
University of Mississippi University of Mississippi

eGrove eGrove

Electronic Theses and Dissertations Graduate School

1-1-2012

Restricting Supervised Learning:Feature Selection and Feature Restricting Supervised Learning:Feature Selection and Feature

Space Partition Space Partition

Xiaofei Nan
University of Mississippi

Follow this and additional works at: https://egrove.olemiss.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Nan, Xiaofei, "Restricting Supervised Learning:Feature Selection and Feature Space Partition" (2012).
Electronic Theses and Dissertations. 1373.
https://egrove.olemiss.edu/etd/1373

This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more
information, please contact egrove@olemiss.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by eGrove (Univ. of Mississippi)

https://core.ac.uk/display/288062662?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://egrove.olemiss.edu/
https://egrove.olemiss.edu/etd
https://egrove.olemiss.edu/gradschool
https://egrove.olemiss.edu/etd?utm_source=egrove.olemiss.edu%2Fetd%2F1373&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=egrove.olemiss.edu%2Fetd%2F1373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/etd/1373?utm_source=egrove.olemiss.edu%2Fetd%2F1373&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu

Restricting Supervised Learning: Feature
Selection and Feature Space Partition

Xiaofei Nan

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
Computer Science

University of Mississippi

2012

Abstract

Many supervised learning problems are considered difficult to solve either because of

the redundant features or because of the structural complexity of the generative function.

Redundant features increase the learning noise and therefore decrease the prediction perfor-

mance. Additionally, a number of problems in various applications such as bioinformatics

or image processing, whose data are sampled in a high dimensional space, suffer the curse of

dimensionality, and there are not enough observations to obtain good estimates. Therefore,

it is necessary to reduce such features under consideration. Another issue of supervised

learning is caused by the complexity of an unknown generative model. To obtain a low

variance predictor, linear or other simple functions are normally suggested, but they usually

result in high bias. Hence, a possible solution is to partition the feature space into multiple

non-overlapping regions such that each region is simple enough to be classified easily. In

this dissertation, we proposed several novel techniques for restricting supervised learning

problems with respect to either feature selection or feature space partition.

Among different feature selection methods, 1-norm regularization is advocated by many

researchers because it incorporates feature selection as part of the learning process. We

give special focus here on ranking problems because very little work has been done for

ranking using L1 penalty. We present here a 1-norm support vector machine method to

simultaneously find a linear ranking function and to perform feature subset selection in

ranking problems. Additionally, because ranking is formulated as a classification task when

pair-wise data are considered, it increases the computational complexity from linear to

quadratic in terms of sample size. We also propose a convex hull reduction method to reduce

this impact. The method was tested on one artificial data set and two benchmark real data

i

sets, concrete compressive strength set and Abalone data set. Theoretically, by tuning the

trade-off parameter between the 1-norm penalty and the empirical error, any desired size

of feature subset could be achieved, but computing the whole solution path in terms of the

trade-off parameter is extremely difficult. Therefore, using 1-norm regularization alone may

not end up with a feature subset of small size. We propose a recursive feature selection

method based on 1-norm regularization which can handle the multi-class setting effectively

and efficiently. The selection is performed iteratively. In each iteration, a linear multi-class

classifier is trained using 1-norm regularization, which leads to sparse weight vectors, i.e.,

many feature weights are exactly zero. Those zero-weight features are eliminated in the next

iteration. The selection process has a fast rate of convergence. We tested our method on

an earthworm microarray data set and the empirical results demonstrate that the selected

features (genes) have very competitive discriminative power.

Feature space partition separates a complex learning problem into multiple non-overlapping

simple sub-problems. It is normally implemented in a hierarchical fashion. Different from

decision tree, a leaf node of this hierarchical structure does not represent a single decision,

but represents a region (sub-problem) that is solvable with respect to linear functions or

other simple functions. In our work, we incorporate domain knowledge in the feature space

partition process. We consider domain information encoded by discrete or categorical at-

tributes. A discrete or categorical attribute provides a natural partition of the problem

domain, and hence divides the original problem into several non-overlapping sub-problems.

In this sense, the domain information is useful if the partition simplifies the learning task.

However it is not trivial to select the discrete or categorical attribute that maximally sim-

plify the learning task. A näıve approach exhaustively searches all the possible restructured

problems. It is computationally prohibitive when the number of discrete or categorical at-

tributes is large. We describe a metric to rank attributes according to their potential to

reduce the uncertainty of a classification task. It is quantified as a conditional entropy

ii

achieved using a set of optimal classifiers, each of which is built for a sub-problem defined

by the attribute under consideration. To avoid high computational cost, we approximate the

solution by the expected minimum conditional entropy with respect to random projections.

This approach was tested on three artificial data sets, three cheminformatics data sets, and

two leukemia gene expression data sets. Empirical results demonstrate that our method is

capable of selecting a proper discrete or categorical attribute to simplify the problem, i.e.,

the performance of the classifier built for the restructured problem always beats that of the

original problem.

Restricting supervised learning is always about building simple learning functions using

a limited number of features. Top Selected Pair (TSP) method builds simple classifiers

based on very few (for example, two) features with simple arithmetic calculation. However,

traditional TSP method only deals with static data. In this dissertation, we propose classi-

fication methods for time series data that only depend on a few pairs of features. Based on

the different comparison strategies, we developed the following approaches: TSP based on

average, TSP based on trend, and TSP based on trend and absolute difference amount. In

addition, inspired by the idea of using two features, we propose a time series classification

method based on few feature pairs using dynamic time warping and nearest neighbor.

iii

Dedication

I dedicate my dissertation work to my loving parents who have always supported,

encouraged and believed in me .

iv

Acknowledgments

I would like to gratefully thank Dr. Yixin Chen for his guidance, comments, patience,

and most importantly, his friendship during my study and research at the university of

Mississippi. His mentoring was phenomenal in providing a well rounded experience that

benefits me building up the the knowledges and skills for my future career. His wisdom,

knowledge and commitment to the high standards inspired and motivated me.

I would also like to thank Dr. Dawn Wilkins for her assistance and guidance in my

research and career building. For the past three years, I have been offered a lot of good

opportunities when I did research in the group leading by Dr. Wilkins and Dr. Chen. I would

like to express my thanks to the sparkling academic ideas they provided and collaboration

opportunities they suggested. Additionally, I am very grateful for the friendship of all my

group members.

I would like to thank the Department of Information and Computer Science at Ole Miss,

especially those members of my doctoral committee for their input, valuable discussions and

accessibility. Of course, that includes Dr. Xin Dang from Math Department. Thanks very

much for all the suggestions and advises they offered. I also owe thanks to Dr. Nan Wang

from the university of Southern Mississippi, Dr. Ping Gong from ERDC center and Dr.

Robert Doerksen from Department of Medicinal Chemistry of the university of Mississippi

for the wonderful collaboration experiences I had in the past year.

Finally, and most importantly, I would like to thank my parents. Their support, en-

couragement, quiet patience and gratuitous love were the most precious gift I have ever

had.

v

Table of Contents

Abstract i

Dedication iv

Acknowledgments v

List of Figures viii

List of Tables ix

1 INTRODUCTION 1

1.1 Supervised Learning . 1

1.2 Restricting Learning Problem . 3

1.3 Outline of the Dissertation . 6

2 FEATURE SELECTION 8

2.1 Filter, Wrapper, and Embedded Method . 8

2.2 1-Norm Regularization Facilitating Feature Selection 11

2.2.1 Binary Classification with 1-Norm Regularization 13

2.2.2 Multi-class Classification with 1-Norm Regularization 14

2.2.3 Support Vector Regression with 1-Norm Regularization 17

2.2.4 Lasso Regression . 18

2.2.5 Ranking with 1-Norm Regularization Using Convex Hull Reduction 19

2.2.6 Ranking Problem Formulation . 21

vi

2.2.7 Convex Hull Reduction . 23

2.2.8 Ranking with 1-Norm Regularization and Convex Hull Reduction 24

2.2.9 Kendall τ Correlation Coefficient . 25

2.2.10 Experiments and Results . 26

2.3 Recursive Feature Elimination Using 1-Norm Regularization 30

2.3.1 Method . 31

2.3.2 Experiments and Results . 36

3 FEATURE SPACE PARTITION 45

3.1 Restructuring Problem by Feature Space Partition 45

3.2 Hierarchical Linear Hyperplane Partition . 47

3.3 Hyperparallelepipeds Partition . 48

3.4 Leveraging Domain Information to Restructure Prediction Problem 50

3.4.1 Incorporating Domain Information . 53

3.4.2 Attribute Selection Metric . 56

3.4.3 Experiments and Results . 61

4 CLASSIFICATION USING TOP SCORING FEATURE PAIRS 79

4.1 Learning the k-TSP Classifier . 80

4.2 TSP for Time Series Data . 82

4.2.1 Time Series Microarray Experiment . 83

4.2.2 Methods and Results . 85

5 CONCLUSIONS AND FUTURE WORKS 95

Bibliography 100

vii

List of Figures

Figure Number Page

1.1 A 2-D feature space partition example . 5

2.1 Results sparsity comparison between 1-norm and 2-norm 13

2.2 Loss function comparison . 20

2.3 The relationship between λ, feature weights (wj’s), and Kendall τ -b rank corre-

lation coefficient on the Abalone data set. 27

2.4 The relationship between λ, feature weights (wj’s), and Kendall τ -b rank corre-

lation coefficient on the Concrete Strength data set. 28

2.5 The relationship between λ and the number of non-zero-weight features. 33

2.6 The workflow of the recursive feature selection using 1-norm penalty framework 36

2.7 Learning Accuracies for 20 Random Splits Using Different Feature Selection

Methods. 44

3.1 Examples of Piece-wise Separable Classification Problems. 51

3.2 Restructuring Learning Problem By One or More Categorical Attribute. 52

3.3 Experimental Results for Biological Activity Prediction of Glycogen Synthase

Kinase-3β Inhibitors. 65

3.4 Experimental Results for Cannabinoid Receptor Subtypes CB1 and CB2 Activity

Prediction. 71

3.5 Experimental Results for Cannabinoid Receptor Subtypes CB1 and CB2 Selec-

tivity Prediction. 72

4.1 Time Series Experimental Design . 84

viii

List of Tables

Table Number Page

1.1 The relation between dimensionality and required sample size in kernel estimation 4

2.1 Number of constraints before and after convex hull reduction. 29

2.2 Convex hull reduction on uniform and normal distributions. There are 1000

observations before the reduction. The right two columns contain the number

of observations that are on the convex hull. 29

2.3 Classification and Feature Selection Results of L1MR (Part I). 38

2.4 Classification and Feature Selection Results of L1MR (Part II). 39

2.5 Classification and Feature Selection Results of SL1MR (Part I). 40

2.6 Classification and Feature Selection Results of SL1MR (Part II). 41

2.7 Comparison of L1MR, SL1MR, L1-RMLR, SVM-RFE, CFS, and IG. 42

2.8 T Values for L1MR/SL1MR and Comparison Method. 42

2.9 Top 20 Genes Selected by SL1MR. 43

3.1 Experimental Results of Artificial Data 1 (Fig 3.1.(a)) with Linear Model. . . . 62

3.2 Experimental Results of Artificial Data 2 (Fig 3.1.(b)) Using Two-degree Poly-

nomial Kernel. 63

3.3 Experimental Results of Artificial Data 3 (Fig 3.1.(c)) Using Two-degree Poly-

nomial Kernel. 63

3.4 Learning Performance for the Selected Categorical Attributes in Biological Ac-

tivity Data of Glycogen Synthase Kinase-3β Inhibitors Using Linear Kernel. 66

ix

3.5 Performance Comparison for the Selected Categorical Attributes in Biological

Activity Data of Glycogen Synthase Kinase-3β Inhibitors Using Two-degree

Polynomial Kernel and Gaussian Kernels. 67

3.6 Learning Performance for the Selected Categorical Attributes in Cannabinoid

Receptor Subtypes CB1 and CB2 Activity Data Using Linear Model. 68

3.7 Performance Comparison for the Selected Categorical Attributes in Cannabinoid

Receptor Subtypes CB1 and CB2 Activity Data Using Two-degree Polynomial

Model and Gaussian Models. 73

3.8 Learning Performance for the Selected Categorical Attributes in Cannabinoid

Receptor Subtypes CB1 and CB2 Selectivity Data Using Linear Model. . . . 74

3.9 Performance Comparison for the Selected Categorical Attributes in Cannabinoid

Receptor Subtypes CB1 and CB2 Selectivity Data Using Linear Model. . . . 75

3.10 Descriptions for the Selected Categorical Attributes in Cannabinoid Receptor

Subtypes CB1 and CB2 Activity Data. 76

3.11 Descriptions for the Selected Categorical Attributes in Cannabinoid Receptor

Subtypes CB1 and CB2 Selectivity Data. 77

3.12 Experimental Results of ALL Prognosis Prediction Using Preselected Attribute

Sets and Linear Model. 77

3.13 Experimental Results of ALL Prognosis Prediction Using Preselected Attribute

Sets and Two-degree Polynomial Kernel. 77

3.14 Experimental Results of ALL Prognosis Prediction Using Preselected Attribute

Sets and Gaussian Kernel. 77

3.15 Experimental Results of ALL/AML Prediction Using Attributes Selected by CFS

and Linear Model. 77

3.16 Experimental Results of ALL/AML Prediction Using Attributes Selected by CFS

and Two-degree Polynomial Kernel. 78

x

3.17 Experimental Results of ALL/AML Prediction Using Attributes Selected by CFS

and Gaussian Kernel. 78

4.1 Experimental Results of Time Series Earthworm Data 93

xi

CHAPTER 1

INTRODUCTION

During the past decades, advances in technology enabled the ability to generate a great

amount of data. Unfortunately, as the amount of data increases, the ability to understand

and analyze it does not keep up with its growth. Machine learning provides tools to automat-

ically process large quantities of data and achieves good performance in many applications.

Supervised learning is the most common type of machine learning task of inferring a func-

tion from labelled training data, and has been researched for years. However, the nature

of the data, for example high dimensionality with low sample size, or unknown underlying

complex generative distribution, makes the learning task difficult. Therefore, we need to

restrict such learning problems in a way that the restricted problems could be solved easier

than the original problems.

1.1 Supervised Learning

Machine learning is a research area about developing algorithms that learn rules or pat-

terns based on empirical data. Based on whether or not the empirical data has been labelled,

it can be categorized as supervised learning, unsupervised learning, or semi-supervised learn-

ing. The main task of supervised learning is to infer a function or a model from labelled data.

The training data consist of those labelled examples or observations, and each observation

includes an input vector consisting multiple features and an output value. The inferred

function should capture the characteristics of the unknown underlying data distribution and

predict the correct output value for any valid input. Because it is, in general, impossible to

1

have all possible data or behaviors given (or labelled), the inferred function must generalize

from the training data to unseen data.

Supervised learning is used in many areas, for example bioinformatics, cheminformatics

where quantitative structure-activity relationship is studied, information retrieval, object

recognition in computer vision, spam detection, and speech recognition. According to the

differing nature of the output values, supervised learning can be divided into classification,

regression and ranking. Classification is the most common task. Its output consists of

unordered finite values. For example, spam detector is to predict whether an email is spam

or not, and the output values are 1 (spam) and -1 (not spam). The output of regression

models is real numbers. For example, a species tissue residue amount could be evaluated

based on microarray data, where the tissue residue amount is a real number. Ranking lies

between classification and regression – its output has order but no metric structure. For

example, a web search engine provides a list of ranked web pages for a query based on

relevance, importance and preference.

After many years of development of machine learning, researchers have proposed many

learning algorithms. Näıve Bayes [Domingos & Pazzani, 1997] method assumes all features

are conditional independent given the class output, and the decision is made by selecting

the maximum posteriori based on applying Bayes’ theorem. It is robust, fast and scalable

to high-dimensional feature spaces and large datasets. However, the strong independence

assumption may not be true in practice. Support vector machines [Cortes & Vapnik, 1995]

construct one or multiple hyperplanes in a high or even infinite dimensional space for clas-

sification, regression or ranking with a tradeoff between a large margin and a small error

penalty. Whereas the primal form of support vector machine is stated in a finite dimensional

space with linear separation, its dual form provides a mapping into a much higher dimen-

sional space by defining a kernel function to solve nonlinear cases. This approach is used in

Chapter 2 with some variations. In contrast to using probabilities or metric-based methods

to do prediction, decision tree approaches [Breiman et al., 1984] predict samples based on

2

a series of questions or decisions. In the tree structures, leaves represents class labels or

regression values and branches represent conjunctions of features that lead to those labels

or values. Incorporating a stochastic process, random forest [Breiman, 2001] is an ensemble

classifier that includes many decision trees, each of which is built on a random selected

feature subset. Other approaches include artificial neural network and nearest neighbor

classifier.

1.2 Restricting Learning Problem

In a supervised learning problem, a learning model is obtained from a finite number of

training samples. The model should catch the characteristics of the seen training data and

be able to predict well on unseen samples. For a valid input x, the difference between the

predicted output for x and the true output value is called bias in literature. A predictor

has high variance for any input x if it predicts differently when trained on different training

sets. Generally, a learning model with low bias fits the training data very well. But if

the predictor is too flexible and the fit is too good, it normally will lead to high variance.

Nevertheless, if the predictor is not flexible, it will cause high bias but probably with low

variance. A key issue of many supervised learning algorithms is the ability to adjust the

trade-off between bias and variance [Breiman, 1996].

However, in many applications with high dimensionality, the predictor overfits the train-

ing set, and therefore results in high variance. Because in a high dimensional space, the

samples are distributed sparsely. Learning algorithms based on distance measure could

train a model that easily fits the training samples but performs poorly on test samples.

That scenario was coined by R. E. Bellman by the term curse of dimensionality [Bellman,

1957]. When the dimensionality increases, the volume of the space increases so that the

available data become sparse. This sparsity is problematic for methods that require statis-

tical significance. In order to obtain a statistically sound and reliable result, the amount

of data to support the result should grow exponentially. For example, Silverman provided

3

a table illustrating the difficulty of kernel estimation in high dimensions [Silverman, 1986].

The report is provided in Table 1.1.

Table 1.1. The relation between dimensionality and required sample size in kernel estimation

Dimensionality Required Sample Size
1 4
2 19
5 786
7 10700
10 842000

But, in many applications, high dimensionality is inevitable. For instance, in the cancer

prediction problem using microarray data, usually fewer than 100 samples (patients) are

available altogether for training and testing, but the number of features (genes) in the raw

data ranges from 600 to 60000 [Guyon & Elisseeff, 2003], not mentioning the data generated

from the next generation sequencing. Another example is about text processing. Using

the bag of words method, a document is represented by a vector of dimension the size of

the vocabulary containing word frequency counts. Vocabularies may contain thousands of

words. Those applications usually have the nature of “high dimensionality, small sample

size”, and there are not enough samples for a learning algorithm to train a good predictor.

The solution to restrict a learning problem with high dimension and relatively low sample

size is to reduce the dimension size. Dimension reduction is the process of reducing the

number of features, and can be divided into feature selection and feature extraction. Feature

selection approaches try to find a subset of the original features. This method will be

discussed in Chapter 2. Feature selection selects the most discriminative features, and

therefore has special usage in biomarker detection, face recognition and other applications.

Feature extraction transforms the original input data into a reduced representation set of

features. The features in the reduced space are the combinations of all or subsets of the

original features. For example, principle component analysis projects the data onto the new

basis whose vectors correspond to the largest eigenvectors of the covariance matrix [Pearson,

4

1901]. This dissertation only focuses on feature selection, not feature extraction.

High dimensionality may result in high variance. High variance also could be observed

when the predictor is excessively complex. In that case, overfitting occurs when the model

just mimics the behaviors of the training data rather than learning to generalize from trend.

Hence, simple models should be used as much as possible. However, sometimes a complex

predictor is hard to avoid if the underlying probability distribution is complex. One solu-

tion is to partition the feature space into multiple non-overlapping sub-spaces so that each

sub-region is simple enough to be handled by a simple model. For example, as shown in

Figure 1.1, in a 2 dimensional space, a binary classification task is to separate the dots

from rectangles. The true separation function is a trigonometric function represented by a

smoothing line in the Figure. But if we partition the 2-D space into four regions based on

the three vertical dash lines, each sub-problem generated by the corresponding region is ap-

proximately linearly separable. This partition enables the use of simple learning algorithms

on hard problems.

1 2 3 4 5 6 7
−2

−1.5

−1

−0.5

0

0.5

1

1.5
2−D Feature Space Partition Example

Figure 1.1. A 2-D feature space partition example

5

1.3 Outline of the Dissertation

The goal of this work is to restrict a supervised learning problem either by feature

selection or by feature space partition. This dissertation is organized as follows.

We follow the two main branches to discuss feature selection in Chapter 2 and feature

space partition in Chapter 3. The feature selection topic has been researched for years,

and it can be categorized into three categories, filter, wrapper and embedded method. The

concepts and representative works are described in Section 2.1. Among various feature

selection methods, we mainly discuss the approach using 1-norm regularization to embed

the feature selection process into the general learning framework, especially when performing

classification and regression in Section 2.2. Special focus is given to the ranking problem,

because it has been researched the least. We propose a method of ranking with 1-norm

regularization using convex hull reduction in Section 2.2.5. A single 1-norm regularization

may not satisfy the needs when a small feature subset is required. Therefore, we propose a

recursive feature selection framework based on 1-norm regularization in Section 2.3.

Feature space partition is to restructure a complex problem into multiple easy sub-

problems. Section 3.1 introduces the motivation and background. Although not much

work has been done related with this topic, there are two methods that relate the concept

of simplifying a learning problem to feature space partition. One technique is to hierar-

chically divide a region into two parts by a linear hyperplane using mutual information

evaluation [Padmanabhan et al., 1999]. The other is to repeatedly partition the space into

hyperparallelepipeds whose faces are perpendicular to feature axes until some stopping cri-

terion is met [Kohn et al., 1996; Singh & Galton, 2003; Kishore et al., 2001; He et al., 2005].

We review these methods in Section 3.2 and Section 3.3. We propose a method of leveraging

domain information to restructure prediction problems in Section 3.4.

The work of classification using top scoring feature pairs is listed outside the two branches

mentioned above, although strictly speaking, it belongs to feature selection. But it does not

match the theme in Chapter 2 where a linear model using 1-norm penalty is advocated. It

6

will be introduced in Chapter 4. The Top Scoring Pair method on static data is introduced

in Sectioin 4.1. And we propose four extensions to the standard TSP to deal with time

series data in Section 4.2.

7

CHAPTER 2

FEATURE SELECTION

In machine learning, feature selection is a technique of seeking the most representative

subset of features. In many applications, a data set contains thousands or even more fea-

tures, though the majority of which may be irrelevant or redundant. Those irrelevant or

redundant features often behave like noise in the training process, confusing the learning

algorithm and degrading the learning performance. The removal of such features would sim-

plify the learning problem. Feature selection also helps identifying the most discriminant

features which normally are meaningful for real applications. For example, when applied to

gene expression array analysis, feature selection detects the influential genes by which bio-

logical researchers could discriminate normal instances from abnormal ones, and therefore,

facilitates further biological research or judgments.

The benefits of feature selections are generalized as Guyon & Elisseeff [2003]:

• Improving prediction performance

• Reducing training time

• Facilitating data visualization and data understanding

• Reducing the measurement and storage requirements

2.1 Filter, Wrapper, and Embedded Method

We only focus on supervised learning in this dissertation. Unsupervised and semi-

supervised learning could be found in other literatures [Tseng & Kao, 2005; Liu et al.,

8

2006; Salem et al., 2008]. Feature selection algorithms roughly fall into three categories,

wrappers, filters, and embedded methods.

The idea of filter is to implement a fast preprocessing step or auxiliary selection mech-

anism to reduce the feature set. Filters are normally independent of the choice of the pre-

dictor, and has the characters of simplicity and scalability. At first, filter specifically refers

to variable ranking which ranks individual features according to a metric, and eliminates

features that do not exceed a given threshold. Ranking metric could be the correlations be-

tween a particular feature and the output vector. Weston et al. [Weston et al., 2003] stated

the issue of using correlation criteria for microarray data analysis. The feature ranking also

rely on empirical estimates of the mutual information between a single feature and target

variabl [Bekkerman et al., 2002]. Another ranking metric is based on feature’s individual

predictive power, using as a criterion the performance of a classifier built with a single fea-

ture. The feature ranking is computational efficient because it only computes feature scores.

