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ABSTRACT 

The eye is protected from the external environment by various physiological and 

anatomical barriers. These barriers through there protective actions drastically diminish the 

ocular bioavailability of drugs. The corneal epithelium acts as a major barrier towards the 

permeation of hydrophilic agents, whereas poor aqueous solubility presents a formulation 

challenge for lipophilic compounds. Additionally, P-glycoprotein (P-gp) expressed on the retinal 

pigmented epithelium (RPE P-gp) limits the penetration of substrates, in therapeutically relevant 

concentrations, into the back-of-the-eye.  

In the present research, use of penetration enhancers (chitosan, benzalkonium chloride 

(BAK) and ethylenediaminetetraacetic acid (EDTA)) and formulation approaches (cyclodextrins 

and solid lipid nanoparticles (SLNs)) were evaluated in terms of their ability to improve the 

ocular bioavailability of hydrophilic and lipophilic compounds, respectively. A novel approach, 

localized modulation of RPE P-gp using topically co-administered P-gp inhibitors, was 

investigated to improve the back-of-the eye delivery of P-gp substrates.  

In vitro transcorneal permeation results demonstrated that chitosan brought about a dose 

dependent increase in the permeability of acyclovir, a model hydrophilic compound.  

Combination of chitosan, BAK and EDTA resulted in a synergistic effect on the permeation of 

acyclovir.  Dramatic increase in aqueous solubility, stability and in vitro transcorneal 

permeability of delta-8-tetrahydrocannabinol, a model lipophilic agent, was observed in the 

presence of 2-Hydroxypropyl-β-cyclodextrin (HPβCD), randomly methylated-β-cyclodextrin and
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sulfobutylether-β-cyclodextrin. The indomethacin loaded SLN (IN-SLNs) formulation was 

physically stable following sterilization and on storage. The IN-SLNs formulation increase 

stability and in vitro corneal permeability of indomethacin in comparison to the solution 

formulations (cosolvent and HPβCD based) tested.  

Furthermore, for the first time, studies in anesthetized male New Zealand rabbits 

demonstrate that topically applied P-gp inhibitors can diffuse to the RPE and alter the 

elimination kinetics of a systemically or intravtireally administered P-gp substrate, probably 

through inhibition of the basolateral RPE P-gp. The degree of inhibition was found to be 

dependent on the physicochemical characteristics of the inhibitor and its affinity for P-gp and the 

concentration of the therapeutic agent in the plasma or in the vitreous humor. Formulation 

factors such as inclusion of permeation enhancers may play a major role in yielding effective 

levels of the inhibitor at the RPE. 
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CHAPTER 1 

REVIEW OF LITERATURE 

 
This chapter provides an overview of the anatomy of the eye and the barriers in ocular 

drug delivery. Additionally, it also discusses limitations and challenges in ocular delivery of 

hydrophilic/lipophilic drugs, and strategies that may be employed to enhance the ocular 

permeation and therapeutic efficacy of these drugs. This section would help in understanding the 

goals and findings presented in the subsequent chapters. 

 

1.1. Anatomy of the eye 

Figure 1-1 is a schematic representation of the anatomy of the eye. The eye, organ of 

sight, is a secluded organ and can be anatomically divided into the anterior and posterior 

segments. The anterior segment comprises of the cornea, conjunctiva, aqueous humor, iris-ciliary 

bodies and the lens. The posterior segment consists of the retina, choroid, vitreous humor, 

choroid, sclera and the optic nerve. 
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Figure 1-1: Cross-sectional view of the eye showing different anatomical regions.  

Adapted from National Eye Institute, National Institutes of Health 

 

1.1.1. Cornea  

The cornea is the anterior most, clear, transparent membrane of the eye and acts as the 

principal refractive element of the eye. It has a refractive power of more than 40 diopters and 

accounts for 70% of the refractive power of the eye (1). The border between the sclera and the 
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cornea is called the limbus.  Normal cornea is devoid of blood vessels. The peripheral parts of 

the cornea receive nutrition and oxygen from the capillaries of the limbal area. The rest of the 

cornea gets its nourishment and oxygen from the aqueous humor and tear film, respectively (1). 

The structure of cornea is complex (Figure 1-2) and is composed of five to six layers: the 

epithelium, Bowman’s membrane, the stroma, Descemet’s membrane, and the endothelium. The 

Bowman’s membrane is absent in the rabbit cornea and is found only in the eyes of humans and 

other primates (1-3).  

The epithelium, constituting about 10% of total corneal thickness, is the outermost layer 

of the cornea and plays a critical role in maintaining balanced stromal hydration and acts as a 

major barrier against xenobiotics, microorganisms, dust etc. It consists of five to six layers of 

cells which exhibit tight junctions. These layers can be further subdivided into one or two layers 

of flattened superficial cells with microvilli on their anterior surface, which helps to anchor the 

tear film and prevent the cells from drying, two to three layers of polygonal wing cells and a 

single layer of columnar basal cells.  The Bowman’s membrane is acellular in nature and is 

composed of a layer of collagen fibers and glycosaminoglycans which forms a relatively tight 

and impermeable barrier and protects the stroma (2-5). 

 

The stroma contributes towards 90% of the corneal thickness and is composed of water, 

collagen fibrils, glycosaminoglycans and non-collagenous proteins. It is highly hydrophilic and 

porous in nature, and can be considered to be an open structure. On the interior surface of the 

stroma is the collagen rich Descemet’s membrane which forms the basement membrane for the 

corneal endothelium (2-5). The endothelium, consisting of a single layer of hexagonal cells, 
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forms the innermost layer of the cornea facing the anterior chamber. It plays a major role in the 

maintenance of corneal hydration. Disruption of the endothelium may result in corneal edema (3, 

4). 

 

 

Figure 1-2: Cross-section of the cornea. 

