
University of Mississippi University of Mississippi 

eGrove eGrove 

Electronic Theses and Dissertations Graduate School 

2019 

A Numerical Study of Granular Dam-Break Flows A Numerical Study of Granular Dam-Break Flows 

Nuttita Pophet 
University of Mississippi 

Follow this and additional works at: https://egrove.olemiss.edu/etd 

 Part of the Engineering Science and Materials Commons 

Recommended Citation Recommended Citation 
Pophet, Nuttita, "A Numerical Study of Granular Dam-Break Flows" (2019). Electronic Theses and 
Dissertations. 1665. 
https://egrove.olemiss.edu/etd/1665 

This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been 
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more 
information, please contact egrove@olemiss.edu. 

https://egrove.olemiss.edu/
https://egrove.olemiss.edu/etd
https://egrove.olemiss.edu/gradschool
https://egrove.olemiss.edu/etd?utm_source=egrove.olemiss.edu%2Fetd%2F1665&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/279?utm_source=egrove.olemiss.edu%2Fetd%2F1665&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/etd/1665?utm_source=egrove.olemiss.edu%2Fetd%2F1665&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu


A NUMERICAL STUDY OF GRANULAR DAM-BREAK FLOWS

A Dissertation
presented in partial fulfillment of requirements

for the degree of Doctor of Philosophy
in the National Center for Computational Hydroscience and Engineering

The University of Mississippi

by

Nuttita Pophet

May 2019



Copyright Nuttita Pophet 2019
ALL RIGHTS RESERVED



ABSTRACT

Granular flows are mass movements of mixtures of solid particles and interstitial fluid.

Examples include landslides, debris flows and tailings dam-break flows. These types of flows

are often catastrophic events, and cover a wide range of phenomena of interest to both

scientists and engineers. The mechanical properties of granular materials and the hydraulic

behavior of the flows originate from solid and fluid phases, their distribution and interaction.

Understanding the behavior of these types of flows and developing reliable predictive models

are important.

A new coupled model is developed in this work to be applied to the study of dam-

break flows of solid-fluid mixture. The model is built by coupling solid-fluid mixture flow

model, and porous media flow model. The emphasis of this study is on both dry granular

flows where the interstitial fluid plays no significant role in the dynamic of the flows, and

saturated granular flows. The homogeneous theory is adopted for the dry cases while the

mixture model is used for the saturated cases. In the mixture model, a separate response

between the solid and fluid phases is accounted for. The response from the fluid phase

is obtained from the porous flow model through a coupling algorithm. New modules for

constitutive relations and boundary conditions are developed together with a library for ma-

nipulating a simulation run. The model is validated through comparisons of the numerical

results with laboratory experiments. The reproduction of granular dam-break flows is anal-

ysed and discussed.

Keyword: Numerical modeling, Dam-break flow, Granular Flow, Solid-fluid mixture

ii



DEDICATION

My dissertation is dedicated to my loving parents, my sister and my family for their

endless love, support and encouragement that becomes an invaluable source of strength along

the duration of this study.

iii



ACKNOWLEDGEMENTS

I would like to sincerely express my deepest appreciation to my advisor Dr. Mustafa

Altinakar for his generous advice, encouragement and the support provided to me throughout

my Ph.D. study at NCCHE. It was an excellent opportunity for me to work with him. I

also express my appreciation to Dr. Yafei Jia, Dr. Robert Holt and Dr. Yavuz Ozeren for

providing valuable comments and suggestions for my research and for serving as a member

of my dissertation committee.

I would also like to thank my colleague Luc Rébillout for his help and support with
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CHAPTER 1

INTRODUCTION

Granular flows, driven by gravity force, are mass movements of mixtures of solid

particles and interstitial fluid. Examples include landslides (Yin et al. [90]), debris flows

(Elverhøi et al. [16]; Iverson [37]), and tailings dam-break flows (Jeyapalan et al. [45]; Kossoff

et al. [47]; Rico et al. [76]), for which the interstitial fluid is water and/or air. These types

of flows can be extremely destructive for human lives and infrastructure. Understanding

the dynamic behavior of these types of flows, and developing reliable predictive models are

important.

The development of numerical models for granular flows centers around three main

focuses: choice of a level of approximation of the flow field and pressure field in the model,

choice of coupling between solid and fluid phases, and choice of a rheological model or a con-

stitutive equation. Bulk behavior of granular flows such as front velocities, runout distances

and deposition patterns has been extensively studied using numerical models based on dif-

ferent levels of simplification which may be broadly classified as: (i) depth-averaged models

(Fraccarollo et al. [23]; George and Iverson [24]; Iverson [38]; Naef et al. [64]; Pouliquen and

Forterre [72]); and (ii) full momentum balance 2D (vertical) or 3D models (Armanini [1];

Ionescu et al. [36]; Lagrée et al. [48]; Savage et al. [78]). For the depth-averaged models,

due to depth integration of the equation of motion, vertical components of the flow field are

neglected. The experimental data suggests that the replacement of the vertical distribution

of velocity by a depth averaged velocity and the omission of vertical velocities does not reflect

1



true flow behavior and may lead to incorrect predictions in regions of strong vertical velocity

gradients. Moreover, because such models ignore the velocity component normal to the bed,

they can account for solid-solid and solid-fluid interaction effects only in a rudimentary way

(Iverson [38]).

Based on the level of coupling between solid and fluid phases, theoretical models

can be categorized into: homogeneous flow models, mixture models and multiphase models

(Manninen et al. [59]). Homogeneous flow models treat the mixture as a single-phase homo-

geneous material, and employ a non-Newtonian rheological model to incorporate the effect of

solid-solid and solid-fluid interactions (Berzi et al. [4]). The rheology models adopted range

from visco-plastic (Bingham [6]) to collisional regime (Bagnold [3]). However, as emphasized

by Meng and Wang [60], although such simple models can describe the dynamic behavior

of the mixture to some extent, they are unable to account for complex interactive coupling

between the solid and fluid phases or the dynamic behavior of each phase.

In the multiphase models, the momentum and continuity equations of each phase

are solved separately (e.g., Armanini [1]). Coupling is achieved through the pressure and

inter-phase exchange coefficients. When there is a wide distribution of the particulate phase,

or when the inter-phase laws are unknown or their reliability can be questioned, the mixture

models is a good substitute for the multiphase approach (Fluent [20]). In the mixture

model, the continuity and momentum equations for the mixture are solved together and the

momentum equation contains an additional term representing the effect of velocity differences

between the phases. Thus, this model can be used to simulate solid-fluid flows where the

phases, move at different velocities, but assume a local equilibrium over short spatial length

scale. In this way, the model can incorporate a separate response from the interstitial fluid

and the solid phase.

Choice of a constitutive equation is an important consideration when modeling gran-

ular flows. Unlike Newtonian fluid, which is well described by the Navier-Stokes equations,

no constitutive law can reproduce the diversity of behavior observed with a cohesionless
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granular material (Forterre and Pouliquen [22]). This difficulty originates from fundamental

characteristics of granular matter such as negligible thermal fluctuation, highly dissipative

interactions, and a lack of separation between the microscopic grain scale and the macro-

scopic scale of the flow (Goldhirsch [26]). As a result, granular flows are often divided into

three regimes and the appropriate constitutive equation is chosen based on the flow regime.

In a quasi-static regime, the deformations are very slow and the particles interact by fric-

tional contacts. The most frequently adopted constitutive relation for the quasi-static regime

is the shear rate-independent models based on Mohr-Coulomb (M-C) theory. A grain-inertia

regime is the regime where the flow is very rapid and dilute, and the particles interact by

collisions. The shear rate-dependent relationships are mostly based on the extension of the

kinetic theory. In an intermediate regime, the material is dense but still flows like a liq-

uid, the particles interacting with each other both by collision and friction. The so-called

µ(I)-rheology has been developed for this regime (MiDi [63]).

One of the greatest challenges in modeling granular-flow behavior involves flows of

partially saturated grain-fluid mixtures. For example, a mass failure occurs in a partially

saturated material, or even for a mass failure occurring in a saturated soil, a partially satu-

rated mixture state can also develop during its motion due to substantial differences between

velocities of the solid and fluid phases. These phenomena can be observed in both exper-

iments and field observations. Watanabe [86] suggested the occurrence of an unsaturated

layer in debris flow in laboratory flume experiments, especially for steep channels. Imaizumi

et al. [35] observed some partly unsaturated debris flows in the upper Ichinosawa catchment,

indicating the need to consider this unsaturated condition. Although a number of numerical

models have been developed to describe granular flow behavior, they focus on either dry

granular flows or flows of saturated grain-fluid mixtures. When these models are applied to

simulate flow of partially saturated mixture, a non-physical result may arise with unrealistic

grain concentration (Meng et al. [61]). Therefore, more sophisticated models are needed to

simulate flows with variable saturation.

3



Most numerical studies on granular dam-break flows have focused on validation of

numerical scheme by comparing simulation results with experimental works. In the compar-

ison, some discrepancies may occur due to effects of gate motion and removal speeds. In

experiments, the instantaneous dam-break is assumed by moving the gate with a removal

time small enough not to significantly disturb the initial instants of the dam-break flow

(Ferreira Aleixo et al. [18]). When the gate removal is considered instantaneous, the effect

of a moving gate on experimental results can be neglected. However, as pointed out by Ye

et al. [89] that even if the experiments follow the criterion of sudden removal, there still

exists difference between numerical and experimental results. During the release time, the

gate prevents the materials above the lip of the gate from moving forward. Meanwhile, the

upward moving gate exert a strong shear force at the interface between the gate and the

impounded material. The gate motion has seldom been considered in past studies (Ye et al.

[89]).

1.1 Objectives of this work

In this PhD dissertation, the main focus is on the development of a coupled numerical

model for partially saturated dam-break flows of grain-fluid mixture. To accomplish this, the

three-dimensional model for grain-fluid mixture flow is coupled with the model for porous

media flow. Both dry and saturated granular flows are investigated in this study. In dry

granular flow, the interstitial fluid (air) plays no significant role in the dynamics of the flow.

Thus, this type of flow can be described as single-phase, and the homogeneous theory is

adopted in this study. The Coulomb-type model and the µ(I) rheological model are chosen

for constitutive relations. For saturated granular flow, the dynamics of the flow depends

partly on the interstitial fluid and grain-fluid interactions are important. The mixture theory

is adopted in this case. Compared to the homogeneous model, the momentum equation in

the mixture theory has an additional term accounted for velocity difference between the

phases. The constitutive relation used in this model is the extended Coulomb-type model
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which is analogous to the Terzaghi’s principle where the normal stress is decomposed as

an effective stress and pore fluid pressure. This pore pressure is given by the porous flow

model. In this way, the mixture model and the porous model are coupled, and they exchange

necessary information. The coupled model is built on the open-source finite-volume platform

OpenFOAM, which provides a library of numerical schemes necessary for the discretizations.

Figure 1.1 shows the flowchart of this coupled model. To investigate the efficiency and

accuracy of the coupling technique, the developed model is verified by experimental data

of granular dam-break flows. It is noted that the terms solid, particle, and grain are used

interchangeably in this dissertation.

1.2 Contributions of the present study

This study provides the following novel contribution to the field of granular flow and

porous media flow:

• The coupled solver between the mixture model (interFoam) and the porous model

(porousInterFoam) is developed in OpenFOAM. The coupled algorithm allows the

model to account for a separate response between the solid and fluid phases. The

coupled model is validated using laboratory experiments of Rébillout et al. [74].

• The Coulumb-type, the extended Coulomb-type and the µ(I) rheological models are

implemented in OpenFOAM. These models are employed in interFoam solver to de-

scribe solid-solid and solid-fluid interactions in simulations of dry and saturated gran-

ular dam-break flows. The models are tested against experimental works of Rébillout

et al. [74], Evangelista et al. [17], and Mangeney et al. [58].

• The influence of the gate motion on the dam-break flow is considered in this study.

In order to accomplish this task, a python library is developed to track the movement

of the gate and the cells that contribute the flow of mixture. The influence of the

gate speed on dry granular dam-break flows is investigated in experimental works of
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Figure 1.1: Flowchart of the coupled model.
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Rébillout et al. [74] and Mangeney et al. [58].

• The porousInterFoam solver is modified by improving the way a porous zone is defined

in the computational domain. In the original version of the solver, the porous zone is

defined by a cell zone. This makes it difficult when dealing with a deforming porous

medium. The modified porousInterFoam solver enables a simulation with deformable

medium and is used to couple with the mixture model to study saturated granular

dam-break flows.

• Two new boundary conditions are implemented in OpenFOAM: seepage and Coulomb

slip. The seepage boundary condition is used in suGWFoam, a solver for variably

saturated porous media flows. The Coulomb slip boundary condition is used in the

mixture model.

1.3 Thesis outline

The remainder of this dissertation is organized as follows. Chapter 2 presents a

literature review and describes the past and recent works on numerical simulation of granular

flows and porous media flows. Chapter 3 presents finite volume discretization in OpenFOAM.

In Chapter 4, the study of dry granular flow and the influence of gate motion is presented.

The study of porous media flows is presented in Chapter 5. In Chapter 6, the development

of the coupled numerical model and simulation results are presented. Finally, Chapter 7

provides summary, conclusion and future research.

7



CHAPTER 2

LITERATURE REVIEW

This chapter presents a comprehensive review of existing granular-flow models. The

basic theories and concepts used in the models are described briefly. The description of flows

in porous media is presented. Past attempts to investigate the influence of gate removal

speeds to dam-break flows are also presented.

2.1 Physical concepts of grain-fluid mixture flows

2.1.1 Flow classification

Classifications of sediment-water mixture are generally based on type of material,

movement mechanism, and concentration of sediment. These criteria can be obtained from

direct observations, experimental process evaluations, morphological analysis of deposits,

physical models or theoretical studies [52]. Mainali and Rajaratnam [57] followed classifica-

tion given by Pierson and Costa [70] and Varnes [84]. The classification is depicted in 2.1.

The sediment water flows can be grouped into three main bands: (i) ordinary streamflow, (ii)

hyperconcentrated flow, and (iii) granular flow. Streamflow is, in the strict sense, water and

entrained sediment and air flowing as a multiphase flow. For low sediment concentration,

there is little interaction between particles and the flow behaves essentially as Newtonian

fluid. When the concentration of suspended particles increases, the interactions are therefore

no longer negligible. According to Beverage and Culbertson [5], hyperconcentrated flows are

referred to mean flows with sediment concentrations by volume of 20-60% and have a mea-
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Figure 2.1: General classification of sediment gravity transport (picture taken from Mainali
and Rajaratnam [57]).

surable but rather low yield stress. They still flow like non-Newtonian liquids. Granular

flows possesses high concentrations of solids. The mixture may be in a saturated or unsat-

urated or dry state. In the unsaturated state, it may be partially dry with air filling some

of its voids. In the saturated case, water can drain freely during continuous deformation.