Nevertheless, this method only focuses on the predictive power of individual features. It

is prone to the selection of redundant features. The concept of filter has been extended to

feature subset selection, for example, using mutual information between the feature subset

and the target variable. Bi et al. [Bi et al., 2003] used a wrapper with linear predictor as a

filter and then train a more complex non-linear predictor on the resulting feature subset.

Feature subset selection can be formulated as a search through the space consisting of all

possible feature subsets. Given n features, an exhaustive search would require the evaluation

of 2n−1 subsets, which is infeasible when n is large. Hence, heuristic searching strategies like

A* algorithm or depth first branch and bound may be applied. During the optimal feature

subset searching process, some basic properties need to be considered [Blum & Langley,

1997]:

• A starting point in the search space

• An organization of the search

9

• An evaluation strategy of the selected subset

• A stopping criterion for halting the search

Wrapper methods [Kohavi & John, 1997] search through feature subset space. Each sub-

set is applied to a certain machine learning model and assessed by the learning performance.

In these methods, learning models act as black boxes. Sequential algorithms [Kittler, 1978]

either start with the full or empty feature set, and proceed by greedily adding or removing

features. Sequential backward elimination stars with full set of n features, and considers

each of the n subsets of n-1 features by removing each feature once. Form these n subsets,

the one giving the highest performance is chosen. The process is then repeated for the set of

n-1 remaining features until some termination criterion is fulfilled. Similarly, the sequential

forward selection is defined, where the initial state is the empty feature set, and the features

are added using a greedy heuristic.

Embedded approaches [Lal et al., 2006] implement feature selection in the process of

learning. While wrapper methods search the space of all feature subsets, the searching

step in embedded methods is guided by the learning algorithm. This guidance could be

obtained from estimating changes in the objective function by adding or removing features.

For example, Guyon et al. [Guyon et al., 2002] proposed Support Vector Machine Recursive

Feature Elimination (SVM-RFE) algorithm to recursively classify the instances by the SVM

classifier and eliminate the feature(s) with the least weight(s). The number of features to

be eliminated in each iteration is ad hoc. Moreover, there is no firm conclusion about when

to terminate the recursive steps.

Most feature selection in the literature is designed for binary problems. When extended

to real-life multiclass tasks, combining several binary classifiers are typically suggested, such

as one-versus-all and one-versus-one [Statnikov et al., 2006]. For situations with k classes,

one-versus-all approach constructs k binary classifiers, each of which is trained with all the

10

instances in a certain class as positive and all other examples as negative. It is computa-

tionally expensive and has highly imbalanced data for each binary classifier. On the other

hand, one-versus-one method constructs k(k− 1)/2 binary classifiers for all pairs of classes.

An instance is predicted for the class with the majority vote. Similar to the one-versus-all

approach, the one-versus-one approach has heavy computational burden. Platt et al. [Platt

et al., 2000] proposed a directed acyclic graph SVM (DAGSVM) algorithm whose train-

ing phase is the same as one-versus-one by solving k(k − 1)/2 binary problems. However,

DAGSVM uses a rooted acyclic graph to make a decision from k(k − 1)/2 prediction re-

sults. Some researchers proposed methods solving multiclass tasks in one step: build a

piecewise separation of the k classes in a single optimization. This idea is comparable to

the one-versus-all approach. It constructs k classifiers, each of which separates a class from

the remaining classes, but all classifiers are obtained by solving one optimization problem.

Weston and Watkins [Weston & Watkins, 1999] proposed a formulation of the SVM that

enables a multiclass problem. But, solving multiclass problem in one step results in a much

larger scale optimization problem. Crammer and Singer [Crammer & Singer, 2001] decom-

posed the dual problem into multiple optimization problems of reduced size and solved them

by a fixed-point algorithm. A comparison of different methods for multiclass SVM was done

by Hsu and Lin [Hsu & Lin, 2002].

2.2 1-Norm Regularization Facilitating Feature Selection
A cost function typically comprises two parts, empirical error and a measure of model

complexity. The model complexity is usually approximated by a regularizer. 2-norm regu-

larizer, ridge penalty in most literatures, is commonly used, such as in traditional support

vector machine. Recently, many researchers proposed replacing 2-norm with 1-norm (i.e.

lasso penalty). The lasso penalty was first proposed in [Tibshirani, 1996] for regression

problems. Similar to the ridge penalty, the lasso penalty shrinks the feature weights towards

zeros, and therefore also benefits from the reduction in weights’ variance. But, different from

11

ridge penalty, when making the trade-off parameter between empirical error and regularizer

sufficiently large, lasso penalty will cause some of the feature weights to be exactly zero.

Zhu et al. [Zhu et al., 2003] argued that the 1-norm regularization yields sparse results,

i.e. only a small number of feature weights are nonzero, hence facilitating adaptive feature

selection.

The fact that 1-norm favors sparse results could be explained by Figure 2.1 in a 2-D

space. Feasible region consists of all the possible solutions (for example, feature weights)

that satisfy the constraints in the learning optimization formula. In the feature space, we

draw “equipotential contours” on which the data points share the same penalty values. For 2-

norm, those contours are circles (hypersphere in a high dimensional space), whereas, 1-norm

has diamond shape (hypercubes in a high dimensional space). The penalty value decreases

as the the circle or diamond shrinks. Since the objective function of the optimization formula

is to minimize the penalty term, the optimal solution is achieved as the intersection point

between the feasible region and the equipotential line with least value. Intuitively, it is with

greater possibility for a diamond to have that intersection point locating at one axis than for

a circle. Therefore, the optimal solution of a learning problem using 1-norm penalty could

easily get lots of zeros.

The use of 1-norm was advocated in many applications, such as multi-instance learn-

ing [Chen et al., 2006], ranking [Nan et al., 2010a] and boosting [Duchi & Singer, 2009],

because of its sparsity-favoring property. Several researchers discussed the multiclass prob-

lem based on 1-norm regularization and various loss functions for the empirical error. For

example, Friedman et al. [Friedman et al., 2010] introduced 1-norm into multinomial logistic

regression which is capable of handling multiclass classification problems. Bi et al. [Bi et al.,

2003] chose ε-insensitive loss function. Liu and Shen [Liu & Shen, 2006] defined a specific

loss function ψ-loss that replaces the convex SVM loss function by a nonconvex function.

Other works mainly used hinge loss with different variations [Chapelle & Keerthi, 2008;

Szedmak et al., 2004; Wang & Shen, 2006]. In this dissertation, the hinge loss function we

12

Figure 2.1. Results sparsity comparison between 1-norm and 2-norm

apply is similar to that in [Weston & Watkins, 1999], but has not been used in any 1-norm

multiclass work.

The popularity of standard 2-norm support vector machine is based on the concept of

kernel, which may create non-linear classifiers by implicitly transforming the original input

space to high dimensional feature space. The kernel trick does not apply to 1-norm SVM

due to the fact that 1-norm can not be represented by a dot product.

2.2.1 Binary Classification with 1-Norm Regularization

In the cases of binary classification, a support vector machine is formulated as the solution

of a quadratic program. Given a set of training data (x1,y1),. . . ,(xl,yl), where the input

xi ∈ Rn, and the output yi ∈ {1,−1} has binary values, the standard SVM with linear

kernel is found by solving the following quadratic program:

minw,b,ξ λ‖w‖2
2 +

∑`
i=1 ξi

s.t. yi(w
Txi + b) + ξi ≥ 1

ξi ≥ 0, i = 1, . . . , `

(2.1)

13

where λ > 0 is a fixed penalty parameter that specifies the trade-off between empirical

misclassification error and the complexity of the classifier. Zhu et al. [Zhu et al., 2003] argued

that the 1-norm SVM may have some advantage over the standard 2-norm SVM, especially

when there are redundant noise features. Similarly, 1-norm SVM can be formulated by

replacing the ‖ · ‖2 regularization operator in (2.1) with ‖ · ‖1 regularization. Hence we have

the following optimization problem:

minw,b,ξ λ‖w‖1 +
∑`

i=1 ξi

s.t. yi(w
Txi + b)T + ξi ≥ 1

ξi ≥ 0, i = 1, . . . , `

(2.2)

where ‖w‖1 =
∑n

j=1 ‖wi‖.

The optimization problem (2.2) can be formed as a linear program. We rewrite wj =

uj − vj where uj, vj ≥ 0. If either uj or vj has to equal zero, then | wj |= uj + vj. Then

(2.2) becomes

minu,v,b,ξ λ
∑n

j=1(uj + vj) +
∑`

i=1 ξi

s.t. yi[(u− v)Txi + b] + ξi ≥ 1

uj, vj ≥ 0, j = 1, . . . , n

ξi ≥ 0, i = 1, . . . , `.

(2.3)

Solving (2.3) yields solutions equivalent to those obtained by (2.2) because any optimal

solution to (2.3) has at least one of the two variables uj, vj equal to 0 for all j = 1, . . . , n.

Otherwise, assume uj > vj > 0 without loss of generality, and we can find a better solution

by setting uj = uj − vj and vj = 0, which contradicts to the optimality of (u, v).

2.2.2 Multi-class Classification with 1-Norm Regularization

In a k-category classification task, the class label y is coded as {1, ..., k}.

Given k linear decision functions f1, ..., fk where fc corresponds to class c, each deci-

sion function is defined as fc(x) = wTc x + bc, c = 1, ..., k, where, the parameters wc =

14

[wc,1, ..., wc,n]T ∈ Rn and bc ∈ R. We consider a winner-takes-all classification rule specified

as

Φ(x) = arg max
c
fc(x) ,

which assigns input x to class Φ(x) with the highest decision value. If the instances are

separable, there exist decision functions that satisfy

fyi(xi) ≥ fc(xi), c 6= yi .

The above inequality is equivalent to

(wyi − wc)xi + (byi − bc) ≥ 1, c 6= yi .

To handle the nonseparable cases, we introduce slack variables into the model, i.e.,

(wyi − wc)xi + (byi − bc) ≥ 1− ξyi,c, c 6= yi , (2.4)

where ξyi,c ≥ 0 is a slack variable.

The learning of the classifier can be formulated as an optimization problem. Our goal

is to seek f that minimizes the sum of empirical error and model complexity. Empirical

error can be computed as the proportion of nonseparable instances, i.e. errors on training

data, or approximated using various loss functions, such as hinge loss, logistic loss. These

loss functions were originally defined for binary classes. Extending to multiclass case, there

are different variations. For example, Wang & Shen [2006] utilized hinge loss function∑
c 6=yi [fc(xi) + 1]+, where (·)+ ≡ max(·, 0). In this paper, we apply the hinge loss function

∑
c 6=yi

[1− (fyi(xi)− fc(xi))]+ ,

15

which was introduced by Weston and Watkins in [Weston & Watkins, 1999]. This hinge loss

function has not been used in the multiclass setting with 1-norm penalty before. And it is

equivalent to the slack variable defined in (2.4).

Model complexity is approximated using 1-norm. For the purpose of feature selection,

we propose 1-norm multiclass regularization, L1MR, as:

min
wc,bc,ξyi,c

λ
k∑
c=1

‖wc‖1 +
l∑

i=1

k∑
j=1,j 6=yi

ξyi,c

s.t. (wyi − wc)xi + (byi − bc) ≥ 1− ξyi,c

ξyi,c ≥ 0, (2.5)

i = 1, . . . , l, c = 1, . . . , k, c 6= yi.

where
∑k

c=1 ‖wc‖1 =
∑k

c=1

∑n
j=1 ‖wc,j‖ is a 1-norm penalty,

∑l
i=1

∑k
j=1,j 6=yi ξyi,c can be

viewed as an upper bound on the training error; λ is a cost parameter that controls the

training accuracy and sparsity of the solution.

The optimization problem (2.5) can be formed as a linear program by rewriting wc,j =

uc,j−vc,j where uc,j, vc,j ≥ 0. If either uc,j or vc,j has to equal to zero, then ‖wc,j‖ = uc,j+vc,j.

Therefore, (2.5) is equivalent to

min
uc,vc,bc,ξyi,c

λ

k∑
c=1

n∑
j=1

(uc,j + vc,j) +
l∑

i=1

k∑
j=1,j 6=yi

ξyi,c

s.t. (uyi − uc − vyi + vc)xi + (byi − bc) ≥ 1− ξyi,c

ξyi,c ≥ 0, uc,j ≥ 0, vc,j ≥ 0 (2.6)

i = 1, . . . , l, c = 1, . . . , k, c 6= yi.

The number of slack variables is (k − 1)l in L1MR. Motivated by [Crammer & Singer,

16

2001], we shrink the number of slack variables to l by introducing a new slack variable as

ξi = (max
c
fc(xi) + 1− fyi(xi))+.

Compared with the slack variables in (2.6), which capture gaps between each pair of decision

functions, the new slack variable considers the maximum gap. A simplified version of L1MR,

SL1MR, is then formulated as,

min
uc,vc,bc,ξi

λ

k∑
c=1

n∑
j=1

(uc,j + vc,j) +
l∑

i=1

ξi

s.t. (uyi − uc − vyi + vc)xi + (byi − bc) ≥ 1− ξi

ξi ≥ 0, uc,j ≥ 0, vc,j ≥ 0 (2.7)

i = 1, . . . , l, c = 1, . . . , k, c 6= yi.

2.2.3 Support Vector Regression with 1-Norm Regularization

Support vector machine was largely developed by Vapnik and co-works at AT&T Bell

Laboratories. Also, in regression and time series prediction areas, excellent performances

were soon obtained [Müller et al., 1997; Drucker et al., 1997; Stitson et al., 1999; Mattera

& Haykin, 1999].

In ε-regression [Vapnik, 1995], the goal is to find a function f(x) that has at most ε

deviation from the true targets for all the training data, and at the same time is as flat

as possible. In other words, errors less than ε are ignored, but any deviation larger than

that threshold can not be accepted. Still, linear discriminant function f(x) = wTx + b is

considered. Depending on the value of ε, a solution may not exist. To avoid this, slack

variables ξi, ξ
+
i are introduced to cope with otherwise infeasible constrains. Hence, we arrive

at the formula stated in [Vapnik, 1995].

17

minw,b,ξ,ξ+ λ‖w‖2
2 +

∑`
i=1(ξi + ξ+

i)

s.t. yi − (wTxi + b) ≤ ε+ ξi

(wTxi + b)− yi ≤ ε+ ξ+
i

ξi, ξ
+
i ≥ 0, i = 1, . . . , `

(2.8)

This corresponds to dealing with a so called ε-insensitive loss function |ξ|ε described by

|ξ|ε =

 0 if |ξ| ≤ ε;

|ξ| − ε otherwise
(2.9)

Replacing the 2-norm penalty with 1-norm penalty, formula (2.8) becomes

minw,b,ξ,ξ+ λ‖w‖1 +
∑`

i=1(ξi + ξ+
i)

s.t. yi − (wTxi + b) ≤ ε+ ξi

(wTxi + b)− yi ≤ ε+ ξ+
i

ξi, ξ
+
i ≥ 0, i = 1, . . . , `

(2.10)

Using the same strategies as in 1-norm classification by letting wj = uj − vj where

uj, vj ≥ 0, the optimization problem (2.10) can be formed as a linear program as well.

minu,v,b,ξ,ξ+ λ
∑n

j=1(uj + vj) +
∑`

i=1(ξi + ξ+
i)

s.t. yi − (u− v)Txi − b ≤ ε+ ξi

(u− v)Txi + b− yi ≤ ε+ ξ+
i

uj, vj ≥ 0, j = 1, . . . , n

ξi, ξ
+
i ≥ 0, i = 1, . . . , `.

(2.11)

2.2.4 Lasso Regression

Lasso regression [Tibshirani, 1996] is based on the idea of linear least square regression

where the model coefficients are chosen to minimize the residual sum of squares. Lasso

regression is defined by the following optimization problem.

18

minw,b
∑`

i=1(yi − b−
∑n

j=1 wjxij)
2

s.t.
∑d

j=1 |wj| ≤ s

s > 0

(2.12)

In (2.12), the constraints are equivalent to minimizing 1-norm penalty of the feature

weights, and hence have the interesting and desirable effect of setting weight coefficients to

zero.

The difference between 1-norm support vector regression and lasso regression is the use of

different loss function, or in other words, how to measure the training error. Support vector

regression uses ε-insensitive loss function |ξ|ε and is described in (2.9). Lasso regression uses

square loss, which is defined as

l(y, f(x)) = (y − f(x))2

For comparison purposes, we would like to mention hinge loss here as well. It is mainly

used in classification problems. We have described the multiclass hinge loss function is

Section 2.2.2, but haven’t explicitly give the definition for binary classification. For a binary

classification task, the hinge loss is defined as

l(y, f(x)) = max(0, 1− yf(x))

Figure 2.2 gives an intuitive comparisons among hinge loss, square loss and ε-insensitive

loss.

Besides the loss functions discussed above, other popular loss functions include absolute

loss and logistic loss.

2.2.5 Ranking with 1-Norm Regularization Using Convex Hull Reduction

We give a special focus in this thesis for the ranking problems. Because ranking has

not been researched as much as classification and regression, though it has various real

19

Figure 2.2. Loss function comparison

applications.

Most inductive learning work has concentrated on classification and regression. However,

there are many applications that reside in between the two: it is desirable to order objects or

determine preferences rather than to classify instances (classification) or to predict ordinal

utility values (regression). Ranking problems arise from such applications. For instance, it is

common to rank document search results according to their relevance to a query as “perfect

match”, “relevant” and “non-relevant”. A movie recommendation system gives users a list

of recommended films where the most potentially wanted films are placed on the top.

One advantage of formulating an application as a ranking problem is that preference

judgments may be much easier to obtain than the labels required for classification learning

and the values of the dependent variable in regression [Cohen et al., 1999]. For example,

in the design of the above movie recommendation system, a user might easily express his or

her preference of movie A over movie B to generate a training data set. But it is harder to

quantify how much he or she likes these two movies. Therefore, learning to rank is a natural

choice for many applications in social science, mathematical economics, and information

retrieval where human preferences play an important role.

As described in Section 1.1, ranking does not have a complete metric structure, in par-

ticular, the concept of distance is not available in outputs. It hence brings challenges in

defining a ranking loss function. A ranking loss function should capture the intuition that

20

it is more expensive to make mistakes such as placing “perfect match” to “non-relevant”

than to “relevant”, yet it is difficult to define the distance of any two labels. One approach

to tackle this dilemma is to cast a ranking problem as a regression problem that imposes

a metric on top of the set of rankings. Balcan et al. [Balcan et al., 2008] proposed and

analyzed reductions from ranking to binary classification problems given the significant ef-

forts placed on developing classification algorithms. A commonly used method is to act on

pairs of observations, and the loss function measures the probability of misclassification of

a randomly drawn pair (x1, x2), where the two classes are x1 being preferred over x2 and

the opposite respectively [Herbrich et al., 2000]. However a limitation of this method is that

it increases the computational complexity from linear to quadratic in terms of the number

of samples. In this section, we incorporate the idea of convex hull reduction to decrease

the computational complexity of ranking. Convex hull decreases the number of constraints

that are inherent with pairwise data without compromising the ranking relationships. Its

basic idea is to select a subset of representative preference constraints instead of using all

preference pairs.

We proposed a ranking algorithm on pair-wise preference constraints. A convex hull

reduction algorithm is used to reduce the number of constraints. A linear ranking function is

computed by minimizing the sum of ranking error and a 1-norm regularization term. The 1-

norm regularization favors sparse solutions, hence selects a subset of features. Experimental

results demonstrate good performance on the data sets tested. This work has been published

in [Nan et al., 2010a].

2.2.6 Ranking Problem Formulation

The ranking problem is formulated as below. Given observation set X ∈ Rn, let R be a

relation on X× X that for any (xi, xj) ∈ R, xi is ranked higher than xj. We are interested

21

in learning a ranking function f to capture this relation, i.e.,

f(xi) > f(xj),∀(xi, xj) ∈ R.

If we consider the family of linear ranking functions, f(x) = wTx+ b, the given relation

R is linear rankable (similar to linear separable in binary classification) if and only if

wTxi + b > wTxj + b,∀(xi, xj) ∈ R,

which is equivalent to

wT (xi − xj) > 0,∀(xi, xj) ∈ R.

If R is linear rankable, there exists an n-vector w such that

wT (xi − xj) ≥ 1,∀(xi, xj) ∈ R.

For the non-rankable cases, slack variables could be introduced into the model, i.e.,

wT (xi − xj) ≥ 1− ξi,j, ηi,j ≥ 0,∀(xi, xj) ∈ R. (2.13)

Therefore, the ranking problem has been cast as a classification problem where the loss

function acts on pairs of preferences. In order to have some indication that the learning

algorithm will generalize well, the loss function should involve both the complexity of the

ranking function class and the empirical error. This complexity can be achieved by an

informative quantity, for example, VC dimension or an upper bound on VC dimension.

However, it is clear that the number of constraints grows quickly as the size of observation

increases, roughly quadratic in the number of training samples, which poses a significant

computational burden and even makes the solution infeasible.

22

2.2.7 Convex Hull Reduction

When there are multiple ranking labels {y1, y2, . . . , yk}, let Ys be the set of all observations

with rank label ys. A preference relation is specified as

R = {(xi, xj) : ∀i, j, xi ∈ Ys, xj ∈ Yt, Ys ≺ Yt} ,

where ≺ denotes “being preferred to”.

The size of R is |R| =
∑

s,t,Ys≺Yt |Ys||Yt|. For a ranking problem in Section 2.2.6, there

will be |R| constraints of form (2.13). For almost all ranking problems, |R| is much larger

than the number of ranking labels. In fact, the size of constraints is approximately the

quadratic of the observation size, i.e., the number of constraints is O(`2) where ` is the

number of training observations. Therefore, the number of constraints is prohibitively large

even for a training set of medium size, say 1000.

Our approach to reduce the number of constraints is to select a small subset of represen-

tative preference constraints without compromising the ranking performance significantly.

These representative constraints are constructed using observations lying on the convex hulls

of Ys (s = 1, . . . , k).

A convex hull is the smallest convex polygon containing all the points in a set. It captures

the shape of a data set. The convex hull computation could be finished in O(|Y |lg(|Y |))

time for each observations set Y . After finding convex hulls for each set Ys(s = 1, . . . , k),

constraints in (2.13) are reduced to

wT (xi − xj) ≥ 1− fi,j, ξi,j ≥ 0,∀(xi, xj)

that xi ∈ CH(Ys), xj ∈ CH(Yt), and Ys ≺ Yt,

where CH(Ys) denotes the observations on the convex hull of the set Ys.

23

After convex hull reduction, the number of constraints shrinks to

O(
∑

s,t,Ys≺Yt

|CH(Ys)||CH(Yt)|),

where |CH(Ys)| is the size of the convex hull of set Ys. We will show later that in most

applications this procedure will reduce the constraint size dramatically.

2.2.8 Ranking with 1-Norm Regularization and Convex Hull Reduction

Combing the results of (2.14) and (2.3), the 1-norm ranking problems could be regularized

as

minu,v,b,ξ λ
∑n

j=1(uj + vj) +
∑`

i=1 ξi,j

s.t. wT (xi − xj) ≥ 1− ξi,j, ξi,j ≥ 0

xi ∈ CH(Ys), xj ∈ CH(Yt), Ys ≺ Yt,

uj, vj ≥ 0, j = 1, . . . , n

ηi,j ≥ 0, i = 1, . . . , `.

Slack variables are necessary in the non-rankable applications. But the above formula

shows that the size of slack variables is equal to the number of convex hull point pairs, which

is another computational burden, especially when the sample points are mostly distributed

on the surface of the high dimensional cube and convex hull reduction cannot relieve the

computational load a lot.

To relieve the computational load, we not only reduce the number of constraints but also

reduce the number of variables in the optimization problem. To fulfill the second purpose,

we assign each convex hull point a slack variable. Therefore, the original slack variable for

each pair (xi, xj) can be represented by the addition of the slack variables of xi and xj.

And the number of slack variables is dramatically reduced from |R| =
∑

s,t,Ys≺Yt |Ys||Yt| to∑
s |Ys|.