Reproduced with permission from Informa Plc., ref (6) 
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1.1.2. Conjunctiva 

Conjunctiva is a thin, mucus membrane covering the inner surface of the eyelid and the 

visible part of the sclera. While primarily serving as a protective barrier for the eye, the 

conjunctiva secretes mucus which is believed to be essential for tear film stability and corneal 

nourishment. In rabbits and in humans, the conjunctiva surface area is nine and seventeen times 

larger, respectively, than that of the cornea (7). The conjunctiva differs from the cornea in that it 

is highly vascularized, and is capable of mucus secretion and transdifferentiation (7).  The 

conjunctiva is composed of three sections: palpebral conjunctiva, bulbar conjunctiva and fornix 

conjunctiva (Figure 1-3). Palpebral conjunctiva lines the posterior surface of the eyelid and is 

covered with thick, opaque, red muscles. The bulbar conjunctiva, a thin semitransparent and 

colorless tissue, covers the eye ball over the sclera. The palpebral conjunctiva is firmly attached 

to the eyelids, while the bulbar conjunctiva is loosely attached to the underlying sclera and 

moves with the movements of eye ball (7). Fornix forms the junction between the eye lid and the 

eyeball, where the palpebral conjunctiva reflects to become the bulbar conjunctiva. The 

conjunctiva consists of goblet cells, which secrete mucin, and melanocytes. 

The conjunctiva can be divided into three layers: the outer epithelium, a permeability 

barrier; the substantiapropria, which consist of nerves, lymphatics and blood vessels; and the 

submucosa, which provides a loose attachment to the underlying sclera (2). The outer epithelium 

is similar to the corneal epithelium in that it consists of superficial, wing and basal cells. 

However, the thickness of the conjunctiva varies from region to region; it is ten to fifteen layers 

thick towards the cornea and five to six layer thick at the lids. A greater number of wing cells are 
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present in the conjunctival epithelium when compared to corneal epithelium (7). The cells of the 

superficial layer, similar to that of the cornea, consists of dense microvilli covered with a 

glycocalyx and a mucin layer. The presence of tight junctions in the superficial conjunctival  

epithelium renders it a relatively impermeable barrier (2, 7). The basal cells layer consists of 

melanocytes and Langerhans’ cells (1). 

 

Figure 1-3: Schematic representation of Conjunctiva. 

Reproduced with permission from Elsevier., ref (8) 

 

1.1.3. Iris-ciliary Body 

The iris is a thin, round, contractile membrane of the eye, suspended in the aqueous 

humor between the cornea and lens and is perforated by the pupil. The iris is continuous with the 

ciliary body at its periphery and the ciliary body and the iris together comprise the anterior uvea. 

The iris consists of the pigmented epithelial cell layer, the iridial sphincter and dilator muscles, 
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and the stroma (1, 4). It receives its blood supply from the major arterial circle, which lies in the 

stroma of the ciliary body near the iris root (2).  Contraction and dilation of the sphincter and 

dilator muscles causes a decrease (mitosis) and increase (mydriasis), respectively, in the size of 

the pupil. The extent of melanin present in the stroma determines the color of the iris. The 

epithelial cell layer is absent on the anterior surface of the iris (1, 4). 

The ciliary body comprises of the ciliary muscle and the ciliary processes (Figure 1-4). 

The ciliary muscle is smooth in nature and consists of longitudinal, circular and oblique muscles.  

The ciliary muscle helps in accommodation by altering the shape of the lens. When the muscles 

contract; the lens zonules relax, and the lens becomes more convex, increasing the eye’s ability 

to focus on nearby objects. The ciliary processes are highly vascular and are formed by inward 

folding of the various layers of the choroid. The processes are covered by inner non-pigmented 

epithelium (facing the posterior chamber) and outer pigmented epithelium (facing the stroma of 

the processes). The non-pigmented epithelial cells are attached to each other by tight junctions 

and are primarily responsible for the production of aqueous humor (1). The ciliary body is the 

main target of anti-glaucoma drugs acting through the mechanism of decreasing aqeous humor 

production and thus reducing the intraocular pressure.  
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Figure 1-4: Ciliary body structure. 

Reprinted with permission from http://education.vetmed.vt.edu/Curriculum/VM8054/EYE/UVEA.HTM (August 11 
2010) 

 
 
 
1.1.4. Aqueous Humor 

The void between the lens, ciliary body process and the iris is called the posterior 

chamber, while that between the iris, the chamber angle and the cornea is called the anterior 

chamber (Figure 1-5). Both chambers, which together have a volume of 200-300µL, are filled 

with a clear, watery fluid known as aqueous humor (3). The aqueous humor is devoid of cells 

and is rich in ascorbic acid, chloride and lactates. It consists of very little proteins to avoid light 

scattering (1, 4, 9). The main functions of the aqueous humor includes nourishment (glucose and 

amino acids) of the avascular tissues of the eye such as  the cornea, the trabecular meshwork,  the 

lens and  the anterior vitreous, elimination of metabolic products (lactate) from surrounding 

structures, and maintenance of intraocular pressure (1, 3, 4).   

The aqueous humor is produced, at a rate of 2-3 µL/min, by the non-pigment epithelium 

of the ciliary processes by ultrafiltration and is secreted into the posterior chamber. It enters the 



 
9 

anterior chamber through the pupil and exits the eye via the trabecular meshwork into the 

Schlemm’s canal, which empties the aqueous humor into the veins under the conjunctiva (Figure 

1-5). Most of the aqueous humor leaves the eye through the trabecular meshwork known as the 

conventional pathway. However, some of the aqueous humor leaves the eye through the ciliary 

body into the supraciliary and suprachoroidal space and finally exits through the sclera pores. 

This route is referred to as uveo-scleral or non-conventional outflow pathway (1). 

 

Figure 1-5: Cross-sectional view of the eye showing production and elimination of aqueous 

humor fluid.  

Adapted from National Eye Institute, National Institutes of Health 

 
 
 
 
 
 
 

Posterior chamber 
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1.1.5. Lens 

The lens is a transparent, biconvex structure of the eye that is situated behind the iris and 

in front of the vitreous. It contains 65% water and the remainder is comprised of proteins. The 

anterior surface of the lens which is directly in contact with the aqueous humor is less curved 

than the posterior surface. The lens is flexible and its curvature is controlled by the ciliary 

muscle through the zonules. Lens, by changing its curvature, refracts light to help focus the  

image on the retina for proper visual sensation (1, 2). 

The lens has three major components: the lens capsule, the lens epithelium and the lens 

fiber (Figure 1-6). The lens capsule forms the outermost layer of the lens and encloses the 

epithelium and lens fiber cells. It is cellular, transparent and elastic in nature and is mainly 

composed of type IV collagen and glycosaminoglycans. The lens epithelium consists of 

monolayers of cuboidal cells  located in the anterior portion of the lens, between the lens capsule 

and lens fibers (1, 2). The epithelium regulates most of the homeostatic functions of the lens 

(10). The lens fiber forms the bulk of the lens. These fibers are formed from the differentiation of 

epithelial cells. Since the lens does not shed any cellular components, the older layers of the fiber 

cells are displaced towards the center or nucleus of the lens. The fiber cells peripheral to the 

nucleus form the lens cortex (1, 2, 4). 
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Figure 1-6: The Lens. 

