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ABSTRACT

This thesis includes two main projects. The first project is a study of the effect of

black hole spin on the accuracy of the post-Newtonian approximation. We focus on the

gravitational energy produced by the quasicircular, equatorial, extreme mass-ratio inspiral

of a compact object into a Kerr black hole of mass M and spin J . For a given dimensionless

spin a ≡ J/M2 (in geometrical units G = c = 1), the energy flux depends only on the orbital

velocity v or (equivalently) on the Boyer-Lindquist orbital radius r. We investigate the

formal region of validity of the Taylor post-Newtonian expansion of the energy flux (which

is known up to order v8 beyond the quadrupole formula) by comparing the expansion to

numerical calculations of the flux. We find that, at any fixed post-Newtonian order, the

edge of the region of validity (as measured by v/vISCO, where vISCO is the orbital velocity at

the innermost stable circular orbit) is only weakly dependent on a. Independently of a, the

inclusion of angular multipoles up to and including ` = 5 in the numerical flux is necessary

to achieve the level of accuracy of the best-known (v8) expansion of the energy flux.

In the second project we study the excitation of Kerr black holes produced by infalling

particles. Such a study requires an accurate knowledge of the Green’s function describing the

response of the black hole to external perturbations. Relying on the formalism developed by

Mano, Suzuki and Takasugi, we improve and extend previous calculations of the contribution

to the Green’s function coming from quasinormal mode residues in the complex frequency

plane (“excitation factors Bq”). Using these results we compute the “excitation coefficients”

Cq (the mode amplitudes) when the source of the perturbations is a particle falling into the

black hole along the symmetry axis. We compare this calculation with numerical integra-

tions of the perturbation equations, and we show quantitatively how the addition of higher

overtones improves the agreement with the numerical waveforms.
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CHAPTER 1

INTRODUCTION

This thesis studies the gravitational radiation produced by particles around a rotating

(Kerr) black hole. The first part of the thesis studies the radiation emitted by particles in

circular, equatorial orbits around the black hole by comparing a post-Newtonian expansion of

the energy flux to numerical calculations. The second part of the thesis studies the excitation

of the characteristic oscillation modes of the black hole (“quasinormal modes”) by particles

falling into the hole along the rotation axis. In this introduction we present a short summary

of these two research projects.

The post-Newtonian approximation for particles in circular, equatorial orbits around Kerr

black holes

Binaries of compact objects, such as black holes (BHs) and/or neutron stars, are one

of the main targets for gravitational-wave (GW) observations. When the binary members

are widely separated, their slow inspiral can be well-described by the post-Newtonian (PN)

approximation, a perturbative asymptotic expansion of the “true” solution of the Einstein

equations. The small expansion parameter in the PN approximation is v/c, where v is the

orbital velocity of the binary and c is the speed of light. Asymptotic expansions, however,

must be used with care, as the inclusion of higher-order terms does not necessarily lead to an

increase in accuracy. Therefore one would like to determine the optimal order of expansion

and the formal region of validity of the PN asymptotic series [3, 50], i.e., the order and region

inside which the addition of higher order terms increases the accuracy of the approximation

in a convergent fashion.
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The accuracy of the PN approximation for quasicircular, nonspinning (Schwarzschild),

extreme mass-ratio inspirals (EMRIs) case was investigated by Yunes and Berti in Ref. [50].

By comparing the PN expansion of the energy flux to numerical calculations in the pertur-

bative Teukolsky formalism, Yunes and Berti concluded that (i) the region of validity of the

PN expansion is largest at relative 3PN order – i.e., order (v/c)6 (throughout this paper, a

term of O(v2N) is said to be of NPN order); and (ii) the inclusion of higher multipoles in

numerical calculations is necessary to improve the agreement with PN expansions at large

orbital velocities. The fact that the region of validity is largest at 3PN could be a hint that

the series actually diverges beyond 3PN order, at least in the extreme mass-ratio limit.

In chapter 2, we extend that study to EMRIs for which the more massive component

is a rotating (Kerr) BH. The present analysis focuses on the effect of the BH spin on the

accuracy of the PN expansion. We generalize the methods presented in Ref. [50] to take into

account certain pathological behaviors of the error function, used to determine the region

of validity. This generalization may also be applicable to comparable-mass systems.

A surprising result we find is that the edge of the region of validity (the maximum

velocity beyond which higher-order terms in the series cannot be neglected), normalized to

the velocity at the innermost stable circular orbit, is weakly dependent on the dimensionless

Kerr spin parameter a. In fact, this edge is roughly in the range v/vISCO ∈ [0.3, 0.6] for

almost all PN orders, irrespective of a. This suggests, perhaps, that the ratio v/vISCO is a

better PN expansion parameter than v/c, when considering spinning BHs.

Another surprising result is related to the behavior of the edge of the region of validity

as a function of PN order. In the nonspinning case, beyond 3PN order, O(v6/c6), this edge

seemed to consistently decrease with PN order [50]. This was studied up to O(v11/c11), the

largest PN order known for the nonspinning case. In the spinning case, however, the series

is known only up to O(v8/c8), and we are thus unable to conclusively determine if the trend

found in the nonspinning case persists. Higher-order calculations will be necessary to draw

more definite conclusions.
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Numerical (or in this case, perturbative) calculations of the energy flux rely on multi-

polar decompositions of the angular dependence of the radiation. By comparing the conver-

gence of the multipolar decomposition to the convergence of the PN expansion of the energy

flux, we find that for v/c ∼ 0.1 the inclusion of multipoles up to and including ` = 5 seems

necessary to achieve the level of accuracy of the best-known (N = 8) PN expansion of the

flux. These conclusions are also largely independent of the spin parameter a.

Quasinormal mode excitation of Kerr black holes

Distorted black holes (BHs) emit gravitational radiation. A spectral decomposition

of the perturbation response of the Schwarzschild [25] and Kerr [9] geometries using Green’s

function techniques shows that a discrete sum of QNMs – damped oscillations whose fre-

quencies and damping times depend only on the BH mass and angular momentum – will

dominate the response at all but very early and very late times. Because of the qualita-

tive similarity with a ringing bell, this intermediate stage is known as “ringdown” in the

gravitational-wave literature [42, 34, 12].

Numerical simulations show that binary BH mergers in general relativity inevitably

result in the formation of a distorted rotating remnant, which radiates ringdown waves while

settling down into a stationary (Kerr) solution of the Einstein equations in vacuum. Despite

the great advances in binary BH simulations in four [27, 67, 36] and higher dimensions [66],

the excitation of the QNMs of the remnant BH resulting from a merger is still poorly under-

stood. Perturbative techniques are especially valuable to understand ringdown excitation in

situations that pose a particular challenge to numerical simulations, namely:

1) Large mass-ratio binaries. One of the frontiers in numerical simulations of BH mergers

are quasicircular binaries with large mass ratios. Progress in this direction has been slow

but steady, both in the quasicircular case – where initial record mass ratios q = m1/m2 = 10

[40] have been broken using “hybrid” techniques [5, 33] – and in the head-on case, where

simulations with q = 100 have recently been performed using different approaches [68, 75]. In

3



this regime, perturbation theory is crucial to validate and/or optimize numerical simulations.

2) Large spins. Numerical simulations of BH binaries are usually carried out using either

the Baumgarte-Shapiro-Sasaki-Nakamura (BSSN) formulation of the Einstein equations and

a finite-difference scheme, or using the harmonic formulation and spectral methods. The

first class of simulations is limited to dimensionless spins a/M = J/M2 . 0.93, because this

is the maximum spin that can be achieved with puncture initial data [6]. Initial data with

spins as large as a/M ∼ 0.97 can be constructed [30] and have been evolved using spectral

codes [29, 28]. These simulations present a significant challenge for modeling efforts using

effective-one-body techniques when one considers binaries with aligned spins a/M & 0.7 [2].

Models of the late merger and ringdown phase can be significantly improved by using first-

principle calculations in BH perturbation theory, rather than a phenomenological matching

of inspiral waveforms with QNM superpositions of largely arbitrary amplitudes and starting

times.

3) Higher dimensions. Numerical simulations in higher dimensions are very challenging, and

simple calculations in BH perturbation theory can give insight into the results of the simula-

tions. For example, the qualitative behavior of the energy and linear momentum radiated by

particles falling into higher-dimensional Schwarzschild-Tangherlini BHs (predicted in Refs.

[10, 13]) is in excellent agreement with the first numerical simulations in D = 5 [38]: see,

e.g., Refs. [32, 73] for reviews.

First-principle calculations of QNM excitation in four space-time dimensions would

be particularly beneficial in building semianalytical models of the merger/ringdown phase,

to be used as matched-filtering templates in gravitational-wave searches. In chapter 3, we

carry out these calculations in four spacetime dimensions considering, for simplicity, head-on

particle infalls into Schwarzschild and Kerr BHs. Our study improves and exs the results of

Ref. [9].
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CHAPTER 2

ACCURACY OF THE POST-NEWTONIAN APPROXIMATION

This chapter is organized as follows. In Section 2.1 we present the energy flux radiated

by quasicircular, equatorial Kerr EMRIs in the adiabatic approximation, as computed in PN

theory [23, 37, 65] and with accurate frequency-domain codes in BH perturbation theory [47,

48, 49]. In Section 2.2 we discuss the region of validity of the PN approximation in terms of

the normalized orbital velocity v/vISCO and of the normalized orbital radius r/rISCO, where the

“ISCO” subscript stands for “innermost stable circular orbit”. We consider both corotating

and counterrotating orbits. In Section 2.3 we study the number of multipolar components

that must be included in the numerical flux in order to achieve sufficient accuracy. Finally,

in Section 4 we present our conclusions. We follow the same notation as in Ref. [50] and we

use geometrical units (G = c = 1).

2.1 Energy flux for quasicircular, equatorial EMRIs in Kerr: numerical and PN results

In the PN approximation, the GW energy flux radiated to infinity by a test particle

in a circular orbit and on the equatorial plane of a Kerr BH is given by [37, 65, 23]

F (N) = FNewt

[
N∑
k=0

(ak + bk ln v) vk

]
. (2.1)

This flux is known up to N = 8 when including spins, and up to N = 11 in the nonspinning

case. The leading (Newtonian) contribution1 is

FNewt =
32

5

µ2

M2
v10 , (2.2)

1Notice that there is a typo in Eq. (18) of Ref. [50].
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where µ and M are the test particle mass and Kerr BH mass, respectively. As we are here

interested in the accuracy of the PN approximation, we will ignore the flux of energy going

into the horizon, which cannot always be neglected when building waveform templates.

