti-OSTBC matrix [33]

X =

⎡⎢⎣x1 −x∗2
x2 x∗1

⎤⎥⎦ (6.2.2)

where the first column’s symbols are transmitted simultaneously at the kth signaling period

by the source two transmit antennas while that of the second column are transmitted at the

(k + 1)th signaling period in the same manner. We assume radiation power limited system;

therefore, the modulated symbol energy Es is halved such that the overall source transmit

energy from both antennas is kept Es. Throughout data transmissions between S and D two

phases are accomplished. In the first phase, S transmits the OSTBC matrix in (6.2.2) while

each relay, R�, receives two signals over the kth and (k+1)th signaling periods, respectively,

as

ys,�(k) = h1,�(k)x1 + h2,�(k)x2 + ns,�(k) (6.2.3)

ys,�(k + 1) = −h1,�(k + 1)x∗2 + h2,�(k + 1)x∗1 + ns,�(k + 1) (6.2.4)

where ns,�(k) and ns,�(k+1) are ZMCSCG white noise samples with equal variance No, i.e.,

∼ CN (0, No). In the second transmission phase, the �th relay amplifies its received signals

in (6.2.3) and (6.2.4) by the following fixed amplification gain [44]

G =

√
Er

Es +No

(6.2.5)

1In this work, we consider a rectangular q-ary quadrature amplitude modulator (q-QAM) such that the
constellation size q equals 2b where b is an even integer.
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where Er is the overall relay transmit energy. After that, it sequentially transmits Gys,�(k)
and Gys,�(k + 1) towards the destination which results in received signals, over the kth and

(k + 1)th signaling periods, respectively, as

y�,d(k) = h�,d(k)(Gys,�(k)) + n�,d(k) (6.2.6)

y�,d(k + 1) = h�,d(k + 1)(Gys,�(k + 1)) + n�,d(k + 1) (6.2.7)

where n�,d(k) and n�,d(k+1) are also ∼ CN (0, No). Now, by substituting the signals given by

(6.2.3) and (6.2.4) into (6.2.6) and (6.2.7), respectively, we can write the destination received

signals in terms of the transmitted symbols x1 and x2, over the kth and (k + 1)th signaling

periods, respectively, as

y�,d(k) = (Gh1,�(k)h�,d(k)) x1 + (Gh2,�(k)h�,d(k)) x2 + Gh�,d(k)ns,�(k) + n�,d(k) (6.2.8)

y�,d(k + 1) = − (Gh1,�(k + 1)h�,d(k + 1)) x∗2 +
(Gh2,�(k + 1)h�,d(k + 1)

)
x∗1

+Gh�,d(k + 1)ns,�(k + 1) + n�,d(k + 1). (6.2.9)

In Alamouti’s work [33], it has been assumed that the receiver takes the complex conjugate

(∗) of the second received signal as a first step of his proposed decoder. By following same

assumption and taking the complex conjugate of (6.2.9), we can write the destination’s

received signals from all of the relays as a 2M × 1 received signal vector Yd in the following

matrix form

Yd = H

⎡⎢⎣x1
x2

⎤⎥⎦
︸ ︷︷ ︸

x

+Nd (6.2.10)
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where

Yd =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1,d(k)

y∗1,d(k + 1)

y2,d(k)

y∗2,d(k + 1)

...

yM,d(k)

y∗M,d(k + 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.2.11)

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Gh1,1(k)h1,d(k) Gh2,1(k)h1,d(k)
Gh∗2,1(k + 1)h∗1,d(k + 1) −Gh∗1,1(k + 1)h∗1,d(k + 1)

Gh1,2(k)h2,d(k) Gh2,2(k)h2,d(k)
Gh∗2,2(k + 1)h∗2,d(k + 1) −Gh∗1,2(k + 1)h∗2,d(k + 1)

...
...

Gh1,M(k)hM,d(k) Gh2,M(k)hM,d(k)

Gh∗2,M(k + 1)h∗M,d(k + 1) −Gh∗1,M(k + 1)h∗M,d(k + 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.2.12)

and

Nd =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Gh1,d(k)ns,1(k) + n1,d(k)

Gh∗1,d(k + 1)n∗
s,1(k + 1) + n∗

1,d(k + 1)

Gh2,d(k)ns,2(k) + n2,d(k)

Gh∗2,d(k + 1)n∗
s,2(k + 1) + n∗

2,d(k + 1)

...

GhM,d(k)ns,M(k) + nM,d(k)

Gh∗M,d(k + 1)n∗
s,1(k + 1) + n∗

M,d(k + 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.2.13)

The 2M × 2 matrix H represents the end-to-end channel-gain matrix of our proposed M

relay-based cooperative system model and Nd is a 2M × 1 effective noise vector. It is

worthwhile to mention that the matrix H is not orthogonal unless all the network fading

channels are quasi-static (i.e., ρa,b = 1 ∀(a, b)).
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6.2.3 Alamouti Space-Time-Decoder and decision statistics

The technique of the ALD [33] is based on multiplying the received signal vector

by the hermitian (H) (hermitian means conjugate-transpose) of the channel gain matrix

such that the resulted two elements are the decision statistics needed for the demodulation

process. Thus, we can obtain the space-time decoding matrix of the ALD employed at the

destination of our system model by taking the hermitian of the end-to-end channel gain

matrix H in (6.2.10) as

HH =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Gh∗1,1(k)h∗1,d(k) Gh∗2,1(k)h∗1,d(k)
Gh2,1(k + 1)h1,d(k + 1) −Gh1,1(k + 1)h1,d(k + 1)

Gh∗1,2(k)h∗2,d(k) Gh∗2,2(k)h∗2,d(k)
Gh2,2(k + 1)h2,d(k + 1) −Gh1,2(k + 1)h2,d(k + 1)

...
...

Gh∗1,M(k)h∗M,d(k) Gh∗2,M(k)h∗M,d(k)

Gh2,M(k + 1)hM,d(k + 1) −Gh1,M(k + 1)hM,d(k + 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(6.2.14)

where {.}T denotes matrix transpose. We assume that the relays and the destination re-

ceivers are capable to estimate the channel gains of their corresponding fading links over

the individual signaling periods. These gains are required to construct the ALD decoding

matrix HH at the destination. [45] and [46] are devoted to CSI estimation of time-selective

fading channels. Now, by multiplying the the received signal vector Yd in (6.2.10) by the

ALD decoding matrix in (6.2.14), we obtain the required decision statistics corresponding
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to the two transmitted symbols x1 and x2, respectively, as

ỹ1 =

desired signal of x1︷ ︸︸ ︷(
G2

M∑
�=1

(|h1,�(k)h�,d(k)|2 + |h2,�(k + 1)h�,d(k + 1)|2))︸ ︷︷ ︸
β1

x1

+

ITAI-term1︷ ︸︸ ︷(
G2

M∑
�=1

(
h∗1,�(k)h2,�(k)|h�,d(k)|2 − h2,�(k + 1)h∗1,�(k + 1)|h�,d(k + 1)|2))︸ ︷︷ ︸

ζ

x2

+

effective-white-noise-term1�ñ1︷ ︸︸ ︷
M∑
�=1

(G2h∗1,�(k)|h�,d(k)|2ns,�(k) + Gh∗1,�(k)h∗�,d(k)n�,d(k) + G2h2,�(k + 1)

×|h�,d(k + 1)|2n∗
s,�(k + 1) + Gh2,�(k + 1)h�,d(k + 1)n∗

�,d(k + 1)
)

(6.2.15)

and

ỹ2 =

desired signal of x2︷ ︸︸ ︷(
G2

M∑
�=1

(|h2,�(k)h�,d(k)|2 + |h1,�(k + 1)h�,d(k + 1)|2))︸ ︷︷ ︸
β2

x2

+

ITAI-term2︷ ︸︸ ︷(
G2

M∑
�=1

(
h1,�(k)h

∗
2,�(k)|h�,d(k)|2 − h∗2,�(k + 1)h1,�(k + 1)|h�,d(k + 1)|2))︸ ︷︷ ︸

ζ∗

x1

+

effective-white-noise-term2�ñ2︷ ︸︸ ︷
M∑
�=1

(G2h∗2,�(k)|h�,d(k)|2ns,�(k) + Gh∗2,�(k)h∗�,d(k)n�,d(k)− G2h1,�(k + 1)

×|h�,d(k + 1)|2n∗
s,�(k + 1)− Gh1,�(k + 1)h�,d(k + 1)n∗

�,d(k + 1)
)
. (6.2.16)

It should be noted that, in Alamouti’s work [33] (non-cooperative model), it has been required

the condition that the transmitter-receiver fading link must be time-invariant at least over

two time-adjacent signaling periods. The reason for this is to guarantee the orthogonality
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of the channel gain matrix and to obtain two separate (with no ITAI) and independent

decision statistics corresponding to the two transmitted symbols in the OSTBC matrix.

However, in our cooperative network model, and as a result of the relative speed among the

communicating nodes, all of the network fading links are characterized as time-variant (see

(6.2.2)), which violates the above condition assumed in [33]. Therefore, as it is clear from

(6.2.15) and (6.2.16), the obtained decision statistics ỹ1 and ỹ2 are nonseparable for x1 and

x2, respectively, due to the ITAI-terms. Moreover, as an effect of the nodes mobility, ỹ1 and

ỹ2 are non statistically independent. This is because that their effective noise terms ñ1 and

ñ2 are correlated with the following conditional covariance

COV
(
ñ1, ñ2|S

)
= E[ñ1ñ

∗
2|S]

=
M∑
�=1

G4h∗1,�(k)h2,�(k)|h�,d(k)|4E[ns,�(k)n
∗
s,�(k)] + G2h∗1,�(k)h2,�(k)

×|h�,d(k)|2E[n�,d(k)n
∗
�,d(k)]− G4h2,�(k + 1)h∗1,�(k + 1)

×|h�,d(k + 1)|4E[n∗
s,�(k + 1)ns,�(k + 1)]− G2h2,�(k + 1)h∗1,�(k + 1)

×|h�,d(k + 1)|2E[n∗
�,d(k + 1) n�,d(k + 1)]

= G2No

M∑
�=1

h∗1,�(k)h2,�(k)|h�,d(k)|2(G2|h�,d(k)|2 + 1)− h2,�(k + 1)

×h∗1,�(k + 1)|h�,d(k + 1)|2(G2|h�,d(k + 1)|2 + 1). (6.2.17)

where S = {h1,�(k), h1,�(k+1), h2,�(k), h2,�(k+1), h�,d(k), h�,d(k+1)} ∀�. The first equality in

(6.2.17) is obtained under the assumption that the white noise components ns,�(k), ns,�(k+1),

n�,d(k) and n�,d(k + 1) ∀� are independent to each other. It is also worthwhile to mention

that if the cooperating nodes are static (i.e., ρa,b = 1 ∀(a, b)) the ITAI-terms in (6.2.15) and

(6.2.16) and the statistical correlation in (6.2.17) reduce to zero. This means that the decoder

decision statistics ỹ1 and ỹ2 are separable to x1 and x2, respectively, and also independent to

each other. However, in the next section, we analyze the system SEP performance considering

the more general case of mobile nodes (i.e., time-variant fading links with ρa,b < 1 ∀(a, b)).
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6.3 System Conditional SEP Analysis

As depicted in Fig. 6.1, the destination’s q-QAM demodulator uses the decision

statistics ỹ1 and ỹ2 to make decision about the two transmitted symbols x1 and x2, respec-

tively. In this subsection, our target is to analyze the probability of making error in these

decisions (i.e., evaluating the system SEP). First of all, in AWGN point-to-point communi-

cation system, the average SEP at the output of the q-QAM demodulator is obtained as [47,

eq. (5.2-79) and eq. (5.2-78)]

P
AWGN

e = 1−
(
1− 2

(
1− 1√

q

)
Q

(√
3

q − 1
γ

))2

(6.3.1)

where γ = Es

No
is the per-symbol average signal-to-noise-ratio (SNR) of the input decision

statistic and Q(u) is the Q−function. Now, we can directly use the AWGN SEP expression

in (6.3.1) to evaluate the conditional SEP of our system model described in Sec. 6.2 if we (i)

show that the ITAI-terms, in addition to the effective noise terms, in (6.2.15) and (6.2.16)

are Gaussian (ii) obtain explicit expressions for the SINRs of the statistics ỹ1 and ỹ2, which

we do in the following:

6.3.1 Conditional SINR of the first decision statistic

It is clear from (6.2.15) that the first decision statistic ỹ1 is function of the channel

gains in the set S = {h1,�(k), h1,�(k+1), h2,�(k), h2,�(k+1), h�,d(k), h�,d(k+1)} ∀�. However, in
order to simplify the derivation of its conditional SINR (say SINR1), we derive it conditioned

on the set S1 = {h1,�(k), h2,�(k + 1), h�,d(k), h�,d(k + 1)}2. It is clear from (6.2.15) that we

can now obtain SINR1 conditioned on S1 as

SINR1|S1 =
P(desired signal of x1|S1)

P(ITAI-term1|S1) + P(ñ1|S1)
=

|β1|2(Es/2)

P(ζ|S1)(Es/2) + Var(ñ1|S1)
(6.3.2)

2The channel gains in this set are the ones that appear as coefficients of the desired signal in the decision
statistic ỹ1 in (6.2.15).
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where P and Var denote the power and the variance operators, respectively. In the following

we discuss how to evaluate P(ζ|S1) and Var(ñ1|S1). First, it is clear from (6.2.15) that ζ is

function of the elements in S1 as well as of h1,�(k+1) and h2,�(k). Therefore, conditioned on

S1, ζ is random variable with respect to both h1,�(k + 1) and h2,�(k). To find the density of

ζ conditioned on S1 (which is needed first to obtain P(ζ|S1)), we can first benefit from the

expression of the AR1 model in (6.2.1) to write h∗1,�(k + 1) in terms of h1,�(k) and h2,�(k) in

terms of h2,�(k + 1), respectively, as follows

h∗1,�(k + 1) = ρs,�h
∗
1,�(k) +

√
1− ρ2s,�e

∗
1,�(k) (6.3.3)

h2,�(k) = ρs,�h2,�(k + 1) +
√
1− ρ2s,�e2,�(k + 1). (6.3.4)

From (6.3.3) and (6.3.4), along with the fact that e∗1,�(k) ∼ CN (
0, σ2

1,�) and e2,�(k + 1) ∼
CN (

0, σ2
2,�), we can obtain the densities of h∗1,�(k + 1) conditioned on h1,�(k) and that of

h2,�(k) conditioned on h2,�(k + 1), respectively, as follows

h∗1,�(k + 1) | h1,�(k) ∼ CN (
ρs,�h

∗
1,�(k), (1− ρ2s,�)σ

2
1,�

)
. (6.3.5)

h2,�(k) | h2,�(k + 1) ∼ CN (
ρs,�h2,�(k + 1), (1− ρ2s,�)σ

2
2,�

)
(6.3.6)

With the help of the densities in (6.3.5) and (6.3.6), we can now obtain the density of ζ

conditioned on S1 as

ζ | S1 ∼ CN
(
G2

M∑
�=1

(
ρs,�h

∗
1,�(k)h2,�(k + 1)

(|h�,d(k)|2 − |h�,d(k + 1)|2))︸ ︷︷ ︸
E[ζ|S1]�μ1

,

G4

M∑
�=1

(
(1− ρ2s,�)

(
σ2
2,�|h1,�(k)|2|h�,d(k)|4 + σ2

1,�|h2,�(k + 1)|2|h�,d(k + 1)|4))︸ ︷︷ ︸
Var[ζ|S1]�φ1

)

(6.3.7)
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and thus, its conditional power, P(ζ | S1), can be given as

P(ζ | S1) = |μ1|2 + φ1. (6.3.8)

As described in the system model section, all of the noise components ns,�(k), n�,d(k), n
∗
s,�(k+

1) and n∗
�,d(k + 1) are statistically independent and each one is a ZMCSCG with variance

No. Based on this fact, the effective noise term ñ1 in (6.2.15) is also, (conditioned on S1) a

ZMCSCG random variable, which we can find it conditional variance as

Var(ñ1|S1) = Noη1 (6.3.9)

where

η1 = G2

M∑
�=1

(|h1,�(k)h�,d(k)|2(G2|h�,d(k)|2 + 1) + |h2,�(k + 1)h�,d(k + 1)|2

×(G2|h�,d(k + 1)|2 + 1)
)
.

Finally, by substituting (6.3.8) and (6.3.9) into (6.3.2), we obtain SINR1|S1 in its ultimate

form as

SINR1|S1 =
|β1|2 Es

No

(|μ1|2 + φ1)
Es

No
+ 2η1

. (6.3.10)

6.3.2 Conditional SINR of the second decision statistic

Similarly as ỹ1, ỹ2 in (6.2.16) is function of the channel gains in the set S but in order

to simplify the derivation of its conditional SINR (say SINR2), we do that conditioned on

the channel gains in the set S2 = {h1,�(k + 1), h2,�(k), h�,d(k), h�,d(k + 1)}3. From (6.2.16),

3The channel gains in this set are the ones that appear as coefficients of the desired signal in the decision
statistic ỹ2 in (6.2.16).
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we can now obtain SINR2 conditioned on S2 as

SINR2|S2 =
P(desired signal of x2|S2)

P(ITAI-term2|S2) + P(ñ2|S2)
=

|β2|2(Es/2)

P(ζ∗|S2)(Es/2) + Var(ñ2|S2)
.