As a result, the ranking function is specified as the solution of the following linear

24

program:

minu,v,b,η λ
∑n

j=1(uj + vj) +
∑

s,t(ηs + ηt)

s.t. (u− v)T (xs − xt) + (ηs + ηt) ≥ 1

xs ∈ CH(Ys), xt ∈ CH(Yt), Ys ≺ Yt

uj, vj ≥ 0, j = 1, . . . , n

ηs, ηt ≥ 0, s, t = 1, . . . , n.

(2.14)

Moreover, we could further reduce the number of constraints using the transitive property

of the preference over ranking labels. For example, we have preference relation denoting

as Ys ≺ Yt ≺ Yu. Instead of considering all the preference constraints in the relation

R1 = {(Ys, Yt), (Ys, Yu), (Yt, Yu)}, relations R2 = {(Ys, Yt), (Yt, Yu)} is sufficient to express

R1 in the sense that the transitive closure of R2 is R1. Therefore, the number of constraints

after reduction is bounded by O(
∑

s,Ys≺Ys+1
|CH(Ys)||CH(Ys+1)|).

2.2.9 Kendall τ Correlation Coefficient

Performance metrics are fundamental in assessing any ranking method. Fung et al. [Fung

et al., 2006] used generalized Wilcoxon-Mann-Whitney Statistics to measure the probability

of any pair of data being ordered correctly. A similar but simpler concept is Kendall τ rank

correlation coefficient (simply the Kendall τ), which is a non-parametric statistic used to

measure the degree of correspondence between two rankings. It assesses the significance of

this correspondence. Considering the occurrence of ties, we use Kendall τ -b variation.

Let ai and bi be the rank of observation xi given by two ranking algorithms, Kendall τ -b

rank correlation coefficient for the two ranking algorithms on the given set of observations

is defined as

τ =

∑
i<j sgn(ai − aj)sgn(bi − bj)√

(T0 − T1)(T0 − T2)

where T0 = n(n − 1)/2, T1 =
∑

k tk(tk − 1)/2, and T2 =
∑

l ul(ul − 1)/2. The tk is the

number of tied a values in the k-th group, ul is the number of tied b values in the l-th group,

n is the number of observations.

25

If the two rankings are identical, the Kendall τ -b value is equal to 1. If two rankings are

totally opposite, Kendall τ -b equals negative one. It approaches zero when the two rankings

are irrelevant.

2.2.10 Experiments and Results

We tested our approach on three data sets: an artificial data set, a concrete compressive

strength data set, and an Abalone data set. The artificial data set consists of 2000 samples in

two size-balanced groups with dimension 6. Three features out of six are generated according

to the uniform distribution on two regions with little overlapping so that the two groups

are linear separable. The other three features are random noises with little discriminative

power.

The two real data sets are publicly available from UCI machine learning repository 1.

They were used as benchmark data sets for ordinal regression methods in the literature.

The dependent variable of the concrete strength data set is continuous. In the Abalone

data set, the dependent variable is discrete taking integer values between 1 and 29. The

concrete compressive strength data set has 1030 instances and 8 attributes. We discretize

the values of continuous dependent variable into five bins of equal size. Observations in the

same bin share the same ranking label. Although the dependent variable of the Abalone

data set is discrete, considering the fact that most applications do not have such a large

number of ranking labels as 29, we grouped the observations into three rank classes. All

observations whose dependent variable is smaller than 6 are assigned a ranking label 1. All

observations whose dependent variable is greater than 15 are assigned a ranking label 3. All

the remaining observations belong to rank class 2. The Abalone data set has 4177 instances

and 8 attributes.

We used 5-fold cross validation in all data sets. On the artificial data set, our approach

showed perfect ranking performance with Kendall τ coefficient being 1. Moreover, the

1http://www.ics.uci.edu/∼mlearn/MLRepository.html

26

weights for the three noise features were all 0, which implies that the noise features were

rejected by the ranking algorithm. This confirms that 1-norm regularization favors sparse

solution and is able to select the most discriminative features under a proper value of the λ

parameter.

0 2 4 6 8 10 12
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Lambda −− Feature Weight Correlations in Abalone Set

Lambda

In
di

vi
du

al
 W

ei
gh

t f
or

 E
ac

h
Fe

at
ur

e

0 2 4 6 8 10 12
0.5

0.6

0.7

0.8
Lambda −− Kendall Values in Abalone Set

Lambda

K
en

da
ll

ta
u−

b

Figure 2.3. The relationship between λ, feature weights (wj’s), and Kendall τ-b rank correla-
tion coefficient on the Abalone data set.

Similar observations were obtained on the other two data sets. The top plots in Figure 2.3

and Figure 2.4 show the feature selection process as the λ parameter in (2.14) varies. The

horizontal axis indicates the value of λ. The vertical axis represents the values of the weights.

We can see from both figures that as the value of λ increases the absolute values of feature

weights decrease. Eventually all the feature weights drop to zero. However, some feature

27

0 2 5 10 11 14 15
−0.1

0

0.1

0.2

0.3

0.4
Lambda −− Feature Weight Correlations in Concrete Strength Set

Lambda

In
di

vi
du

al
 W

ei
gh

t f
or

 E
ac

h
Fe

at
ur

e

0 2 5 10 11 14 15
0

0.5

0.7

1
Lambda −− Kendall tau−b Values in Concrete Strength Set

Lambda

K
en

da
ll

ta
u−

b

Figure 2.4. The relationship between λ, feature weights (wj’s), and Kendall τ-b rank correla-
tion coefficient on the Concrete Strength data set.

weights decrease more quickly than others. Thus the non-zero-weight features are selected.

The bottom plots in Figure 2.3 and Figure 2.4 present the ranking performance as the λ

parameter changes. The vertical axis represents the Kendall τ -b value. In the concrete

strength data set, 2 feature weights out of 8 drop to zero after λ is equal to 2, which

indicates that these two features are “useless” compared with others. The best Kendall

τ result, 0.80325, is achieved when λ ranges from 12 to 14. Similar scenario happens in

Abalone set. One feature weight drops to zero when λ is greater than 2. It hits the best

performance 0.643775 when λ is within the range between 9 and 9.5.

Note that, the reduction ratio is the percentage of the constraints that are removed.

28

Table 2.1. Number of constraints before and after convex hull reduction.
Data Set Before Convex Hull Reduction After Convex Hull Reduction Reduction ratio

Artificial 640000 174816± 2670 72.69%

Concrete Strength 271590± 466 178822± 4440 34.16%

Abalone 1105700± 2556 178060± 8833 83.90%

Table 2.2. Convex hull reduction on uniform and normal distributions. There are 1000 obser-
vations before the reduction. The right two columns contain the number of observations that
are on the convex hull.

Dimension of Feature Space Normal Distribution Uniform Distribution
2 Dimension 13 19
3 Dimension 32 72
4 Dimension 85 152
5 Dimension 159 306
6 Dimension 274 496
7 Dimension 358 661
8 Dimension 527 759
9 Dimension 637 852

Next, we look at the effect of convex hull reduction on the number of constraints. In our

experiment, the preference pairs are specified as between group observations. We use Quick

Hull 2 as the convex hull algorithm. The numbers of preference constraints before and after

convex hull reduction are given in Table 2.1. Because 5-fold cross validation is used, we

average the number from each run and provide the standard deviation as well. The number

of constraint for concrete strength data set is reduced by 34.16%. For the artificial data set

and Abalone data set, the reduction ratios are 72.69% and 83.90%, respectively. Although

the reduction ratio differs in different data sets, convex hull seems to be an effective option

in reducing the constraint set.

However, due to the curse of dimensionality, in a high dimensional space, almost all

observations lie on the surface of a convex hull. Therefore we don’t expect significant

improvements from the proposed ranking algorithm when the feature dimension is large.

Theoretically predicting the number of observations on a convex hull is not an easy task

because it depends on the number of observations, the dimension of feature space, and the

2http://www.qhull.org/

29

distribution of the observations. Hueter [Hueter, 1999] developed a central limit theorem

for the convex hull size in high dimensional spaces. To further investigate how well convex

hull reduction works on the ranking problems, we randomly generate 1000 observations with

feature dimension varies from 2 to 9, and record the number of observations on the convex

hull. Table 2.2 shows that the convex hull size increases with the feature dimension. In a

9-dimensional feature space, the number of observations on the convex hull is close to the

size of the whole data set. This is an empirical validation of the curse of dimensionality,

which limits the use of convex hull reduction in applications with high feature dimension.

2.3 Recursive Feature Elimination Using 1-Norm Regularization

Feature selection under the framework of 1-norm regularization is achieved by discarding

the least significant features, i.e., features with zero weights. The sparsity of the weights

is determined by a regularization parameter that controls the trade off between empirical

error and model complexity. However, the selection of a proper regularization parameter is a

challenging problem. We only know the trend of tuning the parameter to make the number

of selected features smaller or larger, but it is difficult to associate a parameter value with a

particular feature subset and at the same time achieve a high learning performance, unless

the entire regularization path is computed. As 1-norm is non-differentiable (so is hinge loss),

calculating the accurate regularization path is difficult (some other loss functions, such as

logistic loss, have defined gradients). Even though the regularization path is piecewise linear,

path-following methods are slow for large-scale problems. Instead of computing an approxi-

mate regularization path, we introduce an iterative 1-norm feature selection framework that

selects a small number of features with high performance.

In general, the iterative 1-norm feature selection framework could be used in all learning

problems, including classification, regression and ranking. But we demonstrate the method

mainly under the scope of multiclass classification, and the extension to regression and

ranking is straightforward. In Section 2.2.2, we proposed a multiclass 1-norm regularization

30

feature selection method, L1MR (Linear 1-norm Multiclass Regularization), and its simple

variation SL1MR, that solve a single linear program. Because the 1-norm penalty tends to

yield sparse solutions, the proposed formulation has embedded feature selection property.

Combined with the idea of recursive feature selection, L1MR and SL1MR identify a small

subset of discriminative features effectively and efficiently. The sparsity favoring property of

1-norm regularization enables fast convergence of the iterative feature elimination process.

The experimental results show that the iterative elimination process typically completes

in less than 10 iterations. Compared with the results obtained from the correlation-based

feature selection and information gain methods, L1MR and SL1MR achieve better perfor-

mance in terms of both the size of selected feature subset and the subset’s discriminative

power. Compared with support vector machine-recursive feature elimination, our methods

have shorter running time and higher accuracy. This work has been published in [Nan

et al., 2010b].

2.3.1 Method

It has frequently been observed that 1-norm regularization leads to many feature weights

to be zero. This makes it a natural feature selection process, where features with zero weight

values should be discarded with no risk. In this section, we call a feature j having zero-

weight if all k values, w1,j, w2,j, . . . , wk,j, in the k weight vectors are zero. Otherwise, the

corresponding feature has non-zero weight. The purpose of feature selection is to choose a

small subset of features and achieve good classification performance. Achieving these two

goals simultaneously is difficult.

Although the solutions of the above linear programs are in general sparse, the number

of selected features still can be quite large, especially when the dimension of the original

feature space is high. By the nature of the 1-norm penalty, increasing the value of parameter

λ in (2.6) and (2.7) will reduce the number of non-zero weight features. Figure 2.5 shows

the relationship between the number of features selected (non-zero-weight features) and the

31

parameter λ on the earthworm dataset. It suggests that, by properly tuning the value

of λ, different number of features could be selected. Finding a “good” value for λ is a

challenging problem. Increasing λ value reduces the size of the selected feature subset, but

not necessarily improves the learning performance of the associated model. An accurate

solution could be obtained by computing the entire regularization path of L1MR or SL1MR.

However, neither of the hinge loss and 1-norm penalty in the multiclass scenario has well-

defined gradient [Rosset, 2004], which makes computing the whole solution path extremely

difficult.

Inspired by the idea of RFE, we propose a recursive feature elimination approach based

on the 1-norm regularization. At each recursive step, a L1MR or SL1MR model is built based

on the remaining features from the previous step, and zero-weight features will be eliminated.

The recursive process stops when there is no zero-weight feature left. And the final feature

subset is chosen based on the associated model with the highest learning accuracy among all

the steps. Compared with other embedded feature selection methods, such as SVM-RFE,

1-norm regularized multinomial logistic regression and other single multiclass classifier, the

proposed feature selection method has the following properties:

• The recursive process narrows down the feature subset step by step, hence minimizes

the number of features selected, which is more aggresive than 1-norm regularized

multinomial logistic regression and other single multiclass classifiers.

• The number of feature to be eliminated at each step is automatically determined,

i.e., features with zero weights. Whereas in SVM-RFE, the number of features to be

eliminated has to be predetermined, e.g. deleting one feature with the least feature

weight.

• The recursive process normally involves a smaller number of iterations than SVM-RFE.

We have observed that the number of features eliminated at each step varies greatly:

32

10
−5

10
−3

10
−2

10
−1

10
0

10
1

0

20

40

60

80

100

120

140

160

180
L1MR

Log(λ)

N
u

m
b

e
r

o
f

n
o

n
ze

ro
 w

e
ig

h
t

fe
a

tu
re

s

10
−5

10
−3

10
−2

10
−1

10
0

10
1

0

20

40

60

80

100

120

140

160

180
SL1MR

Log(λ)

N
um

be
r o

f n
on

ze
ro

 w
ei

gh
t f

ea
tu

re
s

Figure 2.5. The relationship between λ and the number of non-zero-weight features.

33

dramatic reduction occurs at the first (few) step(s), and shrinks when it comes close

to the optimal feature subset. The convergence is typically very fast.

• It has a natural stopping criteria: when the weights of the remaining features are

nonzero.

To obtain a stable variable selection result, the instances are resampled multiple times

and we choose variables that occur in a large portion of the multiple selection results. This

idea is similar as stability selection [Meinshausen & Bühlmann, 2010] in the sense that

multiple random sampling reduces the result variance. However, stability selection tests all

regularization parameter (cost-parameter) under consideration and our approach includes

a parameter selection procedure. As emphasized in [Zhang et al., 2006] and [Ambroise &

McLachlan, 2002], feature selection steps external to the resampling procedures may severely

bias the evaluation in favor of the learned method due to “information leak”. In our method,

the feature selection is put inside the resampling. Because the L1MR and SL1MR include

the process of tuning a cost-parameter, a double loop [Statnikov et al., 2006] is used: the

inner loop is used to select the best parameter, and the outer loop is used for estimating

the performance of the learning model built using the previously found best parameter on

an independent test set.

The recursive feature selection based on 1-norm procedure is described in detail as follows:

1. Resample data set by k random splits. 3

2. Recursive feature selection at each split Fj. This step is stated in detail as follows,

(a) At iteration i, build L1MR or SL1MR model with current Si,Fj
features. Initially,

S1,Fj
consists of all the gene features. This sub-step includes an inner cross

validation loop or bootstrap to decide the best parameter with which the learning

model yields the best performance on the inner validation set. 4

320 random splits is used in our experiment.
410-fold cross validation was recommended in [Ambroise & McLachlan, 2002] and is used in the inner

loop of our experiment.

34

(b) Remove the zero-weight features from the old feature set and obtain a new one,

Si+1,Fj
.

(c) Set i = i + 1. Repeat from sub-step (a) until Si,Fj
does not change (in other

words, there are no zero-weight features).

3. For each split, record the optimal feature subset S?Fj
with the maximum accuracy rate

Acc?Fj
.

4. Aggregate results from different splits.

In the outer loop, each split generates different subsets of features. The workflow of the

recursive feature selection framework can be expressed in Figure 2.6.

These subsets usually overlap with each other significantly. Nevertheless, we do need

to combine these results. In [Zhang et al., 2006], Zhang et al. utilized a frequency-based

selection method that ignores the ordering of features. Because the list of S?fj could be viewed

as a rank list where gene features are sorted in descending order based on their importance,

Borda’s method is used in this paper for rank aggregation [Dwork et al., 2001]. Suppose

there are k ranking lists. Borda’s method first assigns to each feature a k-dimension vector

indicating the positional scores of the feature in the k lists. It then sorts the features by the

sum of these vectors. A major advantage of using Borda’s method is its low computational

complexity, linear to the size of the list. Also, this method could be extended to partial lists

by apportioning the excess scores equally to all unranked features.

The number of features selected is the average size of the selected subset in each split,

i.e., ⌊
N =

∑k
j=1 |SFj

|
k

⌋
, (2.15)

with k = 20 in our experiment, where |SFj
| is the size of selected feature subset in split Fj.

After Borda’s method, the top N features are selected from the aggregation ranking list.

35

Figure 2.6. The workflow of the recursive feature selection using 1-norm penalty framework

The estimated accuracy is calculated as the average of the k-split accuracies, i.e.

∑k
j=1Acc

?
Fj

k
, (2.16)

where Acc?Fj
indicates the cross validation accuracy within split Fj.

2.3.2 Experiments and Results

Adult earthworms (Eisenia. fetida) were exposed in soil spiked with TNT (0, 6, 12,

24, 48, or 96 mg/kg) or RDX (8, 16, 32, 64, or 128 mg/kg) for 4 or 14 days. The 4-day

treatment was repeated with the same TNT concentrations and the RDX concentration

36

being 2, 4, 8, 16 or 32 mg/kg soil. Each treatment originally had 10 replicate worms with

8-10 survivors at the end of exposure, except the two highest TNT concentrations. At 96

mg TNT/kg, no worms survived in the original 4-day and 14-day exposures, whereas at 48

mg TNT/kg, all 10 worms died in the original 4-day exposure. Total RNA was isolated

from the surviving worms as well as the Day 0 worms (worms sampled immediately before

experiments). A total of 248 worm RNA samples (8 replicate worms with 31 treatments)

were hybridized to a custom-designed oligo array using Agilent’s one-colour Low RNA Input

Linear Amplification Kit. The array contained 15,208 non-redundant 60-mer probes (GEO

platform accession number GPL9420), each targeting a unique E. fetida transcript. After

hybridization and scanning, gene expression data were acquired using Agilent’s Feature

Extraction Software (v.9.1.3). In the current study, the 248-array dataset was divided into

three worm groups: 32 untreated controls, 96 TNT-treated, and 120 RDX-treated. This

dataset has been deposited in NCBI’s Gene Expression Omnibus and is accessible through

GEO Series accession number GSE18495 5.

We applied the L1MR and SL1MR on the earthworm microarray gene expression data

which is categorized into three classes. L1MR and SL1MR were implemented using Matlab,

and 1-norm multiclass regularization was transformed into standard optimization problem

format. Then the optimization problem was solved by CPLEX (an optimization software

package).

Table 2.3, 2.4, 2.5 and 2.6 show the detailed results using L1MR and SL1MR methods,

respectively. The number of iterations is less than ten in each split, which suggests fast

convergence of our methods, greatly alleviating the computational burden posed by the

traditional RFE method. In all of our tests, the first iteration in both methods always

achieves the largest feature elimination. Sometimes, the process achieves an optimal solution

after just one iteration. In most scenarios, accuracy follows a bell shaped curve along the

selection steps.

5http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18495

37

Table 2.3. Classification and Feature Selection Results of L1MR (Part I).
Fsize I1 I2 I3 I4 I5 I6 I7 I8 I9
Split 1 144 122 103 70 63 59 58 57 55
Split 2 53 50 - - - - - - -
Split 3 75 65 63 59 53 52 - - -
Split 4 69 63 61 60 56 54 52 - -
Split 5 144 122 103 70 63 59 58 57 55
Split 6 63 59 57 - - - - - -
Split 7 61 59 - - - - - - -
Split 8 78 - - - - - - - -
Split 9 138 110 97 93 85 83 80 70 67
Split 10 65 58 50 49 - - - - -
Split 11 121 101 78 76 - - - - -
Split 12 133 130 112 79 63 59 58 57 55
Split 13 75 67 61 53 49 - - - -
Split 14 144 75 63 59 52 - - - -
Split 15 77 73 69 63 61 - - - -
Split 16 137 117 103 97 83 70 67 - -
Split 17 63 59 - - - - - - -
Split 18 67 63 61 - - - - - -
Split 19 127 103 93 87 83 70 63 - -
Split 20 69 67 63 59 57 - - - -

Fsize: The number of features selected.
I1-I9: The first iteration to the 9th iteration.

We compared L1MR and SL1MR with two well-known statistical methods in the lit-

erature – correlation-based feature selection (CFS) and information gain feature selection

(IG), and also with two embedded multiclass feature selection methods – SVM-RFE and

L1 regularized multinomial logistic regression. CFS [Hall, 2000] offers a heuristic of individ-

ual features for predicting the class labels, whereas IG measures the expected reduction in

entropy. SVM-RFE [Guyon et al., 2002] trains a multiclass SVM classifier by the method

of one-versus-one and eliminates the least-weight-feature at a time. L1 regularized multi-

nomial logistic regression could handle multiclass classification problem [Friedman et al.,

2010], and feature selection is implemented by eliminating zero-weight features. SVM-RFE

was coded by Matlab and libsvm, a free library for Support Vector Machines 6. L1 regu-

larized multinomial logistic regression was implemented by a free Matlab package offered

by Mark Schmidt 7. We utilized the CFS and IG packages in Weka directly. CFS was

6http://www.csie.ntu.edu.tw/ cjlin/libsvm/
7http://www.cs.ubc.ca/ schmidtm/Software/L1General.html

38

Table 2.4. Classification and Feature Selection Results of L1MR (Part II).
Accuracy I1 I2 I3 I4 I5 I6 I7 I8 I9
Split 1 74.0% 74.0% 86.0% 90.0% 78.0% 90.0% 86.0% 86.0% 86.0%
Split 2 72.8% 72.8% - - - - - - -
Split 3 85.3% 89.5% 77.0% 77.0% 81.2% 81.2% - - -
Split 4 78.0% 86.0% 78.0% 86.0% 78.0% 78.0% 82.0% - -
Split 5 74.0% 74.0% 86.0% 90.0% 78.0% 90.0% 86.0% 86.0% 86.0%
Split 6 89.5% 93.7% 89.8% - - - - - -
Split 7 82.0% 86.0% - - - - - - -
Split 8 94.3% - - - - - - - -
Split 9 86.0% 98.0% 94.0% 94.0% 94.0% 94.0% 98.0% 98.0% 98.0%
Split 10 62.0% 58.0% 70.0% 58.0% - - - - -
Split 11 77.5% 77.5% 77.7% 77.7% - - - - -
Split 12 73.3% 75.0% 77.5% 79.0% 81.0% 82.3% 78.0% 86.0% 73.0%
Split 13 74.0% 72.8% 78.0% 89.5% 83.0% - - - -
Split 14 82.0% 86.0% 78.0% 92.0% 89.0% - - - -
Split 15 79.2% 82.0% 91.5% 78.0% 82.0% - - - -
Split 16 69.8% 71.5% 73.0% 78.0% 71.5% 73.3% 72.0% - -
Split 17 92.1% 89.0% - - - - - - -
Split 18 79.0% 84.6% 82.3% - - - - - -
Split 19 81.0% 82.1% 79.5% 77.0% 82.1% 79.0% 79.0% - -
Split 20 75.8% 74.0% 79.5% 81.2% 79.5% - - - -

Accuracy: The classification accuracy.
I1-I9: The first iteration to the 9th iteration.

combined with BestFirst search algorithm and IG was associated with the Ranker search

method. Most of the settings are default setting in Weka, except for the number of features

to select in IG is set to 64 to match the results of L1MR and SL1MR. In order to make

fair comparisons, the same 20 random splits were also carried out in CFS , IG, SVM-RFE,

L1 regularized multinomial logistic regression with the data splits identical to those used in

L1MR and SL1MR. Because CFS and IG are pure feature selection approaches, to evaluate

the learning performances on the selected feature subsets, additional model-building process

is needed. An outline of the CFS and IG processes is given below:

1. Use the same setting to divide the data set into 20 splits.

2. For each split, implement CFS and IG feature selection separately. For either CFS

or IG, aggregate the 20 feature selection results by Borda’s method. CFS selects 60

features after the aggregation step.

39

Table 2.5. Classification and Feature Selection Results of SL1MR (Part I).
Fsize I1 I2 I3 I4 I5 I6 I7 I8
Split 1 65 55 54 52 - - - -
Split 2 53 50 - - - - - -
Split 3 68 61 58 - - - - -
Split 4 54 50 - - - - - -
Split 5 33 31 30 - - - - -
Split 6 51 50 - - - - - -
Split 7 73 66 63 60 56 54 52 51
Split 8 85 76 73 72 66 64 62 61
Split 9 43 38 - - - - - -
Split 10 45 41 39 - - - - -
Split 11 65 54 52 - - - - -
Split 12 55 54 50 - - - - -
Split 13 37 35 - - - - - -
Split 14 44 41 - - - - - -
Split 15 53 50 44 41 - - - -
Split 16 78 75 73 66 63 56 - -
Split 17 66 63 59 52 - - - -
Split 18 33 30 - - - - - -
Split 19 79 73 70 68 65 60 56 51
Split 20 47 41 37 - - - - -

Fsize: The number of features selected.
I1-I9: The first iteration to the 9th iteration.