Any excess pressure is, therefore, immediately dissipated and interstitial fluid pressure is

no longer greater than the hydrostatic pressure. The entire weight of the granular mass is

sustained by contacts or collisions (Lorenzini and Mazza [52]).

2.1.2 Forces acting on particles

2.1.2.1 Particle/particle forces

In dry granular flows, particles interact via contact forces including collisions and

long-lasting contacts. In dilute granular flows, energy dissipation occurs primarily via binary
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collisions. Unlike collision of molecules, a collision of two macroscopic grains is inelastic

and thus dissipates energy (Delannay et al. [12]). In contrast, in dense granular flows, the

collisions among particles are not instantaneous, but become long lasting and could involve

various particles at the same time. In this situation, particles dissipate energy via enduring

contacts which involve primarily solid friction.

2.1.2.2 Fluid/particle forces

When an interstitial fluid presents, particles are subjected to additional forces (De-

lannay et al. [12]). These fluid-particle forces can be divided into five main contributions:

buoyancy force, local fluid acceleration force, drag force, virtual mass force, and lift force.

Among these contributors, the buoyancy and drag forces are usually dominant.

There are three different definitions of the buoyancy force for fluid-particle system

(Jamshidi and Mazzei [41]). The first definition considers the force to be equal to the weight

of the fluid displaced by the particles. This definition is in line with the Archimedes principle.

The second definition relates the force to the effective stress tensor of the fluid phase while the

third definition, often found in the literature, retains only the isotropic part of the effective

fluid stress tensor. These definitions lead to different values of the buoyancy force. However,

the total fluid-particle interaction force needs to be calculated correctly. Hence, models that

use different definition of the buoyancy force also need to use different expressions for the

complementary force that makes up the overall fluid-particle interaction force.

In the presence of an interstitial fluid, a particle undergoes a fluid resistance force

which is opposite to its relative motion (Delannay et al. [12]). This drag force, Fd, can be

expressed as:

Fd = C(uf − us) (2.1)

where us and uf are the velocities of the solid and fluid. The factor C depends on various

parameters such as the particle Reynolds number and the local solid volume fraction.
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2.2 Regimes of granular flow

A granular flow is a multiphase process, where momentum transport is mainly due to

the dynamics of grains rather than to interstitial fluid (if present). A continuous approach

is widely adopted to treat this type of flow, and in the last decades most efforts have been

spent to determine the rheological laws governing these materials. A granular flow can

undergo different rheological behavior, depending on the type of interactions occurring among

particles. By considering the work of Lois et al. [51], three main regimes of granular flow

have been identified.

• Quasi-static regime

A quasi-static regime is a regime where particle concentration is high, when particles

approach the random packing fraction, moving at very low shear rate. In this situation,

particles remain stuck closely together and transfer of momentum originates mainly

from prolonged and multi-grain contacts (Lorenzini and Mazza [52]). The stresses are

therefore not governed by the applied strain, but mainly by the peripheral stresses.

Granular mixtures in this category show the typical properties of a plastic material.

When sufficient stress is applied to a granular mass such that the frictional bonds are

broken, the mass starts to flow (Mainali and Rajaratnam [57]). This flow, mainly

confined to shear bonds along the shear plane, involves multi-particle blocks moving

relative to one another. This slow deformation maintained for a long period of time.

Particles are close together and interact mainly through prolonged and multi-grain

contacts.

A large number of constitutive relations have been proposed to account for the me-

chanic behavior of the granular media in the quasi-static regime. A concept of describ-

ing the yielding of granular materials as a friction process is widely adopted. Granular
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materials tend to follow the Mohr-Coulomb criteria defined by:

τ = c+ σn tanφ (2.2)

where τ is the shear stress, c is the cohesion, σn is the normal stress, and φ is the angle

of internal friction. The first term on the right is the cohesion and the second term

describes the friction resistance.

A water-saturated granular material is a two-phase material, with a separate response

from the interstitial fluid and the solid phase. This leads to decomposing the normal

stress as an effective stress σ′ and pore water pressure pw.

σ′ = σn − pw (2.3)

In this case, the normal stress (σn) in equation 2.2 is replaced by the effective stress

(σ′). This decomposition is know as Terzaghi’s effective-stress principle (Terzaghi [82]).

The most important aspect of this principle is that the shear resitance (τ) of saturated

granular material decreases linearly with increasing pore pressure (pw). Therefore, the

ability of saturated granular material to resist shear is dependent on the state of pore

pressure.

• Grain inertia regime

In contrast to the quasi-static regime, when concentration is low and deformation is

rapid, momentum is mainly transferred by particle collision (Lorenzini and Mazza [52]).

Friction plays minor role. In this situation, particles tend to dispersed throughout the

entire depth. This flow regime is termed the collisional regime, completely dynamic

regime or the grain inertia regime. Most widely adopted concept for this regime is

the analogy between the molecules of gases and particles in granular flows, where both

constituents are free to move in every direction. An extension to the kinetic theory for
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dense gases (Jenkins and Savage [43]) has been developed for flows in this regime.

• Intermediate regime

In this regime, the material is dense but still flows like a liquid. Particles interact

with each other both by collision and friction. One of the most adopted models in

the intermediate regime is the so-called µ(I) rheology proposed by Jop et al. [46].

The µ(I) model was derived by a scaling analysis of a compilation of experimental

data obtained for granular flows in different configurations. It obtained a wide success

among the scientific community for its simplicity and adaptability. Details of the µ(I)

model will be introduced in Section 4.4.

2.3 Past attempts in modelling granular flows

The modeling effort of granular flows has its origins in two distinct tradition of science

(Pitman and Le [71]). The first one is the pioneering work of Savage and Hutter [79] and the

second point of departure is the mathematical and engineering work on particle-fluid flows

(Jackson [40]).

In the pioneer work, Savage and Hutter [79] derived depth-averaged equations of

motion for dry granular material flowing down an incline. These equations are simply shallow

water or Saint-Venant equations. The granular material was described as frictional and

modelled using a Coulomb-type friction law with a constant friction coefficient. The Savage-

Hutter model was later extended to two dimension (Hutter et al. [32]), and suggested by

Hutter and Koch [34] to extend to quasi-three dimensional basal surface. These approach

has been further applied to study granular flows in simple situations such as flow along

inclines and even some geophysical granular flow events (Gray et al. [27]; Pudasaini and

Hutter [73]: Patra et al. [69]). Later, Hutter [33] examined the appropriateness of these

models for various types of geophysical flows.

In the presence of interstitial fluid, the behavior of flows is altered and should be

included in the constitutive behavior of the flowing material. Iverson [38] generalized the one-
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phase dry granular flow model of Savage and Hutter [79] to account for the presence of pore

fluid at equilibrium pressure. This model was further developed by Iverson and Denlinger

[39] into the coulomb mixture model, which can simulate grain-fluid flows from initiation to

stopping stage without redefinition of rheological model. George and Iverson [24] considered

effects of pore-pressure feedback accompanying debris deformation by formulating a new,

depth-averaged mathematical model that simulate coupled evolution of granular dilatancy,

solid and fluid volume fractions, pore fluid pressure, and flow depth and velocity during all

stages of flow motions. Their numerical simulations match experimental data reasonably

well.

Following the mathematical and engineering work on particle-fluid flows, granular

flows are considered as a multiphase system of a mixture of solid, liquid and gas phases. If

the flow phenomena are dominated by one phase, multiphase flow can be described as single

phase flow and all effects of the secondary phases are neglected. However, if the secondary

phases have an influence on the dynamic behavior of the mixture, they cannot be ignored.

Depending on the level of coupling between the phases, the modelling approaches can be

classified into homogeneous flow models, mixture models and multiphase models (Manninen

et al. [59]). Combination of these models are also possible. In these models, each phase is

usually treated as an inter-penertrating continuum with a phase volume fraction, which is

analogous to the concept of assigning porosity in flow through a porous medium.

The homogeneous flow models are the simplest and most common formulations of

the hydrodynamics of a mixture which refers to a motion of the center of mass of the

system (Manninen et al. [59]). In these homogeneous flow models, the phases are strongly

coupled. All phases are assumed to move at the same velocity. In the mixture models,

gravity and centrifugal forces tend to cause velocity differences. A number of models have

been developed based on the assumption of local equilibrium. However, when the phases are

weakly coupled and there are regions of sudden acceleration, local equilibrium assumption

cannot be established. In this situation, the full multiphase model consists of the continuity
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and momentum equations for each phase and the phase interactions are accounted for by

interphase transfer terms. It should be noted that although the full multiphase equations are

more advanced, the uncertainties in the closure relations can make them less reliable than

simpler models. For this reason, the homogeneous models or the mixture models should be

used whenever possible.

The governing equations of the homogeneous model and the mixture model are pre-

sented in Section 2.4. In this study, the homogeneous model is used to study dry granular

dam-break flows presented in Chapter 4 and the mixture model is used to study saturated

granular dam-break flows presented in Chapter 6.

2.4 Mass and momentum balances for granular flows

The main problem in studying solid-fluid mixture is to identify the constitutive re-

lationship that describes the fluxes of mass, momentum and energy and to understand the

mechanism that govern stress development (Lorenzini and Mazza [52]). There are two main

approaches used to represent motion in granular flow studies: one assumes the hypothesis

of granular flows as a homogeneous mixture and the other keeps the solid and liquid phases

distinct and assumes a two-phase mixture. The balance equations of mass and momentum

in each approach are presented below.

2.4.1 Mass and momentum balances for homogeneous mixtures

(Lorenzini and Mazza [52]) derived the mass and momentum conservation for a ho-

mogeneous liquid-grain flows as follow:

5 · u = 0 (2.4)

∂ρmu

∂t
+5 · (ρmuu) = ρmg +5 · T (2.5)
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where u is the velocity vector, g is the gravitational acceleration vector, T is the stress

tensor, p is pressure, and ρm is the density of the mixture with

ρm = φsρs + φfρf (2.6)

where φs and φf are the volume fractions of the solid and liquid phases, and ρs and ρf are

the density of the solid particles and the interstitial fluid.

2.4.2 Mass and momentum balances for two-phase mixture

The mass and momentum balance equations of a granular/debris flow can be bor-

rowed, by making only minor modification, from the continuous theory of two-phase mixtures

(Atkin and Craine [2]). Following this rule, the mass and momentum conservation equations

for the granular flow solid and liquid constituents are separated but strongly coupled. An-

gular momentum equations and balances of thermodynamic energy are unnecessary by as-

suming all stress tensors is symmetric and the mixture is isothermal. The mass conservation

equations (Iverson [38]) for the solid and fluid constituents are,

∂(ρsφs)

∂t
+5 · (ρsφsus) = 0 (2.7)

∂(ρfφf )

∂t
+5 · (ρfφfuf ) = 0 (2.8)

where us and uf are the velocity of the solid and liquid phases. Equations 2.7 and 2.8

are coupled because the volume fractions of the solid and fluid constituents must obey

φs + φf = 1. The momentum conservation equations are,

∂ρsφsus
∂t

+5 · (ρsφsusus) = ρsφsg +5 · T s − F (2.9)

∂ρfφfuf
∂t

+5 · (ρfφfufuf ) = ρfφfg +5 · T f + F (2.10)
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where T s and T f are the stress tensors of the solid and liquid phases, and F is the interaction

force per unit volume that results from momentum exchange between the solid and fluid

constituents.

Addition of equations 2.7 and 2.8 leads to the equivalent mass conservation equation

of the mixture,

∂ρ

∂t
+5 · (ρu) = 0 (2.11)

where ρ is the mixture density and u is the velocity defined by

ρ = φsρs + φfρf (2.12)

u =
φsρsus + φfρfuf

ρ
(2.13)

From these definitions, the mixture velocity is that of the center of mass (not volume) of a

mixture volume element. Addition of equations 2.9 and 2.10 yields a momentum equation

for the bulk mixture,

∂ρu

∂t
+5 · (ρuu) = ρg +5 · (T s + T f + T ′) (2.14)

where

T ′ = −φsρs(us − u)(us − u)− φfρf (uf − u)(uf − u) (2.15)

represents the contribution linked to the relative motion of the solid and fluid constituents in

relation to the mixture as a whole. From mathematical point of view (Lorenzini and Mazza

[52]), this term (T ′) results from the convective terms of equations 2.9 and 2.10 summed

together do not give5·uu, the convective acceleration of the mixture. From physical point of

view, T ′ indicates that the stresses in a two-phase mixture flow are more complex than those

obtained by adding T s and T f . The term5·T ′ is called the diffusion stress term (Manninen

et al. [59]) representing the momentum diffusion due to the relative motions. Without this
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term, the mixture momentum equation 2.14 reduces to that of the homogeneous mixture

equation 2.5 by substituting T s + T f with T .

2.5 Influence of gate removal in dam-break flows

In theoretical studies of dam-break flows, the solution is obtained under the assump-

tion of instantaneous release of impounded material. In experimental studies, a release

system is designed to remove gate in extremely short time to approximate the sudden re-

lease in theoretical studies. According to Lauber and Hager [49], the gate removal time has

to be less than
√

2
√

(h0/g) to be considered as instantaneous. Under this condition, the

effect of a moving gate on experimental results can be neglected.

Ozeren et al. [68] experimentally investigated dam-break flow characteristics at vari-

ous gate removal speeds. Their experimental setup consisted of a reservoir and a downstream

flood plain, which were separated by a sliding gate. The sliding gate was pulled upwards

by a weight-dropping mechanism. The removal speed of the gate was controlled by setting

different initial heights of the weight. They found that the results obtained for the gate

removal analysis were in agreement with Lauber and Hager’s criterion. That is there was no

significant difference observed in terms of positive wave front propagation for gate removal

speeds greater than approximately 1.4 m/s (t ≈
√

2
√

(h0/g)). However, in numerical sim-

ulations, as pointed out by Ye et al. [89] that even if the experiments follow the criterion

of sudden removal, there still exists difference in the flow behavior between numerical and

experimental results. Therefore, the influence of the gate should be considered in numerical

simulations of dam-break flows.

Ye et al. [89] investigated the gate motion effect on dam-break flows of water using a

constrained interpolation profile (CIP)-based method to solve the Navier-Stokes equations

with the free surface boundary condition to deal with the water-air-gate interactions. The

movable gate was simulated by an immersed boundary method. Their numerical results

shows that the gate motion has a significant influence in the water collapse process and
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cannot be neglected in the study of dam break. Ionescu et al. [36] investigated the influence

of the gate on granular dam-break flows by simulating the gate removal with a constant lifting

velocity measured in the experiments. The gate was considered as a simple rigid boundary

under an assumption of no penetration condition and the friction between the gate and the

granular material was neglect. They found that the gate has a significant impact on the flow

dynamics of granular dam-break flow. However, the gate influence disappears in the deposit

phase for the cases where the gate removal is not too slow.