The expansion coefficients ak and bk contain both spin-independent and spin-dependent

terms, where the dimensionless spin parameter a is related to the Kerr BH spin angular mo-

mentum via J = aM2. These coefficients can be found in Eq. (G19) of Ref. [37], so we do not

list them explicitly2. Note that logarithmic terms only appear at 3PN and 4PN (i.e., b6 6= 0

and b8 6= 0), and that the (ak, bk) for 8 < k ≤ 11 are known only in the spin-independent

limit.

We will denote by v the orbital velocity, defined as v ≡ (MΩ)1/3 (where Ω is the small

body’s orbital frequency), and related to the Boyer-Lindquist radius r by

r

M
=

(1− av3)2/3

v2
, (2.3)

whose inverse is

v =
[
(r/M)3/2 + a

]−1/3
. (2.4)

At the ISCO we have [41]

rISCO

M
= 3 + Z2 −

√
(3− Z1)(3 + Z1 + 2Z2) , (2.5)

Z1 ≡ 1 + (1− a2)1/3
[
(1 + a)1/3 + (1− a)1/3

]
,

Z2 ≡ (3a2 + Z2
1)1/2 , (2.6)

where a > 0 (a < 0) corresponds to corotating (counterrotating) orbits.

2See also their Eq. (3.40), that provides a similar expansion in terms of the PN orbital velocity parameter
v′ =

√
M/r0.
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Using Eqs. (2.3) and (2.5), we also have

r

rISCO

=
(1− av3)2/3

v2
[
3 + Z2 ∓

√
(3− Z1)(3 + Z1 + 2Z2)

] .
The ISCO velocity can be found by replacing rISCO in Eq. (2.5) into the velocity-radius

relation (2.4). The velocity vISCO and the radius rISCO/M are displayed graphically in Fig. 2.1.

Observe that, although rISCO →M as a→ 1, vISCO is bounded by 2−1/3 ' 0.79.

0.3

0.4

0.5

0.6

0.7

0.8

v
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C
O

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
a

0
1
2
3
4
5
6
7
8
9

r IS
C

O
/M

Figure 2.1

ISCO velocity (vISCO, top panel) and radius (rISCO/M , bottom panel) as a function of a. Here
and elsewhere we use the convention that a negative spin parameter refers to counterrotating
orbits.

The rigorous definition of velocity is a tricky business in general relativity. We have

here chosen to define velocity in a quasi-Newtonian fashion, in terms of the angular velocity

and Kepler’s law. One can think of this velocity as that which would be measured by an

observer at spatial infinity. On the other hand, one can also study the velocity measured

by an observer in the neighborhood of the BH and that is rotating with the geometry; this

7
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Figure 2.2

Gravitational energy flux (normalized to FNewt) as a function of the normalized orbital ve-
locity, v/vISCO. The left panel is for corotating orbits, and the right panel for counterrotating
orbits. Different insets refer to different spin parameters a, as indicated. The thick black
line is the numerical flux. Other linestyles refer to different PN approximations: F (2) (thin
black), F (3) (long-dashed red), F (4) (dash-dotted green), F (5) (dash-dash-dotted blue), F (6)

(dash-dot-dotted orange), F (7) (dotted dark green), F (8) (short-dashed violet).

quantity would differ from v in Eq. (2.4), and, in fact, its associated vISCO would tend to

1/2 in the limit a → 1 (see, e.g., Eq. (3.11b) in Ref. [41]). This shows that the a → 1

limit is very delicate, and the precise value of the velocity field is an observer-dependent

(and non-invariant) quantity. However, once a definition is chosen, the velocity is a perfectly

good quantity to parametrize the structure of the PN series.

A first guess at the asymptotic behavior of this series can be obtained by simply

plotting different PN approximants F (N) and comparing them with high-accuracy, numerical

results for the energy flux, obtained from a frequency-domain Teukolsky code (see Refs.

[23, 77] for early work in the Schwarzschild case, and Fig. 9 in Ref. [78] for a related discussion

in the Kerr context). The numerical results used in this comparison are the same as those

used in Refs. [47, 48, 49] to study the accuracy of a resummed effective-one-body version

of the PN approximation to model EMRIs. They consist of numerical fluxes, evaluated for

spin parameters ranging from a = 0 to a = 0.9 in steps of ∆a = 0.1 (in fact, we also have

access to the counterrotating flux for a = −0.99). The typical accuracy of these fluxes is

better than one part in 1010 for all velocities and spins. We refer the reader to Section IIB

8



of Ref. [49] for a more detailed description of the code.

Figure 2.2 compares the different PN approximations to the numerical flux. The left

panel refers to corotating orbits, and the right panel to counterrotating orbits. Different

insets correspond to different values of the BH spin, and different linestyles represent dif-

ferent orders in the PN expansion. As stated earlier, in this figure and in the rest of this

paper, we neglect energy absorption by the BH. Observe that, as first noted by Poisson in

the Schwarzschild case [23], the behavior of the PN expansion is quite erratic. For any given

a, rather than converging monotonically, higher-order approximations keep undershooting

and overshooting with respect to the “exact” numerical result. This oscillatory behavior is

quite typical of asymptotic expansions, and it has been studied in depth, especially for ex-

treme mass-ratio inspirals into nonrotating BHs [23, 77]. Various authors proposed different

schemes to accelerate the convergence of the PN expansion, including Padé resummations

[62, 63, 1] and the use of Chebyshev polynomials [20]. The asymptotic properties of these

resummation techniques are an interesting topic for future study.
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Figure 2.3

Left: absolute value of the remainder of the N = 3 PN flux, |F − F (3)|/FNewt (solid line),
and the N = 4 term |F (4) − F (3)|/FNewt (dashed red line). The inset shows the modulus of
their difference, Eq. (2.8), in a semilogarithmic scale. Right: same as the left panel, but for
the N = 6 remainder and N = 7 term. All curves in this plot refer to the counterrotating
case with spin a = −0.5. The lower (vl, more conservative) and upper (v̄, less conservative)
edges of the region of validity are (somewhat conventionally) delimited by the vertical lines,
as explained in the main text.

9



This figure provides some clues about the edge of the region of validity of the PN

approximation. For corotating orbits (left panel of Fig. 2.2), as the spin increases from

zero to a = 0.9, the higher-order PN approximants start to deviate from numerical results

at lower values of v/vISCO: this happens roughly when v/vISCO ' 0.6 for a = 0, and when

v/vISCO ' 0.4 for a = 0.9. This leads us to naively expect a shrinking of the region of validity

of the PN approximation as a function of positive a. This expectation will be validated (at

least qualitatively) in Section 2.2: cf. the bottom-right panel of Fig. 2.4 below.

At first sight, the results for counterrotating orbits (right panel of Fig. 2.2) seem

surprisingly good. In particular, the 3PN approximation (dash-dot-dotted, orange line) is

almost indistinguishable from the numerical result all the way up to v = vISCO when the

spin is large. Such a good performance is simply because of the well-known, monotonically-

increasing behavior of vISCO with spin, with a minimum as a → −1 (cf. Fig. 2.1). Since

counterrotating orbits probe a smaller range in v/c (up to v/c ∼ 0.35 for fast-spinning

BHs), the PN approximation is more accurate. Unfortunately, prograde accretion is likely

to be more common than retrograde accretion in astrophysical settings (see, e.g., Ref. [11]).

Moreover, the 3.5PN and 4PN approximants are significantly worse than the 3PN one at

a = −0.99. This is consistent with the PN series being an asymptotic expansion, as one of

the characteristic features of the latter is that beyond a certain optimal order, higher-order

approximants become less accurate [3].

2.2 Region of validity

Let us now turn to determining the region of validity of the PN approximation for

different values of the BH spin. For a complete review of asymptotic approximation tech-

niques we refer the reader to Ref. [3]. Ref. [50] presents a short introduction to the topic in

the present context. As explained in those references, the edge of the region of validity is
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determined by the approximate condition

O(F − F (N)) = O(F (N+1) − F (N)) , (2.7)

where F denotes the “true” (numerical) result for the GW energy flux and F (N) denotes the

N -th order PN approximation.

An inherent and intrinsic ambiguity is contained in Eq. (2.7), encoded in the order

symbol. This makes any definition of the region of validity of an asymptotic series somewhat

imprecise. As shown in Fig. 2.3 (or in Fig. 8 of Ref. [50]), there are two qualitatively different

scenarios:

i) Left panel of Fig. 2.3: The next-order term |F (N+1)−F (N)| starts off smaller than the

remainder |F − F (N)|, but eventually they cross and separate. We can then estimate

the edge of the region of validity v̄ by solving δ(N)(v̄) = 0, where

δ(N)(v) ≡
∣∣|F − F (N)| − |F (N+1) − F (N)|

∣∣ (2.8)

is the error function. If we also define a more conservative lower edge of the region of

validity, vl, as the point where

dδ(N)(v)

dv

∣∣∣∣
vl

= 0 , (2.9)

we can then introduce an uncertainty width of the region of validity: δv̄ ≡ v̄ − vl; see

the inset of the left panel of Fig. 2.3.

ii) Right panel of Fig. 2.3: The remainder and the next-order term are of the same order

for sufficiently low velocities, until eventually the curves separate for larger velocities.

This situation is the rule, rather than the exception, for the problem we consider in

this paper. When this happens, method i) cannot be applied, because δ(N)(v) = 0 has
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no solutions. Given the approximate nature of the order relationship in Eq. (2.7), we

can define the region of validity as the point v̄ such that δ(N)(v̄) = δ0, where δ0 is some

given tolerance defined below.
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Figure 2.4

Edge of the region of validity as a function of a for different PN orders, in the corotating
(black, straight line) and counterrotating (red, dashed line) cases. The blue, dashed lines
for N = 3 refer to the counterrotating case, and they were obtained by an alternative
method (see the discussion around Fig. 2.7 below).

Higher-order approximations should be sensitive to a smaller tolerance, which implies

that δ0 cannot be set arbitrarily. Instead, δ0 should be given by the error in the difference

between the Nth remainder and the (N + 1)th-order term. This error is presumably of the

order of the error in the (N+1)th-order term, and it can be estimated by the (N+2)th-order

term. The imprecision of the order symbol is now encoded in the fact that δ0 depends on v.

We can try to estimate its value by evaluating the (N + 2)th order term in the middle of the

allowed range, that is, at vISCO/2:

δ0 =
∣∣F (N+2)(vISCO/2)− F (N+1)(vISCO/2)

∣∣ . (2.10)

This estimate of δ0 is not exact, so we can try to provide a more conservative lower edge of
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the region of validity, vl, by imposing the condition3 δ(N)(vl) = δ0/2. We can then define

an uncertainty on the region of validity δv̄ = |v̄ − vl|. This is illustrated pictorially by the

vertical lines in the right panel of Fig. 2.3.

