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ABSTRACT 

 The Upper Jurassic Smackover Formation is a prolific producer of hydrocarbons known 

throughout the U.S. Gulf Coast region, and typically consists of carbonate lime mudstones, ooid 

grainstones, microbial boundstones, and dolostones. Recent exploration efforts in the Conecuh 

Embayment of southwest Alabama revealed the presence of two black, siliciclastic shale layers 

containing abundant terrestrially derived organic matter within the Smackover Formation. The 

shale layers provide interesting insight into the sequence stratigraphy and paleoclimate of the 

Conecuh Embayment, and the source of the hydrocarbons accumulated there. 

 The two shale layers reach a maximum thickness of 50 feet along the longitudinal axis of 

the embayment and pinch out along the rim of the embayment. X-ray diffraction shows the 

mineralogy of the shales to be dominated by clay minerals, with lesser amounts of quartz and 

carbonate. The dominant clay mineral found within the shales is illite and mixed layer illite-

smectite. The dominant presence of illite is considered to be a result of diagenesis and related to 

the advanced thermal maturity of the samples. Detrital chlorite is also present within the samples 

along with minor amounts of potassium feldspar, pyrite, and kaolinite. Palynological analysis of 

the organic matter within them revealed the presence of several genera of ferns, mosses, and 

conifers suggesting a warm, humid climate during the late Jurassic. Source rock analysis of the 

shales shows insufficient total organic carbon (0.32 %) and poor quality Type-III kerogens for 

consideration as a source rock. 

 Deposition of the Smackover Formation occurred during a third-order sea level rise 

during the late Jurassic. Deposition of the shale layers is interpreted to have occurred during 
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relative falls in sea level allowing a greater influx of siliciclastics into the embayment. The 

relative sea level falls may be a result of imposing higher order sequences on the third-order 

sequence. In the model presented here the Smackover Formation is divided into three sequences 

with the Smackover carbonates forming the transgressive and highstand systems tracts, where 

the shales represent lowstand systems tracts. The results of this study provide a better 

understanding of the Jurassic petroleum system contained within the Conecuh Embayment. 
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CHAPTER 1 – INTRODUCTION  

 The Triassic rifting of Pangea and the subsequent opening of the Gulf of Mexico during 

the Jurassic resulted in the deposition of a series of sedimentary wedges that thicken basinward 

into the Gulf of Mexico and into the centers of four marginal salt basins (Wade and Moore, 

1993; Mancini et al., 1990). Within the Conecuh Embayment of southwest Alabama the Jurassic 

stratigraphy consists of evaporites, carbonates, and siliciclastics derived from the Appalachian 

highlands to the northeast (Mancini et al., 1990). Deposition of Mesozoic strata proved favorable 

for the formation of oil and gas reservoirs in southwest Alabama, and there are several economic 

accumulations of hydrocarbons within and around the Conecuh Embayment. The most notable of 

these reservoirs is the Little Cedar Creek Field, which lies within the study area along the 

northern edge of the Conecuh Embayment. Cumulative production from the field as of April 

2011 has been in excess of 12 million barrels of oil, with monthly production totals greater than 

175,000 barrels of oil (Alabama Oil and Gas Board, 2011). Little Cedar Creek Field represents 

the most significant discovery of hydrocarbons in the onshore Gulf of Mexico region in the last 

50 years (Baria, personal communication). Recent exploration efforts revealed two black, 

organic-rich shales containing terrigenous pollens and plant material within the carbonate 

Smackover Formation. The shales were first described by Baria et al. (2008) and could have 

implications for the Jurassic sequence stratigraphy of southwest Alabama.  

 Seven conventional cores from within the Conecuh Embayment were examined for 

lithology, color, and sedimentary structures. To verify core descriptions, previous petrographic 

work and facies descriptions were incorporated into the study. Well log data (Gamma Ray, 
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Spontaneous Potential, Neutron Porosity) from 25 wells within the study area were calibrated 

with core descriptions and used to construct cross-sections and a sequence stratigraphic model. 

While well logs and core descriptions served as the primary dataset, limited seismic data were 

also incorporated to better understand the stratal geometries of the Jurassic sediments in the 

Conecuh Embayment.  

 Eight shale samples and one Smackover carbonate sample from five wells were collected 

and analyzed for hydrocarbon source potential. X-ray diffraction was used to determine the 

mineralogy of the Conecuh shales. In addition to describing the lithology, mineralogy, and 

source potential of the shales, palynology data were also obtained to identify the terrigenous 

organic matter within the shales. 

 The goal of this study is to further describe the Conecuh Embayment shales, to 

investigate their potential as a hydrocarbon source rock, and to add to previous sequence 

stratigraphic interpretations for the up-dip portions of the Jurassic strata of southwest Alabama. 

The presence of terrestrial organic matter within the Smackover is a significant discovery and 

could represent a changing climate and depositional environment for the Alabama portion of the 

carbonate ramp that rimmed the developing Gulf of Mexico. The sequence stratigraphic model 

presented here could also have a significant impact on exploration within the Conecuh 

Embayment as current production is located within highstand systems tracts of Smackover units 

B and C (Baria et al., 2008).
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CHAPTER 2 – CONECUH EMBAYMENT  

 The study area is located in the northern of arm of the Conecuh Embayment (Fig. 1), a 

bilobate embayment created by the marine transgression onto the southern extension of the 

Paleozoic Appalachian fold belt. The embayment is approximately 50 miles wide at its mouth, 

extends inland for up to 30 miles, and is bounded by the Conecuh Ridge complex to the north 

and the Pensacola Arch to the south. Within the embayment the Smackover Formation ranges in 

thickness from 0-320 feet. The present structural configuration of the Conecuh Embayment 

consists of monoclinal dip to the southwest at approximately 150 ft/mile (Baria et al., 2008).   

 
Figure 1 - Conecuh Embayment Study Area with Smackover Depositional Limit (Depositional limit from 

Baria et al., 2008). 

 The study area is part of the northern Gulf of Mexico rim that is a passive continental 

margin associated with the opening of the Atlantic Ocean and the Gulf of Mexico (Mancini et al.
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2008). During the Late Triassic and the Jurassic, the structural and stratigraphic framework for 

the Gulf of Mexico was formed as the North American Plate separated from the South American 

and African plates. Triassic syn-rift deposition into the tensional grabens was initially dominated 

by red beds and volcanics. Marine flooding first entered the Gulf of Mexico basin from the west 

during the Callovian and eventually became connected to the Atlantic Ocean late in the Jurassic 

(Salvador, 1987). The resulting Mesozoic and Cenozoic stratigraphic section of the U.S. Gulf 

Coast is a seaward-dipping wedge of sediment deposited into several differentially subsiding 

subbasins. Interior salt basins in Mississippi, Louisiana, and Texas, as well as the Conecuh and 

Manila Embayments of Alabama served as the primary depocenters for the Mesozoic strata. 

Basement-related paleotopographic highs and movement of the Jurassic Louann Salt provided 

the structural elements that affected deposition in the northern Gulf of Mexico rim (Mancini et 

al., 2008).  

 Prominent structural features near the updip limit of the eastern Gulf of Mexico rim 

include a series of northeast-trending pre-Jurassic ridges associated with the South Georgia rift 

system. The Choctaw Ridge is the northern most structural feature and, along with the Conecuh 

Ridge, forms the Manila Embayment. The Conecuh Ridge marks the western extent of the South 

Georgia rift system and forms the northern side of the Conecuh Embayment (Fig. 2). The 

Pensacola Arch to the southeast of the embayment is related to folding or drape over the 

Paleozoic rocks of the Chattahoochee Arch and extends southwest into the Florida panhandle 

(Prather, 1992). To the southwest of the study area, the Wiggins Arch remained a prominent 

positive structural feature throughout most of the Jurassic. Evidence for this is the absence of the 

Jurassic Louann Salt over much of the arch and the rapid thinning of later sediments against the 

flanks of the arch (Cagle and Khan, 1983). The Conecuh and Manila Embayments are separated 
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from the eastern side of the Mississippi Interior Salt Basin by the Mobile Graben and by a 

northwest trending fault system (Prather, 1992). The southern extension of the Appalachian fold 

belt and the Mesozoic extensional features of southwest Alabama created a complex setting for 

Smackover deposition into the embayments and subbasins of Alabama (Baria et al., 2008).  

 
Figure 2 - Structural Features of southwest Alabama (Modified from Mancini et al., 1992; Prather, 1992; 

Baria et al., 2008). 

2.1 – Regional Stratigraphy 

 Underlying the Mesozoic sedimentary sequence of southwest Alabama are Paleozoic 

sedimentary rocks similar to those that crop out in the Valley and Ridge province of north 

Alabama, and metamorphic and igneous rocks. The Late Triassic marked the beginning of 

sedimentary deposition into the depocenters of the northern Gulf of Mexico rim (Fig. 3, 4).
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Figure 3 - Northern Gulf of Mexico Regional Stratigraphy (from Salvador, 1987; Mancini et al., 1990; and Prather, 1992). 
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Figure 4 - Detailed Conecuh Embayment Stratigraphy (Lithologic descriptions from: Benson, 1988; Wade 

and Moore, 1993; Baria, personal communication; and the author). 
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 During the Triassic to early Jurassic the Eagle Mills Formation was deposited 

unconformably onto Paleozoic basement. Deposition of the Eagle Mills Formation occurred as 

syn-rift deposition associated with the break-up of Pangea. The Eagle Mills Formation consists 

of red-to-gray terrigenous shale, siltstone, sandstone, and conglomerate. In the absence of the 

overlying Louann-Werner evaporites, the Eagle Mills grades upward into the Norphlet sands 

with no recognizable breaks in well log data or in cuttings (Wade and Moore, 1993). 

 The deposition of the Werner Anhydrite and Louann Salt represents the first marine 

incursion into the developing Gulf of Mexico following rifting. Deposition of these units 

occurred within highly restricted lagoons in flooded rift valleys and basins (Prather, 1992). 

Within the study area the Werner Anhydrite consists of white, finely crystalline, massive 

anhydrite. The distribution of the Werner Anyhdrite has led to interpretations that it is a marginal 

facies of the more extensive Louann Salt (Wade and Moore, 1993). The unit reaches a maximum 

thickness of approximately 500 feet within the adjacent Mississippi Interior Salt Basin where 

active subsidence was taking place. It is thinner and much less extensive in the Conecuh 

Embayment. The Werner Anhydrite has been assigned a Callovian age based on regional 

stratigraphic relationships (Mancini et al., 1990). Within the Conecuh Embayment the Werner 

Anhydrite is easily identifiable in well log data and appears to have been deposited in 

topographical lows during the initial transgression of Jurassic seas. 

 The Louann Salt overlies the Werner Anhydrite (Fig. 3) and is a much more extensive 

evaporite deposit found in marginal basins around the Gulf rim and beneath the continental shelf 

and slope of the Gulf of Mexico. Although salt movement and dissolution have led to variations 

in present thickness of the Louann Salt, estimates place the original thickness of the formation 

between 5,000-10,000 feet. The updip depositional limits of the Louann Salt were controlled by 
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peripheral fault systems around the northern Gulf rim (Wade and Moore, 1993). The Louann 

Salt, like the underlying Werner Anhydrite, has been interpreted to have been deposited during 

intermittent marine incursion into topographic lows and actively subsiding depocenters. The 

Louann Salt is absent along the crest of the Wiggins Arch, and on the Choctaw and Conecuh 

Ridge complexes, including within the Conecuh Embayment. The Louann has been assigned a 

Callovian to earliest Oxfordian age based on palynomorph data (Mancini et al., 1990). 

 The Norphlet Formation overlies the Louann-Werner evaporites along the northern Gulf 

rim from Texas to the Florida panhandle (Fig. 3 and 4). The formation changes character and 

thickens from west to east. In southwest Alabama the Norphlet consists of alluvial redbeds, 

eolian dune and interdune subarkoses, and alluvial fan conglomeratic sandstones (Wade and 

Moore, 1993). In the absence of the Louann Salt, the Norphlet Formation disconformably 

overlies the Werner Anhydrite. The Norphlet Formation was deposited on a broad desert plain 

that was bordered by the Appalachian highlands to the northeast and by the opening Gulf of 

Mexico to the southeast. While there are several distinct lithofacies recognized in the Norphlet, 

the up-dip portions are dominated by a conglomeratic sandstone, red-beds in a central position, 

and by eolian sands down-dip (Mancini et al., 1990). Stratigraphically, the uppermost portion 

was reworked by transgressing Jurassic seas; however, differentiation of this portion may be 

difficult where the seas moved across well sorted dunes. In the Conecuh Embayment the 

Norphlet was deposited as an extensive desert dune and alluvial fan deposits (Prather, 1992). The 

Norphlet is believed to be Oxfordian-aged (Mancini et al., 1990). 