 1.1.6. Sclera 

Sclera or the white of the eye is the outermost tunic of the eye and protects the sensitive 

intraocular tissues as well as the cornea. It has a 17-fold larger surface area compared to that of 

the cornea (11). The sclera thickness varies with age, species, and as a function of distance from 

the limbus. The mean thickness of the human sclera is reported to be 0.53 mm at the limbus, 0.39 

mm at the equator and 0.9-1.0mm near the optic nerve. These thicknesses are subject to great 

variation, with equatorial thickness frequently below 0.1 mm (12, 13). 

The composition of the sclera is similar to that of  the corneal stroma. However, the fibers 

in the sclera are arranged in an irregular network making it opaque (5). The sclera is composed 

of collagen bundles and some elastic fibers which form a fine network with fibroblast and 

melanocytes. The sclera does not present much of a diffusional barrier to drug molecules (1, 4, 

12-15).  
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1.1.7. Choroid 

The choroid is a thin, soft, spongy and highly vascularized membrane located between 

the retinal pigmented epithelium and the sclera. It provides nourishment and oxygen to the outer 

layers of retina (16). Anteriorly, the choroid continues into the ciliary body and iris, and ends 

posteriorly at the optic nerve. Along with the iris and the ciliary body the choroid forms the uveal 

tract. The choroid can be divided into four or five layers. The epichoroid or suprachoroid is the 

outermost layer of choroid facing the sclera. It consists of a thin elastic collagen fiber network, 

fibroblasts and melanocytes. The space within the suprachoriod layer and fibers is known as the 

suprachoroidal space. This space plays an important role in aqueous humor dynamics. The 

aqueous humor that leaves the eye via the non-conventional route ends up in the supracholroidal 

space from where it drains out through the scleral pores. The vascular layer is the thickest layer 

of the choroid and consists of veins and arteries of medium and large size embedded in loose 

connective tissues. The choriocapillary layer is a single layer of very thin and densely packed 

fenestrated capillaries. The capillaries are leaky and permeable to plasma proteins and colloids. 

The innermost layer of the choroid is the five layered Bruch’s membrane. The Bruch’s 

membrane consists of the basal lamella of the retinal pigmented epithelium, endothelial cells of 

choriocapillaries, and collagen and elastic fibers(1, 17).  

 

1.1.8. Retina 

The retina is the light-sensitive tissue lining the inner posterior surface of the eye. The 

retina consists of two major sections: the neural retina and the retinal pigmented epithelium (1). 

The neural retina is a multilayered structure and is involved in light transduction. It consists of 
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the photoreceptor layer, outer limiting membrane, outer nuclear layer, outer plexiformlayer, 

inner nuclear layer, inner plexiform layer, ganglion cell layer, nerve fiber layer and inner limiting 

membrane. Large retinal vessels are present in the optic nerve fiber layer and retinal capillaries 

are present in between the inner nuclear layer and the outer plexiform layer (2) (Figure 1-7).  

The photoreceptor layer faces the retinal pigmented epithelium and is composed of the 

rods and the cones. The macula is situated laterally to the optic nerve head and the center of the 

macula is the avascular fovea which contains only cones. The photoreceptors are connected to 

the bipolar neurons, through complex horizontal neurons, that are coupled to the ganglion cells 

of the retina. The axon of the ganglion cells extend into the optic nerve. The amacrine neurons 

connect to the vertical neural pathway at the level of bipolar and ganglion cells (1). Light enters 

the retina through the ganglion cell layer and reaches the photoreceptor layer. The  transduced 

signals from the photoreceptor layer are then conducted out to the optic nerve, through various 

neurons described above, and into the brain where it is registered in the form of images (4).    

The retinal pigmented epithelium (RPE) is a monolayer of cuboidal epithelial cells, 

connected by tight junctions, between the photoreceptor layer and the choroid. The human RPE 

consists of 3.5 million epithelial cells arranged in a continuous hexagonal pattern extending 

through the entire retina. The RPE cells can be differentiated into an apical portion, facing the 

photoreceptors, and a basolateral portion, facing the choroid. The apical portion consists of long 

microvilli that integrate with the outer segment of the rods (4, 18).  The RPE plays a vital role in 

the removal of the tips of the outer segment of the photoreceptors,  storage and metabolism of 

Vitamin A, production of cytokines necessary for retinal development and survival, and acts as 

barrier to the transport of xenobiotics(18). 
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Figure 1-7: Cellular organization of retina. 

Reprinted with permission from http://www.surgical-pathology.com/retina_image.htm. (August 11 2010) 
 
 
 
 
 
1.1.9. Vitreous Humor 

The vitreous humor is a clear gel which fills the space between the lens and the neural 

retina lining the back of the eye.  It is also known as the vitreous body and occupies about 80% 

of the volume of the eye. It is attached to the retina by ligaments and is separated from the lens 

capsule and the posterior chamber by the anterior hyaloids membrane (1). The vitreous humor 

mainly consists of water (99%). The remainder consists of small amount of glycosaminoglycans, 

chondroitin sulfates, collagen, hyaluronic acid, inorganic salts, sugar and ascorbic acid. The pH 
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of vitreous humor is approximately 7.5. In contrast to the aqueous humor, which is continuously 

produced in adults, no new vitreous humor is produced. It is static in nature and small drug 

molecules or solutes transport in vitreous body occurs via diffusion (1, 4, 19).  

 

1.2. Barriers in Ocular Drug Delivery 

The external surface of the eye is readily accessible for drug administration. However, 

the eye is very well protected from the external environment and the systemic circulation by 

various physiological and anatomical barriers. The major role of these barriers is to protect the 

ocular cells from harmful toxic substances. However these barriers through their protective 

action, also drastically diminish the amount of drug permeating across the epithelial cell layers 

which results in low ocular bioavailability. Additionally, these barriers are unique and specific to 

the route of administration viz. topical, systemic, intravitreal and transscleral. Figure 1-8 is a 

schematic representation of different routes of drug administration to eye.  
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Figure 1-8: Route of drug administration to eye.  