Let us now discuss the behavior of the edge of the region of validity as a function of

the PN order N and of the BH spin a. The corotating and counterrotating regions of validity

and the associated errors are shown in Fig. 2.4 with solid black (dashed red) error bars for

corotating (counterrotating) orbits, respectively.

Let us first consider the corotating case (solid black error bars). All results were

obtained using method ii) above. At any fixed PN order, the normalized region of validity

v/vISCO remains roughly constant as a function of a. With a few exceptions, the most

conservative estimate vl (lower edge of the error bars in the plots) is typically in the range

v/vISCO ∈ [0.3 , 0.6]. This is consistent with the left panel of Fig. 2.2, where we see that

all PN approximations (including high-order ones) peel off from the numerical flux in this

range.

These figures allow us to arrive at an interesting conclusion. When we recall that

vISCO increases with a (cf. Fig. 2.1), the figures suggest that spin-dependent corrections in

the PN expansion of Eq. (2.1) are effective at pushing the validity of the PN expansion to

higher values of v/c. However, there is an intrinsic limit to what is achievable, which is

determined instead by v/vISCO, and roughly independent of a. In the range a ∈ [0.3 , 0.9],

vISCO increases from ' 0.444 to ' 0.609. Therefore the region of validity for the orbital

velocity is approximately in the range v/c ∈ [0.44× 0.3 , 0.61× 0.6] ∼ [0.13 , 0.37].

Let us now focus on the counterrotating case, i.e., on the dashed red error bars in

Fig. 2.4, which, again, were determined using method ii) above. The only exception is the

case N = 3 (corresponding to the right panel of Fig. 2.3), that we will discuss separately

below. As in the corotating case, the region of validity shrinks mildly or remains roughly

constant as |a| increases. For N = 6 the region of validity shrinks faster with increasing spin.

3Note that in the Erratum of Ref. [50] we impose a slightly different condition: δ(vl) = δ0/2, δ(v̄) = 2δ0.
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Figure 2.5

Edge of the region of validity expressed in terms of the Boyer-Lindquist radius for different
PN orders, in the corotating (black, straight line) and counterrotating (red, dashed line)
cases. The blue, dashed lines for N = 3 refer to the counterrotating case, and they were
obtained by an alternative method (see the discussion around Fig. 2.7 below).

The edge of the region of validity can also be presented in terms of the Boyer-Lindquist

radius of the particle’s circular orbit. The corresponding plots for the corotating and coun-

terrotating cases are presented, for completeness, in Fig. 2.5. The ISCO radius rISCO is a

monotonically decreasing function of the spin (or of vISCO), so, quite naturally, the trend as a

function of a is the opposite of what we observed for velocities in Fig. 2.4. Our results consis-

tently suggest that the region of validity of the PN approximation cannot be extended all the

way down to the ISCO, contrary to a rather common assumption in GW data analysis. In-

stead, one should use care when using, for example, the 2PN approximation for r/rISCO < 4,

as in that regime higher-order PN terms cannot be neglected (this is particularly true for

rapidly rotating BHs in prograde orbits). Our results suggest that a safer choice would be to

truncate all analyses at r/rISCO = 6, which ranges between r/M ∈ [6 , 54] depending on the

BH spin, unless one is dealing with approximants more accurate than Taylor expansions.

Finally, one can also investigate how the edge of the region of validity behaves with

PN order. This is depicted in Fig. 2.6 for a set of fixed values of a (shown with different colors,
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as described in the caption). The vertical dashed lines separate the different-N orders. If we

concentrate on the nonspinning case (black), ignore the pathological case N = 3 (discussed

below) and consider the conservative, lower end of the error bar, we see that there is a

maximum at N = 6. For larger values of N , v/vISCO would consistently decrease, as found

in Ref. [50]. In the spinning case, however, this trend is not as clear, as at N = 6 the edge

of the region of validity is rather sensitive to the spin value. Without higher-order terms in

the PN expansion, which would provide larger-N points in this figure, one cannot conclude

whether N = 6 is the optimal order of expansion in the spinning case.
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Figure 2.6

Edge of the region of validity as a function of N for fixed values of a. The thick, black error
bar corresponds to a = 0, followed by a = 0.3 , 0.6 , 0.9 to the right and
a = −0.1 ,−0.2 ,−0.6 ,−0.9 ,−0.99 to the left. Note that N = 3 is a special case. For
reasons discussed in the text, we do not give error bars for N = 3 and a < −0.1.

Before moving on to the next Section, let us discuss the N = 3 case for counterrotating

orbits in more detail. This is a special case, as noted by the discontinuity in counterrotating

orbits shown in Figs. 2.4, 2.5. The pathologies explained below are the reason why, in
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Fig. 2.6, we only plotted the counterrotating edge of the region of validity when the Kerr

spin parameter |a| ≤ 0.1. Notice also that, when N = 3, the error regions in Fig. 2.6 are

significantly larger than for any other N value.

Figure 2.7 clarifies the origin of the problem. When we use method ii), the top margin

of the edge of the region of validity is estimated as the (smallest) value of v̄/vISCO for which

δ(3)(v̄) = δ0. This condition corresponds to the leftmost intersection of the horizontal dashed

red line with the solid black line in the plot. Similarly, we determine the most conservative

estimate of the edge of the region of validity by considering the smallest vl such that δ(3)(vl) =

δ0/2. This corresponds to the leftmost intersection of the horizontal, dot-dashed green line

with the solid black line. For corotating orbits, as it happens, these intersections always

exist. In fact, the local maximum in δ(3)(v) (which is located at v/vISCO ∼ 0.8 for a = 0)

moves to the right and becomes significantly larger as a→ 1. For counterrotating orbits the

trend is the opposite: the local maximum moves to the left and decreases in magnitude. For a

critical value of the spin a ' −0.1, the red dashed line and the solid black line do not intersect

anymore. This is why in Figs. 2.4 and 2.5 we only plot the red-dashed (counterrotating)

edge of the region of validity when |a| ≤ 0.1. Of course, we can insist to identify v̄ and vl as

the smallest values of v such that δ(3)(v̄) = δ0, δ(3)(vl) = δ0/2. This procedure leads to the

red, dashed error bars in the N = 3 panel of Figs. 2.4 and 2.5. Note that these error bars

are unnaturally small for |a| > 0.4.

Another possible solution would be to switch to method i) when method ii) fails.

Now the upper margin of the edge of the region validity would be given by the first zero of

δ(3)(v), and the lower margin would be estimated by the condition given in Eq. (2.9). This

results in the blue, dotted error bars shown in the central top panel of Figs. 2.4 and 2.5.

These error bars are significantly more optimistic than the ones we presented in the rest of

the paper, but (in our opinion) their significance is not as clear and well-justified as the rest

of our results.

The problem discussed in this section concerns counterrotating orbits and N = 3.

16



0

0.01

0.02

0.03

0.04

0.05

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8

v/v
ISCO

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.2 0.4 0.6 0.8
0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.2 0.4 0.6 0.8 1

v/v
ISCO

0

0.01

0.02

0.03

0.04

0.05

0.06

a=0 a=0.9

a=-0.1 a=-0.2

Figure 2.7

The solid black line shows δ(N)(v) for N = 3. The horizontal dashed red (dot-dashed green)
lines represent δ0, computed from Eq. (2.10), and δ0/2. See text for discussion.

This is an exceptional case, and it does not affect the conclusions drawn earlier in the paper.

However we should remark, for completeness, that similar pathologies occur for corotating

orbits with N = 6 when 0 ≤ a ≤ 0.2, and they may also occur at higher PN orders.

2.3 Relevance of multipolar components as a function of spin

Until now, we compared the PN approximation to numerical results that were con-

sidered to be virtually “exact”. This was justified because the Teukolsky code computes

as many multipoles in the angular decomposition of the radiation as needed to achieve an

accuracy of O(10−10) at any given orbital velocity. While this is manageable in frequency-

domain calculations, sometimes accurate calculations of a large number of multipoles are not

possible in extreme mass-ratio time-domain codes, or in numerical relativity simulations of

comparable-mass binaries: cf. Refs. [18, 17] for an analysis of multipolar decompositions of

the radiation from comparable-mass binaries and Refs. [8, 7] for more recent numerical work
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Relevance of multipolar components up to ` = 2, ` = 3, ` = 4, ` = 5, and summing as many
`’s as necessary for the relative accuracy of the Teukolsky code to be O(10−10) at any given
velocity.

to overcome these difficulties. As advocated in several papers [50, 61, 53, 47, 48, 49, 78],

EMRIs provide a simple playground to study the number of multipolar components required

to reach a given accuracy in the PN approximation (or in one of its resummed variants).

Figure 2.8 shows a comparison of the convergence of the multipolar decomposition

versus the convergence of the PN expansion of the energy flux. This plot generalizes Fig. 7

of Ref. [50] in two ways: (i) it uses more accurate numerical data, and (ii) it considers the

effect of the central BH spin on the number of multipolar components required to achieve a

given accuracy.

We fix three values of the orbital velocity (v = 0.01, v = 0.1 and v = 0.2) and we
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plot F (`) − F (N), where F (N) is the Nth approximant of the PN energy flux and F (`) is the

numerical energy flux truncated at the `th angular multipole. Some features are immediately

visible from this plot:

(i) Even at low orbital velocities (v = 0.01), it is necessary to include multipolar compo-

nents up to and including ` = 4 to achieve an accuracy better than 10−7 in the flux; on

the other hand, including up to ` = 5 we obtain results that are as accurate as those

that would be obtained including more multipoles.

(ii) For an orbital velocity v = 0.1 (v = 0.2) the best-known PN flux and numerical

calculations always disagree at levels of∼ 10−6 (∼ 10−4) or larger. This is obviously due

to the slower, nonmonotonic convergence of the PN approximation in this regime. Some

nontrivial features of the PN approximation are again well-visible here: for example,

as pointed out repeatedly in this paper, when a = −0.99 and v = 0.1 the 3PN (N =

6) expansion performs much better than higher-order expansions. This may well be

accidental, and in fact it does not hold when v = 0.2, as then N = 4 is (most likely

accidentally) better.

(iii) As a rule of thumb, the inclusion of multipoles up to and including ` = 5 seems

necessary to achieve the level of accuracy of the best-known (N = 8) PN expansion

of the flux in the Kerr case. This conclusion is independent of the spin parameter a.