 Overlying the Norphlet Formation are the carbonates of the Smackover Formation. The 

contact between the two is sharp and interfingering rarely occurs between carbonate and 

sandstone beds (Wade and Moore, 1993). Deposition was greatly influenced by 
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paleotopography, basin subsidence, salt tectonics, and basement configuration (Mancini et al., 

1990). Within the interior salt basins, Smackover thickness may exceed 1,000 feet; however, the 

formation thins substantially in the study area. Within southwest Alabama the formation 

averages just 300 feet thick. In the Conecuh Embayment, where Smackover deposition was 

greatly influenced by paleotopography, the formation thins over paleohighs, thickens around the 

flanks of the embayment, and then thins again within the embayment center (Wade and Moore, 

1993). The Smackover is generally interpreted to have been deposited on a carbonate ramp and is 

late Oxfordian age based on ammonite data recovered from the lower portions of the unit 

(Mancini et al., 1990). In addition to significant variations in thickness, the Smackover also 

varies lithologically from basin to basin in southwest Alabama (Benson, 1988). Smackover 

lithologies of the Conecuh Embayment will be described in further detail below. 

 Conformably overlying the Smackover Formation is the Buckner Member of the 

Haynesville Formation (Fig. 3 and 4). The Buckner/Haynesville units have been interpreted to be 

Kimmeridgian in age (Mancini et al., 1990). The Buckner of southwest Alabama consists of a 

basal anhydrite, interbedded anhydrite and shale, massive halite, evaporitic red beds, evaporitic 

carbonate and arkosic sandstones that, except for the latter, were deposited in a restricted lagoon. 

In the Conecuh Embayment the majority of the Buckner Member is composed of the evaporitic 

redbed unit consisting of interbedded red and gray shale, red siltstone, and red to tan argillaceous 

siltstone. Commonly interbedded anhydrite and dense dolomite are found within the Buckner 

Member (Wade and Moore, 1993). The contact between the Buckner and underlying Smackover 

is often gradational and deposition of the Buckner is seen as being the result of continued 

regression that was responsible for the deposition of the uppermost Smackover carbonates 

(Mancini et al., 1990). 
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2.2 – Smackover Formation in Alabama 

 Depositional basins for the Smackover in Alabama include the eastern limits of the 

Mississippi Interior Salt Basin, and the Conecuh and Manila Embayments (Fig. 2). 

Paleotopography in the area controlled deposition of the Smackover and resulted in large lateral 

variations from paleohighs into basin centers. The lithology and thickness of the Smackover 

Formation also varies greatly from basin to basin (Benson, 1988).  

 The Smackover Formation is typically divided into three informal members: lower (C), 

middle (B), and upper (A). In general, each successive Smackover sequence shows a basinward 

shift in facies (Heydari and Baria, 2006; Baria, et al., 2008; Baria, 2011, personal 

communication). The lower Smackover was deposited during an initial transgression of Jurassic 

seas that reworked the underlying Norphlet Formation and began Smackover deposition into 

topographic lows. Initial transgression began during the Callovian and continued rapidly into the 

Oxfordian. Regional studies indicate that the initial Jurassic transgression occurred from the 

southeast through the Conecuh Embayment and from the southwest through the Mississippi 

Interior Salt Basin with the Wiggins Arch remaining a large positive feature to the southwest 

(Benson, 1988).  

 Smackover C onlapped the Norphlet and deposition reached the furthest inland of the 

Smackover sequences in Alabama (Baria, 2011, personal communication). The contact between 

the underlying Norphlet and Smackover C is usually abrupt (Mancini et al., 1992). Lower 

Smackover carbonates are typically algal laminites that are commonly interbedded with 

intraclastic packstone and wackestones. Algal laminites and the lack of bioturbation indicate 

deposition in a distressed environment such as a tidal flat. There is evidence of periodic subaerial 

exposure in the lower Smackover, and in Escambia County the presence of fenestrae and a tan to 
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light-gray color indicate periods of deposition in an oxygenated environment (Benson, 1988). 

Sea level continued to rise and the algal laminites pass upward into peloidal-oncoidal 

wackestones and packstones showing a transition into a deeper, more open marine environment. 

Deposition is indicative of a moderate energy environment. The lack of higher energy 

grainstones could indicate that the sequence is being driven by rapid sea level rise and that 

carbonate production was unable to keep up. Smackover C carbonates vary greatly in thickness 

in southwest Alabama; they are the thinnest near the centers of depositional basins and thicken 

up-dip and around paleo-highs. The thickening of Smackover C carbonates updip can be 

attributed to the rapid sea level rise that outpaced carbonate production (Benson, 1988). 

 Carbonates of the Smackover B sequence onlapped the Smackover C carbonates, 

presumably after a local regression. Smackover B deposition did not transgress as far inland as 

that of the original Smackover seas (Baria, 2011, personal communication). The middle 

Smackover member is dominated by laminated mudstone interbedded with peloidal and skeletal 

wackestones and packstones (Mancini et al., 1992). Lithologies in the Smackover B are typically 

limestone although some occurrences of dolomite do exist. Portions of the middle Smackover are 

heavily burrowed while other portions lack any bioturbation (Benson, 1988). The laminated 

mudstones are typically dark-gray to black, nonfossiliferous, and lack bioturbation (Sassen and 

Moore, 1988). The skeletal and peloidal wackestones are light brown to gray. Smackover B 

carbonates produce a distinctive response on neutron and density logs due to the higher organic 

and argillaceous contents (Benson, 1988). 

 Thickness of the middle Smackover can also vary significantly. In the extreme up-dip 

portions of the embayments and around paleohighs, this member is absent. However, the middle 
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member thickens basinward and can reach thicknesses of over 400 feet in the Mississippi Interior 

Salt Basin (Benson, 1988). 

 The Smackover A sequence represents the termination of carbonate deposition in the 

study area during the Oxfordian. Smackover A carbonates are conformably overlain by the 

Buckner Member of the Haynesville Formation. The contact between the two is often gradational 

(Mancini et al., 1992). The upper Smackover member is also the most varied and complex 

lithologically (Benson, 1988). Smackover A consists of subtidal to intertidal, oolitic, oncolitic, 

and peloidal grainstones and packstones that are interbedded with intertidal and supratidal 

laminated or fenestral mudstones and local anhydritic sabkha deposits. Siliciclastics are common 

in the upper member of the Smackover, particularly in the updip portions of the embayments 

(Mancini et al., 1992). Thickness of the Smackover A also varies greatly throughout southwest 

Alabama and is inversely proportional to that of Smackover B. While the Smackover A does not 

encroach landward as far as Smackover B, it is thickest in the updip portions of the basins and 

thins basinward (Benson, 1988). 

2.3 – Source Potential of the Smackover 

 Jurassic reservoirs of the Norphlet and Smackover formations have been prolific 

producers of hydrocarbons throughout the Gulf Coast region (Sassen et al., 1987). In Alabama 

the Smackover has been the most prolific hydrocarbon producer since the late 1960’s (Benson, 

1988). Norphlet and Smackover reservoirs are typically bounded below by the Louann Salt or 

the Werner Anhydrite (locally in the Conecuh Embayment) and above by the Haynesville Shale 

and Buckner Anhydrite, providing geological evidence for a close association between source 

and reservoir rock. Geochemical analysis of rock samples and crude oil suggests that the 
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laminated mudstones of the lower Smackover are the main source of hydrocarbons in Jurassic 

reservoirs (Sassen et al., 1987).  

 The lower Smackover consists of laminated mudstones deposited in an anoxic and 

probably hypersaline environment. Such an environment is favorable for the preservation of 

organic matter. Sassen et al. (1987) found that samples collected from the lower Smackover 

throughout the Gulf Coast region contained a mean total organic content (TOC) of 0.51%, and 

samples collected from Alabama wells contained a mean TOC of 0.60%. While not incredibly 

rich in organic carbon, carbonate source rocks are generally accepted to have generative potential 

with 0.3% or greater TOC (Tissot and Welte, 1984). Visual kerogen assessment indicates that the 

lower Smackover contains an oil-prone algal-derived kerogen and that kerogen from higher land 

plants is not a significant component in the lower Smackover. An advanced maturity history of 

lower Smackover rocks also indicates that partial conversion of kerogen has occurred, meaning 

that the TOC amounts may have been higher than currently present levels (Sassen et al., 1987) 

 Upper Smackover rocks from the Gulf Coast were found to have a mean TOC of 0.24% 

and a mean TOC of 0.34% in samples collected from Alabama. This indicates a significantly 

lower source potential for the upper Smackover member. No other significant source potential 

was found in other Jurassic rocks of the Gulf Coast region (Sassen et al., 1987). 

 Several factors may have contributed to the lower Smackover being able to generate 

commercial quantities of hydrocarbons even at lower TOC values. Because of diagenetic factors, 

kerogen was concentrated along laminations and stylolites that resulted in very efficient 

expulsion of generated hydrocarbons. Also, the kerogen found in the lower Smackover is of algal 

origin and undiluted by terrestrial input from higher land plants giving it greater oil generative 

potential. Lastly, because of the regional stratigraphy and the presence of multiple seal rocks, 
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migration did not result in the dispersion of hydrocarbons. Instead, much of the generated 

hydrocarbons were channeled into Norphlet and Smackover reservoirs (Sassen et al., 1987). 

2.4 – Terrestrial Shales in the Conecuh Embayment 

 Baria et al. (2008) first noted the presence of several organic-rich, siliciclastic shale 

layers within the nearly pure carbonates of the Smackover Formation in Alabama. The shale 

layers range in thickness from 0.5-50 feet and are easily correlative across the eastern lobe of the 

Conecuh Embayment. The shale layers appear to pinch out up-dip and along the rims of the 

embayment and thicken basinward before grading into the muddy outer-ramp carbonates of the 

normal Smackover sequence. The shales are black, laminated, and nearly devoid of marine 

fauna. Terrestrially derived herbaceous organic matter is also found within the shale layers 

(Baria et al., 2008). 

 Deposition of the shale layers is interpreted to have occurred as a product of runoff from 

the paleohighs rimming the Conecuh Embayment during as many as three sea level falls in 

southwest Alabama. This interpretation is based on the siliciclastic lithology of the shale and the 

abundance of plant fragments hosted within the shale layers. Locally this interpretation has 

implications for reservoir development in and around the Little Cedar Creek Field, as the sea 

level falls disrupted deposition of the reservoir facies found there. Regionally, this interpretation 

could push earlier sequence stratigraphic interpretations of three Smackover sequences eastward 

into Alabama (Baria et al., 2008). 
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CHAPTER 3 – PETROLEUM SOURCE ROCKS 

 Hunt (1996) defines a petroleum source rock as any rock that has the capability to 

generate and expel enough hydrocarbons to form an economic accumulation of oil or gas. A 

petroleum source rock can be further described with respect to thermal maturity. A potential 

source rock is one that possesses all of the characteristics of a petroleum source rock but is 

thermally immature and has yet to generate hydrocarbons. An effective source rock is a 

thermally mature source rock that has generated and expelled hydrocarbons into a reservoir 

(Hunt, 1996). Inactive source rocks have stopped generating petroleum, possibly due to uplift or 

erosion, but still have petroleum generating potential. As a petroleum source rock matures even 

further it may become a spent source rock that lacks any further generative potential (Peters and 

Cassa, 1994). The ability of a source rock to generate hydrocarbons and the types of 

hydrocarbons that will be produced is largely dependent on: 1) the type of kerogen or quality of 

organic matter present, 2) the quantity of organic matter and 3) the level of thermal maturity. 

Several techniques have been established to help determine a rock’s source potential (Hunt, 

1996). The techniques used in this study will be discussed in detail in Chapter 5. 

3.1 - Kerogen Types and Classification 

The most important factor influencing the generation of oil and gas is the hydrogen 

content found in the organic matter within the source rock. The hydrogen content is directly 

controlled by the quality of the organic matter and the type of kerogen contained in a source rock 

(Hunt, 1996). Kerogen is the organic constituent of sedimentary rocks that is neither soluble in 

aqueous alkaline solvents or the common organic solvents. Organic matter that can be extracted
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using the latter solvents is referred to as bitumen (Tissot and Welte, 1984). Small amounts of 

bitumen originate from lipid components in once-living organisms, however most is generated 

by the thermal dissociation of kerogen (Peters and Cassa, 1994).  

Several methods exist for identifying the type of kerogen present in a source rock, 

ranging from light microscopy to geochemical methods. Each of the methods has benefits and 

drawbacks when determining type and quality of organic matter present and should most often 

be used in combination (Tissot and Welte, 1984).  