2.6 Porous media flows

A porous medium is a multiphase system consisting of a solid phase and one or more

fluid phases occupying the pore space. The different phases are separated from each other

by abrupt interfaces. A porous medium is microscopically quantified by the geometrical

characteristics of the void space and by relevant state variables for each phase. Fluid flow

in porous media is of great importance in many areas of science and engineering including

environmental engineering and groundwater hydrology.

According to Nield and Bejan [65], the treatment of flow through a porous medium

depends largely on the scale in consideration. At a small scale (pore-scale), when a few small

pores are considered, it is convenient to use the conventional fluid mechanics approach to

describe the flow phenomenon in the pore space. However, when the scale is large (macro-

scale), it is impractical to solve the microscopic conservation equations inside the pores

due to the inability to describe the complex structure of the porous material. A preferable

approach (Hassanizadeh and Gray [29]) is to average the microscopic equations inside the

porous medium over a representative elementary volume (REV), the size of which is assumed

to be much larger than the characteristic size of pore structures but much smaller than the

domain. The details given below are limited to a macroscopic (continuum) approach and a

porous medium consisting of three phases: a solid matrix phase (s), a liquid water phase

(w) and an air phase (a).

19



2.6.1 Darcy’s law

For a single-phase flow in porous media, the flow behavior is described by Darcy’s

law which can be written as

−5 p =
µv

k
(2.16)

where 5p is the pressure gradient, µ is the viscosity, v is the superficial velocity, and k is the

permeability. Combining Darcy’s law with the law of conservation of mass, the governing

equation is obtained.

−5 ·
(
k

µ
5 p

)
= 0 (2.17)

Darcy’s law can predict flow behavior properly when the flow is dominated by viscous effect

or at low flow rates (Re < 1), when the flow rate and the pressure gradient have a linear

relationship. However, as the flow rate (Re) increases, inertial forces become more significant.

Many attempts have been made to correct the Darcy equation. Various terms, such as non-

Darcy flow, turbulent flow, inertial flow, high velocity flow, etc., have been used to describe

this behavior (Firoozabadi and Katz [19]). Forchheimer [21] added a second order of the

velocity term to represent the microscopic inertial effect, and corrected the Darcy equation

into the Forchheimer equation:

−5 p =
µv

k
+ βρv2 (2.18)

where β is the non-Darcy coefficient and ρ is the fluid density.

For a two-phase flow, the description of Darcy’s law is extended to a set of 2 equa-

tions for water phase and air phase. The Darcy equation can be written for each phase by

introducing relative permeabilities and different pressure fields for the two fluids.

vw = −kr,wk
µw
5 pw (2.19)

va = −kr,ak
µa
5 pa (2.20)
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where kr,w and kr,a are the (phenomenological) relative permeabilities for water and air. The

relative permeabilities inserted in Darcy’s law are due to the fact that the flow of a fluid

depends on the local configuration of the other fluid. These relative permeability functions

are dependent on the saturation of their phase. Since the air saturation Sa = 1 − Sw, the

saturation dependence can be expressed via the water saturation Sw only, i.e. kr,w = kr,w(Sw)

and kr,a = kr,a(Sw). These functions are usually determined from experimental data, with

different values in the case of drainage when compared to those in the case of imbibition.

There exist several models proposed to describe these relationships and the best known

functions are proposed by Brooks and Corey [8] and Van Genuchten [83].

Compared to a single-phase flow, two-phase flow is subject to viscous and capillary

forces. The capillary forces arise from the microscopic curvature between the air and water

phases. On the macroscopic scale, this curvature does not exist as individual pores are

not visible in the continuum approach (Cense and Berg [10]). To stay consistent in the

macroscopic view, the relation of phase pressure of air and water is defined as the capillary

pressure-saturation function

pc = pa − pw = pc(Sw) (2.21)

which is dependent on the water saturation Sw. From the detailed study of capillary effects,

it is found that the fluid saturations have a strong influence on the capillary pressure. Many

scientists came up with ideas to describe capillary pressure-saturation relationship. The best

known relationships for air-water could be found in the literature from Brooks and Corey [8]

and Van Genuchten [83].

2.6.2 Richards’ equation

The two-phase model presented in the previous subsection can be simplified under

the so-called passive gas phase assumption which assumes that the flow of air is negligible,

and the pore air remain constantly at the ambient external atmospheric pressure throughout

the partially saturated domain. That is, a constant atmospheric value is assumed for the air
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pressure. This assumption neglects the pressure gradient in the air phase and reduces the

two-phase flow model to a single equation for the water phase. The combination of Darcy’s

law with an adapted law of conservation of mass yields

∂θ

∂t
−5 ·

(
kr,wkw
µw

5 pw

)
= 0, (2.22)

where θ is the volume metric water content. This equation is known as Richards’ equation

(Richards [75]). In order to complete Richards’ equation to a closed system, a relation

between pressure and saturation has to be defined and can be written as in equation 2.21.

For convenience, it is often assumed that the reference atmospheric pressure pa = 0 and

equation 2.21 can be written as

pc = pa − pw = −pw. (2.23)

For the values of the water pressure (pw) smaller than the negative of the air entry pressure

(pe), pw < −pe, the water saturation (Sw) and relative permeability (kr,w) can be computed

from the analytical models (e.g. Brooks and Corey model or van Genuchten model). For

the values of the water pressure which are larger than the negative of the air entry pressure,

pw > −pe, the water saturation and water permeability are constant and equal to their

maximum values. Richards’ equation can be written in three forms: the pressure head-

based form, the saturation based form, and the mixed form formulation. Each form has its

strengths and drawbacks. The three different forms of the equations and the discussion on

selecting a suitable form for a specific problem are presented in Section 5.2.

2.6.3 Volume-averaged Navier-Stokes equation for flow in porous media

The above mentioned mass conservative models encompasses only the mass balance

equations for the fluid phases (water and/or air), and omits the transient term and the

nonlinear inertial term in the momentum equation. Therefore, there is no mechanism to
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treat the unsteady evolution of flow fields, and the flow Reynolds number must be kept

sufficiently small (Wang et al. [85]). Moreover, only flow problems inside the porous medium

can be investigated. Therefore, a new model that is valid for pure fluid and moving porous

regions in the entire domain is desired.

Several approaches based on Navier-Stokes equations have been purposed to model

porous media flow. Differences are found in the different terms considered in the Navier-

Stokes equation including choices of the superficial velocity. In addition to the phase averaged

velocity (also called Darcy velocity) generally used for porous media flow, the intrinsic phase

averaged velocity is also adopted in the literature. Yang et al. [88] used the intrinsic phase

averaged velocity in the macroscopic equation, while employed the phase averaged velocity

in the flow resistance term. In general, it is not clear which kind of volume-averaged velocity

should be used for the case of moving porous medium. Recently, Wang et al. [85] derived the

macroscopic equations for the incompressible flow in a moving porous medium and investi-

gated Galilean invariance of the equations both with the intrinsic phase averaged velocity

and the phase averaged velocity. The results show that the commonly used phase averaged

velocity cannot serve as the superficial velocity. The intrinsic phase averaged velocity should

be chosen for moving porous systems. In this study, the macroscopic equations derived by

Wang et al. [85] are adopted and details of the equations are presented in Section 5.1.
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CHAPTER 3

FINITE VOLUME DISCRETIZATION IN OPENFOAM

OpenFOAM, acronym for Open Source Field Operations and Manipulations, is an

open source platform for solving partial differential equations using finite volume method

on unstructured meshes. It incorporates a tensorial approach to computational continuum

mechanics based on the object-oriented programming technique (Weller et al. [87]). It can be

used to create a solver for complex physics problems that can be mathematically described

in the form of differential equations with suitable boundary and initial conditions. In this

Chapter, the general governing equation and finite volume discretization in OpenFOAM are

presented. It is noted that, in this dissertation, OpenFOAM version 3.0.1 is used.

3.1 The general governing balance equation

The standard form of the transport equation for a scalar property φ is given by:

∂

∂t
ρφ︸ ︷︷ ︸

time accumlation

= − 5 · (ρUφ)︸ ︷︷ ︸
convective transport

+ 5 · (Γ5 φ)︸ ︷︷ ︸
diffusive transport

+ Sφ︸︷︷︸
source terms

(3.1)

where ρ is the density, U is the velocity vector, Γ is the diffusion coefficient, that can be a

scalar or a vector, and Sφ is any kind of sources or sinks that influence the quantity of φ.

Deriving the mass, momentum and other conservative equations can be done by replacing

the quantity φ by the quantity of interest. The details of derivation of the equations can be

found in Holzmann [31].
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Figure 3.1: Parameters in finite volume discretization, picture taken from OpenFOAM [66].

3.2 Finite volume discretization in OpenFOAM

The finite volume method requires that Equation 3.1 is satisfied over the control

volume Vp around the center point P in the integral form (see Figure 3.1):

t+4t∫
t

 ∂
∂t

∫
VP

ρφdV

 dt =

t+4t∫
t

−∫
VP

5 · (ρUφ)dV +

∫
VP

5 · (Γ5 φ)dV +

∫
VP

SφdV

 dt (3.2)

The discretization of Equation 3.2 is presented briefly in details in the following section.

More explanation on the discretization can be found in Jasak [42].

3.2.1 Discretization of spatial terms

The discretization of spatial terms can be split into two parts: the transformation

of the volume and surface integrals into discrete sums and expressions that give the face

values of the variable as a function of cell values. The discretization of the convection term,

diffusion term, divergence, gradient and source term is described below.
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3.2.1.1 Convection term

The convection term is integrated over a control volume and linearised as follows:

∫
V

5 · (ρUφ) dV =

∫
S

dS · (ρUφ)

=
∑
f

Sf · (ρU)f φf

=
∑
f

Fφf

(3.3)

where F represents the mass flux through the face, F = Sf · (ρU)f . Equation 3.3 requires

the face value of φf calculated from the values in the cell centers, which can be obtained

using a variety of schemes:

Central differencing (CD) is second-order accurate but unbounded

φf = fxφP + (1− fx)φN (3.4)

where fx ≡
¯fN
¯PN

where ¯fN is the distance between face f and cell centre N and ¯PN is the

distance between cell centres P and N .

Upwind differencing (UD) determines φf from the direction of flow and is bounded

at the expense of accuracy

φf =


φP for F ≥ 0

φN for F < 0

(3.5)

Blended differencing (BD) schemes combine UD and CD in an attempt to preserve

both boundedness and accuracy of the solution,

φf = (1− γ) (φf )UD + γ (φf )CD (3.6)

where γ is the blending coefficient, 0 ≤ γ ≤ 1. This blending coefficient determines how much

26



numerical diffusion will be introduced. In OpenFoam, there are several implementations of

the Gamma differencing scheme to select the blending coefficient γ and it also offers other

well-known schemes such as van Leer, SUPERBEE, MINMOD etc.

3.2.1.2 Diffusion term

The diffusion term is integrated over a control volume and linearised as follows:

∫
V

5 (Γ · 5φ) dV =

∫
S

dS · (Γ5 φ)

=
∑
f

ΓfSf · (5φ)f

(3.7)

If the mesh is orthogonal, i.e. the length vector d and the face area vector Sf are parallel,

the following expression can be used.

Sf · (5φ)f = |Sf |
φN − φP
|d|

(3.8)

In the case of non-orthogonal meshes, an additional explicit term is introduced which is

evaluated by interpolating cell centre gradients, themselves calculated by central differencing

cell centre values.

3.2.1.3 Divergence

The divergence term for the scalar function φ is an explicit term that is distinguished

from the convection term. It is not the divergence of the product of a velocity and dependent

variable. The term is integrated over a control volume and linearised as follows:

∫
V

5 · φ dV =

∫
S

dS · φ =
∑
f

Sf · φf (3.9)
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3.2.1.4 Gradient

The gradient term for the scalar function φ can be evaluated in several ways. The

discretization of Gaussian integration is performed by using the standard method of applying

Gauss’s theorem to the volume integral:

∫
V

5φ dV =

∫
S

dSφ =
∑
f

φf (3.10)

where φf can be evaluated by any face interpolation scheme. The surface normal gradient

which is the gradient normal to a surface nf · (5φ)f can be evaluated at cell faces using the

scheme

(5φ)f =
φN − φP
|d|

(3.11)

The scheme is analogous to that evaluated for the diffusion discretization scheme, and in the

same manner, a correction can be introduced to improve the accuracy of this face gradient

in the case of non-orthogonal meshes.

3.2.1.5 Source terms

Source terms for the scalar function φ can be specified in 3 ways: explicit, implicit

and implicit/explicit. An explicit source term can be incorporated in to an equation simply

as a field of values. An implicit source term is integrated over a control volume and linearised

by ∫
V

ρφ dV = ρPV φP (3.12)

By using the implicit source term, the coefficient of the diagonal of the matrix is changed.

Depending on the sign of the coefficient and matrix terms, this will either increase or decrease

diagonal dominance of the matrix. Decreasing the diagonal dominance could cause instability

during iterative solution of the matrix equation. Therefore, OpenFOAM provides a mixed

source discretization procedure that is implicit when the coefficient is greater than zero, and
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explicit when the coefficient is less than zero.

3.2.1.6 Time derivative

The temporal derivative ∂
∂t

is usually discretized using a first order or a second order

accurate scheme in time. The term is discretized by simple differencing in time using: the

unknown value φn ≡ φ (t+4t) at the time step that are solving for, the old values φ0 ≡ φ (t)

known value from the previous time step, the old-old values φ00 ≡ φ (t−4t) known value

from a time step previous to the last.

Euler implicit scheme, that is first order accurate in time:

∫
V

∂ρφ

∂t
dV ≈ V

(ρPφP )n − (ρPφP )0

4t
(3.13)

Backward differencing scheme, that is second order accurate in time:

∫
V

∂ρφ

∂t
dV ≈ V

3 (ρPφP )n − 4 (ρPφP )0 + (ρPφP )00

24 t
(3.14)
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CHAPTER 4

DRY GRANULAR DAM-BREAK FLOWS

This chapter presents the three-dimensional numerical model with InterFOAM. The

model solves continuity and momentum equations using finite volume method on a Carte-

sian grid. The free surface is modeled using the VOF (Volume of Fluid) method with an

additional artificial compression term. The constant friction model and the µ(I) model are

described. The numerical model with the developed rheological formulas is tested against

three laboratory experiments of dry granular dam-break flows in a rectangular channel on

flat and inclined planes. The three experiments use different granular materials: PET pellets

(Rébillout et al. [74]), sand (Evangelista et al. [17]), and glass beads (Mangeney et al. [58]).