3. Generate a new data set by eliminating any feature that is not on the aggregation list.

4. Train a classifier by L1MR method and estimate the classification accuracy. This

learning step implements double loop cross validation as we do in L1MR and SL1MR

learning, with the same outer loop data partition.

The comparison results are given in Table 2.7. Because of 20 random splits, accuracy

average and standard deviation are provided. From here, we use abbreviations “L1-RMLR”

for “L1 regularized multinomial logistic regression”. Except for L1-RMLR, other approaches

selected small number of features. Though, L1MR and SL1MR achieved higher average

accuracies than all the comparison methods, the high standard deviation makes it hard to

claim the superiority of our methods. Therefore, we ran a t-test to compare the difference

between our method (L1MR or SL1MR) and any comparison method (L1-RMLR, SVM-

RFE, CFS, or IG). For each pair, e.g. L1MR and SVM-RFE, the t value was computed

based on their learning performances on the 20 random splits. These performance values

40

Table 2.6. Classification and Feature Selection Results of SL1MR (Part II).
Accuracy I1 I2 I3 I4 I5 I6 I7 I8
Split 1 94.0% 86.0% 90.0% 90.0% - - - -
Split 2 72.8% 72.8% - - - - - -
Split 3 85.3% 85.3% 85.3% - - - - -
Split 4 86.0% 74.0% - - - - - -
Split 5 90.0% 94.0% 98.0% - - - - -
Split 6 89.5% 93.7% 89.8% - - - - -
Split 7 90.0% 90.0% 98.0% 90.0% 90.0% 90.0% 86.0% 78.0%
Split 8 90.5% 98.2% 90.5% 86.6% 86.6% 90.5% 94.3% 90.5%
Split 9 94.0% 94.0% - - - - - -
Split 10 70.0% 62.0% 66.0% - - - - -
Split 11 92.1% 90.0% 92.1% - - - - -
Split 12 88.0% 88.0% 84.5% - - - - -
Split 13 90.0% 89.8% - - - - - -
Split 14 86.5% 90.6% - - - - - -
Split 15 77.8% 75.4% 78.0% 77.8% - - - -
Split 16 79.2% 81.0% 88.0% 83.3% 82.0% 83.3% - -
Split 17 94.5% 94.5% 92.0% 92.0% - - - -
Split 18 88.0% 84.5% - - - - - -
Split 19 86.0% 85.5% 89.8% 90.0% 88.5% 89.8% 86.0% 88.5%
Split 20 90.0% 88.5% 86.4% - - - - -

Accuracy: The classification accuracy.
I1-I9: The first iteration to the 9th iteration.

are shown in Figure 2.7. The calculated t values are shown in Table 2.8. According to

the t table with 20 − 1 = 38 degrees of freedom, we see that for the threshold = 0.05 the

tabled valued is 2.093, and for threshold = 0.01 the tabled valued is 2.861. Our calculated

values are mostly larger than the tabled value at threshold = 0.01 except for the pair

of L1MR and SVM-RFE. So we reach the conclusion that SL1MR outperformed all the

comparison methods, and L1MR achieved better performance than L1-RMLR, CFS and IG.

The difference between L1MR and SVM-RFE is not statistically significant. In all, SL1MR

shows the best feature selection result by selecting a small number of features and generating

the highest classification accuracy.

Table 2.9 lists the top 20 earthworm genes selected by SL1MR and the position rank of of

these gene given by L1MR, CFS and IG. Due to page limit, the remaining 32 genes (ranked

between 21th to 52th by SL1MR) are not shown. These 52 genes together are identified as

the classifier genes that are highly discriminative in separating the earthworm samples into

41

Table 2.7. Comparison of L1MR, SL1MR, L1-RMLR, SVM-RFE, CFS, and IG.

Method Fsize Accur
L1MR 64 86.25% ± 7.58%
SL1M 52 88.57% ± 7.56%

L1-RMLR 682 83.72% ± 5.35%
SVM-RFE 35 85.62% ± 5.58%

CFS 64 77.98% ± 5.22%
IG 64 78.16% ± 4.39%

Fsize, Accur, same as Table 2.3 and 2.4
CFS: Correlation-based feature selection.
IG: Information gain feature selection.

Table 2.8. T Values for L1MR/SL1MR and Comparison Method.

L1-RMLR SVM-RFE CFS IG
L1MR 3.1724 0.7826 10.4234 10.5488
SL1M 6.0317 3.6335 13.2457 13.4653

control, TNT-treated and RDX-treated categories.

Among the top 20 genes, 19 genes (95%) have meaningful annotation with a wide

range of biological functions spanning from detoxification (glutathione S-transferase pi and

Cadmium-metallothionein) to spermatogenesis (valosine containing peptide-2 or VCP-2) and

signal transduction (signal peptides). VCP-2, a gene expressed specifically in the anterior

segments of sexually mature earthworms [Suzuki et al., 2005], is identified by three algo-

rithms and ranked in the top 10, suggesting that both TNT and RDX may affect spermato-

genesis. Elongation factor 2 or EF2, a putative gene targeted by two probes, TA1-057226

and TA2-006089, is one of the proteins that facilitate the events of translational elongation,

the steps in protein synthesis from the formation of the first peptide bond to the formation

of the last one [Jorgensen et al., 2006]. This strongly indicates that protein synthesis may be

targeted by both TNT and RDX. Nevertheless, more work should be devoted to exploring

biological functions and interactions of the identified top classifier genes that may lead or

be linked to toxicological effects or biochemical endpoints.

As a continuation of this work, we would like to validate the biological significance

of the identified genes because our main purpose was to discover novel gene biomarkers

42

Table 2.9. Top 20 Genes Selected by SL1MR.
Rank in Rank in Rank in Rank in Rank in Rank in
SL1MR Probe Name L1MR L1-RMLR SVM-RFE CFS IG Target Gene Annotation

1 TA1-153745 6 17 8 - - succinate dehydrogenase
iron-sulfur protein

2 TA1-057226 2 4 5 23 2 elongation factor-2
3 TA1-058194 4 9 7 - - Cytoplasmic
4 TA2-010658 9 2 4 - - 40S ribosomal protein S8
5 TA2-095861 14 36 19 - - tropomyosin
6 TA2-006089 3 1 6 - 35 elongation factor 2
7 TA1-167854 13 57 26 13 - Cytoplasmic
8 TA1-194525 8 23 3 - - valosine containing peptide-2
9 TA1-056351 12 74 20 60 - Unknown
10 TA1-166421 18 15 13 - - 40S ribosomal protein S30
11 TA2-164073 17 39 9 - - Signal peptide
12 TA1-016697 23 55 16 - - peptidase-C13
13 TA1-003758 19 76 - - - MT-EISFO

Cadmium-metallothionein
14 TA2-111531 25 130 - - - peptidase-C13
15 TA2-179329 11 49 - - - Cytoplasmic
16 TA2-065306 5 13 33 - - Signal peptide
17 TA2-131920 28 61 15 - - glutathione S-transferase pi
18 TA1-030037 1 3 1 7 - Lumbricus rubellus mRNA

for 40S ribosomal protein S10
19 TA2-026889 34 155 - - - Rattus norvegicus similar to

Finkel-Biskis-Reilly murine
20 TA2-113782 15 86 28 10 - signal peptide

sensitive and specific to environmental toxicants. In the future, we would also like to perform

experiments comparing these algorithms on a wider range of data sets.

43

0
2

4
6

8
10

12
14

16
18

20
70758085909510
0

20
 R

an
do

m
 S

pl
its

Accurcy (%)

Le
ar

ni
ng

 A
cc

ur
ac

ie
s

fo
r

20
 R

an
do

m
 S

pl
its

 U
si

ng
 D

iff
er

en
t F

ea
tu

re
 S

el
ec

tio
n

M
et

ho
ds

L1

M
R

S
L1

M
R

L1
−

R
M

LR
S

V
M

−
R

F
E

C
F

S
IG

Figure 2.7. Learning Accuracies for 20 Random Splits Using Different Feature Selection
Methods.

44

CHAPTER 3

FEATURE SPACE PARTITION

The basic concept of feature space partitioning is different from that used in the con-

struction of decision tree. Here, the partition is specific for the objective to simplify the

learning problem so that each region after partition has a better discriminant ability. Once

the partition of feature space is achieved, a simple predictor, for example a linear classifier,

is learned on each region.

3.1 Restructuring Problem by Feature Space Partition

In statistical learning, a predictive model is learned from a hypothesis class using a finite

number of training samples [Vapnik, 1995]. The distance between the learned model and

the target function is often quantified as the generalization error, which can be divided

into an approximation term and an estimation term. The former is determined by the

capacity of the hypothesis class, while the latter is related to the finite sample size. Loosely

speaking, given a finite training set, a complex hypothesis class reduces the approximation

error but increases the estimation error. Therefore, for good generalization performance, it

is important to find the right tradeoff between the two terms. Along this line, an intuitive

solution is to build a simple predictive model with good training performance [Niyogi et al.,

1998]. But, many problems have complex underlying data distribution generative function.

And using a simple predictor on the whole data set will result in high prediction error. Even

worse, the “high dimensionality, small sample size” nature of many applications, such as

microarray classification and prediction in cheminoformatics, makes it extremely challenging

45

to build a good predictive model: a simple model often fails to fit the training data, but a

complex model is prone to overfitting. A commonly used strategy to tackle this dilemma

is to simplify the problem itself dividing a learning task into several simpler problems, for

which building predictive models with good generalization is feasible. The problem dividing

is implemented by feature space partitioning so that the feature space is separated into

multiple non-overlapping regions each of which represents a simple sub-problem. From a

machine learning perspective, the partition actually restructures the original problem into

multiple sub-problem with different learning properties.

The concept of dividing feature space has been proposed back in early 1980s, but only

served as a classification method then. Because researchers considered the problem of clas-

sifier design as partitioning the space into a number of disjoint regions, and the classi-

fication then is nothing but the determination of the region to which an unknown sample

belongs [Sethi & sarvarayudu, 1982]. Decision tree learning [Breiman et al., 1984] was gener-

ated based on that idea. Although, strictly speaking, decision tree learning includes feature

space partition when a decision is made by sequentially splitting feature axes. But our

purpose here is to use feature space partition to facilitate not solve a supervised learning

problem.

Not many researches have been explored about restructuring learning problem using fea-

ture space partition. A related work has been done by Padmanabhan et al [Padmanabhan

et al., 1999]. The work has been patented as well [Bahl et al., 2000]. They described a de-

cision tree based technique that partitions the feature space in a hierarchical fashion where

each node in the tree represents a linear hyperplane, and the end result is that the entire

feature space is partitioned into non-overlapping regions where each region is bounded by a

number of hyperplanes. The criterion for the design of the hyperplanes is the minimization

of the average class entropy of the regions. We will introduce this method in section 3.2.

Padmanabhan et al. [1999] splits the feature space by hyperplane using entropy-based eval-

uation, and another splitting procedure is to cut the space into hyperparallelepipeds such

46

that their faces are perpendicular to the feature axes until certain stopping criterion is met.

The latter partition procedure was used by Kohn et al [Kohn et al., 1996] and Singh [Singh

& Galton, 2003] for class separability measure. Also, hyperparallelepiped parition was used

by Kishore et al. [Kishore et al., 2001] to facilitate genetic programming. He et al. [He et al.,

2005] discussed a coarse-to-fine strategy to divide the hyperparallelepipeds. The hyperpar-

allelepiped partition will be discussed in section 3.3. Other partitioning strategy includes

data similarity measurement. For example, Wang et al. [Wang et al., 2003] associated a

partitioned hypersphere with each sample point with the radius equal to the distance to the

closest point of the opposite class.

We propose a method of restructuring supervised learning problem using a discrete/categorical

attribute. Such attributes naturally divide the original problem into several non-overlapping

sub-problems. With a proper choice of the attribute, the complexity of the learning task is

reduced, and the prediction performance enhanced. Selecting a proper discrete or categori-

cal attribute that maximally simplifies the learning task is a challenging problem. A näıve

approach requires exhaustive searching for the optimal learning model for each possible re-

structured problem, and hence is computationally prohibitive. We propose a metric to select

the categorical attribute based on the estimated expected conditional entropy with respect

to random projections. This method can be applied to multi-class and non-linear problems.

Experimental results demonstrate the good performance of the proposed approach on sev-

eral data sets. This work has been published in [Nan et al., 2011] and will be introduced in

Section 3.4.

3.2 Hierarchical Linear Hyperplane Partition

This method constructs a binary tree structure to hierarchically partition the data using

linear hyperplanes. The hyperplane was computed to partition a multidimensional feature

space to maximize the mutual information. Padmanabhan et al [Padmanabhan et al., 1999]

showed that designing the hyperplane is equivalent as solving the linear discriminant function

47

of the data. Therefore, for each node of the tree, a binary classification problem needs to

be solved.

The feature space is partitioned in a hierarchical manner using a binary decision tree,

starting with all the training data at the root node of tree. Each node of the decision tree

partitions the training data at the node into two parts based on which side of a specified

hyperplane each training data falls. The process continues either till the data at a node

falls below a specified threshold, or till the tree has been grown to a specified depth. The

terminal nodes of the tree represent non-overlapping regions of the feature space. As these

regions were designed with the objective of minimizing the class entropy, it is expected that

each region contains only a small subset of the entire class. For any new input feature vector,

starting from the root node, the projection of the new feature vector on the hyperplane is

computed. The projection is the compared to a threshold. Depending on whether the value

is smaller or greater than the threshold, the left or right child nod of the current node is

selected. The process is repeated for the selected child node, and terminates when the child

node is a terminal node of the decision tree.

Because each node separates a region into two parts, it is difficult for the method to han-

dle multi-class scenario. Moreover, finding an optimal hyperplane for each node is equivalent

as solving a linear discriminant problem, which is not trivial in many cases.

3.3 Hyperparallelepipeds Partition

The feature space partitioning process could be generalized as followings:

Given a training data set, at the beginning, for each feature, its minimum and maximum

values are recorded. A hyperplane that is perpendicular the a feature axis and goes though

the feature’s minimum or maximum data point is built. Those hyperplane intersect with

each other and generate a number of hyper-rectangular parallelepipeds (hyperboxes). For

example, let x1min and x1max be the minimum and maximum values obtained from the

projections of all the training observations on the axis of feature x1, and there is at least

48

one hyperbox whose two faces are perpendicular to the feature x1. A hyperbox at any stage

during the feature space partitioning process should first test whether a stopping criterion

is satisfied. Assuming none of the stopping condition is met, the hyperbox is partitioned

into two or more sub-hyperboxes. Most algorithms perform binary splitting along the the

feature that has the largest range (the difference between the maximum and minimum). But

more than two splitting was executed in [Valev, 2004]. The splitting point could be chosen

at the median of the samples projected on that feature coordinate [Kohn et al., 1996]. The

partitioning process is finished when there are no remaining hyperboxes to be split. In other

words, all the hyperboxes satisfy at least one of the stopping criteria.

The feature space partitioning stopping criteria are measurements about the “purity” of

a hyperbox. If a hyperbox contains data only from one class, then it is totally pure and

if it contains data from a number of classes in equal amounts it is then totally impure.

The purity measure could be calculated by entropy. Some researchers defined their own

purity measurements. For example, Singh et al. [Singh & Galton, 2003] used a degree of

separability in a hyperbox, and Wang et al. [Wang et al., 2003] applied a locally defined

confidence measure. General stopping criteria are:

• the hyperbox is homogeneous, i.e. it contains samples from a single class;

• the samples in the hyperbox are from linearly separable classes;

• the number of samples in the hyperbox is less than a threshold, and the threshold is

associated with the dimension.

The first condition is quite obvious. Any input feature vector drops into such hyperbox

will be automatically designated a class label. There’s no further learning needed there.

The second criterion is developed to show the sub-problem introduced by the hyperbox

is simple enough and no further splitting is required. If the hyperbox has small volume and

are separable with nonlinear hypersurfaces, the sections of the nonlinear boundaries may

49

be approximated as linear, and further splitting is avoid. However, how to check the linear

separability is a key issue, because normally, we don’t want to solve linear discriminant

problem here. Kohn et al. [Kohn et al., 1996] suggested a quick test method. Assuming

there are samples from c classes in the hyperbox, the corresponding c centroids are found

and we connect those centroids by lines. For each line, samples in the hyperbox are projected

onto the line, and if the projections of samples from each class do not overlap with any of

the projections of the other classes, then linear separability along that line is satisfied. If

such separability condition is satisfied for all lines, the second stopping criterion is satisfied.

The third stopping condition is needed to avoid the occurrence of very small hyperbox.

The learning process is hard to be carried out in a region with very few samples.

3.4 Leveraging Domain Information to Restructure Prediction Prob-

lem

The use of domain information in problems such as biological prediction has notable

effects. There is an abundance of prior work in the field of bioinformatics, machine learning,

and pattern recognition. It is beyond the scope of this dissertation to supply a complete re-

view of the respective areas. Nevertheless, a brief synopsis of some of the main findings most

related to this thesis will serve to provide a rationale for incorporating domain information

in supervised learning.

The simplicity of a learning model is thus essential for the success of statistical modeling.

However, the representational power of a simple model family may not be enough to capture

the complexity of the target function. In many situations, a complex target function may

be decomposed into several pieces, and each can be easily described using simple models.

Three binary classification examples are illustrated in Figure 3.1, where red/blue indicates

positive/negative class. In example (a), the decision boundary that separates two distinct

color regions is a composite of multiple polygonal lines. It suggests the classification problem

50

in (a) could not be solved by a simple hypothesis class such as a linear or polynomial model.

Similarly, in examples (b) and (c), the decision boundary is so complex that neither a linear

nor polynomial model can be fitted into these problems. Nevertheless, if the whole area is

split into four different sub-regions (as shown in the figure, four quadrants marked from 1 to

4), the problem could be handled by solving each quadrant using a simple model individually.

In example (a), the sub-problem defined on each quadrant is linearly separable. Likewise,

each quadrant in (b) is suitable for a two-degree polynomial model. A linear model can

be viewed as a special case of a two-degree polynomial. Therefore, the four sub-problems

in (c) could be solved by a set of two-degree polynomial models. In the three examples, a

categorical attribute X3 provides such partition information.

Figure 3.1. Examples of Piece-wise Separable Classification Problems.

Attributes like X3 exist in many applications. For instance, leukemia subtype domain

knowledge, which can be encoded as a discrete or categorical attribute, may help the pre-

diction of prognosis. A discrete or categorical attribute provides a natural partition of the

problem domain, and hence divides the original problem into several non-overlapping sub-

problems. As depicted in Figure 3.2, the original problem is split into multiple sub-problems

by one or more discrete or categorical attributes. If the proper attribute is selected in the re-

51

structuring process, each sub-problem will have a comparably simpler target function. Our

approach is fundamentally different from the decision tree approach [Rokach & Maimon,

2008]: first, the tree-like restructuring process is to break up the problem into multiple more

easily solvable sub-problems, not to make prediction decisions; second, the splitting crite-

rion we propose here is based on the conditional entropy achieved by a categorical attribute

and a hypothesis class, whereas the conditional entropy in decision trees is achieved by an

attribute only. The conditional entropy will be discussed in detail later. Also, our method

is related to feature selection in the sense that it picks categorical attributes according to

a metric. However, it differs from feature selection in that feature selection focuses on the

individual discriminant power of an attribute, and our method studies the ability of an at-

tribute to increase the discriminant power of all the rest of the attributes. The categorical

attributes selected by our method may or may not be selected by traditional feature selection

approaches.

Figure 3.2. Restructuring Learning Problem By One or More Categorical Attribute.

In theory, there’s no limit on the number of categorical attributes used in a partition

52

if an infinite data sample is available. However, in reality, the finite sample size puts a

limit on the number of sub-problems good for statistical modeling. In this article, we only

consider incorporating one discrete or categorical attribute at a time. Identifying a discrete

or categorical attribute that provides a good partition of a problem is nontrivial when the

number of discrete or categorical attributes is large. We propose a metric to rank these

attributes in section 3.4.2.

In this thesis, we present a novel method that uses domain information encoded by a

discrete or categorical attribute to restructure a supervised learning problem. To select

the proper discrete/categorical attribute to maximally simplify a classification problem, we

propose an attribute selection metric based on conditional entropy achieved by a set of

optimal classifiers built for the restructured problem space. As finding the optimal solution

is computationally expensive if the number of discrete/categorical attributes is large, an

approximate solution is proposed using random projections.

3.4.1 Incorporating Domain Information

Although there is raised awareness about the importance of utilizing domain information,

representing it in a general format that can be used by most state-of-the-art algorithms is

still an open problem [Witten & Frank, 2005]. Researchers usually focus on one or several

types of application-specific domain information. The various ways of utilizing domain

information are categorized as following: the choice of attributes or features, generating new

examples, incorporating domain knowledge as hints, and incorporating domain knowledge

in the learning algorithms [Niyogi et al., 1998].

Use of domain information in the choice of attributes could include adding new attributes

that appear in conjunction (or disjunction) with given attributes, or selection of certain

attributes satisfying particular criteria. For example, Lustgarten et al. [Lustgarten et al.,

2009] used the Empirical Proteomics Ontology Knowledge Bases in a pre-processing step to

choose only 5% of candidate biomarkers of disease from high-dimensional proteomic mass

53

spectra data. The idea of generating new examples with domain information was first

proposed by Poggio and Vetter [Poggio & Vetter, 1992]. Later, Niyogi et al. [Niyogi et al.,

1998] showed that the method in [Poggio & Vetter, 1992] is mathematically equivalent to a

regularization process. Jing and Ng [Jing & Ng, 2010] presented two methods of identifying

functional modules from protein-protein interaction (PPI) networks with the aid of Gene

Ontology (GO) databases, one of which is to take new protein pairs with high functional

relationship extracted from GO and add them into the PPI data. Incorporating domain

information as hints has not been explored in biological applications. It was first introduced

by Abu-Mostafa [Abu-Mostafa, 1994], where hints were denoted by a set of tests that the

target function should satisfy. An adaptive algorithm was also proposed for the resulting

constrained optimization.

Incorporating domain information in a learning algorithm has been investigated exten-

sively in the literature. For example, the regularization theory transforms an ill-posed prob-

lem into a well-posed problem using prior knowledge of smoothness [Poggio & Girosi, 1990].

Verri and Poggio [Verri & Poggio, 1986] discussed the regularization framework under the

context of computer vision. Considering domain knowledge of transform invariance, Simard

et al. [Simard et al., 1993] introduced the notion of transformation distance represented as

a manifold to substitute for Euclidean distance. Schölkopf et al. [Schölkopf et al., 1998] ex-

plored techniques for incorporating transformation invariance in Support Vector Machines

(SVM) by constructing appropriate kernel functions. There are a large number of biolog-

ical applications incorporating domain knowledge via learning algorithms. Ochs reviewed

relevant research from the perspective of biological relations among different types of high-

throughput data [Ochs, 2010].

Domain information could be perceived of as data extracted from a different view. There-

fore, incorporating domain information is related to integration of different data sources [En-

glish & Butte, 2007; Berrar et al., 2003]. Altmann et al. [Altmann et al., 2007, 2009] added

prediction outcomes from phenotypic models as additional features. English and Butter [En-

54

glish & Butte, 2007] identified biomarker genes causally associated with obesity from 49

different experiments (microarray, genetics, proteomics and knock-down experiments) with

multiple species (human, mouse, and worm), integrated these findings by computing the

intersection set, and predicted previously unknown obesity-related genes by the compari-

son with the standard gene list. Several researchers applied ensemble-learning methods to

incorporate learning results from domain information. For instance, Lee and Shatkay [Lee

& Shatkay, 2009] ranked potential deleterious effects of single-nucleotide polymorphisms

(SNP) by computing the weighted sum of various prediction results from four major bio-

molecular functions, protein coding, splicing regularization, transcriptional regulation, and

post-translational modification, with distinct learning tools.