There are several classification systems for kerogen types. The most popular scheme 

breaks kerogens into four types: Type I, II, III, and IV (Table 1). The four types can be 

distinguished using the hydrogen/carbon (H/C) versus oxygen/carbon (O/C) ratios and are 

commonly plotted on a van Krevelen diagram (Peters and Cassa, 1994). When considering 

samples taken from various depths within the same formation, the kerogens normally cluster 

along a curve called an evolution path. Since the original H/O ratios are influenced by the 

original organic matter and environment of deposition, closely related environments of 

deposition result in the same path on a van Krevelen diagram (Tissot and Welte, 1984). Modified 

van Krevelen diagrams (Fig. 5) allow hydrogen index versus oxygen index calculated from Rock 

Eval data to be used to distinguish between kerogen types (Peters and Cassa, 1994). In general, 

the higher the hydrogen index the more oil generative potential kerogen has, and kerogens that 

have a lower hydrogen index are more prone to produce gas (Peters and Cassa, 1994). Strongly 

reducing environments such as anoxic lakes or silled basins preserve and enhance the amount of 

hydrogen content in organic matter, whereas oxidizing environments tend to reduce it (Hunt, 

1996). 
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Kerogen Type 
Source of Organic 

Matter (OM) 

Depositional 

Environment 
Expected Product 

I 
Algae, Reworked 

lipid rich OM 
Lacustrine Oil 

II 

Phytoplankton, 

Zooplankton, and 

other Microorganisms 

Marine 
Oil 

Gas 

III Land Plants Deltas, basin margins Gas 

IV Highly Degraded OM 
Oxygenated 

Environments 
Non-generative 

Table 1 - Kerogen types, their depositional environments, and expected hydrocarbon products (from Tissot 

and Welte, 1984; Hunt, 1996). 

 

 
Figure 5 - Modified van Krevelen diagram used for determining kerogen types (modified from Hunt, 1996). 

Type I kerogens have a high initial H/C ratio (>1.5) and a low O/C ratio (<0.1) (Tissot 

and Welte, 1984). The atomic H/C and O/C ratios of Type I kerogens correspond to hydrogen 

indices greater than 450 and oxygen indices of less than 15 (Fig. 5) (Hunt, 1996). The oil and gas 
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generative potential for Type I kerogen is the highest of the four types. Type I kerogens are rich 

in lipid materials and are derived from algal lipids or from organic matter that has been enriched 

in lipids by microbial activity. Type I has a particularly high proportion of lipid materials that 

may be the result of selective preservation of algal material or the severe biodegradation of other 

organic matter. The source of Type I kerogen is predominantly lacustrine algae. Another source 

of Type I kerogen is from the reworking of organic matter by microorganisms, again resulting in 

the concentration of lipid-rich material. Type I kerogens are the least common of the four 

kerogen types and are typically associated with boghead coals and lacustrine depositional 

environments. Type I kerogens are considered to be oil-prone (Tissot and Welte, 1984). 

Type II kerogens have a lower initial H/C ratio than do Type I kerogens but are still very 

important. The oil generative potential of Type II kerogens is still significant and is found to be 

the source material in many of the world’s oil and gas fields, including those of Jurassic age in 

the North Sea and Saudi Arabia. Type II kerogens are deposited in a marine environment and are 

composed of a mixture of phytoplankton, zooplankton, and other microorganisms deposited in a 

reducing environment (Tissot and Welte, 1984). The atomic H/C and O/C ratios of Type II 

kerogens correspond to hydrogen indices between 450-600 and oxygen indices of less than 100 

(Fig. 5) (Hunt, 1996). 

Type III kerogens have a relatively low initial H/C ratio (<1.0) and a high initial O/C 

ratio (as high as 0.2 or 0.3) (Tissot and Welte, 1984). The atomic H/C and O/C ratios of Type III 

kerogens correspond to hydrogen indices of less than 125 and a range of oxygen indices from 

approximately 10-200 (Fig. 5) (Hunt, 1996). Rocks that contain Type III kerogen often lack oil 

generative potential because they are hydrogen deficient, however at sufficient maturity they 

may generate significant amounts of gas and oil condensate. Type III is also less productive in 
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pyrolysis studies. Type III kerogens are derived from terrestrial plant sources and often contains 

identifiable plant debris. Type III kerogens are frequently found in detrital-rich areas around 

continental margins (Tissot and Welte, 1984). 

Type IV kerogens are very low in initial H/C ratios and high in O/C ratios and lack any 

hydrocarbon generative potential (Tissot and Welte, 1984). 

3.2 - Quantity of Organic Matter 

 The amount of organic matter in a sedimentary rock is typically expressed as TOC. The 

overall efficiency of converting organic carbon into economic accumulations of oil and gas is 

generally less than 15 wt% (Hunt, 1996). The inefficiency of the petroleum system makes 

establishing the lower boundary of TOC content an important parameter in determining the 

ability of a rock to generate petroleum (Table 2). For the majority of shale source rocks the TOC 

content is about 2%.  The lower limit for shale-type source rocks has been established to be 0.5% 

TOC. Some carbonate source rocks have shown generative potential with as little as 0.3% TOC 

(Tissot and Welte, 1984). 

Generation Potential TOC in Shales (wt. %) TOC in Carbonates (wt. %) 

Poor 0.0-0.5 0.0-0.2 

Fair 0.5-1.0 0.2-0.5 

Good 1.0-2.0 0.5-1.0 

Very Good 2.0-5.0 1.0-2.0 

Excellent >5.0 >2.0 
Table 2 - Classic interpretations of TOC content in source rocks based on early oil window maturity (from 

Jarvie, 1991). 

3.3 - Thermal Maturity 

  The evolution of organic matter during diagenesis, catagenesis and metagenesis changes 

the properties of the organic matter. These properties can be used to describe the level of 

maturation for the rock that is being evaluated. Various methods are commonly used in 

petroleum exploration to determine maturation, ranging from optical to geochemical properties 
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of the organic matter present. Optical methods include vitrinite reflectance, fluorescence, thermal 

alteration index, spore color index, and conodont alteration index. Geochemical properties used 

include pyrolysis, gas chromatography, and biomarkers (Hunt, 1996; Tissot and Welte, 1984). 

Those used in this study will be discussed in detail in Chapter 5. 

 As organic matter is subjected to increasingly higher temperatures during burial, the 

kerogen undergoes thermal degradation. Under reducing conditions the degradation of the 

kerogen leads to the formation and yield of petroleum-range hydrocarbons (Hunt, 1996). During 

the initial stages of burial the kerogen undergoes diagenesis. During the diagenesis of kerogen is 

a marked decrease of oxygen and a correlative increase of carbon content with increasing depth. 

With respect to petroleum exploration, the kerogen is typically referred to as being immature and 

little or no hydrocarbon generation has occurred (Tissot and Welte, 1984). Key maturity 

indicators for the stage of diagenesis include vitrinite reflectance <0.5% and pyrolysis Tmax < 

430°C (Hunt, 1996). 

   The second stage of kerogen degradation is referred to as catagenesis. Catagenesis 

occurs in deeper samples and is marked by the decrease in hydrogen content and of the H/C 

ratio. The catagenesis stage corresponds with the main zone of oil generation and the beginning 

of the cracking zone that produces “wet gas”. Vitrinite reflectance of kerogen during the stage of 

catagenesis is typically in the range of 0.5-2.0% (Tissot and Welte, 1984). 

 Metagenesis is the final stage of kerogen degradation and is observed in very deep 

samples or in areas with a high geothermal gradient. At this stage vitrinite reflectance numbers 

are >2.0%. The elimination of hydrogen becomes slow and the residual kerogen is composed 

mostly of carbon. With respect to petroleum exploration the stage of metagenesis lies strictly 

within the dry gas zone (Tissot and Welte, 1984). 
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 In petroleum exploration the depth interval at which a source rock generates and expels 

most of its oil is referred to as the “oil window”. Due to variations in the geothermal gradient 

from basin to basin the oil window cannot be thought of as having a hard depth boundary. Oil 

windows can also vary slightly depending on the type of kerogen found within a source rock. 

However, most oil windows occur within the temperature range from 60-160°C and correspond 

with the earlier stages of catagenesis. Source rock evaluation techniques have different 

parameters that correspond with respect to the oil window (Figure 6). For pyrolysis data the oil 

window corresponds with a Tmax range of about 430-470°C. As the thermal maturity level 

increases in a source rock it enters the “gas window” and the remaining kerogen begins to 

produce gas. If maturity continues to increase, hydrocarbon generation will stop and the source 

rock will have become a spent source rock (Hunt, 1996). 

 
Figure 6 - Zones of hydrocarbon generation with respect to thermal maturity, data is hypothetical (modified 

from Hunt, 1996).
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CHAPTER 4 – SEQUENCE STRATIGRAPHY 

 Sequence stratigraphy is defined as the study of rock relationships within a time-

stratigraphic framework of repetitive, genetically related strata that are bounded by surfaces of 

erosion and their correlative conformities (Mitchum et al., 1977; Posamentier et al., 1988; Van 

Wagoner et al., 1988). Sequence stratigraphy is widely regarded to have originated out of the 

seismic stratigraphy work of Mitchum et al. (1977) that was the culmination of work performed 

at the Exxon Production Research facility (Fig.7).  

 
Figure 7 - Family tree of sequence stratigraphy (from Catuneanu, 2006). 

 In fact, the roots of this method of stratigraphic analysis can be traced as far back as 

Hutton who recognized the repetition through time of erosion, transport, and deposition. Sloss 
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(1962, 1963) was the first to recognize the chronostratigraphic significance of rock stratigraphic 

units that were bounded by unconformities of interregional scope and applied the term sequence 

to them. Regardless of the historical perspective and origins of sequence stratigraphy, the idea 

has changed the way stratigraphic analysis of the sedimentary rock record is performed. Since 

the original seismic stratigraphy concepts were published, several models along with variations 

in terminology have been developed for the application and practice of sequence stratigraphy. 

Despite the variations in interpretation, the controls on the stratigraphic signatures in the rock 

record remain the interaction of tectonics, eustasy, and climate. Tectonics and eustasy control the 

available space for the accumulation of sediment, while all three have influence on the sediment 

supply available to fill the accommodation space (Catuneanu, 2006). Key terminology and 

several of the sequence stratigraphic models that are in use today are discussed in this chapter. 

4.1 – Sequence Stratigraphy Terminology 

 A complex jargon of terminology has been applied to the concept of sequence 

stratigraphy since the introduction of seismic stratigraphy by Mitchum et al. (1977). Despite 

sequence stratigraphy being widely accepted into geologic literature, there has been no 

standardization of terminology as there has been with other types of stratigraphy. The lack of 

standardization arises from a lack of consensus on some basic principles and the complex 

terminology that is used is difficult to standardize (Catuneanu, 2006). Due to variations in the 

terminology a brief review of the key terminology used in this study will be given here. 

 The fundamental unit of any sequence stratigraphic interpretation is the depositional 

sequence. Mitchum et al. (1977) defines a sequence as a stratigraphic unit of genetically related 

strata bounded at its top and base by unconformities or their correlative conformities. For the 

purposes of sequence stratigraphy an unconformity, the key bounding surface of a sequence, is 
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defined as an observable discordance in a given stratigraphic section that shows evidence of 

erosion or nondeposition with obvious strata terminations (Mitchum et al., 1977). Subaerial 

unconformities are the stratigraphic surfaces that are the bounding surface of a depositional 

sequence on the continental side of a basin (Catuneanu, 2006). Basinward of the unconformities 

are areas of continuous deposition, and here the unconformities are replaced by their correlative 

conformities for the purposes of dividing depositional sequences (Mitchum et al., 1977). 

Correlative conformities can be defined as the stratigraphic surface that best approximates the 

paleo-seafloor at the end of a forced regression (Catuneanu, 2006). Chronostratigraphically a 

depositional sequence is significant because it was deposited during a given interval of geologic 

time defined by the sequence boundaries. Chronostratigraphic surfaces that are related to 

sequences are the unconformities and their correlative conformities that make up the sequence 

boundaries and strata surfaces within the sequence boundaries. A depositional sequence is an 

interpretation that is not primarily dependent on rock type, fossils, or depositional processes as 

they are widely variable within a depositional sequence. Therefore, sequence boundaries and 

strata surfaces may or may not be parallel to lithostratigraphic surfaces such as formations and 

lithofacies (Mitchum et al., 1977). Regardless of whether these surfaces are unconformable or 

conformable, they mark changes in the sedimentation regime across the boundary. Sequences are 

the result of a full stratigraphic cycle of changing depositional trends, and are often considered to 

be the result of a full cycle of relative sea level change (Catuneanu, 2006).  

 Sequences are composed of at least two or more systems tracts depending on the model 

used for interpretation. Systems tracts include all of the strata that accumulate during a particular 

stage of shoreline shifts. Systems tracts, like the sequences that they compose, are divided or 

bounded by key stratigraphic surfaces that have chronostratigraphic significance (Catuneanu, 
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2006). How each of the individual systems tracts are defined is typically model-dependent and 

basic definitions will be given here. The sequence models themselves will be discussed in further 

detail below. 