(6.3.11)

It is clear from (6.2.16) that ζ∗ is function of the elements in S2 as well as of h1,�(k) and

h2,�(k+1). Therefore, conditioned on S2, ζ
∗ is random variable in terms of both h1,�(k) and

h2,�(k + 1). With the help of (6.2.1), we can now obtain the densities of h1,�(k) conditioned

on h1,�(k + 1) and that of h∗2,�(k + 1) conditioned on h2,�(k), respectively, as follows

h1,�(k) | h1,�(k + 1) ∼ CN (
ρs,�h1,�(k + 1), (1− ρ2s,�)σ

2
1,�

)
(6.3.12)

h∗2,�(k + 1) | h2,�(k) ∼ CN (
ρs,�h

∗
2,�(k), (1− ρ2s,�)σ

2
2,�

)
. (6.3.13)

These two densities in (6.3.12) and (6.3.13), help in obtaining the density of ζ∗|S2 , which is

given by

ζ∗ | S2 ∼ CN
(
G2

M∑
�=1

(
ρs,�h

∗
1,�(k + 1)h2,�(k)

(|h�,d(k)|2 − |h�,d(k + 1)|2))︸ ︷︷ ︸
E[ζ∗|S2]�μ2

,

G4

M∑
�=1

(
(1− ρ2s,�)

(
σ2
2,�|h1,�(k + 1)|2|h�,d(k)|4 + σ2

1,�|h2,�(k)|2|h�,d(k + 1)|4))︸ ︷︷ ︸
Var[ζ∗|S2]�φ2

)
.

(6.3.14)

It is obvious from (6.3.14) that P(ζ∗|S2) can be given as

P(ζ∗|S2) = |μ2|2 + φ2. (6.3.15)
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As similar as ñ1, the effective noise term ñ2 in (6.2.16) is also ( conditioned on S2) a ZMCSCG

random variable but with the following conditional variance

Var(ñ2|S2) = Noη2 (6.3.16)

where

η2 = G2

M∑
�=1

(|h1,�(k + 1)h�,d(k + 1)|2(G2|h�,d(k + 1)|2 + 1) + |h2,�(k)h�,d(k)|2

×(G2|h�,d(k)|2 + 1)
)
.

By substituting (6.3.15) and (6.3.16) into (6.3.11), we obtain SINR|S2 in its ultimate form

as

SINR2|S2 =
|β2|2 Es

No

(|μ2|2 + φ2)
Es

No
+ 2η2

. (6.3.17)

6.3.3 Conditional SEP expression

Now, without loss of generality, we can express the SEP at the output of the q-QAM

demodulator of our system model conditioned on the channel gains in the set S (say Pe|S)
as

Pe|S = Pr(x1)P
ỹ1
e |S1 + Pr(x2)P

ỹ2
e |S2 (6.3.18)

where Pr(x1) and Pr(x2) are the transmission probabilities of x1 and x2, respectively. P
ỹ1
e |S1

and P ỹ2
e |S2 are the conditional probabilities of symbol error decisions made by the q-QAM

demodulator in estimating x1 from ỹ1 (conditioned on S1) and in estimating x2 from ỹ2

(conditioned on S2), respectively. By assuming equiprobable transmissions for x1 and x2

(i.e., Pr(x1) = Pr(x2) = 1
2
) and directly using the SEP expression in (6.3.1) to evaluate

P ỹ1
e |S1 (by replacing γ by SINR1|S1) and P ỹ2

e |S2 (by replacing γ by SINR2|S2)
4, we can

4This is valid because the ITAI-terms in ỹ1 and ỹ2 are distributed as Gaussian conditioned on S1 and S2,
respectively (see (6.3.7) and (6.3.14)).
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obtain Pe|S as

Pe|S =
1

2

[
1−

(
1− 2

(
1− 1√

q

)
Q

(√
3

q − 1

|β1|2 Es

No

(|μ1|2 + φ1)
Es

No
+ 2η1

))2]
+
1

2

[
1−

(
1− 2

(
1− 1√

q

)
Q

(√
3

q − 1

|β2|2 Es

No

(|μ2|2 + φ2)
Es

No
+ 2η2

))2]
.

(6.3.19)

As an impact of the nodes mobility, the system SEP performance experiences sever degra-

dation specifically at high values of the per-symbol average SNR (Es

No
). This degradation is

mainly represented by conditional asymptotic error floors (P floor
e |S), which can be given by

P floor
e |S = lim

Es
No

→∞
Pe|S =

1

2

[
1−

(
1− 2

(
1− 1√

q

)
Q

( |β1|2
√

3
q−1

|μ1|2 + φ1

))2]

+
1

2

[
1−

(
1− 2

(
1− 1√

q

)
Q

( |β2|2
√

3
q−1

|μ2|2 + φ2

))2]
. (6.3.20)

The obtained SEP and error floor expressions in (6.3.19) and (6.3.20) are still conditional

on the network fading gains in the set S. In the next section we discuss how to obtain

numerical values for their averages, which are required to give an obvious picture about the

SEP performance.

89



6.4 System Average SEP Analysis

The system average SEP (say P e) can be obtained from (6.3.19) as

P e = ES
[
Pe|S

]
=

1

2

[
1− ES1

[(
1− 2

(
1− 1√

q

)
Q

(√
3

q − 1

|β1|2 Es

No

(|μ1|2 + φ1)
Es

No
+ 2η1︸ ︷︷ ︸

SINR1|S1

))2]]

+
1

2

[
1− ES2

[(
1− 2

(
1− 1√

q

)
Q

(√
3

q − 1

|β2|2 Es

No

(|μ2|2 + φ2)
Es

No
+ 2η2︸ ︷︷ ︸

SINR2|S2

))2]]

(6.4.1)

where EU
[·] denotes the statistical expectation operator with respect to U . Evaluating

the last two expectations in (6.4.1) requires first deriving the probability density functions

(pdfs) of both SINR|S1 and SINR|S2, which is too hard to accomplish. Therefore, by using

computer Monte Carlo simulation to evaluate these two expectations (based on the sampling

mean concept), we can obtain numerical values for P e as

P e =
1

2

[
1− 1

N

N∑
j=1

[(
1− 2

(
1− 1√

q

)
Q

(√
3

q − 1
SINR|Sj

1

))2]]

+
1

2

[
1− 1

N

N∑
j=1

[(
1− 2

(
1− 1√

q

)
Q

(√
3

q − 1
SINR|Sj

2

))2]]
(6.4.2)

where SINR|Sj
1 and SINR|Sj

2 are the generated SINRs in the jth realization and N is the

number of realizations in the simulation (N is supposed to be large enough). Similarly, we

use same method to obtain numerical values for the statistical average of the error floor in
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(6.3.20) as

P
floor

e =
1

2

[
1− 1

N

N∑
j=1

[(
1− 2

(
1− 1√

q

)
Q

( |βj
1|2

√
3

q−1

|μj
1|2 + φj

1

))2]]

+
1

2

[
1− 1

N

N∑
j=1

[(
1− 2

(
1− 1√

q

)
Q

( |βj
2|2

√
3

q−1

|μj
2|2 + φj

2

))2]]
. (6.4.3)

In the numerical results section, the provided plots for the system average SEP using (6.4.2)

are verified via real link-level simulation.

6.5 System Performance under Static Nodes Case

Here, we consider a special case of static (non moving) nodes in the network. In

this case, and according to Jakes’ autocorrelation model, all of the network fading links’

correlation parameters reduce to one (ρs,� = ρ�,d = 1 ∀�), and thereby, these fading links can

be characterized as quasi-static. Under this consideration, we can also notice from (6.2.1)

that

h1,�(k + 1) = h1,�(k) = h1,�

h2,�(k + 1) = h2,�(k) = h2,�

h�,d(k + 1) = h�,d(k) = h�,d, ∀� = {1, 2, · · ·,M}. (6.5.1)
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Following the channel gains description in (6.5.1), the end-to-end channel gain matrix in

(6.2.12) reduces to its orthogonal (quasi-static fading) version, Hstatic, that can be given as

Hstatic =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Gh1,1h1,d Gh2,1h1,d
Gh∗2,1h∗1,d −Gh∗1,1h∗1,d
Gh1,2h2,d Gh2,2h2,d
Gh∗2,2h∗2,d −Gh∗1,2h∗2,d

...
...

Gh1,MhM,d Gh2,MhM,d

Gh∗2,Mh∗M,d −Gh∗1,Mh∗M,d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.5.2)

and the ALD decoding matrix HH in (6.2.14) reduces to

HstaticH =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Gh∗1,1h∗1,d Gh∗2,1h∗1,d
Gh2,1h1,d −Gh1,1h1,d
Gh∗1,2h∗2,d Gh∗2,2h∗2,d
Gh2,2h2,d −Gh1,2h2,d

...
...

Gh∗1,M(k)h∗M,d Gh∗2,M(k)h∗M,d

Gh2,MhM,d −Gh1,MhM,d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(6.5.3)

Clearly, HstaticH in (6.5.3) diagonalizes Hstatic in (6.5.2), which means that, in this static

nodes scenario, the ALD (as expected) is in its originally designed optimal version. This is

also further verified because, under this quasi-static fading condition, the powers of the ITAI

terms, P(ζ | S1) in (6.3.8) and P(ζ∗ | S2) in (6.3.15), vanish. Moreover, both the derived

conditional SINRs in (6.3.10) and (6.3.17) reduce to the following conditional SNR

γstatic|Sstatic =
EsG2

2No

(∑M
�=1 ‖h�‖2|h�,d|2

)2

∑M
�=1

(
(G2|h�,d|2 + 1)‖h�‖2|h�,d|2

) (6.5.4)
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where

‖h�‖2 = |h1,�|2 + |h2,�|2

Sstatic = {h1,�, h2,�, h�,d} ∀� = {1, 2, · · ·,M},

and the conditional SEP in (6.3.19) reduces to P static
e |Sstatic which is given by

P static-nodes
e |Sstatic =

[
1−

(
1− 2

(
1− 1√

M

)
Q

(√
3

M − 1

|β̃|2 Es

No

2η̃1

))2]
(6.5.5)

where

β̃ = G2

M∑
�=1

(|h1,�h�,d|2 + |h2,�h�,d|2
)

and

η̃ = G2

M∑
�=1

(
(G2|h�,d|2 + 1)

(|h1,�h�,d|2 + |h2,�h�,d|2
))
.

It is worthwhile to mention that the limit of (6.5.5) as Es

No
→ ∞ is zero (i.e., the error floor

vanish) because the nodes mobility impact is removed. If we consider now another special

case of a single-relay network (i.e., M = 1), and after doing some manipulations, the SNR

in (6.5.4) can be written as

γstaticsingle-relay =
Es

2

‖h	‖2
No

|h	,d|2
No

|h	,d|2
No

+ 1
G2No

(6.5.6)

which is know in the literature for a system model of OSTBC transmission over single-relay

quasi-static fading network [26, eq. (7)]. We conclude from this that the derived SINRs in

(6.3.10) and (6.3.17) generalize [26, eq. (7)]) for multiple-relay network over time-selective

fading environment in case of Alamouti-OSTBC transmission.
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6.6 Numerical Results and Simulation

In this section, we present numerical results for our system model average SEP per-

formance using (6.4.2) and (6.4.3) along with the real link-level simulation results.

Figs. 6.2 and 6.3 are plots for the system average SEP versus Es

No
for 4 and 64 QAM

constellations, single relay (M = 1) network, and different relative speeds among the nods

with transmission data-rates of 9.6 ksps in Fig. 6.2 and 64 ksps Fig. 6.3. First, we can observe

from these two figures that the analyzed SEP using (6.4.2) exactly matches with the real link-

level simulation one, which verifies the correctness of our performed theoretical analysis. As

compared with static network case (the case of 0 mph relative speeds among the cooperating

nodes), the system average SEP performance is severely degraded and experiences high

irreducible floors, in particular, at relatively high speeds of 50 and 80 mph. In addition, by

comparing Fig. 6.3 with Fig. 6.2, we can notice that this degradation becomes less for higher

transmission data-rates. This is due to the fact that increasing the transmission data-rate

reduces the time-variation among the time-adjacent channel gains.

In Fig. 6.4, we consider 16-QAM constellation and 25 kbps transmission data-rate

and plot the average SEP for different number of relays M and relative speeds. It is clear

from this figure that the average SEP performance is improved with M as a result of the

obtained diversity-gain achieved via relaying. We can also notice that despite of this general

improved performance with the number of relays, the impact of the nodes mobility is still

under effect whatever the number of relays is.

The target beyond Fig. 6.5 is to investigate the effect of the transmission data-rate

on the SEP performance of our system with high speeds mobile nodes (for example 65 mph).

We can observe from this figure that increasing the data-rate gradually reduces the impact

of the nodes mobility and improves the average SEP performance so that it goes close to the

performance of non-moving nodes case.
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Figure 6.2. Average SEP versus Es/No for M = 1, 4 and 64 QAM constellations, transmis-
sion data-rate Rs = 9.6 ksps, carrier frequency fc = 2.4 GHz, path-loss exponent n = 3,
normalized nodes distances ds,� = 1 and d�,d = 2.

6.7 Conclusion

In this chapter we have concerned in investigating the effect of the cooperating nodes

mobility (their relative speeds) on the symbol error probability performance of a wireless

cooperative network scenario with rectangular QAM and Alamouti-OSTBC at the source,

fixed-gain amplify-and-forward protocol at the relays, and Alamouti’s space-time decoder

(ALD) at the destination. To take the relative speeds among the communicating nodes into

account, we have modeled all of the network frequency-flat fading channels as time-selective

(time-varying) using the first order autoregressive (AR1) process. We have also considered

the path-loss large-scale fading model to make the network’s fading environment more ag-
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Figure 6.3. Average SEP versus Es/No for M = 1, 4 and 64 QAM constellations, trans-
mission data-rate Rs = 64 ksps, carrier frequency fc = 2.4 GHz, path-loss exponent n = 3,
normalized nodes distances ds,� = 1 and d�,d = 2.

gregate. Under these considerations, the overall end-to-end channel gain matrix is no longer

orthogonal and the ALD provides correlated decision statistics with inter-transmit-antenna-

interference (ITAI). Benefiting from the AR1 model, we have derived exact expressions for

the decision statistics conditional SINRs, which have been directly used to analyze the sys-

tem average SEP performance. As an impact of the nodes mobility or the ITAI, the system

SEP performance is degraded and bounded by irreducible error floors no matter the number

of the relays is. Moreover, as special case of static nodes network, we have shown that the

end-to-end channel gain matrix reduces to its orthogonal version, the ITAI terms and the

irreducible error floors vanish.
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Figure 6.4. Average SEP versus Es/No for M = 1, 2 and 3, 16−QAM constellations,
transmission data-rate Rs = 25 ksps, carrier frequency fc = 2.4 GHz, path-loss exponent
n = 2, normalized nodes distances ds,� = 2 and d�,d = 1.
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Figure 6.5. ALD Semi-analytic Average SEP versus Es/No for M = 2, 16 and 256 QAM
constellations, different transmission data-rates, carrier frequency fc = 2.4 GHz, path-loss
exponent n = 2, normalized nodes distances ds,� = 1 and d�,d = 2.
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CHAPTER 7

Improved Performance Zero-Forcing Space-Time Decoder (ZFSTD) for High Mobility

Alamouti-Type OSTBC Based AF Cooperative Systems: Decoder Design and SEP

Analysis

7.1 Chapter Overview

In chapter 4, it has been shown that the SEP performance of a multiple-relay AF

wireless cooperative system with Alamouti-OSTBC transmission, time-selective fading links

and Alamouti’s conventional space-time decoder (ALD) is severely degraded and experiences

irreducible error floors. This is mainly because of the ITAI terms that appears in the ALD

output’s decision statistics and makes them non-separable. Based on that, we concluded

that the ALD is not a suitable space-time decoder for such a system model with high nodes

mobility and/or low data rates applications. Therefore, in this chapter, we propose another

space-time decoder that can be applied at the destination, instead of the ALD, such that it is

capable to provide separable decision statistics corresponding to the two transmitted symbols

of the OSTBC matrix. In other words, it provides decision statistics without ITAI. The idea

of this proposed decoder in this chapter is inspired by the notion of V-BLAST equalizers

that have been proposed to perform data demultiplexing at the receiving side of MIMO

communications systems [48]. Specifically, among the V-BLAST equalizers, we follow the

idea of the zero-forcing-linear one to design the decoding matrix of our proposed space-time

decoder. Therefore, now and on, we refer to this proposed decoder as Zero-Forcing-Space-

Time-Decoder (ZFSTD). After employing the ZFSTD at the destination, we show that it

achieves the required target and provides separable decision statistics. Moreover, based on

these obtained statistics, we analyze the average SEP of our system model with the proposed
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ZFSTD, which is also verified via real link-level simulation. As compered with the ALD, the

ZFSTD provides remarkable SEP performance improvement so that it matches with that of

the ALD in the quasi-static fading scenario. However, this come at the expense of additional

complexity over the ALD.

7.2 System Model

In this chapter we consider the same system model as in chapter 5 but instead of

employing the ALD at the destination we propose to employ another space-time decoder,

which we discuss its design and performance analysis in the following sections.

7.3 ZFSTD Decoding Matrix Design

The equalization matrix of the V-BLAST zero-forcing-equalizer, say G+, is given as

[48, Eq. (8)]

G+ =
(
GHG

)−1
GH (7.3.1)

where G is the channel gain matrix of a MIMO system and {·}−1 denotes the matrix inverse.