The comparisons of numerical and experimental results are presented. The influence of the

gate removal and speeds on dry granular dam-break flows is investigated. A comment on

selection of the constant friction and µ(I) rheology is discussed.

4.1 Governing equations

Granular/debris flows are usually treated as a motion of continuum despite the fact

that they contain solid particles. This approximation makes the equations of mass and

momentum conservation for granular flows similar to those for the motion of a generic fluid

[52]. The governing equations can be written in the differential form as:

Conservation of mass:

5 · u = 0 (4.1)
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Conservation of momentum:

∂ρmu

∂t
+5 · (ρmuu) = ρmg +5 · σ (4.2)

where:

u is the velocity vector;

g is the gravitational acceleration vector;

σ is the stress tensor. The stress tensor σ is generally expressed as σ = −pI + τ ;

where p is pressure, τ is the shear stress tensor which is explained in the Appendix A and I

is the unit tensor;

ρm is the density of the mixture with

ρm = (1− n)ρs + nρf (4.3)

where n is the porosity, and ρs and ρf are the density of the solid particles and the interstitial

fluid, respectively. For dry granular flow, the interstitial fluid is air. Since the density of air

is very small compared to the density of the solid particles, the density of the mixture can

be approximated as

ρm = (1− n)ρs (4.4)

4.2 VOF as Interface-capturing methodology

VOF (Volume of Fluid) method of interface-capturing belongs to the Euler-Euler

framework where all phases are treated as continuous. The VOF model does not allow

the phases to be inter-penetrating. In the VOF method, one momentum equation and one

continuity equation are solved for mixture properties without slip velocity, meaning that all

field variables are assumed to be shared between the phases. Physical properties of one fluid

are calculated as weighted averages based on the volume fraction of the two fluids in one

cell. To track the interface between two or more phases, an advection equation for a phase
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indicator function is solved. In order to obtain a sharp interface the discretization of the

indicator function equation is crucial. Different techniques have been proposed for this. The

momentum equation solved in the VOF method takes the form

∂ρu

∂t
+5 · (ρuu) = −5 p+ ρg +5 · τ − Fs (4.5)

where Fs is the surface tension force which takes place only at the interface, and equation

4.1 for continuity remains the same. The granular mixture is treated as a non-Newtonian

fluid with constant friction or µ(I) rheology which is explained in section 4.4. The air is

modeled as a Newtonian fluid. The stress tensor τ of equation 4.5 is defined as

τ = η(5u +5uT ) (4.6)

where η is the kinematic viscosity of the respective fluid.

The volume of fluid in a cell is computed as Fvol = γVcell, where Vcell is the volume

of a computational cell and γ is a scalar function used as the phase indicator. If a cell is

completely filled with fluid then γ = 1 and if it is filled by air then γ = 0. At the interface

the value of γ is between 0 and 1. This scalar function γ can be computed from a separate

transport equation that takes the form:

∂γ

∂t
+5 · (γu) = 0 (4.7)

The necessary compression of the interface is achieved by introducing an artificial compres-

sion term into the phase fraction transport equation as follow:

∂γ

∂t
+5 · (γu) +5 · (γ (1− γ) ur) = 0 (4.8)

where ur = u1 − u2 is the vector of relative velocity between the two fluids and u is the

32



mean velocity, which is calculated as a weighted average of the velocities of the two phases:

u = γu1 + (1− γ) u2 (4.9)

The artificial compression term is active only in the interface region due to the term γ (1− γ).

The density at any point in the domain is calculated as a weighted averaged of the

volume fraction of the two phases, γ as:

ρ = γρ1 + (1− γ) ρ2 (4.10)

The subscripts 1 and 2 denote different fluids.

The surface tension force Fs is computed as:

Fs = σκ (x) n (4.11)

where x is the position vector, n is the unit vector normal to the interface that can be

calculated from n = 5γ
|5γ| , and κ is the curvature of the interface that can be calculated from

κ (x) = 5·n. In the case of granular material, the surface tension term is negligible. Hence,

σ is set to zero in this study.

4.3 Final form of the momentum equation

To facilitate a more stable numerical solution, two terms in the momentum equation

4.5 need to be reformulated [77]: the modified pressure and the viscous stress term. The

modified pressure is used as a dependent variable to simplify the specification of the pressure

boundary conditions. It is defined as:

p∗ = p− ρg · x (4.12)
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where p∗ is the modified pressure, which is obtained by removing the hydrostatic pressure

from the pressure. It is legitimate to do so since the motion of the flow does not depend

on the absolute values of the pressure but on its gradient. This change of variable can

be accounted for in the momentum equation by taking the gradient of equation 4.12 and

substituting the result into the momentum equation. The gradient of 4.12 reads:

5p∗ = 5p−5(ρg · x)

= 5p− ρg − g · x5 ρ

(4.13)

The use of the formulation in equation 4.13 leads to a simpler specification of the pressure

boundary condition, and the inclusion of the term g · x 5 ρ enables efficient numerical

treatment of the steep density jump at the interface [77] between the two fluids.

To achieve a more efficient numerical evaluation, the viscous stress is reformulated as

5 · τ = 5 ·
(
η
(
5u + (5u)T

))
= 5 · (η5 u) +5 ·

(
η(5u)T

)
= 5 · (η5 u) + (5u) · 5η + η5 (5 · u)

= 5 · (η5 u) + (5u) · 5η

(4.14)

The final form of the momentum equation is assembled from equations 4.5, 4.11, 4.13 and

4.14, the momentum equation expressed for the mixture flow is as follows:

∂ρu

∂t
+5 · (ρuu) = −5 p∗ +5 · (η5 u) + (5u) · 5η − g · x5 ρ+ σκ5 γ (4.15)

The present mathematical model is given by the continuity equation ??, phase fraction

equation 4.8 and the momentum equation 4.15.
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4.4 Viscous shear stress

The stress tensor σ can be written in terms of an effective viscosity as follows:

σ = −pI + τ (4.16)

where p is the isotropic pressure, I is the unit tensor, and τ is the shear stress tensor,

τ = 2ηeff (‖D‖, p)D (4.17)

with

ηeff (‖D‖, p) =
µp

‖D‖
(4.18)

where µ is the analogue of a coefficient of friction, D = D(u) = (5u + (5u)T )/2 is the

strain rate tensor, and ‖D‖ is second invariant of the strain rate tensor: ‖D‖ =
√

2DijDij .

To write the above expression, a co-linearity between the shear stress and the strain

rate tensors is assumed following the work of several previous authors [13, 14, 25]. Within

this description, the granular mixture is then described as an incompressible non-Newtonian

fluid, with an effective viscosity ηeff depending on both the shear rate and the pressure, a

signature of the underlying frictional nature of the medium [22]. This description is similar

to the one developed in other visco-plastic materials like mud. A flow threshold is given by

a frictional Drucker-Prager criterion [15]: |τ | > µ1p is recovered when ‖D‖ goes to zero and

the viscosity diverges. In this study, the coefficient of friction µ in equation 4.18 is considered

as constant (µ) and variable (µ(I)):

• The constant friction model

In the constant friction model, the frictional properties of the flow are related to the

internal friction angle φ through a constant of proportional µ = tanφ.
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• The variable friction µ(I) model

The friction coefficient µ(I) proposed by Jop et al. [46] can be written as

µ(I) = µs +
µ2 − µs
I0/I + 1

(4.19)

where µs and µ2 are the static and dynamic angles, respectively. I0 is a constant

dependent on the material properties of the flow. I is known as the inertial number

and is defined as

I =
‖D‖d√
p/ρp

(4.20)

This number can be interpreted as the ratio between two time scales: the time of the

microscopic rearrangements d/
√
p/ρ, where p is the pressure, d is the grain diameter,

and ρp is the density of the grains and the macroscopic scale of the flow, which is

assumed equal to the mean deformation ‖D‖−1. According to these equations the

friction angle increases during the transition from the quasi-static regime (I → 0) to

the kinetic regime (I � I0). Despite its success, the µ(I) model has some important

limits, which make it weak in situations different from those ones used to derive it [62].

One of them is that the model accounts for the presence of two angles, one of which is

the dynamical angle. Physically this parameter depends on the flow-field and is hard

to determine. It is not a constant as proposed by the authors.

4.5 Experimental setup

Three independent laboratory studies of dry granular dam-break flows are used to

validate the numerical model. The three experiments are different in (i) the granular ma-

terial, (ii) the initial column height and width, (iii) the slope of the channel, and (iv) the

rheological models employed in numerical simulations. The description of the three different

settings are given in Table 4.1.
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Table 4.1: Experimental description.

Experiments Rébillout et al. [74] Evangelista et al. [17] Mangeney et al. [58]

Granular material PET pellets sand (A) sand (B) glass beads

Particle diameter (mm) 2.867 0.2 1.6 0.7±0.1

Material density (kg/m3) 1422 2680 2560 2500

Volume fraction 0.66 0.47 0.57 0.62

Bulk density (kg/m3) 938 1259.6 1459.2 1550

Repose angle (◦) 30 36 41 25.5

Channel width (m) 0.5 0.4 0.4 0.1

Initial column height H0 (m) 0.2, 0.3, 0.4 0.2, 0.3 0.2, 0.3 0.14

Initial column length L (m) 3.24 0.5 0.6 0.2

Aspect ratio (H0/L) 0.06, 0.09, 0.12 0.4, 0.6 0.33, 0.5 0.7

Channel inclination (◦) 0 0 0 0, 10, 16, 22

Coefficient of friction constant constant constant constatn, µ(I)

4.6 Treatment of the moving gate in numerical simulations

In the experiments, a gate is moved upward to release a granular mass. The movement

of the gate can be simulated by considering the motion consisting of two stages: acceleration

and uniform motion stages and is expressed as (Ye et al. [89]):

y(t) =


1
2
at2 , t ≤ t0

1
2
at20 + v0(t− t0) , t > t0

(4.21)

where y is the vertical displacement of the gate, t is the time, v0 is the velocity of the uniform

motion stage, t0 is the duration of the acceleration stage, and a = v0/t0 is the acceleration

of the gate in the acceleration stage. Figure 4.1 shows vertical displacement of the gate in

the experiments conducted by Rébillout et al. [74] and Mangeney et al. [58], and those used

in the simulations. The duration of the acceleration stage of t0 = 0.013 s (displayed with

dash line in Figure 4.1) is chosen to fit the experimental data of Rébillout et al. [74]. The

velocity of the uniform motion stage (v0) is varied as 1.5, 3, 5, and 9 m/s. In the experiments
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Figure 4.1: Vertical displacement of the gate in the simulations, the experiments by Rébillout
et al. [74] (Reb): zoom-in view (left) and full view (right), and the experiments by Mangeney
et al. [58] (Man).

conducted by Mangeney et al. [58], according to Ionescu et al. [36], the gate is assumed to

move with uniform velocity of v0 = 2.3m/s, which is adopted in this study. The summary of

simulation settings of the dry granular dam-break flows with and without (sudden release)

the gate is given in Table 4.2.

Table 4.2: Simulation settings for the cases with and without the gate.

Experiments Rébillout et al. [74] Evangelista et al. [17] Mangeney et al. [58]

without the gate X X X

with the gate X - X

v0 (m/s) 1.5, 3, 5, 9 - 2.3

t0 (s) 0.013 - -

time that the gate
0.27, 0.13, 0.08, 0.05 - 0.06

completely removed (s)

In the numerical implementation, the movement of the gate is simulated as a dynamic internal

boundary condition. At simulation time t = 0, a zero thickness wall or baffle is created using

utilities: topoSet and createBaffle in OpenFOAM. At time step t = ti, the position of the

gate lip is calculated. If this position passes the lower edge of a cell, a new baffle is created

with the baffle position starting from the top edge of the cell as depicted in Figure 4.2. This

step is repeated until the gate clears off. These processes are automated during simulations
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Figure 4.2: Sketch of the gate position in granular dam-break problems.

by using PyFoam utilities. At the upstream surface of the gate, no slip boundary condition

is adopted.

4.7 Influence of grid resolution

In the VOF method, the interface region between two phases is typically smeared

over a few grid cells and is therefore highly sensitive to grid resolution [11]. To test the

sensitivity of the model to grid resolution, simulations with three different cell sizes of 5,

7.5, and 10 mm are performed using experimental setting of Rébillout et al. [74] with the

particle diameter of 2.867 mm and the initial column height of 0.4 m. Thus, the cell sizes

are about 1.7, 2.6 and 3.5 times the particle diameter. The total numbers of cells for each

case are 300×100, 201×67 and 150×50. A time step of 0.0005 s is used for all test cases.

Figure 4.3 shows the granular mass profile for the simulations with different cell

sizes. In early state of the flow (t = 0.18 and 0.57 s), a slight difference in height of

the granular mass upstream of the gate location is observed, while there is no significant

difference downstream of the gate. The final upstream slopes at rest are similar. The

downstream surface profiles and the front location are slightly different. The cell size of 7.5

mm is chosen in the subsequent computations if not described otherwise. Figure 4.4 shows

the granular mass profile for different volume fractions used to define the interface between

air and the granular mass. The higher volume fraction gives the lower height of the profile
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Figure 4.3: Comparison between the simulations with different cell sizes at time 0.18, 0.57
and 1.5 s. Surface is represented by γ = 0.5.
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Figure 4.4: Comparison between the simulations with difference volume fractions at the final
deposit.

and closer deposit of the front toe. The volume fraction γ = 0.5 is applied in the subsequent

plots.