 The basal systems tract in a depositional sequence and therefore the stratigraphically 

oldest is the lowstand systems tract (LST). Deposition of the lowstand systems tract occurs 

during an interval of relative sea level fall and subsequent slow relative sea level rise. Falling sea 

level results in a steepening of the fluvial gradient and rivers are therefore forced to incise 

downward into existing strata. Reworked sediments and fluvial loads from the hinterland are 

carried further basinward and are deposited onto the previous highstand slope. This condition 

persists until sea level stabilizes and the lowstand systems tract begins to prograde as sediment 

supply begins to outpace accommodation space. The lowstand systems tract can be divided into a 

fan, deposited during sea level fall, and a wedge, deposited during the prograding phase as sea 

level stabilizes and begins to rise (Emery and Myers, 1996). 

 The transgressive systems tract (TST) is deposited during a relative rise in sea level when 

the accommodation space is increasing faster than the rate of sediment supply. Depositional 

systems during a relative sea level rise include alluvial, paralic, coastal and shelfal systems. 

Distally a TST may form a condensed section characterized by extremely low rates of 

deposition. The end of a TST occurs at a point when accommodation space and sediment supply 

become equal and progradation begins again. The strata surface that marks the end of the TST is 

known as the maximum flooding surface (Emery and Myers, 1996). 

 The youngest of the systems tracts is the highstand systems tract (HST) and is deposited 

after maximum transgression when the rate of sediment supply begins to again outpace the 

creation of accommodation space. Stratal architecture during a HST is initially aggradational 
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followed by progradation as sediment supply outpaces accommodation space during initial sea 

level falls, but before the development of the sequence boundary (Emery and Myers, 1996). 

 Several key stratigraphic surfaces are used to divide systems tracts within a depositional 

sequence. The maximum regressive surface is the surface that separates prograding strata below 

and the retrograding strata above and corresponds with the change from a regressive shoreline to 

a transgressive shoreline. The maximum regressive surface separates the LST from the TST. The 

maximum flooding surface is the point at which the shoreline shifts from being transgressive to 

regressive in nature. The surface separates retrograding strata below to prograding strata above. 

A maximum flooding surface marks the change from a transgressing shoreline to that of a 

regressive shoreline and separates the TST from the HST. These surfaces are easiest to identify 

in a seismic dataset where the geometries of onlapping or offlapping strata can be readily 

identified (Catuneanu, 2006). 

4.2 – Sequence Models 

 Since the original work of Mitchum et al. (1977) several variations of sequence models 

have been employed. The main variation in all of the models currently in use is how strata are 

packaged into a sequence (Fig. 8). They each use a different timing system for systems tracts and 

the placement of sequence boundaries in relation to each cycle of shoreline shifts. Each model 

has benefits and pitfalls to interpretation and each may work better in a particular set of 

circumstances (Catuneanu, 2006). Some of the aspects of the various sequence stratigraphic 

models are discussed below. 

 The depositional sequence models use the subaerial unconformity and the correlative 

conformity as the bounding surface of a sequence. The sequence boundary for depositional 

models is placed at the base of the lowstand systems tract (Catuneanu, 2006). In depositional  
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sequence models the sub-aerial unconformity is equated to the stage of base-level fall at the 

shoreline and correlative conformities are picked as the seafloor at the onset of regression. 

Depositional sequence IV is similar to the first three except that a falling stage systems tract 

(FSST) is recognized. Much of the debate within the depositional sequence interpretations 

centers around the placement of sequence boundaries within the shallow-marine environment. 

The continental side of a basin is likely to have a well developed sub-aerial unconformity during 

prolonged periods of base-level fall that becomes progressively younger as it develops basinward 

yet is easily recognizable. Basinward the correlative conformity also is likely recognizable due to 

strata geometries. However, in the shallow marine environment it is possible that portions of the 

correlative conformity could be reworked and make placement of the sequence boundary 

difficult. Regardless of the depositional sequence model used, the key to a valid interpretation is 

the recognition of facies shifts and shoreline shifts (Catuneanu, 2006). 

 When compared with the transgressive-regressive (T-R) model the depositional sequence 

models possess some distinct positives. In depositional sequence models the sequence 

boundaries are defined relative to the base-level curve and therefore are independent of 

sedimentation rates. Sedimentation rates may vary greatly along strike making the development 

of maximum flooding and maximum regressive surfaces that bound the T-R sequences highly 

diachronous and lessening the chronostratigraphic significance. Placing sequence boundaries at 

the subaerial unconformities effectively separates packages of genetically related strata. The key 

pitfall to these models is the interpretation of sequence boundaries in shallow-marine settings 

(Catuneanu, 2006). 
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Figure 8 - Sequence models, the placement of sequence boundaries within them, and their resulting systems 

tracts (from Catuneanu, 2006).  

  The transgresssive-regressive (T-R) sequence (Embry and Johannessen, 1992) offers an 

alternative way to package sedimentary strata into depositional sequences. The T-R sequence is 

bounded by surfaces that include subaerial unconformities on the basin margin and the maximum 

regressive surfaces seaward. The T-R sequence was developed in an attempt to bypass 

interpretation pitfalls found in earlier models and is useful in shallow-marine successions, 

especially in the absence of seismic data for corroboration. T-R models recognized the value of 

the subaerial unconformity as a sequence boundary at the continental margins of basins but 

eliminated the use of the correlative conformity in favor of the surface of maximum regression 

due to it being easily recognizable in shallow-marine environments. However, the development 

of the maximum regressive surface may be harder to recognize in deeper water settings. The 



 

30 
 

transgressive and regressive systems tracts of the T-R model are divided by the maximum 

flooding surface. The T-R model is not useful from an exploration perspective since much of the 

resolution is lost by the amalgamation of systems tracts into two large systems tracts (Catuneanu, 

2006). 

 The genetic stratigraphic sequence model (Fig. 8) uses the maximum flooding surfaces as 

sequence boundaries. The sequence of the genetic stratigraphic sequence model is divided into 

three systems tracts, the highstand, lowstand, and transgressive systems tracts. The systems tracts 

are defined in the same way as they are in the depositional sequence II model. The genetic 

sequence model overcomes some of the problems associated with other models, especially in 

shallow marine environments, in that maximum flooding surfaces are relatively easy to map 

across a basin. Maximum flooding surfaces are also typically easier to distinguish in well logs 

than subaerial unconformities. This means that the sequences of this model are bounded by a 

single and easily identifiable stratigraphic surface. This model is linked to the distinct 

recognition of shoreline regressions and transgressions and therefore evidence for 

syndepositional shoreline shifts must be found. Therefore, this model does not work for 

overfilled basins or for fluvial systems that act independent of base level changes. It can be 

particularly useful though in basins that exhibit a continuous rise in base level and there is an 

absence of subaerial unconformities for use as sequence boundaries (Catuneanu, 2006). 

4.3 – Sequence Stratigraphy and Carbonate Ramps 

Carbonate ramps are gentle seaward dipping surfaces with low gradients, generally on the 

order of a few meters per kilometer (Fig.9). Deposition on a ramp typically consists of updip 

shallow-water carbonates transitioning to deeper water and then into basinal sediments farther 

offshore (Tucker and Wright, 1990). Ramps can be divided into two main categories: homoclinal 
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ramps, that exhibit a gentle gradient into the basin, and distally steepened ramps reflected by 

gradient increases in the outer-ramp region (Tucker and Wright, 1990; Tucker et al., 1993). 

 

Figure 9 - Carbonate ramp depositional environments and associated facies. Abbreviations: sl – sea level, 

fwwb - fair-weather wave base, swb - storm-weather wave base (from Tucker et al., 1993). 

Whether carbonate ramps are homoclinal or distally steepened, deposition on carbonate 

ramps typically takes place in one of two environments, either shallow ramp and back ramp 

(shallow-water) or deep ramp and basin (deep-water) regions (Fig. 9). For this paper the shallow 

and back ramp regions will be referred to as the inner ramp, and the deep ramp and basin regions 

will be referred to as the outer ramp. Ramps can exhibit variations in facies patterns, particularly 

on the shallow and back ramp areas. Commonly the inner ramp will be dominated by a 

strandplain complex or a barrier-lagoon shoreline. Both strandplain complex and barrier-lagoon 

shoreline settings exhibit moderate- to high-energy environments. The third type of inner ramp 

setting is a low-energy ramp that is dominated by tidal flats, lagoons, and some sand shoals. 

Reefs are generally poorly developed on ramps, however patch reefs and pinnacle reefs do occur 

in the inner ramp setting and mud mounds develop on the outer ramp (Tucker et al., 1993). The 
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Jurassic Smackover Formation of the U.S. Gulf Coast was one of the first formations to be 

interpreted using the carbonate ramp model of deposition (Tucker and Wright, 1990).  

Sequence stratigraphy concepts can be applied to carbonate ramps relatively easily, 

especially when compared with the steeper-sided carbonate shelf environment (Tucker and 

Wright, 1990). The primary difference between siliciclastic shelves and carbonate ramps and 

shelves is the source of sediment. Siliciclastic shelves rely on the input of terrigenous sediment 

eroded from exposed highlands. In a carbonate environment the sediment is essentially created in 

situ given the right depositional conditions. The up-dip portions of ramps present a complex 

interplay of siliciclastic influx and carbonate production that may complicate interpretation. 

However, tectonics, climate, and global sea level influence the amount of sediment and the 

volume of space available for sediment deposition (Catuneanu, 2006).  

With respect to sequence stratigraphy, the most important depositional periods for 

carbonate ramps are the transgressive and highstand systems tracts (TST and HST). Lateral 

migration and ramp facies thickness is dependent on sea level changes and subsidence rates. 

Small sea level changes can have major impacts on the inner-ramp where the water is shallow. In 

deeper ramp settings sea level changes typically affect the location of the wave base and are 

important controls on the amount of reworking of bottom sediments. Homoclinal ramps exhibit a 

simple geometry that results in facies belts moving either up or down the ramp in response to 

relative sea level changes. During the TST the facies geometries that are created are dependent 

on the relative rates of sea level rise and carbonate sedimentation. When sea level rise outpaces 

carbonate sedimentation, a backstepping of the shoreline occurs and a drowning of earlier inner 

ramp facies occurs. If carbonate sedimentation is greater than the rate of sea level rise then 
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aggrading or prograding of the inner ramp can occur. During the HST aggrading and prograding 

of inner ramp facies may occur (Tucker et al., 1993). 

Lowstand systems tracts (LST) may display a variety of facies and depositional 

environments related to the relative fall of sea level (Catuneanu, 2006). Typically on a low-

gradient homoclinal ramp there will simply be a basinward shift in facies. During the lowstand a 

new area of inner-ramp deposition may occur at the shore face. Prolonged sea level standstill 

during the lowstand will result in the progradation of carbonate sands that compose a systems 

tract analogous to the shelf margin wedge (SMW) on siliciclastic margins. This is common 

during the formation of type-2 sequence boundaries, where sea level does not break below the 

shelf margin. If there is an active uplift of the hinterlands during the relative fall in sea level, an 

influx of siliciclastic material can be expected, resulting in the development of lowstand 

deposits. During the LST the inner ramp may be exposed and result in the formation of a 

sequence boundary (Tucker et al., 1993). The Smackover of the north-central Gulf of Mexico 

rim exhibits the formation of an LST during the formation of a type-2 sequence boundary on a 

carbonate shelf in an arid climate (Sarg, 2001). In this area the Smackover is a generally 

shallowing upward sequence that is capped by the development of anhydrites and red beds of the 

Buckner Member of the Haynesville Formation (Sarg, 2001; Heydari and Baria, 2006). 

In general, thick successions ramp limestones are comprised of 1-10 m-scale cycles that 

are generally shallowing upward cycles comprised of the TST and HST. The cycles are generally 

made up of lime-mudstones with storm beds that pass upwards into shallow-water grainstones 

deposited near the shoreface. The LST at the top or the sequence results in the development of 

paleokarsts, paleosols, or dolomite and/or evaporite beds dependant of climate (Tucker and 

Wright, 1993). 



 

34 
 

 

 

4.4 – Smackover Sequence Stratigraphy 

 Several interpretations of the Jurassic sequence stratigraphy of the U.S. Gulf Coast 

currently exist. Most of these studies have focused on the north-central Gulf Coast (Sarg, 2001; 

Heydari and Baria, 2006), southwest Alabama (Wade and Moore, 1993), the Mississippi Interior 

Salt Basin (Mancini et al., 1990), and the Manila Embayment (King and Hargrove, 1991). 

Prather (1992) interpreted the evolution of the Conecuh Embayment using a sequence 

stratigraphic model; however, the terrestrial shales recently discovered in the Conecuh 

Embayment were not incorporated into the interpretation.  