Now, based on our system model received signal vector in (6.2.10) and its end-to-end channel

gain matrix H in (6.2.12), we propose a zero-forcing-space-time-decoder (ZFSTD) that has

a decoding matrix, say H+, that follows the form of the V-BALST zero-forcing-equalizer

equalization matrix in (7.3.1) and given as

H+ =
(
HHH

)−1
HH. (7.3.2)

In order to write H+ in its ultimate form, we first multiply HH in (6.2.14) by H in (6.2.12)

to obtain

HHH =

⎡⎢⎣β1 ζ

ζ∗ β2

⎤⎥⎦ (7.3.3)
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which is a 2× 2 matrix and has the following inverse

(
HHH

)−1
=

1

det
(
HHH

)
⎡⎢⎣ β2 −ζ
−ζ∗ β1

⎤⎥⎦ (7.3.4)

where

det
(
HHH

)
= β1β2 − |ζ|2. (7.3.5)

By substituting
(
HHH

)−1
in (7.3.4) and HH in (6.2.14) into (7.3.2), we obtain the proposed

ZFSTD decoding matrix H+ as

H+ =
1

A

⎡⎢⎢⎢⎢⎣
a1

11
a1

12
a2

11
a2

12
· · · aM

11
aM

12

a1
21

a1
22

a2
21

a2
22

· · · aM
21

aM
22

⎤⎥⎥⎥⎥⎦ (7.3.6)

where

A = β1β2 − |ζ|2

a�
11

= β2Gh∗1,�(k)h∗�,d(k)− ζGh∗2,�(k)h∗�,d(k)

a�
21

= −ζ∗Gh∗1,�(k)h∗�,d(k) + β1Gh∗2,�(k)h∗�,d(k)

a�
12

= β2Gh2,�(k + 1)h�,d(k + 1) + ζGh1,�(k + 1)h�,d(k + 1)

a�
22

= −ζ∗Gh2,�(k + 1)h�,d(k + 1)− β1Gh1,�(k + 1)h�,d(k + 1).

7.4 ZFSTD Output Decision Statistics

We can now apply the ZFSTD at the destination just by multiplying the received

signal vector in (6.2.10) by the decoding matrix H+ in (7.3.6). The resulted two elements

from this multiplication are the ZFSTD’s decision statistics, which can be given, after some
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simplifications, as

z̃1 =

desired signal of x1︷︸︸︷
x1 +

effective-white-noise-term1�ṽ1︷ ︸︸ ︷
β2

β1β2 − |ζ|2 ñ1 − ζ

β1β2 − |ζ|2 ñ2 (7.4.1)

and

z̃2 =

desired signal of x2︷︸︸︷
x2 +

effective-white-noise-term1�ṽ2︷ ︸︸ ︷
−ζ∗

β1β2 − |ζ|2 ñ1 +
β1

β1β2 − |ζ|2 ñ2 (7.4.2)

It is clear from (7.4.1) and (7.4.2) that the decision statistics of the proposed ZFSTD are

separable (non interfering ) corresponding to x1 and x2, respectively, even though the network

fading links are time-selective. Therefore, this decoder has accomplished its required target.

7.5 ZFSTD SEP Performance

The q-QAM demodulator uses z̃1 and z̃2 to make decisions about x1 and x2, respec-

tively. Therefore, in order to analyze the SEP at the output of the q-QAM demodulator

of our system model with the proposed ZFSTD (say P ZFSTD
e ), we need first to obtain the

conditional SNRs of the statistics z̃1 and z̃2. From (7.4.1) and (7.4.2), we can obtain these

SNRs conditioned on the channels gains in the set S, respectively, as

SNRz̃1 |S =
|x1|2
P(ṽ1)

=

∣∣β1β2− |ζ|2∣∣2
2|β2|2η1 − 2|ζ|2η2

Es

No

(7.5.1)

and

SNRz̃2 |S =
|x2|2
P(ṽ2)

=

∣∣β1β2− |ζ|2∣∣2
2|β1|2η2 − 2|ζ|2η1

Es

No

(7.5.2)
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By assuming equiprobable transmission for x1 and x2 and directly using the q-QAM AWGN

SEP expression in (6.3.1), we can obtain P ZFSTD
e conditioned on S as

P ZFD
e |S =

1

2

[
1−

(
1− 2

(
1− 1√

q

)
Q

(√
3

q − 1

∣∣β1β2− |ζ|2∣∣2
2|β2|2η1 − 2|ζ|2η2

Es

No

))2]
+
1

2

[
1−

(
1− 2

(
1− 1√

q

)
Q

(√
3

q − 1

∣∣β1β2− |ζ|2∣∣2
2|β1|2η2 − 2|ζ|2η1

Es

No

))2]
(7.5.3)

and its average can be computed following the Monte carlo method followed in section 6.4

as

P
ZFD

e =
1

2

[
1− 1

N

N∑
j=1

[(
1− 2

(
1− 1√

q

)
Q

(√
3

q − 1

∣∣βj
1β

j2− |ζj|2∣∣2
2|βj

2|2ηj1 − 2|ζj|2ηj2
Es

No

))2]]

+
1

2

[
1− 1

N

N∑
j=1

[(
1− 2

(
1− 1√

q

)
Q

(√
3

q − 1

∣∣βj
1β

j2− |ζj|2∣∣2
2|βj

1|2ηj2 − 2|ζj|2ηj1
Es

No

))2]]
(7.5.4)

In the numerical results section it will be shown that (7.5.4) numerically matches with the

quasi-static fading SEP given in (6.5.5). This means that the proposed ZFSTD completely

removes the nodes mobility impact on the system SEP performance. However, this per-

formance improvement by the ZFSTD comes at the expense of further decoding complexity

required at the destination. This additional decoding complexity of the ZFSTD over the ALD

is obvious if we compare their decoding matrices: H+ in (7.3.6) requires more operations to

be constructed at the destination than that of HH in (6.2.14) .

7.6 ZFSTD under Static-Nodes Case

Under the special case assumption of quasi-static fading within the network under

study (i.e., ρa,b = 1 ∀(a, b)), the proposed ZFSTD reduces to the optimal version of the ALD.

This is obvious because, under this condition, the ZFSTD decoding matrix H+ in (7.3.6)
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reduces as

H+ =
1

β2
HstaticH (7.6.1)

where HstaticH is the decoding matrix of the optimal version of the ALD obtained in quasi-

static fading scenario and given in (6.5.3). Moreover, under this scenario, the conditional

SEP of the ZFSTD in (7.5.3) reduces to P static-nodes
e |Sstatic in (6.5.5).

7.7 Numerical Results and Simulation

Here, we present numerical results along with real link-level simulation results to

investigate the performance improvement by the proposed ZFSTD over the ALD and also to

verify the obtained theoretical results. From Fig. 7.1 we can notice that, as compared with

the severely degraded performance of the ALD due to nodes mobility with relative speeds

of 65 mph, the performance of the proposed ZFSTD at that speed completely matches the

system performance in the case of static nodes (0 mph relative speeds). This observation is

valid for any number of relays M . Also, the SEP performance of the ZFSTD plotted using

(7.5.4) show good agreement with the real link-level simulation results.

In Fig. 7.2, we compare the average SEP performance, versus the relative speeds

among the nodes, between the ALD and the ZFSTD for M=1 and 2 and different data-rate

values. It is clear from this figure that the average SEP of the ALD increases with increasing

the relative speeds among the cooperating nodes while that of the ZFSTD is not affected

by both the relative speeds and the data-rate values and also provides lower average SEP

values.

7.8 Conclusion

In order to overcome the impact of the time-selective fading on the SEP performance

of a multiple-relay AF cooperative system with Alamouti OSTBC transmission at the source

and its traditional decoder at the destination (ALD), we have proposed in this chapter a

zero-forcing space-time-decoder (ZFSTD) to be applied at the destination instead of ALD
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Figure 7.1. Average SEP versus Es/No for both ZFSTD and ALD.M = 1 2 and 3, QAM con-
stellations size of 16, transmission data-rate Rs = 25 ksps, carrier frequency fc = 2.4 GHz,
path-loss exponent n = 3, normalized nodes distances ds,� = 2 and d�,d = 1.

and provide non interfering decision statistics. The idea of this proposed decoder is inspired

by the idea of the V-BLAST zero-forcing-linear equalizer required for data demultiplexing in

MIMO systems. Specifically, we have derived the decoding matrix of that decoder and obtain

its output decision statistics of this proposed decoder. From these statistics we have then

derived their conditional SNRs and the system SEP. As compared with the ALD performance,

we have shown that the ZFSTD completely removes the impact of the time-selective fading

but this comes at the expenses of additional decoding Complexity.
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CHAPTER 8

Improved Performance Low-Complexity Sub-Optimal Space-Time-Decoder (SOSTD) for

High Mobility Alamouti-Type OSTBC Based AF Cooperative Systems: Decoder Design

and SEP Analysis

8.1 Chapter Overview

The proposed ZFSTD in chapter 6 has shown a performance improvement over the

traditional Alamouti decoder (ALD) which are employed in a wireless cooperative sys-

tem with multiple relays, AF protocol, time-selective fading (due to nodes mobility) and

Alamouti-OSTBC transmission at the source node. This performance improvement is con-

siderable so that it is equivalent with that of the optimal version of the ALD obtained in

case of non-moving nodes network scenario (i.e., quasi-static fading). However, we have

also shown in chapter 6 that this improvement requires higher processing complexity at

the destination node. Therefore, in this chapter, we propose another space-time-decoder

that has same complexity level as the ALD and provides very close performance to that pro-

vided by the ZFSTD. We call this low-complexity decoder as sub-optimal space-time-decoder

(SOSTD). It is sub-optimal because despite it provides separable decision statistics like the

ZFSTD, these statistics are statistically correlated like the ALD in the time-selective fading

case.

8.2 System Model

In this chapter we consider the same system model as in chapter 5 and 6 but instead

of employing the ALD or the ZFSTD at the destination we propose to employ another

space-time-decoder, which we discuss its design and performance analysis in the following

sections.
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8.3 SOSTD Decoding Matrix Design

The idea of the proposed space-time-decoder in this chapter is based on finding a

2 × 2M decoding matrix (say D) such that the resulted two decision statistics from multi-

plying this matrix by the destination’s received signal vector Yd in (6.2.11) are separable

corresponding to the two transmitted symbols x1 and x2. This basically can be accomplished

if the resulted 2×2 matrix from multiplying D by H is diagonal. Therefore, we start solving

for D such that

DH �

⎡⎢⎣βI
1 0

0 βI
2

⎤⎥⎦ (8.3.1)

where βI
1 and βI

2 are the main-diagonal elements that will be specified later after obtaining

D1. In order to simplify the problem of solving for D, we first solve for a single-relay case

(say �th relay) by obtaining D� and then extend the result for the multiple-relay case. For

the �th single-relay network (or dual-hop network), the �th component, of the matrix H in

(6.2.12), reduces to

H� =

⎡⎢⎣ Gh1,�(k)h�,d(k) Gh2,�(k)h�,d(k)
Gh∗2,�(k + 1)h∗�,d(k + 1) −Gh∗1,�(k + 1)h∗�,d(k + 1)

⎤⎥⎦ (8.3.2)

and accordingly, we need

D�H� =

⎡⎢⎣D�11 D�12

D�21 D�22

⎤⎥⎦H� =

⎡⎢⎣βI
�1

0

0 βI
�2

⎤⎥⎦ (8.3.3)

where D�11 , D�12 , D�21 and D�22 are the elements of D� and β
I
�1
and βI

�2
are the main-diagonal

elements of the resulted diagonal matrix. Solving forD� that satisfies (8.3.3) means obtaining

the intended proposed SOSTD decoding matrix for a dual-hop AF cooperative network with

1It should be noted that solving for D is only based on achieving (8.3.1) no matter how the statistical
relationship between the effective noise components of the resulted decision statistics would be. Achieving
(8.3.1) only grantees obtaining non interfering decision statistics, which is the required target by the proposed
decoder in this chapter.
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Alamouti-OSTBC transmission and time-selective fading for both hops, which we do in the

following. Now, in order to find the elements of D� that achieves (8.3.3), we can first obtain

from (8.3.3) the following two equations

D�11Gh2,�(k)h�,d(k) +D�12(−Gh∗1,�(k + 1)h∗�,d(k + 1)) = 0 (8.3.4)

D�21Gh1,�(k)h�,d(k) +D�22Gh∗2,�(k + 1)h∗�,d(k + 1) = 0 (8.3.5)

From (8.3.4) and (8.3.5), we can write D�11 in terms of D�12 and D�22 in terms of D�21 ,

respectively, as

D�11 =
D�12Gh∗1,�(k + 1)h∗�,d(k + 1)

Gh2,�(k)h�,d(k) (8.3.6)

D�22 =
−D�21Gh1,�(k)h�,d(k)
Gh∗2,�(k + 1)h∗�,d(k + 1)

. (8.3.7)

Based on (8.3.6) and (8.3.7), the matrix D� that can satisfy (8.3.3) can be given in the

following preliminary form

D� =

⎡⎢⎣D	12
Gh∗

1,	(k+1)h∗
	,d(k+1)

Gh2,	(k)h	,d(k)
D�12

D�21
−D	21

Gh1,	(k)h	,d(k)

Gh∗
2,	(k+1)h∗

	,d(k+1)

⎤⎥⎦ . (8.3.8)

It is clear now that the form of D� in (8.3.8) reduces the problem to solving only for two

parameters: D�12 and D�21 . We can now start our second step in deriving the ultimate form

for D� by first revealing the following corollary

Theorem 8.3.1. The SNRs of the decision statistics resulted by applying our proposed

SOSTD with the decoding matrix in (8.3.8) at the destination of the dual-hop relaying net-

work understudy are not functions of both D�12 and D�21.

Proof. The received signal vector through the �th relay dual-hop link can be obtained from
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(6.2.10) as

⎡⎢⎣ y�,d(k)

y∗�,d(k + 1)

⎤⎥⎦ = H�

⎡⎢⎣x1
x2

⎤⎥⎦+

⎡⎢⎣ Gh�,d(k)ns,�(k) + n�,d(k)

Gh∗�,d(k + 1)n∗
s,�(k + 1) + n∗

�,d(k + 1)

⎤⎥⎦ . (8.3.9)

The proposed SOSTD is applied just by multiplying (8.3.9) by the decoding matrix D� in

(8.3.8), and its resulted two decision statistics (say r̃�1 and r̃�2) can be given, respectively, as

r̃�1=

desired signal of x1︷ ︸︸ ︷(D�12Gh∗1,�(k + 1)h∗�,d(k + 1)

Gh2,�(k)h�,d(k) Gh1,�(k)h�,d(k) +D�12Gh∗2,�(k + 1)h∗�,d(k + 1)

)
x1 +

effective-white-noise-term1︷ ︸︸ ︷
D�12Gh∗1,�(k + 1)h∗�,d(k + 1)Gh�,d(k)ns,�(k) +D�12Gh∗1,�(k + 1)h∗�,d(k + 1)n�,d(k)

Gh2,�(k)h�,d(k) +

D�12Gh∗�,d(k + 1)n∗
s,�(k + 1) +D�12n

∗
�,d(k + 1) (8.3.10)

r̃�2=

desired signal of x2︷ ︸︸ ︷( D�21Gh1,�(k)h�,d(k)
Gh∗2,�(k + 1)h∗�,d(k + 1)

Gh∗1,�(k + 1)h∗�,d(k + 1) +D�21Gh2,�(k)h�,d(k)
)
x2

−

effective-white-noise-term2︷ ︸︸ ︷
D�21Gh1,�(k)h�,d(k)Gh∗�,d(k + 1)n∗

s,�(k + 1) +D�21Gh1,�(k)h�,d(k)n∗
�,d(k + 1)

Gh∗2,�(k + 1)h∗�,d(k + 1)
+

D�21Gh�,d(k)ns,�(k) +D�21n�,d(k). (8.3.11)

The SNR of each of the decision statistics in (8.3.10) and (8.3.11) can be obtained as the

ratio of the desired signal power over the effective-white-noise variance. Based on this and

also on the fact that the white noise components ns,�(k), ns,�(k + 1), n�,d(k) and n�,d(k + 1)

are independent and with equal variance of No, and after doing some manipulations and

simplifications, we obtain the conditional SNRs of r̃�1 and r̃�2 conditioned on the channel

gains in the set S = {h1,�(k), h1,�(k+1), h2,�(k), h2,�(k+1), h�,d(k), h�,d(k+1)}, respectively,
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as

γr̃	1 = Es

(|Gh∗1,�(k + 1)h∗�,d(k + 1)|2|Gh1,�(k)h�,d(k)|2

+|Gh2,�(k)h�,d(k)|2|Gh∗2,�(k + 1)h∗�,d(k + 1)|2)/(
2No

(|Gh∗1,�(k + 1)h∗�,d(k + 1)|2(G2|h�,d(k)|2

+1) + |Gh2,�(k)h�,d(k)|2(G2|h�,d(k + 1)|2 + 1)
))

(8.3.12)

γr̃	2 = Es

(|Gh2,�(k)h�,d(k)|2|Gh2,�(k + 1)h�,d(k + 1)|2

+|Gh1,�(k)h�,d(k)|2|Gh∗1,�(k + 1)h∗�,d(k + 1)|2)/(
2No

(|Gh1,�(k)h�,d(k)|2(G2|h�,d(k + 1)|2 + 1)

+|Gh∗2,�(k + 1)h∗�,d(k + 1)|2(G2|h�,d(k)|2 + 1)
))
. (8.3.13)

It is clear from (8.3.12) and (8.3.13) that γr̃	1 and γr̃	2 are free ofD�12 and D�21 , which completes

the proof.

Now, based on the above corollary and in order to eliminate the denominators in

(8.3.8) we choose

D�12 = Gh2,�(k)h�,d(k) (8.3.14)

and

D�21 = Gh∗2,�(k + 1)h∗�,d(k + 1) (8.3.15)

Accordingly, the ultimate form of D� is given as

D� =

⎡⎢⎣Gh∗1,�(k + 1)h∗�,d(k + 1) Gh2,�(k)h�,d(k)
Gh∗2,�(k + 1)h∗�,d(k + 1) −Gh1,�(k)h�,d(k)

⎤⎥⎦ . (8.3.16)
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By substituting (8.3.16) and (8.3.2) into (8.3.3), we obtain βI
�1

and βI
�2

as

βI
�1
= βI

�2
= G2h∗1,�(k + 1)h∗�,d(k + 1)h1,�(k)h�,d(k) + G2h2,�(k)h�,d(k)h

∗
2,�(k + 1)h∗�,d(k + 1).