In fact, a has hardly any effect on the number of multipolar components that must be

included in the flux to achieve a desired accuracy.
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CHAPTER 3

QUASINORMAL RINGING OF KERR BLACK HOLES

The gravitational radiation from a perturbed Kerr BH is usually described in terms of

the Weyl scalar ψ4 [51, 52], which can be decomposed in different multipolar components (say

ψlm) by using spin-weighted spheroidal harmonics with angular indices (l ,m) (see, e.g., Ref.

[16]). In the ringdown stage, each ψlm can be expressed as a sum of complex exponentials:

schematically,

ψlm ∼
∞∑
n=0

Clmn exp [−iωlmn(t− r∗)] , (3.1)

where the frequencies ωlmn are complex, t denotes time as measured by an observer at

infinity, r∗ is a radial “tortoise” coordinate, and the index n (“overtone index”) sorts the

modes by increasing imaginary part (n = 0 corresponding to the smallest imaginary part

and to the longest damping time). To simplify the notation, we will sometimes replace the

indices (l ,m , n) by a collective index q.

The problem of extracting the QNM contribution to a generic signal was first studied

in detail by Leaver [25]. The complex amplitudes Cq of each complex exponential, also

called “excitation coefficients”, depend on the source of the perturbation (see, e.g., Refs.

[35, 15, 22]). The excitation coefficients can be factorized into the product Cq = BqIq of

a source-independent “excitation factor” Bq and of a source-dependent integral Iq. The

integral Iq is in general divergent, but it can be regularized, yielding a finite answer in

agreement with other perturbative calculations [25, 79, 55, 56].

To illustrate the origin of this factorization, consider the following prototypical ODE

governing arbitrary perturbations around a BH. The perturbation is characterized by a wave
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function Ψ with source Q (representing for example the perturbation due to infalling matter):

∂2

∂r2
∗
Ψ− ∂2

∂t2
Ψ− VΨ = −Q(t) , (3.2)

where r∗ is a radial “tortoise coordinate”, and the potential V = V (r∗). The wave function Ψ

can describe curvature-related quantities in the formalism by Sasaki and Nakamura [45] and

it is directly related to metric perturbations in the Regge-Wheeler/Zerilli formalism [64, 26].

The QNM contribution to the time-domain Green’s function GQ reads

ΨQ(r∗, t) =

∞∫
−∞

∞∫
−∞

GQ(r∗, t|r′∗, t′)Q(r′∗, t
′)dr′∗dt

′ ,

where (see, e.g., Ref. [25])

GQ(r∗, t|r′∗, t′) =

= 2Re

[
∞∑
q=0

Bqψq(r∗)ψq(r
′
∗)e
−iωq(t−t′−r∗−r′∗)

]
. (3.3)

The coefficients Bq are the (source-independent) excitation factors, and ψq(r) denotes

solutions of the homogeneous equation normalized such that ψq(r) → 1 as r∗ → ∞ . It is

convenient to introduce also the source-dependent excitation coefficients Cq:

Cq = BqIq , (3.4)

where

Iq ≡
∞∫

−∞

eiωqr
′
∗ψq(r

′
∗)q(r

′
∗, ω)dr′∗ , (3.5)
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and where the frequency-domain source term is

q(r′∗, ω) =

∞∫
−∞

eiωt
′
Q(r′∗, t

′)dt′ . (3.6)

The calculation of the Cq’s involves an integral in r∗ from the horizon (r∗ = −∞) out to

spatial infinity (r∗ = ∞). The integral usually diverges at the horizon; one of the pro-

posed methods to eliminate this divergence is discussed below in Section 3.2.3. With these

definitions, the ringdown waveform can be written as:

Ψ(r∗, t) = 2Re

[
∞∑
q=0

Cqψq(r∗)e
−iωq(t−r∗)

]
. (3.7)

As r∗ →∞ we have ψq(r∗)→ 1, so that

ΨQ(r∗ →∞, t) = 2Re

[
∞∑
q=0

Cqe
−iωq(t−r∗)

]
. (3.8)

To summarize, the complex excitation factors Bq are a “universal” intrinsic property

of the BH which describes the excitability of each mode, independently of the source of the

excitation. On the other hand, the complex excitation coefficients Cq are related to the

amplitude of each QNM in response to a specific source inducing the oscillations.

In the first part of this chapter (Section 3.1) we compute a catalog of QNM excitation

factors Bq for Kerr BHs using the formalism developed by Mano, Suzuki and Takasugi

([60, 59], henceforth MST). By using this technique we confirm and extend results obtained

some years ago by Berti and Cardoso [9]. The main advantage of the MST method is that it

does not require the (generally nontrivial) evaluation of Coulomb wave functions, which was

instead necessary in Ref. [9]. This allows us to produce accurate tables of the Bq’s for the

modes that are most interesting in gravitational-wave detection (multipolar indices l ≤ 7 and

overtone indices n = 0, . . . , 4). These tables (and similar tables for perturbations of spin
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s = 0 and s = 1) were made publicly available on a website, along with a Mathematica

notebook that can be adapted to generate further tables if necessary [76].

In the rest of the chapter we compute the excitation coefficients Cq for a classic

problem in perturbation theory: the calculation of the gravitational radiation emitted by

particles falling into the BH. We generalize work carried out by Leaver more than 25 years ago

[25] (see also Ref. [79]). Whereas Leaver considered only infalls from rest into a Schwarzschild

BH, we present detailed comparisons between numerical waveforms and excitation coefficient

calculations for particles falling with arbitrary energy into Schwarzschild BHs (Section 3.2)

and we also consider the case where the BH is rotating (Section 3.3). In Section 4 we

summarize our findings and point out possible directions for future work. Appendix 1 gives

details about the regularization of divergent integrals in both the Schwarzschild and Kerr

cases. We will use geometrical units (G = c = 1) throughout.

3.1 Excitation factors in the Mano-Suzuki-Takasugi formalism

In this Section we present a detailed calculation of the excitation factors Bq for Kerr

QNMs. We follow the MST formalism [60] (see also Refs. [59, 58]) and we refer to the original

papers for a more organic presentation of the material; our intention here is to give a practical

guide to the calculation of the Bq’s within this formalism. The method is different from –

but equivalent to – Leaver’s method [25], that was used by Berti and Cardoso in Ref. [9].

The main advantage of the MST formalism over Leaver’s method is that the MST formalism

does not require any (cumbersome) evaluation of Coulomb wave functions, as in Leaver’s

original treatment, but only a matching of the Coulomb-series expansion near infinity to an

expansion in terms of hypergeometric functions near the horizon, which is simpler to perform

in practice.

We will compute the excitation factors in both the Teukolsky and Sasaki-Nakamura

formalisms (see Ref. [9] for a discussion). To begin with, let us define some quantities that
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will be used below:

r± = M ±
√
M2 − a2 , κ =

√
1− j2 ,

x =
ω(r+ − r)

εκ
, τ =

ε− am/M
κ

, ε± =
ε± τ

2
. (3.9)

From now on we follow Leaver’s conventions and set 2M = 1 (where M is the BH mass).

In these units, the parameter a ∈ [0, 1/2]. In order to make contact with the more usual

M = 1 units, we find it convenient to introduce a second dimensionless spin parameter

j ≡ 2a ∈ [0, 1]. For reference, intermediate results of our calculations for a specific value of

the spin (a = 0.4, or j = 0.8) are given in Table 3.1. In the remainder of this Section we will

define and compute the quantities listed in this Table.

3.1.1 Computing ωq and Alm

In the Teukolsky formalism, the perturbations of a Kerr BH are described by the

Newman-Penrose scalar ψ4, which is related to solutions φ of the Teukolsky equation by

φ ≡ ρ−4ψ4, where ρ = (r − ia cos θ)−1. By expanding in Fourier components

ρ−4ψ4 =
1

2π

∞∑
l=|s|

l∑
m=−l

∫
e−iωt+imϕSlmω(θ)Rlmω(r) dω

and performing a separation of variables, one finds that the radial function Rlmω and the

angular function Slm must satisfy the following equations:

∆
d2Rlmω

dr2
+ (s+ 1)(2r − 1)

dRlmω

dr
+ V (r)Rlmω = Tlmω , (3.10)

d

du

(
(1− u2)

dSlm
du

)
+

[
a2ω2u2 − 2aωsu+ s+ Alm −

(m+ su)2

1− u2

]
Slm = 0 , (3.11)
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s = −2, l = m = 2 s = −1, l = m = 1 s = 0, l = m = 2
ωq 1.172034− 0.151259 i 0.701679− 0.152621 i 1.41365− 0.163041 i
Alm 2.585294 + 0.205297 i 1.67659 + 0.0810074 i 5.95475 + 0.0106275 i
ν −1.743843−0.701583 i −1.69028− 0.320182 i −1.8012− 0.0481726 i
aν4 − 1.32616× 10−3 − 4.04792× 10−3 − 0.229461

+ 1.43416× 10−3 i + 3.01211× 10−3 i − 0.0295086 i
aν−4 − 4.52814× 10−3 8.02490× 10−5 1.47272× 10−3

− 2.12986× 10−2 i − 2.25538× 10−4 i + 3.40832× 10−4 i
Kν 1.06144× 10−3 − 0.0812872 −12.0419

+7.43631× 10−4 i + 0.0682523 i + 1.20138 i
K−ν−1 −8.19837× 10−2 1.55992 + 1.23780 i 18.6581 + 3.85088 i

−9.20267× 10−1 i
Binc
lmω − 2.80111× 10−16 − 4.51443× 10−15 6.08313× 10−14

+ 3.11473× 10−16 i − 2.05141× 10−15 i +1.91604× 10−14 i
Bref
lmω 3.16122 + 1.25413 i 1.59262− 0.363221 i 1.27738 + 0.760771 i

Btrans
lmω 15.4151 + 11.0126 i 3.32227 + 0.409647 i 0.496587 + 1.24305 i

αT
q 0.114759− 0.241821 i −1.25046− 1.01565 i −0.154117− 3.58899 i

BT
q −0.240807+0.150102 i −0.153477−0.144681 i −0.0955564 + 0.0516867 i

BSN
q −0.0911231 −0.0298959 −0.0955564

+ 0.0613455 i − 0.119248 i + 0.0516867 i

Table 3.1

Some intermediate quantities necessary to compute the excitation factors for the fundamental
mode (n = 0) of a Kerr BH with a = 0.4 (or j = 0.8). The three columns refer to gravitational
(s = −2) perturbations with l = m = 2, electromagnetic (s = −1) perturbations with
l = m = 1, and scalar (s = 0) perturbations with l = m = 2.

where u = cos θ and Tlmω is the Fourier transform of the stress-energy tensor after separation

of the angular dependence. The potential V (r) is given by

V (r) =
{

(r2 + a2)2ω2 − 2amωr + a2m2

+ is
[
am(2r − 1)− ω(r2 − a2)

]}
∆−1

+ 2isωr − a2ω2 − Alm , (3.12)

where Alm is the angular separation constant corresponding to the angular eigenfunctions

Slm (known as “spin-weighted spheroidal harmonics”). The eigenfrequency ωlmn = ωq and

the angular eigenvalue Alm are determined by imposing QNM boundary conditions on the
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radial equation (3.10) and regularity conditions on the angular equation (3.11): see, e.g.,

Ref. [12]. The radial and angular equations are solved via a series solution whose coefficients

brn and bθn satisfy three-term recursion relations of the form

αθ0b
(r,θ)
1 + β

(r,θ)
0 b

(r,θ)
0 = 0 ,

α(r,θ)
n b

(r,θ)
n+1 + β(r,θ)

n b(r,θ)
n + γ(r,θ)

n b
(r,θ)
n−1 = 0 , (3.13)

where the superscript (r or θ) denotes association with the radial or angular equation, and

the coefficients of the three-term recursion relations can be found in Ref. [24].