 Heydari and Baria (2006) proposed a sequence stratigraphic framework for the 

Smackover Formation of the north-central Gulf Coast (Fig. 10). The study combined the use of 

core, log, and seismic data from northern Louisiana and southern Arkansas resulting in the 

division of the Smackover into three sequences. The sequences named in ascending order are the 

Smackover “C”, the Smackover “B”, and the Smackover “A”. The lowstand systems tract (LST) 

for the “C” sequence is the Norphlet Formation. Following the LST, a shoaling-upward 

lithofacies succession was recognized ranging from a laminated lime mudstone, thin-bedded lime 

mudstone, bioturbated lime mudstone, wackestones – packstone, to an ooid grainstone. The 

absence of a deepening upward facies is interpreted to be due to the rapid sea level rise that 

deposited the Smackover Formation and that a recognizable transgressive systems tract (TST) 

was not deposited. The “C” sequence is a beach to basin prograding high stand systems tract 

(HST) (Heydari and Baria, 2006). 
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Figure 10 - Sequence stratigraphic model for the Smackover Formation in the north-central U.S. Gulf Coast. 

Note the development of 2 LSTs represented here by the basinal sandstone turbidites (from Heydari and 

Baria, 2006). 

 Capping the top of the C sequence are caliche deposits that formed during exposure to 

meteoric waters during a relative sea level fall. Also, near the bottom of the B sequence the 

presence of turbidites is used as evidence for a sea level fall. The base of the B sequence is 
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interpreted as the LST in the model. Another rise in sea level resulted in the deposition of a 

shoaling upward carbonate sequence that passes from wackestones to packstones to ooid 

grainstones. The absence of TST sedimentation resulted in the interpretation that sea level rise 

was again rapid. The grainstones at the top of the B sequence were subsequently exposed to 

subaerial processes during another seal-level fall. The base of the A sequence contains turbidites 

and sand was delivered to the shelf margin. The A sequence carbonates show a shoaling upward 

progression of lithofacies and were exposed to meteoric processes during a third sea level fall. 

Buckner Member evaporites overlie the Smackover A sequence and are interpreted to have been 

deposited during a relative sea level rise (Heydari and Baria, 2006).  

 Prather (1992) divided Oxfordian deposition in the Conecuh Embayment into three main 

systems tracts by constructing time-slice lithofacies maps. In this interpretation the Smackover 

and Haynesville were placed together into one genetic sequence. The basal sequence boundary 

was place within the Norphlet Formation before Jurassic seas encroached into the embayment. 

The re-worked portion of the Norphlet and deposition of the laminated lime-mud portion of the 

Smackover represents the TST, which during this time showed the typical onlapping and 

retrograding geometry. Subsequent shallowing upward and prograding sequences are interpreted 

as the HST and shelf margin wedges (SMW). The Buckner/Haynesville anhydrites and shales 

cap the sequence and are interpreted to have been deposited during a slow rise in relative sea 

level (Prather, 1992).  

 The recent shale discoveries in the Conecuh Embayment provide the opportunity to 

further understand the stratigraphic relationships of Oxfordian deposition in the area. In light of 

the additional data provided by recent drilling, the genetic sequence of Prather (1992) will be 

further subdivided using the model set forth by Heydari and Baria (2006).
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CHAPTER 5 – METHODOLOGY 

 Conventional cores taken from six wells and well logs from an additional 20 wells within 

the Conecuh Embayment were used as the primary dataset for this study (Fig. 11). Limited 

seismic data were also used to understand the geometries of the Jurassic strata within the study 

area. The Smackover shales were sampled from five of the wells and analyzed for their 

geochemical properties and mineralogy. Palynological data were acquired to identify the 

terrestrial pollens and materials first recognized by Baria et al. (2008). Core descriptions, seismic 

data and well log signatures, along with detailed petrographic analyses made available from 

previous studies, were used to place the deposition of the shales into a sequence stratigraphic 

framework. 

 
Figure 11 - Well locations within the study area. Wells with core control were chosen based on the presence of 

shale and to achieve a representative sample across the longitudinal axis of the northern arm of the Conecuh 

Embayment.
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5.1 – Applied Source Rock Geochemistry 

 The field of organic geochemistry has made significant contributions to the petroleum 

exploration industry, particularly the ability to identify and map source rocks for a petroleum 

system. Source rocks are mapped for richness, type, and thermal maturity to determine the 

geographic and stratigraphic extent of the petroleum source. Identification of an active source 

rock in a basin reduces exploration risk (Peters and Cassa, 1994). The most commonly used 

analytical methods for the purpose of identifying source rocks are total organic carbon content 

analysis, Rock Eval pyrolysis, and vitrinite reflectance analysis (Dembicki, 2009). To determine 

the richness, type, and thermal maturity of the Conecuh Embayment Smackover shales, samples 

were obtained from whole cores and sent to Geomark Research, Ltd. for analysis using the 

following methods. 

5.1.1 – Total Organic Carbon Analysis 

 Total organic carbon (TOC) is used to determine the organic richness of sedimentary 

rocks. TOC analysis is typically the first screening process to evaluate the potential of a 

formation to generate hydrocarbons. If a formation has enough organic richness, further 

evaluations must then be made to determine the quality of the source rock. The most common 

methods for determining TOC are the Leco combustion method and the combined pyrolysis-

oxidation method of Rock Eval (Jarvie, 1991). For this study the Leco combustion method was 

used to determine TOC and percent carbonate for the Smackover shales in the Conecuh 

Embayment. 

 The Leco combustion method of analysis requires approximately 1 g of crushed rock. 

The sample is first treated to remove any inorganic carbon that may be in the sample in the form 

of carbonates. To accomplish the removal of inorganic carbon the sample is soaked in 
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hydrochloric acid (HCl) and stirred intermittently for 12-16 hours. After the complete dissolution 

of carbonates is observed, the sample is rinsed free of HCl solution using water, filter paper, and 

a filtering flask. The sample is then allowed to dry (Jarvie, 1991). 

 The Leco Carbon Analyzer is calibrated with a steel standard of known carbon content. 

The sample is then placed in the analyzer and the carbon in the sample is then oxidized to carbon 

dioxide. The carbon dioxide is detected by either an infrared (IR) detector or a thermal 

conductivity detector (TCD). The IR detector is specific to carbon dioxide, however a TCD will 

respond to other compounds such as sulfur dioxide and water. If the latter are not properly 

removed while using a TCD the TOC values may be inflated (Jarvie, 1991). 

 Carbonate carbon is also calculated using this method by completing two analyses. The 

total carbon content minus the total organic carbon in a sample gives the total carbonate carbon 

(Jarvie, 1991). 

5.1.2 – Rock Eval Pyrolysis 

 The best method for correctly evaluating the quality and maturation of kerogen is by 

determining the atomic H/C and O/C ratios and plotting them on van Krevelen diagrams. 

However, this method is very time consuming and expensive, creating the need for a faster 

evaluation method. The Rock Eval pyrolysis method was developed and first published by 

Espitalie et al. in 1977 as an alternative method for accurately determining these atomic ratios 

(Hunt, 1996). 

 Rock Eval pyrolysis involves passing a stream of helium through 100 mg of pulverized 

rock that has been initially heated to 300°C. The temperature of the oven is then increased about 

25°C min
-1

 until the temperature reaches 550°C. The vapors that are expelled from the sample 

are analyzed with a flame ionization detector (FID). The results of the test are recorded by the S1, 
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S2, and S3 peaks as shown in Fig. 12. The first peak (S1) represents any free hydrocarbons that 

are present in the sample either from the time of deposition or that have been generated from 

kerogen since deposition. The free hydrocarbons are distilled from the rock by the initial heating 

to 300°C. Between 300 and 390°C the carboxyl groups in the kerogen break off, yielding CO2 

that is trapped and analyzed later during the cooling phase. As the temperature rises above 350°C 

until it reaches the maximum of about 550°C, hydrocarbons are generated from any kerogen in 

the rock and are recorded by the second peak (S2). The temperature of the oven that corresponds 

with the S2 peak is recorded as Tmax and is later used during interpretation as an indicator of 

thermal maturity. At this point only residual non-generating carbon remains in the sample. 

During the cooling cycle the previously trapped CO2 is analyzed by a thermal conductivity 

detector and is recorded by the third peak (S3). All results are recorded in mg HC per gram of 

rock and mg CO2 per gram of rock, respectively (Hunt, 1996). 

 
Figure 12 - Typical detector response from the Rock Eval analysis (from Hunt, 1996). 

 Data collected during pyrolysis is then used to calculate the hydrogen index (HI) 

(S2/TOC) and oxygen index (OI) (S3/TOC) for a sample. It has been shown that the indices are 

independent of the amount of organic matter and are closely related to the elemental composition 
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of the kerogen. Therefore the indices can be used in place of the atomic H/C and O/C ratios to 

determine kerogen type. The indices can be plotted on a van Krevelen diagram and interpreted 

the same way as the elemental analysis of a kerogen (Tissot and Welte, 1984).  

5.1.3 – Interpretation of TOC and Rock Eval Pyrolysis Data 

 It is commonly thought that just because a sediment has a high TOC content it will be a 

good petroleum source rock. Sufficient organic content does not qualify a rock as having source 

potential, although the lack of sufficient organic matter can be used to immediately dismiss 

source potential. In order for organic matter to generate hydrocarbons the carbon must be 

associated with hydrogen. The more hydrogen associated with the carbon in the kerogen, the 

more hydrocarbons that can be generated. As a source rock matures and more of the kerogen is 

cracked to hydrocarbons, TOC values found in the rock will decrease over time. Essentially a 

source rock will look less and less like a source rock as it matures. Therefore, it is essential to 

take into account the regional maturity trends when analyzing TOC data (Dembicki, 2009). 

 Rock Eval pyrolysis can be used to rapidly identify the generative potential of petroleum 

source rocks. However, there are several factors that must be considered when interpreting Rock 

Eval data. Proper interpretation techniques require information on lithologies, the relative 

abundances of organic matter and mineral matrix, well conditions (i.e. – type of drilling fluids 

used), the presence or lack of generated hydrocarbons, pyrograms, and geochemical logs. For 

example, the source potential of organic-poor, clay-rich rocks may be downgraded when 

compared to tests on isolated kerogen due to the adsorption of pyrolyzate on the clays. This is 

shown in Rock Eval data by lower HI values and higher Tmax temperatures. Illite is particularly 

prone to downgrading pyrolysis results, followed by montmorillonite, calcite, and kaolinite 

(Peters, 1986). It has been shown that up to 85% of pyrolyzate may be retained by an illite 
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matrix. Type III kerogens are most the most prone to this problem due to the generation of less 

pyrolyzate per gram of organic matter (Peters, 1986). 

   It is also important to consider regional maturity trends when interpreting Rock Eval 

data, as the method is less reliable in immature sediments. Estimation of maturity using Tmax 

values from Rock Eval may also be unreliable in some samples. Tmax for small S2 peaks with 

values <0.2 mg HC g
-1

 TOC are generally unreliable. Tmax may also be influenced by organic 

matter type, contamination from well fluids, and the mineral matrix in addition to the level of 

thermal maturity (Peters, 1986). 

 Organic lean sediments, where TOC is <0.5%, have been shown to be strongly affected 

by the previously mentioned mineral matrices. Peters (1986) notes that Rock Eval data becomes 

less reliable at lower TOC values and lower levels of thermal maturity.  

 The most reliable way to overcome common interpretation problems is by collecting 

large amounts of data. Peters (1986) makes the recommendation of using at least one sample 

every 30-60 feet down the borehole. Despite the interpretation problems previously mentioned, 

Rock Eval is a reliable and cost effective way to screen potential petroleum source rocks. When 

performing detailed studies of source rocks, other more detailed methods such as kerogen 

isolation and light microscopy may be employed (Peters, 1986).  

5.2 – Sequence Stratigraphy 

 Like any geological interpretation, the accuracy of a sequence stratigraphic analysis is 

limited by the amount and quality of data available. An ideal situation would involve the 

integration of outcrops, cores, well logs, and seismic datasets into the interpretation (Catuneanu, 

2006). To place the deposition of the Smackover shales into a sequence stratigraphic framework, 

conventional cores and well logs were the primary datasets used in this study as the Smackover 



 

43 
 

Formation does not crop out in the Gulf Coast region. Limited seismic data were available to 

establish a basis for interpretation and to understand strata geometries in the Conecuh 

Embayment. 

 Catuneanu (2006) provides a basic workflow for performing a sequence stratigraphic 

analysis (Fig. 13). The first step in the workflow is to establish the tectonic setting for the study 

area. Since the key to sequence stratigraphic interpretation is to understand the interplay between 

sea level, accommodation space, and sediment supply, it is imperative to understand the type of 

basin, and therefore the subsidence patterns. Tectonic settings are typically reconstructed using 

regional datasets that include seismic interpretation, well log and core correlations, and 

biostratigraphic information (Catuneanu, 2006).  Due to the limited data available for this project 

the tectonic setting was established during an extensive literature review of the study area along 

with analysis of selected cores and well logs. 

 
Figure 13 - Workflow used for sequence stratigraphic interpretation (from Catuneanu, 2006). 