(8.3.17)

Finally, for our M -relay network model, we can obtain the proposed SOSTD’s decoding

matrix D defined in (8.3.1), by extension, as D = [D1,D2, · · ·,DM ] which can be written as

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Gh∗1,1(k + 1)h∗1,d(k + 1) Gh∗2,1(k + 1)h∗1,d(k + 1)

Gh2,1(k)h1,d(k) −Gh1,1(k)h1,d(k)
Gh∗1,2(k + 1)h∗2,d(k + 1) Gh∗2,2(k + 1)h∗2,d(k + 1)

Gh2,2(k)h2,d(k) −Gh1,2(k)h2,d(k)
...

...

Gh∗1,M(k + 1)h∗M,d(k + 1) Gh∗2,M(k + 1)h∗M,d(k + 1)

Gh2,M(k)hM,d(k) −Gh1,M(k)hM,d(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(8.3.18)

8.4 SOSTD Output Decision Statistics

The decision statistic vector at the output of this proposed decoder, say R̃d = [r̃1, r̃2]
T ,

can be obtained by multiplying the received signal vector Yd in (6.2.10) by the decoding

matrix D in (8.3.18) as

⎡⎢⎣r̃1
r̃2

⎤⎥⎦
︸ ︷︷ ︸
R̃d

� DYd =

⎡⎢⎣βI 0

0 βI

⎤⎥⎦
︸ ︷︷ ︸

DH

⎡⎢⎣x1
x2

⎤⎥⎦+

⎡⎢⎣w̃1

w̃2

⎤⎥⎦
︸ ︷︷ ︸

DNd�W̃d

(8.4.1)

where

βI =
M∑
�=1

G2h∗1,�(k+1)h∗�,d(k+1)h1,�(k)h�,d(k)+G2h2,�(k)h�,d(k)h
∗
2,�(k+1)h∗�,d(k+1) (8.4.2)
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w̃1=
M∑
�=1

(
G2h∗1,�(k + 1)h∗�,d(k + 1)h�,d(k)ns,�(k) + Gh∗1,�(k + 1)h∗�,d(k + 1)n�,d(k) +

G2h2,�(k)h�,d(k)h
∗
�,d(k + 1)n∗

s,�(k + 1) + Gh2,�(k)h�,d(k)n∗
�,d(k + 1)

)
(8.4.3)

w̃2=
M∑
�=1

(
G2h∗2,�(k + 1)h∗�,d(k + 1)h�,d(k)ns,�(k) + Gh∗2,�(k + 1)h∗�,d(k + 1)n�,d(k)−

G2h1,�(k)h�,d(k)h
∗
�,d(k + 1)n∗

s,�(k + 1)− Gh1,�(k)h�,d(k)n∗
�,d(k + 1)

)
(8.4.4)

From (8.4.1), we can write the decision statistics at the output of the proposed SOSTD as

follows

r̃1 = βIx1 + w̃1 (8.4.5)

r̃2 = βIx2 + w̃2 (8.4.6)

which clarifies that they are separable (i.e., without ITAI) for x1 and x2, respectively, and

thus, the proposed decoder has achieved its target. As will be shown later in the numerical

results section, by this separation the decoder provides considerable SEP improvement as

compared with the ALD for any number of relays. In addition, this performance improvement

does not require any additional decoding complexity at the destination. This is clear because

the decoding matrices of both decoders (D in (8.3.18) and HH in (6.2.14)) share same

elements (i.e, require same complexity level of construction at the destination). It is also

worthwhile to mention that despite that the proposed decoder provides separable decision

statistics (like the optimal version of the ALD in the quasi-static fading case), it is still

suboptimal because its decision statistics’ noise terms w̃1 and w̃2 are statistically correlated

with the following conditional covariance

COV
(
w̃1, w̃2

)
= G2No

M∑
�=1

(
h2,�(k + 1)h∗1,�(k + 1)|h�,d(k + 1)|2

−h∗1,�(k)h2,�(k)|h�,d(k)|2
)
.
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8.5 SOSTD SEP Performance

In order to analyze the SEP at the output of the q-QAM demodulator that uses

the decision statistics r̃1 and r̃2 to detect x1 and x2, respectively, we need first to obtain

the effective SNRs of these statistics, which we can obtain them from (8.4.5) and (8.4.6)

conditioned on S = {h1,�(k), h1,�(k + 1), h2,�(k), h2,�(k + 1), h�,d(k), h�,d(k + 1)}, respectively,
as

γr̃1 |S =
|βIx1|2

Var{w̃1|S} =
|βI|2
ηI1

Es

2No

(8.5.1)

γr̃2 |S =
|βIx2|2

Var{w̃2|S} =
|βI|2
ηI2

Es

2No

(8.5.2)

where

ηI1 = |G|2
M∑
�=1

(|h1,�(k + 1)h�,d(k + 1)|2(G2|h�,d(k)|2 + 1)

+|h2,�(k)h�,d(k)|2(G2|h�,d(k + 1)|2 + 1)
)

(8.5.3)

ηI2 = |G|2
M∑
�=1

(|h2,�(k + 1)h�,d(k + 1)|2(G2|h�,d(k)|2 + 1)

+|h1,�(k)h�,d(k)|2(G2|h�,d(k + 1)|2 + 1)
)

(8.5.4)

Now, by assuming equiprobable transmission for x1 and x2 and directly using the q-QAM

AWGN SEP expression in (6.3.1), we can obtain the system SEP conditioned on the channel
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gains in the set S as

Pe|S = =
1

2

[
1−

(
1− 2

(
1− 1√

q

)
Q

(√
3

q − 1

|βI|2
ηI1

Es

2No︸ ︷︷ ︸
γr̃1 |S

))2]

+
1

2

[
1−

(
1− 2

(
1− 1√

q

)
Q

(√
3

q − 1

|βI|2
ηI2

Es

2No︸ ︷︷ ︸
γr̃2 |S

))2]
(8.5.5)

and its average (sampling mean) can be computed using computer Monte Carlo simulation

method as

P e = ES
[
Pe|S

]
=

1

2

[
1− 1

N

N∑
j=1

[(
1− 2

(
1− 1√

M

)
Q

(√
3

q − 1
γr̃1 |Sj

))2]]

+
1

2

[
1− 1

N

N∑
j=1

[(
1− 2

(
1− 1√

q

)
Q

(√
3

q − 1
γr̃2 |Sj

))2]]
(8.5.6)

where γr̃1 |Sj and γr̃2 |Sj are the generated SNRs in the jth realization and N is the number

of realizations in the simulation (N is supposed to be large enough). In the numerical results

section, we provide real link-level simulation results to verify the method in (8.5.6).

8.6 SOSTD under Static-Nodes Case

If the fading environment in the network under study is quasi-static (ρa,b = 1 ∀(a, b)),
the decoding matrix of the proposed SOSTD (D in (8.3.18)) reduces to the quasi-static de-

coding matrix of the ALD (HstaticH in (6.5.3)). This means that, under this fading condition,

the SOSTD reduces to the optimal version of the ALD. We can also verify this because the

covariance COV
(
w̃1, w̃2

)
in (8.4.7) vanish and the conditional SEP of the SOSTD in (8.5.5)

reduces to that in (6.5.5) when ρa,b = 1 ∀(a, b).
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Figure 8.1. Average SEP versus Es/No for both ALD and SOSTD with 0 and 70 mph relative
speeds, number of relays M = 1 2 and 3, QAM constellations size of 16, transmission data-
rate Rs = 25 ksps, carrier frequency fc = 2.4 GHz, path-loss exponent n = 2, normalized
nodes distances ds,� = 2 and d�,d = 1.

8.7 Numerical and Simulation Results

Here, we present numerical results along with real link-level simulation results to

verify the theoretical analysis of the proposed SOSTD SER performance and to compare its

performance with that of the ALD for different network scenarios.

First, Fig. 8.1 is plots for the system average SEP versus Es

No
for both the SOSTD

and ALD with different number of relay nodes and with transmission data rate 25 kbps.

Clearly, the numerical results of SOSTD SEP performance using (8.5.6) shows very good

agreement with that obtained via real link-level simulation results. As compared with the

ALD in the case of mobile nodes (70 mph), the SOSTD provides remarkable SEP performance
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Figure 8.2. Average SEP versus Es/No for both ALD and SOSTD with 0 and 60 mph relative
speeds, number of relays M = 2, QAM constellation sizes of 16 and 64, transmission data-
rate Rs = 20 ksps, carrier frequency fc = 2.4 GHz, path-loss exponent n = 3, normalized
nodes distances ds,� = 1 and d�,d = 2.

improvement which is close to that of the non-moving nodes scenario (0 mph). In addition,

unlike the ALD, the SOSTD does not experience irreducible floors for any number of relay

nodes. From Fig. 8.2 we can notice that the SOSTD SEP performance in case of mobile

nodes is much better than that of the ALD for different QAM constellation sizes. Further,

in quasi-static fading condition within the network (i.e., 0 mph relative speeds among the

nodes), the SEP performance of the SOSTD matches with the ALD.

In Fig. 8.3 we plot the system SEP performance of both the SOSTD and the ALD

versus nodes’ relative speeds for 4 and 16 QAM constellation sizes and transmission data-

rates of 9.6 and 25 kbps. Because the difference between the SEP performance of the
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Figure 8.3. Average SEP versus nodes relative speeds for both SOSTD and ALD with
Es/No = 25 dB, different transmission dat-rate values of 9.6 and 25 ksps, M = 1, QAM
constellations size of 4 and 16, carrier frequency fc = 2.4 GHz, path-loss exponent n = 2,
normalized nodes distances ds,� = 1 and d�,d = 2.

SOSTD and the ALD is more obvious at medium and high regions of per-symbol average

SNR, in this plot we choose Es/No value of 25 dB. From this figure, we can notice the

system performance improvement by the SOSTD over the ALD from several sides. First,

the SOSTD provides better performance than that of the ALD for any nodes relative speed.

Further, the increasing in its SEP with nodes relative speeds could be considered insignificant

as compared with that of the ALD. Similarly, we can notice from Fig. 8.4 that the SOSTD

provides better SEP performance over the ALD for a range of transmission data-rate values,

in particular, at high nodes mobility scenario.
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Figure 8.4. Average SEP versus transmission data-rate for both SOSTD and ALD with
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constellation, carrier frequency fc = 2.4 GHz, path-loss exponent n = 2, normalized nodes
distances ds,� = 1 and d�,d = 2.

8.8 Conclusion

In this chapter we have derived a novel space-time-decoder that can be applied at the

destination of a multiple-relay cooperative system with mobile nodes and Alamouti space-

time coding at the source. This decoder is capable to provide very close SEP performance

to that of the ZFSTD proposed in chapter 5 without any additional decoding complexity. In

addition, we have provided theoretical analysis for its decoding matrix and SEP derivations.

Comprehensive numerical and real link-level simulation results have been provided to validate

these theoretical analysis and to show the SEP performance improvement by the proposed

decoder.
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CHAPTER 9

Alamouti-OSTBC Based M -Relay Fixed-Gain AF Cooperative Systems with Mobile Nodes

and Imperfect CSI Estimation: SINR Derivation and SEP Analysis

9.1 Chapter Overview

In this chapter we follow the same OSTBC-based cooperative diversity system model

as in chapter 5 but along with the assumption of time-selective fading due to nodes mo-

bility we follow the assumption that the estimation processes at the relays and destination

receivers are imperfect. Specifically, we consider an Alamouti-type OSTBC transmission

over a multiple-relay fixed-gain amplify-and-forward (AF) mobile cooperative-diversity sys-

tem with q-ary QAM (q-QAM) and Rayleigh frequency-flat time-selective fading channels

among the cooperating nodes due to their mobility. All of these channels are modeled by

the first-order-autoregressive (AR1) process and follow the standard large-scale path-loss

exponent propagation model. Due to imperfect CSI estimation, the estimated channel gains

at the relays and destination are assumed to be corrupted by Gaussian errors. Under these

assumptions, we employ the traditional Alamouti’s space-time-decoder (ALD) at the sys-

tem’s destination and show that the time-selective fading and the imperfect CSI estimation

destroy its orthogonality and optimality as a result of the non-separable interfering terms

and statistically correlated decision variables that appear at its output. By dealing with

the interference terms as additional random variables, in addition to the overall background

Gaussian white noise components, along with benefiting from the AR1 model, we derive

exact closed-form expressions for the decision variables’ instantaneous SINRs. From these

SINRs, and by exploiting the central-limit-theorem (CLT), we provide very tight approxi-

mate closed-form expression for the system’s symbol-error-probability (SEP) conditioned on
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the channel gains in the overall system’s channel gain-matrix. From this obtained conditional

SEP expression, we semi-analytically (based on the sampling mean concept) compute the

system’s average SEP performance and verify it via realistic link-level simulation. Moreover,

we show that this SEP performance is severely degraded and experiences irreducible error

floors, which are also quantitatively determined. We show that, as a special case of quasi-

static fading and perfect CSI estimation, the decision variables’ correlation, the interference

terms and the error floors all reduce to zero; i.e., ALD reduces to its originally designed

optimal version in such scenario.

9.2 System Model

9.2.1 Fading link and signal model

We consider here the same mobile OSTBC-based cooperative system model as in

chapter 5, which we describe it here again. We have a mobile AF cooperative system with

source node S, destination node D and M relays R1, R2, · · ·, RM . S is equipped with two

transmit antennas (e.g. corresponding to a base station), while the relays and D each

equipped with single antenna and work as mobile terminals. Let hi,� and h�,d denote the

channel gains for the fading links from the source ith transmit antenna (i ∈ {1, 2}) to the

�th relay and from the �th relay to the destination, respectively. We assume that hi,� and

h�,d have Rayleigh envelop and uniform phase, and thus, distributed as zero-mean-circularly-

symmetric-complex-Gaussian (ZMCSCG); i.e., hi,� ∼ CN (0, σ2
i,�) and h�,d ∼ CN (0, σ2

�,d). To

take into account the effect of the path-loss, σ2
i,� and σ2

�,d are given as 1/dns,� and 1/dn�,d,

respectively, where ds,� and d�,d are the S-R� and R�-D distances and n is the path-loss

exponent. Due to nodes mobility, all of the system’s fading links (say the link from antenna

a to b) are characterized as time-selective and modeled by the first order autoregressive

(AR1) process as (6.2.1)

ha,b(τ1) = ρa,bha,b(τ2) +
√
1− ρ2a,bea,b(τ1) (9.2.1)
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where the pair (a, b) ∈ {(i, �), (�, d)}; τ1 and τ2 denote any two adjacent signaling period

positions, the random process ea,b(k) ∼ CN (0, σ2
a,b) is the varying-component of the associ-

ated link, and ρa,b = J0(
2πfcva,b

Rsc
) [16] is the associated link’s correlation-parameter; where

va,b is the relative speed between nodes a and b, Rs is the transmission symbol rate, fc is

the carrier frequency, c is the speed of light and J0(.) is the zeroth-order bessel function of

the first kind. Observe that when va,b = 0, ρa,b is 1, and by considering this in (9.2.1), the

fading turns to be quasi-static because, in this case, ha,b(τ1) = ha,b(τ2). Also, it is assumed

that ρ1,� = ρ2,� � ρs,�. At S, the modulated (using q-ary QAM) complex symbol sequence

{xi} (each with energy Es/2) is parsed into code vectors x = [x1, x2]
T and then transmitted

over space and time as Alamouti-OSTBC matrix [33]

X =

⎡⎢⎣x1 −x∗2
x2 x∗1

⎤⎥⎦ (9.2.2)

Broadcasting this OSTBC matrix X over the cooperative system under study, based on the

transmission phases described in chapter 5, results in the following 2M × 1 received signal

vector at the destination (6.2.10)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1,d(k)

y∗1,d(k + 1)

...

yM,d(k)

y∗M,d(k + 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Yd

=H

⎡⎢⎣x1
x2

⎤⎥⎦
︸ ︷︷ ︸

x

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Gh1,d(k)ns,1(k) + n1,d(k)

Gh∗1,d(k + 1)n∗
s,1(k + 1) + n∗

1,d(k + 1)

...

GhM,d(k)ns,M(k) + nM,d(k)

Gh∗M,d(k + 1)n∗
s,1(k + 1) + n∗

M,d(k + 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

overall effective noise vector Nd

(9.2.3)
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where

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Gh1,1(k)h1,d(k) Gh2,1(k)h1,d(k)
Gh∗2,1(k + 1)h∗1,d(k + 1) −Gh∗1,1(k + 1)h∗1,d(k + 1)

...
...

Gh1,M(k)hM,d(k) Gh2,M(k)hM,d(k)

Gh∗2,M(k + 1)h∗M,d(k + 1) −Gh∗1,M(k + 1)h∗M,d(k + 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is the system’s end-to-end channel-gain matrix; ns,�(k), ns,�(k+1), n�,d(k) and n�,d(k+1) for

all � = {1, 2, ...,M} are the background white noise samples (∼ CN (0, No)) that corrupt the

corresponding system fading links, and G =
√

Es

Es+No
is the fixed amplification gain computed

at the relays.