Domain information could also be treated as constraints in many forms. For instance,

Djebbari and Quackenbush [Djebbari & Quackenbush, 2008] deduced prior network struc-

ture from the published literature and high-throughput PPI data, and used the deduced

seed graph to generate a Bayesian gene-gene interaction network. Similarly, Ulitsky and

Shamir [Ulitsky & Shamir, 2009] seeded a graphical model of gene-gene interaction from a

PPI database to detect modules of co-expressed genes. In [Jing & Ng, 2010], Gene Ontology

information was utilized to construct transitive closure sets from which the PPI network

graph could grow. In all these methods, domain information was used to specify constraints

on the initial states of a graph.

Domain information could be represented as part of an objective function that needs to be

minimized. For example, Tian et al. [Tian et al., 2009] considered the measure of agreement

between a proposed hypergraph structure and two domain assumptions, and encoded them

by a network-Laplacian constraint and a neighborhood constraint in the penalized objective

function. Daemen et al. [Daemen et al., 2008] calculated a kernel from microarray data and

another kernel from targeted proteomics domain information, both of which measure the

similarity among samples from two angles, and used their sum as the final kernel function

to predict the response to cetuximab in rectal cancer patients. Bogojeska et al. [Bogojeska

55

et al., 2010] predicted the HIV therapy outcomes by setting the model prior parameter from

phenotypic domain information. Anjum et al. [Anjum et al., 2009] extracted gene interaction

relationships from scientific literature and public databases. Mani et al. [Mani et al., 2008]

filtered a gene-gene network by the number of changes in mutual information between gene

pairs for lymphoma subtypes.

Domain knowledge has been widely used in Bayesian probability models. Ramakrishnan

et al. [Ramakrishnan et al., 2009] computed the Bayesian posterior probability of a gene’s

presence given not only the gene identification label but also its mRNA concentration.

Ucar et al. [Ucar et al., 2009] included ChIP-chip data with motif binding sites, nucleosome

occupancy and mRNA expression data within a probabilistic framework for the identification

of functional and non-functional DNA binding events with the assumption that different data

sources were conditionally independent. In [Werhli & Husmeier, 2008], Werhli and Husmeier

measured the similarity between a given network and biological domain knowledge, and by

this similarity ratio, the prior distribution of the given network structure is obtained in the

form of a Gibbs distribution.

3.4.2 Attribute Selection Metric

A discrete or categorical attribute is viewed as having high potential if it provides a

partition that greatly reduces the complexity of the learning task, or in other words, the

uncertainty of the classification problem. A hypothesis class, such as the linear function fam-

ily, is assumed beforehand. Therefore, we quantify the potential using the information gain

achieved by a set of optimal classifiers, each of which is built for a sub-problem defined by the

discrete or categorical attribute under consideration. Searching for the top ranked attribute

with maximum information gain is equivalent to seeking the one with minimum conditional

entropy. In a näıve approach, an optimal prediction model is identified by comparing re-

structured problems using each discrete or categorical attribute. This exhaustive approach

is computationally prohibitive when the number of discrete or categorical attributes is large.

56

We propose to rank attributes using a metric that can be efficiently computed.

In a classification problem, consider a set of l samples (x, y) from an unknown distribu-

tion, x ∈ Rn, and y is the class label. In a k-class learning task, y gets a value from {1, ..., k};

In a binary classification problem, y is either 1 or −1. z represents a discrete or categorical

attribute with finite unique values. For simplicity, let’s assume z takes values from {1, ..., q},

which offers a problem partition into q sub-problems, i.e. for all the samples when attribute

z takes value i, i ∈ 1, ..., q. Z is the set of all discrete and categorical attributes, z ∈ Z. A

hypothesis class M is considered. We will first consider the linear model family. The metric

can be generalized to a non-linear hypothesis class using the kernel trick [Vapnik, 1995].

For a binary classification problem, a linear discriminant function is formulated as f(x) =

wᵀx + c, where w indicates the normal vector of the corresponding hyperplane and c is the

offset parameter. For a multi-class task, if the one-vs-one method [Li et al., 2004] is applied,

there exists k(k−1)/2 linear discriminant functions, each of which separates a pair of classes.

Because a categorical attribute z divides the problem into q sub-problems, we define a model

m for the whole problem as a set of linear discriminant functions on the q sub-problems:

if it is a binary classification problem, m contains q linear discriminant functions; if it is a

multi-class problem, m comprises qk(k − 1)/2 discriminant functions. Model m contains a

pair of components (w, c), where w is the set of normal vectors of all of the discriminant

functions in m, and c contains all of the linear function offset parameters in m.

The most informative attribute under the context discussed above is defined through the

following optimization problem:

argmin
z∈Z

inf
m∈M

H(y|z,m).

which is equivalent to

argmin
z∈Z

inf
(w,c)∈M

H(y|z, (w, c)).

Note that the conditional entropy used here is fundamentally different from the one

57

normally applied in decision trees. The traditional conditional entropy H(y|z) refers to the

remaining uncertainty of class variable y given that the value of an attribute z is known.

The conditional entropy used above is conditional on the information from attribute z and

model m. In other words, the proposed method looks one more step ahead than a decision

tree about data impurity of sub-problems.

An Approximated Solution

The above optimization problem cannot be solved without knowledge of the probabilis-

tic distribution of data. Sample version solutions may not be useful due to the curse of

dimensionality: in high dimension feature spaces, a finite number of points may easily be

separated by a hypothesis class (an infinitesimal conditional entropy), but the solution is

more likely to be overfit than to be a close match to the target function. Taking a different

perspective, if a categorical attribute is able to maximally simplify the learning task, the

expected impurity value with respect to all possible models within the given hypothesis class

should be small. This motivates the following approximation using the expected conditional

entropy with respect to a random hyperplane:

argmin
z∈Z

Ew

[
inf
c
H (y|z, (w, c))

]
.

The expectation could be estimated by the average over a finite number of trials. Hence,

we randomly generate N sets of normal vectors (each set includes q normal vectors for

binary-class or qk(k− 1)/2 for multi-class), search for the corresponding best offset for each

normal vector, and calculate the average conditional entropy

argmin
z∈Z

1

N

N∑
i=1

min
ci
H(y|z, (wi, ci)). (3.1)

In the ith random projection, wi includes all the normal vectors of the linear classifiers,

each of which is built on a sub-problem, and ci does the same for the offsets. According to

58

the definition of conditional entropy, H(y|z, (wi, ci)) in (3.1) is formulated as:

H(y|z, (wi, ci))

=H(y|(z = 1,wi1, ci1), ..., (z = q,wiq, ciq))

=

q∑
j=1

p(z = j,wij, cij)H(y|z = j,wij, cij)

∝
q∑
j=1

p(z = j)H(y|z = j,wij, cij). (3.2)

Probability p(z = j) is approximated by the sub-problem size ratio. The last step of the

above derivation is based on the fact that the random projections are independent from the

size of the sub-problems.

In a binary classification task, z = j denotes the jth sub-problem, and (wij, cij) indicates

the linear discriminant function of the ith random projection on the jth sub-problem. The

discriminant function represented by (wij, cij) classifies the jth sub-problem into two parts,

Ω+
ij and Ω−ij:

Ω+
ij : { all the samples when attribute z takes value j and satisfying wᵀ

ijx + cij ≥ 0},

Ω−ij : { all the samples when attribute z takes value j and satisfying wᵀ
ijx + cij < 0}.

H(y|z = j,wij, cij) in (3.2) quantifies the remaining uncertainty of variable y in the jth

sub-problem given the learned partition result (Ω+
ij,Ω

−
ij) defined by the linear discriminant

function with parameters (wij, cij):

H(y|z = j,wij, cij)

=H(y|(Ω+
ij,Ω

−
ij))

=− p(Ω+
ij)

∑
y∈{−1,1}

p(y|Ω+
ij)log(p(y|Ω+

ij))− p(Ω−ij)
∑

y∈{−1,1}

p(y|Ω−ij)log(p(y|Ω−ij)). (3.3)

59

In the computation of (3.3), p(Ω+
ij) =

|Ω+
ij |

|Ω+
ij |+|Ω

−
ij |

and p(Ω−ij) =
|Ω−

ij |
|Ω+

ij |+|Ω
−
ij |

. p(y|Ω+
ij) and

p(y|Ω−ij) are estimated by the proportion of positive/negative samples within Ω+
ij and Ω−ij,

respectively.

In a multi-class setting, within a sub-problem, instead of two sub-regions (Ω+,Ω−),

there are q sub-regions (Ω1, ...,Ωq), each of which is the decision region for a class. All the

categorical attributes are ranked according to (3.1).

Extension to Non-linear Models

Our proposed metric could be easily extended to non-linear models using the kernel

trick [Vapnik, 1995]. By the dual representation of a linear model, the normal vector is

represented as a weighted summation of sample data.

w =
l∑

i=1

αixi.

where αi ∈ R is a weight. The linear function is then formulated as:

f(x) = wᵀx + c

= (
l∑

i=1

αixi)
ᵀx+ c

=
l∑

i=1

αix
ᵀ
ix + c.

Using the kernel trick, inner product xᵀ
ix can be replaced by a kernel functionK. K(xi,x)

is the inner product of xi and x in the reproducing kernel Hilbert space. Therefore, the above

linear discriminative function is transformed to,

f(x) =
l∑

i=1

αiK(xi,x) + c. (3.4)

In our method, given a kernel K, random projections are achieved through αi.

60

3.4.3 Experiments and Results

We tested our method on three artificial data sets, three cheminformatics data sets,

biological activity data of glycogen synthase kinase-3β inhibitors, cannabinoid receptor sub-

types CB1 and CB2 activity data, and CB1/CB2 selectivity data, and two cancer microarray

data sets. The random projection was executed 1000 times for each data set.

Three different kernels were applied in this paper: linear, two-degree polynomial and

Gaussian. The latter two kernels have one or more parameters. For the two-degree polyno-

mial kernel, we used the default setting as K(u,v) = (uᵀv)2. Choosing a proper parameter

γ in the Gaussian kernel K(u,v) = exp(−γ‖u − v‖2) is not an easy task. This paper fo-

cuses on how to select one (or more) categorical or discrete attribute(s) to divide the original

problem into multiple simpler sub-problems. Selecting a proper model is not the theme of

the work. Therefore, we list three Gaussian kernels using different γ values, 0.01, 1 and

10, to demonstrate that our restructuring process could be extended to non-linear models

including the Gaussian kernel.

Many prediction problems have the property of small sample size and high dimensionality,

for example, the learning tasks for the three cheminformatics data sets. Simple models under

these circumstances are usually preferred. We applied a linear kernel on these three data

sets, and analyzed the results from a cheminformaticist’s point of view. For the purpose of

comparison, two-degree polynomial kernels and Gaussian kernels were also used.

The code was written with Matlab and libsvm package, and can be downloaded from

http://cbbg.cs.olemiss.edu/StructureClassifier.zip.

Artificial Data Sets

Three artificial data sets were generated to test our method using both linear and non-

linear models. They are shown in Figure 3.1. Each artificial data is generated by four

attributes: X1 and X2 are continuous attributes, and X3 and X4 are categorical attributes.

The continuous attributes are uniformly distributed. X3 = {1, 2, 3, 4} denotes four different

61

smaller square sub-regions. X4 = {1, 2} is a random categorical attribute for the purpose

of comparison. In the experiment, we generated 10 sets for Artificial Data 1, 2, and 3,

respectively. All 10 sets share the same values of attributes X1, X2, and X3, but X4 is

random. Average results and standard deviations were computed.

The binary class information is coded by two distinct colors. Categorical attribute X3

provides interesting partitions: the partition in (a) leads to linear classification problems;

the partition in (b) and (c) generates nonlinear problems that can be solved using techniques

such as SVM with a polynomial kernel. Note that the original problem in (a) is not linear.

The original problems in (b) and (c) are nonlinear, and not solvable using a polynomial

kernel of degree 2.

Next, we assume linear classifiers in (a) and SVM with a polynomial kernel of degree 2

in (b) and (c). From Tables 3.1, 3.2, and 3.3, we see that the averaged estimated conditional

entropy of X3 is always smaller than that of X4. Hence X3 is selected to restructure the

problem. Next, we build both linear classifier and degree-2 polynomial SVM models on

the original problem (we call it the baseline method), and linear and degree-2 polynomial

models on the restructured problems introduced by X3. Significant improvements in both

cross-validation (CV) accuracy and test accuracy are achieved using the partitions provided

by X3. For comparison purposes, models were built on the restructured problem produced

by X4. X3 outperforms X4 with a comfortable margin. There is no significant improvement

using X4 than the baseline approaches.

Table 3.1. Experimental Results of Artificial Data 1 (Fig 3.1.(a)) with Linear Model.

Conditional Entropy Training CV Accuracy(%) Test Accuracy(%)
Baseline – 59.6000± 3.2042 64.7750± 4.0285
X3 0.7860± 0.0044 99.5750± 0.2058 96.8607± 0.8680
X4 0.9001± 0.0035 61.1250± 1.7490 60.4881± 2.8090

62

Table 3.2. Experimental Results of Artificial Data 2 (Fig 3.1.(b)) Using Two-degree Polyno-
mial Kernel.

Conditional Entropy Training CV Accuracy(%) Test Accuracy(%)
Baseline – 71.9750± 6.4737 71.0500± 7.9292
X3 0.8980± 0.0061 94.1000± 0.8350 94.3071± 0.9204
X4 0.9514± 0.0043 73.4000± 1.4443 73.8682± 2.8535

Table 3.3. Experimental Results of Artificial Data 3 (Fig 3.1.(c)) Using Two-degree Polynomial
Kernel.

Conditional Entropy Training CV Accuracy(%) Test Accuracy(%)
Baseline – 73.1750± 5.7772 71.6025± 8.3302
X3 0.8455± 0.0059 96.5500± 0.8644 95.3658± 1.0224
X4 0.9328± 0.0032 72.8750± 1.5601 71.7689± 3.5528

Biological Activity Prediction of Glycogen Synthase Kinase-3β Inhibitors

In the first dataset, data samples (IC50) were collected from several publications, with

a range from subnanomolar to hundred micromolar. The biological activities have been

discretized as binary values: highly active and weakly active, with a cut-off value of 100

nM. The aim is to predict biological activity based on physicochemical properties and other

molecular descriptors of the compounds calculated using DragonX software 1. This data set

was divided into 548 training samples and 183 test samples. The attribute set size is 3225,

among which 682 are categorical attributes 2.

Using a linear kernel, we ranked the categorical attributes based on their estimated

conditional entropies. The top 31 attributes (with smallest estimated conditional entropy)

were viewed as candidate attributes for problem partition. We restructured the learning

problem according to these candidate attributes separately, and built linear models for each

partition. Figure 3.3 shows the experimental results. Among the 31 attributes, there are 17

categorical attributes whose performance beat the baseline approach in terms of both cross-

validation accuracy and test accuracy. The detailed performance values and the names of

1Which can be found at http://www.talete.mi.it/
2Some discrete attributes contain a large number of values. For a fixed sized training set, some regions

generated by a partition using such attributes may contain a very small number of samples (many times 1
or 2), and hence are not suitable for training a classifier. So we filtered out attributes with more than 10
unique values.

63

the attributes are provided in Table 3.4. Compared with linear kernels, the ranking orders

of these attributes by two-degree polynomial and Gaussian kernels and their corresponding

cross-validation and test accuracies are provided in Table 3.5 as well. For Gaussian kernels,

we notice performance improvement for most of the selected attributes under all three tested

γ values. The highest performance was achieved when the Bioassay Protocol attribute was

selected to restructure the problem. This attribute records the different protocols used

during the cheminformatics experiment, and also indicates distinct chemotypes.

The highest cross-validation performance attribute, nCIR, belongs to the constitutional

descriptors. Constitutional descriptors reflect the chemical composition of a compound

without the structural information of the connectivity and the geometry. nCIR means

the number of circuits, which includes both rings and the larger loop around two or more

rings. For instance, naphthalene contains 2 rings and 3 circuits. This attribute could easily

distinguish ring-containing structures and linear structures. Many attributes selected have

names starting with “F0”. They are from the 2D frequency fingerprints, which define the

frequency of specific atom pairs at different topological distances from 1 to 10. Among

all of the 2D frequency fingerprints, the atom pair “N-N” appeared multiple times. The

frequency of this atom pair at different topological distances from 2 to 4 could be used to

separate the dataset. Another important atom pair is “N-O”, which also appeared multiple

times in the list. Both atom pairs contain the nitrogen atom which is highly common in

the kinase inhibitor structures, since it plays a key role in the hydrogen bond interactions

between the inhibitor and the kinase. Another atom-centered fragment attribute is H-049,

which means the atom H attached to any of C3(sp3) / C2(sp2) / C3(sp2) / C3(sp) groups.

The superscripts on the carbons stand for the formal oxidation number and the contents in

the parentheses stand for the hybridization state. The hydrogen in an H-049 fragment has

negative atomic hydrophobicity and low molecular refractivity [Viswanadhan et al., 1989],

so they are less hydrophobic and more hydrophilic. H-049 could be used to separate the

64

0
5

10
15

20
25

30
35

71727374757677787980

B
io

lo
gi

ca
l A

ct
iv

ity
 P

re
di

ct
io

n
of

 G
ly

co
ge

n
S

yn
th

as
e

K
in

as
e−

3b
et

a
In

hi
bi

to
rs

D
iff

er
en

t M
od

el
s

B
as

ed
 o

n
th

e
T

op
 3

1
C

at
eg

or
ic

al
 A

ttr
ib

ut
es

 (
O

rd
er

ed
 b

y
A

sc
en

di
ng

 E
nt

ro
py

 V
al

ue
s)

Accuracy (%)

T
ra

in
in

g
C

ro
ss

 V
al

id
at

io
n

A
cc

ur
ac

y
B

as
el

in
e

T
ra

in
in

g
C

V
 A

cc
ur

ac
y

T
es

t A
cc

ur
ac

y
B

as
el

in
e

T
es

t
A

cc
ur

ac
y

Figure 3.3. Experimental Results for Biological Activity Prediction of Glycogen Synthase
Kinase-3β Inhibitors.

65

database because the kinase inhibitors are usually hydrophilic in order to bind to the protein

in the ATP-binding pocket.

Table 3.4. Learning Performance for the Selected Categorical Attributes in Biological Activity
Data of Glycogen Synthase Kinase-3β Inhibitors Using Linear Kernel.

Entropy list order Training CV Accuracy(%) Test Accuracy(%)
Baseline – 75.60 74.64
nCIR 1 79.21 75.01
F06[N-O] 2 76.35 74.86
H-049 3 76.95 76.14
nN 7 77.38 74.78
F04[N-N] 8 78.55 75.10
Bioassay Protocol 9 79.78 76.76
nHDon 12 77.26 74.88
H-050 13 77.26 74.88
nDB 15 77.74 74.78
F07[C-Br] 16 76.62 75.76
F02[N-O] 22 77.07 75.62
N-075 23 78.65 76.83
F06[C-Br] 25 76.94 74.66
F02[N-N] 26 77.93 74.92
N-074 30 76.78 76.39
F03[N-N] 31 77.44 74.81

Cannabinoid Receptor Subtypes CB1 and CB2 Activity and Selectivity Prediction

These data sets are for cannabinoid receptor subtypes CB1 and CB2. They were also

computed from DragonX software, and have 3225 attributes. The second data set is to

predict activity and was divided into 645 training samples and 275 test samples. It contains

683 categorical attributes. The third set is to predict selectivity of binding to CB1 vs.

CB2 and includes 405 training samples, 135 test samples, and 628 categorical attributes.

The experimental results are shown in Figures 3.4 and 3.5, respectively. We ordered the

categorical attributes based on their conditional entropy values in ascending order. Note that

the model based on the first attribute always performed better than the baseline approach.

The classes and descriptions for the attributes that result in better performance than the

baseline approach are listed in Tables 3.6 and 3.8. The learning performance comparison

66

Table 3.5. Performance Comparison for the Selected Categorical Attributes in Biological
Activity Data of Glycogen Synthase Kinase-3β Inhibitors Using Two-degree Polynomial Kernel
and Gaussian Kernels.

Entropy list order Training CV Accuracy(%) Test Accuracy(%)

Poly
Gausssian

Poly
Gausssian (γ)

Poly
Gausssian (γ)

0.01 1 10 0.01 1 10 0.01 1 10
Baseline – – – – 76.23 73.10 62.74 59.42 74.26 70.69 60.58 57.44
nCIR 3 2 1 1 78.84 75.41 64.48 60.15 74.55 71.23 61.26 58.02
F06[N-O] 2 1 2 2 77.62 73.23 63.34 60.23 73.28 70.49 60.87 56.95
H-049 4 5 4 4 79.75 74.69 65.18 61.03 75.14 71.87 62.76 57.26
nN 1 6 6 7 79.24 74.87 64.77 60.49 75.23 71.04 62.38 57.15
F04[N-N] 7 3 5 6 78.32 74.14 63.14 60.63 74.16 70.02 61.79 57.69
Bioassay Protocol 8 7 3 5 79.15 75.54 65.15 62.25 76.03 72.87 63.76 59.34
nHDon 11 19 18 19 77.63 74.18 63.05 60.02 75.12 71.17 60.34 57.28
H-050 21 7 7 9 76.95 73.57 63.72 60.35 74.34 71.09 59.28 56.94
nDB 13 24 21 25 75.37 73.89 62.83 59.25 73.22 70.18 60.47 56.74
F07[C-Br] 17 12 15 16 77.25 74.58 63.04 60.42 73.96 71.65 61.07 58.15
F02[N-O] 25 16 13 15 76.14 73.87 62.95 58.72 72.87 70.66 60.84 57.35
N-075 20 17 17 21 78.06 74.92 63.74 60.87 75.64 71.29 62.88 59.04
F06[C-Br] 27 26 25 23 75.44 72.05 61.43 58.28 72.76 69.96 60.03 55.74
F02[N-N] 33 30 26 32 77.83 74.15 63.82 60.96 74.56 70.75 61.44 59.45
N-074 29 35 33 34 76.54 73.47 63.95 60.42 74.75 71.03 60.58 57.96
F03[N-N] 36 31 34 37 75.69 74.26 62.65 59.35 73.48 70.33 59.87 57.28

with other non-linear kernels are shown in Table 3.7 and 3.9 respectively. For the CB

activity, among the eight features, six of them (F01[N-O], N-076, nArNO2, B01[N-O], N-

073 and nN(CO)2) involve nitrogen. This clearly suggests that nitrogen plays a significant

role in classifying the active CB ligands. The input data showed that the values of N-

076 and nArNO2 for all the active compounds are 0. Hence, it is very likely that any

compound with the Ar-NO2 / R–N(–R)–O / RO-NO moiety or a nitro group may not be

active. In addition, the majority of the active compounds have F01[N-O] and nN(CO)2

values of 0. Hence, the lack of a N-O or an imide moiety is perhaps a common feature of

active CB ligands. Furthermore, the N-073 feature is distributed between 0 and 2 in the

active compounds. Hence, the nitrogen atom in the active compounds, if it exists, may

appear in the form of Ar2NH / Ar3N / Ar2N-Al / R..N..R. Its role may include acting as

a hydrogen bond acceptor, or affecting the polarity of the molecule, which may facilitate

the ligand binding. For the CB selectivity problem, two features (nDB and nCconj) involve

67

Table 3.6. Learning Performance for the Selected Categorical Attributes in Cannabinoid
Receptor Subtypes CB1 and CB2 Activity Data Using Linear Model.

Entropy list order Training CV Accuracy(%) Test Accuracy(%)
Baseline – 85.43 84.36
F01[N-O] 1 86.20 84.37
N-076 4 86.51 85.12
nArNO2 5 86.36 85.07
nCconj 15 87.13 86.37
C-034 16 86.82 86.04
B01[N-O] 17 86.82 84.46
N-073 18 85.89 85.81
nN(CO)2 19 86.05 84.49

double bonds. Both of these address the non-aromatic C=C double bond and the values are

primarily distributed between 0 - 6 and 0 - 2, respectively, in the selective compounds. The

role of this bond, if it exists, is perhaps to form hydrophobic interactions with the proteins.

It is also interesting to note that the nCconj attribute leads to the best test accuracy for

both the activity and selectivity datasets. The descriptions of selected categorical attributes

can be viewed in Table 3.10 and 3.11.