 The second step in a sequence stratigraphic analysis (Fig. 13) is the determination of 

paleodepositional environments. From a sequence stratigraphic perspective, understanding the 

temporal and spatial distribution of depositional systems and their shift through time is 

imperative for the validation of the sequence stratigraphic surfaces assigned to an area 

(Catuneanu, 2006). Core analysis, as shown in Appendix C, was combined with literature review 
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was used to understand the paleodepositional environments within the Conecuh Embayment 

study area. 

 Finally, the strata that are being studied are placed into a sequence stratigraphic 

framework (Fig. 13). A sequence stratigraphic framework accounts for the genetic context in 

which the chronostratigraphic surfaces, and the strata they separate are placed into a model that 

accounts for the temporal and spatial relationships of the facies that fill a sedimentary basin. The 

ultimate goal is for the model to be used in an efficient exploration approach for natural 

resources as the development of facies patterns should be predictable within the genetic 

framework (Catuneanu, 2006). 

 The first step in establishing the sequence stratigraphic framework is the recognition of 

stratal terminations. This involves the recognition of the geometric relationships of strata and the 

stratigraphic surfaces against which they terminate. This may be done using continuous 

subsurface datasets such as 2D seismic. Stratal terminations may also be inferred by correlating 

well logs based on knowledge of the depositional settings and the trends that are expected in that 

environment. Whether strata are onlapping, offlapping, downlapping, etc. may provide clues as 

to the direction of shoreline shift (Catuneanu, 2006). 

 Once the framework has been established and the geometric relationships are understood, 

the next step is to assign the stratigraphic surfaces. These can be identified using several criteria, 

including 1) the nature of the contact, 2) the depositional systems that are adjacent to that 

surface, 3) the associated stratal terminations, and 4) the depositional changes above and below 

that surface. Once the aforementioned steps have been completed and the position and types of 

stratigraphic surfaces have been identified, the identification of systems tracts on cross-sections 

becomes a straightforward procedure. The completed model allows the interpreter to reconstruct 
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the depositional history of an area and to predict the location of facies as an exploration tool 

(Catuneanu, 2006).
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CHAPTER 6 – RESULTS AND DISCUSSION 

 Two dark gray-black siliciclastic shale layers were recognized in core and on well logs 

within the Conecuh Embayment of southwest Alabama. In keeping with the naming convention 

established by Baria et al. (2008) the shales will be referred to as Shales B and C. Shale C 

overlies the lower Smackover C unit and Shale B overlies the middle Smackover B unit. Shale A 

(Baria et al., 2008) was not observed in this study. Shale layers B and C are known to contain 

millimeter-scale turbidites and significant amounts of herbaceous organic matter, though this is 

not apparent in all cores (Baria et al., 2008). 

 Shale C reaches a maximum thickness of approximately 50 feet within the study area and 

has two distinct intervals that are recognizable both in the core and in well logs on the Gamma 

Ray curve (Fig. 14). Shale C thickens basinward and pinches out to the northeast against the rims 

of the northern arm of the embayment. Shale C was described and sampled from two wells: Sklar 

Logan 5-7 and Midroc Jackson 27-6 (Fig. 11). The lower interval of shale C consists of a light 

gray, blocky calcareous shale approximately 25-30 feet thick in the study area. The lower part of 

Shale C contains some algal features and evidence of minor burrowing. The upper portion of 

shale C is a dark gray-black, fissile shale that is 20-25 feet thick. The upper Shale C is laminated, 

and lacks evidence of bioturbation and marine fossils. The fissile portion of the shale is 

distinguished by a sharp break on the Gamma Ray curve. 

  X-ray diffraction was performed on both shale intervals, as described in Appendix A. X-

ray diffraction data of Shale C also shows a distinctive trend from the lower to the upper 

intervals. The lower Shale C is mostly carbonate of which calcite is the main constituent.  
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Figure 14 - Cross-sections showing Conecuh Embayment 

Stratigraphy. Note: Both sections are at the same vertical 

scale. 
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The lower portion of Shale C also contains abundant quartz, and illite with minor amounts of 

kaolinite, pyrite, and chlorite. The upper Shale C is predominantly quartz followed by lesser 

amounts of calcite. The upper Shale C also contains about the same amounts of illite, chlorite, 

pyrite, and feldspar as the lower C. The shift in the dominant mineralogy from calcite to quartz 

upsection along with the shale being darker due to higher amounts of organics and more fissile, 

is believed to be the result of a greater influx of siliciclastics from the exposed rim of the 

embayment. 

 Shale B reaches a maximum thickness of about 30 feet within the study area. Much like 

Shale C, Shale B thickens basinward and pinches out updip and along the rims of the northern 

arm of the embayment. Shale B was only sampled from the Logan 5-7 well as it thins rapidly to 

the northeast and is absent in the Jackson 27-6 well. This shale unit was recognized in log 

signatures in other wells down dip that did not have core available. Shale B is a dark gray, 

laminated, fissile shale that becomes more blocky and calcareous in nature downsection. X-ray 

diffraction analysis of shale B shows quartz to be the dominant mineralogy followed closely by 

illite. Minor amounts of calcite and chlorite were also detected with smaller amounts of kaolinite 

and pyrite. 

 Both shale layers exhibit a blocky, calcareous nature near the bottom of their respective 

sections. X-ray diffraction confirms an abundance of carbonate phases in the samples collected at 

the base of these shales, which could represent a late high stand deposit nearing the end of 

carbonate production. A greater influx of siliciclastics into the embayment is shown by a shift in 

the mineralogy to being dominantly quartz and illite. The influx of siliciclastics is believed to be 

the result of a relative drop in sea level that terminated carbonate production and deposited the 

upper portions of shale C and B as lowstand deposits in a prograding deltaic environment. The 
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chlorite is believed to be detrital from the surrounding highlands as nearby wells that penetrated 

the underlying basement have included low to moderate grade phyllite and schist metamorphics 

(Baria, 2011, personal communication). While the ratio of illite-kaolinite is a useful 

determination of depositional environment and climate in more recent rocks, clay mineralogy 

can be greatly affected through diagenesis. Rocks that have been buried and reached a level of 

thermal maturity with respect to oil generation often show an abundance of illite regardless of 

original mineralogy (Eslinger and Pevear, 1988). The presence of illite may also downgrade the 

petroleum generative potential determined from Rock Eval analysis, as it has been shown that 

the pyrolyzate may be retained by the mineral matrix (Peters, 1986). 

6.1 – Palynology 

 The fossil plants and organic matter found within the Conecuh Embayment shales 

represent the first known occurrence of land plant material found within the Smackover 

Formation (Baria, 2011, personal communication). Palynological analysis of the shales was 

performed to identify the plant matter within the shales. The assemblage found in the Smackover 

shales is typical to the late Jurassic of North America, however it lacks the latest Jurassic 

schizaeaceous spores. Palynology is typically a crude tool for dividing the Jurassic but there is 

nothing in the assemblage inconsistent with an Oxfordian age for the Smackover Formation 

(Hotton, 2010, personal communication). Therefore, the pollens do little to better constrain the 

timing of the depositional events within the study area. 

 Palynology and paleobotany have been used in determining paleoclimate (Taylor, 1981), 

and is used in the following sequence stratigraphy interpretation to infer differences in 

paleodepositional environments and paleoclimate around the northern Gulf rim. Identification of 

pollen and spores was performed to the genus level and at least 12 different genera were 
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positively identified (Appendix B) including ferns, mosses, and conifers. In addition to the 

pollens and spores identified, the samples included abundant degraded plant tissue, corroded 

spores, one foraminiferal test, and assorted algal cysts (Baghai-Riding, 2010, personal 

communication). 

 Bryophytes refer to a phylum of non-vascular plants that contain mosses. Living 

bryophytes are terrestrial and live in relatively humid environments. Several genera of ferns 

belonging to the order Filicales were also identified. Filicales or true ferns are most widely 

developed in the tropics though many species are also present in more temperate regions. The 

extant members of the families of ferns identified are confined to tropical and sub-tropical 

regions. Of the genera of conifers identified, the most dominant within the samples is the now 

extinct Classipollis. Like the extant conifers of today, those of the Mesozoic represent large, 

woody, perennials that live in temperate to tropical climates (Taylor, 1981). From the pollen 

assemblage identified in the Smackover shales it is inferred that the climate of the study area was 

tropical to sub-tropical during the Oxfordian.  

6.2 – Source Rock Characterization 

 Wade et al. (1987) discussed a terrestrial signature to some of the hydrocarbons produced 

from the eastern Smackover trend, particularly in the embayments of southwest Alabama. To 

determine if the dark, organic-rich shales in the Conecuh Embayment during recent exploration 

efforts and first described by Baria et al. (2008) were contributing hydrocarbons and providing 

the terrestrial signatures found in the area, a preliminary source rock analysis was performed. A 

total of nine samples from five wells (Fig. 11) were collected from whole cores stored at the 

Alabama Oil and Gas Board. Eight of the samples were collected from the Smackover shales in 

four different wells located along the longitudinal axis of the Conecuh Embayment. Curiale 
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(2008) noted that the amount organic matter found in a rock can vary greatly both 

stratigraphically and geographically even on a laminae and meter scale respectively. Though we 

were limited by the number of samples obtained for analysis care was taken to achieve 

representative a representative sample of the shales. One sample of a Smackover laminated lime 

mud was collected from a well within Little Cedar Creek Field along the northwestern margin of 

the embayment and located stratigraphically between the upper and lower reservoir. All of the 

samples were sent to Geomark Research Ltd. and analyzed for TOC and hydrocarbon generative 

potential (Rock Eval).  

 The shale samples displayed a wide range of carbonate content, from 14% to nearly 58%. 

The average carbonate content was 30%. The variance in carbonate abundance within the 

samples was also confirmed by XRD. The amount of organic matter found in the shales was low 

with respect to shale source rocks (Table 2). TOC for the samples analyzed ranged from 0.16% 

to 0.55% with an average TOC for the shales of 0.32% (Table 3). 

Sample ID Description Depth 

(MD, ft) 

Leco TOC 

(wt. % HC) 

Percent Carbonate 

(wt. %) 

S-01 Fissile shale 11779 0.26 20.30 

S-02 Fissile shale 11852-856 0.33 22.66 

S-03 Fissile shale 11868-870 0.36 31.69 

S-04 Laminated lime 

mud 

11584 0.42 32.35 

S-05 Fissile shale 11415-420 0.23 17.85 

S-06 Fissile shale 11446-448 0.29 47.92 

S-07 Fissile shale 10631-635 0.34 25.05 

S-08 Fissile shale 10671-677 0.55 13.99 

S-09 Blocky shale 11238-243 0.16 57.66 
Table 3 - Results of the LECO TOC analyses for nine samples from the Smackover Formation in the 

Conecuh Embayment. 

 The laminated lime mud sample from the Midroc 16-14 well (Sample S-04 in Table 3) is 

comparative with previous Smackover source rock research conducted by Sassen et al. (1987). 

The Smackover lime mud was found to have a carbonate content of 32.35% and a TOC of 
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0.42%. While this is only one sample, it does fall above the minimum TOC cutoff for fair 

generation potential in carbonate source rocks (Table 2).  

 Determining the type of hydrocarbons that a source rock will produce is also an important 

factor in source rock evaluation. The type of hydrocarbons produced by a petroleum source rock 

can be directly related to the type of kerogens it contains (Tissot and Welte, 1984; Hunt, 1996).  

 The shale samples in this study were found to have very low hydrogen indices (HI) and 

high oxygen indices (OI). The average HI and OI for the samples is 55 and 65 respectively 

(Table 4). These numbers are indicative of a Type III kerogen derived from a terrestrial source 

and are gas prone (Fig. 15). 

 The Smackover lime mud sample had an HI of 221 and an OI of 38 (Table 4). When 

plotted on a van Krevelen diagram this sample plots as a mixed Type II/III kerogen that has 

some oil generative potential (Fig. 15). However, the plot of TOC vs. remaining generative 

potential shows that the kerogen quality in this sample is poor. 

Sample ID Description 
Depth 

(MD, ft) 

Hydrogen 

Index 

Oxygen 

Index 
Tmax 

S-01 Fissile shale 11779 42 85 435 

S-02 Fissile shale 11852-856 58 67 431 

S-03 Fissile shale 11868-870 75 75 430 

S-04 
Laminated lime 

mud 
11584 221 38 436 

S-05 Fissile shale 11415-420 39 13 432 

S-06 Fissile shale 11446-448 72 62 428 

S-07 Fissile shale 10631-635 44 62 427 

S-08 Fissile shale 10671-677 62 35 428 

S-09 Blocky shale 11238-243 44 119 422 
Table 4 - Data for the Rock Eval results shown in Figure 15. 
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Figure 15 - Rock Eval pyrolysis results plotted on van Krevelen diagram for the nine samples listed in  

Table 4. 

 

 Thermal maturity for all samples was determined through the Tmax numbers obtained 

during Rock Eval pyrolysis. Tmax was found to be between 422-435°C which places all of the 

samples near the lower boundary of the oil window (Fig. 15). Thermal maturity data from this 

study is regionally consistent with work presented by Sassen and Moore (1988). 