9.2.2 CSI estimation

Despite that the fading links in this work are assumed to be time-selective (i.e., rapidly

time-varying), we assume that the relays and the destination tracking loops are capable of

estimating the channel gains of their corresponding fading links over the individual signaling

periods. Several algorithms have been proposed to track and estimate time-selective (time-

varying) fading channel for space-time block coding [45] and [46]. However, unlike the work

in chapter 5, we follow here the more practical scenario and assume that these estimation

processes are imperfect (i.e., channel estimation error is significant). Thus, the estimated

channel gain over the τth signaling period, say ĥa,b(τ), can be related to the actual one

ha,b(τ) as [49]

ĥa,b(τ) = ha,b(τ) + hεa,b(τ) (9.2.4)

where hεa,b(τ) is the estimation error, which is assumed to be ZMCSCG with variance σ2
ea,b

(i.e., ∼ CN (0, σ2
ea,b

).
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9.3 ALD Decision Variables

Employing the ALD at the system’s destination requires first a knowledge of the

system channel-gain-matrix at the receiving side. Because in this work we assume, along

with the time-selective fading assumption, imperfect channel estimation, we can write the

estimated version of our system channel-gain-matrix H as

Ĥ=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11,1 b11,2

b12,1 b12,2
...

...

bM1,1 bM1,2

bM2,1 bM2,2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9.3.1)

where

b�1,1 =G(h1,�(k)h�,d(k) + h1,�(k)h
ε
�,d(k) + hε1,�(k)h�,d(k) + hε1,�(k)h

ε
�,d(k)

)
b�1,2 =G(h2,�(k)h�,d(k) + h2,�(k)h

ε
�,d(k) + hε2,�(k)h�,d(k) + hε2,�(k)h

ε
�,d(k)

)
b�2,1 =G(h∗2,�(k + 1)h∗�,d(k + 1) + h∗2,�(k + 1)hε∗�,d(k + 1)

+hε∗2,�(k + 1)h∗�,d(k + 1) + hε∗2,�(k + 1)hε∗�,d(k + 1)
)

b�2,2 =−G(h∗1,�(k + 1)h∗�,d(k + 1) + h∗1,�(k + 1)hε∗�,d(k + 1)

+hε∗1,�(k + 1)h∗�,d(k + 1) + hε∗1,�(k + 1)hε∗�,d(k + 1)
)
.

The last equality in (9.3.1) is obtained after substituting for ĥa,b(k) and ĥa,b(k+1), ∀(a, b) ∈
{(1, �), (2, �), (�, d)}, as in (9.2.4). Now, we can apply the ALD at the system’s destination

just by multiplying the the received signal vector Yd in (9.2.3) by the hermitian of Ĥ (Ĥ
H
).

The resulted two elements from this multiplication, which are the ALD’s decision variables

corresponding to the two transmitted symbols x1 and x2, can be given after doing some
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simplifications, respectively, as

ỹ1 =

desired-signal of x1 � A1︷︸︸︷
β1x1 +

overall-interference-term1 � I1︷ ︸︸ ︷
ζx2︸︷︷︸

nodes-mobility-interference

+ ϑ1x1 + ξ1x2︸ ︷︷ ︸
imperfect-CSI-interference

+

overall-white-noise-term1 � χ̃1︷ ︸︸ ︷
ñ1︸︷︷︸

white-noise-term

+ υ̃1︸︷︷︸
imperfect-CSI-white-noise-term

(9.3.2)

ỹ2 =

desired-signal of x2 � A2︷︸︸︷
β2x2 +

overall-interference-term2 � I2︷ ︸︸ ︷
ζ∗x1︸︷︷︸

nodes-mobility-interference

+ ϑ2x2 + ξ2x1︸ ︷︷ ︸
imperfect-CSI-interference

+

overall-white-noise-term2 � χ̃2︷ ︸︸ ︷
ñ2︸︷︷︸

white-noise-term

+ υ̃2︸︷︷︸
imperfect-CSI-white-noise-term

(9.3.3)

where

β1 =G2

M∑
�=1

(|h1,�(k)h�,d(k)|2 + |h2,�(k + 1)h�,d(k + 1)|2) (9.3.4)

ζ =G2

M∑
�=1

(
h∗1,�(k)h2,�(k)|h�,d(k)|2 − h2,�(k + 1)h∗1,�(k + 1)|h�,d(k + 1)|2) (9.3.5)
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ϑ1 =G2

M∑
�=1

|h1,�(k)|2h�,d(k)hε∗�,d(k) + G2

M∑
�=1

h1,�(k)|h�,d(k)|2hε∗1,�(k)

+
G2

∑M
�=1 h1,�(k)h�,d(k)

hε∗1,�(k)hε
∗
�,d(k)︸ ︷︷ ︸

I
ϑ1
3

+ G2

M∑
�=1

|h2,�(k + 1)|2h∗�,d(k + 1)hε∗�,d(k + 1)

+G2

M∑
�=1

h∗2,�(k + 1)|h�,d(k + 1)|2hε2,�(k + 1) +
G2

∑M
�=1 h

∗
2,�(k + 1)h∗�,d(k

+1)hε2,�(k + 1)hε�,d(k + 1)︸ ︷︷ ︸
I
ϑ1
6

.

(9.3.6)

ξ1 =G2

M∑
�=1

(
h∗1,�(k)h2,�(k)h�,d(k)h

ε∗
�,d(k) + |h�,d(k)|2h2,�(k) + h2,�(k)h�,d(k)h

ε∗
1,�(k)

hε∗�,d(k)− h2,�(k + 1)h∗1,�(k + 1)h∗�,d(k + 1)hε�,d(k + 1)− |h�,d(k + 1)|2

h∗1,�(k + 1)hε2,�(k + 1)− h∗1,�(k + 1)h∗�,d(k + 1)hε2,�(k + 1)hε�,d(k + 1)
)
. (9.3.7)

ñ1 =
M∑
�=1

(G2h∗1,�(k)|h�,d(k)|2ns,�(k) + Gh∗1,�(k)h∗�,d(k)n�,d(k) + G2h2,�(k + 1)

|h�,d(k + 1)|2n∗
s,�(k + 1) + Gh2,�(k + 1)h�,d(k + 1)n∗

�,d(k + 1)
)

(9.3.8)
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υ̃1 =
M∑
�=1

G2h∗1,�(k)h
ε∗
�,d(k)h�,d(k)ns,�(k) +

M∑
�=1

G2hε∗1,�(k)h
∗
�,d(k)h�,d(k)ns,�(k) +

M∑
�=1

G2

hε∗1,�(k)h
ε∗
�,d(k)h�,d(k)ns,�(k) +

M∑
�=1

Gh∗1,�(k)hε∗�,d(k)n�,d(k) +
M∑
�=1

Ghε∗1,�(k)h∗�,d(k)

n�,d(k) +
M∑
�=1

Ghε∗1,�(k)hε∗�,d(k)n�,d(k) +
M∑
�=1

G2h2,�(k + 1)hε�,d(k + 1)h∗�,d(k + 1)

n∗
s,�(k + 1) +

M∑
�=1

G2hε2,�(k + 1)h�,d(k + 1)h∗�,d(k + 1)n∗
s,�(k + 1) +

M∑
�=1

G2

hε2,�(k + 1)hε∗�,d(k)h
∗
�,d(k + 1)n∗

s,�(k + 1) +
M∑
�=1

Gh2,�(k + 1)hε�,d(k + 1)

n∗
�,d(k + 1) +

M∑
�=1

Ghε2,�(k + 1)h�,d(k + 1)n∗
�,d(k + 1) +

M∑
�=1

Ghε2,�(k + 1)

hε∗�,d(k)n
∗
�,d(k + 1) (9.3.9)

β2 =G2

M∑
�=1

(|h2,�(k)h�,d(k)|2 + |h1,�(k + 1)h�,d(k + 1)|2) (9.3.10)

ϑ2 =G2

M∑
�=1

(|h2,�(k)|2h�,d(k)hε∗�,d(k) + h2,�(k)|h�,d(k)|2hε∗2,�(k) + h2,�(k)h�,d(k)h
ε∗
2,�(k)

hε∗�,d(k) + |h1,�(k + 1)|2h∗�,d(k + 1)hε∗�,d(k + 1) + h∗1,�(k + 1)|h�,d(k + 1)|2

hε1,�(k + 1) + h∗1,�(k + 1)h∗�,d(k + 1)hε1,�(k + 1)hε�,d(k + 1)
)

(9.3.11)

ξ2 =G2

M∑
�=1

(
h∗2,�(k)h1,�(k)h�,d(k)h

ε∗
�,d(k) + |h�,d(k)|2h1,�(k)hε∗2,�(k) + h1,�(k)h�,d(k)

hε∗2,�(k)h
ε∗
�,d(k)− h1,�(k + 1)h∗2,�(k + 1)h∗�,d(k + 1)hε�,d(k + 1)− |h�,d(k + 1)|2

h∗2,�(k + 1)hε1,�(k + 1)− h∗2,�(k + 1)h∗�,d(k + 1)hε1,�(k + 1)hε�,d(k + 1)
)

(9.3.12)
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ñ2 =
M∑
�=1

(G2h∗2,�(k)|h�,d(k)|2ns,�(k) + Gh∗2,�(k)h∗�,d(k)n�,d(k)− G2h1,�(k + 1)|h�,d(k + 1)|2

n∗
s,�(k + 1)− Gh1,�(k + 1)h�,d(k + 1)n∗

�,d(k + 1)
)

(9.3.13)

υ̃2 =G
M∑
�=1

(Gh∗2,�(k)hε∗�,d(k)h�,d(k)ns,�(k) + Ghε∗2,�(k)h∗�,d(k)h�,d(k)ns,�(k) + Ghε∗2,�(k)

hε∗�,d(k)h�,d(k)ns,�(k) + h∗2,�(k)h
ε∗
�,d(k)n�,d(k) + hε∗2,�(k)h

∗
�,d(k)n�,d(k) + hε∗2,�(k)

hε∗�,d(k)n�,d(k)− Gh1,�(k + 1)hε�,d(k + 1)h∗�,d(k + 1)n∗
s,�(k + 1)− Ghε1,�(k + 1)

h�,d(k + 1)h∗�,d(k + 1)n∗
s,�(k + 1)− Ghε1,�(k + 1)hε∗�,d(k)h

∗
�,d(k + 1)n∗

s,�(k + 1)

−h1,�(k + 1)hε�,d(k + 1)n∗
�,d(k + 1)− hε1,�(k + 1)h�,d(k + 1)n∗

�,d(k + 1)

−hε1,�(k + 1)hε∗�,d(k)n
∗
�,d(k + 1)

)
(9.3.14)

Because in this work we follow the more practical assumptions of time-selective fading en-

vironment and imperfect CSI estimation processes at the relays and the destination, the

obtained decision variables ỹ1 and ỹ2 are nonseparable for x1 and x2, respectively (see the

interference terms I1 and I2). The imperfect CSI estimation assumption also adds addi-

tional white noise components to these decision variables, which are υ̃1 and υ̃2. Moreover,

as an impact of both the time-selective fading and the imperfect channel estimation, ỹ1

and ỹ2 are non independent. This is because that their effective noise terms χ̃1 and χ̃2 are

correlated and have conditional covariance given by (9.3.15). It is worthwhile to mention

that if the system’s fading environment is quasi-static (i.e., ρa,b = 1 ∀(a, b)) and the estima-

tion processes are perfect (i.e., (hεa,b(τ) = 0 ∀(a, b)) the interference terms I1 and I2, the

imperfect-estimation white noise terms υ̃1 and υ̃2 and the statistical correlation in (9.3.15)

reduce to zero. This means that ỹ1 and ỹ2 are separable corresponding to x1 and x2, respec-

tively, and also independent to each other (in this case, the ALD is optimal ML). However, in

the following section, we analyze the SEP performance of this system considering the more

general scenarios of time-selective fading (i.e., ρa,b < 1 ∀(a, b)) and imperfect estimation
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(hεa,b(τ) �= 0), which has not been done before in the literature.

E[χ̃1χ̃
∗
2|S̃] = G2No

∑M
�=1

(
h∗1,�(k)h2,�(k)|h�,d(k)|2(G2|h�,d(k)|2 +

1) − h2,�(k + 1)h∗1,�(k + 1)|h�,d(k + 1)|2(G2|h�,d(k + 1)|2 + 1)
)
+(G2h∗1,�(k)|h�,d(k)|2(h2,�(k)hε�,d(k)h∗�,d(k) + hε2,�(k)h�,d(k)h

∗
�,d(k) +

hε2,�(k)h
ε
�,d(k)h

∗
�,d(k)) + h∗1,�(k)h

∗
�,d(k)(h2,�(k)h

ε
�,d(k) + hε2,�(k)h�,d(k) +

hε2,�(k)h
ε
�,d(k)) − G2h2,�(k + 1)|h�,d(k + 1)|2(h∗1,�(k + 1)hε∗�,d(k +

1)h�,d(k + 1) + hε∗1,�(k + 1)h∗�,d(k + 1)h�,d(k + 1) + hε∗1,�(k +

1)hε�,d(k)h�,d(k + 1)) − h2,�(k + 1)h�,d(k + 1)(h∗1,�(k +

1)hε∗�,d(k + 1) + hε∗1,�(k + 1)h∗�,d(k + 1) + hε∗1,�(k + 1)hε�,d(k))
)
+(G2h2,�(k)|h�,d(k)|2(h∗1,�(k)hε∗�,d(k)h�,d(k) + hε∗1,�(k)h

∗
�,d(k)h�,d(k) +

hε∗1,�(k)h
ε∗
�,d(k)h�,d(k)) + h2,�(k)h�,d(k)(h

∗
1,�(k)h

ε∗
�,d(k) + hε∗1,�(k)h

∗
�,d(k) +

hε∗1,�(k)h
ε∗
�,d(k))−G2h∗1,�(k+1)|h�,d(k+1)|2(h2,�(k+1)hε�,d(k+1)h∗�,d(k+

1) + hε2,�(k + 1)h�,d(k + 1)h∗�,d(k + 1) + hε2,�(k + 1)hε∗�,d(k)h
∗
�,d(k +

1)) − h∗1,�(k + 1)h∗�,d(k + 1)(h2,�(k + 1)hε�,d(k + 1) + hε2,�(k +

1)h�,d(k + 1) + hε2,�(k + 1)hε∗�,d(k))
)
+

(G2(h∗1,�(k)h
ε∗
�,d(k)h�,d(k) +

hε∗1,�(k)h
∗
�,d(k)h�,d(k) + hε∗1,�(k)h

ε∗
�,d(k)h�,d(k))(h2,�(k)h

ε
�,d(k)h

∗
�,d(k) +

hε2,�(k)h�,d(k)h
∗
�,d(k) + hε2,�(k)h

ε
�,d(k)h

∗
�,d(k)) + (h∗1,�(k)h

ε∗
�,d(k) +

hε∗1,�(k)h
∗
�,d(k) + hε∗1,�(k)h

ε∗
�,d(k))(h2,�(k)h

ε
�,d(k) + hε2,�(k)h�,d(k) +

hε2,�(k)h
ε
�,d(k))−G2(h2,�(k+1)hε�,d(k+1)h∗�,d(k+1)+hε2,�(k+1)h�,d(k+

1)h∗�,d(k+1)+hε2,�(k+1)hε∗�,d(k)h
∗
�,d(k+1))(h∗1,�(k+1)hε∗�,d(k+1) h�,d(k+

1)+ hε∗1,�(k+1)h∗�,d(k+1)h�,d(k+1)+ hε∗1,�(k+1)hε�,d(k)h�,d(k+1))−
(h2,�(k+1)hε�,d(k+1)+hε2,�(k+1)h�,d(k+1)+hε2,�(k+1)hε∗�,d(k))(h

∗
1,�(k+

1)hε∗�,d(k + 1) + hε∗1,�(k + 1)h∗�,d(k + 1) + hε∗1,�(k + 1)hε�,d(k))
)

(9.3.15)
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where

S̃ = S ∪ Sε

S = {h1,�(k), h1,�(k + 1), h2,�(k), h2,�(k + 1), h�,d(k), h�,d(k + 1) : ∀� = 1, 2 · ··,M}

Sε = {hε1,�(k), hε1,�(k + 1), hε2,�(k), h
ε
2,�(k + 1), hε�,d(k), h

ε
�,d(k + 1) : ∀� = 1, 2 · ··,M}.

(9.3.16)

9.4 System Conditional SEP Analysis

The decision variables ỹ1 in (9.3.2) and ỹ2 in (9.3.3) are used by the destination q-QAM

demodulator to make decisions about the two transmitted symbols x1 and x2, respectively.

Here, we use these two decision variables to analyze the system symbol error probability

(SEP) at the q-QAM demodulator output. However, due to the complicated form of the

decision variables ỹ1 in (9.3.2) and ỹ2 in (9.3.3), which complicates deriving the SEP of

the system model under study from scratch, we propose here an approach that allows us to

directly utilize the AWGN SEP expression in (6.3.1) in evaluating this system SEP. Basically,

this proposed approach is based on (i) deriving explicit closed-form expressions for the SINRs

of the variables ỹ1 and ỹ2 (ii) showing that the overall-interference terms (I1 and I2) and the

overall-white-noise terms (χ̃1 and χ̃2) in (9.3.2) and (9.3.3) are complex-Gaussian or fairly

approximated as complex-Gaussian, which we do in the following subsections.

