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ABSTRACT 

 

Part A: Antimalarial Agents modified at the C-16 position of Artemisinin. 

 Malaria is a widespread tropical and subtropical parasitic disease which is caused by 

malarial parasites and transmitted by the infected anopheles mosquitoe. The natural product 

artemisinin and its derivatives are currently considered the most effective drugs against drug 

resistant plasmodium falciparum. However, its undesired physicochemical proprieties have 

limited its usage. In order to improve its effectiveness, scientists around the world have 

developed novel methodology to synthesize artemisinin derivatives on different positions of the 

artemisinin skeleton.  Previous work in our group has shown that many analogues modified at 

the C-16 of artemisinin had improved efficacy along with modified physicochemical proprieties. 

This work focuses on the synthesis of heteroatomic and heterocyclic derivatives of artemisinin 

with the emphasis on C-16 substituted triazole containing side-chains. Successful synthetic 

results and subsequent bioassay demonstrated that the compounds have modest antimalarial 

activity compared to artemisinin and improved water solubility.  With these encouraging results 

in hand, further work is underway to tune the desired physicochemical properties so that plasma 

half-life and oral bioavailability will be improved. 
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Part B:  Lead Optimization of Falcipain-2 and Falcipain-3 Inhibitors. 

The expanding usage of artemisinin combination therapy casts concern about the 

potential development of drug resistance to this drug family, thus the search for new drug targets 

is always needed. Falcipain-2 (FP-II) and falcipain-3 (FP-III) are two cysteine proteases which 

malarial parasites utilize to degrade hemoglobin to obtain amino acids essential to the parasite.  

The inhibition of these two enzymes has been shown to have deadly effects on the protozoan life 

cycle.  Recently published crystal structures of FP-II provided an outstanding opportunity for 

rational drug design and discovery. In the present study, structure-based optimization of virtual 

screening hits was carried out using scaffold hopping, docking and analogue synthesis. 

Unfortunately, the biological evaluation of the synthesized compounds against FP-II and FP-III 

indicated these compounds are inactive. However, the information gained from this exercise 

could aid further in optimization of this series of compounds. 
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Antimalarial Agents Modified at the C-16 Position of Artemisinin 
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CHAPTER 1 

 

INTRODUCTION 

1.1 Malaria 
Malaria is a parasitic disease which is caused by malarial parasites and transmitted by 

infected anopheles mosquitoes. Despite a long history of the fight against malaria, this disease 

remains a leading cause of morbidity and mortality in developing countries (Figure 1-1). Out of 

the five parasitic species which can infect and be transmitted to humans, Plasmodium falciparum 

causes the most deaths compared to other species: Plasmodium vivax; Plasmodium malariae; 

Plasmodium ovale; and  Plasmodium knowlesi
1
. According to WHO, 3.3 billion people are at 

risk of infection by this disease. In the year 2010, Malaria infected 216 million people and killed 

655,000 people worldwide. 

 

Figure 1-1 World malaria distribution (source: CDC)

http://en.wikipedia.org/wiki/Plasmodium_knowlesi
http://en.wikipedia.org/wiki/Plasmodium_knowlesi
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Most of these cases and deaths occurred  in Africa;  86% of deaths were in children under 5 

years of age
2
. Not only is this deadly disease a threat to human health, it is also a huge economic 

burden for those developing countries in regions where it is endemic. It is estimated that at least 

12 billion dollars, or 1.3% of  the GDP, is lost in these countries each year as a result of malaria
3
.   

The prevention of malaria has relied on insecticide spraying or on insecticide-treated bed-

nets. Attempts to develop a malaria vaccine have been fruitless so far. In the early 20
th

 century, 

people used insecticides such as DDT (dichlorodiphenyltrichloroethane) to kill mosquitoes and 

thus prevent the spread of malaria. Insecticides have led to elimination of malaria in USA, 

Europe, the Caribbean, and parts of Asia and South-Central America
4
. However, this inexpensive 

and highly effective chemical was later banned by most of the western developed countries due 

to its environmental impact. Insecticide resistance was also acquired by mosquitoes. The 

insecticide-treated bed-nets are an effective way to reduce malaria though it has very poor 

compliance. A mathematical model suggested this disease could be eradicated if 75% of the 

endemic population were using bed-nets properly
5
. Vaccines are another highly desirable method 

to prevent the disease. The development of a vaccine is hampered by the complexity of the 

parasite species and low response towards the vaccine. The most advanced vaccine mosquirix 

(RTS,S) showed a 30% reduction rate in infants in phase III clinical trials
6
.  

The treatment of malaria thus mainly relies on the chemotherapy. Several well-known 

small molecules such as quinine (1.1), chloroquine (1.2) and pyrimethamine (1.3) have been 

utilized to treat malaria for several decades (Figure 1-2). These drugs have been replaced by 

artemisinin combination therapy (ACT) due to their development of resistance in parasites and/or 

significant side effects. Artemisinin combination therapy consists of a derivative of the natural 
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product artemisinin and  another chemically unrelated antimalarial drug such as amodiaquine, 

mefloquine, lumefantrine, pyrimethamine, piperaquine etc
7
. 

   

Figure 1-2 Some well-known antimalarial drugs that 

have developed resistance 

1.2 Artemisinin  
 

The discovery of artemisinin was a huge milestone in the history of antimalarial 

development. Artemisinin 1 (Figure 1.3) is a sesquiterpene natural product which was first 

isolated from Artemisia annua by a team of Chinese scientists who, under direction of Youyou 

Tu began “Project 523” in 1972
8
. In 2011, she received the Lasker award for the discovery of 

artemisinin
9
. The structure of artemisinin was finally elucidated in 1979 through a combination 

of chemical reactions, spectral analysis and singal crystal X-ray diffraction analysis
10

. 

Surprisingly, artemisinin has a very rare but stable endoperoxide bridge which was found 

essential for its antimalarial activity and recently, anticancer
11

, antifungal
12

, and antiviral
13

 

activity. Artemisinin, like most natural products, has some pharmaceutical issues which need to 

be addressed before it was used in the clinic. These drawbacks include poor solubility in water 

and oil
14

, a short plasma half-life
15

, and a high recrudescence rate
16

.  In addition to its 

endoperoxide functional group, there are also lactone, ketal and acetal groups presented in the 

http://en.wikipedia.org/wiki/Amodiaquine
http://en.wikipedia.org/wiki/Mefloquine
http://en.wikipedia.org/wiki/Lumefantrine
http://en.wikipedia.org/wiki/Pyrimethamine
http://en.wikipedia.org/wiki/Piperaquine
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structure, which makes it unstable towards reductive metal, acid and alkaline conditions (Figure 

1-3)
17

. Despite these inherent synthetic challenges, new derivatives with optimized 

physicochemical properties are urgently needed to overcome these disadvantages.  

 

Figure 1-3 Artemisinin and its typical reactions
18

 

 

1.3 Mode of action 

As mentioned before, artemisinin is highly effective against drug resistant parasites 

which indicates that it has a different mechanism from previous antimalarial drugs. In order to 

improve the physicochemical properties of artemisinin and prepare more potent derivatives, it is 
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desirable to understand the mechanism by which artemisinin kills the parasites. Extensive studies 

have been carried out during the past three decades and many theories have been proposed.  

 It has become clear that artemisinin goes reductive activation to generate reactive 

intermediates and then these reactive intermediates exert a parasiticidal effect through alkylation, 

oxidation of lipid membranes, disruption of mitochondrial function or binding to parasite 

proteins. Up till now, there has been no consensus about what species activates artemisinin and 

what targets they are attacking. It has been suggested artemisinin could be activated by heme, 

iron or mitochondria
19

. The proposed targets including heme
20

, plasmodium falciparum 

sarcoendoplasmic reticulum (SR) calcium transport ATPase (PfATP6)
21

, translationally 

controlled tumor protein (TCTP)
22

, Falcipain-2
23

 etc. However, the most widely accepted theory 

that heme mediated C-centered radical formation followed by an alkylation process is untenable 

due to the short half-life of a C-centered radical (microseconds to milliseconds in nonviscous 

solvent)
24

 (Scheme 1-1). 

 Artemisinin acts on the ring stage of malarial parasites within the red blood cell. At this 

stage, the parasites have limited ability to synthesize their own amino acids. When they invade 

red blood cells, they degrade the host’s hemoglobin to produce globin and heme. Globin is 

hydrolyzed to amino acids for parasite protein synthesis. Heme is toxic to parasites but they can 

be detoxified by the parasite through a polymerization process to give hemazoin particles. Each 

heme consists of a porphyrin ring and a central iron (II) atom. Artemisinin can be activated by 

heme iron and thus the endoperoxide bond is reduced to generate oxygen free radicals. Due to 

the unsymmetrical nature of the peroxy bond, an O1 radical (1.13) or O2 radical (1.10) can be 

formed (Scheme 1-1). These oxygen free radicals are not stable and quickly rearrange to carbon 

centered radicals. O1 radical 1.13 can undergo a 1, 5-H shift to generate the secondary C-4 
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radical 1.14 whilst the O2 radical 1.10 can give a C-4 primary radical 1.11 by a C-C β-scission 

process. These C-centered radicals can then alkylate heme
25

 or other targets inside the parasite 

such as cysteine residues in proteins and consequently either disrupt the heme polymerization 

process or impair protein receptor function or ion-channel function, leading ultimately to parasite 

death. The secondary C-centered radical 1.14 has been evidenced by electron spin resonance 

(ESR) spin experiments from different groups
26, 27

.  The primary C-centered radical was also 

confirmed by heme-artemisinin adducts both in vitro
28

 and in vivo
25

. 

 

Scheme 1-1 Proposed C-centered radicals formation of artemisinin by Fe(II) 
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1.4 Artemisinin synthesis 
 

Artemisinin is extracted from the plant and its production relies mainly on artificial 

cultivation. Its cultivation is affected by soil, region, weather, genetics and harvest time. From 

seed planting, harvesting to final product manufacturing, the whole production cycle usually 

takes at least 14 months which has resulted in a fluctuational supply and poorly controlled 

quality
29

. Also, the artemisinin price is much higher compared to other antimalarial drugs like 

chloroquine. Most patients occur in the poorest regions, thus this drawback is unacceptable. 

Scientists have been trying to find a commercially feasible synthetic route to artemisinin for the 

past three decades
30-32

.  

Artemisinin presents a synthetic challenge due to its condensed seven stereogenic centers 

and one endoperoxide bond which is attached to two tertiary carbons. A number of partial 

syntheses and total syntheses of artemisinin have been reported. Partial-syntheses of artemisinin 

from artemisinic acid 1.17, a crucial intermediate in the biosynthesis of artemisinin, have been 

reported
33-35

. Artemisinic acid can also be found in Artemisia annua with 10 times more quantity 

than artemisinin
36

.  In 1983, Zhou
37

 reported the first semi-synthesis of artemisinin from 

artemisinic acid in 8 steps. This route was improved by Acton
38

 in 1989 to 3 steps: 

hydrogenation with NaBH4 or NiCl, photooxdation, and air oxidation (Scheme 1-2 route A). The 

overall yield was also improved to 17-32%
39

. Recently, Seeberger
40

 used a continuous flow 

synthesizer to produce artemisinin from artemisinic acid which is more suitable for industrial 

development (Scheme 1-2 route B). 
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Scheme 1-2 Partial synthesis of artemisinin 

The total synthesis of artemisinin has also been accomplished by several groups
41-46

. The 

key step is the introduction of the peroxy bond. Most of them use photooxidation (singlet oxygen) 

with one exception which uses an abnormal ozonolysis of a vinylsilane
47

 to install the peroxy 

moiety (Scheme 1-3). 

 

Scheme 1-3 General methods to install peroxy bond 
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Schmid
46

 reported the first total synthesis of artemisinin in 1983. They used (-)-

Isopulegol 1.25 as a starting material and furnished artemisinin in 13 steps, with an overall yield 

of 2.1% (Scheme 1-4). The US Army was unable to reproduce their findings
48

. Xu and 

coworkers
45

 reported their total synthetic work starting from R-(+) citronellol, they first 

synthesized artemisinic acid and then finished artemisinin in a total 20 steps with an overall yield 

of 0.25%.  

Scheme 1-4  Schmid’s total synthesis of artemisnin 

Avery’s total synthesis of artemisinin
43

 started with R-(+)-pulegone 1.32 and furnished 

R-(+)-artemisinin in 10 steps with an overall yield of 3.6% (Scheme 1-5). 
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Scheme 1-5  Avery’s total synthesis of Artemisinin. 

Yadav et al
42

 developed a protecting group free route with an overall yield of 3.2% in 10 

steps. All these total syntheses utilize optically active natural products as starting material. 

Although the production rate of artemisinin from these total synthesis is higher than the 

production rate of extraction from the plant (0.4%-1%), they suffer from cost effectiveness. 

Recently, Zhu and Cook
41

 published a short total synthesis using cyclohexenone as starting 

material and synthesized artemisinin in 8 steps (Scheme 1-6).  
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Scheme 1-6  Cook’s total synthesis of artemisinin 

Besides chemical synthesis, researchers also employed synthetic biology technology to 

produce artemisinin.  Dr. Keasling and his team from the University of California, Berkeley 

genetically engineered a yeast to produce artemisinic acid from glucose
49

. Partnered with Sanofi, 

a French pharmaceutical company, they launched a semi-synthetic artemisinin production line 

and  announced production of 35 tons of artemisinic acid in 2013
29

. They are hoping to stabilize 

the artemisinin world supply. 

1.5 Artemisinin derivatives 

1.5.1 First generation of artemisinin derivatives 

 

During the structure elucidation of artemisinin, scientists found that its lactone moiety 

could be reduced by NaBH4 in methanol at 0-5°C to give a lactol, dihydroartemisinin 1.7 (DHA, 

Figure 1-4). This is interesting because many lactones do not respond to these conditions
18

. DHA 

is twice as active as artemisinin, but it has a relatively high degree of neurotoxicity at large doses 

in animal models
50

. Nonetheless, DHA provides an active hydroxyl group from which to prepare 



13 

the first generation of artemisinins which include artemether 1.43
51

, arteether 1.44
52

, and 

artesunate 1.45
53

 (Figure 1-4).  

 

Figure 1-4 First generation of artemisinin derivatives and 

their metabolism pathway 

Among these, DHA, artemether 1.43 and artesunate 1.45 have been used in ACT as 

recommended by WHO to treat uncomplicated malaria (Table 1-1)
7
. All of these derivatives are 

simple ether or ester analogues of DHA. They could metabolize to DHA either through 

cytochrome P-450 oxidation or esterase cleavage in vivo, thus have potential to be neurotoxic. In 

addition, these derivatives still showed short plasma half-lives. Efforts to prolong the half-life 

and lower the potential for neurotoxicity of artemisinin derivatives are ongoing. These new 

analogues are designated as the second generation of artemisinins. 
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Table 1-1 ACTs recommended by WHO* 

Name Artemisinins Partner 

t1/2 of 

Artemisinins
54

 

t1/2 of partner 

drug
55

 

Coarsucam Artesunate amodiaquine 0.39-0.65hr ~10 d 

Artequin Artesunate mefloquine 0.39-0.65hr 2-3 week 

Coartem Artemether lumefantrine 2-3.1hr 3-4 d 

Ariplus Artesunate 

sulfadoxine 

pyrimethamine 

0.39-0.65hr 3-7 d 

Duocotecxin

Artekin 

Dihydroartemisinin piperaquine 1.57-1.63hr 4-5 week 

* ACT= artemisinin combination therapie;  

 

1.5.2 Second generation of artemisinin derivatives 

 

To overcome the drawback of the first generation of artemisinin derivatives, researchers 

have focused on the development of more robust and metabolically stable derivatives of 

artemisinin. Different strategies have been applied which include blocking the metabolic position 

of the ether side chain, changing the acetal functional group to non-acetal group, etc. 