6.3 – Sequence Stratigraphy 

 The Jurassic Smackover Formation is interpreted to have been deposited during the late 

Oxfordian following a rapid third-order rise in global sea level. Within the study area the 

Shale samples 

Smackover lime-mud 

sample 
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Smackover unconformably overlies the continental dune fields of the Norphlet Formation. The 

contact between the Norphlet and overlying Smackover is abrupt. Overlying the Smackover is 

the anhydrite of the Buckner Member of the Haynesville Formation. Within the study area the 

Buckner/ Haynesville consists of red shale with anhydrite nodules. The contact between the two 

is often gradational (Benson, 1988). Prather (1992) considered the deposition of the 

Smackover/Haynesville within the Conecuh Embayment to be a genetically related package 

deposited during one cycle of relative sea level. Heydari and Baria (2006) further subdivided 

Smackover deposition of the north-central Gulf Coast into three sequences deposited during 

fluctuations in relative sea level. Using the Heydari and Baria (2006) model and the discovery of 

the Conecuh Embayment shales, the author has subdivided the Smackover within the study area 

into three sequences. It is possible that these sequences represent higher-order (fourth or fifth) 

fluctuations in sea level overprinted onto the third-order sea level rise that deposited the 

Smackover/Haynesville package. 

 When developing the sequence stratigraphic model used in this study, several factors 

were considered since the key to a valid interpretation is understanding all of the factors involved 

in the deposition of strata and the shift in facies through time (Catuneanu, 2006). Factors 

included tectonic setting, provenance of sediment, paleoclimate, paleogeography, and relative 

sea level. In establishing the tectonic setting for the study area, differences were found between 

the eastern and the central-western Gulf of Mexico. The formation of the entire Gulf rim was 

associated with the rifting of Pangea during the late Triassic and into the Jurassic (Salvador, 

1987; Benson, 1988; Prather, 1992). However, the eastern Gulf of Mexico region was subjected 

to lower subsidence rates and higher clastic influx than the depocenters located farther to the 

west (Wade and Moore, 1993). In addition to the regional variations, locally the Conecuh 



 

55 
 

Embayment was not influenced by salt tectonics due to the absence of the Louann Salt. Since the 

Jurassic strata of the Conecuh Embayment lay on top of Paleozoic basement and to the northeast 

of major fault systems (Fig. 2), the area is assumed to be rather stable tectonically. Deposition 

was also considered to be strongly influenced by paleotopography initially with a lessening 

affect in the later stages during Smackover deposition.  

 The development of the LST facies differs from the Heydari and Baria (2006) model 

where they are composed of turbidite sands delivered to the basin by the ancestral Mississippi 

River. In this study the LST facies are characterized primarily by organic-rich fissile shales 

deposited during relative sea level falls. The different facies for the same relative-falls in base-

level are attributed to the difference in climate and provenance. The north-central Gulf rim is 

characterized by the presence of both evaporites and dolomitized carbonates, also to date there 

are no instances of preserved terrestrial organic matter within the Smackover suggesting a more 

arid climate. The pollen assemblage found within the Conecuh Embayment shales suggests a 

sub-tropical to tropical environment. Plate reconstructions of North America during the Jurassic 

rotate the continent slightly counter-clockwise during this time (Scotese, 1991). Therefore, it is 

possible that the northern and western Gulf rim reached higher latitudes and a more arid climate 

before the eastern trend that remained at least sub-tropical until very late in the Oxfordian. 

Provenance of the sediment is also considered to be different as nearby wells drilled into 

Paleozoic basement reveal low- to moderate-grade metamorphic rocks of the Appalachian 

orogen, which could supply more siliciclastic detritus than sediment sources from the mid-

continent region.
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 Following consideration of the tectonic setting and paleodepositional environments, 

several 2D seismic transects were studied for an establishment of stratal geometries (Fig. 16).  

It was determined that the Smackover C onlaps the Norphlet on the ramp and around 

paleotopographic highs and encroaches the farthest inland of the Smackover sequences. 

Smackover Units B and A also onlap the underlying strata. Smackover B pinches out against the 

Smackover C and they are separated down dip by a low-amplitude shale package designated as 

Shale C. Smackover A is confined to the down-dip portions of the study area and again pinches 

out against the underlying Smackover B unit and is also separated down dip from the previous 

Smackover by another shale package designated as Shale B. The entire sequence of Smackover 

deposition is capped by the Buckner/Haynesville shale. 

 The first sequence boundary (SB-1) (Fig. 17) is placed at the top of the Norphlet 

Formation which was deposited during a sea level lowstand as an aeolian/alluvial facies. 

Smackover seas transgressed rapidly over the underlying Norphlet resulting in the uppermost 

portion of the Norphlet being reworked. The Smackover C composes the TST and HST of the 

first sequence. Though the TST is difficult to correlate due to the rapid transgression, the TST is 

represented by the laminated lime-mudstones, wackestones, and interbedded shales of the lower 

Smackover C. The HST is composed of the generally shoaling upward facies consisting of 

packstones and grainstones. Near the top of the HST the rocks change color to tan representing a 

more oxygenated environment. Observed dissolution features near the top the Smackover C are 

used as evidence for subaerial exposure and the formation of a sequence boundary (SB-2).  

 Deposition of the fissile portion of Shale C represents the LST that was deposited during 

a relative sea level fall and is the basal unit of the next sequence. Due to the mineralogical 

characteristics of the lower portion Shale C, which contains abundant carbonate phases, it has 
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Figure 16 - North-South seismic transect illustrating stratal geometries for the Werner, Norphlet, and Smackover Formations in the Conecuh 

Embayment. Seismic line courtesy of Jura-Search, Inc. and published with the permission of SEI, Inc.



 

58 
 

been placed in the previous HST systems tract representing the late HST. Deposition of a second 

shoaling upward set of facies (Smackover B) begins with laminated lime-muds and passes 

upward into wackestones and packstones representing the TST-2. HST-2 is represented by the 

tan packstones and grainstones near the top of the sequence.  Caliches and dissolution porosity 

that are found up-dip (Baria, 2011, personal communication) are used as evidence for the 

development of the third sequence boundary (SB-3) as shown in Fig. 17. 

 The subsequent LST is represented by the deposition of Shale B during the relative fall in 

sea level. Again the lithologic characteristics are primarily used to establish SB-3. A subsequent 

rise in relative sea level resulted in the deposition of Smackover A. Smackover A is confined to 

the downdip portions of the study area and was not observed in core. The TST and HST of this 

sequence were picked from well log character. The fourth sequence boundary (SB-4) was placed 

at the top of the third order sequence as interpreted in previous studies (Fig. 17).
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Figure 17 - Sequence Stratigraphic model for the Conecuh 

Embayment. Locations for these cross-sections are shown in 

Figure 14. 
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CHAPTER 7 – SUMMARY AND CONCLUSIONS 

 The results of the preliminary source rock analysis for the Smackover Formation shales 

of the Conecuh Embayment make it unlikely that these shales are a potential source rock. The 

shales lack sufficient organic matter (<0.5%) and have poor quality Type III kerogens. Any 

hydrocarbons generated by the Conecuh Embayment shales would most likely be gas. However, 

this is not meant to be a comprehensive source rock study and is severely limited by the number 

of samples obtained. One of the shale samples analyzed had a TOC of 0.55% placing it just 

above the lower limit of TOC needed for a shale source rock. It is possible that there are “sweet 

spots” in the Conecuh Embayment shales that have some limited gas generative potential. 

Regardless, the Smackover source intervals identified by previous studies should still be 

considered the primary source rock for the Norphlet and Smackover reservoirs of southwest 

Alabama. 

Deposition of the Smackover Formation in southwest Alabama occurred during a third-

order sea level rise and terminated with the deposition of the Buckner Member of the 

Haynesville Formation. Recent drilling within the Conecuh Embayment revealed two intervals of 

siliciclastic shales within the Smackover. These shale intervals are interpreted to have been 

deposited during relative sea level falls during the Oxfordian, and these are the expression of 

higher-level sequences overprinted onto the general third-order sequence of deposition. While 

the model used is similar to that of Heydari and Baria (2006), the facies representing each of the 

systems tracts is different and the sequences chosen here may be difficult to correlate on a
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regional scale. Higher subsidence rates, salt tectonics, differences in climate, and differences in 

siliciclastic input makes correlating the sequences between the depocenters of the Gulf of 

Mexico region difficult. Lack of sufficient biostratigraphic control is also a limiting component 

to any regional correlation.  

 Palynological data from the shales does little to better constrain timing of events, 

however, it is a significant indicator of a changing climate from west to east during the Jurassic 

in the Gulf Coast region. The pollens support an interpretation that the climate in the Conecuh 

Embayment was sub-tropical to tropical. Less dolomitization of the Smackover Formation and 

the less extensive development of the Buckner Anhydrite Member in this area also supports the 

interpretation of a more humid climate than in the north-central Gulf Coast region. The pollens 

identified support a terrestrial source for the organic matter deposited in the Conecuh 

Embayment during sea level falls. 

 The mineralogical profile of the Smackover shales also supports the interpretation that 

siliciclastic sediment was delivered into the Conecuh Embayment during sea level falls. The 

Smackover shales have a mineralogy that matches what would be expected from the provenance 

area located updip of Conecuh Embayment. 

The ultimate goal of a sequence stratigraphic interpretation is to drive exploration. While 

this study showed that the Conecuh Embayment shales lack significant hydrocarbon generative 

potential, it is still possible that their deposition and the processes that controlled deposition had 

a significant effect on the petroleum system of the Conecuh Embayment. The reservoirs of Little 

Cedar Creek field are best developed in the HSTs. Exposure of the HSTs during relative falls in 

sea level may have enhanced the porosity and permeability characteristics of the reservoirs along 

the updip portions of the Conecuh Embayment. More significant evidence for exposure of the 
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Smackover carbonates should be found updip and along the rims of the Conecuh Embayment. 

Deposition of the shales into the center of the embayment may have ultimately focused 

hydrocarbon migration into the reservoirs and served as a lateral seal for the stratigraphic trap 

found at the Little Cedar Creek field.



 

63 
 

List of References



 

64 
 

Alabama Oil and Gas Board, 2011, 

http://www.gsa.state.al.us/ogb/production_field.aspx?FIELD_NAME=LITTLE+CEDAR+

CREEK: Accessed: July 18, 2011. 

 

Baghai-Riding, 2010, personal communication 

 

Baria, 2011, personal communication 

 

Baria, L.R., E. Heydari, and B.G. Winton, 2008, Shale layers in the Alabama Smackover 

Formation and their implications for sea level change and regional correlation: Gulf Coast 

Association of Geological Societies Transactions, v. 58, p. 67-75. 

 

Benson, J.D., 1988, Depositional History of the Smackover Formation in Southwest Alabama: 

Gulf Coast Association of Geological Societies Transactions, v. 38, p. 197-205. 

 

Biscaye, P.E., 1964, Distinction between kaolinite and chlorite in recent sediments by X-ray 

diffraction.  American Mineralogist, v. 46, pp.1281-1289. 

Cagle, J.W., and M.A. Khan, 1983, Smackover-Norphlet Stratigraphy, South Wiggins Arch, 

Mississippi and Alabama: Gulf Coast Association of Geological Societies Transactions, v. 

33, p. 23-29. 

 

Catuneanu, O., 2006, Principles of Sequence Stratigraphy, New York, Elsevier, 375 p. 

 

Curiale, J.A., 2008, Oil-source rock correlations- Limitations and recommendations: Organic 

Geochemistry, v. 39, p. 1150-1161. 

 

Dembicki Jr, H., 2009, Three common source rock evaluation errors made by geologists during 

prospect or play appraisals: AAPG Bulletin, v. 93, no. 3, p. 341-356. 

 

Embry, A.F., and E.P. Johannessen, 1992, T-R sequence stratigraphy, facies analysis and 

reservoir distribution in the uppermost Triassic-Lower Jurassic sucession, western 

Sverdrup Basin, Arctic Canada in T.O. Vorren, E. Bergsager, O.A. Dahl-Stamnes, E. 

Holter, B. Johansen, E. Lie, and T.B. Lund, eds., Arctic Geology and Petroleum Potential, 

Norwegian Petroleum Society Special Publication No. 2, pg. 121-146. 

 

Emery, D., and K.J. Myers, 1996, Sequence  Stratigraphy, Oxford, Blackwell, 297 p. 

 

Eslinger, E., and D. Pevear, 1988, Clay Mineralogy for Petroleum Geologists and Engineers: 

SEPM Short Course No. 22., Tulsa, SEPM. 

 

Heydari, E., and L.R. Baria, 2006, Sequence Stratigraphy of the Smackover Formation in the 

north-central U.S. Gulf Coast: Gulf Coast Association of Geological Societies 

Transactions, v. 56, p. 291-297. 