9.4.1 Conditional SINR of the first decision statistic

It is clear from (9.3.2) that the decision variable ỹ1 is a function of the channel gains

in the set S̃ = {h1,�(k), h1,�(k + 1), h2,�(k), h2,�(k + 1), h�,d(k), h�,d(k + 1), hε1,�(k), h
ε
1,�(k +

1), hε2,�(k), h
ε
2,�(k + 1), hε�,d(k), h

ε
�,d(k + 1) : ∀� = 1, 2 · ··,M}. However, in order to simplify

the derivation of its conditional SINR (say γ1), we propose to derive it conditioned on the

set S1 = {h1,�(k), h2,�(k + 1), h�,d(k), h�,d(k + 1) : ∀� = 1, 2 · ··,M}1. It is clear now from

1The channel gains in this set are the ones that appear as coefficients of the desired-signal term in the
decision variable ỹ1 in (9.3.2).
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(9.3.2) that γ1|S1 can be expressed as

γ1|S1 =
P(A1|S1)

P(I1|S1) + P(χ̃1|S1)

=
|β1|2(Es/2)

P(ζ|S1)(Es/2) + P(ϑ1|S1)(Es/2) + P(ξ1|S1)(Es/2) + P(ñ1|S1) + P(υ̃1|S1)

(9.4.1)

where P denotes the power operator. In the following we discuss how we can evaluate

P(ζ|S1), P(ϑ1|S1), P(ξ1|S1), P(ñ1|S1) and P(υ̃1|S1). First, it is clear from (9.3.5) that ζ is a

function of the elements in S1 as well as of h1,�(k + 1) and h2,�(k). Therefore, conditioned

on S1, ζ is a random variable with respect to both h1,�(k + 1) and h2,�(k). To find P(ζ|S1),

we propose first to utilize the expression of the AR1 model in (9.2.1) to write h∗1,�(k + 1) in

terms of h1,�(k) and h2,�(k) in terms of h2,�(k + 1), respectively, as follows

h∗1,�(k + 1) = ρs,�h
∗
1,�(k) +

√
1− ρ2s,�e

∗
1,�(k + 1) (9.4.2)

h2,�(k) = ρs,�h2,�(k + 1) +
√
1− ρ2s,�e2,�(k). (9.4.3)

By substituting (9.4.2) and (9.4.3) into (9.3.5), we can expand ζ as

ζ =G2

M∑
�=1

(
ρs,�h

∗
1,�(k)h2,�(k + 1)

(|h�,d(k)|2 − |h�,d(k + 1)|2))︸ ︷︷ ︸
μ1

+
G2

∑M
�=1

(√
1− ρ2s,�h

∗
1,�(k)|h�,d(k)|2e2,�(k)−

√
1− ρ2s,�

h2,�(k + 1)|h�,d(k + 1)|2e∗1,�(k + 1)
)︸ ︷︷ ︸

ψ1

(9.4.4)

131



It is obvious from (9.4.4) that because e∗1,�(k + 1) ∼ CN (
0, σ2

1,�) and e2,�(k) ∼ CN (
0, σ2

2,�),

ζ|S1 is a non-zero mean complex Gaussian with mean μ1 and variance given as

Var[ζ | S1] =Var[ψ1 | S1] = G4

M∑
�=1

(
(1− ρ2s,�)

(
σ2
2,�|h1,�(k)|2

|h�,d(k)|4 + σ2
1,�|h2,�(k + 1)|2|h�,d(k + 1)|4)). (9.4.5)

Given ζ in (9.4.4), the power of ζ | S1 can be obtained as

P(ζ | S1) = |μ1|2 +Var[ψ1 | S1]. (9.4.6)

The parameter ϑ1 in (9.3.6) is function of the elements in S1 as well as of the estimation

errors hε1,�(k), h
ε
2,�(k + 1), hε�,d(k) and h

ε
�,d(k + 1). Therefore, ϑ1|S1 is random variable with

respect to these estimation errors. Since hεa,b(τ) ∼ CN (0, σ2
ea,b

) ∀(a, b) ∈ {(1, �), (2, �), (�, d)}
and τ ∈ {k, k − 1}, we can evaluate the mean and the variance of ϑ1|S1, respectively, as

follows

E[ϑ1|S1] = 0 (9.4.7)

Var[ϑ1|S1] = G4

M∑
�=1

(|h1,�(k)|4|h�,d(k)|2σ2
e	,d

+ |h1,�(k)|2|h�,d(k)|4σ2
e1,	

+ |h1,�(k)|2

|h�,d(k)|2σ2
e1,	
σ2
e	,d

+ |h2,�(k + 1)|4|h�,d(k + 1)|2σ2
e	,d

+ |h2,�(k + 1)|2

|h�,d(k + 1)|4σ2
e2,	

+ |h2,�(k + 1)|2|h�,d(k + 1)|2σ2
e2,	
σ2
e	,d

)
(9.4.8)

and thus, its power can be given by

P(ϑ1|S1) = Var[ϑ1|S1]. (9.4.9)

Moreover, we can notice from (9.3.6) that the densities of the terms of ϑ1, conditioned on

S1, are complex-Gaussian (specifically ZMCSCG) except the terms Iϑ1
3 and Iϑ1

6 . Iϑ1
3 |S1 is
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sum of multiplications of two ZMCSCG random variables; hε∗1,�(k) and h
ε∗
�,d(k), while I

ϑ1
6 |S1

is sum of multiplications of the two ZMCSCG random variables hε∗2,�(k+1) and hε∗�,d(k+1).

However, with the help of the central-limit-theorem (CLT) [50], Iϑ1
3 |S1 can be approximated

as ZMCSCG random variable (see Appendix A). Similarly as Iϑ1
3 |S1, I

ϑ1
6 |S1 can be also

approximated as ZMCSCG, and thus, ϑ1|S1 can be fairly approximated as ZMCSCG as

well. As can be seen from (9.3.7), ξ1 conditioned on S1 is random variable with respect to

h1,�(k + 1), h2,�(k), h
ε
1,�(k), h

ε
2,�(k + 1), hε�,d(k) and h

ε
�,d(k + 1) ∀�. Now, in order to simplify

the evaluation of its power P(ξ1|S1), we first substitute (9.4.2) and (9.4.3) into (9.3.7), which

leads to expanding ξ1 as

ξ1 =

∑M
�=1 G2ρs,�h2,�(k + 1)

h∗1,�(k)h�,d(k)hε
∗
�,d(k)︸ ︷︷ ︸

I
ξ1
1

+

∑M
�=1 G2

√
1− ρ2s,�h

∗
1,�(k)

h�,d(k)hε
∗
�,d(k)e2,�(k)︸ ︷︷ ︸
I
ξ1
2

+

∑M
�=1 G2ρs,�h2,�(k + 1)

|h�,d(k)|2hε∗1,�(k)︸ ︷︷ ︸
I
ξ1
3

+

∑M
�=1 G2

√
1− ρ2s,�|h�,d(k)|2

hε∗1,�(k)e2,�(k)︸ ︷︷ ︸
I
ξ1
4

+

∑M
�=1 G2ρs,�h2,�(k + 1)h�,d(k)

hε∗1,�(k)hε
∗
�,d(k)︸ ︷︷ ︸

I
ξ1
5

+

∑M
�=1 G2

√
1− ρ2s,�h�,d(k)

hε∗1,�(k)hε
∗
�,d(k)e2,�(k)︸ ︷︷ ︸
I
ξ1
6

−
∑M

�=1 G2ρs,�h
∗
1,�(k)h2,�(k + 1)

h∗�,d(k + 1)hε�,d(k + 1)︸ ︷︷ ︸
I
ξ1
7

−
∑M

�=1 G2
√

1− ρ2s,�h2,�(k + 1)h∗�,d(k + 1)

hε�,d(k + 1)e∗1,�(k + 1)︸ ︷︷ ︸
I
ξ1
8

−
∑M

�=1 G2ρs,�h
∗
1,�(k)

|h�,d(k + 1)|2hε2,�(k + 1)︸ ︷︷ ︸
I
ξ1
9

−
∑M

�=1 G2
√

1− ρ2s,�|h�,d(k + 1)|2
hε2,�(k + 1)e∗1,�(k + 1)︸ ︷︷ ︸

I
ξ1
10

−
∑M

�=1 G2ρs,�h
∗
1,�(k)h

∗
�,d(k + 1)

hε2,�(k + 1)hε�,d(k + 1)︸ ︷︷ ︸
I
ξ1
11

−
∑M

�=1 G2
√

1− ρ2s,�h
∗
�,d(k + 1)hε2,�(k + 1)

hε�,d(k + 1)e∗1,�(k + 1)︸ ︷︷ ︸
I
ξ1
12

. (9.4.10)
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It is shown now from (9.4.10) that ξ1|S1 is random variable with respect to e2,�(k), e1,�(k+1),

hε1,�(k), h
ε
2,�(k + 1), hε�,d(k) and h

ε
�,d(k + 1) ∀�. e2,�(k) ∼ CN (0, σ2

2,�), which we can evaluate

its mean and variance, after doing some simplifications, respectively, as

E[ξ1|S1] = 0 (9.4.11)

Var(ξ1|S1)=G4

M∑
�=1

(
(|h1,�(k)|2|h�,d(k)|2σ2

e	,d
+ |h�,d(k)|4σ2

e1,	
+ |h�,d(k)|2σ2

e1,	
σ2
e	,d

)

(ρ2s,�|h2,�(k + 1)|2 + (1− ρ2s,�)σ
2
2,�) + (|h2,�(k + 1)|2|h�,d(k + 1)|2

σ2
e	,d

+ |h�,d(k + 1)|4σ2
e2,	

+ |h�,d(k + 1)|2σ2
e2,	
σ2
e	,d

)(ρ2s,�|h1,�(k)|2

+(1− ρ2s,�)σ
2
1,�)

)
. (9.4.12)

and thereby, its power is given as

P(ξ1|S1) = Var[ξ1|S1]. (9.4.13)

We can notice from (9.4.10) that, conditioned on S1, the terms Iξ11 , Iξ13 , Iξ17 and Iξ19 are exact

ZMCSCG while the remaining terms are not. However, as similar as approximating Iϑ1
3 |S1

as ZMCSCG as in Appendix A, we can approximate Iξ12 |S1, I
ξ1
4 |S1, I

ξ1
5 |S1, I

ξ1
8 |S1, I

ξ1
10|S1

and Iξ111|S1 as so. The remaining two terms Iξ16 |S1 and Iξ112|S1 are sums of multiplications

of three ZMCSCG random variables, which, can be also approximated with the help of the

CLT as ZMCSCG (see Appendix B). Finally, we can conclude that ξ1|S1 in (9.4.10) can be

fairly approximated as complex-Gaussian. The noise term ñ1 in (9.3.8) is function of the

channel gains in the set S1 as well as of the the noise components ns,�(k), n�,d(k), n
∗
s,�(k+1)

and n∗
�,d(k + 1) for all �. Because ns,�(k), n�,d(k), n

∗
s,�(k + 1) and n∗

�,d(k + 1) for all � are

statistically independent and distributed as ZMCSCG with variance No (i.e., CN (0, No)),
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ñ1|S1 is ZMCSCG random variable which has the the following conditional power

P(ñ1|S1)�Var(ñ1|S1) = NoG2

M∑
�=1

(|h1,�(k)h�,d(k)|2(G2|h�,d(k)|2 + 1) +

|h2,�(k + 1)h�,d(k + 1)|2(G2|h�,d(k + 1)|2 + 1)
)
. (9.4.14)

The term υ̃1 in (9.3.9) is, conditioned on S1, a random variable with respect to ns,�(k),

n�,d(k), n
∗
s,�(k+1), n∗

�,d(k+1) as well as to hε1,�(k), h
ε
2,�(k+1), hε�,d(k) and h

ε
�,d(k+1). Given

that ns,�(k), n�,d(k), n
∗
s,�(k + 1), n∗

�,d(k + 1) are ∼ CN (0, No)); and hεa,b(τ) ∼ CN (0, σ2
ea,b

)

∀(a, b) ∈ {(1, �), (2, �), (�, d)} and τ ∈ {k, k − 1}, the mean, variance and power of υ̃1|S1 can

be evaluated, respectively, as

E[υ̃1|S1] = 0 (9.4.15)

Var(υ̃1|S1) = G4No

M∑
�=1

(
(|h�,d(k)|2 + 1)(|h1,�(k)|2σ2

e	,d
+ |h�,d(k)|2σ2

e1,	
+ σ2

e1,	
σ2
e	,d

) +

(|h�,d(k + 1)|2 + 1)(|h2,�(k + 1)|2σ2
e	,d

+ |h�,d(k + 1)|2σ2
e2,	

+ σ2
e2,	
σ2
e	,d

)
)

(9.4.16)

and

P(υ̃1|S1) = Var(υ̃1|S1). (9.4.17)

By approximating the non complex-Gaussian terms of υ̃1 as ZMCSCG (as similar as approx-

imating Iϑ1
3 |S1 and Iξ16 |S1) we can approximate υ̃1|S1 as ZMCSCG as CN (0,Var(υ̃1|S1)).

Finally, by substituting (9.4.6), (9.4.9), (9.4.13), (9.4.14) and (9.4.17) into (9.4.1), and after

doing some simplifications, we can obtain the ultimate form of γ1|S1 in terms of channel

gains in set S1, system links’ correlation parameters ρa,b, estimation errors variances σ2
ea,b

,
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and Es

No
as

γ1|S1 =

∣∣∑M
�=1

(|h1,�(k)h�,d(k)|2 + |h2,�(k + 1)h�,d(k + 1)
)∣∣2 Es

No∣∣∑M
�=1

(
ρs,�h

∗
1,�(k)h2,�(k + 1)

(|h�,d(k)|2 − |h�,d(k + 1)|2))∣∣2 Es

No
+∑M

�=1

(
(1 − ρ2s,�)

(
σ2
2,�|h1,�(k)|2|h�,d(k)|4 + σ2

1,�|h2,�(k + 1)|2|h�,d(k +

1)|4) + σ2
e	,d

|h1,�(k)|4|h�,d(k)|2 + |h1,�(k)|2|h�,d(k)|4σ2
e1,	

+

|h1,�(k)|2|h�,d(k)|2σ2
e1,	
σ2
e	,d

+ |h2,�(k + 1)|4|h�,d(k + 1)|2σ2
e	,d

+

|h2,�(k + 1)|2|h�,d(k + 1)|4σ2
e2,	

+ |h2,�(k + 1)|2|h�,d(k + 1)|2σ2
e2,	
σ2
e	,d

+

(|h1,�(k)|2σ2
e	,d

|h�,d(k)|2 + |h�,d(k)|4σ2
e1,	

+ |h�,d(k)|2σ2
e1,	
σ2
e	,d

)(ρ2s,�|h2,�(k+
1)|2 + (1 − ρ2s,�)σ

2
2,�) + (|h2,�(k + 1)|2|h�,d(k + 1)|2σ2

e	,d
+ |h�,d(k +

1)|4σ2
e2,	

+ |h�,d(k + 1)|2σ2
e2,	
σ2
e	,d

)(ρ2s,�|h1,�(k)|2 + (1 − ρ2s,�)σ
2
1,�)

)
Es

No
+

2
∑M

�=1

(|h1,�(k)h�,d(k)|2(|h�,d(k)|2+ 1
G2 )+|h2,�(k+1)h�,d(k+1)|2(|h�,d(k+

1)|2 + 1
G2 ) + (|h�,d(k)|2 + 1)(|h1,�(k)|2σ2

e	,d
+ σ2

e1,	
|h�,d(k)|2 + σ2

e1,	
σ2
e	,d

) +

(|h�,d(k + 1)|2 + 1)(|h2,�(k + 1)|2σ2
e	,d

+ |h�,d(k + 1)|2σ2
e2,	

+ σ2
e2,	
σ2
e	,d

)
)
(9.4.18)

The instantaneous SINR γ1|S1 is a random variable in terms of h1,�(k), h2,�(k + 1), h�,d(k),

h�,d(k + 1) : ∀� = 1, 2 · ··,M , which are Rayleigh distributed gains, and because of its

very complicated form, deriving its probability-density-function (pdf) or moment-generating-

function (mgf) is intractable.

9.4.2 Conditional SINR of the second decision statistic

Similarly as ỹ1, ỹ2 in (9.3.3) is function of the channel gains in the set S̃ described in

(9.3.16). However, in order to simplify the derivation of its conditional SINR, say γ2, we do

that conditioned on the channel gains in the set S2 = {h1,�(k+1), h2,�(k), h�,d(k), h�,d(k+1)}2.
2The channel gains in this set are the ones that appear as coefficients of the desired-signal term in the

decision statistic ỹ2 in (9.3.3).
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From (9.3.3), we can now obtain γ2 conditioned on S2 as

γ2|S2 =
P(A2|S2)

P(I2|S2) + P(χ̃2|S2)

=
|β2|2(Es/2)

P(ζ∗|S2)(Es/2) + P(ϑ2|S2)(Es/2) + P(ξ2|S2)(Es/2) + P(ñ2|S2) + P(υ̃2|S2)
.