Since the ether of DHA is metabolized by CYP 450, a practical approach to prolong the 

half life is to design a derivative which is a poor substrate for CYP 450. Artelinic acid 1.46
56

, 

developed by the Walter Reed Army Institute, was water soluble and hydrolytically stable. 

http://en.wikipedia.org/wiki/Amodiaquine
http://en.wikipedia.org/wiki/Mefloquine
http://en.wikipedia.org/wiki/Coartem
http://en.wikipedia.org/wiki/Lumefantrine
http://en.wikipedia.org/wiki/Sulfadoxine
http://en.wikipedia.org/wiki/Pyrimethamine
http://en.wikipedia.org/wiki/Dihydroartemisinin
http://en.wikipedia.org/wiki/Piperaquine


15 

Further modification of artelinic acid has yielded compound 1.47
57

 which showed 20 and 40 

times more activity than artemisinin and artelinic acid respectively. O’Neill
58

 changed alkylether 

to arylether to prevent the CYP450 oxidation, compound 1.48 exhibited 3 more times active than 

artemether when tested in vivo. Fluorine substitution is well known to slow metabolism of many 

lead molecules
59

. Bégué
60

 prepared some fluoroalkyl ethers of dihydroartemisinin which are 

represented by compound 1.49. These compounds have IC50 values between 27nM and 72 nM. 

However, low water solubility rendered them useless for further development (compound 1.49 

log P=6.1).    

 

Figure 1-5 Examples of C-10 ether derivatives of artemisinin 

Another approach toward this purpose is to replace the O, O-acetal with an O, N-acetal. 

By changing O-11 to N-11, a more stable lactam was obtained which are termed 11-

azaartemisinins. Torok et al
61

 reacted artemisinin with alkylamines using H2SO4/SiO2 as a 

catalyst to obtain N-subsituted 11-azaartemisinins which is exemplified by compound 1.50. In 

vitro bioassay indicated that this series of derivatives were more active than artemisinin. Avery’s 

group
62

 took advantage of their total synthesis route to prepare a series of N-Alkyl-11-aza-9-
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desmethylartemisinins. In vitro assay showed that short alkyl or phenyl terminus were more 

active than artemisinin. Particularly, compound 1.51 showed 7 times more activity than 

artemisinin towards the W-2(chloroquine-resistant and mefloquine-sensitive) strain. Following 

these reports, Haynes
63

, Mekonnen
64

 and Singh
65

, also studied many different substitutions at N-

11 by Michael addition or acylation of the amide nitrogen; all these compounds were found to be 

active. 

 

Figure 1-6 Examples of 11-azaartemisinins 

Replacement of the C-10 oxygen atom by nitrogen was also explored to achieve more 

metabolically stable derivatives. Many aryl amino derivatives were prepared. Compound 1.55
66

 

was reported to be several fold more active than artemisinin (IC50 ≤0.16ng/mL), however, in vivo 

activity toward P. berghei was not significant. On the contrary, compound 1.56
67

 was more 

active than artemisinin in vivo. Haynes synthesized several 10-alkylamino artemisinins from 

which they identified artemisone (1.57)
68

. This compound is 10 times more potent than 

artesunate in vitro and was not metabolized to DHA in vivo. It has been further developed by 

Bayer and Medicines for Malaria Venture (MWV) and is in phase II clinical trial
69

. Cho et al
70

 

prepared a series of 10-subsititued triazolyl artemisinins by Huisgen 1,3-dipolar cycloaddition 
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(1.58). These compounds were tested against several cancer lines instead of malaria parasite and 

found active.  

  

Figure 1-7 C-10 amino derivatives of artemisinin 

Replacement of the C-10 oxygen of DHA with carbon led to 10-carbartemisinin. Since 

they are no longer acetals, they cannot be metabolized to DHA in vivo, thus may not be 

neurotoxic. This strategy has been the focus of artemisinin derivatives synthesis during the last 

20 years and a huge number of artemisinin derivatives have been reported. Reaction between 

DHA, allytrimethylsilane and boron trifluoride etherate afforded compound 1.59
71

 which served 

as an intermediate for synthesis of compounds 1.60 and 1.61. Compound 1.60 demonstrated 

comparable activity with artemether, but was less active than DHA
72

. Compound 1.61 exhibited 

superior activity to artemether and artesunate in vitro and in vivo
73

. The C-10 aryl derivative 1.62 

was prepared by Lewis acid catalyzed arylation of the benzoate of DHA with benzene and it 

showed an IC50 value of 0.31 and 0.37 ng/mL against W2 and D6 strains, respectively
74

. Treating 

the 10α-acetate of DHA with 2-naphthol in the presence of boron trifluoride etherate yielded a 

1:1 mixture of 1.63 and 1.64
75

. The C-9 methyl configuration in 1.64 was epimerized which was 
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found detrimental to the activity. These C-10 carba derivatives usually are much less labile in 

acidic conditions
76

. 

Another set of interesting derivatives are fluorinated artemisinins. By introducing a 

trifluoromethyl group at C-10, fluorinated artemether 1.65
77

 was found to be 60 times more 

stable than artemether under simulated stomach conditions and had an IC50 value of 0.8nM 

compared to artemether (3.5nM) in in vitro assay against the P. falciparum FCB1 strain. 

 

Figure 1-8 Representatives of C-10 carbaartemisinins 
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Besides finding more metabolically stable derivatives of artemisinins, researchers also 

explored other positions of artemisinin to prepare derivatives with the aim of finding more potent 

compounds, investigation of the SAR and as a probe for the mode of action. These derivatives 

are discussed in the next section in detail. 

1.5.2 C-3 derivatives of artemisinin 

 

C-3 is near the endoperoxide bond, so substitution at this position might have a large 

effect on its activity. 1.66 and 1.67 are the first analogues to appear in the literature
78

, however, 

no activity was reported. Avery et al synthesized an array of the C-3 and C-9 substituted 

artemisinin
79

 (1.68 and 1.69)  and 10-deoxoartemisinin analogues
80

 1.70 and evaluated their in 

vitro antimalarial activity. The results showed that many of these derivatives were more potent 

than artemisinin. 

 

Figure 1-9 Examples of C-3 derivative of artemisinin 
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1.5.3 C-16 derivatives of artemisinin 

 

C-16 derivatives are less populous than derivatives at C-10. Artemisitene 1.71 is a minor 

component from the same plant and it has an exomethylene lactone which can serve as Michael 

acceptor. Compounds 1.72a-e were synthesized from 1.71 following Mukiyama conditions
81

. 

The heterocycles 1,2,4-triazole, benzotriaole, or benzimidazole can also react with artemisitene 

under neutral or basic conditions to afford compounds 1.72f-h
82

.  Artemisitene can also react 

with diverse nucleophiles such as organolithiums or Grignard reagents by 1.4-addition to 

produce sets of C-16 derivatives. Among these, 1.73 was the product of lithium enolate of 

artemisinin addition to artemisitene and showed 10 times more activity than artemisinin
83

. 

  

Figure 1-10 Examples of C-16 derivatives of artemisinin 
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Another useful reaction developed by Avery et al
84

 involving the free radical induced 

Michael addition of alkyl or arylhalides to artemisitene. This reaction generates α and β isomers 

in a 1:1 ratio. The α-isomer can be epimerized to the more potent β-isomer by refluxing with 

DBU in THF for 12 h. Compounds 1.74 and 1.75 exhibited superior activity in vitro. Their low 

water solubility needs to be addressed in the future; the HCl salt of 1.76 is water soluble. 

1.5.4 Derivatives of other positions 

 

Derivatives from C-5, C-6 and C-7 are rare due to the absence of accessible functional 

groups at these positions. However, it was found that these positions can be hydroxylated when 

incubating with microorganisms. Compound 1.77 and 1.78 were synthesized from 7α-

hydroxylartether and 15-hydroxylartether respectively which in turn were produced by fungal 

incubation
85, 86

. Staring with 7β-hydroxyartemisinin
87

, many novel derivatives have been 

synthesized and evaluated in vitro. The most promising compound 1.79 showed >96% 

suppression in parasitemia at a dose of 3.3mg/kg which is comparable to artesunate
88

. Though 

this compound is promising, the access to starting material is limited by fermentation scale-up 

difficulties.   

   

Figure 1-11 C-6, C-7 derivatives of artemisinin 

1.5.5 Carbaartemisinins 
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To explore the effect of oxygen atoms on antimalarial activities, several 

carbaartemisinins in which the oxygen atom is replaced by a methylene group were synthesized 

(Figure 1-12). Compound 1.80-1.82
89-91

 showed much lower antimalarial activity in vitro. 

Compound 1.83, two oxygen atoms were missing and showed lower antimalarial activity. Since 

they all lost the peroxide bond, this result confirmed that the peroxy bond was crucial for the 

activity. Compound 1.84
91

, however, was reported to be 8 times more active than artemisinin. C-

13 carbaartemisinin1.85-1.87
92

 were synthesized to investigate the effect of the nonperoxidic 

trioxane oxygen atom of artemisinin. Compound 1.85 maintained 4% activity while deoxo 

analogue 1.86 held 16% of the activity. More interestingly, the isomeric peroxide 1.87 was found 

to possess about 60% antimalarial activity. These findings suggested that the nonperoxidic 

oxygen was required for optimal activity.  

 

Figure 1-12 Examples of carbaartemisinins 

1.5.6 Seco artemisinins 
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It is of interest to find out if a simplified structure of artemisinin can preserve the activity. 

If so, it would cut down the synthetic cost. Since the 1,2,4-trioxane was essential for the activity, 

Avery’s group
93

,
94

 and Posner’s group
95

 
96

have synthesized some seco artemisinins lacking the A 

ring or D ring. These compounds showed variable activity. Some typical compounds are shown 

in Figure 1-13. Compound 1.88 retained the activity while compound 1.89 is more active than 

artemisinin which demonstrated that A ring and D ring were not critical for the activity. This 

opened a new door for the search of structurally simplified, easily prepared 1,2,4-trioxanes to 

combat malaria. 

  

Figure 1-13 Examples of seco artemisinins 

 

1.6 Purpose of this study 
 

A great number of derivatives/analogues of artemisinin have appeared in the literature. 

Extensive research has also found an array of reaction conditions that are compatible with the 

endoperoxide bond. The efforts to prolong the half-life and improve potency are ongoing. This 

project is a continued effort to further explore the C-16 position of artemisinin with heterocycles 

and heteroatoms substitutions with the aim to find an optimal physicochemical combination for 
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the in vivo antimalarial activity. New derivatives will fill the chemical spaces thus providing 

insights to the structure-activity relationships.  
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CHAPTER 2 
 

2.1 Development of C-16 derivatives of artemisinin  

 

Artemisinin has attracted numerous scientists’ attention all over the world. Our group’s 

interest in this fantastic molecule began with a successful asymmetric total synthesis
43

.  This 

route greatly facilitates subsequent analogue synthesis afterwards. Using this route our group has 

synthesized more than 200 analogues of artemisinin, including C-13 carbon analogues
92

, N-11 

derivatives
62

, C-3 alkyl
79

, and C-16 derivatives
80

.  Many of these compounds are more active 

than artemisinin and have contributed valuable information towards QSAR
79, 97-99

.  

In particular, some C-16 derivatives have shown very promising results (Figure 2-1). 

Compound 2.1
99

, the propyl side chain, was first identified in a series of linear alkyl, branched 

alkyl, aryl and arylalkyl substituted analogues at C-16 of artemisinin. It showed 12 and 6 times 

more activity than artemisinin in the W-2 and D-6 clone (choroquine-sensitive and mefloquine-

resistant), respectively. Since removal of the lactone carbonyl (the product termed as 10-

deoxoartemisinin) is more potent and less toxic than artemisinin
100

,  a new series of C-16 

modified 10-deoxoartemisinin derivatives was prepared
80

.  In vitro antimalarial assay indicated 

that compound 2.2 was 58 and 20 times more active than artemisinin in D-6 and W-2 clones, 

respectively. Compound 2.2 also demonstrated an IC100=8mg/kg/day in vivo conducted on P 

berghei infected mice by subcutaneous administration (SC)
101

. However, oral administration 

(PO) of compound 2.2 showed 0% survival rate even at 128mg/kg/day dose. Compound 2.3 and 
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2.4 also showed very potent in vitro activity, being 25-70 times more active than artemisinin. 

Exploration of different functionality on the phenyl ring yielded compound 2.5
84

. This compound 

had an ED50 of 0.4ng/mL for SC and ED50 of 1.25ng/mL for PO. The positive control sodium 

artesunate showed an ED50 0.8(SC) and 2.4(PO), respectively. Preliminary PK studies revealed 

that compound 2.5 had a half-life of 73 minutes and a clearance value of 20-30 μl/min/kg. 

However, it still had very low aqueous solubility (0.1 µg/ml at Ph=6.5 phosphate buffer) and 

therefore low bioavailability. To address this issue, different polar substituents (amine, sulfur, 

hydroxyl) on the phenyl ring were explored
97

. All of these compounds showed in vitro 

antimalarial activity against P. falciparum. Compound 2.6, with a para-hydroxy was chosen to 

conduct a SAR study at this position. A set of diverse substituents including ester, sulfonates, 

carbamates, phosphates were attached to the hydroxyl group
102

. Compound 2.7 showed 8 times 

more activity than artemisinin in in vitro antimalarial assay. In in vivo studies performed in P. 

berghei infected mice, it showed 80% reduction in parasitemia on intravenous administration (iv) 

while the oral activity was only 40% compared to arteether which is 100% and 60.5%, 

respectively.   

The development of potent and yet orally active antimalarial agents based on artemisinin is 

ongoing. At this point, we felt the C-16 phenylethyl analogue could be changed to a heterocyclic 

ring which is more polar and metabolically stable. This modification might be able to increase 

the water solubility and thus increase the oral bioavailability. The 1, 2, 3-triazole ring came to 

our attention due to its intriguing physiochemical property, polarity and stability.  
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Figure 2-1 Development of 10-deoxo-16 substituted artemisinin derivatives 
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2.2 Click chemistry 
 

The 1,2,3-triazole ring system did not gain much attention until recently due to the quickly 

growing interest in click chemistry. Click chemistry as a concept was first introduced by 

Sharpless in 2001
103

. They defined click chemistry as a set of chemical reactions capable of 

modular synthesis, mild conditions, stereospecificity, high yield and simple work-up. Four types 

of reactions satisfied this criteria: a) nucleophilic ring opening reactions; b) non-aldol type 

carbonyl reactions; c) C-C multiple bonds addition and d) cycloaddition reactions
103

.  Among 

these reactions, copper catalyzed azide-alkyne cycloaddition (CuACC) to give the 1, 2, 3-triazole 

become the most popular one in the last decade which is often referred as the ‘click reaction’. 

The azide-alkyne cycloaddition was originally developed by Huisgen in 1963
104

.  The 

reactions were usually carried out by heating the alkyne and azide to more than 100°C and 

required several hours or even days to complete. In addition, this reaction produced a mixture of 

triazole with 1, 4 and 1, 5-regioisomer when using unsymmetrical alkynes. These drawbacks 

have limited its application in organic synthesis for over 40 years. The breakthrough came from 

two independent studies conducted by Meldal
105

 and Sharpless
106

 in 2002. A copper catalyzed 

azide-alkyne cycloaddition can be carried out in aqueous media and at room temperature. 

Additionally, in contrast to the original reaction it only affords the 1, 4-regioisomer (Scheme 

2-1). Later, the regiospecific synthesis of the other 1,5-regioisomer was achieved by ruthenium 

catalysis
107

. 
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Scheme 2-1 1,2,3-triazole formation under different conditions 

 

2.3 Proprieties of the 1,2,3-triazole  
 

The 1,2,3-triazole as a building block has a wide application in medicinal chemistry
108-

110
. It has many intriguing features that are favored in drug discovery. The 1,2,3-triazole is a five 

membered aromatic heterocycle. Due to its aromatic stabilization, it is far less reactive to acidic 

and basic hydrolysis and stable under reductive and oxidative conditions. It is also stable to 

metabolic transformation
111

. In addition, this compound is water soluble with a high dipole 

moment (calculated value 5D). Finally, a 1,2,3-triazole can also participate in hydrogen bonding, 

and π-π stacking interactions
112

. The 1,2,3-triazoles are not found in nature, however, several 

drugs containing these heterocylces include tazobactam
113

, cefatrizine
114

, and 

carboxyamidotriazole
115

 have been approved by the FDA. By using a 1,2,3-triazole group, one 

may be able to optimize the physicochemical properties
116

.   