By the principle of minimal solutions, the convergence of the series obtained via the

three-term recursion relations is guaranteed by two continued fraction relations (one coming

from the radial series expansion, the other from the angular series expansion) of the form

βθ0 =
αθ0γ

θ
1

βθ1 −
αθ1γ

θ
2

βθ2−...

, (3.14)

βr0 =
αr0γ

r
1

βr1 −
αr1γ

r
2

βr2−...

. (3.15)

or by any of their inversions, which are analytically – but not numerically – equivalent [24].

We now have two complex equations, (3.14) and (3.15), in two complex unknowns,

ωq and Alm. By solving these equations numerically we find the eigenvalues listed in the

first two rows of Table 3.1. Numerical practice shows that the qth inversion index for the

radial equation is best suited for numerical searches of the qth overtone ωq. Numerical

experimentation (and analytical arguments [16]) show that the optimal inversion number to

find the angular eigenvalue with the correct limit as a→ 0, i.e.,

Alm → l(l + 1)− s(s+ 1) , (3.16)
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is equal to l −max(|m|, |s|).

3.1.2 Angular momentum parameter ν and matching function Kν

The basic idea of the MST method is to (1) find a first independent solution of the

radial equation Rν
0 in terms of a series of hypergeometric functions (which does not converge

at spatial infinity) with expansion coefficients proportional to aνn, cf. Eq. (2.21) of Ref. [60];

(2) consider Leaver’s construction of a series of Coulomb wave functions Rν
C that is valid

near infinity; (3) notice that the two solutions are identical modulo a ν-dependent constant,

i.e.,

Rν
0 = KνR

ν
C . (3.17)

The expansion coefficients aνn and the matching condition depend on an “angular momentum”

parameter ν which appears in the three-term recurrence relation

ανna
ν
n+1 + βνna

ν
n + γνna

ν
n−1 = 0 , (3.18)

where

ανn =
iεκ(n+ ν + 1 + s+ iε)(n+ ν + 1 + s− iε)
(n+ ν + 1)(2n+ 2ν + 3)(n+ ν + 1 + iτ)−1

,

βνn = −λ− s(s+ 1) + (n+ ν)(n+ ν + 1) + ε2

+ ε(ε−mq) +
ε(ε−mq)(s2 + ε2)

(n+ ν)(n+ ν + 1)
,

γνn = − iεκ(n+ ν − s+ iε)(n+ ν − s− iε)
(n+ ν)(2n+ 2ν − 1)(n+ ν − iτ)−1

. (3.19)

and λ is related to the separation constant Alm by

λ = Alm + (aω)2 − 2amω . (3.20)
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The solution of the above recursion relation is “minimal” (i.e., the aνn’s give rise to a

convergent series) if

βν0 =
αν−1γ

ν
0

βν−1 −
αν−2γ

ν
−1

βν−2−...

+
αν0γ

ν
1

βν1 −
αν1γ

ν
2

βν2−...

. (3.21)

This condition is only satisfied by a discrete set of (complex) values of ν. Different inversions

of Eq. (3.21) yield different values of ν: for example, we could consider the first inversion

βν1 =
αν0γ

ν
1

βν0 −
αν−1γ

ν
0

βν−1−
αν−2γ

ν
−1

βν−2−...

+
αν1γ

ν
2

βν2 − ...
(3.22)

or even a sequence of “negative” inversions, such as

βν−1 =
αν−2γ

ν
−1

βν−2 − ...
+

αν−1γ
ν
0

βν0 −
αν0γ

ν
1

βν1−
αν1γ

ν
2

βν2−...

. (3.23)

Inversions are useful also for the radial and angular continued fractions, but the

numerical calculation of ν is a little trickier: the numerical root ν can be different for

different inversions of the continued fraction, but this does not affect the physics of the

problem. The reason is that the eigenvalues ν have the following properties: (i) ν has period

equal to 1: if ν is a solution, ν ± 1 is also a solution; (ii) If ν is a solution, −ν is also a

solution.

Given the eigenvalue ν (as listed, e.g., in the third row of Table 3.1), it is straightfor-

ward to build up the series coefficients aνn from the three-term recursion relation (3.18). If

we choose the arbitrary normalization constant such that aν0 = 1, we get (for example) the

values of aν4 and aν−4 listed in rows four and five of Table 3.1.

An important property of these coefficients is that a−ν−1
−n = aνn: this can be shown

starting from the three-term recursion relation (3.18), and using Eqs. (3.19). Therefore we

can denote them by aνn when they refer to Kν , and by a−ν−1
−n when they refer to K−ν−1.
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As we will see below, to obtain the QNM excitation coefficients we must compute Kν

and K−ν−1, given by Eq. (165) in Ref. [44]:

Kν =
eiεκ(2εκ)s−ν−p2−sipΓ(1− s− 2iε+)Γ(p+ 2ν + 2)

Γ(p+ ν + 1− s+ iε)Γ(p+ ν + 1 + iτ)Γ(p+ ν + 1 + s+ iε)

×

(
p∑

n=−∞

(−1)n

(p− n)!(p+ 2ν + 2)n
(ν+1+s−iε)n
(ν+1−s+iε)n

aνn

)−1

×

(
∞∑
n=p

Γ(n+ p+ 2ν + 1)

(−1)n(n− p)!
Γ(n+ ν + 1 + s+ iε)

Γ(n+ ν + 1− s− iε)
Γ(n+ ν + 1 + iτ)

Γ(n+ ν + 1− iτ)
aνn

)
, (3.24)

where the notation (x)n is a shorthand for the following function of x:

(x)n ≡
Γ(x+ n)

Γ(x)
, (3.25)

and p can be any integer. Both Kν and K−ν−1 are independent of the choice of p; indeed,

this property can be used as a check of the calculation. Representative values of Kν and

K−ν−1 are listed in Table 3.1.

3.1.3 Amplitudes Binc
lmω, Bref

lmω and Btrans
lmω in the Teukolsky formalism

According to Eqs. (167), (168) and (169) in Ref. [44], the ingoing-wave radial solution

has the asymptotic behavior

Rin
lmω →

 Btrans
lmω ∆2e−ikr

∗
as r → r+ ,

r3Bref
lmωe

iωr∗ + r−1Binc
lmωe

−iωr∗ as r → +∞ ,
(3.26)
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where the amplitudes are defined as:

Binc
lmω = ω−1

(
Kν − ie−iπν

sinπ(ν − s+ iε)

sinπ(ν + s− iε)
K−ν−1

)
Aν+

× e−i ε ln ε , (3.27)

Bref
lmω = ω−1−2s

(
Kν + ieiπνK−ν−1

)
Aν−e

i ε ln ε , (3.28)

Btrans
lmω =

(εκ
ω

)2s

eiε+ lnκ

∞∑
n=−∞

aνn , (3.29)

and

Aν+ = e−(π/2)εe(π/2)i(ν+1−s)2−1+s−iε

× Γ(ν + 1− s+ iε)

Γ(ν + 1 + s− iε)

∞∑
n=−∞

aνn , (3.30)

Aν− = e−(π/2)εe−(π/2)i(ν+1+s)2−1−s+iε

×
∞∑

n=−∞

(−1)n
(ν + 1 + s− iε)n
(ν + 1− s+ iε)n

aνn . (3.31)

The QNM boundary conditions require thatBinc
lmω must vanish at the QNM frequencies

ωq. Table 3.1 shows that this indeed happens within an accuracy very close to machine

precision. The table also lists reference values for Bref
lmω and Btrans

lmω .

3.1.4 αT
q in the Teukolsky formalism

The excitation factors (in the Teukolsky formalism) are defined as

BT
q = −A

T
out(ωq)

2iωqαT
q

. (3.32)

Here

αT
q ≡ i

(
dAT

in

dω

)
ωq

, (3.33)
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and furthermore

AT
in ≡

Binc
lmω

Btrans
lmω

, AT
out ≡

Bref
lmω

Btrans
lmω

. (3.34)

Note that we can divide both Binc
lmω and Bref

lmω by some arbitrary function G(ω) without

affecting the excitation factors BT
q . This is because Binc

lmω must vanish at the QNM frequencies

ωq, so G(ω) is just an arbitrary rescaling (or normalization) factor. The proof is trivial:

BT
q ∝

(
Bref
lmω

dBinc
lmω/dω

)
ωq

=

(
Bref
lmω/G

d[Binc
lmω/G]/dω

)
ωq

. (3.35)

The simplest choice would be to set G = 1, but in order to reproduce all of the values

listed in Leaver’s Table I [25], especially αSN
q and ASN

out, we choose a normalization factor

G = Btrans
lmω . (3.36)

To get αT
q we must compute the derivative of AT

in with respect to ω. We first compute

AT
in at the QNM frequency ωq, A

T
in(ωq). Then we consider a new frequency ωq + δ, and we

repeat the calculation described above to get AT
in(ωq + δ); note in particular that when we

repeat the first step (as described in Section 3.1.1) we use the angular continued fraction to

obtain a “new” angular constant, evaluated at ωq +δ. Finally we can compute the derivative

by finite differencing:

αT
q = i

AT
in(ωq + δ)− AT

in(ωq)

δ
. (3.37)