(9.4.19)

It is clear from (9.3.5) that the conjugate of ζ is function of the elements in S2 as well as of

h1,�(k) and h2,�(k+1). Therefore, conditioned on S2, ζ
∗ is random variable in terms of both

h1,�(k) and h2,�(k + 1). With the help of the AR1 model in (9.2.1), we can write h1,�(k) in

terms of h1,�(k + 1) and h∗2,�(k + 1) in terms of h2,�(k), respectively, as follows

h1,�(k) = ρs,�h1,�(k + 1) +
√

1− ρ2s,�e1,�(k) (9.4.20)

h∗2,�(k + 1) = ρs,�h
∗
2,�(k) +

√
1− ρ2s,�e

∗
2,�(k + 1). (9.4.21)

By substituting (9.4.20) and (9.4.21) into (9.3.5), we can express ζ∗ as

ζ∗ =
G2

∑M
�=1

(
ρs,�h1,�(k + 1)h∗2,�(k)(|h�,d(k)|2 − |h�,d(k + 1)|2))︸ ︷︷ ︸

μ2

+
G2

∑M
�=1

(√
1− ρ2s,�h

∗
2,�(k)|h�,d(k)|2e1,�(k)−√

1− ρ2s,�h1,�(k + 1)|h�,d(k + 1)|2e∗2,�(k + 1)
)

︸ ︷︷ ︸
ψ2

(9.4.22)

Because e∗1,�(k) ∼ CN (
0, σ2

1,�) and e
∗
2,�(k + 1) ∼ CN (

0, σ2
2,�), ζ

∗ in (9.4.22) is, conditioned on

S2, a non-zero mean complex-Gaussian with mean μ2 and variance Var[ψ2 | S2] that is given

by

Var[ψ2 | S2] = G4

M∑
�=1

(
(1− ρ2s,�)

(
σ2
2,�|h1,�(k + 1)|2|h�,d(k)|4 + σ2

1,�|h2,�(k)|2|h�,d(k + 1)|4)).
(9.4.23)
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We can now obtain P(ζ∗|S2) as

P(ζ∗|S2) = |μ2|2 +Var[ψ2 | S2]. (9.4.24)

The element ϑ2 in (9.3.11) is function of the elements in S2 as well as of the estimation errors

hε2,�(k), h
ε
1,�(k + 1), hε�,d(k) and h

ε
�,d(k + 1). Thus, ϑ2|S2 is random variable with respect to

these estimation errors, and we can evaluate its mean, variance and power, respectively, as

E[ϑ2|S2] = 0 (9.4.25)

Var(ϑ2|S2)=G4

M∑
�=1

(|h2,�(k)|4|h�,d(k)|2σ2
e	,d

+ |h2,�(k)|2|h�,d(k)|4σ2
e2,	

+ |h2,�(k)|2

|h�,d(k)|2σ2
e2,	
σ2
e	,d

+ |h1,�(k + 1)|4|h�,d(k + 1)|2σ2
e	,d

+ |h1,�(k + 1)|2

|h�,d(k + 1)|4σ2
e1,	

+ |h1,�(k + 1)|2‖h�,d(k + 1)|2σ2
e1,	
σ2
e	,d

)
(9.4.26)

P(ϑ2|S2) = Var(ϑ2|S2). (9.4.27)

By following the same CLT-based approach we followed to approximate ϑ1|S1 as ZMCSCG,

ϑ2|S2 can be fairly approximated as ZMCSCG as CN (0,Var(ϑ2|S2)). ξ2 in (9.3.12), con-

ditioned on S2, is random variable with respect to h2,�(k + 1), h1,�(k), h
ε
2,�(k), h

ε
1,�(k + 1),

hε�,d(k) and h
ε
�,d(k + 1), and by expanding h1,�(k) and h

∗
2,�(k + 1) as in (9.4.20) and (9.4.21),
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respectively, we can expand it as

ξ2 = G2
M∑
�=1

(
ρs,�h1,�(k + 1)h∗2,�(k)h�,d(k)h

ε∗
�,d(k) +

√
1− ρ2s,�h

∗
2,�(k)h�,d(k)h

ε∗
�,d(k)e1,�(k)

+ρs,�h1,�(k + 1)|h�,d(k)|2hε∗2,�(k) +
√

1− ρ2s,�|h�,d(k)|2hε∗2,�(k)e1,�(k) + ρs,�

h1,�(k + 1)h�,d(k)h
ε∗
2,�(k)h

ε∗
�,d(k) +

√
1− ρ2s,�h�,d(k)h

ε∗
2,�(k)h

ε∗
�,d(k)e1,�(k)

−ρs,�h
∗
2,�(k)h1,�(k + 1)h∗�,d(k + 1)hε�,d(k + 1)−

√
1− ρ2s,�h1,�(k + 1)h∗�,d(k + 1)

hε�,d(k + 1)e∗2,�(k + 1)− ρs,�h
∗
2,�(k)|h�,d(k + 1)|2hε1,�(k + 1)−

√
1− ρ2s,�

|h�,d(k + 1)|2hε1,�(k + 1)e∗2,�(k + 1)− ρs,�h
∗
2,�(k)h

∗
�,d(k + 1)hε1,�(k + 1)hε�,d(k + 1)

−
√

1− ρ2s,�h
∗
�,d(k + 1)hε1,�(k + 1)hε�,d(k + 1)e∗2,�(k + 1)

)
. (9.4.28)

This clarifies that ξ2|S2 is random variable with respect to e1,�(k), e2,�(k+1), hε2,�(k), h
ε
1,�(k+

1), hε�,d(k) and h
ε
�,d(k + 1). Based on this, we obtain the mean, variance and power of ξ2|S2,

respectively, as

E[ξ2|S2] = 0 (9.4.29)

Var(ξ2|S2) = G4

M∑
�=1

(
(|h2,�(k)|2|h�,d(k)|2σ2

e	,d
+ |h�,d(k)|4σ2

e2,	
+ |h�,d(k)|2σ2

e2,	
σ2
e	,d

)

(ρ2s,�|h1,�(k + 1)|2 + (1− ρ2s,�)σ
2
1,�) + (|h1,�(k + 1)|2|h�,d(k + 1)|2σ2

e	,d

+|h�,d(k + 1)|4σ2
e1,	

+ |h�,d(k + 1)|2σ2
e1,	
σ2
e	,d

)(ρ2s,�|h2,�(k)|2 +

(1− ρ2s,�)σ
2
2,�)

)
(9.4.30)

P(ξ2|S2) = Var(ξ2|S2). (9.4.31)

Similarly as ξ1|S1, we can use the CLT and approximate ξ2|S2 as CN (0,Var(ξ2|S2)). Like ñ1,

ñ2 in (9.3.13) is function of the components ns,�(k), n�,d(k), n
∗
s,�(k+1) and n∗

�,d(k+1)∀�, and
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thus, conditioned on S2, it is ZMCSCG random variable and we can obtain its conditional

power as

P(ñ2|S2) � Var(ñ2|S2) = NoG2

M∑
�=1

(|h1,�(k + 1)h�,d(k + 1)|2(G2|h�,d(k + 1)|2 + 1)

+|h2,�(k)h�,d(k)|2(G2|h�,d(k)|2 + 1)
)
. (9.4.32)

From (9.3.14), we can observe that υ̃2|S2 is random variable with respect to ns,�(k), n�,d(k),

n∗
s,�(k + 1), n∗

�,d(k + 1), hε2,�(k), h
ε
1,�(k + 1), hε�,d(k) and hε�,d(k + 1), and after doing some

simplification, we can obtain its mean, variance and power, respectively, as

E(υ̃2|S2) = 0 (9.4.33)

Var(υ̃2|S2) = G4No

M∑
�=1

(
(|h�,d(k)|2 + 1)(|h2,�(k)|2σ2

e	,d
+ |h�,d(k)|2σ2

e2,	
+ σ2

e2,	
σ2
e	,d

) +

(|h�,d(k + 1)|2 + 1)(|h1,�(k + 1)|2σ2
e	,d

+ |h�,d(k + 1)|2σ2
e1,	

+ σ2
e1,	
σ2
e	,d

)
)

(9.4.34)

P(υ̃2|S2) = Var(υ̃2|S2). (9.4.35)
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By substituting (9.4.24), (9.4.27), (9.4.31), (9.4.32) and (9.4.35) into (9.4.19), we obtain the

ultimate form of γ|S2 as

γ2|S2 =

∣∣∑M
�=1

(|h2,�(k)h�,d(k)|2 + |h1,�(k + 1)h�,d(k + 1)
)∣∣2 Es

No(∣∣∑M
�=1

(
ρs,�h

∗
2,�(k)h1,�(k + 1)

(|h�,d(k)|2 − |h�,d(k + 1)|2))∣∣2 Es

No
+∑M

�=1

(
(1 − ρ2s,�)

(
σ2
1,�|h2,�(k)|2|h�,d(k)|4 + σ2

2,�|h1,�(k + 1)|2|h�,d(k +

1)|4) + σ2
e	,d

|h2,�(k)|4|h�,d(k)|2 + |h2,�(k)|2|h�,d(k)|4σ2
e2,	

+

|h2,�(k)|2|h�,d(k)|2σ2
e2,	
σ2
e	,d

+ |h1,�(k + 1)|4|h�,d(k + 1)|2σ2
e	,d

+

|h1,�(k + 1)|2|h�,d(k + 1)|4σ2
e1,	

+ |h1,�(k + 1)|2|h�,d(k + 1)|2σ2
e1,	
σ2
e	,d

+

(|h2,�(k)|2σ2
e	,d

|h�,d(k)|2 + |h�,d(k)|4σ2
e2,	

+ |h�,d(k)|2σ2
e2,	
σ2
e	,d

)(ρ2s,�|h1,�(k+
1)|2 + (1 − ρ2s,�)σ

2
1,�) + (|h1,�(k + 1)|2|h�,d(k + 1)|2σ2

e	,d
+ |h�,d(k +

1)|4σ2
e1,	

+ |h�,d(k + 1)|2σ2
e1,	
σ2
e	,d

)(ρ2s,�|h2,�(k)|2 + (1 − ρ2s,�)σ
2
2,�)

)
Es

No
+

2
∑M

�=1

(|h2,�(k)h�,d(k)|2(|h�,d(k)|2+ 1
G2 )+|h1,�(k+1)h�,d(k+1)|2(|h�,d(k+

1)|2 + 1
G2 ) + (|h�,d(k)|2 + 1)(|h2,�(k)|2σ2

e	,d
+ σ2

e2,	
|h�,d(k)|2 + σ2

e2,	
σ2
e	,d

) +

(|h�,d(k + 1)|2 + 1)(|h1,�(k + 1)|2σ2
e	,d

+ |h�,d(k + 1)|2σ2
e1,	

+ σ2
e1,	
σ2
e	,d

)
)
(9.4.36)

which also has intractable form to derive its pdf.

9.4.3 Conditional SEP expression

Without loss of generality, we can express the overall SEP at the output of the q-

QAM demodulator, conditioned on the channel gains in the set S described in (9.3.16), say

Pe|S, as
Pe|S = Pr(x1)P

ỹ1
e |S1 + Pr(x2)P

ỹ2
e |S2 (9.4.37)

where Pr(x1) and Pr(x2) are the symbol transmission probabilities of x1 and x2, respectively;

and P ỹ1
e |S1 and P

ỹ2
e |S2 are the conditional probabilities of symbol error decisions made by the

q-QAM demodulator in estimating x1 from ỹ1 (conditioned on S1) and in estimating x2 from

ỹ2 (conditioned on S2), respectively. By assuming equiprobable symbol transmissions for x1
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and x2, i.e., Pr(x1) = Pr(x2) =
1
2
, and directly using the AWGN-system’s SEP expression

in (6.3.1) to evaluate P ỹ1
e |S1 (by replacing γ by γ1|S1) and P

ỹ2
e |S2 (by replacing γ by γ2|S2)

3,

we can obtain Pe|S in the following (approximate) closed-form as

Pe|S = 1− 1

2

((
1− 2

(
1− 1√

q

)
Q

(√
3

q − 1
γ1|S1

))2

−
(
1− 2

(
1− 1√

q

)
Q

(√
3

q − 1
γ2|S2

))2)
. (9.4.38)

As an impact of the nodes mobility and/or the imperfect channel estimation, the system’s

SEP performance experiences sever degradation especially at high values of the per-symbol

average SNR Es

No
. This degradation is mainly represented by irreducible conditional symbol

error floors PF
e |S that can be evaluated as

PF
e |S= lim

Es
No

→∞
Pe|S = 1− 1

2

((
1− 2

(
1− 1√

q

)
Q

(√
3

q − 1
γF1 |S1

))2

−
(
1− 2

(
1− 1√

q

)
Q

(√
3

q − 1
γF2 |S2

))2)
(9.4.39)

3This is valid because, in ỹ1 and ỹ2, the terms ζx2, ñ1, ζ∗x1 and ñ2 are complex-Gaussian and, as
discussed in subsections 9.4.1 and 9.4.2, the terms ϑ1x1, ξ1x2, υ̃1, ϑ2x2, ξ2x1 and υ̃2 are fairly approximated
with the help of the CLT as complex-Gaussian.
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where

γF1 |S1 = lim
Es
No

→∞
γ1|S1

=

∣∣∑M
�=1

(|h1,�(k)h�,d(k)|2 + |h2,�(k + 1)h�,d(k + 1)
)∣∣2∣∣∣∣∑M

�=1

(
ρs,�h

∗
1,�(k)h2,�(k + 1)

(|h�,d(k)|2 − |h�,d(k + 1)|2))∣∣∣∣2 +∑M
�=1

(
(1 − ρ2s,�)

(
σ2
2,�|h1,�(k)|2|h�,d(k)|4 + σ2

1,�|h2,�(k + 1)|2|h�,d(k +

1)|4) + σ2
e	,d

|h1,�(k)|4|h�,d(k)|2 + |h1,�(k)|2|h�,d(k)|4σ2
e1,	

+

|h1,�(k)|2|h�,d(k)|2σ2
e1,	
σ2
e	,d

+ |h2,�(k + 1)|4|h�,d(k + 1)|2σ2
e	,d

+

|h2,�(k + 1)|2|h�,d(k + 1)|4σ2
e2,	

+ |h2,�(k + 1)|2|h�,d(k + 1)|2σ2
e2,	
σ2
e	,d

+

(|h1,�(k)|2σ2
e	,d

|h�,d(k)|2 + |h�,d(k)|4σ2
e1,	

+ |h�,d(k)|2σ2
e1,	
σ2
e	,d

)(ρ2s,�|h2,�(k+
1)|2+(1−ρ2s,�)σ2

2,�)+(|h2,�(k+1)|2|h�,d(k+1)|2σ2
e	,d

+ |h�,d(k+1)|4σ2
e2,	

+

|h�,d(k + 1)|2σ2
e2,	
σ2
e	,d

)(ρ2s,�|h1,�(k)|2 + (1− ρ2s,�)σ
2
1,�)

)
(9.4.40)

γF2 |S2 = lim
Es
No

→∞
γ2|S2

=

∣∣∑M
�=1

(|h2,�(k)h�,d(k)|2 + |h1,�(k + 1)h�,d(k + 1)
)∣∣2∣∣∑M

�=1

(
ρs,�h

∗
2,�(k)h1,�(k + 1)

(|h�,d(k)|2 − |h�,d(k + 1)|2))∣∣2 +∑M
�=1

(
(1 − ρ2s,�)

(
σ2
1,�|h2,�(k)|2|h�,d(k)|4 + σ2

2,�|h1,�(k + 1)|2|h�,d(k +

1)|4) + σ2
e	,d

|h2,�(k)|4|h�,d(k)|2 + |h2,�(k)|2|h�,d(k)|4σ2
e2,	

+

|h2,�(k)|2|h�,d(k)|2σ2
e2,	
σ2
e	,d

+ |h1,�(k + 1)|4|h�,d(k + 1)|2σ2
e	,d

+

|h1,�(k + 1)|2|h�,d(k + 1)|4σ2
e1,	

+ |h1,�(k + 1)|2|h�,d(k + 1)|2σ2
e1,	
σ2
e	,d

+

(|h2,�(k)|2σ2
e	,d

|h�,d(k)|2 + |h�,d(k)|4σ2
e2,	

+ |h�,d(k)|2σ2
e2,	
σ2
e	,d

)(ρ2s,�|h1,�(k+
1)|2+(1−ρ2s,�)σ2

1,�)+(|h1,�(k+1)|2|h�,d(k+1)|2σ2
e	,d

+ |h�,d(k+1)|4σ2
e1,	

+

|h�,d(k + 1)|2σ2
e1,	
σ2
e	,d

)(ρ2s,�|h2,�(k)|2 + (1− ρ2s,�)σ
2
2,�)

)

.

(9.4.41)
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9.5 System Average SEP Analysis

The system’s average SEP, say P e, can be obtained from the conditional SEP in

(9.4.38) as

P e = ES
[
Pe|S

]
= 1− 1

2

(
ES1

[(
1− 2

(
1− 1√

q

)
Q

(√
3

q − 1
γ1|S1

))2]
−ES2

[(
1− 2

(
1− 1√

q

)
Q

(√
3

q − 1
γ2|S2

))2])
(9.5.1)

where EU
[·] denotes the statistical expectation operator with respect to U . Evaluating the

last two expectations in (9.5.1) requires first deriving the pdfs of both γ|S1 in (9.4.18) and

γ|S2 in (9.4.36), which, as we mentioned before, is too hard to accomplish. Therefore, we

propose here to use semi-analytical computation for P e, based on the sampling mean concept,

as

P e=1− 1

2

(
1

N

N∑
j=1

((
1− 2

(
1− 1√

q

)
Q

(√
3

q − 1
γ1|Sj

1

))2

−
(
1− 2

(
1− 1√

q

)
Q

(√
3

q − 1
γ2|Sj

2

))2))
(9.5.2)

where γ1|Sj
1 and γ2|Sj

2 are the generated SINRs in the jth realization obtained by (9.4.18)

and (9.4.36), respectively, and N is the number of realizations in the simulation (N = 106

in our numerical results). In the numerical results section, we provide realistic link-level

simulations to validate the semi-analytical results obtained based on (9.5.2). Similarly, we
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can semi-analytically compute average values for PF
e |S in (9.4.39) as

P
F

e = ES
[
PF
e |S

]
= 1− 1

2

(
1

N

N∑
j=1

((
1− 2

(
1− 1√

q

)
Q

(√
3

q − 1
γF1 |Sj

1

))2

−
(
1− 2

(
1− 1√

q

)
Q

(√
3

q − 1
γF2 |Sj

2

))2))
(9.5.3)

where γF1 |Sj
1 and γF2 |Sj

2 are the generated SINRs in the jth realization obtained by (??) and

(??), respectively.