4.8 Comparisons between numerical simulations and experiments conducted by

Rébillout et al. [74]

This section presents simulation results with and without the presentation of the gate

movement in comparison with the experiments of Rébillout et al. [74]. In Subsection 4.8.1,

the granular mass profiles and velocity fields of the simulations with and without the gate

are presented along with experimental results. The initial column height of the granular

mass is 0.4 m. The velocity of the gate in the uniform motion stage is v0 = 9m/s. Pressure

distribution, effective viscosity, and strain rate of the simulation with the gate are presented

in Subsection 4.8.2. In Subsection 4.8.3, the granular mass profiles at the final deposit of

the simulations with the gate for different initial column heights are presented along with

experimental results. In Subsection 4.8.5, the propagation of the front toe for the simulations

of 0.4-m initial column height with different gate speeds of 1.5, 3, 5, and 9 m/s and without

the gate is presented along with the experimental result. The time step is 0.0005 s and the

cell size is 7.5 mm for all cases. The constant friction model with µ = 0.56 is used for all

cases.
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4.8.1 The granular mass profiles and velocity fields

Figure 4.5 shows the granular mass profile of the experiment with the initial column

height of 0.4m and of the simulations with and without the gate, and the velocity distribution

for the simulation with the gate. The colors, representing velocity magnitude, show that the

flow is concentrated only in a shallow sub-domain near the free surface as observed in the

experiments. This is probably why depth-averaged models do not correctly represent details

of the flow in the intermediate phases. In early state of the flow (t = 0.18 and 0.28 s), the

shape of the granular mass with the gate shows better agreement with the experiment than

that of the experiment without the gate. At t = 0.5 s, the maximum velocity is concentrated

at the front edge of the granular mass with the magnitude of about 1.5 m/s, and the shapes

of the granular mass with and without the gate are similar. At t = 0.75 s, the flow occurs

only on a top thin layer of the granular mass. The front stops moving in the simulations

but the top thin layer of the granular mass is still moving as can be seen with the velocity

magnitude. At the final deposit (t = 1.5 s), there is a slight difference between the shapes

of the granular mass for the cases with and without the gate. The influence of the gate

disappears in the deposition phase. The slopes of the final profile are in good agreement

with the experiment.

4.8.2 Pressure distribution, effective viscosity, and strain rate

Figure 4.6 shows pressure distribution, effective viscosity, and strain rate in the gran-

ular mass at different times. Figure 4.6(a)-(c) shows that, at t = 0.18 s, pressure varies from

almost zero at the interface to about 4000 Pa near the bed, while, at t = 0.28 and 0.5 s, the

maximum pressure near the bed is about 3000 Pa. In the flowing region (see the velocity

field in Figure 4.5), the pressure distribution is quite regular with the maximum about 1500

Pa at the interface of the flowing and no-flowing region. Figure 4.6(d)-(f) shows that the

effective viscosity varies from almost 0 Pa · s in the flowing region to over 100 Pa · s near the

bed and has a similar distribution with the pressure field. In the flowing region, the effective
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(a)

(b)

(c)

Figure 4.5: Comparison of the granular mass profiles between the experiment by Rébillout et
al. [74] and simulations with and without the gate, and velocity magnitude for the simulation
with the gate at time 0.18, 0.28, and 0.5 s.
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(d)

(e)

(f)

Figure 4.5: Comparison of the granular mass profiles between the experiment by Rébillout et
al. [74] and simulations with and without the gate, and velocity magnitude for the simulation
with the gate at time 0.64, 0.75 and 1.5 s (cont.)
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viscosity is less than 1 Pa · s. This small effective viscosity in the flowing region is directly

related to the low pressure in this zone (Figure 4.6(a)-(c)). While the pressure and viscosity

distributions within the flowing region is quite regular, the strain rate is concentrated near

the front and near the bed (Figure 4.6(g)-(i)) with a maximum value above 60 s−1.

In order to describe the flow/no-flow condition, a yield function F = F (‖τ‖, p) is

defined. According to Ionescu et al. [36], F can be written as:

F (‖τ‖, p) = ‖τ‖ − µp (4.22)

where τ is the shear stress, µ is the friction coefficient, p is the pressure, and the fluid is at

rest if and only if F (‖τ‖, p) ≤ 0. The distribution of the yield function at different times is

shown in Figure 4.7. The static/flowing transition is described with the zero contour lines.

The zone corresponding to a positive value of the yield function represents the flowing region

of the granular mass. It is noted that the positive value of the yield function near the back

wall are due to the low pressure in this region. However, there is no flow of the granular

material observed as can be seen in the plots of velocity in Figure 4.9.

4.8.3 The granular mass profiles for different initial heights

Figure 4.8 shows the granular mass profiles of the experiments and simulations for

different initial column heights. It can be seen that slopes of the final deposits are well

captured for all initial heights of 0.2, 0.3 and 0.4 m using one rheological parameter obtained

from the experiments. However, there is a lack of similarity of the front between the simula-

tions and experiments, especially for the cases with higher initial heights. This may be due

to the no-slip boundary condition imposed at the bottom in the simulations which prevents

the granular mass from sliding at the bed near the leading tip of the front.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.6: Pressure distribution p in Pa, effective viscosity ηeff in Pa · s, and strain rate
‖D‖ in s−1 at time 0.18, 0.28, and 0.5 s.
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(a)

(b)

(c)

Figure 4.7: The distribution of yield function F (σ) := ‖τ‖ − µp.
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Figure 4.8: Granular mass profile for simulations and experiments conducted by Rébillout
et al. [74] with different initial heights at the final deposit.
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4.8.4 Velocity fields for the simulations with and without the gate

Figure 4.9 shows velocity magnitudes and velocity vectors for the simulation with

(left) and without (right) the gate at different times. The simulation with the gate corre-

sponds to the case with the gate removal speed of uniform velocity of v0 = 9 m/s (see Table

4.2). At time t = 0.02 s (Figure 4.9(a)) where the gate bottom’s edge position is at y =

0.12 m, velocity magnitudes are larger for the case without the gate. That is because, for

the case without the gate, particles are free to move while, for the case with the gate, about

70% of the column height is still blocked by the gate. At time t = 0.04 s (Figure 4.9(b)),

where the gate bottom’s edge position is at y = 0.3 m, velocity magnitudes for the case

without the gate are larger and particles are moving downwards. However, for the case with

the gate, particles near the gate where y > 0.2 m are moving upwards as can be seen from

the velocity vectors. At time t = 0.051 s, the gate is already cleared off for the simulation

with the gate. At later time (t = 0.1 and 0.18 s), even the directions of the flow in both

cases are similar, differences in velocity magnitudes are observed.

4.8.5 Influence of gate removal speed

Figure 4.10 shows the propagation of the front toe for the simulations with different

gate speed, without the gate, and the experiment. The leading tip of the front of the

granular mass with faster removal case runs ahead of the slower gate motion case. In the

slowest removal case, v0 = 1.2m/s, the final deposit of the front toe is underestimated while

the other three faster removal cases are similar and closer to the experiment. The simulation

without the gate, at first, moves as fast as the cases with the gate and the experiment but

later slows down and deposits far less than the other cases.
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(a)

(b)

(c)

(d)

Figure 4.9: Velocity magnitudes and velocity vectors for the simulations with (left) and
without (right) the gate at time t = 0.02, 0.04, 0.1 and 0.18s.
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Figure 4.10: Propagation of the front toe for the simulations with different gate speeds,
without the gate and experiments conducted by Rébillout et al. [74].

4.9 Comparisons between numerical simulations and experiments conducted by

Evangelista et al. [17]

In this section, the simulation results are presented in comparison with the exper-

iments of Evangelista et al. [17]. The details of the experimental setup are presented in

Section 4.5. In the simulations, the time step is set to be 0.0005 s, while the cell size is 5

mm. The simulations were setup without the gate (sudden release). The constant friction

model with µ = 0.65 (tan32◦) was used for all cases. Figure 4.11 shows the granular profiles

at the final deposit. The simulation results show a good agreement with the experiments.

4.10 Comparisons between numerical simulations and experiments conducted

by Mangeney et al. [58]

In this section, the simulation results are presented in comparison with the experi-

ments of Mangeney et al. [58]. The details of the experimental setup are presented in Section

4.5 and sketch of the experimental setup is shown in Figure 4.12. In the simulations, the

time step is set to be 0.0005 s, while the cell size is 0.25 cm. The gate is removed at a speed

of v0 = 2.3m/s in the direction perpendicular to the bed. The sensitivity to the parameters

of the µ(I) model is investigated. The different rheological formulas: the constant friction

and µ(I) models is investigated. The simulation results obtained from the two rheological
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Figure 4.11: Comparison of the granular mass profiles between the experiments conducted
by Evangelista et al. [17] and simulations at the final deposit for sand A and sand B.
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Figure 4.12: Sketch of experimental setup by Mangeney et al. [58].

models are compared with experimental results for different slopes of the channel bed.

4.10.1 Sensitivity to the parameters of the µ(I) rheology

The rheological parameters for the µ(I) model, which must be derived from the ex-

periments, are µs, µ2, and I0. In this study, the rheological parameters of (µs, µ2, I0) =

(0.48, 0.73, 0.279) in Table 1 of Ionescu et al. [36] are adopted. The sensitivity test is per-

formed with µs varying in the range [0.38,0.48], µ2 varying in the range [0.68,0.78], and I0

varying in the range [0.279,0.4]. While one parameter is varying, the other two are kept

constant. Figure 4.13(a) shows the final deposit of the granular mass for different values of

µs. It can be seen that a decrease of µs increases the displacement and decreases the column

height. Figure 4.13(b) and (c) shows that a decrease in µ2 results in the same effect, while

a decrease in I0 has the reverse effect. This behavior is as well observed in Lagrée et al. [48]

and expected from the µ(I) dependence: a decrease in one parameter (µs, µ2, 1/I0) increases

the total friction (Lagrée et al. [48]).

4.10.2 Comparison between the constant friction and µ(I) models

The µ(I)-rheology relates the frictional properties of the flow to the inertial number

I which varies during the flow [48]; as seen in section 4.10.1, this model captures well the

behavior of the dry granular dam-break flow. However, the performance of the µ(I) model
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Figure 4.13: Granular mass profile at the final deposit for simulations and experiments of
Mangeney et al. [58] (θ = 0◦) with different values of parameters in the µ(I) model.
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compared to the simple constant friction model µ = cst is questionable. In this study, the

simulations of dry granular dam-break flows using the two different models are performed.

The parameters of the µ(I) model is adopted from Ionescu et al. [36], where µs = 0.48,

µ2 = 0.73, and I0 = 0.279. For the constant friction model, µ is chosen to be µ = µs = 0.48.

Figure 4.14 shows comparisons of the granular mass profiles obtained from experiments and

simulations with the two different models at different times. In the early state of the flow

(t = 0.06 s), the profiles of the constant friction and µ(I) models show a good agreement.

When the flow develops, the front tip of the constant friction model travels slightly faster

than the µ(I) model. Using the constant friction model with µ = µs = 0.48 is equivalent

to using the µ(I) model with (µs, µ2, I0) = (0.48, 0.48, 0.279). As observed in section 4.10.1,

a decrease of µ2 increases the displacement and decreases the column height at the final

deposit. However, as seen in Figure 4.14(a)-(c), in this case only small difference is found

in the granular mass profiles obtained from the constant friction (using one parameter) and

µ(I) (using three parameters) models.

4.10.3 Collapses over an inclined plane

Up to this section, simulations of dry granular flows have been performed only on a

horizontal plane. Here, the collapses over inclined planes (see Figure 4.12) where θ = 10◦,

θ = 16◦, and θ = 22◦ are simulated using the same sets of parameters. That is, µs = 0.48,

µ2 = 0.73, and I0 = 0.279 for the µ(I) model and µ = µs = 0.48 for the constant friction

model. Figure 4.15 shows the results. The µ(I) model captures the slope of the granular

mass at the deposit. However, the front deposit are far less than the experiments for all three

cases. This may be due to the no-slip boundary condition imposed at the bottom. As can be

seen in Figure 16 of Ionescu et al. [36], the scenario with no-slip condition (with adherence)

reduces the run-out distance by 10% compared with the scenario with the basal friction

coefficient imposed at the bottom boundary condition. However, near the back wall, the

scenario with no-slip condition reproduces the collapsed mass better. This is also observed
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Figure 4.14: Granular mass profile at different times: (a) t = 0.06 s, (b) t = 0.18 s, and
(c) t = 1 s for experiments of Mangeney et al. [58] and simulations over a horizontal plane
(θ = 0◦) with the constant friction and µ(I) models.
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in this study. The constant friction model is equivalent to the µ(I) model with parameters

(µs, µ2, I0) = (0.48, 0.48, 0.279). As expected, the column height at the deposit decreases and

the displacement increases. For the case with θ = 10◦, the difference between the simulation

and experiment is small. The difference is more obvious in the case of θ = 16◦ and θ = 22◦

where the fronts hit the wall. In spite of the results, the constant friction model could still

be used to obtain a good result but with the friction coefficient larger than 0.48.
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Figure 4.15: Granular mass profile at the final deposit for simulations and experiments of
Mangeney et al. [58] with different slopes of channel bed: (a) θ = 0◦, (b) θ = 16◦, and (c)
θ = 22◦.
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CHAPTER 5

POROUS MEDIA FLOWS

This chapter presents the numerical models for flows in porous media using two

different OpenFOAM solvers: porousInterFoam and suGWFoam. In porousInterFoam solver,

the governing equation is the Navier-Stokes equation with additional terms to account for

pressure drop due to consideration of a porous medium. This equation is based on the

macroscopic equation derived by Wang et al. [85]. By using porousInterFoam, the flows inside

and outside the porous medium are solved with the same set of equations. In suGWFoam

solver, the nonlinear Richards’ equation is solved in conjunction with the modified Picard

iterative method. By using suGWFoam, variably saturated conditions in porous media can

be investigated. Numerical simulations for verification and validation of the approaches

used the steady and transient drainage experiments carried out in a 2D channel containing

the clear water zone and the porous zone filled with granulated urea material saturated with

water. Simulated water surface elevations are presented on the snapshots of the experiments.

5.1 Governing equations: Navier-Stokes equations

In this study, the macroscopic governing equations for the fluid flow in porous me-

dia derived by Wang et al. [85] are employed. The macroscopic equations is obtained by

the technique of volume averaging of the microscopic continuity and momentum equations

over a representative elementary volume (REV). The intrinsic phase average is used in the
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derivation and defined by

〈ψf〉f =
1

Vf

∫
Vf

ψfdV (5.1)

where the subscript f means fluid quantity which refers to the portion of fluid existing

within the gaps of the solid skeleton, Vf represents the volume of the fluid phase within

the representative elementary volume V , and ψf is a quantity associated with the fluid

phase. The intrinsic phase average can be related to the phase average (also called Darcy’s

quantities) with: 〈ψf〉 = n〈ψf〉f , where n is the porosity, and is defined as n = Vf/V . As

concluded by Wang et al. [85], the macroscopic conservation equations derived using intrinsic

phase average velocity are Galilean invariant. The following macroscopic equations can be

obtained

5 · 〈uf〉f = 0 (5.2a)

∂
(
ρf〈uf〉f

)
∂t

+5·
(
ρf〈uf〉f〈uf〉f

)
= −5〈pf〉f+µ5·

[
5
(
〈uf〉f

)
+
[
5
(
〈uf〉f

)]T]
+F (5.2b)

where ρf is the fluid density, 〈uf〉f is the intrinsic phase average velocity, pf is the pressure,

µ is the fluid dynamic viscosity and F is the total body force including the resistance from

the porous medium and other external forces and defined by

F = −µn
K

(
〈uf〉f − Vp

)
− ρf

n2Fn√
K

(
〈uf〉f − Vp

)
|〈uf〉f − Vp|+ ρfg. (5.3)

where K is the permeability, g is the gravitational acceleration, Fn = 1.75/
√

150n3 is the

geometric function of the porous medium, and Vp is the velocity of the moving porous

medium. In this Chapter, only static porous medium is considered and a moving porous

medium is included later in Chapter 6. Hence, here Vp is set to zero. In the case as n = 1,

i.e., in the absence of porous media, the value of K will become infinite, and Equation 5.2

reduces to the Navier-Stokes equations for pure fluid flows. By using Equation 5.2, the

flows inside and outside the porous medium are solved with the same set of equations. This

approach avoids the need to specify matching conditions at the pure fluid and porous medium
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interface, at which interface and jump conditions are defined for velocity and shear stresses

[44]. Further details of the derivation can be found in Wang et al. [85].