2.4 C-16 modified artemisinin with 1,2,3-triazole  
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Recently, our group synthesized a series of 1,2,3-triazoles at the C-16 position with the 

hope of improved potency relative to artemisinin
117

. Although these derivatives were less potent 

than artemisinin in in vitro antimalarial assay, preliminary in vivo studies involving compound 

2.8 (Figure 2-2) confirmed that it did have a longer half-life and better solubility. This result 

implied that the heterocyclic ring could increase the hydrophilicity of the compound and thus 

enable optimization of the pharmacokinetic properties. 

 

Figure 2-2  C-16 triazole modified artemisinin  

 

2.5 Aims of study 

 

 Guided by previous studies in our group, we decided to investigate further the role of the 

aromatic substituent in the lead structures 2.4-2.6. SAR analysis from this work indicated that 

proper spacer length needed for optimal activity. As continued efforts to develop orally active 

antimalarial agents based on artemisinin, the present study aims to synthesize artemisinin C-16 

derivatives with heterocyclic and heteroatomic side chains and to perform antimalarial biological 

evaluation on the synthetic products.  

 



31 

2.5.1 The 1, 2, 3-triazole side chain substituted at C-16 

 

Based on the information gained from previous studies in our group, compound 2.9 was 

designed to restore the potency to the 1,2,3-triazole substituted artemisinins. Compound 2.9 

combines all optimized features derived from SAR studies. Like compound 2.5, it has a three-

carbon chain for optimal activity; the triazole was introduced for better pharmacokinetic and 

pharmacodynamic properties as shown in compound 2.8. For the substitution at the 4’ position of 

the triazole ring, a tertiary amine was chosen for several reasons. First, this amine group might 

provide additional H-bonding that could enhance antimalarial activity. Also, the amine 

substituent could facilitate transport of the compound to the food vacuole of the parasite since 

the food vacuole is slightly acidic (pH~4-6)
118

 and thus would be expected to be trapped inside 

the food vacuole and thus concentrate the compound over time. In addition, the protonated amine 

group will further increase the polarity of the compound to obtain better water solubility. 

2.5.2 Heteroatoms substitution at C-16 

The Avery group is also interested in continued development of our QSAR models to 

improve reliability and predictivity. For a QSAR model to be extrapolatively predictive, a certain 

chemical space needs to be covered
119

.  As can be seen from chapter 1, artemisinin derivatives 

modified at C-16 are relatively less populous in comparison to the number of C-10 derivatives in 

the literature. New derivatives with heteroatom substitution at this position would thus expand 

the blind spot in the current chemical space and make contributions to an updated QSAR model.   
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IC50=19.2nM (D6)                                                                                  IC50=137nM (D6) 

                           IC50=68.8nM (W2)                                      IC50=132 nM (W2) 

                                           

 

Figure 2-3 Designed compound 2.9 

 

  

Three-carbon chain is 

optimal for activity 

Triazole for better PK 

Different substituents for SAR 

and solubility in water 
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CHAPTER 3  

3.1 Synthesis of artemisinin derivatives 

 

3.1.1 Synthesis of artemisitene 

 

Artemisitene coexists in Artemisia annua along with artemisinin as a low percentage 

component. In order for researchers to investigate the C-16 substituent effect on the artemisinin 

scaffold, large quantities of artemisitene is needed and thus it has been prepared from artemisinin 

by several routes. El-Feraly
120

, the first to convert artemisinin to artemisitene, employed a four-

step sequences; Pitayatat et al
121

 improved the route to a two pot method by using a selenoxide 

elimination reaction. To avoid using toxic selenium, this route was further improved in our 

group
84

 using a sulfoxide elimination reaction (Scheme 3-1). Typically, artemisinin was treated 

with LDA at low temperature followed by PhSS(O2)Ph which gave the C9β-sulfide of 

artemisinin, this phenylsulfide was then oxidized to the sulfoxide with m-CPBA at -78°C. The 

resultant sulfoxide spontaneously underwent a Cope-type elimination at room temperature to 

provide the target molecule in situ. This route provided a major improvement. However, to 

obtain the best results, the m-CPBA needed to be recrystallized before use and the solvent DCM 

needed to be anhydrous. In addition, the reaction temperature needed to be maintained at -78°C 

for a long time to avoid over oxidization of sulfide to a sulfone.  

 

http://en.wikipedia.org/wiki/Artemisia_annua
https://www.google.com/search?hl=en&client=firefox-a&hs=nhL&tbo=d&rls=org.mozilla:en-US:official&spell=1&q=recrystallize&sa=X&psj=1&ei=8KvFUOTcNMuy0AHi6YCoDA&ved=0CDAQvwUoAA
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Scheme 3-1 Artemisitene synthesis 

To simplify the operation, we tried to use hydrogen peroxide together with TMS-Cl 

which is reported to selectively oxidize sulfides to sulfoxides
122

. The active species is formed in 

situ (Scheme 3-2). Thus, intermediate 3.1 was dissolved in acetonitrile and treated with TMS-Cl 

and hydrogen peroxide at room temperature. After separation by flash chromatography, 

artemisitene was afforded in 75% yield. This improvement employed room temperature 

conditions, the by-product trimethylsilylanol was volatile on rotary evaporation, and the yield 

was higher or comparable to the method using m-CPBA at low temperature.  

 

Scheme 3-2 Sulfoxide formation by TMS-Cl activated H2O2 

3.1.2 Synthetic strategy  

 

With this crucial intermediate in hand, we planned our synthetic routes as follows 

(Scheme 3-3). Retrosynthesis of the designed analogues suggested that these compounds could 
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be synthesized from two routes (Scheme 3-3): In route A, an azide functional group was 

introduced into artemisitene first followed by reaction with different alkynes by click reaction to 

furnish the final target compounds. This route has the advantage of quickly accessing target 

libraries using alkyne synthons available commercially. In route B, the triazole side chain could 

be built first and then incorporated into artemisitene by a radical induced 1, 4-addition.  

 

Scheme 3-3  Retrosynthesis of the target compound 2.9 

3.2 Proof of concept 

To generate a proof of concept, that the three-carbon chain between artemisinin and the 

aromatic 1,2,3-triazole ring in 2.4 enhances antimalarial activity, we first investigated the 

synthesis of a model molecule 3.9 (Scheme 3-4). 
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Scheme 3-4 Synthesis of model compound 3.9 

Reagents and conditions: a). NaN3, DMF, 105ºC, 96%; b). but-3-yn-1-ol，CuSO4, sodium 

ascorbate, water: t-BuOH, 80% c)Ph3P
+
-Br Br

-
, pyridine, 80%; d) 4-bromo-1-butyne, CuSO4, 

sodium ascorbate, water: t-BuOH (1:1), 75%; e).n-Bu3SnH, AIBN. PhH, artemisitene, or 

Tris(trimethylsilyl)silane, AIBN,  PhH, sealed tube. 

The synthesis of compound 3.9 commences from a commercially available compound p-

methoxybenzenylchloride 3.5. This compound was converted to azide 3.6 through a nucleophilic 

substitution by treating it with sodium azide. Then click additions between azide 3.6 and but-3-

yn-1-ol afforded the triazole 3.7. This triazole 3.7 was transformed into bromide 3.8 by the 

Appel reaction using Ph3PBr2 in the presence of pyridine. Also, bromide 3.8 could be obtained 

by reacting the azide with 4-bromo-1-butyne. However, the subsequent radical-induced 1, 4-

addition to artemisitene was somewhat problematic. Different radical sources such as tributyltin 

hydride or tris(trimethylsilyl)silane were tried, however, the desired product was not detected. 

We postulated that the benzylic protons might be the cause of the failure of this radical-induced 

Michael addition, so it would be reasonable to use a precursor without benzylic hydrogens 

(Scheme 3-5). 
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Scheme 3-5  Synthesis of compound 3.13 

Reagents and conditions: a): HCl, NaNO2, NaN3, 86%; b): 4-Bromo-1-butyne, sodium ascorbate, 

CuSO4, water: t-BuOH(1:1) , 67%; c): Artemisitene, n-Bu3SnH, AIBN, PhH, 80°C, 8hr, KF. 

10-30%  

To this end, aniline was converted to phenylazide through diazo transfer and azide 

displacement to give 3.11. A click reaction between phenyl azide and 4-bromo-1-butyne 

provided the triazole compound 3.12. Radical conjugate addition to artemisitene then occurred 

smoothly to give both C9α and C9β isomers 3.13. Separation of this mixture by flash column 

chromatography with a carefully controlled EtOAc/hexanes gradient afforded the pure 

diastereomers 3.13α and 3.13β (Figure 3-1).  

 

Figure 3-1 Structure of compound 3.13α and 3.13β 

The in vitro biological results (Table 3-1) were encouraging. Compound 3.13β showed 2 

times more activity than the homologous compound with one carbon space linker. This 

demonstrates that the hypothesis that a three-carbon chain between artemisinin and the aromatic 
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ring is optimal for activity. Encouraged by these results, we decided to embark on synthesis of a 

triazole library.  

Table 3-1  In vitro activity of selective compounds 

Structure 

P. falciparum IC50 

(nM) 

D6 W2 

 

152.8 135 

 

70.6 48.54 

artemisinin 17.73 23.21 

 

3.3 Synthesis approach through route A 

 

Route A was explored first by trying to introduce an azide functional group at C-16 with 

an appropriate linker length so that we could easily build a small library using different 

commercially available substituted alkynes (Scheme 3-6). We envisioned that this azide could be 

obtained from an amine through diazo formation and azide displacement
123

. Thus, 2-

bromoethylamine was first protected as a PMB carbamate (Moz) and then incorporated into 
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artemisitene by a radical addition. Deprotection of PMB group by trifluoroacetic acid gave amine 

3.17. This compound amine 3.17 was detected by TLC, but was not stable enough to undergo 

column chromatographic purification.   

 Scheme 3-6  Synthetic approach A 

Reagents and conditions: a) CDI, PMB-OH, DIPEA, 50%; b) Artemisitene, n-Bu3SnH, AIBN, 

PhH. 80°C, 10%-30%; c) TFA, DCM. 

 

3.4 Synthesis derivative through route B 

 

As a result, we refocused our attention on route B (Scheme 3-7). In this route, the 1,2,3-

triazole side chain would be built first, and then incorporated into artemisitene 3.3 by a radical-

induced Michael addition. Our first choice for substituents on the 1,2,3-triazoles was a tertiary 

amine which are frequently found in antimalarial drugs. These amine substituents are believed to 

have several functions. First, they can decrease the lipophilicity of the compound, thus they 

might increase oral bioavailability, which is a major issue for the compounds that our group 

previously synthesized. Second, they can block the metabolism on the side chain. Third, they can 

help to localize the compound to the parasite
124

. Fourth, they can also provide an additional 

nucleophilic position for derivatization.  
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Scheme 3-7 Synthetic approach B 

Reagents and conditions: a) Cs2CO3, propargyl bromide, acetone, 50%; b) NaN3, NEt3, DMF, 

92%;  c) TsCl, pyridine, 60% ; d) LiBr, acetone reflux, 30%; e) sodium ascorbate, CuSO4, water: 

t-BuOH(1:1) 
 

Azide synthon 3.23 was prepared by following a three-step procedure in the literature
125

 

while alkyne synthon 3.19 was prepared by reacting piperidine with propargyl bromide. 

Surprisingly, copper catalyzed azide-alkyne cycloaddition between these two synthons did not 

give the desired product. When we tried reacting alkyne 3.19 with the tosylated azide 3.22, 

triazole 3.25 was obtained. Nucleophilic bromination of compound 3.25 with LiBr in acetone 

gave a mixture of products 3.26 and 3.27 which resulted from tosylate elimination (E2) and 

bromo substitution (Sn2), respectively. The separation of these two compounds by column 

chromatography proved difficult due to their similar polarity. We also tried to separate them 

using Sephadex LH-20. However, the difference in molecular weight was not great enough to 
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improve separation. HPLC was used to separate these two compounds and was successful. 

However, given the fact that we needed large quantities of the compound 3.27 to carry out free 

radical-induced Michael addition with artemisitene, we thought it would be wise to find an 

alternative way to prepare this intermediate. In addition, azide compounds are usually considered 

to be explosive. As a rule of thumb, the compound should have a (C+O)/N ratio of more than 3 

to be safe
103

. To lower the risk, we needed a way to synthesize compound 3.23 without 

separation. 

 

 

Scheme 3-8 Synthesis of side chain 

Reagents and conditions: a) NaN3, MeOH:H2O (10:1) 45°C, overnight; b) TBS protected 

propargyl alcohol, sodium ascorbate, CuSO4,  40% over two steps. 

 

Thus, as outlined in Scheme 3-8, 1, 2-dibromoethane was treated with a 0.5 equivalents 

of sodium azide in methanol and water (10:1) as solvent to give mono- and di- substituted azides 

as a mixture.  The by-product sodium bromide was removed by water extraction and the organic 

layer was used without further purification. It was treated with tert-butyldimethyl (prop-2-yn-1-

yloxy) silane directly to give a mixture of compounds 3.28 and 3.28a. These two compounds 

were separated by flash silica gel chromatography. 
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Scheme 3-9 Synthesis of target compound 

Reagents and conditions: a) Artemisitene, n-Bu3SnH, AIBN. PhH. 80°C 10%-30%; b) DBU, 

THF, reflux, overnight 45%; c) TBAF, THF 80%; d) MsCl, NEt3, DCM 90%; e) pyrrolidine, 

NEt3, DCM, 55% 
 

Once the intermediate bromide 3.28 was obtained, it was incorporated into artemisitene 

by radical addition, which gave two diastereomers C9-α 3.29 and C9-β 3.30 as a mixture. Given 

that the C-9β derivatives are usually more potent than the C-9α isomers, compound 3.29 was 

epimerized to the C9-β congener by treating it with DBU in refluxing THF overnight. Since 

artemisinin is sensitive to basic conditions, and fluoride anion is sufficiently basic, different 

fluoride ions were explored in the deprotection of the TBS group such as CsF, TBAF, 

TBAF/HOAc. Among the fluoride resources tried, TBAF was found to be the most efficient at 

removing the TBDMS-protecting group. Deprotected alcohol 3.31 thus was transferred to 

mesylate 3.32, which reacted with pyrrolidine to give the final compound 3.33. 
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3.5 Other derivatives synthesized from artemisitene 

Besides 1,2,3-triazoles, we also explored other heteroatoms like phosphorus and sulfur as 

nucleophilic species in order to introduce new functional groups at the C-16 position of 

artemisinin (Scheme 3-10-Scheme 3-12). These new derivatives were designed to help fill the 

chemical space and were hoped to provide insights into Quantitative Structure-Activity 

Relationship (QSAR) studies.  

Thus, artemisitene reacted with sodium dimethyl phosphonate or sodium diethyl 

phosphonate at room temperature to give phosphonate substituted analogues 3.34 or 3.35, 

respectively (Scheme 3-10). Synthesis of dithiocarbamates analogues were achieved by 

employing a three-component reaction of artemisitene, secondary amines, and carbon disulfide 

catalyzed by an ionic liquid [Bmim] BF4 under room temperature (Scheme 3-11). Lipoic acid is a 

naturally occurring compound which has shown neuroprotection effect in Alzheime’s patients
126

. 

Thus, lipoic acid was reduced to dihydrolipoic acid 3.38 by sodium borohydride in a solution of 

sodium bicarbonate (0.25M) at 0 ºC. The resultant dithiol then reacted with artemisitene in the 

presence of triethylamine to give dimer 3.39 (Scheme 3-12).  