9.6 Numerical Results and Simulation

In this section, we present numerical results along with realistic link-level simulations

to validate the accuracy of our derived expressions and to show the impact of both the high

nodes mobility; i.e., the time-selective fading impact, and the imperfect channel estimation

on the SEP performance of the OSTBC-based cooperative system under study. We provide

these results in terms of the QAM constellation size q, the number of relaysM , the estimation

error variances σ2
ea,b

, the nodes’ relative speeds va,b in mph, the transmission symbol-rate Rs

in ksps, the carrier frequency fc in GHz, the path loss exponent n, the cooperating nodes

normalized distances da,b. Further, moving nodes and static-nodes cases are related to time-

selective and quasi-static fading cases, respectively.

Fig. 9.1 shows numerical plots for the system’s average SEP performance versus the

per-symbol average Es

No
with single relay (M = 1), 4-ary and 64-ary QAM constellations, and

transmission symbol-rate of 44 ksps (which is corresponding to narrowband channels). We

can first observe that the results plotted using (9.5.2) provides a perfect match with the exact

results obtained via practical link-level simulation, which corroborates the correctness of the

derived SINRs exact expressions and the tightness of the approximations followed using the

CLT. This figure also shows that, as compared with the system’s SEP performance under

the static-nodes (0 mph relative speeds) and perfect channel estimation (σ2
es,	

= σ2
e	,d

= 0)
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Figure 9.1. Average SEP versus Es/No for M = 1 and 4 and 64-QAM, transmission data-
rate Rs = 44 ksps, carrier frequency fc = 1.9 GHz, path-loss exponent n = 2, normalized
nodes distances ds,� = 1 and d�,d = 2.

scenario, the nodes relatively high mobility, for e.g., with relative speeds of 65 mph, degrades

the system SEP performance, in particular, at high values of Es

No
(starting from 30 dB) and

limits it by floors. Moreover, under the significance of the channel estimation error; i.e.,

imperfect channel estimation scenario with for e.g. σ2
es,	

= σ2
e	,d

= 0.001, the system’s SEP

performance is further degraded, almost, starting from Es

No
= 18dB and limited by higher

floors.

In Fig. 9.2, we plot the system average SEP versus Es

No
with 16-QAM constellation

showing the effect of the increase in the channel estimation error variance for different M

values. It is obvious that the system’s average SEP performance is improved with M as a
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Figure 9.2. Average SEP versus Es/No for M = 1 and 2, 16 QAM constellations, trans-
mission data-rate Rb = 44 ksps, carrier frequency fc = 1.9 GHz, path-loss exponent n = 2,
normalized nodes distances ds,� = 1 and d�,d = 2.

result of the increased diversity-gain achieved via the relaying process. However, the harmful

impact of both the nodes mobility and the imperfect channel estimation still exist for any

number of relaysM , where, it is clear that the small increase in the estimation error variance,

for e.g., from 0.0001 to 0.0005, causes a significant performance degradation. Also, a high

agreement between the semi-analytically results and link-level simulations is notable.

Fig. 9.3 shows plots the system average SEP versus the nodes relative speeds in mph,

for 16-ary and 64-ary QAM constellations, M = 1, Rs = 9.6 and 25 ksps, and Es

No
= 20 dB,

considering both perfect and imperfect channel estimation scenarios. It is clear that, regard-

less of the other parameters, the increase in the nods speeds degrades the system average
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Figure 9.3. Average SEP versus nodes relative speeds in mph with Es/No = 25 dB, different
transmission data-rate values of 9.6 and 25 ksps, M = 1, QAM constellations size of 16 and
64, carrier frequency fc = 2.4 GHz, path-loss exponent n = 3, normalized nodes distances
ds,� = 1 and d�,d = 2.

SEP performance. However, for fixed transmission data-rate, the system SEP performance is

worse in the case of imperfect channel estimation even though the estimation error variance

is relatively small (for e.g., σ2
es,	

= σ2
e	,d

= 0.001). On the other hand, for fixed estimation

error variance, the system SEP performance is improved and the speed of its degradation

by increasing the nodes speeds is less when the transmission data-rate is higher (compare

the ∗ curve with the + one). This is because of the fact that increasing the transmission

data-rate increases the fading links’ correlation parameters, which reduces the likelihood of

the time-selective fading to occur (see (9.2.1) for more clarification). This also could be no-

tified from Fig. 9.4, where, for a fixed relative speed and channel estimation error variance,

the improvement in the system error performance is fast with increasing the transmission
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data-rate.

9.7 Conclusion

In this chapter, we have investigated the influence of the more practical scenarios of

both nodes-mobility and imperfect CSI estimation on the SEP performance of an Alamouti-

type OSTBC-based multiple-relay fixed-gain AF cooperative-diversity system with q-ary

QAM. All of the system’s multipath links are characterized by frequency-flat and, due to

nodes-mobility, by time-selective (i.e., rapidly time-varying) fading channels using the AR1

process. Due to the imperfect CSI estimation, all of the estimated channel gains at the

system’s relays and destination are assumed to be corrupted by Gaussian errors. For such
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a system model, we have employed the ALD at its destination and shown that, due to

nodes-mobility and imperfect CSI estimation, this ALD is no longer optimal ML and pro-

vides interfering and statistically correlated decision variables. Exploiting the AR1 model,

we have first derived exact closed-form expressions of effective SINRs associated with these

decision variables, which generalize an SNR expression that is well know in the literature for

such a system under the special scenario of static-nodes, perfect estimation and single-relay.

Moreover, benefiting from the central-limit-theorem (CLT), we have provided a tight approx-

imate closed-form expression for the system’s conditional SEP at the q-QAM demodulator’s

output by directly using the obtained SINRs along with the already known SEP expression

of the AWGN q-QAM systems. Furthermore, from the obtained conditional SEP expres-

sion, it is revealed that the nodes-mobility and/or the imperfect CSI estimation severely

degrade the system SEP performance by irreducible error floors that appear irrespective of

the number of the relay nodes. Because of the intractability in deriving closed-form prob-

ability density functions of the obtained SINRs, due to their very complicated forms, we

have proposed a semi-analytical computation of the system’s average SEP using the exact

conditional SEP expression based on the sampling mean concept. Numerical results for the

system’s semi-analytical average SEP along with realistic link-level simulations have been

also provided to validate the accuracy of the derived expressions and to demonstrate the

system’s performance under several scenarios.
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CHAPTER 10

Dissertation Conclusions and Proposed Future Work

10.1 Dissertation Conclusions

In this dissertation, we have discussed several problems related to evaluating and im-

proving the performance of several emerging models for wireless amplify-and-forward (AF)

cooperative-based communication systems taking into account the effects of different practi-

cal issues; including, nodes mobility (either low or high), channel estimations (either perfect

or imperfect), and speeds of receivers channel tracking loops (either slow of fast). We have

developed extensive approaches and analytical techniques to quantitatively evaluate the im-

pacts of these practical issues on the performance of wireless AF cooperative systems by

deriving new closed-form expressions for different system performance metrics. We have also

proposed several innovative receiving designs aiming to mitigating the high nodes mobility

effects on the performance of AF cooperative systems and improving their overall perfor-

mance.

This dissertation contains two parts and in the following we summarize the contribu-

tions of each part:

• In the first part of this dissertation several scenarios for multiple-relay single-antenna-

nodes AF cooperative communication systems that employ MRC combining at the

destination and operate in mobile environments have been considered, and extensive

analyses of different performance measures have been presented. The performance of

these considered system scenarios have been studied taking into account the impacts

of the nodes mobility, the estimation errors, and the speed of the receivers tracking
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loops that estimate the individual channel gains. Under these impacts, tight approx-

imate novel and general closed-form expressions for the systems per-block average bit

error rate (BER), outage probability, and channel capacity have been derived. ALL

of the derived performance expressions are functions of the nodes relative speeds, the

transmission data rates, the channel estimation errors, and the speeds of the receivers

tracking loops, and thus, they generalize many previously published literature results.

With the help of these expressions we have analytically shown that the wireless AF co-

operative communication systems performance is severally affected by the high nodes

mobility (in particular when the channel estimations are imperfect), where the systems

BERs and outage probabilities experience irreducible floors while their channel capac-

ities experience ceilings. These expressions also helped us to investigate the impacts of

different nodes mobility scenarios on the AF cooperative systems performance, where

interesting and useful observations have been reported. These observations are relate

to which nodes are mobile and which are static, which cooperative protocol is followed;

the regular protocol or the best-relay-selection one, which amplification gain category

is employed at the relay, the variable-gain or fixed-gain. Moreover, the case of equip-

ping the receivers with fast tracking loops feature has been assumed and it has been

shown that such assumption has great capability of reducing the high nodes mobility

effects.

• In this second part of the dissertation, we have dealt with evaluating and improv-

ing the performance of an emerging system model that combines both techniques of

Alamouti-type orthogonal-space-time-block-code (Alamouti-OSTBC) and cooperative

transmission and works under the influence of high nodes mobility. The classical Al-

mouti space-time decoder (ALD) is first employed at the destination and an approach

that simplifies analyzing its overall error performance has been developed, where a

closed-form expression for its conditional SEP performance has been derived and used

to compute its average SEP performance semi-analyticaly. This derived expression is
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novel and reduces to already derived existing literature results under the special case

of negligible nodes mobility. Using the derived SEP expression, we have shown that

the ALD is no longer optimal and experiences irreducible error floors when the nodes

mobility is high. Therefore, in the second part of this dissertation, we have also pro-

posed two space-time decoders to be employed instead of the ALD such that they can

overcome with this high nodes mobility effect. These two decoders are the zero-forcing-

space-time-decoder (ZFSTD) and the sub-optimal-space-time-decoder (SOSTD). The

ZFSTD has shown is capability of completely suppressing the nodes mobility impact

but at the expense of additional decoding complexity. On the other hand, the SOSTD

can highly reduce the high nodes mobility effect without the need of any additional

decoding complexity.

The work in this dissertation presents a valuable contribution to the wireless cooperative

communications literature, in terms of performance evaluation and improvement. Moreover,

the obtained results in this work are of great importance for network design engineers.

They provide with closed-form expressions that help in cooperative-based networks planning

rather that running time-consuming simulation algorithms. They also shed light on network

performance behavior under the influence of mobile nodes speeds (e.g., in-town or highway

mobile vehicles) and provide with perfect solutions to alleviate these in influences.

10.2 Proposed Future Work

Possible extensions to this work can be summarized in the following points:

• Extending the error performance analyses carried out for coherent detectors to non-

coherent or differentially coherent detectors, and investigating their error performance

under the nodes mobility effect.

• Extending the study carried out for amplify-and-forward cooperative networks to decode-

and-forward cooperative networks and investigating how their performance is affected

by nodes mobility and imperfect CSI estimations.
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• Extending the analyses conducted for narrowband channels to wideband channels (i.e.,

high dtat rate transmission) along with employing the orthogonal-frequency-division-

modulation (OFDM) technique.

• Extending the 2x2 Almouti-type OSTBC code to generalized OSTBC codes, and eval-

uating and improving their performance under the nodes mobility influences.
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Appendix A

Approximating Iϑ1
3 |S1 as ZMCSCG

First, since hε∗1,�(k) and h
ε∗
�,d(k) are ZMCSCG, we can express them as

hε∗1,�(k) = hε∗1,�(k)� + jhε∗1,�(k)	 and hε∗�,d(k) = hε∗�,d(k)� + jhε∗�,d(k)	 (A.1)

where � and � denote the real part and imaginary part, respectively, hε∗1,�(k)� and hε∗1,�(k)	

are N (0,
σ2
e1,	

2
) and hε∗�,d(k)� and hε∗�,d(k)	 are N (0,

σ2
e	,d

2
). By substituting (A.1) into the

term Iϑ1
3 given in (9.3.6), we can expand it as

Iϑ1
3 =

M∑
�=1

G2h1,�(k)h�,d(k)h
ε∗
1,�(k)�h

ε∗
�,d(k)�︸ ︷︷ ︸

I
ϑ1
3 1

−
M∑
�=1

G2h1,�(k)h�,d(k)h
ε∗
1,�(k)	h

ε∗
�,d(k)	︸ ︷︷ ︸

I
ϑ1
3 2

+j

( M∑
�=1

G2h1,�(k)h�,d(k)h
ε∗
1,�(k)�h

ε∗
�,d(k)	︸ ︷︷ ︸

I
ϑ1
3 3

+

∑M
�=1 G2h1,�(k)h�,d(k)h

ε∗
1,�(k)	

hε∗�,d(k)	︸ ︷︷ ︸
I
ϑ1
3 4

)
.

(A.2)

But, according to [51, Ch. (6)], if W1 and W2 are two independent zero-mean Gaussian

random variables with variances σ2
1 and σ2

2, respectively, then U = W1W2 is a zero-mean

random variable with variance σ2
1σ

2
2 and exact pdf of

fU(u) =
1

πσ2
1σ

2
2

Ko

( |u|
σ2
1σ

2
2

)

where K0(k) is the 0th order modified bessel function of the second kind. Based on this

Gaussian random variables property, and conditioned on h1,�(k) and h�,d(k), each of Iϑ1
3 1,
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Iϑ1
3 2, I

ϑ1
3 3 and Iϑ1

3 4 in (A.2) is a sum of M independent but non-identically distributed

zero-mean random variables such that the �th one (say U�) has and pdf of

fU	
(u) =

1

πG4|h1,�(k)|2|h�,d(k)|2
σ2
e1,	

2

σ2
e	,d

2

Ko

( |u|
G4|h1,�(k)|2|h�,d(k)|2

σ2
e1,	

2

σ2
e	,d

2

)
.

According to the CLT, we can now approximate the density of each of Iϑ1
3 1 − Iϑ1

3 2 and

Iϑ1
3 3 + Iϑ1

3 4 as N
(
0, 2G4

∑M
�=1 |h1,�(k)|2|h�,d(k)|2

σ2
e1,	

2

σ2
e	,d

2

)
, and accordingly, the density of

Iϑ1
3 in (A.2) can be approximated as ZMCSCG as

∼ CN
(
0, 4G4

M∑
�=1

|h1,�(k)|2|h�,d(k)|2
σ2
e1,	

2

σ2
e	,d

2

)
.
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Appendix B

Approximating Iξ16 |S1 and Iξ112|S1 as ZMCSCG

By substituting (A.1) and e2,�(k) = e2,�(k)� + je2,�(k)	 into Iξ16 given in (9.4.10), we can

expand Iξ16 as

Iξ16 =

∑M
�=1 G2

√
1− ρ2s,�h�,d(k)h

ε∗
1,�(k)�

hε∗�,d(k)�e2,�(k)�︸ ︷︷ ︸
I
ξ1
6 1

−
∑M

�=1 G2
√

1− ρ2s,�h�,d(k)h
ε∗
1,�(k)	

hε∗�,d(k)	e2,�(k)�︸ ︷︷ ︸
I
ξ1
6 2

−
∑M

�=1 G2
√

1− ρ2s,�h�,d(k)h
ε∗
1,�(k)�

hε∗�,d(k)	e2,�(k)	︸ ︷︷ ︸
I
ξ1
6 3

−
∑M

�=1 G2
√
1− ρ2s,�h�,d(k)h

ε∗
1,�(k)	

hε∗�,d(k)�e2,�(k)	︸ ︷︷ ︸
I
ξ1
6 4

+j

(∑M
�=1 G2

√
1− ρ2s,�h�,d(k)h

ε∗
1,�(k)�

hε∗�,d(k)�e2,�(k)	︸ ︷︷ ︸
I
ξ1
6 5

−
∑M

�=1 G2
√

1− ρ2s,�h�,d(k)

hε∗1,�(k)	h
ε∗
�,d(k)	e2,�(k)	︸ ︷︷ ︸
I
ξ1
6 6

+

∑M
�=1 G2

√
1− ρ2s,�h�,d(k)h

ε∗
1,�(k)�

hε∗�,d(k)	e2,�(k)�︸ ︷︷ ︸
I
ξ1
6 7

+

∑M
�=1 G2

√
1− ρ2s,�h�,d(k)h

ε∗
1,�(k)	

hε∗�,d(k)�e2,�(k)�︸ ︷︷ ︸
I
ξ1
6 8

)
.

(B.1)

Conditioned on h�,d(k), each term in (B.1) is a sum of M independent but non-identically

distributed random variables where the �th one of them (say D�) has mean zero, variance
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G4(1− ρ2s,�)|h�,d(k)|2
σ2
e1,	

2

σ2
e	,d

2

σ2
2,	

2
and exact pdf of

fD	
(d) =

1

2
√
2π3/2G4(1− ρ2s,�)|h�,d(k)|2

σ2
e1,	

2

σ2
e	,d

2

σ2
2,	

2

×G3,0
0,3

(
d2

8G4(1− ρ2s,�)|h�,d(k)|2
σ2
e1,	

2

σ2
e	,d

2

σ2
2,	

2

∣∣∣∣0, 0, 0)

where Gm,n
p,q denotes the Meijer G-functions.Now, according to CLT, we can approximate the

density of each of Iξ16 1 − Iξ16 2 − Iξ16 3 − Iξ16 4 and Iξ16 5 − Iξ16 6 + Iξ16 7 + Iξ16 8 as N
(
0, 4G4(1 −

ρ2s,�)|h�,d(k)|2
σ2
e1,	

2

σ2
e	,d

2

σ2
2,	

2

)
, and accordingly, the density of Iξ16 in (B.1) can be approximated

as ZMCSCG as ∼ CN
(
0, 8G4(1−ρ2s,�)|h�,d(k)|2

σ2
e1,	

2

σ2
e	,d

2

σ2
2,	

2

)
. Similarly, we can approximate

the density of Iξ112 in (9.4.10), conditioned on h�,d(k + 1), as ∼ CN
(
0, 8G4(1 − ρ2s,�)|h�,d(k +

1)|2 σ
2
e2,	

2

σ2
e	,d

2

σ2
1,	

2

)
.
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