In our calculation we set δ = 10−7 (i.e., we differentiate along the real axis); as a

check of our finite-differencing procedure we also repeat the calculation with δ = 10−7i (i.e.,

differentiating along the pure-imaginary axis). The two results usually agree to better than

one part in 106.
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3.1.5 Excitation factors in the Teukolsky (BT
q ) and Sasaki-Nakamura (BSN

q ) formalisms

The excitation factors in the Teukolsky formalism were defined in Eq. (3.32). It turns

out that for many practical purposes, including the calculation of radiation from infalling

point particles that will be presented later on in this paper, it is more convenient to use the

Sasaki-Nakamura wave function X, related to Teukolsky’s by

X =

√
r2 + a2

∆

(
α(r)R +

β(r)

∆
R′
)
, (3.38)

where the prime stands for a derivative with respect to r. Specializing to the case presented

in Appendix B of Sasaki and Nakamura [45] [i.e, f = h = 1 and g = (r2 + a2)/r2], the

functions α and β are, respectively:

α = −iK
∆2

β + 3iK ′ + λ+
6∆

r2
, (3.39)

β = ∆

[
−2iK + ∆′ − 4

∆

r

]
. (3.40)

Here K = (r2 + a2)ω − am, ∆ = r2 − 2Mr + a2 and λ was defined in Eq. (3.20). Then the

Sasaki-Nakamura wave function X satisfies

d2X

dr2
∗
−F dX

dr∗
− UX = S , (3.41)

where the tortoise coordinate is defined as dr
dr∗

= r2+a2

∆
. The tortoise coordinate is defined

up to an integration constant, which we fix once and for all by setting

r∗ = r +
2Mr+

r+ − r−
log (r − r+)− 2Mr−

r+ − r−
log (r − r−) . (3.42)
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The functions F and U are given by

F =
∆

r2 + a2
F , F ≡ γ′

γ
,

γ ≡ α

(
α +

β′

∆

)
− β

∆

(
α′ − β

∆2
V

)
,

U =
∆U

(r2 + a2)2
+G2 +

dG

dr∗
− ∆GF

r2 + a2
,

G ≡ − ∆′

r2 + a2
+

r∆

(r2 + a2)2
,

U = −V +
∆2

β

[(
(2α +

β′

∆

)′
− γ′

γ

(
α +

β′

∆

)]
.

Note that our Teukolsky potential V differs by an overall minus sign from the potential used

by Sasaki and Nakamura, and that

lim
r→∞

γ ≡ γ∞ = λ(2 + λ)− 12iMω − 12aω (ωa−m) . (3.43)

When a→ 0 the Sasaki-Nakamura potential reduces, by construction, to the so-called Regge-

Wheeler potential (cf. Section 3.2 below for more details). The asymptotic behavior of the

Sasaki-Nakamura wave function is

X ∼ Atranse
−ikr∗ , r → r+ , (3.44)

X ∼ Aine
−iωr∗ + Aoute

iωr∗ , r →∞ . (3.45)

where k = ω − am/r+, and the coefficients can be related to the corresponding Teukolsky

coefficients by

AT
in = − 1

4ω2
Ain , (3.46)

AT
out = − 4ω2

λ(λ+ 2)− 6iω − 12aω(aω −m)
Aout , (3.47)
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and λ ≡ Alm + (aω)2 − 2amω. The normalization at the horizon is such that

Atrans = r
1/2
+

[
(8− 12iω − 4ω2)r2

+ (3.48)

+ (12iam− 8 + 8amω + 6iω)r+

− 4a2m2 − 6iam+ 2
]
.

A change of wave function of the form

X = exp

[∫
F
2
dr∗

]
X2 = X2

√
γ (3.49)

eliminates the first derivative, yielding

d2X2

dr2
∗

+

(
F ′

2
− F

2

4
− U

)
X2 = S exp

[
−
∫
F
2
dr∗

]
=
S
√
γ
. (3.50)

To get the excitation factors in the Sasaki-Nakamura formalism we only need the

asymptotic relation between X and R, Eq. (3.47) (similar relations are presented in Ref.

[9] for scalar and electromagnetic perturbations). Denoting scalar, electromagnetic and

gravitational perturbations by the subscript 0, −1 and −2 respectively, and dropping the

“q” subscripts to simplify the notation, we have:

BSN
0 = BT

0 , (3.51)

BSN
−1 = −

2amωq − Alm − a2ω2
q

4ω2
q

BT
−1 , (3.52)

BSN
−2 =

λ(λ+ 2)− 6iωq − 12aωq(aωq −m)

16ω4
q

BT
−2 . (3.53)

The results for a = 0.4 (j = 0.8) are listed in the last row of Table 3.1. All of

the Bq’s (for s = 0 ,−1 ,−2) match the results of Paper I, but now the computation does

not involve tricky evaluations of the Coulomb wave functions. This allows us to compute

excitation factors for a larger range of spin values, and for a larger set of values of (l ,m)
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and of the overtone number n. An extensive catalog of results for Kerr perturbations of spin

s = 0, 1 and 2, l = s, . . . , 7 and n = 0, . . . , 3 is provided online in the form of downloadable

numerical tables [76].

3.2 Excitation factors and excitation coefficients for Schwarzschild black holes

3.2.1 Excitation factors for the Zerilli and Regge-Wheeler equations

Perturbations of rotating (Kerr) BHs are conveniently described using curvature-

related quantities in the Newman-Penrose approach. As discussed in the previous section,

this naturally leads to the definition of the excitation factors in either the Teukolsky or

Sasaki-Nakamura formalism (the latter being more suitable to numerical calculations, due

to the short-range nature of the source term of the Sasaki-Nakamura equation).

For the Schwarzschild BH geometry, a (perhaps more physically transparent) direct

metric perturbation treatment can be performed. The perturbations separate in two sectors

depending on their behavior under parity: the axial (or odd) and polar (or even) sector.

Odd-parity metric perturbations can be found from the Regge-Wheeler wave function Ψ(−),

and even-parity perturbations lead to the Zerilli equation for a single wave function Ψ(+). In

both cases the problem reduces to the solution of a wave equation of the form

∂2

∂r2
∗
Ψ(±) − ∂2

∂t2
Ψ(±) − V (±)Ψ(±) = −Q(±)(t) . (3.54)

Defining λ = (l − 1)(l + 2)/2, the Zerilli potential reads

V (+) =

(
r − 1

r

)
8λ2(λ+ 1)r3 + 12λ2r2 + 18λr + 9

r3(2λr + 3)2
, (3.55)

whereas the Regge-Wheeler potential reads

V (−) =
r − 1

r3

[
l(l + 1)− 3

r

]
. (3.56)
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These equations can be solved in the frequency domain using the approach followed

by Leaver [25] and summarized below. At the QNM frequencies, the Regge-Wheeler wave

function, normalized such that ψ
(−)
q (r)→ 1 as r →∞, reads:

ψ(−)
q (r) =

(
1− 1

r

)−2iωq
[
∞∑
n=0

an(ωq)

]−1

×

[
∞∑
n=0

an(ωq)(1− 1/r)n

]
, (3.57)

where the coefficients an can be computed from a three-term recursion relation (cf. Appendix

A in Ref. [25]). A simple relation between the homogeneous solutions of the Zerilli and Regge-

Wheeler equation was found by Chandrasekhar [54] (see also Eqs. (102)-(104) in Ref. [25]).

Using the Chandrasekhar transformation, we find that the Zerilli wave function ψ
(+)
q (r),

again normalized such that ψ
(+)
q (r)→ 1 as r →∞, is

ψ(+)
q (r) =

(1− 1/r)−2iωq∑
an

∞∑
n=0

(
1 +

−6iωq(2λr + 3) + 9(r − 1)

r2(2λr + 3)[2λ(λ+ 1) + 3iωq]
+

+
3n

r2 [2λ(λ+ 1) + 3iωq]

)
× an

(
r − 1

r

)n
. (3.58)

As explained at the beginning of this chapter, the QNM contribution to the time-

domain Green’s function reads

Ψ
(±)
Q (r∗, t) =

∞∫
−∞

∞∫
−∞

G
(±)
Q (r∗, t|r′∗, t′)Q(±)(r′∗, t

′)dr′∗dt
′ ,

with

GQ(r∗, t|r′∗, t′) =

= 2Re

[
∞∑
q=0

B(±)
q ψ(±)

q (r)ψ(±)
q (r′)e−iωq(t−t

′−r∗−r′∗)

]
. (3.59)

Because the Sasaki-Nakamura wave function reduces to the Regge-Wheeler wave func-
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B
(−)
q l = 2 l = 3 l = 4 l = 5

n = 0 0.126902 − 0.0938898 0.065348 − 0.0384465
+ 0.0203152 i − 0.0491928 i + 0.0652391 i − 0.0735239 i

n = 1 0.0476826 − 0.151135 0.261488 − 0.363440
− 0.223755 i + 0.269750 i − 0.251524 i + 0.182660 i

n = 2 − 0.190284 0.415029 − 0.549217 0.534171
+ 0.0157486 i + 0.141038 i − 0.435328 i + 0.828615 i

n = 3 0.0808676 − 0.0434028 − 0.316921 1.08630
+ 0.0796126 i − 0.412747 i + 0.837911 i − 1.14858 i

B
(+)
q l = 2 l = 3 l = 4 l = 5

n = 0 0.120923 −0.0889796 0.0621266 −0.0364029
+ 0.0706696 i − 0.0611757 i + 0.069100 i − 0.0748073i

n = 1 0.158645 −0.191928 0.279700 −0.371542
− 0.253334 i + 0.264820 i − 0.241825i + 0.173592 i

n = 2 −0.298933 0.436786 −0.543211 0.517754
− 0.0711341 i + 0.204560 i − 0.478060 i + 0.854935 i

n = 3 0.113837 −0.000920468 −0.374502 1.13916
+ 0.204137 i − 0.476365 i + 0.859526 i − 1.14048 i

Table 3.2

Odd- and even-parity excitation factors for l = 2 , 3 , 4 , 5.

tion when a→ 0, the corresponding excitation factors are related by

B(−)
q = BSN

−2(a = 0) . (3.60)

The even-parity excitation factors B
(+)
q are related to the odd-parity excitation factors B

(−)
q

by [54, 25]

B(+)
q = B(−)

q

2λ(λ+ 1) + 3iωq
2λ(λ+ 1)− 3iωq

. (3.61)

Thus, one can compute excitation factors for both the Regge-Wheeler and Zerilli represen-

tations using the excitation factors computed in Section 3.1.

For completeness, in Table 3.2 we list the axial (B
(−)
q ) and polar (B

(+)
q ) Schwarzschild

excitation factors for the fundamental mode and for the first three overtones with l = 2, 3, 4,
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5. From Table 3.2 we see that the absolute values of the excitation factors |B(+)
q | for different

overtone numbers n and fixed l are of comparable magnitude. Values of these coefficients up

to l = 7 can be computed using the data available in Ref. [76].