 

Scheme 3-10 Phosphonate substitution at C-16 

Reagents and conditions: a). Na, HP(=O)(OR)2 
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Scheme 3-11 Dithiocarbamate substitution at C-16 

Reagents and conditions: a). CS2, [Bmim]BF4, pyrrolidine or piperidine 

 

Scheme 3-12 Sulfur substitution at C-16 

Reagents and conditions: a). NaBH4, NaHCO3, H2O, 0 ºC b) NEt3, THF, 37% 

3.6 Activities and conclusions 

 

We have tested all of the compounds prepared in the schemes for antimalarial activity in 

vitro either at the University of California, San Francisco (UCSF) or The National Center for 

Natural Products Research (NCNPR), or both. The bioassays at these two sites were slightly 

different. UCSF used parasite cells while the NCNPR used red blood cell infected with the 

parasite. The results are shown in Table 3-2. When tested at both sites, the compounds’ activity 

correlates well except for one compound, 3.7. The results of our current study confirm the 

hypothesis that compounds with a three-carbon chain between artemisinin and the aromatic ring 

have optimal activity.  Radical-induced 1, 4-Michael addition on artemisitene provided two 

diastereoisomers, namely, 9α and 9β derivatives. As far as in vitro activity, 9β substituted 
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derivatives usually showed better activity than 9α derivatives as can be seen in compound 3.13a 

and 3.13b, 3.16a and 3.16b, 3.36a and 3.36b. These trends are consistent with previous findings 

by our group and by others
81, 127

. It is interesting to note that the difference in activity between 

two isomers, like 3.13a and 3.13b, is much less than that of other isomer pairs. Compounds 3.13, 

3.16b and 3.31 displayed similar IC50 values. Compound 3.16b has a carbamate, while 3.13 and 

3.31 has a triazole instead, which indicates that a triazole ring could be a good bioisostere for 

carbamates. By introducing a 1,2,3-triazole side chain with a three carbon-chain as a linker, the 

activity was improved. Different substitutions on the 4’ of the triazole ring have an influence on 

activity. For example, when changing from 3.13b (phenyl) to 3.31 (hydroxyl), though the 

polarity of two compounds is expected to be different, their activity is in the same range. 

However, when changing from 3.31(hydroxyl) to 3.33 (amine), the activity against D6 clone did 

improve twofold. 1,2,3-triazole moiety has been used to improve the oral absorption of a 

cephalosporin drug
116

. Poor water solubility and low oral absorption has been a big issue in the 

development of C-16 modified artemisinin derivatives in our group. Since compound 3.33 

showed improvements in its in vitro activity, we are eager to see if it shows improvement in vivo 

as well. It has been enriched to the 200mg scale and in vivo PK studies are forthcoming. 

Different heteroatoms were also introduced to artemisitene as nucleophiles. The 

derivatives synthesized in this study are designed to fill the chemical space for SAR studies. In 

vitro activity showed that they are less active than artemisinin, which indicates the proper space 

linker is needed for optimal activity. It was noticed that a small change in structure could change 

activity dramatically. For instance, compound 3.34 and 3.35 only changed from methyl to ethyl, 

attenuating activity by half. Another example is compound 3.36b (pyrrolidine) to 3.37 

(piperidine). From a five-membered ring to a six-membered ring, activity is significantly 
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different, with an almost nine-fold reduction. Compound 3.38 is the only dimer made from this 

work. Artemisinin dimers linked at C-10 have shown potent antimalarial activity
128, 129

. 

Artemisinin dimer linked at C-16 from others
83

 and compound 3.8,  on the other hand, showed 

modest activity. In conclusion, although their biological activity is not as good as artemisinin, 

they could provide insights into structure-activity relationships.  

 

 

Table 3-2  In vitro Antimalarial activity of new derivatives* 
 

Code Structure 

IC50(nM) 

D6 W2 W2 

3.13a 

 

86 75  

3.13b 

 

70.6 48.5  
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3.16a 

 

449.4 326.8  

3.16b 

 

77.6 51.1  

3.31 

 

83.5 63.8  

3.33 

 

47.8 56.5  

3.34 

 

187.1 123 157.65 

3.35 

 

71.7 71.7 68.585 
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3.36a 

 

110 86.6 40.16 

3.36b 

 

93.6 58.5 48.6 

3.37 

 

838.7 453.4 14.345 

3.38 

 

49.5 54.7 9.481 

 Artemisinin 17.9 15.4  

 Chloroquine 51.6 468.9 21.74 

 

*No compounds are cytotoxic at the tested concentrations. 

  D6: Sierra Leone D6 (chloroquine-sensitive) 

  W2: Indochina clone chloroquine resistant 
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CHAPTER 4  

EXPERIMENTAL 

General Experimental:  

Proton (
1
H NMR) and carbon (

13
C NMR) nuclear magnetic resonance spectra were recorded in 

CDCl3 or DMSO on Bruker DRX-400 spectrometers at 400 MHz and 100 MHz, respectively, or 

on Bruker DPX-500 spectrometers at 500 MHz and 125 MHz if specified. Chemical shifts are 

given in parts per million (ppm) on the delta (δ) scale. The solvent peak or the internal standard 

tetramethylsilane were used as reference values. For 
1
H NMR: CDCl3=7.27, TMS=0.00. For 

13
C 

NMR: CDCl3=77.2, TMS=0.0. Infrared (IR) spectra were recorded on a PerkinElmer Spectrum 

100FT-IR Spectrometer. High resolution mass spectra (HRMS) were obtained on a Waters 

Micromass Q-TOF micro mass spectrometer. Analytical thin layer chromatography (TLC) was 

performed on EMD Chemical INC 25 TLC aluminum sheets, silica gel 60 F254 or whatman 

precoated silica gel G or GP Analtech TLC plates. Melting points were measured on an 

OptiMelt
® 

V.1.061 (Stanford Research systems) instrument and were uncorrected. Flash column 

chromatography was performed using silica gel (Whatman 60Å, 230-400 mesh). Reagent grade 

ethyl acetate, hexanes, and diethyl ether were purchased from fisher scientific Inc. and used as is 

for chromatography. All reagents and dry solvents were purchased from Sigma/Aldrich, Fluka, 

or Fisher. All reactions were conducted under argon atmosphere, unless otherwise specified.  
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Bioassay for antimalarial activity:  

The antimalarial assays were performed at the University of California, San Francisco (UCSF) or 

The National Center for Natural Products Research (NCNPR). 

 In vitro antimalarial activities of various analogues were determined by incubating different 

concentrations of samples with chloroquine-resistant W2-Indochina strains of P. falciparum for 

48 hours, beginning at the ring stage, counting new ring forms by fluorescence-activated cell 

sorting (FACS) analysis, and comparing parasitemias with those of untreated controls. 

Parasitemia was determined from dot plots (forward scatter vs. Fluorescence FL-1) acquired on a 

FACSort
TM

 flow cytometer (Beckton Dickinson) using CellQuest software (Beckton Dickinson). 

IC50 values for growth inhibition were determined from plots of percent control parasitemia over 

inhibitor concentration using Prism v5.0 software (GraphPad). 

The in vitro antimalarial assay procedure utilized at the NCNPR, University of Mississippi, is 

adapted from a pLDH assay developed by Makler et al
130

. A Microdilution protocol was used 

with a P. falciparum clone [Sierra Leone D6 (chloroquine-sensitive)]. The antimalarial agents 

chloroquine and artemisinin were used as controls, while DMSO was the solvent control. The 

procedure is described as follows: Prepare a suspension of red blood cells with a 2% parasitemia 

and 2% hematocrit in malaria complete medium (approximately 20 ml per 96-well plate). 

Dispense 200 μl aliquots of this suspension into each well of a 96-well, flat-bottomed microtiter 

plate. Next, add 10 μl volumes of the drugs to be tested in duplicate to the appropriate wells. 

Place the plates into the humidified chamber and flush the cultures with gas mixture 90% N2, 5% 

O2, 5% CO2. Place chamber containing the plates into a 37ºC incubator for approximately 48h. 

After 48h, add 100 μl aliquots of the Malstat reagent to each well of a new 96-well microtiter 
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plate. Resuspend the cultures from the assay plate by mixing each well up and down several 

times. Remove 20 μl from each well of the resuspended culture and add to the plate containing 

the Malstat reagent. Incubate the plates at room temperature for 30 min. After 30 min, add to 

each well 20 μl of a NBT/PES (1:1) solution (2 mg/ml and 0.1 mg/ml, respectively). Incubate 

plates in the dark for 1h. At the end of the 1 h incubation, the reaction is stopped by the addition 

of approximately 100 μl of a 5% acetic acid solution. The plate is then read at an endpoint of 

approximately 650 nm
131

. 

 

4-methoxybenzyl azide (3.6):  

To a solution of 4-Methoxybenzyl chloride (1.089 ml, 8 mmol) in dry DMF (5 ml) was charged 

with sodium azide (0.572 g, 8.80 mmol), the mixture was heated at 105 °C for 7hrs. The reaction 

mixture was formed as a suspension.  KI was added and the reaction turned to brown. After 

heated for 17 hrs, it was cooled to r. t. Water and ether were added to the mixture, the organic 

layer was separated, and the water layer was extracted with ether (2x20ml). The organic layers 

were combined and washed with water, brine and dried over Na2SO4. They were then filtered 

and evaporated to give the crude product (1.30g), which was used without further purification. 

IR (neat) νmax: 2091(N3) 

 

4-(2-bromoethyl)-1-(4-methoxybenzyl)-1H-1,2,3-triazole(3.8):  

To a solution of 4-methoxybenzyl azide (163 mg, 1 mmol) and 4-bromobut-1-yne (94 µl, 1.001 

mmol) in 1:1 water/t-BuOH (2 mL), Sodium ascorbate (39.6 mg, 0.200 mmol) was added 
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followed by a copper sulfate solution (100 µl, 0.020 mmol). The reaction turned to light yellow 

and became blurring. After 3 days, white precipitate appeared. The reaction was quenched with 

saturated NH4Cl solution (1ml) and extracted with EtOAc (3x10ml). The combined organic layer 

was washed with water, brine and dried over Na2SO4. The solvent was evaporated and NMR 

confirmed the structure.
1
H NMR (400 MHz, CDCl3): 3.22 (t, J=7.03 Hz, 13 H) 3.59 (t, J=7.03 

Hz, 13 H) 3.77 (s, 20 H) 5.41 (s, 13 H) 6.86 (d, J=8.53 Hz, 12 H) 7.19 (d, J=8.53 Hz, 12 H) 7.33 

(s, 7 H). 
13

C NMR (101 MHz, CDCl3): 29.32, 31.32, 53.43, 55.16, 114.26, 121.26, 126.53, 

129.38, 144.96, 159.69. IR (neat) νmax : 3066, 2965, 1611, 1512, 1458, 1301, 1247, 1175, 1052, 

1033, 880, 767. 

 

Phenylazide (3.11): 

 Aniline (1.77g) was suspended in hydrochloric acid at r.t. and ethanol was added to make a clear 

solution. The solution was cooled to 0 °C and NaNO2 was added. After stirring at 0 °C for half 

an hour, NaN3 (1.49g, 1.2 eq) was added and the reaction mixture was stirred for 3 hours while 

being slowly warmed to r.t. The reaction mixture was extracted with ether (3x50ml). and the 

combined organic layer was washed with sat. NaHCO3, brine, and dried over MgSO4. The 

solvent was evaporated in vacuo to give phenylazide which was used for the next step without 

further purification. IR(neat) νmax: 2089(N3). 

 

4-(2-bromoethyl)-1-phenyl-1H-1,2,3-triazole(3.12):  
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Phenylazide (170mg, 1.427 mmol), 1-bromo-butyne (0.147 ml, 1.570 mmol), and sodium 

ascorbate (28.3 mg, 0.143 mmol) were suspended in water (0.5 ml) and t-butanol (0.500 ml). 1M 

Copper sulfate (0.071 ml, 0.071 mmol) was added and the reaction mixture was stirred for 2 

days. The reaction mixture was diluted with EtOAc and extracted further by EtOAc. The 

combined organic layer was washed with water, brine, and dried over Na2SO4.  Flash 

chromatography with hexane :EtOAc ranging from 4:1 to 3:1 to 1:1 as an eluent system gave the 

title compound (320mg) as a clear oil. 
1
H NMR (400 MHz, CDCl3): 3.39 (t, J=6.78 Hz, 2 H) 

3.73 (t, J=6.78 Hz, 2 H) 7.38 - 7.48 (m, 1 H) 7.49 - 7.58 (m, 2 H) 7.69 - 7.79 (m, 2 H) 7.91 (s, 1 

H). 
13

C NMR (101 MHz, CDCl3): 29.41, 31.36, 119.90, 120.47, 128.66, 129.71, 137.05, 145.50. 

IR (neat) νmax: 3126, 3070, 1595, 1497, 1464, 1364, 1217, 1174, 1049, 993, 907, 827, 757, 689, 

680. 

 

(3R,5aS,6R,8aS,9S, 12S,12aR)-3,6-dimethyl-9-(3-(1-phenyl-1H-1,2,3-triazol-4-

yl)propyl)octa-hydro-3H-3,12-epoxy[1,2]dioxepino[4,3-i]isochromen-10(12H)-one(3.13a)  

and (3R,5aS,6R,8aS,9R,12S,12aR)-3,6-dimethyl-9-(3-(1-phenyl-1H-1,2,3-triazol-4-yl)propyl) 

octa-hydro-3H-3,12-epoxy[1,2]dioxepino[4,3-i]isochromen-10(12H)-one (3.13b) 

To a 250 mL round-bottomed flask was placed artemisitene (280 mg, 0.999 mmol), AIBN (8.20 

mg, 0.050 mmol), and 4-(2-bromoethyl)-1-phenyl-1H-1,2,3-triazole (277 mg, 1.099 mmol) in 

benzene (100 ml)  which gave a yellow solution. The solution was heated to reflux and 

tributyltin hydride (0.293 ml, 1.099 mmol) in 30ml benzene was added by syringe pump over a 

period of 8 hours. The reaction mixture was refluxed for an additional 2 hours and cooled to 

ambient temperature. The reaction mixture was evaporated to dryness. The residue was taken up 
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by ether (20ml) and saturated KF solution (10ml) was added and stirred for 10 hours. The 

reaction mixture was filtered. The filtrate was washed with water, brine, dried over Na2SO4. 

Removal of the solvent by rotary evaporation gave the crude product which was purified by 

silica gel column chromatography using 15% EtOAc/hexanes as eluent to give the 9α and 9β 

isomers, 3.13a and 3.13b. 

3.13a:
 1

H NMR (400 MHz, CDCl3): 0.99 (d, J=5.52 Hz, 3 H) 1.16 (t, J=11.29 Hz, 1 H) 1.24 - 

1.31 (m, 1 H) 1.39 (br., 1 H) 1.45 (s, 3 H) 1.47 - 1.52 (m, 1 H) 1.68 (d, J=2.26 Hz, 1 H) 1.73 (td, 

J=6.09, 3.14 Hz, 1 H) 1.77 (s, 1 H) 1.79 - 1.85 (m, 1 H) 1.85 - 1.92 (m, 2 H) 1.95 (d, J=5.52 Hz, 

1 H) 2.02 - 2.06 (m, 1 H) 2.06 - 2.10 (m, 1 H) 2.17 (br., 1 H) 2.18 (d, J=3.51 Hz, 1 H) 2.33 - 2.43 

(m, 1 H) 2.80 - 2.90 (m, 2 H) 5.92 (s, 1 H) 7.39 - 7.45 (m, 1 H) 7.51 (t, J=7.78 Hz, 2 H) 7.74 (d, 

J=7.78 Hz, 2 H) 7.80 (s, 1 H). 
13

C NMR (101 MHz, CDCl3) 19.87, 24.69, 25.43, 25.45, 27.06, 

31.62, 33.61, 33.93, 35.90, 37.55, 42.81, 44.86, 50.47, 80.29, 93.79, 105.27, 119.16, 120.41, 

128.41, 129.63, 137.23, 148.33, 171.83. IR (neat) νmax: 2926, 2868, 1730, 1598, 1501, 1376, 

1211, 1103, 1031, 997, 831, 759.  