Reproduced with permission from Springer., ref (20) 
 

1.2.1. Topical administration 

Topical administration of eye drops into the lower cul-de-sac is the most patient preferred 

method to treat ocular disorders. This route of administration presents a number of potential 

advantages: (i) a convenient, self-administrable, inexpensive and noninvasive method of 

administration; (ii) drug effects are localized and decreases systemic exposure; and (iii) it avoids 

hepatic first-pass metabolism in the liver. However, despite proven advantages, a major problem 

in topical ocular therapeutics is attainment of optimal drug concentration at the site of action. It 
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is estimated that the intra-ocular bioavailability of topically applied drug is only 1-10%. This 

poor ocular bioavailability of drugs is mainly attributed to precorneal barriers, non-productive 

conjunctival absorption, permeability barrier imposed by the cornea, and inherent 

physiochemical insufficiencies of the drug molecule. To achieve therapeutic drug concentrations 

in the ocular tissues these challenges need to be overcome.  

 

1.2.1.1. Pre-corneal barriers 

Following topical administration, the ophthalmic drug solution will mix with the tear 

fluid and get dispersed over the ocular surface.  However, various pre-corneal barriers such as 

drainage of the instilled solution, lacrimation and tear dilution and tear turnover, limit the ocular 

bioavailability of the drugs (Figure 1-9). 

The volume dispensed by most commercial ophthalmic eye drop dispensers is 

approximately 50 µL. However, the maximum quantity of fluid that the lower conjunctival cul-

de-sac can hold without overflow or spillage onto cheeks is about 30 µL. Thus, approximately 20 

µL of drug solution is lost due to instillation of excess volume. Following removal of the excess 

solution the natural tendency of the cul-de-sac is to reduce the volume to 7-10µL, which is the 

normal resident volume of tears in the cul-de-sac (21). A major part of the remaining instilled 

drug is quickly removed from the cul-de-sac into the systemic circulation, which can cause some 

systemic side effects, through the nasolarcimal duct into the highly vascularised inferior nasal 

passage. This nasolacrimal drainage is facilitated by the pumping action of the canaliculi 

associated with the blink movements. The second mechanism that efficiently clears the 

remaining drug solution from the cul-de-sac is continual turnover of the tear film. The pre-
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corneal tear film is the first structure encountered by topically applied agents. The tear film is 

continuously produced and secreted, by lachrymal and conjunctival glands, at a rate of 

approximately 1-2 µL/min, which equates to a 16% turnover of the tear film per min. Secretion 

of tear and its spreading across the surface of the eye by blinking ensures constant bathing of the 

corneal and conjunctival membrane and protects these tissues from drying. Additionally, the tear 

film helps in the elimination of cellular debris and foreign substances and in maintaining a 

smooth refractive surface over the cornea. However, the continual turnover of the tear film also 

washes away the instilled drug, through the nasolacrimal drainage, minimizing the duration of 

drug exposure.  

In addition to dilution of the instilled drug solution, which reduces the transcorneal flux 

of the drug remaining in the cul-de-sac, the tear film also acts as a barrier to the penetration of 

the molecules into the ocular tissues. Tear film has a trilammelar structure. The outer layer, 

secreted by the meibomian glands, is an oily layer and consists of various waxes, esters, free 

fatty acids and sterols. The middle layer is an aqueous layer and contains inorganic salts, 

glucose, urea, proteins and biopolymers. It is secreted by the lachrymal gland and the accessory 

glands of Krauss and Wolfring. The inner layer is called the mucus layer, consisting of 

glycoproteins, and is produced by the conjunctival goblet cells and the lachrymal glands (3). 

Therefore, drug molecules need to demonstrate an optimum hydrophilic and lipophilic balance to 

traverse the tear film efficiently.  Other physiological factors that affect ocular delivery of topical 

drugs are protein binding and drug metabolism. Normal tear film consists of 0.6-2 % of proteins, 

which may increase in diseased states. Major components include albumin, globulin and 

lysozyme. Binding of drug to the proteins renders it unavailable for ocular absorption and will be 
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removed from the eye through nasolacrimal drainage (22, 23).  Additionally, tears consist of 

enzymes such as esterases, monoamine oxidase and aminopeptidases which can significantly 

metabolize the therapeutic agents and thus decrease ocular bioavailability (22).  

 

1.2.1.2. Conjunctival barrier 

The fraction of the instilled drug that does not get immediately expelled from the ocular 

surface reaches the deeper ocular tissues either by the corneal route or the non-corneal route 

(Figure 1-9). The non-corneal route of absorption involves penetration across the conjunctiva 

and underlying sclera into the cornea and aqueous humor, uveal tract and vitreous humor. 

Conjunctiva is a highly vascularized, thin, mucous membrane lining the inside of the eyelids and 

anterior sclera. It is an important competitive route covering five-sixth of the total surface area of 

the eye ball. The conjunctival surface area is about 9 to 17 times greater than the surface of the 

cornea in rabbits and in humans, respectively (24). The tight junctions of the superficial 

conjunctival epithelium are the main barriers to the penetration of drug molecules across the 

cornea. However, the paracellular spaces are wider and leakier than those of the corneal 

epithelium (25). Therefore, the permeation of hydrophilic and large molecules such as inulin 

(MW 5000) and FITC dextran (MW 20000) across the conjunctiva is significantly greater than 

that across the cornea (24-27). Additionally, many studies have shown that conjunctival 

permeation is significant for compounds with poor corneal permeability, such as gentamycin, 

bimatoprost and prostaglandin PGF2-ALPHA, peptides and oilgonucleotides (6, 28, 29). 

However, transconjunctival penetration is generally undesirable because the conjunctival 

membrane is richly perfused with blood vessels and lymphatics and a major portion of the 
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topically applied agent is rapidly removed into the systemic circulation (3, 6, 20, 28, 29). 

Additionally, several carrier proteins such as nuclesoside, glucose and amino acid transporters 

expressed by the  conjunctival cells removes drug molecules from the ocular surface into the 

systemic circulation and aids in precorneal clearance (4, 30-33). Therefore, this non-corneal 

route is considered to be non-productive for most ophthalmic drugs, reducing the fraction 

available for corneal absorption (34).  