3.2.2 Excitation coefficients for low- and high-energy particle infalls

We will now compute the source-dependent excitation coefficients Cq and compare

them with actual waveforms for head-on infalls into Schwarzschild or Kerr BHs along the

symmetry axis. This is a classic problem addressed via the Regge-Wheeler-Zerilli formalism

for non-rotating BHs [43] and via the Sasaki-Nakamura formalism for Kerr BHs [45]. The

original analysis was revisited by several authors, who considered particles falling with generic

energy and from finite distance into Schwarzschild BHs, Kerr BHs, and higher-dimensional

BHs [74, 4, 70, 72, 31, 10, 19, 13, 21]. In four dimensions, head-on collisions with large mass

ratio have even become accessible to simulations in full numerical relativity [68, 75].

In general, the source-dependent excitation coefficients C
(±)
q are given by

C(±)
q = B(±)

q I(±)
q , (3.62)

where

I(±)
q ≡

∞∫
1

eiωqr
′
ψ(±)
q (r′)q(±)(r′, ω)(r′ − 1)iωq−1r′dr′ , (3.63)

and where q(±)(r′, ω) denotes the frequency-domain source term. The calculation of the

C
(±)
q ’s involves an integral in r from the horizon (r = 1) out to spatial infinity (r =∞). The

integral usually diverges at the horizon, but this divergence can be eliminated, as discussed

below.

For a four-dimensional Schwarzschild BH, radial infalls excite only even (polar) per-

38



turbations and the source term in the Fourier domain reads

q(r, ω) = m04
√

2π
√

4l + 2
r − 1

r(2λr + 3)

×

[(
E2 − 1 +

1

r

)−1/2

+
4Eλ

iω(2λr + 3)

]
eiωT (r) . (3.64)

Here m0 is the rest mass, v0 is the speed of the particle at spatial infinity, and E =

m0/
√

1− v2
0 is the (conserved) energy per unit mass of the infalling particle. For a par-

ticle falling from rest at infinity, E = 1; for a particle falling ultrarelativistically, E →∞.

Since we work in perturbation theory, the amplitude of the radiation is proportional

to m0E, and therefore it is useful to define the following rescaled quantities:

C̃q =
C

(+)
q

m0E
, Ĩq =

I
(+)
q

m0E
. (3.65)

The function T (r) can be found by integrating the geodesic equations, namely

dT

dr
=

−rE
(r − 1)

√
E2 − 1 + 1/r

. (3.66)

In order to compute the time-domain waveform generated by an infalling particle,

we first work in the frequency domain. For a fixed (real) frequency ω, we integrate the

homogeneous Zerilli equation using a fourth-order accurate Runge-Kutta integrator. We

use the boundary condition that Ψ(+) ∼ e−iωr∗ close to the horizon and we integrate the

homogeneous equation outwards up to some large value of r. Starting from the numerically

constructed homogeneous solutions, we can use a Green’s function technique to find the

solution of the inhomogeneous equation [72, 71, 19]. Finally, we perform an inverse Fourier

transform to compute the time-domain wave function.
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E = 1 l = 2 l = 3 l = 4 l = 5
n = 0 − 1.89425 − 0.184934 − 0.0178934 0.000637468

− 0.906608 i − 0.231572 i − 0.0566232 i − 0.0141310 i
n = 1 − 1.94463 − 0.226114 − 0.0288733 − 0.00228156

− 0.521963 i − 0.187532 i − 0.0511510 i − 0.0137320 i
n = 2 − 2.02880 − 0.266489 − 0.0393956 − 0.00509258

− 0.263614 i − 0.148876 i − 0.0457755 i − 0.0132048 i
n = 3 − 2.11182 − 0.306561 − 0.0496969 − 0.00784699

− 0.115656 i − 0.116049 i − 0.0405565 i − 0.0125698 i

E = 10 l = 2 l = 3 l = 4 l = 5
n = 0 − 4.835573 − 1.195880 − 0.449316 − 0.209552

+ 0.874861 i + 0.0709923 i + 0.0101960 i + 0.00308825 i
n = 1 − 4.478522 − 1.177329 − 0.446281 − 0.208268

+ 0.683019 i + 0.0667378 i + 0.0112097 i + 0.00284264 i
n = 2 − 4.142391 − 1.156297 − 0.443514 − 0.207551

+ 0.502502 i + 0.0606733 i + 0.0110150 i + 0.00277215 i
n = 3 − 3.818084 − 1.134168 − 0.440663 − 0.206954

+ 0.354501 i + 0.0540593 i + 0.0104592 i + 0.00269149 i

Table 3.3

Rescaled integrals Ĩq for l = 2, 3, 4, 5 for particle with energy E = 1 (top) and E = 10
(bottom).

3.2.3 Regularization at the horizon

In order to find the excitation factors, one needs to evaluate Eq. (3.62) at the complex

QNM frequency. At the horizon (r → 1) the integrand appearing in the quantity I
(+)
q , as

defined in Eq. (3.63), can be written as a Frobenius series of the form

eiωqr∗ψ(+)
q (r)q(+)(r, ωq) =

∞∑
n=0

ξn(r − 1)ζq+n . (3.67)

The convergent or divergent nature of the integral depends on the value of ζq, which in

turn is determined by the behavior of the source term q(r, ωq) as r → 1. Since the wave

function ψ
(+)
q (r) ∼ (r − 1)−2iωq as r → 1, the source term (3.64) diverges as (r − 1)1−iωq at

the horizon. Therefore ζq = −2iωq and the integral is, in general, divergent. The divergence

can be regularized following the method proposed by Detweiler and Szedenits [57]. The idea
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E = 1 l = 2 l = 3 l = 4 l = 5
n = 0 − 0.164989 0.00228872 0.00280101 − 0.00108031

− 0.243495 i + 0.0319187 i − 0.00475425 i + 0.000466722 i
n = 1 − 0.440736 0.0930598 − 0.0204455 0.00323146

+ 0.409836 i − 0.0238868 i − 0.00732461 i + 0.00470595 i
n = 2 0.587721 − 0.0859447 − 0.000483324 0.00865255

+ 0.223120 i − 0.119540 i + 0.0436992 i − 0.0111907 i
n = 3 − 0.216793 − 0.0549996 0.0534710 − 0.0232746

− 0.444266 i + 0.146142 i − 0.0275273 i − 0.00536977 i

E = 10 l = 2 l = 3 l = 4 l = 5
n = 0 − 0.646559 0.110752 − 0.0286191 0.00785932

− 0.235935 i + 0.0668420 i − 0.0304143 i + 0.0155636 i
n = 1 − 0.537460 0.208289 − 0.122114 0.0768867

+ 1.242920 i − 0.324589 i + 0.111058 i − 0.0372097 i
n = 2 1.27404 − 0.517466 0.246188 − 0.109831

+ 0.144452 i − 0.210031 i + 0.206043 i − 0.176008 i
n = 3 − 0.507006 0.0267961 0.156039 − 0.232685

− 0.739057 i + 0.540228 i − 0.382678 i + 0.239092 i

Table 3.4

Rescaled excitation coefficients C̃q for l = 2, 3, 4, 5 for particle with energy E = 1 (top) and
E = 10 (bottom).

is to add to the integrand a total derivative which vanishes at the horizon:

f(r) ≡ d

dr

(
N∑
n=0

bn
(r − 1)ζq+n+1

ζq + n+ 1
e−(r−1)

)
, (3.68)

where N is greater than (or equal to) the largest integer in the real part of −2iωq. For

Schwarzschild infalls, the coefficients bn in this expansion can be determined order-by-order

in terms of the ξn. The first few coefficients are listed in Appendix 1.1, and the values of the

“excitation integrals” Ĩq are listed in Table 3.3.

The values of the corresponding excitation coefficients C̃q = B
(+)
q Ĩq are listed in

Table 3.4. These tables were produced using a constant value N = 2 in Eq. (3.68), which is

sufficient to regularize the divergence for the first few overtones (n = 0 , 1 , 2 , 3). We verified

that our results are insensitive to variations of N within at least six digits, as long as N is
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large enough to eliminate the divergence.
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Figure 3.1

Different multipolar components of the radiation (l = 2, 3, 4, 5) for an infall from rest. Solid
black lines are obtained from a numerical solution of the perturbation equations in the
Fourier domain [19, 68], followed by an inverse Fourier transform. The other lines are
obtained by summing an increasing numbers of overtones in the excitation coefficient
calculation, as indicated in the legend. In this plot, as everywhere else in the paper, we use
units 2M = 1.

The tables show some interesting trends. For example, if we consider infalls from rest

(E = 1) and a fixed multipolar index l, we see that the real part of the excitation integral

Ĩq increases as a function of the overtone index n. However this increase is compensated

by a comparable decrease in the imaginary part of Ĩq, so that |Ĩq| is roughly constant as a

function of n.

Figure 3.1 compares the excitation coefficient calculation of Eq. (3.8) against numer-

ical gravitational waveforms for particles falling radially from rest. These waveforms were
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computed using the frequency-domain codes described in Refs. [19, 68], and then Fourier-

transformed back in time. Each panel corresponds to a fixed multipole index (l = 2 , 3 , 4 , 5),

and different line styles correspond to ringdown waveforms obtained summing a different

number of overtones. This plot generalizes and extends a similar comparison that can be

found in Fig. 10 of Leaver’s original paper [25]. Leaver found a disagreement at the 10% level,

that he attributed to inaccuracies in the Fourier transform of the numerical waveforms. We

have similar accuracy problems with the Fourier transform of our data (computing Fourier

amplitudes at low frequencies ω is time consuming, because the computational domain must

extend out to a radius r ∼ 1/ω), but the level of disagreement that we observe is smaller

than in Leaver’s original analysis. Furthermore, the agreement between our numerics and

the excitation coefficient calculation gets better as l grows. Figure 3.1 shows quite clearly

that the addition of higher overtones generally improves the agreement between the excita-

tion coefficient calculation and the full numerical waveform at early times. However there

is no analytical proof that the expansion in terms of overtones should be convergent [25],

and indeed in a few isolated cases an expansion including a large number of overtones can

perform more poorly than a similar expansion including a smaller number of overtones.