3.13b: 
1
H NMR (400 MHz, CDCl3): 0.97 - 1.03 (m, 3 H) 1.08 (d, J=10.37 Hz, 1 H) 1.23 - 1.32 

(m, 1 H) 1.44 (br., 4 H) 1.62 (br., 1 H) 1.72 - 1.90 (m, 5 H) 1.93 (br., 1 H) 1.96 - 2.16 (m, 4 H) 

2.37 - 2.49 (m, 1 H) 2.81 - 2.93 (m, 2 H) 3.22 - 3.32 (m, 1 H) 5.85 (s, 1 H) 7.39 - 7.47 (m, 1 H) 

7.51 (t, J=7.73 Hz, 2 H) 7.69 - 7.78 (m, 2 H) 7.81 (s, 1 H). 
13

C NMR (101 MHz, CDCl3): 19.74, 

23.28, 24.79, 25.10, 25.46, 26.40, 26.77, 33.48, 35.84, 37.48, 37.69, 43.01, 49.98, 79.16, 93.46, 

105.32, 119.11, 120.32, 128.39, 129.61, 137.15, 148.22, 171.50. IR (neat) νmax: 2934, 2867, 

1740, 1599, 1501, 1376, 1224, 1181, 1110, 1033, 994, 883, 760. 
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4-methoxybenzyl (2-bromoethyl) carbamate (3.15):  

To a solution 4-Methoxybenzyl alcohol (1.494 ml, 12.00 mmol) in dry CH2Cl2 (40 ml) was 

charged triphosgene (1.187 g, 4.00 mmol) at 0 °C followed by the dropwise addition of 

diisopropylethyl amine (2.230 ml, 12.80 mmol). The reaction mixture was allowed to warm to 

r.t. and stirred for 1 hour to obtain chloroformate solution in CH2Cl2. Then, the prepared 

chloroformate was added dropwisely to a solution of bromoethyl amine hydrogen bromide 

(1.639 g, 8 mmol) and triethylamine (2.474 ml, 17.60 mmol) in dry CH2Cl2 (40 ml) at 18 °C. 

After being stirred for 16 hours, the reaction was quenched by adding water and extracted with 

EtOAc (3x50ml) and the combined organic extracts were washed with brine and dried over 

Na2SO4. Filtration and rotary evaporation gave a crude residue which was purified by flash 

column chromatography (20% EtOAc in Hexanes) to afford compound 3.15 as a white solid. 
1
H 

NMR (500 MHz, CDCl3): 7.33 (d, J = 8.55 Hz, 2H), 6.91 (d, J = 8.55 Hz, 2H), 5.19 (br., 1H), 

5.07 (br., 2H), 3.83 (s, 3H), 3.62 (d, J = 5.56 Hz, 2H), 3.43 - 3.53 (m, 2H). 
13

C NMR (126 MHz, 

CDCl3) 159.6, 130.0, 128.3, 113.9, 66.8, 55.3, 42.7, 32.4. 

 

4-methoxybenzyl (3-((3R,6R,8aS,9R,12S,12aR)-3,6-dimethyl-10-oxodecahydro-3H-3,12-

epoxy[1,2]dioxepino[4,3-i]isochromen-9-yl)propyl)carbamate(3.16): 

To a 250 mL round-bottomed flask was placed artemisitene (0.140g, 0.5mmol), 4-

methoxybenzyl (2-bromoethyl) carbamate (0.173 g, 0.600 mmol), and AIBN (8.21 mg, 0.050 

mmol) in Benzene (60 ml) which gave a colorless solution. The reaction mixture was heated for 

reflux and tributyltin hydride (0.174 ml, 0.650 mmol) in benzene (24 ml) was added by syringe 

pump over a period of 8 hours. After the addition was over, the reaction mixture was refluxed for 
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an additional 2 hours. The solvents were removed in vacuo, and diether ether (20ml) followed by 

a saturated KF solution (6ml) was added. The solution was stirred for 10 hours at room 

temperature and then was filtered, washed with water, brine, and dried over Na2SO4. Filtration 

and rotary evaporation gave the crude product which was purified on silica gel (EtOAc in 

hexanes gradient from 10 to 25%) to give 3.16a (9α isomer) and 3.16b (9β isomers) as light 

yellow viscous liquid. 

3.16a: 
1
H NMR (400 MHz, CDCl3)  0.81 - 0.90 (m, 1 H) 0.93 (d, J=2.01 Hz, 3 H) 1.06 (d, 

J=11.54 Hz, 1 H) 1.15 - 1.23 (m, 3 H) 1.23 - 1.34 (m, 2 H) 1.37 (d, J=2.76 Hz, 3 H) 1.51 - 1.77 

(m, 5 H) 1.82 - 1.93 (m, 1 H) 1.94 - 2.03 (m, 4 H) 2.07 (br., 1 H) 2.23 - 2.38 (m, 1 H) 3.13 (br., 1 

H) 3.73 (d, J=3.01 Hz, 2 H) 4.02 - 4.13 (m, 2 H) 4.96 (br., 1 H) 5.85 (s, 1 H) 6.78 - 6.88 (m, 1 H) 

7.19 - 7.26 (m, 1 H). 
13

C NMR (101 MHz, CDCl3) 19.65, 24.48, 25.23, 26.61, 27.63, 30.97, 

31.31, 33.72, 35.70, 37.26, 42.80, 44.29, 50.24, 55.00, 66.04, 80.09, 93.58, 105.01, 113.63, 

128.63, 129.62, 156.34, 159.24, 170.86. IR (neat) νmax: 3347, 2929, 1712, 1514, 1241, 1104, 

1030, 998, 828. 

 

3.16b:
 1
H NMR (400 MHz, CDCl3) 0.92 (t, J=7.28 Hz, 1 H) 0.98 (d, J=5.77 Hz, 3 H) 1.04 (br., 2 

H) 1.19 - 1.39 (m, 4 H) 1.43 (s, 3 H) 1.52 - 1.68 (m, 2 H) 1.76 (br., 3 H) 1.91 - 2.13 (m, 3 H) 

2.35 - 2.50 (m, 1 H) 3.19 (br., 2 H) 3.79 (s, 3 H) 4.93 (br., 1 H) 5.01 (br., 2 H) 5.83 (s, 1 H) 6.87 

(d, J=8.78 Hz, 2 H) 7.28 (d, 2 H). 
13

C NMR (101 MHz, CDCl3) 19.71, 23.23, 24.14, 24.74, 

25.06, 27.74, 33.45, 35.81, 37.41, 37.65, 40.78, 43.20, 49.92, 55.17, 66.30, 79.09, 93.45, 105.29, 

113.79, 128.66, 129.82, 156.42, 159.40, 171.33. IR (neat) νmax: 3353, 2931, 1716, 1631, 1514, 

1241, 1110, 1031, 999, 821. 
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(3R,6R,12S,12aR)-9-(3-aminopropyl)-3,6-dimethyloctahydro-3H-3,12-epoxy[1,2]dioxepino 

[4,3-i]isochromen-10(12H)-one(3.17) 

To a solution of 4-methoxybenzyl (3-((3R,6R,8aS,9R,12S,12aR)-3,6-dimethyl-10-oxodeca-

hydro-3H-3,12-epoxy[1,2]dioxepino[4,3-i]isochromen-9-yl)propyl)carbamate (200mg, 0.409 

mmol) in DCM (1.8 ml) was added TFA (0.2 ml, 2.60 mmol) and the reaction mixture was 

stirred at r.t. for 2 hours. Purple color appeared before the reaction was neutralized by saturated 

NaHCO3 solution. The combined organic layer was washed with water, brine and dried over 

MgSO4. The crude was loaded on a silica gel column and it decomposed on the silica gel 

column. 

 

1-(prop-2-yn-1-yl) piperidine (3.19):  

To a stirred mixture of piperidine (851 mg, 10.0 mmol), cesium carbonate (3.26 g, 10.0 mmol) 

and acetone(20 mL) was added 3-bromoprop-1-yne (1.19 g, 10.0 mmol) at r.t.. The white 

suspension was stirred for 18 hours at r.t. and then was filtered.  The filtrate was concentrated. 

The resulting residue was triturated with diethyl ether (10 mL), filtered, and the filtrate was 

concentrated to obtain the product as an colorless oil (0.70 g, 56%).
1
H NMR (400 MHz, CDCl3): 

1.27 (br., 2 H) 1.35 - 1.54 (m, 4 H) 2.04 - 2.15 (m, 1 H) 2.33 (br., 4 H) 3.03 - 3.17 (m, 2 H). 
13

C 

NMR (101 MHz, CDCl3): 23.51, 25.51, 47.20, 52.71, 72.52, 78.81 . IR (neat) νmax: 3302, 2965, 

2910, 2789, 1632, 1461, 1348, 1325, 1200, 1125, 899, 877. 
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2-azido ethanol (3.21):  

A mixture of 2-chloroethanol (3g) and NaN3 (3.39 g, 1.4eq) was heated at 70°C for 12 hours and 

then poured into a mixture of ethyl ether and water (50 mL, 1:1). The organic layer was 

separated and the aqueous layer was extracted with ethyl ether (2 x 15 mL). The combined 

organic layer was washed with water (30 mL), dried and carefully reduced in volume and used 

for the next step without further purification. IR (neat) νmax: 3377(OH), 2095(N3). 

 

2-azidoethyl 4-methylbenzenesulfonate (3.22): 

To a solution of 2-azido ethanol (3g, 34.5mmol) in DCM was added triethylamine (5.26ml, 

37.9mmol) at 0°C under argon followed by slow addition of TsCl (7.2g, 37.9mmol). The 

reaction mixture was stirred for 3 hours while the temperature was allowed to warm to room 

temperature slowly and then diluted with DCM, washed with aq HCl (1N, 50ml), water and 

brine. The organic phase was dried over Na2SO4 and concentrated to give the compound 3.22 as 

an colorless oil. 
1
H NMR (400 MHz, CDCl3): 2.36 (s, 3 H) 3.41 (t, J=4.89 Hz, 2 H) 3.94 - 4.22 

(m, 2 H) 7.30 (m, J=8.03 Hz, 2 H) 7.73 (m, J=8.28 Hz, 2 H). 
13

C NMR (101 MHz, CDCl3): 

21.52, 49.53, 68.50, 127.84, 130.04, 132.41, 145.37. IR (neat) νmax: 2957, 2109, 1735, 1363, 

1175, 912. 

 

2-(4-(piperidin-1-ylmethyl)-1H-1,2,3-triazol-1-yl)ethyl 4-methylbenzenesulfonate(3.25): 

This compound was synthesized by similarly method to the compound 3.12. 
1
H NMR (400 MHz, 

CDCl3): 1.35 (d, J=4.27 Hz, 2 H) 1.45 - 1.58 (m, 5 H) 2.37 (s, 7 H) 3.54 (s, 2 H) 4.33 (t, J=4.89 
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Hz, 2 H) 4.53 - 4.57 (m, 1 H) 7.25 (d, J=8.03 Hz, 2 H) 7.51 (s, 1 H) 7.61 (d, J=8.28 Hz, 2 H). 
13

C 

NMR (101 MHz, CDCl3): 21.42, 23.85, 25.56, 48.67, 53.61, 53.93, 67.56, 123.59, 127.57, 

129.82, 131.81, 144.60, 145.23. 

 

1-((1-(2-bromoethyl)-1H-1,2,3-triazol-4-yl)methyl)piperidine  and 1-((1-vinyl-1H-1,2,3-

triazol-4-yl)methyl)piperidine (3.26 and 3.27)  

2-(4-(piperidin-1-ylmethyl)-1H-1,2,3-triazol-1-yl)ethyl 4-methylbenzenesulfonate (290mg, 0.796 

mmol) was dissolved in DMF (5 ml) to make a light yellow solution. Lithium bromide (207 mg, 

2.387 mmol) was added to the solution. The reaction mixture was stirred at 70 °C overnight and 

then was diluted with water and extracted with EtOAc (3x25ml). The combined organic layers 

were washed with water, brine and dried over Na2SO4. Removal of the organic solvent under 

reduced pressure gave the crude product as a light yellow oil. The crude product consisted of 

compound 3.26 and 3.27 as a mixture.  

1-((1-(2-bromoethyl)-1H-1,2,3-triazol-4-yl)methyl)piperidine (3.26): 

 
1
H NMR (400 MHz, CDCl3): 1.28 - 1.37 (m, 2H) 1.48 (dt, J=11.04, 5.52 Hz, 4H) 2.37 (br., 4 H) 

3.58 (s, 2 H) 3.67 (t, J=6.15 Hz, 2 H) 4.65 (t, J=6.15 Hz, 2 H) 7.63 (s, 1 H). 
13

C NMR (101 MHz, 

CDCl3): 23.65, 25.26, 29.29, 51.12, 53.41, 53.76, 123.63, 143.73.  

 

1-((1-vinyl-1H-1,2,3-triazol-4-yl)methyl)piperidine (3.27):  

1
H NMR (400 MHz, CDCl3): 1.28 - 1.37 (m, 2H) 1.48 (dt, J=11.04, 5.52 Hz, 4H) 2.37 (br., 4H) 

3.57 (br., 2 H) 5.03 (dd, J=9.03, 1.76 Hz, 1 H) 5.56 (dd, J=16.06, 1.76 Hz, 1 H) 7.23 (dd, 
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J=16.06, 9.03 Hz, 1 H) 7.76 (s, 1 H). 
13

C NMR (101 MHz, CDCl3): 22.62, 25.32, 53.86, 104.34, 

119.59, 129.96, 144.42. 

 

tert-butyldimethyl (prop-2-yn-1-yloxy)silane:  

TBS-Cl (3.62 g, 24.00 mmol) in DCM (5ml) was slowly added into the solution of propargyl 

alcohol (1.193 ml, 20 mmol) and triethylamine (3.76 ml, 27.0 mmol) in DCM (25ml) at 0 °C. 

The mixture was slowly warmed to room temperature and stirred for 15 hours and was added 30 

ml of water. The water layer was extracted with hexanes: EtOAc (1:1)(2x 25ml). The combined 

organic layers were washed with brine and dried over MgSO4. The crude material was distilled 

by vacuum distillation to give the title compound as colorless oil (2.02g). 
1
H NMR (400 MHz, 

CDCl3) : 0.13 (s, 6 H) 0.91 (s, 9 H) 2.37 - 2.41 (m, 1 H) 4.31 (d, J=2.26 Hz, 2 H). 
13

C NMR (101 

MHz, CDCl3): -5.24, 18.25, 25.76 (s, 3 C) 51.47, 72.80, 82.39. IR (neat) νmax: 3313, 2956, 2931, 

2859, 1472, 1365, 1254, 1092, 1005, 833, 777. 

 

1-(2-bromoethyl)-4-(((tert-butyldimethylsilyl)oxy)methyl)-1H-1,2,3-triazole(3.28): 

1,2-dibromoethane (1.619 ml, 18.79 mmol) and sodium azide (0.611 g, 9.39 mmol) was 

dissolved in MeOH:Water (10:1 10ml). The reaction mixture was stirred at 50 °C overnight and 

extracted with ether. (Danger: toxic and explosive 1, 2-diazoethane was produced. Do not allow 

to dry.) The organic layer was concentrated to give the crude which was added MeOH. tert-

butyldimethyl(prop-2-yn-1-yloxy)silane (1.6 g, 9.39 mmol), sodium ascorbate (1.879 ml, 1.879 

mmol) and 1M solution of copper(II) sulfate (0.376 ml, 0.376 mmol) was added The mixture was 
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stirred overnight and diluted with sat. NaHCO3 solution (15ml) and extracted with EtOAc 

(3x50ml). The combined organic layers were washed with water, brine and dried over MgSO4. 

The crude product was purified on a silica gel column (Hexanes: EtOAc=2:1) to give compound 

3.28 as a colorless oil and compound 3.29 as white solid. 
1
H NMR (400 MHz, CDCl3): -0.04 - 

0.08 (m, 6 H) 0.81 - 0.90 (m, 9 H) 3.70 (t, J=6.27 Hz, 2 H) 4.69 (t, J=6.27 Hz, 2 H) 4.79 (br., 2 

H) 7.58 (s, 1 H). 
13

C NMR (101 MHz, CDCl3): -5.29, 18.25, 25.83 (s, 3 C) 29.50, 51.43, 57.76, 

122.43, 148.43. IR (neat) νmax: 2930, 2857, 1463, 1362, 1255, 1084, 1047, 834, 776. 