Leukemia Gene Data

The two leukemia gene data sets used are defined in Yeoh et al. [Yeoh et al., 2002] and

Golub et al. [Golub et al., 1999], respectively. We applied a linear classifier, SVM with a

two-degree polynomial kernel and Gaussian kernels on these two data sets.

Yeoh’s data 3 comprises gene expression data and two additional categorical attributes,

Subtype and Protocol. Subtype indicates specific genetic subtypes of Acute lymphoblastic

leukemia (ALL), and Protocol means distinct therapies. The entire set contains 201 continu-

ous complete remission (CCR) samples and 32 relapse cases (including 27 Heme relapses and

5 additional relapses). We randomly split the data into training and test sets with 174 and

59 samples, respectively. The original data contains 12627 attributes, which is almost two

orders of magnitude larger than the training set size. We used the 58 preselected attributes

3Which can be accessed from http://www.stjuderesearch.org/site/data/ALL1

68

provided in the original paper and two additional categorical attributes to predict prognosis.

Tables 3.12, 3.13, and 3.14 show the experimental results using linear, two-degree polynomial

and Gaussian kernels, respectively. The subtype categorical attribute has smaller estimated

conditional entropy than Protocol, and is thus selected to divide the problem. The learning

performances from both the linear model and SVM demonstrate that it is the right choice.

Golub’s data set 4 includes gene expression data and four categorical attributes, BM/PM,

T/B-cell, FAB, and Gender. A random split was used to separate the whole data set into

54 training samples and 18 test samples. Correlation-based Feature Selection [Hall, 2000]

was executed beforehand to decrease the attribute dimension from 7133 to 45. The 45

attributes include two categorical attributes, T/B-cell and FAB. FAB denotes one of the

most commonly used classification schemata for Acute Myeloid Leukemia (AML). BM/PM

and Gender had been deleted during the feature selection process. The goal is to predict

ALL or AML. From Tables 3.15, 3.16 and 3.17, we can see that both T/B-cell and FAB have

very small conditional entropy values (it may be because it is an easy learning problem).

The T/B-cell categorical attribute was selected to partition the problem.

Discussions

For choosing a proper partition attribute, we could either select the one with the smallest

conditional entropy, or the one with the highest training cross-validation accuracy among

multiple candidates. The first strategy worked well for all the data sets — while it may

not provide the best performing partition, it always outperformed the baseline. The second

strategy yielded the best answer for most cases — glycogen synthase kinase-3β inhibitors

data is an example — however, it failed on cannabinoid receptor subtypes CB1 and CB2

activity data.

In addition to simplifying the learning problem, the selected categorical attribute may

provide additional perspective in unveiling hidden biological information. For example, the

4Which can be accessed from http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi

69

attributes chosen from cannabinoid receptor subtypes CB1 and CB2 data sets supply useful

information for compound design.

70

0
2

4
6

8
10

12
14

16
18

20
808182838485868788

D
if

fe
re

n
t

M
o

d
el

s
B

as
ed

 o
n

 t
h

e
T

o
p

 2
0

C
at

eg
o

ri
ca

l A
tt

ri
b

u
te

s
(O

rd
er

ed
 b

y
A

sc
en

d
in

g
 E

n
tr

o
p

y
V

al
u

es
)

Accuracy (%)
C

an
n

ab
in

o
id

 R
ec

ep
to

r
S

u
b

ty
p

es
 C

B
1

an
d

 C
B

2
A

ct
iv

it
y

P
re

d
ic

ti
o

n

T
ra

in
in

g
 C

V
 A

cc
u

ra
cy

B
as

el
in

e
T

ra
in

in
g

 C
V

 A
cc

u
ra

cy
T

es
t

A
cc

u
ra

cy
B

as
el

in
e

T
es

t
A

cc
u

ra
cy

Figure 3.4. Experimental Results for Cannabinoid Receptor Subtypes CB1 and CB2 Activity
Prediction.

71

0
2

4
6

8
10

12
14

16
18

20
687072747678808284

D
if

fe
re

n
t

M
o

d
el

s
B

as
ed

 o
n

 t
h

e
T

o
p

 2
0

C
at

eg
o

ic
al

 A
tt

ri
b

u
te

s
(O

rd
er

ed
 b

y
A

sc
en

d
in

g
 E

n
tr

o
p

y
V

al
u

es
)

Accuracy (%)
C

an
n

ab
in

o
id

 R
ec

ep
to

r
S

u
b

ty
p

es
 C

B
1

an
d

 C
B

2
S

el
ec

ti
vi

ty
 D

at
a

B

as
el

in
e

T
ra

in
in

g
 C

V
 A

cc
u

ra
cy

T

ra
in

in
g

 C
V

 A
cc

u
ra

cy
B

as
el

in
e

T
es

t
A

cc
u

ra
cy

T
es

t
A

cc
u

ra
cy

Figure 3.5. Experimental Results for Cannabinoid Receptor Subtypes CB1 and CB2 Selec-
tivity Prediction.

72

T
a
b

le
3
.7

.
P

e
rf

o
rm

a
n

c
e

C
o
m

p
a
ri

so
n

fo
r

th
e

S
e
le

c
te

d
C

a
te

g
o
ri

c
a
l

A
tt

ri
b

u
te

s
in

C
a
n

n
a
b

in
o
id

R
e
c
e
p

to
r

S
u

b
ty

p
e
s

C
B

1
a
n

d
C

B
2

A
c
ti

v
it

y
D

a
ta

U
si

n
g

T
w

o
-d

e
g
re

e
P

o
ly

n
o
m

ia
l

M
o
d

e
l

a
n

d
G

a
u

ss
ia

n
M

o
d

e
ls

.

E
n
tr

op
y

li
st

or
d
er

T
ra

in
in

g
C

V
A

cc
u
ra

cy
(%

)
T

es
t

A
cc

u
ra

cy
(%

)

P
ol

y
G

au
ss

si
an

P
ol

y
G

au
ss

si
an

P
ol

y
G

au
ss

si
an

γ
=

0.
01

γ
=

1
γ

=
10

γ
=

0.
01

γ
=

1
γ

=
10

γ
=

0.
01

γ
=

1
γ

=
10

B
as

el
in

e
–

–
–

–
86

.5
1

75
.3

4
65

.2
1

66
.7

6
85

.5
8

74
.3

5
65

.7
9

65
.6

1
F

01
[N

-O
]

1
2

1
1

85
.1

5
76

.1
2

66
.1

6
66

.4
4

85
.4

4
76

.1
4

65
.6

5
66

.1
5

N
-0

76
4

5
4

4
87

.5
0

77
.0

5
66

.9
8

67
.3

3
86

.1
2

76
.8

9
66

.3
4

66
.7

9
n
A

rN
O

2
6

7
5

5
86

.8
2

75
.1

4
66

.7
8

66
.5

8
85

.2
7

84
.3

5
76

.3
4

64
.9

6
n
C

co
n
j

16
14

10
12

86
.6

1
77

.1
2

67
.0

3
66

.7
9

83
.3

1
76

.7
2

63
.7

7
65

.7
4

C
-0

34
17

16
11

17
85

.9
8

76
.3

8
66

.4
4

65
.8

9
85

.6
9

75
.2

8
64

.5
9

65
.8

8
B

01
[N

-O
]

20
19

19
18

87
.2

1
76

.3
8

66
.3

8
66

.6
6

86
.7

2
76

.3
7

66
.2

9
65

.6
2

N
-0

73
21

20
21

21
84

.9
6

74
.7

9
65

.0
2

65
.2

6
84

.1
5

75
.3

4
64

.4
5

63
.7

1
n
N

(C
O

)2
23

24
27

25
86

.7
7

73
.7

2
66

.0
5

64
.3

7
85

.7
8

73
.2

2
63

.7
6

62
.9

6

73

Table 3.8. Learning Performance for the Selected Categorical Attributes in Cannabinoid
Receptor Subtypes CB1 and CB2 Selectivity Data Using Linear Model.

Entropy list order Training CV Accuracy(%) Test Accuracy(%)
Baseline – 78.02 75.56
O-058 1 80.99 77.35
nDB 2 81.73 75.94
F06[C-Cl] 5 78.27 75.63
nCconj 7 82.72 77.92
C-026 8 78.55 77.73

74

T
a
b

le
3
.9

.
P

e
rf

o
rm

a
n

c
e

C
o
m

p
a
ri

so
n

fo
r

th
e

S
e
le

c
te

d
C

a
te

g
o
ri

c
a
l

A
tt

ri
b

u
te

s
in

C
a
n

n
a
b

in
o
id

R
e
c
e
p

to
r

S
u

b
ty

p
e
s

C
B

1
a
n

d
C

B
2

S
e
le

c
ti

v
it

y
D

a
ta

U
si

n
g

L
in

e
a
r

M
o
d

e
l.

E
n
tr

op
y

li
st

or
d
er

T
ra

in
in

g
C

V
A

cc
u
ra

cy
(%

)
T

es
t

A
cc

u
ra

cy
(%

)

P
ol

y
G

au
ss

si
an

P
ol

y
G

au
ss

si
an

P
ol

y
G

au
ss

si
an

γ
=

0.
01

γ
=

1
γ

=
10

γ
=

0.
01

γ
=

1
γ

=
10

γ
=

0.
01

γ
=

1
γ

=
10

B
as

el
in

e
–

–
–

–
76

.0
4

67
.1

5
57

.2
8

57
.6

7
74

.8
9

65
.1

2
54

.8
4

53
.3

3
O

-0
58

2
1

2
2

79
.9

2
70

.1
2

60
.3

4
79

.1
2

65
.9

6
56

.3
4

56
.0

2
53

.2
1

n
D

B
3

3
4

4
80

.0
5

71
.3

4
61

.2
2

80
.3

6
76

.3
2

67
.7

8
57

.6
7

55
.3

2
F

06
[C

-C
l]

7
8

7
8

79
.7

3
69

.9
6

58
.2

7
79

.1
2

75
.1

2
63

.2
9

54
.7

9
53

.2
9

C
co

n
j

6
7

8
7

78
.7

5
67

.5
4

57
.6

5
77

.6
4

76
.0

7
65

.9
6

55
.3

6
54

.3
4

C
-0

26
9

10
9

11
77

.9
6

68
.3

2
57

.3
4

58
.1

2
75

.4
8

65
.3

2
54

.9
6

53
.6

9

75

T
a
b

le
3
.1

0
.

D
e
sc

ri
p

ti
o
n

s
fo

r
th

e
S

e
le

c
te

d
C

a
te

g
o
ri

c
a
l

A
tt

ri
b

u
te

s
in

C
a
n

n
a
b

in
o
id

R
e
c
e
p

to
r

S
u

b
ty

p
e
s

C
B

1
a
n

d
C

B
2

A
c
ti

v
it

y
D

a
ta

. A
tt

ri
b
u
te

C
la

ss
D

es
cr

ip
ti

on
F

01
[N

-O
]

2D
fr

eq
u
en

cy
fi
n
ge

rp
ri

n
ts

fr
eq

u
en

cy
of

N
-O

at
to

p
ol

og
ic

al
d
is

ta
n
ce

1
N

-0
76

A
to

m
-c

en
te

re
d

fr
ag

m
en

ts
A

r-
N

O
2

/
R

–N
(–

R
)–

O
/

R
O

-N
O

n
A

rN
O

2
F

u
n
ct

io
n
al

gr
ou

p
co

u
n
ts

n
u
m

b
er

of
n
it

ro
gr

ou
p
s

(a
ro

m
at

ic
)

n
C

co
n
j

F
u
n
ct

io
n
al

gr
ou

p
co

u
n
ts

n
u
m

b
er

of
n
on

-a
ro

m
at

ic
co

n
ju

ga
te

d
C

(s
p2

)
C

-0
34

A
to

m
-c

en
te

re
d

fr
ag

m
en

ts
R

–C
R

..
X

B
01

[N
-O

]
2D

b
in

ar
y

fi
n
ge

rp
ri

n
ts

p
re

se
n
ce

/a
b
se

n
ce

of
N

-O
at

to
p

ol
og

ic
al

d
is

ta
n
ce

1
N

-0
73

A
to

m
-c

en
te

re
d

fr
ag

m
en

ts
A

r 2
N

H
/

A
r 3

N
/

A
r 2

N
-A

l
/

R
..
N

..
R

n
N

(C
O

)2
F

u
n
ct

io
n
al

gr
ou

p
co

u
n
ts

n
u
m

b
er

of
im

id
es

(t
h
io

-)
-C

(=
Y

1)
-N

(Y
)-

C
(=

Y
1)

-
Y

=
H

or
C

,
Y

1=
O

or
S

R
re

p
re

se
n
ts

an
y

gr
ou

p
li
n
ke

d
th

ro
u
gh

ca
rb

on
;

X
re

p
re

se
n
ts

an
y

el
ec

tr
on

eg
at

iv
e

at
om

(O
,

N
,

S
,

P
,

S
e,

h
al

og
en

s)
;

A
l

an
d

A
r

re
p
re

se
n
t

al
ip

h
at

ic
an

d
ar

om
at

ic
gr

ou
p
s,

re
sp

ec
ti

ve
ly

;
=

re
p
re

se
n
ts

a
d
ou

b
le

b
on

d
;

–
re

p
re

se
n
ts

an
ar

om
at

ic
b

on
d

as
in

b
en

ze
n
e

or
d
el

o
ca

li
ze

d
b

on
d
s

su
ch

as
th

e
N

-O
b

on
d

in
a

n
it

ro
gr

ou
p
;

..
re

p
re

se
n
ts

ar
om

at
ic

si
n
gl

e
b

on
d
s

as
in

th
e

C
-N

b
on

d
in

p
y
rr

ol
e.

76

Table 3.11. Descriptions for the Selected Categorical Attributes in Cannabinoid
Receptor Subtypes CB1 and CB2 Selectivity Data.

Attribute Class Description

O-058 Atom-centered fragments =O

nDB Constitutional descriptors number of double bonds

F06[C-Cl] 2D frequency fingerprints frequency of C-Cl at topological distance 6

nCconj Functional group counts number of non-aromatic conjugated C(sp2)

C-026 Atom-centered fragments R–CX..R

R represents any group linked through carbon; X represents any electronegative
atom (O, N, S, P, Se, halogens); Al and Ar represent aliphatic and aromatic groups,
respectively; = represents a double bond; – represents an aromatic bond as in ben-
zene or delocalized bonds such as the N-O bond in a nitro group; .. represents
aromatic single bonds as in the C-N bond in pyrrole.

Table 3.12. Experimental Results of ALL Prognosis Prediction Using Preselected Attribute
Sets and Linear Model.

Conditional Entropy Training CV Accuracy(%) Test Accuracy(%)
Baseline – 85.06 89.83
Subtype 0.3659 89.08 92.20
Protocol 0.5616 85.06 89.96

Table 3.13. Experimental Results of ALL Prognosis Prediction Using Preselected Attribute
Sets and Two-degree Polynomial Kernel.

Conditional Entropy Training CV Accuracy(%) Test Accuracy(%)
Baseline – 85.06 89.83
Subtype 0.3638 89.08 92.20
Protocol 0.5630 86.78 87.46

Table 3.14. Experimental Results of ALL Prognosis Prediction Using Preselected Attribute
Sets and Gaussian Kernel.

Conditional Entropy Training CV Accuracy(%) Test Accuracy(%)

γ = 0.01 γ = 1 γ = 10 γ = 0.01 γ = 1 γ = 10 γ = 0.01 γ = 1 γ = 10

Baseline – – – 85.06 85.06 85.06 89.83 89.83 89.83

Subtype 0.5656 0.5662 0.5662 88.51 88.51 88.51 92.20 92.20 92.20

Protocol 0.3829 0.3835 0.3840 85.06 85.06 85.06 89.96 89.96 89.96

Table 3.15. Experimental Results of ALL/AML Prediction Using Attributes Selected by CFS
and Linear Model.

Conditional Entropy Training CV Accuracy(%) Test Accuracy(%)
Baseline – 100.00 99.50
T/B-cell 7.1491e-16 100.00 100.00

FAB 1.1666e-15 100.00 99.70

77

Table 3.16. Experimental Results of ALL/AML Prediction Using Attributes Selected by CFS
and Two-degree Polynomial Kernel.

Conditional Entropy Training CV Accuracy(%) Test Accuracy(%)
Baseline – 100.00 94.44
T/B-cell 7.1491e-16 100.00 100.00

FAB 1.1666e-15 100.00 100.00

Table 3.17. Experimental Results of ALL/AML Prediction Using Attributes Selected by CFS
and Gaussian Kernel.

Conditional Entropy Training CV Accuracy(%) Test Accuracy(%)
γ = 0.01 γ = 1 γ = 10 γ = 0.01 γ = 1 γ = 10 γ = 0.01 γ = 1 γ = 10

Baseline – – – 68.52 64.81 64.81 66.67 66.67 66.67
Subtype 7.1491e-16 7.1491e-16 7.1491e-16 100.00 100.00 100.00 100.00 100.00 100.00
Protocol 1.1666e-15 1.1666e-15 1.1666e-15 100.00 100.00 100.00 100.00 100.00 100.00

78

CHAPTER 4

CLASSIFICATION USING TOP SCORING

FEATURE PAIRS

“High dimensionality, low sample size” problems, for example, biomedical prediction

problems along with high-throughput data generation technology, make the use of complex

learning algorithms almost impossible. This dilemma in the statistical analysis of data

such as microarray data is well documented in the literature and has been mentioned in

previous sections. Another limitation of current methods for classifying gene expression

profiles is the “black box” diemma [Geman et al., 2004]. Standard methods in statistical

learning and pattern recognition are routinely applied, for instance, decision tree, artificial

neural network, and support vector machine. Normally, those predictions are based on

nonlinear functions of many expression values. For most biologists, these techniques were

developed by researchers in other fields, i.e. computer science, where transparency of the

prediction rules is usually not a criterion for success. Whereas in problems such as breast

cancer prognosis, scientists are more interested in discovering the cause-effect relationship

in disease development. For example, the cause-effect relationship between cancer and a

small number of genes is feasible, whereas it is inefficient to have all genes checked. If

we would like to go beyond the identification of a mere list of biomarkers, we need to step

away from standard statistical or machine learning methods, because it is difficult to extract

biologically relevant results from complex models.

Geman et al. [Geman et al., 2004, 2008] has addressed the two problems, small samples

79

and lack of interpretability, using a method of pairwise feature comparison. They coined

the term Top Scoring Pairs (TSP) to indicate the algorithm.

TSP builds classifier that only depends on comparisons among selected pairs of features.

The classifier is rank-based, and therefore, is invariant to most of the transformations in-

volved in preprocessing and normalization. Every feature pair determines a binary classifier,

and the final decision could be made by majority voting.

4.1 Learning the k-TSP Classifier

The Top Scoring Pairs algorithm has been used in biological applications such as classifi-

cation of human diseases. It discriminates between binary phenotypic states based on one or

more transcriptional measurements. TSP evaluates the expression values of all possible pairs

of genes in a microarray probe set and chooses gene pairs in which the ordering of expression

is most likely to reverse from one phenotype to the other. The prediction of a TSP classifier

is only based on the observed ordering of a gene pair or several gene pairs, and there is no

parameters needed to be tuned during the training process or assumed beforehand. Such

simplicity enables the learning process to generate statistically significant classifiers with a

comparatively small number of training instances while avoiding the problem of overfitting.

k-TSP indicates that k different top scoring pairs are aggregated by a voting procedure to

obtain a combinatoric classifier.

Assume a profile vector consists of d features and l samples x1, ...,xl. The i-th feature,

i ∈ {1, ..., d}, from the n-th sample is denoted by xi,n . Let (y1, ..., yl) be the vector of

class labels. For simplicity, a binary classification is assumed. For instance, Y = 1 refers to

positive class and Y = −1 indicates negative class. The d features are ordered in descending

order within each sample. Let Ri,n denote the rank of i-th feature in the n-th observation.

k-TSP exploits a significant difference in the probability of the event {Ri < Rj} across

all samples from positive class to negative class. The event {Ri < Rj} means the rank of

feature i is less than the rank of feature j, and is equivalent to the event that the value of

80

feature i is smaller than that of feature j. The probability of observing the occurrence of

such event in each class is computed as

pij(m) = Prob(Ri < Rj|Y = m) =

∑
xn∈Cm

|{Ri,n < Rj,n}|
|Cm|

,m = {1,−1}, (4.1)

where Cm denotes the set of samples in class m and |Cm| is the number of samples in class

m. And |{Ri,n < Rj,n}| indicates the occurrence of observing the rank of feature i is less

than the rank of feature j in the n-th observation, and it is 1 when the event {Ri,n < Rj,n}

occurs or 0 otherwise.

Let δij denote the difference score of gene pair (i, j).

δij = |pij(1)− pij(−1)|. (4.2)

We could compute the difference score for every pair of features i, j ∈ {1, ..., d}, i 6= j.

And the top k pairs with maximum δ values are selected and are viewed as most informative

for classification. The top scoring feature (gene) pairs could be viewed as biomarkers that are

associated with susceptibility to disease or a certain target label, and can be used to create

genetic networks or pathways of the organism being studied. Also, the classifier built on top

of these genes is easily understandable, and hence, it is adequate to suggest an assumption

that the increasing or decreasing of certain gene expression values indicates a high risk of

disease.

Each of the selected pairs (i, j) defines a classifier. Suppose pij(1) > pij(−1). Then,

given an observation x, the classifier fij(x) based on this pair (i, j) is

fij(x) =

 1, Ri < Rj,

−1, otherwise.
(4.3)

On the other hand, if pij(−1) ≥ pij(1), then the decision rule is reversed.

81

For k top scoring gene pairs (i1, j1), ..., (ik, jk), the discriminant function is defined as

f(x) = sgn(
k∑
t=1

fit,jt(x)).

4.2 TSP for Time Series Data
Time series data are widely generated in the fields of signal processing, econometrics

and mathematical finance. In bioinformatics area, as the capture and analysis of single

time microarray expression data becomes routine, researchers and investigators have started

examining time series expression data to investigate dynamic disease diagnosis, complex gene

regulation schemes and metabolic pathways. Different from a static expression experiment

where a snapshot of the expression of genes in various samples is measured, in a time series

expression experiment, a temporal process is measured. Time series data have a natural

temporal ordering, and exhibit a strong correlation between successive time stamps.

Most time series microarray experiments focused on gene clustering. The challenge is the

measurement of similarity between two gene temporal sequences. Among many methods,

correlation coefficient-based similarity measures have been widely used. Other approaches

have been developed as well. For example, Ramoni et al. [Ramoni et al., 2002] studied

clustering time series expression data based on their dynamics which are represented as

regressive equations. And Schliep et al. [Schliep et al., 2003] presented a hidden markov

model based clustering algorithm for time series expression data. Full reviews of challenges

and approaches can be found in [Filkov et al., 2002; Bar-Joseph, 2004; Erdal et al., 2004].

Though we research on instance classification not gene clustering here, the similarity measure

definitions can be borrowed to help solve our problems. In the following subsection of TSP

Based on Correlation Coefficient, correlation coefficient is applied as a measure of pattern

difference in a gene pair. And in subsection Dynamic Time Warping with Nearest Neighbor

some approaches introduced in gene clustering are utilized as distance measures for the

purpose of seeking nearest neighbors, even though the similarity measure in gene clustering

82

is executed between two genes and measures in instance classification are computed for a

single gene from different instances.

Predicting instance targets in time series microarray experiments has been addressed in

the literatures. Instead of treating expression changes over time points as separate obser-

vations, they utilized the information on time dependency of gene expression changes. For

example, Parker and Wen [Parker & Wen, 2009] used functional data analysis where the

predictor is treated as a set of samples from a basis function rather than simply as a feature

vector. Borgwardt et al. [Borgwardt et al., 2006] modeled time series microarray data as

a partially observed discrete linear time invariant model. In both works, the whole set of

genes (features) was used, and complex computations such as functional principal compo-

nent analysis or singular value decomposition were involved, which makes the prediction

model complicated and lack interpretability.

Inspired by the idea of using very few genes and simple computations, we extend the

traditional TSP algorithm and propose classification methods for time series data that only

depends on a few pairs of features.

4.2.1 Time Series Microarray Experiment

The time series data used here are earthworm microarray data. The purpose of the bio-

logical experimental is to assess the neurotoxic effects of chemicals on non-target organisms.

Two chemical compounds are considered. RDX, an explosive compound, and carbaryl, a

carbamate insecticide, have shown reversible neurotoxicity on the earthworm Eisenia fetida.