 
 

http://www.gsa.state.al.us/ogb/production_field.aspx?FIELD_NAME=LITTLE+CEDAR+CREEK
http://www.gsa.state.al.us/ogb/production_field.aspx?FIELD_NAME=LITTLE+CEDAR+CREEK


 

65 
 

Hosterman, J.W. and Dulong, F.T., 1989, A computer program for semiquantitative mineral 

analysis by X-ray powder diffraction: in CMS Workshop Lectures, Vol. 1, Quantitative 

Mineral Analysis of Clays, D.R. Pevear and F.A. Mumpton, eds. The Clay Minerals 

Society, Evergreen, Colorado, p. 37-50. 

 

Hotton, 2010, personal communication 

 

Hunt, J.M., 1996, Petroleum Geochemistry and Geology, 2nd edition, New York: W.H. Freeman 

and Company, 743 p. 

 

Jarvie, D.M., 1991, Total Organic Carbon (TOC) Analysis; in Source Migration Processes and 

Evaluation Techniques, R.K. Merrill, ed.: AAPG, Treatise of Petroleum Geology 

Handbook of Petroleum Geology, p. 113-118. 

 

King, Jr., D.T., and E.G. Hargrove, 1991, Sequence stratigraphy of the Smackover Formation in 

the northern half of the Manila Embayment, southwestern Alabama: Gulf Coast 

Association of Geological Societies, v. 41, p. 359-363. 

 

Mancini, E.A., B.H. Tew, and R.M. Mink, 1990, Jurassic sequence stratigraphy in the 

Mississippi interior salt basin of Alabama: Gulf Coast Association of Geological Societies 

Transactions, v. 40, p. 521-529. 

Mancini, E.A., B.H. Tew, and R.M. Mink, 1992, Hydrocarbon Productivity Characteristics of 

Upper Jurassic Smackover Carbonates, Eastern Gulf Coastal Plain: Gulf Coast Association 

of Geological Societies Transactions, v. 42, p. 237-244. 

 

Mancini, E.A., J. Obid, M. Badali, K. Liu, and W.C. Parcell, 2008, Sequence-stratigraphic 

analysis of Jurassic and Cretaceous strata and petroleum exploration in the central and 

eastern Gulf coastal plain, United States: AAPG Bulletin, v. 92, no. 12, p. 1655-1686. 

 

Mitchum, Jr., R.M., P.R. Vail, and S. Thompson, III, 1977, Seismic Stratigraphy and Global 

Changes of Sea Level, Part 2: The Depositional Sequence as a Basic Unit for Stratigraphic 

Analysis, in C.E. Payton, ed., Seismic Stratigraphy- applications to hydrocarbon 

exploration, AAPG Memoir 26, p. 53-62. 

 

Peters, K.E., 1986, Guidelines for Evaluating Petroleum Source Rock Using Programmed 

Pyrolysis: AAPG Bulletin, v. 70, no. 1, p. 318-329. 

 

Peters, K.E., and M.R. Cassa, 1994, Applied Source Rock Geochemistry, in L.B. Magoon and 

W.G. Dow, eds., The petroleum system- from source to trap: AAPG Memoir 60, p. 93-120. 

 

Posamentier, H.W., Jervey, M.T., and Vail, P.R., 1988, Eustatic controls on clastic deposition I – 

conceptual framework in C.K. Wilgus, B.S. Hastings, C.G. St. C. Kendall, H.W. 

Posamentier, C.A. Ross and J.C. Van Wagoner, eds., Sea-level Changes: An Integrated 

Approach, SEPM Special Publication No. 42, pg. 110-124. 

 



 

66 
 

Prather, B.E., 1992, Evolution of a Late Jurassic Carbonate/Evaporite Platform, Conecuh 

Embayment, Northeastern Gulf Coast, U.S.A.: AAPG Bulletin, v. 76, no. 2, p. 164-190. 

 

Salvador, A., 1987, Late Triassic-Jurassic Paleogeography and Origin of Gulf of Mexico Basin: 

AAPG Bulletin, v. 71, no. 4, p. 419-451. 

 

Sarg, J.F., 2001, The sequence stratigraphy, sedimentology, and economic importance of 

evaporite-carbonate transitions: a review: Sedimentary Geology, v. 140, no. 1-2, p. 9-42. 

 

Sassen, R., C.H. Moore, and F.C. Meendsen, 1987, Distribution of hydrocarbon source potential 

in Jurassic Smackover Formation: Organic Geochemistry, v. 11, no. 5, p. 379-383. 

 

Sassen, R. and C.H. Moore, 1988, Framework of Hydrocarbon Generation and Destruction in the 

Eastern Smackover Trend: AAPG Bulletin, v. 72, no. 6, p. 649-663. 

 

Scotese, C.R., 1991, Jurassic and Cretaceous plate tectonic reconstructions: Paleogeography, 

Paleoclimatology, Paleoecology, v. 87, p. 493-501. 

 

Sloss, L.L., 1962, Stratigraphic models in exploration: AAPG Bulletin, v. 46, no. 7, p. 1050-

1057. 

 

Sloss, L.L., 1963, Sequences in the cratonic interior of North America: Geological Society of 

America Bulletin, v. 74, no. 2, p. 93-114. 

 

Taylor, T.N., 1981, Paleobotany: An Introduction to Fossil Plant Biology, New York, McGraw-

Hill, Inc., 589 p. 

 

Tissot, B.P. and D.H. Welte, 1984, Petroleum Formation and Occurrence, 2nd edition, New 

York: Springer-Verlag, 699 p. 

 

Tucker, M.E., and V. P. Wright, 1990, Carbonate Sedimentology, Oxford, Blackwell Science 

Ltd, 482 p 

 

Tucker, M.E., F. Calvet, and D. Hunt, 1993, Sequence Stratigraphy of carbonate ramps: systems 

tracts, models and applications to the Muschelkalk carbonate platforms of eastern Spain, in 

H.W. Posamentier, C.P. Summerhayes, B.U. Haq, and G.P. Allen, eds., Sequence 

Stratigraphy and Facies Associations: International Association of Sedimentologists 

Special Publication 18, p. 397-415. 

 

Van Wagoner, J.C., H.W. Posamentier, R.M. Mitchum, Jr., P.R. Vail, J.F. Sarg, T.S. Loutit, and 

J. Hardenbol, 1988, An overview of the fundamentals of sequence stratigraphy and key 

definitions; in C.K. Wilgus, B.S. Hastings, C.G. St. C. Kendall, H.W. Posamentier, C.A. 

Ross and J.C. Van Wagoner, eds., Sea-level Changes: An Integrated Approach, SEPM 

Special Publication No. 42, p. 39-46. 

 



 

67 
 

Wade, W. J., R. Sassen, and E. W. Chinn, 1987, Stratigraphy and source potential of the 

Smackover Formation in the northern Manila embayment, southeast Alabama: Gulf Coast 

Association of Geological Societies Transactions, v. 37, p. 277-286. 

 

Wade, W.J., and C.H. Moore, 1993, Jurassic sequence stratigraphy of southwest Alabama: Gulf 

Coast Association of Geological Societies, v. 43, p. 431-443.



 

68 
 

List of Appendices



 

69 
 

Appendix A 
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 Eight samples were collected from 5 cores as representing shale facies of the Smackover 

Formation (Jurassic – Oxfordian) in the Conecuh Embayment of Alabama. An additional sample 

from the lime mud facies of the Smackover Formation was also collected. Samples were 

collected by hand grab from cores stored at the Alabama Oil and Gas Board Core Laboratory in 

Tuscaloosa, Alabama. Samples were crushed to <1cm size and sample splits were sent to Mr. 

Frank T. Dulong at the USGS in Reston, Virginia. Once in the care of Mr. Dulong, samples were 

further ground to be <200 mesh (75 μm) in a Retsch mill and prepared as back-loaded powder 

mounts for X-ray diffraction.  A PANalytical PW3040 X-ray diffractometer with an X’Celerator 

detector was used to scan the sample from 3 to 65º two-theta at the equivalent of counting for 25 

seconds every 0.017º two-theta with copper radiation (45 kV and 40 mA).  A computer program 

was used to process the X-ray spectrum and estimate the proportions of major mineral phases 

(Hosterman and Dulong, 1989).  The 002 kaolinite and 004 chlorite peaks at high 24 and low 25 

degrees two-theta respectively were examined graphically in order to determine their amounts 

(Biscaye, 1964). 

SUMMARY: 

Eight of nine samples contain a moderate amount of carbonate phases, ranging from 10 to 40 

percent with calcite being the dominant phase.  The combined clay mineral content ranges from 

15 to 70 percent with illite, including mixed-layer phases, as the most abundant followed by 

chlorite and kaolinite. Small amounts of pyrite and K-feldspar are present in all samples.  Quartz 

is present in all samples and ranges from 15 to 33 percent.
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Sample 

ID 
Well Name  Depth (MD, ft) 

QTZ FLD CARB ILLITE KAOL CHLR PY OTHR 

S-01 Logan 5-7 11,779 31 6 15 23 5 14 5 2 

S-02 Logan 5-7 11,852-856 31 6 22 24 3 8 6 1 

S-03 Logan 5-7 11,868-870 24 5 33 21 4 7 6 2 

*S-04 CCLT 16-14 11,584 33 6 40 11 2 4 4 1 

S-05 Jackson 27-6 11,415-420 32 4 10 29 6 16 3 0 

S-06 Jackson 27-6 11,440-448 18 3 26 31 4 10 7 1 

S-07 Andalusia 13-1 10,631-635 21 1 18 33 7 13 6 1 

S-08 Andalusia 13-1 10,671-677 22 2 4 39 5 23 3 0 

S-09 Ensight 35-4 11,238-243 15 1 30 28 4 14 6 0 

                      

  
Average mineral abundances for 

shale samples 
  24 4 20 29 5 13 5 1 

 

Table B-1 – X-Ray Diffraction Results for the Conecuh Embayment shales. Results are reported in percentages and have not been 

normalized to 100%. *S-04 is a lime mud sample from the Smackover Formation. Explanation of abbreviations: QTZ – quartz, FLD – 

feldspar, CARB – calcite, ankerite, dolomite, and siderite, ILLITE – illite, illite-smectite, and muscovite, KAOL – kaolinite, CHLR – 

chlorite, PY – pyrite, marcasite, and sphalerite, OTHR – other.  
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Sample 

ID 
Well Name  

Depth  

(MD, ft) 

Quartz and 

Feldspar 

Illite, Kaolinite, and 

Chlorite 
Carbonate 

S-01 Logan 5-7 11,779 37 42 15 

S-02 Logan 5-7 11,852-856 37 35 22 

S-03 Logan 5-7 11,868-870 29 32 33 

*S-04 CCLT 16-14 11,584 39 17 40 

S-05 Jackson 27-6 11,415-420 36 51 10 

S-06 Jackson 27-6 11,440-448 21 45 26 

S-07 Andalusia 13-1 10,631-635 22 53 18 

S-08 Andalusia 13-1 10,671-677 24 67 4 

S-09 Ensight 35-4 11,238-243 16 46 30 

            

  
Avg. mineral abundances in 

shales 
  24 46 20 

 

Table B-2 – X-Ray Diffraction Results for the Conecuh Embayment shales. Results are the sums of the major mineral groups from 

Table B-1 and are reported as percentages and have not been normalized to 100%. *S-04 is a lime mud sample from the Smackover 

Formation.
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Appendix B 

Palynology of Smackover Shales
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Taxonomic List of Smackover Samples 

BRYOPHYTES 

 Sphagnaceae 

 cf. Stereisporites 

LYCOPODIOPHYTA 

 Lycopodiaceae 

  Retitriletes semimuris 

  Neoraistrickia sp. 

FILICALES 

 Cyatheaceae/Dicksoniaceae 

 Cyathidites sp. 

 Dipteridaceae 

  Dictyophyllidites sp. 

 Schizaeaceae  

  Concavissimisporites sp. 

  Ischyosporites 

 Matoniaceae 

  Matonisporites sp. 

 Osmundaceae  

  Todisporites 

FILICALES INCERTAE SEDIS 

  Leptolepidites rotundus 

 Verrucosisporites sp.  

 ?Obtusisporites sp. 

 Convolutisporites sp. 

 ?Cadargasporites sp. 

 ?Rotverrusporites major 
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 SEED PLANTS 

 Araucariaceae 

  Araucariacites sp. 

  Callialasporites sp. 

 Cheirolepidiaceae 

  Classopollis (either C. simplex or C. meyeriana) – very dominant 

 Taxodiaceae 

  Exesipollenites cf. tumulus 

  Inaperturopollenites dubius  

  Inaperturopollenites scabratus 

 Podocarpaceae 

  Podocarpidites sp. 

  Bisaccates incertae sedis  

  Alisporites sp. 

Seed Plant incertae sedis (?Gnetales) 

? Eucommidites sp. 
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Appendix C 

Core Descriptions
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