 

1,2-bis(4-(((tert-butyldimethylsilyl)oxy)methyl)-1H-1,2,3-triazol-1-yl)ethane(3.29) 

1
H NMR (400 MHz, CDCl3): 0.04 - 0.10 (m, 12 H) 0.86 - 0.91 (m, 18 H) 4.77 (s, 4 H) 4.90 (s, 4 

H) 7.22 (s, 2 H). 
13

C NMR (101 MHz, CDCl3): -5.37, 18.23, 25.80, 49.45, 57.62, 122.65, 148.91. 

IR (neat) νmax : 3146, 2951, 2929, 2857, 1462, 1337, 1253, 1119, 1085, 1047, 832, 773. 

 

(3R,6R,8aS,9R,12S,12aR)-9-(3-(4-(((tert-butyldimethylsilyl)oxy)methyl)-1H-1,2,3-triazol-1-

yl)propyl)-3,6-dimethyloctahydro-3H-3,12-epoxy[1,2]dioxepino[4,3-i]isochromen-10(12H)-

one (3.29)and (3R,6R,8aS,9S,12S,12aR)-9-(3-(4-(((tert-butyldimethylsilyl)oxy)methyl)-1H-

1,2,3-triazol-1-yl)propyl)-3,6-dimethyloctahydro-3H-3,12-epoxy[1,2]dioxepino[4,3-

i]isochromen-10(12H)-one (3.30) 

The reaction was performed similarly as a previous radical-induced Michael addition. The crude 

product was added to a silica gel column and was eluted with Hexanes/EtOAc (4:1) to 

hexanes/EtOAc (2:1) to give two diastereoisomers 3.29 and 3.30. 
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9β isomer 3.29: 
1
H NMR (400 MHz, CDCl3): 0.08 (s, 6 H) 0.89 (s, 9 H) 0.97 (d, J=5.77 Hz, 3 H) 

1.20 - 1.25 (m, 2 H) 1.28 (d, J=8.03 Hz, 1 H) 1.35 (dd, J=10.04, 5.27 Hz, 2 H) 1.42 (s, 3 H) 1.56 

- 1.66 (m, 2 H) 1.67 - 1.78 (m, 2 H) 1.92 - 1.99 (m, 2 H) 2.02 (s, 2 H) 2.10 - 2.23 (m, 1 H) 2.32 - 

2.48 (m, 1 H) 3.18 (d, J=5.27 Hz, 1 H) 4.30 - 4.44 (m, 2 H) 4.82 (s, 2 H) 5.82 (s, 1 H) 7.47 - 7.52 

(m, 1 H). 
13

C NMR (101 MHz, CDCl3): -5.36, 13.52, 18.24, 19.67, 24.41, 24.69, 25.04, 25.80, 

26.73, 27.74, 28.39, 33.33, 35.75, 37.53, 43.61, 49.84, 57.82, 79.06, 93.54, 105.34, 121.52, 

139.07, 171.07. IR (neat) νmax: 2928, 2856, 1736, 1462, 1378, 1252, 1110, 1000, 834, 776. 

 

9α isomer 3.30: 
1
H NMR (400 MHz, CDCl3) : 0.06 (s, 6 H) 0.83 - 0.91 (m, 9 H) 0.94 (d, J=5.52 

Hz, 3 H) 1.21 (t, J=7.15 Hz, 1 H) 1.31 - 1.37 (m, 2 H) 1.40 (s, 4 H) 1.42 - 1.49 (m, 1 H) 1.60 (d, 

J=3.01 Hz, 1 H) 1.64 (br., 1 H) 1.65 - 1.74 (m, 2 H) 1.87 - 1.95 (m, 1 H) 1.99 (s, 2 H) 2.02 - 2.07 

(m, 2 H) 2.12 (t, J=5.90 Hz, 1 H) 2.27 - 2.38 (m, 1 H) 4.32 (dq, J=14.49, 7.05 Hz, 2 H) 4.77 - 

4.83 (m, 2 H) 5.87 (s, 1 H) 7.47 (s, 1 H). 
13

C NMR (101 MHz, CDCl3): -5.41, 18.18, 19.72, 

24.50, 25.30, 25.75, 28.04, 30.80, 31.32, 33.71, 35.73, 37.33, 43.24, 44.04, 50.26, 57.76, 60.20, 

80.02, 93.74, 105.15, 121.55, 148.36, 171.15. IR (neat) νmax: 2928, 2856, 1735, 1462, 1244, 

1103, 1001, 834, 777. 

 

(3R,6R,8aS,9R,12S,12aR)-9-(3-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)propyl)-3,6-

dimethyloctahydro-3H-3,12-epoxy[1,2]dioxepino[4,3-i]isochromen-10(12H)-one(3.31): 

 TBAF (1M, 0.575 ml, 0.575 mmol) in THF was added to the solution of 

(3R,6R,8aS,9R,12S,12aR)-9-(3-(4-(((tert-butyldimethylsilyl)oxy)methyl)-1H-1,2,3-triazol-1-

yl)propyl)-3,6-dimethyl-octahydro-3H-3,12-epoxy[1,2]dioxepino[4,3-i]isochromen-10(12H)-one 
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(150mg, 0.288 mmol) in THF (4 ml) at room temperature and stirred for 1 hour. The THF was 

evaporated and the residue was taken up with EtOAc (10ml). The organic layer was washed with 

water, brine, dried over MgSO4, filtered and evaporated in vacuo. The crude product was added 

to a silica gel column and was eluted with EtOAc to give the compound 3.31 as a viscous liquid. 

1
H NMR (400 MHz, CDCl3) 0.93 (d, J=5.27 Hz, 3 H) 0.96 - 1.05 (m, 1 H) 1.26 (d, J=7.53 Hz, 1 

H): 1.28 - 1.35 (m, 2 H) 1.37 (s, 3 H) 1.39 - 1.48 (m, 1 H) 1.62 - 1.76 (m, 3 H) 1.87 - 1.95 (m, 2 

H) 1.96 - 2.00 (m, 2 H) 2.01 (d, J=3.76 Hz, 1 H) 2.07 - 2.18 (m, 1 H) 2.30 - 2.41 (m, 1 H) 3.06 - 

3.16 (m, 1 H) 4.25 - 4.40 (m, 2 H) 4.70 (s, 2 H) 5.79 (s, 1 H) 7.60 (s, 1 H). 
13

C NMR (101 MHz, 

CDCl3): 19.57, 23.12, 24.19, 24.57, 24.94, 28.11, 33.17, 35.63, 37.23, 37.44, 43.31, 49.69, 

49.94, 55.91, 79.01, 93.48, 105.24, 121.88, 147.82, 171.14. IR (neat) νmax: 3357, 2928, 2874, 

1731, 1111, 1032, 997, 727. 

(1-(3-((3R,5aS,6R,8aS,9R,12S,12aR)-3,6-dimethyl-10-oxodecahydro-3H-3,12-epoxy[1,2] 

dioxepino[4,3-i]isochromen-9-yl)propyl)-1H-1,2,3-triazol-4-yl)methyl methanesulfonate 

(3.32):  

(3R,6R,8aS,9R,12S,12aR)-9-(3-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)propyl)-3,6-dimethyl-

octahydro-3H-3,12-epoxy[1,2]dioxepino[4,3-i]isochromen-10(12H)-one (70 mg, 0.172 mmol) 

was dissolved in CH2Cl2 (4 ml) and was cooled to 0 °C. TEA (35.8 µl, 0.257 mmol) was slowly 

added followed by Ms-Cl (16 µl, 0.205 mmol) to the solution and the reaction mixture was 

stirred for 20 minutes before cold water (20ml) was added. The organic layer was washed with 

cold 0.1N HCl (5ml), sat. NaHCO3, brine and dried over MgSO4. Removal of the solvent by 

filtration and rotary evaporation gave the crude product which was purified by a flash column 

with hexanes/EtOAc as eluent to give 3.32 as a light yellow oil. 
1
H NMR (400 MHz, CDCl3): 

0.93 (s, 1 H) 0.99 (d, J=5.52 Hz, 2 H) 1.02 - 1.16 (m, 2 H) 1.19 - 1.33 (m, 2 H) 1.34 - 1.53 (m, 6 
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H) 1.56 - 1.86 (m, 3 H) 1.88 - 2.13 (m, 4 H) 2.20 (d, J=6.02 Hz, 1 H) 2.34 - 2.57 (m, 1 H) 3.04 

(s, 2 H) 3.19 (d, J=5.52 Hz, 1 H) 4.35 - 4.53 (m, 2 H) 5.37 (s, 1 H) 5.84 (s, 1 H) 7.78 (s, 1 H). 

13
C NMR (101 MHz, CDCl3): 19.70, 23.35, 24.48, 24.74, 25.08, 28.36, 33.37, 35.81, 37.42, 

37.60, 38.30, 43.79, 49.91, 50.34, 62.44, 79.13, 93.65, 105.43, 124.39, 136.35, 171.12. IR (neat) 

νmax: 2927, 1729, 1455, 1361, 1175, 1112, 1033, 996, 963, 726. 

 

(3R,5aS,6R,8aS,9R,12S,12aR)-3,6-dimethyl-9-(3-(4-(pyrrolidin-1-ylmethyl)-1H-1,2,3-

triazol-1-yl)propyl)octahydro-3H-3,12-epoxy[1,2]dioxepino[4,3-i]isochromen-10(12H)-

one(3.33) 

(1-(3-((3R,5aS,6R,8aS,9R,12S,12aR)-3,6-dimethyl-10-oxodecahydro-3H-3,12-epoxy[1,2]dioxe-

pino[4,3-i]isochromen-9-yl)propyl)-1H-1,2,3-triazol-4-yl)methyl methanesulfonate (35 mg, 

0.072 mmol)  was dissolved in DMF (1 ml) to give colorless solution and was cooled to 0 °C . 

DIPEA (0.063 ml, 0.36 mmol) was added followed by addition of pyrrolidine (0.03ml, 0.36 

mmol).  The reaction mixture was heated to 55 °C for 30 minutes and was added water, extracted 

with EtOAC (3 x 20ml). The combined organic layer was washed with H2O, brine and dried over 

MgSO4, filtered and concentrated to give the crude product which was purified by silica gel 

column chromatography (CH2Cl2/MeOH 95:5).  This compound was further purified by prep 

HPLC. (Condition: (ACN in water from 20% to 100%  in 20 minutes.) 
1
H NMR (400 MHz, 

CDCl3): 0.82 - 0.95 (m, 1 H) 0.99 (d, J=5.77 Hz, 3 H) 1.17 - 1.32 (m, 2 H) 1.34 - 1.46 (m, 5 H) 

1.49 (br., 2 H) 1.61 (d, J=15.06 Hz, 1 H) 1.66 - 1.78 (m, 2 H) 1.83 (br., 4 H) 1.93 - 2.09 (m, 4 H) 

2.12 (br., 1 H) 2.37 - 2.47 (m, 1 H) 2.68 (br., 3 H) 3.16 - 3.25 (m, 1 H) 3.87 (s, 2 H) 4.30 - 4.48 

(m, 2 H) 5.84 (s, 1 H) 7.60 (s, 1 H). 
13

C NMR (101 MHz, CDCl3): 19.73, 23.34, 23.43, 24.46, 
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24.78, 25.10, 28.41, 33.41, 35.84, 37.46, 37.61, 43.66, 49.94, 50.08, 50.26, 53.60, 79.12, 93.60, 

105.41, 122.76, 144.56, 171.07 . IR (neat) νmax: 2928, 1735, 1459, 1378, 1200, 1112, 1033, 1000. 

 

 

Dimethyl (((3R,6R,8aS,12S,12aR)-3,6-dimethyl-10-oxodecahydro-3H-3,12-epoxy[1,2]dioxe-

pino [4,3-I]isochromen-9-yl)methyl)phosphonate(3.34) 

This compound was prepared analogously with compound 3.35. 
1
H NMR (400 MHz, CDCl3)  

0.97 (d, J=6.02 Hz, 3 H) 1.13 - 1.19 (m, 1 H) 1.20 - 1.25 (m, 1 H) 1.37 - 1.40 (m, 1 H) 1.42 (s, 3 

H) 1.46 (br., 1 H) 1.49 (br., 1 H) 1.69 (dd, J=13.55, 3.01 Hz, 1 H) 1.89 - 1.97 (m, 2 H) 2.04 (d, 

J=15.81 Hz, 1 H) 2.11 - 2.19 (m, 1 H) 2.20 - 2.26 (m, 1 H) 2.32 - 2.41 (m, 1 H) 2.44 - 2.53 (m, 1 

H) 2.60 - 2.73 (m, 1 H) 3.74 (d, J=1.51 Hz, 3 H) 3.72 (d, J=1.76 Hz, 3 H) 5.95 (s, 1 H). 
13

C 

NMR (101 MHz, CDCl3) 19.73, 24.67, 25.40, 28.25, 29.67, 30.68, 33.83, 35.78, 37.60, 39.45, 

42.95, 50.19, 52.39, 80.89, 94.18, 105.34, 171.09 HRMS (ESI-TOF) m/z: [M+H]
+  

Calcd for 

C17H28O8P  391.1522; Found 391.1541. 

Diethyl (((3R,6R,8aS,12S,12aR)-3,6-dimethyl-10-oxodecahydro-3H-3,12-epoxy[1,2]diox-

epino [4,3 -I]isochromen-9-yl)methyl)phosphonate(3.35) 

Sodium (5.8mg) was dissolved in 0.37ml of diethyl phosphite and cooled to 0°C. Artemisitene 

(53mg) in 0.25ml of diethyl phosphite was added slowly. The reaction mixture was stirred for 5 

hours at room temperature before water was added and then was extracted with EtOAc. The 

combined organic layer was washed with NaOH, brine, dried over Na2SO4, filtered and 

evaporated in vacuo. The crude was purified by flash column chromatography with hexanes: 
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EtOAc from 9:1 to 1:1 to 1:3 as eluent system to give product (26mg) as viscous liquid.
1
H NMR 

(400 MHz, CDCl3): 0.99 (d, J=6.02 Hz, 3 H) 1.14 - 1.21 (m, 1 H) 1.25 (s, 1 H) 1.33 (t, J=7.03 

Hz, 6 H) 1.39 - 1.43 (m, 1 H) 1.45 (s, 3 H) 1.48 (br., 1 H) 1.50 (br., 1 H) 1.71 (dd, J=13.43, 2.89 

Hz, 1 H) 1.91 - 2.01 (m, 2 H) 2.02 - 2.10 (m, 1 H) 2.17 - 2.27 (m, 2 H) 2.34 - 2.44 (m, 1 H) 2.51 

(t, J=13.30 Hz, 1 H) 2.61 - 2.74 (m, 1 H) 4.03 - 4.14 (m, 4 H) 5.97 (s, 1 H). 
13

C NMR (101 MHz, 

CDCl3): 16.43, 19.80, 24.75, 25.48, 29.33, 30.77, 33.91, 35.86, 37.69, 39.67, 42.86, 50.31, 

61.76, 80.98, 94.21, 105.38, 171.30. IR (neat) νmax: 2930, 2872, 1734, 1445, 1377, 1246, 1204, 

1161, 1110, 1048, 1025, 1006, 968, 938, 824. HRMS (ESI-TOF) m/z: [M+H]
+  

Calcd for 

C19H32O8P  419.1835; Found 419.1827. 

 

6,8-dimercaptooctanoic acid(3.39) 

This compound was prepared according to the published procedure
132

: Lipoic acid (1.22g, 

5.9mmol) was dissolved in 0.25M NaHCO3 (25 ml) and the solution was cooled to 0°C. NaBH4 

(0.9g, 23.8mmol) was added slowly to the solution and the temperature was kept below 4°C.  