 

1.2.1.3. Corneal Barrier 

In addition to the precorneal and conjunctival constraints, the major limiting step in the 

penetration of topically administered therapeutic agents into the inner layers of the eye is the 

diffusion across the cornea. The cornea is the main route of penetration of ophthalmic agents into 

the intra-ocular tissues (Figure 1-9) (3, 26, 34, 35). However, the small surface of the cornea, its 

relative impermeability and complex structure render the cornea a formidable barrier to topical 

drug delivery (34). The cornea is composed of the outermost epithelium, Bowman’s membrane, 

stroma, Descemet’s membrane, and inner endothelium. Descemet’s and Bowman’s membrane 

do not present a significant barrier to drug permeation (36). The epithelium and the stroma are 

the most significant barriers. The outer epithelium makes up 90% of the total cells of the cornea 

and is lipophilic in nature.  On the other hand, the underlying stroma consist of 90% of water and 

is hydrophilic in nature (37). The epithelium is the primary barrier to corneal permeation of 

hydrophilic drugs while for lipophilic drugs partitioning form the epithelium into the hydrophilic 

stroma is the rate limiting step (38). Additionally, the epithelial cells are tightly bound just below 

the apical surface by cell adhesion proteins forming tight junctions. These tight junctions, 
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composed of occludins, Z0-1 and Z0-2 proteins, in a regulated manner acts as the principal 

barrier to passive movement of fluid, electrolytes, macromolecules and drugs through the 

paracellular pathway (39). The monolayer of endothelium with large intercellular junctions does 

not restrict the passage of hydrophilic compounds; however, it may play a small role in 

determining the permeability of lipophilic compounds (36). 

 

1.2.1.3.1. Barriers and factors determining corneal permeation: 

High corneal permeability is important in the development of new therapeutic 

compounds and delivery strategies. Physiochemical characteristics such as lipophilicity, aqueous 

solubility, molecular size and shape, and charge and degree of ionization, act as the major 

determininants of the rate and the route of permeation across the cornea (5, 37).   

Passive diffusion along a concentration gradient, either transcelllulary or paracellularly, is 

the main mechanism of permeation across the cornea for most of the topically applied drugs 

(Figure 1-2). Occasionally, carrier-mediated active transport mechanisms, utilizing transporters 

expressed on the corneal epithelium, is involved (40). Lipophilic drugs prefer the transcellular 

pathway. Hydrophilic drugs penetrate primarily through the paracellular pathway through the 

intercellular spaces (41). For a compound to be effective topically, it must possess sufficient 

aqueous solubility and at the same time exhibit sufficient lipophilicity for efficient permeability 

across the cornea. The corneal membrane contains both hydrophilic and lipophilic layers. A 

highly lipophilic drug will be entrapped in the epithelial layer while a hydrophilic compound will 

not be able to diffuse across the lipoidal epithelial layer. Parabolic (24, 42, 43)  and sigmoidal 

curves (24, 44) have been reported to describe the influence of lipophilicity on corneal drug 
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permeability. The optimum range for the octanol/buffer pH 7.4 partition coefficient (log P) for 

corneal permeation is in the range of 2-3, which is consistent with the lipophilic nature of the 

corneal epithelium (24). Aqueous solubility of the therapeutic agents must also be sufficient to 

enable the formulation of aqueous eye drops. In addition, the surface of the eye is constantly 

bathed with lachrymal fluid. If the drug molecule is not soluble in the tear film it is unavailable 

for ocular absorption, except in nano drug delivery systems where endocytosis is considered as a 

major mechanism by which the drug accesses the intraocular tissue. Therefore, ideal potential 

ophthalmic agents should maintain a balance between water solubility and lipid solubility (38, 

45, 46).  

Weakly acidic and weakly basic drugs are capable of existing in both unionized and 

ionized forms and the ionization state of these drug molecules can affect its permeability across 

the corneal epithelium. The unionized drug usually permeates the lipophilic corneal membrane 

more easily than the ionized form. The ratio of ionized to unionized drug will depend on the pKa 

of the molecule and the pH of the formulation and the lachrymal fluid.   Therefore, drugs 

formulated at a pH which provides a higher concentration of unionized drug usually shows 

higher corneal permeation. The nature of the charge as well as the degree of ionization will affect 

the corneal permeability of ionizable drugs.  The cornea is negatively charged above its 

isoelectric point (pI 3.2). Thus, cationic drug molecules permeate the cornea more easily than the 

anionic species. Below the isoelectric point, the cornea is selective to negatively charged drugs, 

however, this pH would be too acidic and irritating to use in a clinical setting (22, 24, 47).  

The molecular size of the drug molecules also affects corneal permeation. The cornea is 

an effective barrier to compounds larger than 10A because these molecules cannot cross the 
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corneal membrane at any significant rate (37, 48). Apparently, there is no dependence of 

permeation on the molecular radius of the drug molecules; however, for macromolecular 

peptides a trend is observed with increasing molecular size (37, 49).  

 

Figure 1-9: Absorption, distribution and elimination pathways for topically administered 

drugs.  
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1.2.2. Systemic administration 

Systemic administration is the preferred route of administration when topical drug 

administration fails to establish and maintain therapeutic concentrations for treatment of some of 

the ocular disorders. Drugs such as steroids and nonsteroids are generally administered 

systemically for the treatment of uveitis and scleritis, acetazolamide for macula edema, and 

antivirals and antibiotics for prophylaxis or therapy of chorioretinitis and endophthalmitis. 

Additionally, application of  systemic therapy includes thalidomide for the treatment of 

proliferative disease, antioxidants for the protection against macular degeneration, and the use of 

neuroprotective agents in patients with glaucoma (50).  However, only a very small fraction of 

the systemically administered drug reaches the ocular tissue  due to the presence of  blood-ocular 

barriers (51). Blood-ocular barrier consists of two components: (i) blood-aqueous barrier (BAB), 

and (ii) blood-retinal barrier (BRB) (52).  

 

1.2.2.1. Blood-aqueous barrier (BAB) 

The BAB is located in the anterior part of the eye. It is formed by two discrete layers of 

cells, the endothelium of the iris/ciliary blood vessels and the non-pigmented ciliary epithelium.  

Both cell layers express tight junctions which prevents unrestricted diffusion of drug molecules 

into the aqueous humor from the systemic circulation (53). Additionally, the outward movement 

of drug molecules from the aqueous humor into the iris blood vessels, and then into the systemic 

circulation, is less restricted. The iris is porous in nature and agents dissolved in the aqueous 

humor, especially small molecules, can freely diffuse across its anterior surface and enter into the 
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uveal blood circulation via the blood-aqueous barrier from where they are rapidly removed into 

the blood circulation. Large hydrophilic molecules are removed by the continuous outflow of 

aqueous humor through the canal of Schlem (51). 