The above equations are solved in OpenFOAM using the solver porousInterFoam.

The governing equations for porousInterFoam solver are as follows:

5 · u = 0 (5.4a)

∂ρu

∂t
+5 · (ρuu) = −5 p+ ρg + µ5 ·

(
5u+ (5u)T

)
+ S (5.4b)

where u = 〈uf〉f , ρ = ρf and p = pf in the equations 5.2 and 5.3. The sink term, S, is

composed of two parts, a viscous loss term and an inertial loss term, creating a pressure drop

that is proportional to the velocity and velocity squared, respectively. This term is defined

by

S = −
(
µD +

1

2
ρ|u|F

)
u (5.5)

where the tensors D and F are the porosity parameters. In the case of simple homogeneous

porous media, they can be represented by scalar d and f . In OpenFOAM, homogeneous

directions are generally considered thanks to vector d and f that are defined in a local set

of coordinates. If a homogeneous porous media is considered, it is possible to link directly

the Darcy-Forcheimer equation (Eq. 2.18) to the solver parameter and by comparing with

equation 5.3, the porosity parameters can be defined by

d =
n

K
and f =

2n2Fn√
K

. (5.6)

In this study, the permeability K is obtained from the laboratory test (Ozeren et al. [67]).

The porousInterFoam solves Equation 5.4 using the VOF method as described in Section

4.2.

It is noted that the porousInterFoam solver already exists in OpenFOAM. However,

the way it is implemented is only suitable for a static porous medium. In the existing
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porousInterFoam, a porous zone is created as a cell zone using blockMesh or topoSet utilities

when creating mesh or before the simulation starts. During the simulation, the porousZone

class is called to explicitly or implicitly calculate pressure drops in the created porous (or

cell) zone. If this cell zone moves or changes the shape during the simulation, an extra step

and computation time are required to select those porous cells and recreate them. Instead of

using the existing porousInterFoam, the interFoam solver is modified by adding the source

term S defined in equation 5.5 to the momentum equation. This term is multiplied by a mask

function which allows to define both the porous area where the source term is active, and the

free area where the classical momentum is solved. Deforming porous medium can be treated

through the mask function. This modified interFoam solver is also called porousInterFoam

since the concept of modeling porous media flow is the same, and only the implementation

is different.

5.2 Governing equations: Richards equations

5.2.1 Richards equations

Flows in variably saturated porous media can be modeled by solving the mass con-

servation equation with the velocity expressed using Darcy’s law. A commonly used model

in soil science is the so-called Richards’ equation [75]. This equation can be written in three

standard forms: the pressure head-based form, the saturation based form, and the mixed

form formulation.

• Presure head-based form:

[C(h) + SsSw]
∂h

∂t
= 5 · [K(h) · 5(h+ z)] +Qs (5.7)

• Saturation-based form:

∂θ

∂t
+ SsSw

∂h

∂t
= 5 · [D(θ) · 5θ]5 ·[K(h) · 5z] +Qs (5.8)
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• Mixed form:

∂θ

∂t
+ SsSw

∂h

∂t
= 5 · [K(h) · 5(h+ z)] +Qs (5.9)

where C(h) is the specific moisture capacity (L−1) which is defined as

C(h) =
∂θ

∂h
, (5.10)

θ is the moisture content, h is the pressure head (L), Qs is the volumetric source/sink

(L−3T−1L−3), Ss is the specific storage (L−1), Sw is the saturation ratio (θ/n), n is the

porosity, K(h) is the hydraulic conductivity (L/T ), and D(θ) is the hydraulic diffusivity

(L2T−1).

As discussed in Liu [50], the pressure head-based form can be used for both saturated

and unsaturated condition and gives good mass balance when the variation of h is small.

However, this form suffers from severe mass balance error when water infiltrates into dry

soils with highly nonlinear conditions unless very fine spatial and temporal discretizations

are used in the numerical scheme (Celia et al. [9]). The saturation-based form demonstrates

significantly improvement when modeling infiltration into very dry soils (Hills et al. [30]).

Unfortunately, this form is not suitable for fully saturated conditions because hydraulic

diffusivity D(θ) is infinity in saturated regions and a head-saturation relationship does not

exist. In addition, it requires special treatments for soil discontinuities or layered soils (Hao

et al. [28]). The mixed-form possess much better properties regarding mass conservation

in simulating soil water problems with a sharp wetting front. However, large mass balance

errors are encountered in simulations in which there is large amount of water moving through

the bottom boundary (Hao et al. [28]). Each form of the Richards’ equation has its strengths

and drawbacks. Therefore, it is reasonable to combine them and switch between the forms

according to the state of the modeled system.

The switching algorithm is proposed by Hao et al. [28], where the pressure head-

based form and the mixed form are selected dynamically during the simulation. Within a
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time step, the magnitude of the pressure head change is calculated as hc = |hn+1 − hn| and

compared with a specified threshold value h0, where the superscripts n+ 1 and n represent

the values at current time step and previous time step, respectively. If hc < h0, the pressure

head-based form is solved, otherwise the mixed form is solved. The threshold value depends

on many factors and it affects the accuracy and convergence of the simulation (Hao et al.

[28]). In this study, the value of h0 = 0.03m as suggested by Hao et al. [28] and used by Liu

[50] is adopted.

5.2.2 Constitutive relations

The constitutive relations refer to the functional forms of the moisture content θ(h)

and hydraulic conductivity K(h). Using this formulation, the routines in the model should

calculate the moisture content and hydraulic conductivity given the values of pressure head

h. There have been numerous approaches proposed for constitutive relations. This section

describes two commonly adopted models: the Brooks and Corey (1964) model and the van

Genuchten (1980) model. In this study, the van Genuchten (1980) model is employed and

has the following formulas for moisture content θ and the relative hydraulic kr conductivity

θ(h) =


θr + θs−θr

[1+(α|h|)n]m
if h < 0

θs otherwise

(5.11)

kr(θ) =
K

Ks

=

(
θ − θr
θs − θr

)0.5
{

1−

[
1−

(
θ − θr
θs − θr

)1/m
]m}2

(5.12)

where α and n are the parameters controlling the shape of the soil constitutive curves, and

m = 1− 1/n.

5.2.3 Boundary conditions

The specification of boundary conditions is required in order to obtain unique solu-

tions to the Richards’ equations. In suGWFoam, four types of basic boundary conditions
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are implemented which include fixed head h, fixed total head h + z, specific flux q, and

fixed value at specified internal locations. Details and implementations of these boundary

conditions can be found in Liu [50]. However, a seepage face boundary condition required

in this study is not available in suGWFoam.

A seepage face is the boundary between a saturated flow field and the atmosphere,

or between a saturated flow field and a stream channel, where water is free to exit from

the subsurface (Scudeler et al. [81]). The seepage face can be treated as static or dynamic

boundary conditions. In a static type, the seepage boundary that regulates subsurface

drainage is often treated as a fixed Dirichlet condition, with atmospheric pressure assigned

to the designated outflow cells. Alternatively, with a dynamic type, the position of the exit

point along the seepage boundary can evolve over time depending on the location of phreatic

surface. All cells below the exit point are at atmospheric pressure (a Dirichlet condition),

allowing outflow to occur, while all cells above it are assigned a no-flow (Neumann) condition.

The conceptual representation of the seepage face boundary conditions is presented in Figure

5.1.
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Figure 5.1: Conceptual representation of the seepage face boundary conditions.

The dynamic boundary condition is employed in this study. At each iteration, the

seepage face boundary is checked cell by cell to identify if the cell belongs to an outflow plane

(below the exit point) or a no-flow plane (above the exit point). If a cell has zero or positive
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pressure, that cell belongs to an outflow plane. Otherwise, a no-flow condition is assigned.

This process of checking and setting boundary cells is completed by using groovyBC library

in OpenFOAM.

5.3 Experimental setup for transient drainage from porous media

Figure 5.2: Urea material.

The experiments conducted in the dam-break

facility of NCCHE at the USDA-ARS National Sedi-

mentation Laboratory in Oxford, Mississippi are used

to validate the models. In these experiments, the

channel consisting of a 0.5 m width, 0.6 m height and

3.24 m length was divided into: (i) the clear water

zone, and (ii) the porous zone containing urea ma-

terial saturated with water. The urea material used

in the experiments and the experimental setup are

shown in Figure 5.2 and Figure 5.3, respectively. Some of the intrinsic and bulk properties

of the material are summarized in Table 5.1. In the table, Dm is the mean nominal, Sf is the

shape factor, diameter, n is the porosity, ρUrea is the density of the Urea material, and K

the (packed) hydraulic conductivity. At the beginning of the experiments, the gate attached

to the end of the porous zone was removed. Water in the clear water zone seeped in to the

porous zone while water in the porous zone seeped out of the medium through the seepage

face at the gate side resulting in drops of the phreatic surface. Blue dye was added to the

water in order to better identify the phreatic surface. The same experiment was repeated

three times and are referred to as exp1, exp2, and exp3.

Table 5.1: Properties of the urea material (Ozeren et al. [67]).

d10 (mm) d50 (mm) d90 (mm) Dm (mm) Sf n (packed) ρUrea (kg/m3) K (mm/s)

1.762 2.237 2.639 2.055 0.447 0.422 1476 8.51
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Figure 5.3: Experimental setup.

5.4 Simulation setup and results for transient drainage from porous media using

Navier-Stokes equations

5.4.1 Simulation setup

In the numerical simulation, the computational domain (Figure 5.4) of a 4.67 m length

and 0.5 m height is divided into three zones: (i) the porous zone containing the urea material

saturated with water to a 0.4 m height, (ii) the clear water zone filled with water to the same

height as the porous zone, and (iii) the empty cell zone. The slip wall boundary condition is

used for the porous zone while the no-slip is employed at other boundaries except at the top

and the right boundaries at which the outlet boundary condition is used. By modeling the

flow in this way (see Section 5.1), there is no need to specify a boundary condition between

the porous zone and the clear water zone, or the porous zone and the atmospheric (empty

cell) zone. The time step is set to 0.01 s while the cell size is 0.01 m. The simulation results

are compared with all three repeated experiments: exp1, exp2, and exp3. The comparisons

are shown in the following section.

5.4.2 Simulation results

Figure 5.5 - 5.9 show the free surface elevations obtained from the simulation plotted

over the snapshots of the three repeated experiments (exp1, exp2, and exp3) at time 0.4, 1,
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Figure 5.4: Computational domain for the Navier-Stokes equations with VOF method.

5, 10, 20, and 40 minutes. These elevations represented by the yellow lines correspond to

the phreatic surfaces where pressure is zero. For the volume fraction (γ), as shown in Figure

4.4, only slight difference is observed in the free surface profile when using different values

of volume fraction to plot the free surface. Here, the volume fraction γ = 0.5 is applied in

the subsequent plots.

In the early stage of the flow at time t = 1 min (Figure 5.5), the phreatic surface at

the front of the porous zone near the gate is about 0.05 m above the channel bed while the

free surface elevation in the clear water zone has only slightly dropped. For all experiments,

the blue dye interface is about 1 - 4 cm above the simulated phreatic surface. At later time

(Figure 5.6 - 5.9), the phreatic surfaces along the channel drop below the initial value of

0.4 m. These phreatic surfaces (yellow lines) are also about 1 - 4 cm below the blue dye

interfaces. The difference between the yellow lines and the blue dye interfaces could be

explained by the capillary fringe zone. In this zone, the porous medium remains saturated

under negative pore pressure, and the blue dye interfaces could be the upper end of this

zone. The conceptual illustration of this zone is shown in Figure 5.10.

As pointed out earlier, by modeling porous flow using the porousInterFoam solver,

it is not necessary to specify a boundary condition between the porous zone and the clear

water zone. The process of water seeping from the clear water zone to the porous zone is
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taken care of by the solver. This can be verified by comparing the free surface elevations

in the clear water zone obtained from the simulation and the experiment. The comparison

plotted in Figure 5.11 shows that the two elevations drop at almost the same rate.
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Figure 5.5: Plots of the simulated phreatic surface (yellow lines) obtained from porousIn-
terFoam solver over snapshots of the experiments (exp1, exp2 and exp3) at time t = 1
min.
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Figure 5.6: Plots of the simulated phreatic surface (yellow lines) obtained from porousIn-
terFoam solver over snapshots of the experiments (exp1, exp2 and exp3) at time t = 5
min.
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Figure 5.7: Plots of the simulated phreatic surface (yellow lines) obtained from porousIn-
terFoam solver over snapshots of the experiments (exp1, exp2 and exp3) at time t = 10
min.
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Figure 5.8: Plots of the simulated phreatic surface (yellow lines) obtained from porousIn-
terFoam solver over snapshots of the experiments (exp1, exp2 and exp3) at time t = 20
min.
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Figure 5.9: Plots of the simulated phreatic surface (yellow lines) obtained from porousIn-
terFoam solver over snapshots of the experiments (exp1, exp2 and exp3) at time t = 40
min.
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Figure 5.10: Conceptual illustration of the unsaturated porous medium (Lu and Likos [56]).
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Figure 5.11: Time series of free surface elevations in the water reservoir obtained from the
simulation and the experiment.
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5.5 Simulation setup and results: Richards equations

5.5.1 Simulation setup

In the numerical simulation using suGWFoam solver, the computational domain (Fig-

ure 5.12) of a 2.43 m width and 0.4 m height contains the urea material saturated with water.