Gong et al. [Gong et al., 2011] have conducted a time-series gene expression study where

earthworms were exposed to a sublethal concentrations of RDX or carbaryl for 6 days,

followed by a 7-day recovery to elucidate mechanisms underlying reversible neurotoxicity.

Worms sampled at 31 different time points (4 during acclimation, 13 during exposure and

14 during recovery) were measured with 44K gene expression endpoints. They analyzed the

time series expression data and derived a collective total of over 6000 differentially expressed

83

genes.

Figure 4.1. Time Series Experimental Design

Figure 4.1 shows the design of this experiment. It last 18 days and consisted of three

periods, acclimation (including depuration), exposure, and recovery. The earthworms were

sampled once a day during acclimation except the last day. And during exposure and

recovery periods, the sampling frequency was fixed at twice a day with the last day in

recovery as an exception. Therefore, 4 time points were generated during the acclimation

period, 13 during exposure and 14 during recovery. To evaluate the toxicity effects of

two chemical compounds, the earthworms were divided into 3 different groups — control,

Carbaryl treated and RDX treated. For each group, at a certain time point, 5 to 8 earthworm

replicates were sampled. And totally 437 earthworm microarray profiles were obtained.

Strictly speaking, this earthworm experiment differs a little from the standard time series

microarray experiment where one living organism is measured and sampled at various time

points. But in this experiment, an earthworm is dried and grounded to obtain its gene

profile. Therefore, the microarray data on different time points were read from different

earthworms. However, the experiment was well designed and carried out in a strict way so

that such individual deviation could be ignored.

The goal is to use earthworm time series microarray data to predict a period/compound

(for example, RDX-exposure) combination, select most informative genes, and be able to use

the derived patterns of these genes to interpret chemical neurotoxic effects on earthworms.

84

4.2.2 Methods and Results

Inspired by the Top Scoring Pair algorithm, we propose several classification approaches

that use one or several gene pairs to predict target labels. Different from simple value

comparison in static data, the key issue of time series data is how to incorporate temporal

information into the TSP framework.

Assume time series data set x1, ...,xl consists of d features, l samples, and z time points.

The i-th feature, i ∈ {1, ..., d}, from the n-th sample, denoted as xi,n, comprises z measure-

ments each of which is denoted by xi,n t, t ∈ 1, ..., z. And (y1, .., yl) is the vector of class

labels. The sample profile and its class label are regarded as random variables, denoted by

X and Y respectively. And Xi represents the i-th feature variable.

TSP Based on Average Comparison

The most basic idea is to generalize the time sequence values into one single number,

and then the traditional TSP algorithm could be applied. A simple method is to get an

average. We first compute the average gene expression values and apply the TSP algorithm

described previously in Section 4.1. The only difference is the event {Ri < Rj} means the

average value of feature i is smaller than that of feature j.

In this approach, the time sequence information is ignored, and samples of different time

points are treated equally. The classifier only depends on the average expression comparisons

among selected pairs of genes.

TSP Based on Trend

In order to incorporate the temporal information, we consider the variations between

every adjacent part of time points. And such variation is represented as a trend. A trend is

defined as an increase (+) or a decrease (-) between a pair of adjacent time points. Equality

is treated as an increase. A trend pattern q of a sequence with z time points includes z − 1

increases and/or decreases, q ∈ Q where Q is the whole set of all trend patterns.

85

Instead of considering the ordering difference of a pair of features, the changing of trend

pattern is taken into account. If for a given class, a feature exhibits a certain trend pattern

while another feature does not, and such observation is unlikely to happen in the other

class, the classification will be completed using these two features and the trend pattern.

The metric of measuring the occurrence of such an event in each class is computed as

P q
ij(m) = Prob(Xi ∼ q|Y = m)− Prob(Xj ∼ q|Y = m)

=

∑
xn∈Cm

|{xi,n ∼ q}| −
∑

xn∈Cm
|{xj,n ∼ q}|

|Cm|
. (4.4)

where m = {1,−1}, Cm denotes the set of samples in class m and |Cm| is the number of

samples in class m. Symbol ∼ means following a certain trend pattern. |{xj,n ∼ q}| indicates

the occurrence of observing the i-th feature time sequence in the n-th sample follows the

trend pattern q, and has value 1 when such event occurs or 0 otherwise. Note that, P q
ij(m)

could have negative value when the trend pattern q is more prominent in the j-th feature

than in the i-th. It is not a probability, but still serves as a measure of trend pattern change.

Let δqij denote the difference score of gene pair (i, j) for a trend pattern q.

δqij = |P q
ij(1)− P q

ij(−1)|.

The feature pair is selected based on the maximum difference score among all the trend

patterns. Let δij denotes this score.

δij = max
q
δqij.

Every feature pair will be evaluated based on their δ value. Pairs of features with high

values are viewed as most informative for classification. And the top k pairs with maximum

δ values are chosen. The corresponding pattern q for each top pair is also recorded.

86

With the i-th and j-th features being chosen with trend pattern q, we suppose P q
ij(1) >

P q
ij(−1). Then, given an observation x, the classifier based on the pair (i, j) and trend

pattern q is

fij(x) =

 1, Xi ∼ q and Xj 6∼ q,

−1, otherwise,
(4.5)

where symbol 6∼ means not belonging to the pattern. On the other hand, if P q
ij(−1) ≥ P q

ij(1),

then the decision rule is reversed.

For k top scoring gene pairs (i1, j1), ..., (ik, jk), the discriminant function is defined as

f(x) = sgn(
k∑
t=1

fit,jt(x)).

The size of trend pattern set Q could grow exponentially as the number of time points

increases. With z time points, the possible number of trend pattern is 2z−1. In order to

control the size of pattern set, for the earthworm microarray time series data, only the head,

middle and tail time points are considered. Therefore, there are only 4 trends patterns.

Even though we sacrifice the accuracy because some time points are not considered, the

computational complexity decreases significantly and the classifier is robust against noise

fluctuations.

This classification algorithm only utilizes the trend between adjacent time points, and

it will fail when the classification depends on feature value changes. For example, in the

earthworm experiment, values of many genes in a chemical compound treated group increase

or decrease with different value changes. Some of these changes is due to experimental error,

and normally have small change value. If we only consider the trend pattern, it will be hard

to reduce such experimental error.

TSP Based on Trend and Absolute Difference Amount

The absolute difference amount is defined as the sum of absolute differences of adjacent

time points. Let ∆ denote the difference amount. For the i-th feature of the n-th sample

87

with trend pattern q, the difference amount is

∆q
i,n(m) =

z−1∑
t=1

|xi,n t+1 − xi,n t|,xn ∈ Cmxi,n ∼ q,

where m = {1,−1} and xi,n ∼ q indicates that only the samples whose i-th feature has the

trend pattern q are included in the computation.

The overall difference amount within the class for the i-th feature and trend pattern q

is the sum of difference ∆q
i,n(m) with respect to samples that belong to the class and follow

pattern q. If there are no samples satisfying the criteria, the overall difference is 0.

∆q
i (m) =


1

|Cm|+Nq
i,m

∑
n ∆q

i,n(m), xn ∈ Cm,xi,n ∼ q,

0, xn ∈ Cm, 6 ∃xi,n : xi,n ∼ q,
(4.6)

where m = {1,−1}, 6 ∃xi,n : xi,n ∼ q means there is no sample in class the i-th feature of

which follows trend pattern q, and N q
i,m denotes the number of samples that belongs to the

class Cm and the i-th feature of which has the pattern q. The denominator adds |Cm| to

reduce the effect that there are only a few samples following the pattern but having high

difference values.

The observation of the i-th feature having larger difference over the j-th within a class

for a certain trend pattern implies either the i-th feature has trend pattern q while the j-th

does not, or the pattern is exhibited in both features but the i-th feature shows the trend

more clearly. The probability of observing the occurrence of such an event in each class is

computed as

P q
i,j(m) = Prob(∆q

i (m) < ∆q
j(m)). (4.7)

Let δij denote the difference score of feature pair (i, j).

δqij = |P q
ij(1)− P q

ij(−1)|.

88

The feature pair is selected based on the maximum difference score among all the trend

patterns. Let δij denotes this score.

δij = max
q
δqij.

The difference score is computed for each pair of features. Pairs with high scores are

viewed as most informative. It is easy to show that maximizing the score is equivalent to

minimizing error rate of the classifier whose decision is made based on the comparison of

difference values between the two features. And the top k pairs with maximum δ values

are chosen and their corresponding trend pattern q are recorded as well. Suppose P q
ij(1) >

P q
ij(−1). Then, given an observation x, the classifier fij(x) based on this pair (i, j) is

fij(x) =

 1, ∆q
i < ∆q

j ,

−1, otherwise,
(4.8)

For a single observation x, ∆q
i (m) =

∑z−1
t=1 |xi t+1−xi t| when xi ∼ q, m = {1,−1}. Note

that, ∆q
j(1) or ∆q

j(1) has a value of 0 when the j-th feature does not follow the trend pattern

q. Therefore, the classifier gives consideration of two scenarios: one feature follows the

pattern while the other does not; both features have the pattern but one is more apparent

than the other.

On the other hand, if Pij(−1) ≥ Pij(1), then the decision rule is reversed.

For k top scoring gene pairs (i1, j1), ..., (ik, jk), the discriminant function is defined as

f(x) = sgn(
k∑
t=1

fit,jt(x)).

Dynamic Time Warping with Nearest Neighbor

The previous methods did not fully utilize the time information, and therefore, some

meaningful “spikes” on certain time points have been ignored. In theory, if there exists

89

a metric of measuring the distances between two time sequences, and an event using the

measure is more likely to happen in one class than in the other, then, the TSP framework can

be applied. However, though there are various distance measure of time series sequences,

it is hard to define such an event associated with the measure. For example, we could

use correlation coefficient for evaluating the correlations between two sequences, but it is

difficult to define an event by which a classifier could be built. The key idea of this chapter

is to use few features to build a simple classifier. In order to choose the most informative

feature pairs, instead of computing the probability difference of the occurrence of an event

from one class to the other, we use a simple classifier, such as nearest neighbor, to evaluate

the performance of a feature pair. And once the top k feature pairs are selected, the simple

classifier based on these features will be the final predictor.

There are many distance measures available for time series data. For example, Pearson

correlation coefficient is typically used, especially in time series data clustering. It measures

the strength of linear dependence between two sequences. Even though phase shift, Pearson

correlation coefficient could not provide an accurate measure, due to its usually suggesting

a coarse correlation. Also, an edge function was proposed in [Filkov et al., 2002] to pick up

strong local signals as opposed to global similarity.

Dynamic time warping [Sakoe & Chiba, 1978] has been used in many disciplines, such as

signal processing, for a period of time. It earned its popularity by being extremely efficient

as the time series similarity measure which minimizes the effects of shifting and distortion

in order to detect similar shapes with different phases. Recently, it has been applied to the

area of bioinformatics. Most of the works focused on the comparison of genes [Sheehy et al.,

2009; Böck et al., 2011]. We use dynamic time warping to measure the similarity between

the time sequences of a certain feature from two different samples.

Given two samples u and v. For the feature pair (i, j), we compute the distance of these

two samples as

dij(u,v) =
√
DTW 2(ui,vi) +DTW 2(uj,vj), (4.9)

90

where DTW (ui,vi) represents the dynamic time warping distance of time sequence ui

and vi.

Suppose u is from the training set, and v is an observation to be classified. We use the

simple nearest neighbor approach to do the prediction. Given a pair of features (i, j), the

closest training sample of v is found based on the distance metric introduced above, and v

shares the class label with its nearest neighbor.

The entire steps of TSP dynamic time wrapping with nearest neighbor methods are:

• First, the original training set is divided into a training set and a validation set;

• For each feature pair (i, j), every sample v in the validation set is classified based on

nearest neighbor search in the two dimensional space constructed using Equation 4.9,

and the performance of the entire validation set is recorded;

• The top k feature pairs with highest classification performances on the validation set

are selected as (i1, j1), ..., (ik, jk). The discriminant function is f(x) = sgn(
∑k

t=1 fit,jt(x)),

where fit,jt(x) is the nearest neighbor classifier generated using feature pair (it, jt).

Results

We treated different periods (acclimation, exposure, and recovery) and treatments (con-

trol, carbaryl, and RDX) separately. There are five group combinations (control, carbaryl-

exposure, carbaryl-recovery, RDX-exposure, RDX-recovery), and thus five classes in the

prediction problem. One-vs-one method was used to deal with this multi-class scenario.

The experimental data cannot be used directly on the treatment-period classification task,

because first, each class has a different number of time points, and second, measurements

at different time points are based on different individual earthworms. Thus, pre-processing

steps are needed to generate time series data that meets the basic requirements of a classi-

fication task.

91

Each time point under a treatment-period combination has 5 to 8 replicates. Because

these adult earthworm replicates were raised in the same environment, sampled and pro-

cessed by the same procedures, it is reasonable to ignore the individual difference of repli-

cates. To generate time sequence data, the measurements of replicates of adjacent time

points within a class were concatenated randomly. The concatenation followed the rule that

each replicate measurement should be used at least once. For example, among 5 replicates

at time E01 (as shown in Figure 4.1), we randomly chose the first sample E01-01, and the

third sample E02-03 at time E02 is chosen next. The measures of E01-01 and E02-03 will be

concatenated. After the generation of the time sequence data, the measurements of E01-01

and E02-03 must be used at least once. We randomly generated time series data because the

whole set of possible combinations of replicates from different time points will be large. For

the earthworm data set of 13 time points with 5 replicates at each time point, the number

of total possible combinations is 513 = 1220703125.

Another issue is the different number of time points of different classes. The class of

control group has a total number of 31 time points, whereas two exposure classes have 13

and two recovery classes have 14. To maintain a consistent length for time sequences, we

need to trim the numbers of time points of control and recovery classes. Because in general

there is little change between the measurements of R13 and R14, the data from these two

time points are combined and treated as being sampled from a single time point. And for

the control class, in theory, the data should have a stable value. However, in reality, they

fluctuate according to the time. Therefore, for the sake of comparison with exposure and

recovery classes, the control class consists of sequences from E01 to E13, sequences from

R01 to the combination of R13 and R14, and sequences randomly sampled among all the

time points. The first two sets of sequences have the larger proportion of 80%, while the

remaining 20% is from the last set.

After the pre-processing, every class has 13 time points. Each compound-treated class

(no matter the exposure or recovery period) has 250 samples, and the control group has

92

500 samples. We randomly split the data set into training and test at ratio 4:1. For the

dynamic time warping with nearest neighbor approach, the original training data is again

divided into training and validation sets at a ratio 4:1.

There are
(

6000
2

)
= 1799700 possible gene pairs that could be generated from the 6000

genes. We preselected statistically significant genes using BRB ArrayTools v4.2.0 1, and

obtained 1192 significant gene candidates, and 500 most insignificant genes. For the TSP

based approaches (including TSP based on average, TSP based on trend, TSP based on trend

and difference amount), the classifier achieves a good performance if one gene is strongly

active to the compounds while the other is inactive or behaviors reversely. So the significant

genes and insignificant genes were paired. And we also added some pairs made only from the

top 500 significant genes. and the total number of gene pairs is 1192×500 +
(

500
2

)
= 720750.

For the dynamic time warping with nearest neighbor method, we only included the significant

genes. And the number of possible gene pairs is
(

1192
2

)
= 709836.

In the TSP based approaches, we selected the top 10 gene pairs (10-TSP). The experiment

was run by 20 times, and we computed the average accuracy and standard deviation for the

four methods.

Table 4.1. Experimental Results of Time Series Earthworm Data

TSP on TSP on TSP on DTW with
Average Trend Trend and Difference Nearest Neighbor

Accuracy 0.3978± 0.0368 0.4877± 0.0421 0.5027± 0.0437 0.6793± 0.04176

Top Scored
TA2-030964 TA1-048554 TA1-222050 TA1-011325

Gene Pair TA1-195066 TA1-033438 TA2-055248 TA2-124905

2nd Scored
TA1-094629 TA2-058110 TA2-164381 TA1-118468

Gene Pair TA1-224931 TA1-006918 TA2-075017 TA1-233321

3rd Scored
TA1-011325 TA2-206312 TA1-048554 TA2-202612

Gene Pair TA1-126553 TA1-084735 TA2-180988 TA1-038165

This is a classification problem with 5 classes. A random guess will achieve 20% accuracy

in theory. From Table 4.1, all the four methods exhibited good classification ability even

1http://linus.nci.nih.gov/brb

93

though only 10 pairs of genes were involved in the prediction. The approach of dynamic

time warping with nearest neighbor has the highest performance. TSP based approaches

have lower performances but better interpretability than DTW with nearest neighbor. The

top scored gene pairs may help to discover the underlying toxicity mechanism of chemical

compounds.

94

CHAPTER 5

CONCLUSIONS AND FUTURE WORKS

The dissertation was set out to explore the concept of restricting supervised learning

problems from two different perspectives, feature selection and feature space partition.

Many supervised learning problems have either high dimensionality or the structural

complexity of the generative function. High dimensionality arises in various applications such

as computational biology, where redundant features decrease the prediction performance and

may result in high variance no matter which learning algorithm is used. Feature selection

identifies the most informative feature subset and decreases dimensionality. Another issue of

supervised learning is that some problems have complex probabilistic distribution. A simple

model, for example a linear classifier, may not be able to fit the data, even though simple

models are generally advocated because they usually lead to low variance results. Feature

space partition is a technique that splits the feature space into multiple non-overlapping

regions such that a simple model can be learned for each region.

There are many methods of feature selection. Using 1-norm regularization is one of the

most popular approaches. It embeds feature selection as part of the learning process. We

apply 1-norm regularization into the ranking problem because there is little work that has

been done about 1-norm ranking. In our method, a ranking problem is cast as a classification

task where pair-wise preferences are considered. This casting increases the computational

complexity from linear to quadratic in terms of sample size. We propose a method of ranking

with 1-norm regularization using convex hull reduction. This method was tested on artificial

data sets and two benchmark data sets, concrete compressive strength set and Abalone data

95

set. We showed the effect of significant sample size reduction by using convex hull reduction,

and also demonstrated the feature selection results based on 1-norm regularization.

1-norm regularization has the benefit of feature selection. Theoretically, by tuning the

tradeoff parameter between the empirical error and 1-norm regularizer, various feature sub-

sets with different size could be obtained. But it requires the computing of the whole

regularization path, which is extremely difficult due to the nondifferentiable nature of 1-

norm penalty. To achieve a feature subset with the minimum size and high performance, we

propose a 1-norm recursive feature elimination framework. This framework has the following

advantages over other recursive feature selection methods: first, it automatically determines

the number of features to be eliminated in each iteration; second, it has a natural iteration

stopping criterion. We tested the method on an earthworm microarray data set. It out-

performed many classic feature selection approaches in terms of accuracy and the size of

selected feature subset.

A lot of problems have complex data generative models. Applying simple learning mod-

els will result in high bias. We propose a feature space partition method that divides the

space based on domain information in a hierarchical fashion. It is assumed that domain

knowledge is encoded by discrete or categorical attributes. Such an attribute provides a

natural partition of the problem domain and therefore separates the original problem into

several non-overlapping sub-problems. A discrete or categorical attribute is useful if the

partition simplifies the learning task. It is time consuming to select such an attribute if

an exhaustive method is used to search all the possible restructured problems, especially

when there are lots of discrete or categorical attributes available. We use a metric to rank

attributes according to their potential to reduce the uncertainty of a classification task. It is

quantified as a conditional entropy given an attribute and a set of optimal classifier, each of

which is built for a sub-problem defined by the attribute under consideration. We approx-

imate the solution by the expected minimum conditional entropy with respect to random

projections. The method was tested on three artificial data sets, three cheminformatics data

96

sets, and two leukemia gene expression data sets. Results showed that our method selected

a proper categorical attribute and the learning performance of the restructured problem is

higher than the original problem.

Simple learning models are always suggested for supervised learning. Besides linear

models, another method is introduced in the dissertation, Top Scoring Pair (TSP). It does

classification only based on the comparison of two features. Traditional TSP only deals

with static data. We propose the following approaches for time series data using the TSP

framework: TSP based on average comparison, TSP based on trend, and TSP based on

variance amount. They all provide simple metrics for selecting the most discriminative

feature pair and build the simple models. TSP based methods have the advantage of good

interpretability power. Based on the idea of using only two features, we also propose the

method of dynamic time warping with nearest neighbor based on two features. These four

approaches were tested on a time series earthworm microarray data set, where five classes

were considered. And the result showed the best performance was achieved on the last

method.

There are a lot of works could be done in the future that extend the idea of learning with a

feature pair. A classifier built on two features is normally a weak learner. Therefore, boosting

is a natural choice that consists of iteratively learning weak classifiers and aggregating them

to build a strong classifier. Each weak learner may select a different feature pair, and each

feature pair represents a classification rule. Hence, the aggregation of multiple TSP classifiers

is equivalent to the combination of multiple decision rules, which is comparable with decision

tree method. We may be able to borrow decision tree related concepts and methods, and

apply them on TSP based approaches in the future. Also, when many feature pairs are

considered, it may be required to reduce the feature size. And 1-norm regularization is a

good option because it has embedded feature selection ability. Another direction of future

works is about how to define interpretability. We talk about this word a lot but never

quantify it. If we are able to measure the interpretability of a model, we can achieve a

97

classifier with balance between the learning performance and model interpretability. And

this framework will be very useful for researchers who want to understand more about the

patterns or rules indicated by a classifier instead of treating it as a black box. It also can

help incorporate domain knowledge in the classifier.

98

Bibliography

99

Bibliography

Abu-Mostafa, Y. S. (1994) “Learning from Hints.” Journal of Complexity, Vol. 10, pp.
165–178.

Altmann, A.; Beerenwinkel, N.; Sing, T.; Savenkov, I.; Däumer, M.; Kaiser,
R.; Rhee, S.; Fessel, W. J.; Shafer, R. W.; & Lengauer, T. (2007) “Improved
Prediction of Response to Antiretroviral Combination Therapy Using the Genetic Barrier
to Drug Resistance.” Antiviral Therapy, Vol. 12(2), pp. 169–178.

Altmann, A.; Sing, T.; Vermeiren, H.; Winters, B.; Craenenbroeck, E. V.;
Borght, K. V.; Rhee, S.; Shafer, R. W.; Schülter, E.; Kaiser, R.; Peres,
Y.; Sönnerborg, A.; Fessel, W. J.; Incardona, F.; Zazzi, M.; Bacheler, L.;
Vlijmen, H. V.; & Lengauer, T. (2009) “Advantages of Predicted Phenotypes and
Statistical Learning Models in Inferring Virological Response to Antiretroviral Therapy
from HIV Genotype.” Antiviral Therapy, Vol. 14(2), pp. 273–283.

Ambroise, C. & McLachlan, G. J. (2002) “Selection Bias in Gene Extraction on the
Basis of Microarray Gene-Expression Data.” Proceedings of the National Academy of
Sciences of the United States of America, Vol. 99, pp. 6562–6566.

Anjum, S.; Doucet, A.; & Holmes, C. C. (2009) “A Boosting Approach to Structure
Learning of Graphs with and withour Prior Knowledge.” Bioinformatics, Vol. 25(22), pp.
2929–2936.

Bahl, L. R.; deSouza, P. V.; Nahamoo, D.; & Padmanabhan, M. (2000) “System
and Method for Partitioning the Feature Space of A Classifier in A Pattern Classification
System.”.

Balcan, M.; Bansal, N.; Beygelzimer, A.; Coppersmith, D.; Langford, J.; &
Snorkin, G. B. (2008) “Robust Reductions from Ranking to Classification.” Machine
Learning, Vol. 72(1-2), pp. 139–153.

Bar-Joseph, Z. (2004) “Analyzing Time Series Gene Expression Data.” Bioinformatics,
Vol. 20(16), pp. 2493–2503.

Bekkerman, R.; EI-Yaniv, R.; Tishby, N.; & Winter, Y. (2002) “Distributional
Word Clusters vs. Words for Text Categorization.” Journal of Machine Learning Research,
Vol. 1, pp. 1–48.

100

Bellman, R. E. (1957) Dynamic Programming. Princeton University Press.

Berrar, D. P.; Sturgeon, B.; Bradbury, I.; & Dubitzky, W. (2003) “Microarray
Data Integration and Machine Learning Techniques for Lung Cancer Survival Prediction.”
In Proceedings of the the International Conference of Critical Assessment of Microarray
Data Analysis, pages 43–54.