Figure 3.2 is similar to Figure 3.1, but it refers to a relativistic infall with (normal-

ized) particle energy E = 10. This figure shows that even by adding four overtones we don’t

get excellent agreement at the “absolute maximum” of the numerical waveform. Part of the

reason is that we can only get accurate numerical amplitudes at frequencies Mω & 10−3:

to remove “memory effects” in the inverse Fourier transform, we extrapolate our numerical

calculations to obtain the Fourier-domain waveform amplitude at frequencies Mω . 10−3.

More importantly, in ultrarelativistic infalls a larger fraction of the energy is radiated during

the infall (at low frequencies) than in the case of infalls from rest. In other words, a larger

fraction of the radiation is produced before the beginning of the ringdown phase, and this

explains the larger disagreement between numerical waveforms and “pure ringdown” wave-

forms. As in the nonrelativistic case, we observe that: (i) the ringdown waveform agrees
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Figure 3.2

Different multipolar components of the radiation (l = 2, 3, 4, 5) for an infall with initial
energy E = 10. Solid black lines are results from the numerical solution of the perturbation
equations; the other lines are results obtained by summing different numbers of overtones.
In this plot, as everywhere else in the paper, we use units 2M = 1.

better with the numerical solution as l grows; (ii) the addition of higher overtones improves

the agreement between the excitation coefficient expansion and the numerical waveforms,

but to a lesser extent, for the reasons explained above.

3.3 Excitation factors and excitation coefficients for Kerr black holes

In this section we extend our calculation to particles falling into Kerr BHs. For

simplicity, we consider a particle falling ultrarelativistically along the symmetry axis. In this

case the source term of the Sasaki-Nakamura equation (3.41) simplifies considerably [72, 71]:

S = − m0EC
a
l γ∆

2ω2r2(r2 + a2)3/2
e−iωr∗ , (3.69)
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Figure 3.3

Sasaki-Nakamura wave function for an ultrarelativistic infall along the symmetry axis of a
Kerr BH. Solid black lines are results from the numerical solution of the perturbation
equations; the other lines are results obtained by summing different numbers of overtones.
The upper panels refer to l = 2, the lower panels to l = 3. The left panels corresponds to
the Schwarzschild limit (j = 0), and the right panels to a fast-spinning Kerr BH with
a = 0.49 (j = 0.98). In this plot, as everywhere else in the paper, we use units 2M = 1.

where

Ca
l = lim

θ→0

8Sl0ω(θ, φ)

sin2 θ
, (3.70)

and γ was defined in (3.43). The constants Ca
l were determined by solving the angular

eigenvalue problem through a continued fraction representation, and then plugging these

eigenvalues into the series solution providing the spheroidal wave functions Sl0ω [16, 12]. The

procedure to determine the time-domain solution of the Sasaki-Nakamura wave function X

is identical to that adopted for the Schwarzschild case: i.e., first we solve the equations in

the frequency domain, and then we Fourier transform back in time, applying a low-frequency
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extrapolation when this is necessary to remove memory effects.

Figure 3.3 (which is similar to Figure 3.1) compares the excitation coefficient calcula-

tion of Eq. (3.8) – where now Ψ must be understood as the Sasaki-Nakamura wave function

– against numerical gravitational waveforms obtained in this way. As in the Schwarzschild

case, the integrand appearing in the calculation of the Kerr excitation factors is, in gen-

eral, divergent. The divergence can be regularized following a procedure analogous to the

Schwarzschild case (cf. Appendix 1.2).

Figure 3.3 confirms our basic findings from the nonrotating case: the convergence of

the QNM expansion is not necessarily monotonic, and the excitation coefficient expansion

works better for higher values of l. Notice that a relatively small number of overtones is

sufficient to reproduce the numerical waveform at early times even when the spin of the Kerr

BH is rather large (j = 0.98), so that one may in principle expect that a larger number of

overtones would be necessary (see, e.g., Refs. [46, 69, 14, 15, 39]). To our knowledge, the

calculation presented in this Section is the first concrete proof that an excitation-coefficient

expansion is applicable and useful in the Kerr case: all calculations available in the literature

so far were specific to the Schwarzschild case (see, e.g., Refs. [55, 56]).
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CHAPTER 4

CONCLUSIONS

In chapter 2, we extended the method proposed in Ref. [50] to determine the formal

region of validity of the PN approximation for quasicircular EMRIs of compact objects in

the equatorial plane of a Kerr BH. The boundary of the formal region of validity is defined

as the orbital velocity where the “true” error in the approximation (relative to high-accuracy

numerical calculations) becomes comparable to the series truncation error (due to neglecting

higher-order terms in the series).

For quasicircular, equatorial Kerr EMRIs, the PN expansion is known up to 4PN,

and our estimate of the region of validity can only be pushed up to 3PN. Our main results

are shown in Fig. 2.4 (in terms of orbital velocity) and in Fig. 2.5 (in terms of orbital radius).

At fixed but arbitrary spin parameter a, the 3PN approximation has no obvious advantage

when compared with other PN orders. At fixed PN order N , Fig. 2.4 shows an interesting

trend: when normalized by the ISCO velocity vISCO, to a very good approximation the region

of validity does not depend on a.

We should emphasize that our results say nothing about the absolute accuracy of

the PN approximation: they only suggest relational statements between the Nth and the

(N+1)th-order approximations. For velocities within the region of validity of the asymptotic

series, all we can say is that the Nth order approximation has errors that are of expected

relative size. For larger velocities, the (N + 1)th- and higher-order terms become important,

and should not be formally neglected. If we can tolerate errors larger than those estimated by

the (N + 1)th order term (at the risk that higher-order approximations may be less accurate

than lower-order ones) we can surely use the PN expansion beyond the realm of its formal
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region of validity. This, however, would force us to lose analytic control of the magnitude of

the error, as given by the next order term. The meaning of this caveat is well illustrated by

the counterrotating case with a = −0.99: it is clear from Fig. 2.2 that the 3.5PN and 4PN

approximations do not represent an improvement over the 3PN approximation (and in fact

perform quite badly) beyond the realm of the region of validity.

In chapter 3, we have implemented a new method, based on the MST formalism,

to compute the excitation factors Bq for Kerr QNMs. This method is simpler and more

accurate than the method used by Berti and Cardoso in Ref. [9], allowing us to extend the

calculation to higher angular multipoles l and to higher overtone numbers n. Tables of the

excitation factors Bq in the Teukolsky and Sasaki-Nakamura formalisms were made publicly

available online [76], in the hope to stimulate further research in this field.

As a test of the method, we computed the QNM excitation coefficients for the classic

problem of particles falling radially into the BH. We have compared the excitation coeffi-

cient expansion against numerical results for: (i) particles falling from rest (E = 1) into a

Schwarzschild BH, (ii) large-energy particles (E = 10) falling into a Schwarzschild BH, and

(iii) ultrarelativistic particles falling into a Kerr BH along the symmetry axis. In all cases

we found excellent agreement, validating the usefulness of excitation coefficient calculations

in the analytical modeling of the ringdown phase.
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APPENDIX

1 Regularization coefficients

1.1 The Schwarzschild case

For reference, in this Appendix we list the first few regularization coefficients bn

defined in Eq. (3.68):

b0 = ξ0 , (.1)

b1 = ξ1 +
2− 2iωq
1− 2iωq

b0 ,

b2 = ξ2 +
2iωq − 3

2(1− 2iωq)
b0 +

3− 2iωq
2(1− iωq)

b1 ,

b3 = ξ3 +
2− iωq

3(1− 2iωq)
b0 +

iωq − 2

2(1− iωq)
b1 +

2(2− iωq)
3− 2iωq

b2 ,

b4 = ξ4 +
2iωq − 5

24(1− 2iωq)
b0 +

5− 2iωq
12(1− iωq)

b1

+
2iωq − 5

2(3− 2iωq)
b2 +

5− 2iωq
2(2− iωq)

b3 .

1.2 The Kerr case

The regularization coefficients for the Kerr case are much more lengthy than in the

nonrotating case, but their calculation is straightforward. Here we list for reference the first
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two coefficients:

b0 =
1

Aout ω2
qr

2
+

(r+ − r−)

(
2iωqr+
r+−r−

−1
)
(ir+ − ir− + ωq r+)(2ir+ − i+ 2ωqr+) , (.2)

b1 = 2b0
r− − r+ + iωqr+

r− − r+ + 2iωqr+

+
1

2ASN
outω

2
q

1

r3
+

(r+ − r−)
3r+−3r−−2iωqr+

r−−r+

×

{
r4
−(8 + 4ir+ωq) + r3

−

[
4 + r+(−36 + λ+ 12iωq)− 2r2

+ωq(5i+ 2ωq)

]
+ r2

−r+

[
4iωq − 11 + 6r2

+ωq(i+ 2ωq) + 3ar1

− r+(3λ− 58 + 38iωq + 4ω2
q + 6ar1 − 6iωqar1)

]
+ r3

+

[
4ω2

q + 2r2
+ωq(2ωq − i)− 2iωq(ar1 − 5) + 3(ar1 − 1)

− r+

(
λ+ 2(1− iωq)

(
4ω2

q − 5− 2iωq(ar1 − 4) + 3ar1
))]

+ r−r
2
+

[
2r2

+(i− 6ωq)ωq + 2
(
5 + iωq(−7 + ar1)− 3ar1

)
+ r+

(
3λ− 4

(
10 + ω2

q (−5 + ar1)− 3ar1 + iωq(−13 + 4ar1)
))]}

,

where

σ+ =
ωqr+ − am
r+ − r−

, (.3)

the amplitude ASN
out is related to the Teukolsky amplitude AT

out =
∑∞

n=0 arn via Eq. (3.47) and

λ is related to the separation constant Alm through relation (3.20). The coefficients {arn},

n = 0, 1, 2... (with ar0 = 1) are defined via the homogeneous solution Rr+ of the Teukolsky

equation

Rr+ = eiωqr(r − r−)−1−s+iωq+iσ+(r − r+)−s−iσ+
∞∑
n=0

arn

(
r − r+

r − r−

)n
, (.4)

and can be obtained by plugging this decomposition in the Teukolsky equation (3.10).

The Sasaki-Nakamura wave function X is related to Rr+ by Eq. (3.38). What we plot

in Figure 3.3 is actually the normalized Sasaki-Nakamura wave form XSN
q = (Xe−iωqr∗)/Aout,

57



whose excitation coefficients are given by

Cq = −γ∞

∞∫
r+

[
XSN
q

2ω2
qr

2
√

(r − r+)(r − r−) + r

−
∞∑
k=0

(
e−r+r+(r − r+)

k+
2iωqr+
r−−r+ bk −

e−r+r+(r − r+)
1+k+

2iωqr+
r−−r+

1 + k + 2iωqr+
r−−r+

bk

)]
dr .
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