It is noted that only the porous zone is included in the computational domain because the

Richards’ equation cannot handle the clear water zone. The boundary between the porous

zone and the clear water zone is treated through a boundary condition. Properties of the urea

material are described by the van Genuchten constitutive relationship. The van Genuchten

parameters are listed in Table 5.2. The corresponding soil-water retention curve is plotted

on Figure 5.13 based on the given pararameters. The no-flow (q = 0) boundary condition

is used for the top and the bottom boundaries. The left side is the boundary between the

porous zone and the clear water zone where the specified (transient) head boundary condi-

tion is used. This head obtained from the experiment is represented by the red line plot in

Figure 5.11. The right boundary is where the gate is located in Figure 5.3. The dynamic

seepage face boundary condition (see Subsection 5.2.3) is used. The time step is set to be

0.01 s. The cell size is 1 cm.
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Figure 5.12: Simulation setup: Richards equations.

Table 5.2: Values of parameters for the porous media flow model.
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Parameters Symbol Urea

Residual moisture content (-) θr 0.01

Saturated moisture content (-) θs 0.42

Van Genuchten model parameter (-) n 10

Van Genuchten model parameter (m−1) α 30

Specific storage (m−1) Ss 0

Saturated hydraulic conductivity (m/s) Ks 0.00851
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Figure 5.13: Water retention curve.

5.5.2 Simulation results

Figure 5.14 shows the simulated contours of pressure head over the snapshots of the

experiment (exp2) at time t = 1, 10, 20 and 40 minutes. The contours labelled with zero

represent the phreatic surfaces. These phreatic surfaces are found to be about 3 - 5 cm below

the blue dye interface. As explained in Subsection 5.4.2, the zone above the zero pressure

line and the blue dye interface could be the capillary fringe zone. In a numerical simulation,

the height of this zone typically depends on the parameters of the van Genuchten model

which has to be experimentally defined. At the blue dye interfaces, the capillary pressure

(head) pc described in Section 2.6 is about 0.04 m. This value is also dependent on the van

Genutchen parameters. Figure 5.15 shows the simulated saturation ratio along cross-section

x = -1 m (the red lines in Figure 5.14) at time t = 1, 10, 20 and 40 minutes.
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Figure 5.14: Plots of the simulated phreatic surfaces obtained from suGWFoam solver over
snapshots of the experiment (exp2) at time (a) 1, (b) 10, (c) 20 and (d) 40 min.
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Figure 5.15: Plots of the (suGWFoam) simulated saturation ratio (Sw) along cross-section
x = -1 m at time t = 1, 10, 20 and 40 min.

5.6 Comparison between porousInterFoam solver and suGWFoam solver for

steady drainage from porous media

In this section, the simulation results for the steady drainage case using porousInter-

Foam solver (NS) and suGWFoam solver (RE) are presented. The simulation and experiment

setup are the same as described above for the transient case except that water level in the

clear water zone is kept constant at 0.35 m. The boundary condition in the simulations is

adjusted accordingly. It can be seen in Figure 5.16 that the phreatic surfaces obtained from

the two solvers are the same and match well with the measurement.
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Figure 5.16: Plots of the simulated phreatic surfaces obtained from porousInterFoam solver
(NS) and suGWFoam solver (RE) and the manometer measurement over snapshots of the
experiment of steady drainage from porous media.
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CHAPTER 6

SATURATED GRANULAR DAM-BREAK FLOWS

This chapter presents a numerical model porousMixtureInterFoam obtained by cou-

pling interFoam for mixture flows and porousInterFoam for porous flows. The governing

equations for each solver and the coupling algorithm are described in detail. The constitutive

relation for the mixture and cohesion of granular material in partially saturated conditions

are discussed. The coupled model (porousMixtureInterFoam) is validated using the satu-

rated granular dam-break flow experiment conducted in the dam-break facility of NCCHE

at the USDA-ARS National Sedimentation Laboratory in Oxford, Mississippi. Comparisons

of numerical and experimental results are presented.

6.1 The coupled solver (porousMixtureInterFoam)

The porousMixtureInterFoam is the coupled solver between interFoam for flows of

grain-fluid mixture and porousInterFoam for porous media flows. For modeling grain-fluid

mixture flows, the differences in the governing equations used in dry granular flows in Chapter

4, and saturated granular flow in this Chapter are that: (i) The diffusion stress term is

included for saturated granular flow (see Section 2.4 for details), (ii) the effective viscosity

used in this Chapter includes both a frictional term and a viscous term, and (iii) the frictional

part of the effective viscosity takes into account the effect of interstitial water through pore

water pressure. This pore water pressure is obtained from the porousInterFoam solver.

Details of governing equations for both solvers are presented below as well as the coupled

algorithm.
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6.1.1 Governing equation for mixture flows

As described in Section 2.4, the governing equation of the grain-fluid mixture can be

obtained by adding the mass and momentum balance equations of the solid phase and the

fluid phase. The resulting equation has the form similar to the equation of homogeneous

mixture except the extra term (5 · T ′) which is called the diffusion stress term. The mass

and momentum equations can be written as follow:

∂ρ

∂t
+5 · (ρu) = 0 (6.1)

∂ρu

∂t
+5 · (ρuu) = ρg +5 · (T s + T f + T ′) (6.2)

where T s and T f are the stress tensors of the solid and liquid phases,

T ′ = −φsρs(us − u)(us − u)− φfρf (uf − u)(uf − u), (6.3)

ρ is the mixture density and u is the velocity defined by

ρ = φsρs + φfρf , (6.4)

u =
φsρsus + φfρfuf

ρ
(6.5)

Implementation of the mixture model in OpenFOAM is fairly straightforward. The

interFoam solver can be used to solve the velocity (u) and pressure (p) of the mixture. The

diffusion stress term has to be added to the momentum equation of interFoam. To calculate

this term, velocity of water (uf ) is obtained from the porousInterFoam solver and the grain

velocity (us) is then computed using equation 6.5.
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6.1.2 Viscous shear stress of the mixture

In the case of a dry granular flow where interstitial fluid plays no significant role in

the dynamic of the flow, it can be seen in Chapter 4 that, the simulation results show a good

agreement with the experiments by using the effective viscosity defined as

ηeff (‖D‖, p) =
µp

‖D‖
(6.6)

where ‖D‖ is second invariant of the strain rate tensor, µ is analogous to a coefficient of

friction (µ = tanφ, φ is the internal friction angle), and p is the total mixture pressure.

In the case of initially saturated grain-fluid mixture, the total mixture pressure (p) is

replaced by the effective inter-particle normal stress (peff ) which is approximated by taking

the total mixture pressure and subtracting the pore water pressure (pw) from it, yielding

peff = p − pw. This definition of effective stress correspond to Terzeghi’s effective stress.

The effective viscosity can be defined as:

ηeff (‖D‖, p) = c+
µpeff
‖D‖

+ k(‖D‖)n−1 (6.7)

where k is the consistency index, n is the flow index and c is the cohesion (see Section 6.1.3).

The effective viscosity for the mixture is then the sum of a frictional term and a viscous term.

The flow index n = 0.33 is chosen. The consistency index is a model calibration parameter.

In this study, k = 0.3 gives promising results. The pore water pressure (pw) is obtained by

solving porous media flows through the mixture which is given in details in Section 6.1.4.

6.1.3 Cohesion of granular materials under variably saturated conditions

In soil mechanics and continuum mechanics, cohesion refers to shear resistance or

strength under zero normal stress (Lu and Likos [54]). However, cohesion, by definition, is

the stress or act of sticking together. This stress provides resistance to externally applied

stress that is manifest in the form of either tensile or shear stress. In the form of shear stress,
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Figure 6.1: Relation between cohesion and isotropic tensile stress in saturated granular
media. Picture taken from Lu and Likos [54].

it is cohesion (shear resistance) while isotropic tensile stress refers to normal resistance. The

relation (see Figure 6.1) between cohesion and isotropic tensile stress is that cohesion (c)

is the mobilized shear resistance of isotropic tensile stress (σss) mechanically through the

internal friction angle (φ):

c = −σss tanφ (6.8)

The shear strenght parameters, cohesion and friction angle, define the Mohr-Coulomb fail

criterion:

τ = (σ − σss) tanφ = σ′ tanφ (6.9)

where τ is the shear strength, σ is the total stress and σ′ is the effective stress.

For variably saturated granular media, cohesion is caused by inter-particle physico-

chemical forces (van der Waals, electric double layer repulsion and cementation) and capillary

force. The isotropic tensile stress due to all these mechanisms is conceptualized as suction

stress (Lu and Likos [55]). This suction stress is highly dependent on material type and

degree of saturation, shown in Figure 6.2. For sandy soil, suction stress is zero for dry and

fully saturation but could reach several kPa in minimum at intermediate saturation. For silty

soil, suction stress is not zero at both dry and fully saturated conditions and, at intermediate

saturation, it can reach several tens of kPa. For clayey soil, suction stress is maximum at

fully saturated condition but decreases as saturation decreases. The PET pallets used in
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Figure 6.2: The suction stress characteristic curve (SSCC) for various soil types. Picture
taken from Lu and Likos [54].

Rébillout et al. [74] is a coarse material with diameter of 2.867 mm. The suction stress

would fall into the rang of sandy soil type with the values ranging from about 0 to 1 kPa.

6.1.4 Governing equation for porous flows

The macroscopic governing equations for flows in porous media derived by Wang et

al. [85] are employed (see details in Section 5.1). The equations are written as follow:

5 · uw = 0 (6.10)

∂ (ρfuw)

∂t
+5 · (ρfuwuw) = −5 pw + µ5 ·

[
5 (uw) + [5 (uw)]T

]
+ F (6.11)

where ρf is the fluid density, uw is the intrinsic phase average velocity, pf is the pressure,

µ is the dynamic viscosity and F is the total body force including the resistance from the

porous medium and other external forces and defined by

F = −µn
K

(uw − us) + ρfg. (6.12)

82



6.1.5 The coupled algorithm

In order to couple interFoam and porousInterFoam, a python library was developed

to integrate the two solvers into a main program. Detailed relationship of the coupled algo-

rithm is presented in Figure 6.3. In the flowchart, after the main program starts, geometry,

parameters, constants and coefficients are initialized. At half time step of the mixture solver

(interFoam), the porous flow model (porousInterFoam) is solved. At this stage, pore water

pressure (pw) is obtained and sent to the mixture model to calculated the viscous shear

stress. Then, the mixture model is solved for grain-fluid mixture flow. At this stage, geom-

etry of the porous medium and mixture velocity are obtained and sent back to the porous

flow model. These steps continue until the simulation ends.

6.2 Experimental setup

Figure 6.4: PET pellets.

One of the experiments [74] conducted in the

dam-break facility of NCCHE at the USDA-ARS Na-

tional Sedimentation Laboratory in Oxford, Missis-

sippi is used to validate the coupled model. In this

experiment, the channel consisting of a 0.5 m width,

0.6 m height and 7.6 m length was divided by a sliding

gate into: (i) a 3.24 m length of upstream reservoir,

and (ii) a 4.36 m length of dam-break channel. The

PET pellets used in the experiment and the experimental setup are shown in Figure 6.4

and Figure 6.5. Some of the intrinsic and bulk properties of the material are summarized in

Table 6.1. In the table, Dm is the mean nominal, Sf is the shape factor, diameter, n is the

porosity, ρPET is the density of the PET pellets, K the (packed) hydraulic conductivity, and

φ is the friction angle. At the beginning of the experiments, the sliding gate is pulled upward

with a speed of about 8 m/s to release the mixture of PET pellets and water to downstream.

Blue dye was added to the water in order to facilitate the tracking of the phreatic surface by
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start

Initialize geometry,
initial parame-
ters, constants,
and coefficients

At t = tmix - ∆t/2,
solve porous flows us-
ing porousInterFoam

Update pore water
pressure (pw) and ve-
locity of water (uw)

At t = tmix, solve mixture
flows using interFoam

t > tend

Update geometry of
the porous medium

and grain-fluid
mixture velocity (u)

End

no

yes

Figure 6.3: Detailed relationship of porousMixtureInterFoam algorithm.
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imaging techniques. The flow fields in the upstream reservoir and the downstream channel

were recorded using two and four high-speed cameras, respectively.

 

 

 

 

 

dam-break channel upstream reservoir 

PET pellets saturated 

with water 

sliding gate high-speed cameras 

Figure 6.5: Experimental setup (Rébillout et al. [74]).

Table 6.1: Properties of the PET pellets (Ozeren et al. [67]).

d10 (mm) d50 (mm) d90 (mm) Dm (mm) Sf n (packed) ρPET (kg/m3) K (mm/s) φ (◦)

2.812 2.867 2.920 2.861 0.832 0.34 1422 21 30

6.3 Simulation setup

In the numerical simulation, the 3.93 m-long and 0.5 m-high computational domain

(Figure 6.6) is initialized as two zones with different initial properties: (i) the mixture zone

containing PET pellets saturated with water, and (ii) the empty cell zone. This domain

is used for both the interFoam solver for mixture flow and the porousInterFoam solver for

flow in porous media. In the mixture flow model, the wall boundary condition is used for

the left boundary while atmosphere and open boundary conditions are used for the top and

right boundaries. At the bottom, the Coulomb slip boundary condition is employed. For
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Mixture:                                      
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Figure 6.6: Computational domain (The boundary conditions shown in the Figure are for
the mixture flow model (interFoam)).

the porous flow model, boundary conditions are the same as the mixture model except at

the bottom where the slip boundary condition is used. For both solvers, the time step is

set to 0.001 s while the cell size is 0.01 m. The parameters used in the mixture model

are shown in Table 6.2. For the porous model, in Equation 6.12, porosity (n) is 0.34 and

permeability is 2.4 × 10−9. However, in the region where mixture velocity is greater than

0.01 m/s, porosity is set 0.42 and permeability is set to 2.4 × 10−8. Comparison between

simulation and experimental results are presented in the following section.

Table 6.2: Parameters used in the mixture model.

Particle Material Volume Repose Consistency Flow Cohesion

diameter (mm) density (kg/m3) fraction angle (◦) index index (Pa)

2.867 1422 0.66 30, 35 0.3 0.33 0, 0.3, 0.5

6.4 Simulation results

This section presents simulation results of saturated granular dam-break flow ob-

tained from the coupled solver porousMixtureInterFoam in comparison with the experiment

conducted by Rébillout et al. [74]. In Section 6.4.1, the mixture profiles obtained from the

simulations with different values of cohesion are presented along with the experimental re-

sults. Velocity vectors and magnitudes obtained from the simulation is presented in Section
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6.4.2. In Section 6.4.4, the mixture profiles obtained from the simulations with different

values of angle of repose are presented along with the experimental results. In Section

6.4.3, comparisons between the mixture profiles and the phreatic surfaces obtained from the

simulation and the experiment are presented.