 

1.2.2.2. Blood-retinal barrier (BRB) 

The BRB is located in the posterior part of the eye and comprises of the outer and inner 

BRB’s. The inner BRB is formed by the endothelial cells lining the lumen of the retinal blood 

vessels (blood vessels penetrating into the retina) and the outer BRB is formed by the retinal 

pigmented epithelial (RPE) cells (52, 54). 

The inner BRB covers the lumen of the retinal capillaries and selectively protects the retina from 

circulating molecules in the blood. Unlike capillary endothelium in most tissues, retinal 

endothelial cells do not exhibit fenestrations and express intercellular tight junctions in a 

regulated manner which restricts passive paracellular diffusion. Additionally, similar to blood-

brain barrier, the inner BRB has been reported to consist of astrocytes and pericytes in close 

apposition to the basal lamella of the retinal blood vessels.  A combination of these cellular 

structure and functions enable retinal endotheial cells to form the inner BRB (4, 54). RPE is a 

monolayer of highly specialized cells which separates the outer surface of the neural retina from 

the Bruch’s membrane (55). In contrast to the retinal blood vessels, the choroidal vasculature 

possesses large fenestrations and pinocytic vesicles that allow unrestricted movement of 

endogenous/exogenous substances into/out of the choroidal stroma (52, 56, 57). Bruch’s 

membrane (basement membrane seprating choroid from the RPE) acts as a diffusional barrier 

only to macromolecules like proteins, oligonucleotides and genes. The RPE, however, due to the  
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presence of tight junctions presents a formidable barrier to the permeation of small hydrophilic  

drug molecules into the retina from the choroid (53). Additionally, P-glycoprotein, an efflux 

pump, acts as a barrier to the diffusion of hydrophobic molecules across the RPE. Thus, the outer 

BRB and inner BRB collectively form the BRB and acts in conjunction to restrict the exchange 

of molecules between the blood and vitreous chamber. These physiological mechanisms, while 

protecting the ocular structures from xenobiotics, make drug delivery to the back-of-the-eye an 

extremely challenging task. 

 

1.2.2.3. P-glycoprotein (P-gp) 

P-gp, a 170-kDa membrane bound efflux protein, is able to decrease uptake or increase 

efflux of a variety of structurally, mechanistically, and functionally unrelated hydrophobic 

xenobiotics. Various mammalian tissues, e.g. lungs, brain endothelial cells, liver, epithelial lining 

of the proximal kidey tubules, and intestinal enterocytes express this efflux proteins. P-gp 

belongs to the ATP-binding cassette super-family. ATP binding and subsequent hydrolysis is 

essential for the functioning of P-gp (58-60). It is encoded by the MDR1 gene in humans 

whereas in mice two genes mdr1a and mdr1b encode these proteins (61). P-gp is expressed as a 

single polypeptide consisting of 1280 amino acid residues that are arranged in two structurally 

similar domains Tansmembrane domains (TMD) of 610 amino acids, joined by a 60 amino acid 

segment referred to as the linker region (62). Each domain consists of an NH2-terminal with six 

transmembrane α-helices, separated by three hydrophilic loops. The two halves of P-gp interact 

to form a single transporter. These TMD are believed to form the transmembrane pathway 

through which solutes cross the membrane and plays a major role in determining substrate 
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specificity. Each hydrophobic transmembrane domain is followed by the hydrophilic nucleotide- 

binding domain (NBD) which is located at the cytosolic surface or the plasma membrane. The 

NBD contains the ATP binding site and couples ATP hydrolysis to the transport process (63) 

(Figure 1-10).  

 

Figure 1-10: Structure of P-gp. 

Reproduced with permission from Springer., ref (64) 

 
 

Mechanism of action of these proteins is still controversial. Several models such as the 

“aqueous pore model”, the “vacuum cleaner model” and “flippase model” have been proposed to 

explain their involvement in multidrug resistance (60). According to the aqueous pore model, 

following passive diffusion of molecules across the cell membrane, they may be recognized by 

P-gp and exported back across into the extracellular space, in association with ATP hydrolysis, 
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through the formation of a hydrophobic channel (pore) between the intracellular and extracellular 

space  (60, 65). The vacuum cleaner model suggests that the lipid soluble drug interacts with P-

gp with in the lipid bilayer and is subsequently expelled into the extracellular space without 

entering the cytoplasm (65, 66). On the other hand, fillpase model proposes that the drug after 

entering the cytoplasm is flipped from the inner leaflet to the outer leaflet of the cell membrane 

(60, 67). 

1.2.2.3.1. Contribution of P-gp to the barrier properties of the RPE for systemic 

administration 

  

P-gp expressed on the RPE is a vital component of RPE’s barrier properties (68-71). This 

protein is expressed on the apical and basal membranes of the RPE and is responsible for the 

efflux of substrates back into the extracellular space. The physiological role of this efflux protein 

is to protect cells from harmful toxic substances by maintaining sub-therapeutic intracellular 

drug concentrations at the target site. However, P-gp, through its protective action, also 

drastically diminishes the amount of drug permeating across the epithelial cell layers, which 

results in low bioavailability of substrates.  P-gp displays broad substrate specificity, accepting 

many structurally dissimilar compounds including HIV protease inhibitors, steroids, calcium 

channel blockers and anticancer, cardiac and anti-fungal agents, as substrates (72).  The RPE is 

perhaps unique in that P-gp is expressed on both apical (facing the neural retina) as well as basal 

(facing the choroid) membranes of the RPE cells (69). Generally, P-gp is expressed on the apical 

membrane of epithelial cells preventing drug transport from the lumen into the systemic 

circulation (e.g. intestinal epithelium) or from the systemic circulation into the brain (endothelial 

cells of BBB). Considering the unique distribution of P-gp in the RPE cells, P-gp mediated 

efflux may restrict systemic to vitreous as well as vitreous to systemic permeation of substrates. 
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Since most of the chemotherapeutic agents are substrates of P-gp, diffusion of these agents from 

the systemic circulation into the neural retina is severely restricted. Thus, a possible reason for 

the inability of the systemic route to generate therapeutic drug concentrations in the retina is the 

interaction of these efflux proteins with its substrates.  