The reaction mixture was stirred for an additional 30 minutes before it was purged with argon for 

25 minutes. The reaction mixture was acidified with 6N HCl to pH=1 and extracted with toluene 

(3x10ml). The combined organic layer was washed with water, brine, dried over MgSO4, and 

filtered. The solvent was evaporated to give a clear oil.   
1
H NMR (400 MHz, CDCl3): 1.29 (d, 

J=7.78 Hz, 1 H) 1.34 (t, J=8.03 Hz, 1 H) 1.40 - 1.66 (m, 5 H) 1.67 - 1.73 (m, 1 H) 1.79 - 1.93 (m, 

1 H) 2.33 (t, J=7.28 Hz, 2 H) 2.56 - 2.74 (m, 2 H) 2.82 - 2.94 (m, 1 H) 9.70 (br., 1 H) 
13

C NMR 

(101 MHz, CDCl3) : 22.28, 24.27, 26.41, 33.93, 38.62, 39.27, 42.71, 179.89. 
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6,8-bis((((3R,6R,8aS,12S,12aR)-3,6-dimethyl-10-oxodecahydro-3H-3,12-epoxy[1,2]diox-

epino [4,3-i]isochromen-9-yl)methyl)thio)octanoic acid(3.38) 

6,8-dimercaptooctanoic acid (20.8mg) was dissolved in THF(10ml) and cooled to 0°C in an ice 

bath. TEA was added dropwisely and the mixture was stirred for 15 minutes before artemisitene 

(28mg) in THF (10ml) was transferred in the reaction mixture by a cannula. The reaction mixture 

was stirred for 12 hours at r.t. and the solvent was evaporated off.  The residue was taken up in 

Sat. NH4Cl and extracted with DCM (4x 10ml). The combined organic layer was washed with 

water and brine, dried over MgSO4 and filtered. DCM was removed in vacuo to give crude 

product which was purified on a silica gel column to give product (28.7mg) as a white solid.  mp. 

63.2-64.5. 
1
H NMR (400 MHz, CDCl3): 1.01 (d, J=5.02 Hz, 3 H) 1.12 - 1.25 (m, 2 H) 1.26 (br., 

1 H) 1.41 - 1.47 (m, 4 H) 1.57 (s, 1 H) 1.79 (d, J=10.54 Hz, 1 H) 1.93 (br., 1 H) 1.95 - 2.03 (m, 3 

H) 2.03 - 2.11 (m, 3 H) 2.15 - 2.25 (m, 1 H) 2.44 (t, J=12.67 Hz, 1 H) 3.59 (d, J=6.53 Hz, 2 H) 

3.62 - 3.73 (m, 2 H) 3.73 - 3.81 (m, 1 H) 3.93 (t, J=6.90 Hz, 2 H) 5.88 (s, 1 H). 
13

C NMR (101 

MHz, CDCl3): 19.78, 24.25, 24.83, 25.13, 26.05, 27.16, 31.96, 33.39, 34.20, 35.85, 37.53, 39.63, 

44.04, 49.88, 50.58, 79.33, 94.00, 105.41, 170.86, 192.15. IR (neat) νmax: 2923, 2868, 1731, 

1469, 1436, 1331, 1202, 1183, 1113, 1036, 996, 969, 884, 835. HRMS (ESI-TOF) m/z: [M+H]
+  

Calcd for C38H57O12S2  769.3291; Found 769.3298. 

 

((3R,6R,8aS,9R,12S,12aR)-3,6-dimethyl-10-oxodecahydro-3H-3,12-epoxy[1,2]dioxepino[4,3 

-i]isochromen-9-yl)methyl pyrrolidine-1-carbodithioate (3.36b) and ((3R,6R,8aS,9R,12S, 

12aR)-3,6-dimethyl-10-oxodecahydro-3H-3,12-epoxy[1,2]dioxepino[4,3-i]isochromen-9-

yl)methyl pyrrolidine-1-carbodithioate (3.36a) 



68 

Carbon disulfide (31μl, 39mg) was added into the solution of pyrrolidine (18mg) and 1-Butyl-3-

methylimidazolium tetrafluoroborate ([Bmim]BF4)(20%) in THF(0.5ml) at 0 °C. White solid 

formed instantly, the reaction mixture was stirred for 5 minutes and artemisitene (89mg) in THF 

(0.6ml) was added. The reaction mixture was allowed to warm to r.t. slowly and stirred overnight. 

After removal of THF under reduced pressure, the residue was taken up with water and extracted 

with EtOAc (3x25ml). The combined organic layer was washed with water, brine and dried over 

Na2SO4. The organic solvents were removed in vacuo to give crude product which was purified 

by flash column with 10% EtOAc/Hexanes as the eluent system to give compound 3.36a (33mg) 

and 3.3.6b (27mg) as white solids. 

3.36a: Mp 151-152.3 °C. 
1
H NMR (400 MHz, CDCl3): 1.29 (d, J=7.78 Hz, 1 H) 1.34 (t, J=8.03 

Hz, 1 H) 1.40 - 1.66 (m, 3 H) 1.67 - 1.73 (m, 1 H) 1.79 - 1.93 (m, 1 H) 2.33 (t, J=7.28 Hz, 2 H) 

2.56 - 2.74 (m, 2 H) 2.82 - 2.94 (m, 1 H) 9.70 (br., 1 H). 
13

C NMR (101 MHz, CDCl3): 22.28, 

24.27, 26.41, 33.93, 38.62, 39.27, 42.71, 179.89. IR (neat) νmax: 2923, 2868, 1731, 1469, 1436, 

1331, 1183, 1113, 996, 969, 884, 835. HRMS (ESI-TOF) m/z: [M+H]
+  

Calcd for C38H57O12S2  

428.1565; Found 428.1529. 

 

3.36b: Mp 151.5-152.9 °C. 
1
H NMR (400 MHz, CDCl3): 0.99 (d, J=6.02 Hz, 2 H) 1.10 - 1.23 

(m, 1 H) 1.34 - 1.43 (m, 2 H) 1.44 (s, 3 H) 1.45 - 1.52 (m, 3 H) 1.69 (dd, J=13.30, 3.01 Hz, 1 H) 

1.89 - 2.02 (m, 4 H) 2.02 - 2.13 (m, 4 H) 2.33 - 2.55 (m, 1 H) 2.81 (t, J=6.65 Hz, 1 H) 3.59 - 3.74 

(m, 3 H) 3.82 - 3.87 (m, 1 H) 3.90 (t, J=6.90 Hz, 2 H) 5.92 (s, 1 H). 
13

C NMR (101 MHz, 

CDCl3): 19.86, 24.25, 24.69, 25.51, 26.05, 30.97, 33.88, 35.94, 37.62, 40.21, 43.78, 44.48, 

50.36, 50.67, 54.99, 80.48, 94.10, 105.29, 170.75, 192.32. IR (neat) νmax : 2923, 2868, 1731, 

http://www.chemicalbook.com/ChemicalProductProperty_EN_CB1381191.htm
http://www.chemicalbook.com/ChemicalProductProperty_EN_CB1381191.htm
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1469, 1436, 1331, 1183, 1113, 996, 969, 884, 835. HRMS (ESI-TOF) m/z: [M+H]
+  

Calcd for 

C20H29NO5S2  428.1565; Found 428.1391. 

 

 

((3R,6R,8aS,9R,12S,12aR)-3,6-dimethyl-10-oxodecahydro-3H-3,12-epoxy[1,2]dioxepino 

[4,3-i]isochromen-9-yl)methyl piperidine-1-carbodithioate(3.37) 

This compound was prepared similarly to compound 3.36 with the exception that piperidine was 

used as the nucleophile. Mp 125-126 °C. 
1
H NMR (400 MHz, CDCl3): 0.88 (t, J=6.15 Hz, 1 H) 

1.00 (d, J=5.77 Hz, 3 H) 1.23 - 1.29 (m, 1 H) 1.41 (br., 1 H) 1.46 (s, 3 H) 1.47 - 1.51 (m, 1 H) 

1.63 (br., 1 H) 1.70 (br., 7 H) 1.94 (d, J=15.31 Hz, 2 H) 2.00 - 2.11 (m, 2 H) 2.39 (br., 1 H) 2.84 

(t, J=6.65 Hz, 1 H) 3.65 (dd, J=14.31, 6.53 Hz, 1 H) 3.90 (dd, J=13.93, 7.15 Hz, 2 H) 4.12 (d, 

J=7.28 Hz, 1 H) 4.27 (br., 2 H) 5.93 (s, 1 H). 
13

C NMR (101 MHz, CDCl3): 19.86, 24.25, 24.71, 

25.52, 31.00, 33.91, 35.95, 37.64, 43.82, 44.41, 50.38, 76.70, 77.03, 77.34, 80.49, 94.09, 105.31, 

170.82, 195.22. IR (neat) νmax: 2940, 2856, 2099, 1732, 1483, 1448, 1436, 1378, 1279, 1243, 

1232, 1202, 1106, 1035, 994, 969, 880, 834. HRMS (ESI-TOF) m/z: [M+H]
+  

Calcd for 

C21H32NO5S2  442.1722; Found 442.1745. 
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Part B 

Lead optimization of Falcipain-2 and falcipain-3 inhibitors 
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CHAPTER 5  

5.1 Introduction 

 

Artemisinins are currently considered to be the most efficacious antimalarial agents. 

WHO has recommended artemisinin combination therapy (ACT), which consists of an 

artemisinin analogue together with an agent from another class of antimalarials having a long 

half-life, as a first-line treatment for uncomplicated malaria in 2003 
133

. Widespread usage of 

artemisinin derivatives for treatment of malaria has raised concern over the possible emergence 

of resistance to this group of drugs.  In fact, a recent report revealed the parasite has shown slow 

response to artemisinin therapy near the Thai-Cambodian border
134

. Luckily, there is no evidence 

this resistance has spread to other regions so far
135, 136

. However, the development of resistance is 

thought to be just matter of time. Therefore, there is an urgent need for discovering and 

developing new antimalarial drugs as novel targets.  

Among the emerging targets for the antimalarial chemotherapy, cysteine proteases of the 

malaria parasite are necessary for infectivity and are validated targets
137

. Falcipain-2 and 

falcipain-3 are two cysteine proteases which play an important role in the life cycle of malarial 

parasites by degrading the hemoglobin to provide essential amino acids for parasites survival. 

Inhibitors of falcipain-2 and falcipain-3 are of interest in antimalarial drug research as well. Until 

now, most inhibitors in the literature are peptides or peptidomimetics which are not selective. 
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Recently the X-ray structure of FP-2 and FP-3 together with small molecule 

inhibitors(co-crystals) have been solved and deposited to the Protein Data Bank
138

. Our group is 

interested in developing non-peptidic small molecules inhibitors of falcipain-2 and falcipain-3. 

During virtual screening based on the crystal structure of FP-2, compound 5.1 emerged as an 

active lead. Biological evaluation showed that the compound 5.1 had an IC50 value in the 

micromolar range. By using scaffold hopping
139

 we designed a series of 1,2,3-triazole 

compounds with the expectation of enhancing the potency of the lead compound 5.1 by 

exploring the SAR of this lead.  

 

FP-2 IC50=2.20 µM 

FP-3 IC50=4.95 µM 

Figure 5-1  Structure of virtue screening hit 

5.2 Research design and methods 

5.2.1 Docking studies 

Docking studies of 5.1 (Fig. 5.2 a) indicated that the tetrazole core could be replaced by a 

1,2,3-triazole ring without loss of the key interaction with Gly83, thus optimization of 5.1 could 

be enhanced by click chemistry via classic Huisgen cycloaddition.  The isoxazole ring is retained 

because it showed extensive hydrogen bond interactions with important residues in the S1-S1’ 

pockets of the FP-2 active site (residues in Fig 5-2a: C42, Q36, W206, N173). The alkyl or aryl 

groups with varying hydrophobic and other stereoelectronic properties were thus appended only 
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at the fourth position of the 1,2,3-triazole moiety. In this triazole series, our aim was to 

investigate the effects of different substitutions on the activity of the fourth position of triazole 

that would be specifically interacting with the residues of the critical S2 pocket. 

 

a                                                                                                                                                                             b 

     

Figure 5-2  Docking pose of compound 5.1(a) and designed compound 5.5c (b) 

5.2.2 Synthetic chemistry 

The synthesis strategy of the 1,2,3-triazole compounds are showed in Scheme 5.1. The 

acyl chloride intermediate 5.3 was readily synthesized by coupling commercially available 5-

methylisoxazol-3-amine (5.2) with chloroacetyl chloride, which, upon substitution reaction with 
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sodium azide in acetone, gave an azide intermediate 5.4. The 1,2,3,-triazole derivatives were 

then obtained through classic Huisgen 1,3-dipolar cycloaddition between the organic azide 5.4 

and a series of terminal alkynes  (Table 5.1).  

 

Scheme 5-1  General synthetic route 

Reagents and conditions: a) chloroacetyl chloride, triethylamine 0℃; 88% b) sodium azide, 

reflux 12h, 80%;  c) acetylene, Copper(II) sulfate, sodium ascorbate, water/t-BuOH (1:1) r.t to 

55 °C, 70-90%. (see table 5-1 for Structure of different R substituents) 

 

5.2.3 Biological evaluation 

The synthesized compounds were evaluated for inhibition of recombinant FP-2 and FP-3 

(Table 5-1). 

Table 5-1  Structure and in vitro activity of triazole compounds* 

 

Compounds structure IC50 
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µM 

No. R= FP2 SD FP3 SD 

5.5a 

 

>50 NA >50 NA 

5.5b 

 

55.190 ±22.27 >50 NA 

5.5c 

 

19.875 ±1.63 39.735 ±9.99 

5.5d 
 

>50 NA >50 NA 

5.5e 

 

>50 NA >50 NA 

5.5f 
 

>50 NA >50 NA 

5.5g 
 

>50 NA >50 NA 

5.5h 

 

38.4 ±9.991 >50 NA 

5.5i 

 

38.96 ±21.213203 >50 NA 
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5.5j 

 

>50 NA >50 NA 

5.5k 
 

>50 NA >50 NA 

5.5l 
 

>50 NA >50 NA 

E64 

 

0.06  0.187  

* NA=not available; SD=standard deviation 

5.3 Results and Discussions 

The docking study showed compounds 5.5a–l adopted similar binding modes as shown 

for the parent compound 5.1 (Fig. 5-2). However, very few compounds displayed inhibition of 

FP-2 in in vitro test.  These active compounds have common features as they all have bulkier 

substituents at the phenyl ring compared to the other analogues. For example, compound 5.5c, 

5.5h and 5.5i afforded modest activity against FP-2. Additional hydrophobic interactions with 

Leu172 which is buried deep in the S2 pocket of FP-2 might account for the modest activity of 

these compounds against FP-2. The inactivity of other 1,2,3-triazole analogues might be due to 

unsuitable or shorter hydrophobic R groups as compared to the parent compound 5.1. However, 

the molecular weight of these compounds is relatively low. Most of them have a MW around 

300, which gives them adequate room for improvement in accordance of Lipinski’s Rule of 

Five
140

. From this point of view, compound 5.5f and 5.5e which have aldehyde and hydroxyl 

functionalities, respectively are two good starting points for continued study.  
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5.4 Experimental 

 

The selected compounds were tested for inhibition of FP-2, FP-3 and against chloroquine 

resistant (W2 strain) P.falciparum parasites. To determine IC50 values, recombinant FP-2 and 

FP-3 were incubated for 30 minutes at room temperature in 100 mM sodium acetate, pH 5.5, and 

10 mM dithiothreitol with different concentrations of inhibitors prepared from stocks in DMSO 

(maximum concentration of DMSO in the assay was 1%). After 30 minutes, the substrate Z-Leu-

Arg-AMC (benzoxycarbonyl-Leu-Arg-7-amino-4-methyl-coumarin) in the same buffer was 

added to a final concentration of 25 μM. Fluorescence was monitored for 15 minutes at room 

temperature in a Lab systems Fluoroskan Ascent spectrofluorometer. IC50 values were 

determined from plots of percent activity over compound concentration using Prism v5.0 

software (GraphPad). 