6.4.1 Mixture profiles and front propagation for different values of cohesion

To obtain simulation results for this section, the model parameters described above

are used in the simulation runs. Angle of repose (φ) is set to 35◦. Theoretically, the angle

of repose is approximately equal to the macroscopic material internal friction angle. In

the experiment, the angle of repose was measured and the value of φ = 30◦ was obtained.

However, by using the direct shear test, the values of internal friction angle range from 31◦

to 35◦ were obtained. In the numerical simulation, φ = 35◦ gives better results. Sensitivity

test of φ is presented in Section 6.4.4.

To investigate the effect of cohesion, the value of c in Equation 6.8 is set to 0, 0.3

and 0.5 Pa. The case with c = 0 corresponds to dry condition, meaning that the zone

above the phreatic surface is assumed dry. When c = 0.3 Pa or c = 0.5 Pa, this zone is

assumed partially saturated condition, and the values of suction stress (σs) obtained from

Equation 6.8 are 0.43 and 0.71, respectively. These values of suction stress are within the

range obtained for coarse particles like sandy soil (see Section 6.1.3). The simulation and

experimental results are shown in Figure 6.7.

Figures 6.7(a)-(d) show that the mixture profiles obtained from the simulation with

different values of cohesion are similar except at the locations near x = 0. There is no

difference in the front propagation and only slightly difference in the slope of the mixture.

However, at time t = 1.2 s (Figure 6.7(e)), the difference in the slope of the profiles can

be observed. For higher values of cohesion, the slopes are steeper. This can also be seen in

the final deposit at time t = 2.5 s (Figure 6.7(f)). Moreover, the difference is found in the

run-out distances. The higher the value of cohesion, the less the run-out distances.
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The saturated granular dam-break experiment by Rébillout et al. [74] used to study

in this case was packed to an initial volume fraction of solid around 0.66. This solid volume

fraction is greater than a solid volume fraction in the critical state in the context of Critical

State Soil Mechanics (Schofield and Wroth [80]). The critical state refers to the condition in

which no volume change occurs when undergoes shearing deformation. The critical state at

low confining pressure corresponds to a solid volume fraction of around 0.55 for uniform sized

spheres. If the material is initially under an over-consolidated condition, then dilation will

occur when the material is subject to a shearing deformation (Savage et al. [78]). Due to the

dilation, the pore volume increases giving rise to a negative pore pressure. The negative pore

pressure causes a positive contribution to the effective stress and produces an increase in the

effective Coulomb shear strength. This could explain the delay in the collapse observed in

the early stage of the experiment. This delay is quantified in Figure 6.8.

In the simulation, the model is not able to capture the delayed response of the mixture

in the early stage of the collapse process as can be seen in Figure 6.7(a)-(b) and in Figure

6.8, the front in the simulations start moving at time about 0.1 s as compared to 0.3 s in

the experiment. This may be partly due to the fact that the model does not account for

dilation. The pore water pressure dissipation in the early stage of the collapse process is

not appropriately simulated by the model (see Section 6.4.3). As suggested by George and

Iverson [24] that granular dilation causes dissipation of pore pressure, thus further stabilizing

granular flow motion. Although cohesion of granular material in partially saturated zone is

included, it is not enough to describe this high viscous behavior in the early stage. Moreover,

the effect of dilation should also be considered in the constitutive model for the mixture.

Although the model fails to capture this behavior, it can predict well the front propagation

as shown in Figure 6.8. As shown in Figure 6.7(f), the final profile is also well captured.

Another important difference between the simulation and the experiment is concave and

convex fronts. The simulation shows more fluid-like behavior with friction at the bottom.
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Figure 6.7: Comparison of the mixture profiles between the simulations with different values
cohesion (c) and the experiment time 0.2, 0.4 and 0.6 s.
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(d)

t = 0.7 s
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Figure 6.7: Comparison of the mixture profiles between the simulations with different values
of cohesion (c) and the experiment time 0.7, 1.2 and 2.5 s.
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Figure 6.8: Propagation of the fronts for the simulations with different values of cohesion
(c) and the experiment.

6.4.2 Velocity vectors and velocity magnitudes

Figure 6.9 shows velocity vectors and velocity magnitudes obtained from the simula-

tion with c = 0.5 Pa at time 0.4, 0.6, 0.7 and 1.2 s. In all figures, the maximum velocities

concentrate near the front of the mixture. In the downstream of the gate location (x > 0),

horizontal velocity is dominant while in the upstream the flow is in both horizontal and

vertical downward directions. At time t = 0.4 s, the maximum velocity is about 0.8 m/s.

Later, the maximum is about 0.6, 0.5 and 0.4 m/s at time 0.6, 0.7 and 1.2 s, respectively.

6.4.3 Mixture profiles and phreatic surfaces

As the mixture falls downwards and spread horizontally, motion of interstitial water

occurs in the same regions as the moving mixture. Figure 6.10 shows the mixture profiles

and phreatic surfaces of the simulation and the experiment at different times. At time t =

0.2 s (Figure 6.10(a)), water level in the simulation near the gate location (x = 0) drops

below the mixture height. The shape of the water profile is similar to that of the mixture.

At time t = 0.4 s (Figure 6.10(b)), the shape of the simulated water surface follows the

shape of the mixture. The mixture front in the simulation is saturated with water, while in

the experiment the mixture moves with the dry front. This may be to a dilation of dense

granular material when the material is subjected to a shearing deformation. As a result of

the dilation, the interstitial pore volume is increased giving rise to water to be drawn into
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Figure 6.9: Velocity vectors and velocity magnitudes obtained from the simulation at time
0.4, 0.6, 0.7 and 1.2 s.
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the interstitial space. Since the model does not include this effect, it cannot capture well

this phenomenon, especially in the early stage of the flow. However, at later time t = 0.8 s

(Figure 6.10(d)), the simulated water profile matches with the experiment.

6.4.4 Mixture profiles for different values of angle of repose

Figure 6.11 shows the mixture profiles obtain from the simulation with different values

of angle of repose (φ) and the experiments at time 0.7, 1.2 and 2.5 s. At time 0.7 and 1.2

s, the fronts of the mixture in the simulations and the experiment are in the same location.

However, at time t = 2.5 s, the run-out distance is more in the simulation with φ = 30◦.

This result agree with the simulation of dry granular flow presented in Section 4.10.1 in

that a decrease of φ increases the displacement and decreases the column height. The final

profile of the simulation with φ = 35◦ is closer to the experiment than the final profile of the

simulation with φ = 30◦.
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Figure 6.10: Comparison of the mixture profiles and the phreatic surfaces between the
simulation and the experiment at time t = 0.2, 0.4, 0.6 and 0.8 s.
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Figure 6.11: Comparison of the mixture profiles between the simulations with different values
of angle of repose (φ) and the experiment time 0.7, 1.2 and 2.5 s.
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CHAPTER 7

SUMMARY, CONCLUSION, AND FUTURE RESEARCH

7.1 Summary and conclusion

In this PhD dissertation, the main focus is on the development of a coupled numerical

model for dam-break flows of saturated granular materials. The coupled model is built using

the existing solvers in OpenFOAM. The two main solvers used in this study are the interFoam

for grain-fluid mixture flows, and the porousInterFoam for flows in porous media. These

two solvers solve the governing equations analogous to the Navier-Stokes equations with

additional terms and different physical interpretation of an existing term. To accomplish the

task, it is divided into three main parts. First, dry granular dam-break flow model is studied

and compared with laboratory experiments. These cases represent granular flows where an

interstitial fluid plays no significant role in the dynamic of the flows. The homogeneous

model is employed for this case. Second, porous media flows through a static medium are

studied. Third, the coupled model of grain-fluid mixture flows and porous media flows is

developed by using the elements developed in the first and second phases to study saturated

granular dam-break flows. The mixture model is adopted, leading to an additional term

called the diffusion stress term.

For dry granular dam-break flows, the interFoam solver with some modifications is

used in the study. Two new modules for constitutive relations: the constant friction model

(Coulomb-type model) and the µ(I) rheology model are implemented in OpenFOAM. A

python library is developed to simulate movement of the sliding gate and used to investigate
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the influence of the gate on granular dam-break flow problems. The model is validated

using several laboratory experiments of dry granular dam-break flows with different granular

materials. The comparisons between the simulated and measured granular mass profile and

front propagation are in good agreement, indicating the successful application of the model.

In the study of flows through static porous medium, the two solvers: porousInterFoam

and suGWFoam are used. The difference between the two solvers is that the porousInterFoam

solves the Navier-Stokes equation with a pressure drop term while the suGWFoam solves

the nonlinear Richards’ equation. By using the Navier-Stokes solver, flows in both the

clear water zone and the porous zone can be solved with the same set of equations. This

capability is not directly obtained by using the Richards’ equation solver. However, if the

interest is to focus on modelling partially saturated zone, the Richards’ equation solver has

to be used. In the porousInterFoam, the approach to define a porous zone and it properties

is modified so that the solver can be used in the case of deforming porous medium. The

seepage boundary condition is implemented in suGWFoam. Both solvers are tested against

laboratory experiments of steady and transient drainages from porous medium. The results

show that the phreatic surfaces are well captured by the models, which reveals the capability

of the solvers to solve porous media flows. Due to difficulty in treating clear water zone and

moving boundary condition using the Richards’ equation, the Navier-Stokes solver is chosen

to couple with the mixture model in the next task.

The coupled numerical model developed in this study is based on the mixture the-

ory in which the solid and fluid constituents are kept distinct and a two-phase mixture is

assumed. The resulting governing equation is different from that obtained from the homo-

geneous model with an additional term called a diffusion stress term. A response from the

interstitial fluid and the solid phase is taken into account, leading to decomposing the normal

stress as an effective stress and pore fluid pressure. This pore pressure is obtained from the

porous medium solver. In this way, the mixture solver and the porous solver are coupled

and exchange necessary information. Apparent cohesion in the partially saturated zone is

97



considered. The coupled model is validated against laboratory experiment. The mixture

profiles and front propagation obtained from the simulations and the experiment show a

good agreement, which reveals the validity of the developed model to simulate saturated

granular dam-break flows.

7.2 Future Research

1. It can be seen in Figure 7.1 and 7.2 that, in the experiment, volume of the mixture

gained in the downstream floodplain is greater than volume of the mixture lost in

the upstream reservoir while there is no different between the two in the simulation.

Thus, some further effort should be devoted to the development of mixture model and

constitutive relationship that could describe the behavior of dense granular flow. The

mixture model should allow for the increase in volume of the mixture. The constitutive

relationship should include effect of dilation and be capable of exhibiting the very high

viscosity of the grain-fluid mixture causing the delayed collapse during the early stage

of the flow.

2. The modeling of variably saturated flows using a two-phase approach such as Richards’

equation solver will be challenging task when the medium is deforming. This would

require treating moving boundary condition to locate the free surface of the porous

medium. Moreover, when coupling with the mixture model, the effective stress in the

viscous stress term need to be redefined. In a partially saturated material, the stress

state is not only defined by the effective stress but also the so-called suction stress (Lu

et al. [53]).

3. The developed model can be applied to simulate a real event of geophysical flows and

tailings dam-break flows to test its performance. This would require increasing the

number of cells in the model and thus increase the computational cost significantly.

The simulations in the current study are run on a desktop PC with single processor. For
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larger simulations, it is suggested to use computer cluster to carry out the simulation

and enable parallel functionality of OpenFOAM.
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Figure 7.1: Time series of volume gained downstream, volume lost upstream, discharge
downstream, and discharge upstream of the gate obtained from the simulation.
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the gate obtained from the experiment by [74].
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A.1 The Cauchy stress tensor

In equation 4.16, the Cauchy stress tensor σ is introduced. This stress tensor consists

of nine components that includes all stresses acting on the volume element dV . That means,

shear and pressure forces because both can related to stresses. Relation between the total

stress (σ), shear-rate stress (τ ) and pressure (p) is discussed here.

σ =


σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 (A.1)

The stress tensor σ can be split into a hydrostatic σhyd and deviatoric σdev part:

σ = σhyd + σdev (A.2)

The hydrostatic part is given by

−pI = σhyd =
1

3
tr(σ)I (A.3)

where I is the identity matrix. The deviatoric part is given by

τ = σdev = σ − 1

3
tr(σ)I (A.4)

Using the above definition, Equation A.2 can be rewritten:

σ = −pI + τ (A.5)

The correct expression of τ has to be chosen depending on the behavior of the fluid.
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A.2 The shear-rate tensor

The shear-rate tensor is expressed by different equations depending on the behavior

of the fluid. For Newtonian fluids, the nine components of the shear-rate tensor can be

described as:

τxx = −2µ
∂ux
∂x

+

(
2

3
µ− κ

)
(5 · u), (A.6)

τyy = −2µ
∂uy
∂y

+

(
2

3
µ− κ

)
(5 · u), (A.7)

τzz = −2µ
∂uz
∂z

+

(
2

3
µ− κ

)
(5 · u), (A.8)

τxy = τyx = −µ
(
∂ux
∂y

+
∂uy
∂x

)
, (A.9)

τyz = τzy = −µ
(
∂uy
∂z

+
∂uz
∂y

)
, (A.10)

τzx = τxz = −µ
(
∂uz
∂x

+
∂ux
∂z

)
, (A.11)

where the quantity κ is described by Bird et al. [7] as the bulk viscosity. Nevertheless, Bird

et al. [7] mentioned that the quantity κ is not really important for dense gases and liquids

and can be neglected.

By introducing the strain-rate tensor D,

D =
1

2
[5u+ (5u)T ] (A.12)

the shear-rate tensor can be defined as:

τ = 2µD − 2

3
µ(5 · u)I. (A.13)

Derivation of Equation A.13 can be found in Holzmann [31]. The second term (−2
3
µ(5·u))

in Equation A.13 represents expansion and compression phenomena. To demonstrate the
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meaning of this term and the correlation to both phenomena, the continuity equation is used

to modified this equation. By using the product law, the continuity equation can be written

as:

5 · u = −1

ρ

[
∂ρ

∂t
+ u · 5ρ

]
. (A.14)

By substituting Equation A.14 into Equation A.13, the shear-rate tensor (τ ) can be written

as:

τ = 2µD − 2

3
µ
{
− 1

ρ

[
∂ρ

∂t
+ u · 5ρ

]}
︸ ︷︷ ︸

expansion and compression

I. (A.15)

It can be clearly seen that the second term on the RHS is related to the density change.

Thus, it is related to expansion and compression phenomena. If incompressible of fluid is

assume, this term will vanish based on the fact that the density will not change during time

and the gradient of a constant number is zero. The shear-rate tensor can be written as:

τ = 2µD. (A.16)

The expression of τ in Equation A.16 is similar to that in Equation 4.17. The difference

between the two equations is the viscosity. In Equation 4.17, the effective viscosity ηeff is

used.
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