 

1.2.3. Intravitreal administration 

Intravitreal injection involves direct application of therapeutic agents into the vitreous 

body through the pars plana. This mode of administration avoids all the barriers encountered 

with topical and systemic administration and is the most effective route of delivery for the 

posterior chamber of the eye. This mode of administration is, thus, currently the most acceptable 

and effective method to treat vitreoretinal diseases. Anti-VEGF drugs such as pegaptanib, 

ranibizumab and becavizumab are new intravitreal treatments for age related macular 

degeneration (AMD) and macular edema (73). Additionally, intravitreal antibiotics such as 

vancomycin and ceftazidime are a main-stay for the treatment of bacterial endophthalmitis (74).  

Although, effective, rapid elimination of the drug form the vitreous humor, in most cases, 

necessitates frequent administration of intravitreal injections (2-3 times a week) to maintain 

therapeutic efficacy of the drugs (75).  Frequent injections are  associated with risks such as 

retinal detachment, retinal hemorrhage, endophthalmitis and other retinal toxicities and patient 

incompliance (75). Following intravitreal administration the drug is eliminated from the vitreous 

by a first order process through either anterior or posterior routes. Anterior route involves 

diffusion of drug across the vitreous to the posterior chamber followed by elimination through 

aqueous turnover and uveal blood flow.  On the other hand, posterior route involves drug 
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permeation across the blood-retinal barrier into the systemic circulation (76, 77). P-gp, an efflux 

pump, expressed on the RPE plays an important role in the elimination of substrates from the 

vitreous humor.  Therefore, strategies that can increase the half-life of such P-gp substrates, 

which includes a wide range of therapeutic agents, in the vitreous humor could significantly 

enhance the therapeutic efficacy and thus lead to decreased frequency of administration and 

hence lower associated risk. 

 

1.2.4. Transscleral administration 

Transscleral route of administration includes subconjunctival, subtenon, retrobulbar and 

peribulbar injections (Figure 1-8). Table 1 represents the site of application of these injections 

(73, 75). 

 

Table 1-1: Site of Application of Transscleral Injections. 

Injections Site of Application 
Subconjuctival • Drug is injected beneath the conjunctiva 

Sub-tenon • Injection of drug into a fascial sheet of connective tissue between the 
conjunctiva and episcleral plexus. 

Retrobulbar • Deposition of drug solution in between the inferior and lateral rectus 
muscles (retrobular space), and the needle is directed in the retrobulbar 
space within the muscle cone 

Peribulbar • Injection in the inferiorlateral quadrant of the orbit.  

• Further classified intocircum-ocular (sub-tenon’s, episcleral); peri-ocular 
(anterior, superficial); peri-conal (posterior, deep) and apical (ultra deep); 
depending on the depth of needle. 
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Transscleral administration is less invasive and eliminates some of the adverse effects 

associated with intravitreal administration (73). However, this route of administration has its own 

risks and complications. Reterobulbar injections are associated with the highest number of 

complications such as blood vessel laceration, globe perforation, orbial hemorrhage, diplopia, 

artery occlusion and brainstem anesthesia. The limitations associated with peribulbar delivery are 

similar to retrobulbar but the risk of injury to intraorbital structures is lower (73). Swelling of the 

conjunctiva or chemosis and subconjunctival hemorrhage are complications associated with sub-

tenon injections (78). 

Furthermore, following transscleral administration static and dynamic barriers limit the 

entry of the drug into the vitreous/neutral retina. Static barriers include the choroid and the RPE. 

Dynamic barriers include choroidal blood and lymphatic flow, and efflux proteins expressed on 

the RPE (73, 79).  The sclera does not present a major diffusional barrier and is more permeable 

than the cornea However, in contrast to the conjunctiva and the cornea, the permeation across the 

sclera is independent of lipophilicity, but rather depends on the molecular radius (20). Blood 

vessels and lymphatics in the choroid, however, lead to rapid drug elimination. Retinal access of 

the remaining fraction, which escapes the choroidal circulation, into the neutral retina is further 

restricted by the RPE. Additionally, P-gp, an efflux pump, expressed by the RPE cells restricts 

permeation of substrates into the neutral retina (20, 79). Therefore, strategies that can modulate 

the activity of P-gp expressed on the RPE could significantly enhance the therapeutic efficacy of 

transclerally administered drugs. 
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1.3. Strategies to Overcome Ocular Barriers 

 

1.3.1. Topical administration 

 

1.3.1.1. Hydrophilic drugs 

Topical instillation of an active compound is the first choice for ocular diseases and more 

that 90% of the currently marketed ophthalmic formulations are developed in the form of eye 

drops (80).  Topically applied hydrophilic drugs, which can be formulated in the form of eye 

drops, have to reach the inner parts of the eye through the paracellular route of the corneal 

epithelium to elicit response. However, the tight junctions expressed across the intercellular 

spaces of the corneal epithelium serves as the selective and primary diffusional barrier for 

hydrophilic agents. The underlying stroma and endothelial layer do not present any significant 

challenge to the corneal penetration of hydrophilic moieties. 

In the past a number of strategies have been investigated attempting to increase corneal 

penetration of topically instilled hydrophilic compounds. Approaches such as the use of viscosity 

enhancers (e.g. cellulose derivatives), mucoadhesive polymers (e.g. hyaluronic acid, 

hydroxypropyl cellulose, carboxymethyl cellulose, poly acrylic acid derivatives)  and in situ gel-

forming agents have been used to minimize precorneal drug loss (81, 82). However, factors such 

as lachrymal duct blockage, increased tear turnover and corneal irritation have constrained the 

effectiveness of these approaches. Additionally, these approaches do not address the basic 

problem of poor corneal permeation of hydrophilic molecules. To maximize corneal permeation, 

strategies such as use of absorption promoting agents and lipophilic chemical modification 
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through prodrug derivatization have been investigated. However, side effects of the absorption 

enhancers limit the effectiveness of this strategy.  Repeated application of 0.5 % 

ethylenediaminetetraacetic acid was observed to significantly alter the corneal epithelial 

architecture (83). Azone (0.1%) and saponin (0.5%) has been reported to be irritating, 

discomforting and toxic to the eye. Bile salts and surfactants were also shown to cause irritation 

to the ocular tissues and nasal mucosa (84-87). Chetoni et al. demonstrated that polysteryl ether, 

polyethaoxylated castor oil and cetylpyridinium chloride and deoxycholic acid sodium salt 

significantly altered the electrophysiological parameters and corneal hydration indicative of 

ocular toxicity of these enhancers (88). Using confocal laser scanning ophthalmoscopy Furrer et 

al. demonstrated that cationic surfactants such as sodium lauryl sulfate and sodium cholate 

caused corneal lesions and irritation (89). Rojananasakul et al. reported that use of digitonin and 

sodium deoxycholate caused severe membrane damage (90). 