 

2-chloro-N-(5-methylisoxazol-3-yl)acetamide (5.3): 

 In a 5 mL round bottom flask was Reactant 2 (0.196 g, 2 mmol) in DCM (2 ml) to give a light 

yellow solution. Chloroacetyl chloride (0.176 ml, 2.200 mmol) was added. The reaction mixture 

became murky and stirred for 2 hours. Then saturated NaHCO3 solution was added to quench the 

reaction. The reaction mixture was poured into a separatory funnel and extracted with DCM 

(3x50ml).  The combined organic layers were washed with water, brine and dried over Na2SO4. 

Crude product was used without further purification. 
1
H NMR (400 MHz, DMSO-d6): 10.32 (br., 

1H), 5.66 (s, 1H), 3.34 (s, 2H), 1.42 (s, 3H); 
13

C NMR (100MHz, DMSO-d6):  170.3, 165.3, 

158.0, 96.5, 43.2, 12.4  
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2-azido-N-(5-methylisoxazol-3-yl)acetamide (5.4) :  

In a 10 mL round-bottomed flask was added 2-chloro-N-(5-methylisoxazol-3-yl) acetamide 

(50mg, 0.286 mmol) in acetone (5 ml) to give a yellow solution. Sodium azide (28mg) and 

sodium iodide (4.29 mg, 0.029 mmol) were added. The reaction vessel was heated to 60 °C for 4 

hr. The reaction turned to brown. The solvent was evaporated under reduce pressure and the 

residue was taken up with water and extracted with EtOAc (3X10ml). The organic layer was 

combined and washed with water, brine, dried over Na2SO4, filtered and evaporated in vacuo.  

The crude was purified with flash column to give the product as white solid. 
1
H NMR (400 MHz, 

CDCl3):  9.46 (br., 1H), 6.73 (s, 1H), 4.16 (s, 2H), 2.43 (s, 3H); 
13

C NMR (101 MHz, CDCl3) :  

170.4, 165.1, 136.4, 96.3, 52.6, 12.7. 

 

General procedure for preparation of triazole compounds: 

To a suspension of azide(45mg, 0.248 mmol) and selected alkyne (0.071 ml, 0.745 mmol) in 

water (1 ml) and t-BuOH(1 ml) was added sodium ascorbate (0.025 ml, 0.025 mmol) followed 

by Copper(II) sulfate pentahydrate (0.025 ml, 4.97 µmol). The suspension was vigorously stirred 

for 16 hrs, and then more catalyst was added if needed, or heated at 55 °C for 4 hrs. The reaction 

mixture was filtered and washed with diethyl ether to yield products. 

N-(5-methylisoxazol-3-yl)-2-(4-phenyl-1H-1,2,3-triazol-1-yl)acetamide (5.5a)  

MP: 186-187 ºC; 
1
H NMR (400 MHz, DMSO-d6) δ 8.56 (s, 1H), 7.86 (d, J = 7.43 Hz, 2H), 7.46 

(t, J = 7.53 Hz, 2H), 7.29 - 7.39 (m, 1H), 6.58 (br., 1H), 5.41 (br., 2H), 2.36 (s, 3H); 
13

C NMR 
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(126 MHz, DMSO-d6) δ 170.0, 157.6, 146.2, 130.6, 128.9, 127.9, 125.1, 123.0, 96.1, 51.9, 12.1;  

IR (neat) (cm-1): 3090, 3036, 1723, 1630, 1483, 1432, 1270, 1207, 923, 821, 766, 695; HRMS 

(ESI-TOF) m/z: [M + Na] calcd for C14H13N5O2Na, 306.0967; found, 306.0960.  

 

N-(5-methylisoxazol-3-yl)-2-(4-(naphthalen-1-yl)-1H-1,2,3-triazol-1-yl)acetamide (5.5b)  

White solid, m.p. 187-188 ºC. 
1
H NMR (500 MHz, CDCl3) δ 11.52 (br., 1H), 8.60 (s, 1H), 8.47 

(d, J = 4.27 Hz, 1H), 7.94 - 8.12 (m, 2H), 7.73 - 7.85 (m, 1H), 7.52 - 7.72 (m, 3H), 6.63 (br., 1H), 

5.51 (s, 2H), 3.31 (s, 1H), 2.39 (s, 3H); 
13

C NMR (126 MHz, DMSO-d6) δ 170.0, 157.6, 145.3, 

133.5, 130.2, 128.5, 128.5, 127.8, 126.8, 126.6, 126.1, 125.7, 125.6, 125.2, 96.2, 51.9, 12.1; 

3225, 3043, 2982, IR (neat) νmax : 1727, 1631, 1487, 1435, 1271, 1211, 1057, 1031, 925, 798, 

771, 700. HRMS (ESI-TOF) m/z: [M + Na] calcd for C18H15N5O2Na, 356.1123; found, 

356.1126. 

 

N-(5-methylisoxazol-3-yl)-2-(4-(4-phenoxyphenyl)-1H-1,2,3-triazol-1-yl)acetamide (5.5c)  

Light yellow solid, m.p.  186-187 ºC. 
1
H NMR (400 MHz, DMSO-d6) δ 11.49 (br., 1H), 8.53 (s, 

1H), 7.87 (d, J = 8.28 Hz, 2H), 7.42 (t, J = 7.53 Hz, 2H), 7.17 (t, J = 7.28 Hz, 1H), 7.08 (t, J = 

7.78 Hz, 4H), 6.59 (br., 1H), 5.43 (br., 2H), 2.38 (s, 3H); 
13

C NMR (101 MHz, DMSO-d6) δ 

170.0, 157.6, 156.4,156.4, 145.8, 130.1, 126.9, 126.0, 123.7, 122.7, 118.9, 118.8, 96.1, 51.9, 

12.1; IR (neat) νmax : 3223, 3098, 3038, 2979, 1728, 1632, 1486, 1433, 1247, 750. HRMS (ESI-

TOF) m/z: [M + Na] calcd for C20H17N5O3Na, 398.1229; found, 398.1237. 
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N-(5-methylisoxazol-3-yl)-2-(4-(pyridin-3-yl)-1H-1,2,3-triazol-1-yl)acetamide (5.5d)  

Light yellow solid, m.p. 192.1-192.5 ºC. 
1
H NMR (500 MHz, DMSO-d6) δ 11.51 (br., 1H), 9.08 

(br., 1H), 8.72 (s, 1H), 8.56 (br., 1H), 8.24 (d, J = 8.12 Hz, 1H), 7.50 (dd, J = 5.13, 6.84 Hz, 1H), 

6.59 (s, 1H), 5.47 (s, 2H), 2.26 - 2.46 (m, 3H); 
13

C NMR (126 MHz, DMSO-d6) δ 170.0, 164.6, 

157.6, 148.9, 146.4, 143.5, 132.4, 124.0, 123.8, 96.1, 52.0, 12.1; IR (neat) νmax : 3070, 3029, 

1710, 1574, 1508, 1453, 1224, 1039, 900, 827, 805, 703. HRMS (ESI-TOF) m/z: [M + Na] calcd 

for C13H12N6O2Na, 307.0919; found, 307.0931. 

 

2-(4-(3-hydroxyphenyl)-1H-1,2,3-triazol-1-yl)-N-(5-methylisoxazol-3-yl)acetamide (5.5e)  

Gray solid, m.p. 190-192 ºC. 
1
H NMR (400 MHz, DMSO-d6) δ 11.49 (br., 1H), 9.55 (s, 1H), 

8.50 (s, 1H), 7.21 - 7.46 (m, 3H), 6.70 - 6.87 (m, 1H), 6.59 (br., 1H), 5.41 (br., 2H), 2.37 (s, 3H); 

13
C NMR (101 MHz, DMSO-d6) δ 170.0, 164.7, 157.8, 157.6, 146.3, 131.8, 130.0, 123.0, 116.1, 

115.0, 111.9, 96.2, 51.9, 12.1; IR (neat) νmax : 3263, 3154, 1716, 1632, 1576, 1474, 1438, 1346, 

1245, 1217, 1153, 1082, 1051, 924, 807, 714. HRMS (ESI-TOF) m/z: [M + Na] calcd for 

C15H13N5O3Na, 322.0916; found, 322.0937.  

 

2-(4-(4-formylphenyl)-1H-1,2,3-triazol-1-yl)-N-(5-methylisoxazol-3-yl)acetamide (5.5f)  

White solid m.p. 187-188 ºC. 
1
H NMR (500 MHz, DMSO-d6) δ 11.52 (br., 1H), 10.02 (s, 1H), 

8.78 (s, 1H), 8.11 (d, J = 7.27 Hz, 2H), 8.00 (d, J = 7.27 Hz, 2H), 6.59 (br., 1H), 5.47 (br., 2H), 

2.38 (br., 3H); 
13

C NMR (126 MHz, DMSO-d6) δ 195.7, 173.7, 149.6, 137.3, 136.2, 130.3, 

125.5, 124.6, 118.1, 96.1, 52.0, 38.7, 37.5, 12.1; IR (neat) νmax : 3237, 3180, 3089, 1711, 1694, 
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1579, 1510, 1351, 1302, 1230, 1204, 1171, 1041, 958, 901, 822, 809. HRMS (ESI-TOF) m/z: [M 

+ Na] calcd for C15H13N5O3Na, 334.0916; found, 334.0938. 

 

2-(4-(4-fluorophenyl)-1H-1,2,3-triazol-1-yl)-N-(5-methylisoxazol-3-yl)acetamide (5.5g)  

Light yellow solid, m.p. 217-219 ºC. 
1
H NMR (400 MHz, DMSO-d6) δ 11.48 (br., 1H), 8.56 (s, 

1H), 7.90 (dd, J = 5.65, 8.16 Hz, 2H), 7.29 (t, J = 8.66 Hz, 2H), 6.58 (s, 1H), 5.42 (s, 2H), 2.37 

(s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 170.0, 157.6, 145.4, 127.2, 127.1, 123.0, 120.0, 

116.0, 115.8, 96.1, 51.9, 12.1 .IR (neat) νmax : 3222, 3089, 3036, 2979, 1723, 1632, 1567, 1484, 

1434, 1270, 1228, 1207, 1053, 1029, 925, 837, 814, 702. HRMS (ESI-TOF) m/z: [M + Na] calcd 

for C14H12FN5O2Na, 324.0873; found, 324.0882.  

 

2-(4-(6-methoxynaphthalen-2-yl)-1H-1,2,3-triazol-1-yl)-N-(5-methylisoxazol-3-yl)acetamide 

(5.5h) 

White solid, m.p. 202-204 ºC. 
1
H NMR (400 MHz, DMSO-d6) δ 11.51 (br., 1H), 8.63 (s, 1H), 

8.35 (s, 1H), 7.93 - 7.99 (m, J = 8.53 Hz, 1H), 7.89 (d, J = 8.53 Hz, 1H), 7.34 (s, 1H), 7.17 - 7.23 

(m, 1H), 6.60 (s, 1H), 5.46 (s, 2H), 3.89 (s, 3H), 2.38 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 

170.0, 157.5, 146.5, 133.9, 129.6, 129.3, 128.7, 128.6, 127.4, 125.9, 124.1, 123.5, 122.9, 119.4, 

119.1, 106.0, 96.2, 55.2, 12.1; IR (neat) νmax : 3263, 3140, 2975, 1724, 1629, 1478, 1437, 1268, 

1262, 1218, 1165, 1025, 925, 864, 827, 799, 734. HRMS (ESI-TOF) m/z: [M + Na] calcd for 

C19H17N5O3Na, 386.1229; found, 386.1218. 
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N-(5-methylisoxazol-3-yl)-2-(4-(4-pentylphenyl)-1H-1,2,3-triazol-1-yl)acetamide (5.5i) 

White solid, m.p. 209-210 ºC. 
1
H NMR (400 MHz, DMSO-d6) δ 11.49 (br., 1H), 8.51 (s, 1H), 

7.75 (d, J = 7.78 Hz, 2H), 7.27 (d, J = 8.03 Hz, 2H), 6.59 (s, 1H), 5.41 (s, 2H), 2.59 (t, J = 7.65 

Hz, 2H), 2.38 (s, 3H), 1.52 - 1.65 (m, 2H), 1.28 - 1.37 (m, 4H), 0.86 (t, J = 6.78 Hz, 3H); 
13

C 

NMR (101 MHz, DMSO-d6) δ 170.0, 164.8, 157.6, 146.3, 142.2, 128.8, 128.1, 125.1, 122.7, 

96.2, 51.9, 34.9, 30.9, 30.5, 22.0, 13.9, 12.1; IR (neat) νmax : 3225, 3088, 3036, 2926, 1729, 1632, 

1574, 1486, 1435, 1271, 1214, 1051, 1031, 926, 823, 701. HRMS (ESI-TOF) m/z: [M + Na] 

calcd for C19H23N5O2Na, 376.1749; found, 376.1756. 

 

N-(5-methylisoxazol-3-yl)-2-(4-(m-tolyl)-1H-1,2,3-triazol-1-yl)acetamide (5.5j) 

White solid, m.p. 185-186 ºC. 
1
H NMR (400 MHz, DMSO-d6) δ 11.29 (br., 1H), 8.01 (s, 1H), 

7.60 (s, 1H), 7.50 - 7.57 (m, J = 7.53 Hz, 1H), 7.47 (s, 1H), 7.22 (t, J = 7.53 Hz, 1H), 7.01 - 7.11 

(m, J = 7.78 Hz, 1H), 6.52 (s, 1H), 5.26 (s, 2H), 2.83 (s, 2H), 2.31 (s, 3H); 
13

C NMR (101 MHz, 

CDCl3) δ 168.9, 157.2, 137.6, 135.7, 129.8, 128.1, 128.0, 125.6, 122.1, 121.1, 95.7, 62.9, 20.7, 

11.9; IR (neat) νmax : 3294, 3255, 3188, 3106, 2942, 1707, 1563, 1514, 1224, 1094, 1055, 1035, 

1008, 960, 894, 808, 790, 699. HRMS (ESI-TOF) m/z: [M + Na] calcd for C15H15N5O2Na, 

320.1123; found, 320.1141. 

 

N-(5-methylisoxazol-3-yl)-2-(4-(phenoxymethyl)-1H-1,2,3-triazol-1-yl)acetamide (5.5k) 

White solid, m.p. 183-185 ºC. 
1
H NMR (400 MHz, DMSO-d6) δ 11.46 (br., 1H), 8.24 (s, 1H), 

7.31 (t, J = 7.91 Hz, 2H), 7.05 (d, J = 8.28 Hz, 2H), 6.95 (t, J = 7.28 Hz, 1H), 6.58 (s, 1H), 5.40 
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(s, 2H), 5.17 (s, 2H), 2.37 (s, 3H); 
13

C NMR (101 MHz, DMSO-d6) δ 170.0, 164.7, 158.1, 157.6, 

142.6, 129.5, 126.2, 120.8, 114.6, 96.1, 60.9, 51.8, 12.1; IR (neat) νmax : 3263, 3220, 3078, 2983, 

1722, 1625, 1564, 1484, 1432, 1269, 1232, 1206, 1041, 925, 820, 755, 690. HRMS (ESI-TOF) 

m/z: [M + Na] calcd for C15H15N5O3Na, 336.1073; found, 336.1091. 

 

2-(4-(3-chloropropyl)-1H-1,2,3-triazol-1-yl)-N-(5-methylisoxazol-3-yl)acetamide (5.5l) 

White solid, m.p. 166-168 ºC. 
1
H NMR (400 MHz, DMSO-d6) δ 11.42 (br., 1H), 7.91 (s, 1H), 

6.57 (br., 1H), 5.32 (s, 2H), 3.63 - 3.88 (m, 2H), 2.78 (t, J = 6.78 Hz, 2H), 2.37 (s, 3H), 2.00 - 

2.13 (m, 2H); 
13

C NMR (101 MHz, DMSO-d6) δ 169.9, 164.8, 157.6, 145.4, 123.8, 96.1, 51.7, 

44.6, 31.8, 22.2, 12.1; IR (neat) νmax: 3273, 3222, 3057, 2979, 1725, 1629, 1484, 1435, 1355, 

1270, 1213, 1068, 1031, 927, 824, 767, 711. HRMS (ESI-TOF) m/z: [M + Na] calcd for 

C11H14ClN5O2Na, 306.0734; found, 306.0705. 
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