Bi, J.; Bennett, K. P.; Embrechts, M.; Breneman, C.; & Song, M. (2003) “Dimen-
sionality Reduction via Sparse Support Vector Machines.” Journal of Machine Learning
Research, Vol. 3, pp. 1229–1243.

Blum, A. & Langley, P. (1997) “Selection of Relevant Features and Examples in Machine
Learning.” Artificial Intelligence, Vol. 97, pp. 245–271.

Böck, M.; Schmitt, C.; & Kramer, S. (2011) “A Study of Dynamic Time Warping for
the Inference of Gene Regulatory Relationships.” In Proceedings of the 5th International
Workshop on Machine Learning in Systems Biology, pages 6–9.

Bogojeska, J.; Bickel, S.; Altmann, A.; & Lengauer, T. (2010) “Dealing with
Sparse Data in Predicting Outcomes of HIV Combination Therapies.” Bioinformatics,
Vol. 26(17), pp. 2085–2092.

Borgwardt, K. M.; Vishwanathan, S. V. N.; & Kriegel, H. (2006) “Class Predic-
tion from Time Series Gene Expression Profiles Using Dynamical Systems Kernels.” In
Pacific Symposium on Biocomputing 11, pages 547–558.

Breiman, L. (1996) “Heuristics of Instability and Stabilization in Model Selection.” Annals
of Statistics, Vol. 24(6), pp. 2350–2382.

Breiman, L. (2001) “Random Forest.” Machine Learning, Vol. 45(1), pp. 5–32.

Breiman, L.; Friedman, J. H.; Olshen, R. A.; & Stone, C. J. (1984) Classification
and Regression Trees. Wadsworth & Brooks/Cole Advanced Books & Software ISBN
978-0412048418.

Chapelle, O. & Keerthi, S. S. (2008) “Multi-class Feature Selection with Support
Vector Machine.” Proceedings of the American Statistical Association, Vol. .

Chen, Y.; Bi, J.; & Wang, J. Z. (2006) “MILES: Multiple-instance Learning via Em-
bedded Instance Selection.” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, Vol. 28(12), pp. 1931–1946.

Cohen, W. W.; Schapire, R. E.; & Singer, Y. (1999) “Learning to Order Things.”
Journal of Artificial Intelligence Research, Vol. 10(1), pp. 243–270.

Cortes, C. & Vapnik, V. (1995) “Support Vector Networks.” Machine Learning, Vol.
20(3), pp. 273–297.

101

Crammer, K. & Singer, Y. (2001) “On the Algorithm Implementation of Multiclass
Kernel-based Vector Machines.” Journal of Machine Learning Research, Vol. 2, pp. 265–
292.

Daemen, A.; Gevaert, O.; Bie, T. D.; Debucquoy, A.; Machiels, J.; Moor,
B. D.; & Haustermans, K. (2008) “Integrating Microarray and Proteomics Data to
Predict the Response on Cetuximab in Patients with Rectal Cancer.” Pacific Symposium
on Biocomputing, Vol. 25, pp. 322–330.

Djebbari, A. & Quackenbush, J. (2008) “Seeded Bayesian Networks: Constructing
Genetic Networks from Microarray Data.” BMC Systems Biology, Vol. 2, pp. 57.

Domingos, P. & Pazzani, M. (1997) “On the Optimality of the Simple Bayesian Classifier
under Zero-one Loss.” Machine Learning, Vol. 29, pp. 103–137.

Drucker, H.; Burges, C. J. C.; Kaufman, L.; Smola, A.; & Vapnik, V. (1997)
Advances in Neural Information Processing System 9., chapter Support Vector Regression
Machine, pages 155–161 MIT Press.

Duchi, J. & Singer, Y. (2009) “Boosting with Structural Sparsity.” Proceedings of the
26th Annual International Conference on Machine Learning, Vol. pages 297–304.

Dwork, C.; Kumar, R.; Naor, M.; & Sivakumar, D. (2001) “Rank Aggregation
Methods for the Web.” Proceedings of the 10th international conference on World Wid
Web, Vol. pages 613–622.

English, S. B. & Butte, A. J. (2007) “Evaluation and Integration of 49 Genome-
wide Experiments and the Prediction of Previously unknown Obesity-related Genes.”
Bioinformatics, Vol. 23(21), pp. 2910–2917.

Erdal, S.; Ozturk, O.; Armbruster, D.; Ferhatosmanoglu, H.; & Ray, W. C.
(2004) “A Time Series Analysis of Microarray Data.” In Proceeding of the 4th IEEE
Symposium on Bioinformatics and Bioengineering, pages 336–342.

Filkov, V.; Skiena, S.; & Zhi, J. (2002) “Analysis Techniques for Microarray Time-
Series Data.” Journal of Computational Biology, Vol. 9, pp. 317–330.

Friedman, J.; Hastie, T.; & Tibshirani, R. (2010) “Regularization Paths for Gen-
eralized Linear Models via Coordinate Descent.” Journal of Lightwave Technology of
Statistical Software, Vol. 33(1), pp. 1–22.

Fung, G.; Rosales, R.; & Krishnapuram, B. (2006) “Learning Rankings via Convex
Hull Separation.” Advances in Neural Information Processing Systems, Vol. 18, pp. 395–
402.

Geman, D.; Afsari, B.; Tan, A. C.; & Naiman, D. (2008) “Microarray Classification
from Several Two-gen Expression Comparison.” Proceedings of International Conference
on Machine Learning and Applications, Vol. 11-13, pp. 583–585.

102

Geman, D.; d’Avignon, C.; Naiman, D. Q.; & Winslow, R. L. (2004) “Classifying
Gene Expression Profiles from Pairwise mRNA Comparison.” Statistical Applications in
Genetics and Molecular Biology, Vol. 3, pp. Article 19.

Golub, T.; Slonim, D.; Tamayo, P.; Huard, C.; Gaasenbeek, M.; Mesirov, J.;
Coller, H.; Loh, M.; Downing, J.; Caligiuri, M.; Bloomfield, C.; & Lander,
E. (1999) “Molecular Classification of Cancer: Class Discovery and Class Prediction by
Gene Expression.” Science, Vol. 286(5439), pp. 531–537.

Gong, P.; Loh, P. R.; Barker, N. D.; Tucker, G.; Wang, N.; Zhang, C.;
Escalon, B. L.; Berger, B.; & Perkins, E. J. (2011) “Building Quantitative
Prediction Models for Tissue Residue of Two Explosives Compounds in Earthworms from
Microarray Gene Expression Data.” Environ Sci Technol, Vol. 46(1), pp. 19–26.

Guyon, I. & Elisseeff, A. (2003) “An Introduction to Variable and Feature Selection.”
Journal of Machine Learning Research, Vol. 3, pp. 1157–1182.

Guyon, I.; Weston, J.; Barnhill, S.; & Vapnik, V. (2002) “Gene Selection for
Cancer Classification Using Support Vector Machine.” Machine Learning, Vol. 46(1-3),
pp. 389–422.

Hall, M. (2000) “Correlation-Based Feature Selection for Discrete and Numeric Class
Machine Learning.” In Proceedings of the 17th International Conference on Mahince
Learning, pages 359–366.

He, Y.; Zhang, B.; & Li, J. (2005) “A New Multiresolution Classification Model based
on Partitioning of Feature Space.” Proceedings for 2005 IEEE International Conference
on Granular Computing, Vol. 2, pp. 462–467.

Herbrich, R.; Graepel, T.; & Obermayer, K. (2000) Advances in Large Margin
Classifiers., chapter Large Margin Rank Boundaries for Ordinal Regression, pages 115–
132 MIT Press, Cambridge, MA.

Hsu, C. & Lin, C. (2002) “A Comparison of Methods for Multiclass Support Vector
Machines.” IEEE Transactions on Neural Networks, Vol. 13, pp. 415–425.

Hueter, I. (1999) “Limit Theorems for the Convex Hull of Random Points in Higher
Dimensions.” Transactions of American Mathematical Society, Vol. 351(11), pp. 4337–
4363.

Jing, L. & Ng, M. K. (2010) “Prior Knowledge Based Mining Functional Modules from
Yeast PPI Netwoks with Gene Ontology.” BMC Bioinformatics, Vol. 11(Supplement: 11),
pp. 1–19.

Jorgensen, R.; Merrill, A.; & Andersen, G. R. (2006) “The Life and Death of
Translation Elongation Factor 2.” Biochem Soc Trans, Vol. 34, pp. 1–6.

103

Kishore, J. K.; Patnaik, L. M.; mani, V.; & k. Agrawal, V. (2001) “Genetic
Programming Based Pattern Classification with Feature Space Partitioning.” Information
Sciences, Vol. 131(1-4), pp. 65–86.

Kittler, J. (1978) Pattern Recognition and Signal Processing., chapter Feature Set Search
Algorithms, pages 41–60 Sijthoff and Noordhoff.

Kohavi, R. & John, G. (1997) “Wrappers for Feature Selection.” Artificial Intelligence,
Vol. 97(1-2), pp. 273–324.

Kohn, A. F.; Nakano, L. G. M.; & Silva, M. O. E. (1996) “A Class Discriminability
Measure Based on Feature Space Partitioning.” Pattern Recogonition, Vol. 29(5), pp.
873–887.

Lal, T. N.; Chapelle, O.; Weston, J.; & Elisseeff, A. (2006) Embedded Methods.
Springer-Verlag.

Lee, P. H. & Shatkay, H. (2009) “An Intergrative Scoring System for Ranking SNPs
by their potential deleterious effects.” Bioinformatics, Vol. 25(8), pp. 1048–1055.

Li, T.; Zhang, C.; & Ogihara, M. (2004) “A Comparative Study of Feature Selection
and Multiclass Classification Methods for Tissue Classification Based on Gene Expres-
sion.” Bio, Vol. 20(15), pp. 2429–2437.

Liu, B.; Wan, C.; & Wang, L. (2006) “An Efficient Semi-unsupervised Gene Selection
Method via Spectral Biclustering.” IEEE Transactions on Nano-Bioscience, Vol. 5(2),
pp. 110–114.

Liu, Y. & Shen, X. (2006) “Multicategory Psi-learning.” Journal of the American Sta-
tistical Association, Vol. 101(474), pp. 500–509.

Lustgarten, J. L.; Visweswaran, S.; Bowser, R.; Hogan, W.; & Gopalakrish-
nan, V. (2009) “Knowledge-based Variable Selection for Learning Rules from Proteomic
Data.” BMC Bioinformatics, Vol. 10(Supplement: 9), pp. 1–7.

Mani, K. M.; Lefebvre, C.; Wang, K.; Lim, W. K.; Basso, K.; Dalla-Favera,
R.; & Califano, A. (2008) “A Systems Biology Approach to Prediction of Oncogenes
and Molecular Perturbation Targets in B-cell Lymphomas.” Molecular System Biology,
Vol. 4(Article No. 169).

Mattera, D. & Haykin, S. (1999) Advances in Kernel Methods – Support Vector Learn-
ing., chapter Support Vector Machines for Dynamic Reconstruction of A Chaotic System,
pages 211–242 MIT Press.

Meinshausen, N. & Bühlmann, P. (2010) “Stability Selection.” Journal of the Royal
Statistical Society, Vol. Series B 72, pp. 417–473.

104

Müller, K. R.; Smola, A.; Rätsch, G.; Schölkopf, B.; Kohlmorgen, J.; &
Vapnik, V. (1997) Artificial Neural Networks ICANN’97., chapter Predicting Time
Series with Support Vector Machine, pages 999–1004.

Nan, X.; Chen, Y.; Dang, X.; & Wilkins, D. (2010a) “Learning to Rank Using 1-
norm Regularization and Convex Hull Reduction.” Proceeding of ACM Southeast 2010,
Vol. page 5 pages.

Nan, X.; Fu, G.; Zhao, Z.; Liu, S.; Patel, R. Y.; Liu, H.; Daga, P. R.; Doerksen,
R. J.; Dang, X.; Chen, Y.; & Wilkins, D. (2011) “Leveraging Domain Information
to Restructure Biological Prediction.” BMC Bioinformatics, Vol. 12, pp. 15 pages.

Nan, X.; Wang, N.; Gong, P.; Zhang, C.; Chen, Y.; & Wilkins, D. (2010b) “Gene
Selectioin Using 1-Norm Regularization for Multi-Class Microarray Data.” Proceeding of
IEEE International Conference on Bioinformatics & Biomedicine, Vol. pages 520–524.

Niyogi, P.; Girosi, F.; & Poggio, T. (1998) “Incorporating Prior Information in
Machine Learning by Creating Virtual Examples.” Proceedings of the IEEE, Vol. 86(11),
pp. 2196–2209.

Ochs, M. F. (2010) “Knowledge-based Data Analysis Comes of Age.” Briefings in Bioin-
formatics, Vol. 11(1), pp. 30–39.

Padmanabhan, M.; Bahl, L. R.; & Nahamoo, D. (1999) “Partitioning the Feature
Space of a Classifier with Linear Hyperplanes.” IEEE Transactions on Speech and Audio
Processing, Vol. 7(3), pp. 282–288.

Parker, B. J. & Wen, J. (2009) “Predicting microRNA Targets in Time-Series Mi-
croarray Experiments via Functional Data Analysis.” BMC Bioinformatics, Vol. 10, pp.
S32.

Pearson, K. (1901) “On Lines and Planes of Closest Fit to System of Points in Space.”
Philosophical Magazine, Vol. 2(6), pp. 559–572.

Platt, J. C.; Cristianini, N.; & Taylor, J. S. (2000) “Large Margin DAGs for
Multiclass Classification.” Advances in Neural Information Processing Systems, Vol. pages
547–553.

Poggio, T. & Girosi, F. (1990) “Networks for Approximation and Learning.” Proceedings
of the IEEE, Vol. 78(9), pp. 1481–1497.

Poggio, T. & Vetter, T. (1992) “Recognition and Structure from One 2D Model View:
Observations on Prototypes, Object Classes and Symmetrics.” A.I. Memo No. 1347, Vol.
.

Ramakrishnan, S. R.; Vogel, C.; Prince, J. T.; Li, Z.; Penalva, L. O.; Myers,
M.; Marcotte, E. M.; Miranker, D. P.; & Wang, R. (2009) “Integrating Shotgun

105

Proteomics and mRNA Expression Data to Improve Protein Identification.” Bioinformat-
ics, Vol. 25(11), pp. 1397–1403.

Ramoni, M.; Sebastiani, P.; & Kohane, I. (2002) “Cluster Analysis of Gene Ex-
pressioin Dynamics.” In Proceedings of National Academy of Sciences, volume 99, pages
9121–9126.

Rokach, L. & Maimon, O. (2008) Data Mining with Decision Trees: Theory and Appli-
catioins. World Scientific Publishing Co. Pte. Ltd.

Rosset, S. (2004) “Tracing Curved Regularized Optimization Solution Paths.” Advances
in Neural Information Processing Systems, Vol. 17.

Sakoe, H. & Chiba, S. (1978) “Dynamic Programming Algorithm optimization for Spoken
Word Recognition.” IEEE Transactions on Acoustics, Speech and Signal Processing, Vol.
26(1), pp. 43–49.

Salem, S.; Jack, L.; & Nandi, A. (2008) “Investigation of Self-organizing Oscillator
Networks for Use in Clustering Microarray Data.” IEEE Trans. NanoBioscience, Vol. 7,
pp. 65–79.

Schliep, A.; Schonhuth, A.; & Steinhoff, C. (2003) “Using Hidden Markov Model
to Analyze Gene Expression Time Course Data.” Bioinformatics, Vol. 19, pp. 1264–1272.

Schölkopf, B.; Simard, P.; Smola, A.; & Vapnik, V. (1998) “Prior Knowledge in
Support Vector Kernels.” Advances in Neural Information Processing Systems, Vol. 10,
pp. 640–646.

Sethi, I. K. & sarvarayudu, G. P. R. (1982) “Hierarchical Classifier Design Using
Mutual Information.” IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. PAMI-4(4), pp. 441–445.

Sheehy, S. P.; Huang, S.; & Parker, K. K. (2009) “Time-warped Comparison of
Gene Expression in Adaptive and Maladaptive Cardiac Hypertrophy.” Circ Cardiovasc
Genet, Vol. 2(2), pp. 116–124.

Silverman, B. W. (1986) Density Estimation for Statistics and Data Analysis. Chapman
& Hall.

Simard, P.; LeCun, Y.; & Denker, J. S. (1993) “Efficient Pattern Recognition Using a
New Transformation Distance.” Proceedings of Advances in Neural Information Processing
Systems, Vol. 5, pp. 50–58.

Singh, S. & Galton, A. P. (2003) “Multiresolution Estimates of Classification Com-
plexity.” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25(12),
pp. 1534–1539.

106

Statnikov, A.; Aliferis, C. F.; Tsamardinos, I.; Hardin, D.; & levy, S. (2006)
“A Comprehensive Evaluation of Multicategory Classification Methods for Microarray
Gene Expression Cancer Diagnosis.” Bioinformatics, Vol. 21(5), pp. 631–643.

Stitson, M.; Gammerman, A.; Vapnik, V.; Vovk, V.; Watkins, C.; & Weston, J.
(1999) Advances in Kernel Methods – Support Vector Learning., chapter Support Vector
Regression with ANOVA Decomposition Kernels, pages 285–292 MIT Press.

Suzuki, T.; Honda, M.; Matsumoto, S.; Sturzenbaum, S.; & Gamou, S. (2005)
“Valosine-containing Proteins (VCP) in An Annelid: Identification of A Novel Spermato-
genesis Related Factor.” Gene, Vol. 362, pp. 11–18.

Szedmak, S.; Shawe-Taylor, J.; Saunders, C. J.; & Hardoon, D. R. (2004) “Mul-
ticlass Classification by L1 Norm Support Vector Machine.” Pattern Recognition and
Machine Learning in Computer Vision Workshop, Vol. Grenoble, France.

Tian, Z.; Hwang, T. H.; & Kuang, R. (2009) “A Hypergraph-based Learning Al-
gorithm for Classifying Gene Expression and ArrayCGH Data with Prior Knowledge.”
Bioinformatics, Vol. 25(21), pp. 2831–2838.

Tibshirani, R. (1996) “Regression Shrinkage and Selection via the Lasso.” Journal of the
Royal Statistical Society. Series B (Methodological), Vol. 58, pp. 267–288.

Tseng, V. S. & Kao, C. P. (2005) “Efficiently Mining Gene Expression Data via A Novel
Parameterless Clustering Method.” IEEE/ACM Transactions on Computational Biology
and Bioinformatics, Vol. 2, pp. 355–365.

Ucar, D.; Beyer, A.; Parthasarathy, S.; & Workman, C. T. (2009) “Predicting
Functionality of Protein-DNA Interactions by Integrating Diverse Evidence.” Bioinfor-
matics, Vol. 25(12), pp. 137–144.

Ulitsky, I. & Shamir, R. (2009) “Identifying Functional Modules Using Expression Pro-
files and Confidence-scored Protein Interactions.” Bioinformatics, Vol. 25(9), pp. 1158–
1164.

Valev, V. (2004) “Supervised Pattern Recognition by Parallel Feature Partitioning.” Pat-
tern Recognition, Vol. 37(3), pp. 463–467.

Vapnik, V. N. (1995) The Nature of Statistical Learning Theory. Springer-Verlag New
York.

Verri, A. & Poggio, T. (1986) “Regularization Theory and Shape Constraints.” A.I.
Memo No. 916, Vol. .

Viswanadhan, V. N.; Ghose, A. K.; Revankar, G. R.; & Robins, R. K. (1989)
“Atomic Physicochemical Parameters for Three Dimensional Structure Directed Quan-
titative Structure-activity Relationships. 4. Additional Parameters for Hydrophobic and

107

Dispersive Interactions and Their Application for An Automated Superposition of Cer-
tain Naturally Occurring Nucleoside Antibiotics.” J. Chem. inf. Comput. Sci., Vol. 29,
pp. 163–172.

Wang, J.; Neskovic, P.; & Cooper, L. N. (2003) “Partitioning A Feature Space Using
A Locally Defined Confidence Measure.” Joint 13th International Conference on Artificial
Neural Networks and 10th International Conference on Neural Information Processing,
Vol. Istanbul.

Wang, L. & Shen, X. (2006) “Multi-category Support Vector Machines, Feature Selection
and Solution Path.” Statistica Sinica, Vol. 16, pp. 617–633.

Werhli, A. V. & Husmeier, D. (2008) “Gene Regulatory Network Reconstruction By
Bayesian Integration of Prior Knowledge And/OR Different Experimental Conditions.”
Journal of Bioinformatics and Computational Biology, Vol. 6(3), pp. 543–572.

Weston, J.; Elisseff, A.; Schölkopf, B.; & Tipping, M. (2003) “Use of the Zero
Norm with Linear Models and Kernel Methods.” Journal of Machine Learning Research,
Vol. 3, pp. 1439–1461.

Weston, J. & Watkins, C. (1999) “Multi-class Support Vector Machines.” Proceedings
of the Seventh European Symposium On Artificial Neural Networks, Vol. Bruges.

Witten, I. H. & Frank, E. (2005) “Incorporating Domain Knowledge.” In Data mining:
Practical Machine Learning Tools and Techniques, pages 349–351. D. Cerra, 2nd edition.

Yeoh, E.; Ross, M.; Shurtleff, S.; Williams, W.; Patel, D.; Mahfouz, R.;
Behm, F.; Raimondi, S.; Relling, M.; Patel, A.; Cheng, C.; Campana, D.;
Wilkins, D.; Zhou, X.; Li, J.; Liu, H.; Pui, C.; Evans, W.; C, C. N.; Wong, L.;
& Downing, J. (2002) “Classification, Subtype Discovery, and Prediction of Outcome
in Pediatric Acute Lymphoblastic Leukemia by Gene Expression Profiling.” Cancer Cell,
Vol. 1(2), pp. 133–143.

Zhang, X.; Lu, X.; Shi, Q.; Xu, X.; Leung, H. E.; Harris, L. N.; Iglehart,
J. D.; Miron, A.; Liu, J. S.; & Wong, W. H. (2006) “Recursive SVM Feature
Selection and Sample Classification for Mass-spectrometry and Microarray Data.” BMC
Bioinformatics, Vol. 7, pp. 197–210.

Zhu, J.; Rosset, S.; Hastie, T.; & Tibshirani, R. (2003) “1-norm Support Vector
Machines.” Stanford University, Technical report.

108

	Restricting Supervised Learning:Feature Selection and Feature Space Partition
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	List of Figures
	List of Tables
	1 INTRODUCTION
	1.1 Supervised Learning
	1.2 Restricting Learning Problem
	1.3 Outline of the Dissertation

	2 FEATURE SELECTION
	2.1 Filter, Wrapper, and Embedded Method
	2.2 1-Norm Regularization Facilitating Feature Selection
	2.2.1 Binary Classification with 1-Norm Regularization
	2.2.2 Multi-class Classification with 1-Norm Regularization
	2.2.3 Support Vector Regression with 1-Norm Regularization
	2.2.4 Lasso Regression
	2.2.5 Ranking with 1-Norm Regularization Using Convex Hull Reduction
	2.2.6 Ranking Problem Formulation
	2.2.7 Convex Hull Reduction
	2.2.8 Ranking with 1-Norm Regularization and Convex Hull Reduction
	2.2.9 Kendall Correlation Coefficient
	2.2.10 Experiments and Results

	2.3 Recursive Feature Elimination Using 1-Norm Regularization
	2.3.1 Method
	2.3.2 Experiments and Results

	3 FEATURE SPACE PARTITION
	3.1 Restructuring Problem by Feature Space Partition
	3.2 Hierarchical Linear Hyperplane Partition
	3.3 Hyperparallelepipeds Partition
	3.4 Leveraging Domain Information to Restructure Prediction Problem
	3.4.1 Incorporating Domain Information
	3.4.2 Attribute Selection Metric
	3.4.3 Experiments and Results

	4 CLASSIFICATION USING TOP SCORING FEATURE PAIRS
	4.1 Learning the k-TSP Classifier
	4.2 TSP for Time Series Data
	4.2.1 Time Series Microarray Experiment
	4.2.2 Methods and Results

	5 CONCLUSIONS AND FUTURE WORKS
	Bibliography