Lipophilic modification and transporter targeted amino acid / peptide prodrugs have, 

perhaps, been the most successful approach so far (56). Chemical modification by prodrug 

design has been demonstrated to improve the partition coefficient of hydrophilic drugs, and thus 

to increase the intrinsic corneal permeability, or through transporter meditated translocation. 

However, the major drawback of these approaches is that not all compounds are amenable to 

prodrug derivatization or transporter targeting. Additionally, achieving the desired lipophilicity 

often requires compromising on the aqueous solubility of the molecule.  

In recent years, polymers that can safely and reversibly disrupt the tight junctions 

expressed on epithelial cells have been identified (91). Among these, chitosan appears to be the 

most promising candidate due to its inherent biological activity and favorable properties.  
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1.3.1.1.1. Chitosan 

Chitosan is a liner aminopolysaccharide composed of randomly distributed N-acetyl-D-

glucosamine (2-N-acetyl-2-deoxyglucose) and glucosamine (2-amino-acetyl-2-deoxyglucose) 

with β-(1-4)-linkage. It is derived from alkaline N-deacetylation of chitin, which is an abundant 

natural polysaccharides, mostly derived from the exoskeleton of crustaceans (92). 

Chitosan has been extensively studied as a potential absorption enhancer. Both in vitro 

and in vivo studies demonstrate chitosan’s ability to increase passive diffusion of compounds 

across intestinal (93), nasal (94, 95), buccal (96, 97) and vaginal mucosa (97-100), urinary 

bladder wall (101, 102) and Caco-2 cells (98-100, 103). Chitosan’s effect on transepithelial 

permeability, mostly determined using Caco-2 cells has been suggested to be through F-acitn 

depolymerisation and disbandment of tight junction proteins (ZO-1, Occludin). In contrast to 

most absorption enhancers which are cytotoxic in nature, a number of studies suggest that 

chitosan is well tolerated by the corneal cells and is non irritating  (104). Additionally, the effect 

of chitosan on tight junctions and membrane permeabilization has been demonstrated to be 

reversible (56, 98-100). In addition to permeation enhancing property, chitosan exhibits other 

attractive features, mentioned below, which makes it a promising transcorneal absorption 

promoter. 

Chitosan through its mucoadhesive properties can lead to increased retention of topically 

instilled ophthalmic formulations, and thus facilitate greater corneal drug penetration and 

prolonged exposure. The mucoadhesive characteristics of chitosan is related to the interaction 

between the positively charged amino groups of the chitosan and the negatively charged residue 
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of sialic acid in the mucos of the tear film, along with other forces such as hydrogen bonding 

(105, 106). Felt et al in a rabbit model demonstrated a increase in corneal residence time in the 

presence of chitosan, when compared to commercial solution, Tobrex® (107). Additionally, 

chitosan is biodegradable, which enables the safe administration and degradation of topically 

applied ocular chitosan vehicle. Chitosan biodegradation, which is an exclusive characteristic of 

chistosan with respect to other polysaccharides, is mediated by hydrolytic actions of lysosymes, 

chitinase and N-acetyl-β-glucosaminidases (108-112). Moreover, chitosan solution has 

favourable pseudoplastic and viscoelastic properties. These properties are very important 

characteristics, since the pre-corneal tear film has a pseudoplastic character that should not be 

disturbed by the applications of liquid formulations. Visoelastic fluids exhibit high viscosity 

under low shear rate and low viscosity under high shear rate conditions this behavior is 

particularly important in ophthalmic formulations since it facilities retention while permiting the 

easy spreading of the formulation due to the blinking of eye lids (35, 113, 114).  Furthermore, 

chitosan possesses wound healing and antimicrobial properties (115) which could be beneficial 

in the treatment of a number of corneal diseases and infections, making chitosan a promising 

transcorneal absorption promoter. 

 

1.3.1.2. Lipophilic drugs 

Better understanding of the disease processes and molecular targets and use of 

computational and high throughput screening techniques in drug discovery is yielding highly 

potent lipophilic drug candidates with limited aqueous solubility. It is estimated that > 40% of 

these compounds are highly lipophilic. Delivering these lipophilic agents into the deeper layers 

of the corneal tissue and anterior chamber of the eye is a challenging task.   
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Contrary to the hydrophilic compounds, for which the corneal epithelial tight junctions 

act as the limiting barrier to transcorneal diffusion, lipophilic molecules can easily cross the 

corneal epithelium transcellularly.  Additionally, the storma may act as reservoir for lipohilic 

drugs from which the drugs will be slowly deliverd to the intraocular tissues. The underlying 

endothelial layer does not present any significant resistance to corneal penetration of lipophilic 

molecules (24, 26). However, limited aqeous solubility presents a formulation challenge in the 

development of topical ophthalmic formulations of these lipophilic compounds.  The classical 

approach to deal with these compounds has been to generate their water soluble derivatives (eg 

hydrochloride salt of verapmail and qunidine) or formulate them in the form of suspensions. 

However, not all compounds are amenable to salt formation. Additionally, as mentioned earlier, 

due to the effective barrier properties of the corneal epithelium, the corneal permeability of an 

ionized form is much lower than the unionized species.  Formulation of a lipophlic agent in the 

form of a topical ophthalmic suspension suffers from a number of limitations such as physical 

instability, difficulty in sterilization and non-uniformity of dosing. Additionally, the discomfort 

caused by these formulation (due to submicron sized particles) may lead to blinking and thus to 

the loss of a significant amount of the drug.  Many other vehicles and techniques have also been 

employed to formulate and improve ocular absorption of these poorly water soluble drugs, 

including oils, liposomes, emulsions and polymeric micro- and nano-particles (116). 

Investigations employing sesame oil and mineral oil to deliver lipophilic compounds have been 

made in the past. Unfortunately, oil solutions are irritating, difficult to sterilize and influence the 

IOP by themselves (117, 118). Emulsions have also been investigated as topical vehicles to 

delivery water-insoluble drugs to the eye. However, a major disadvantage with this carrier 
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includes physical instability which can lead to agglomeration, drug expulsion and eventual 

cracking of the emulsions, which make emulsion vehicles secondary candidates for delivery of 

lipophilic therapeutic agents (119). The potential of liposomes as a topical delivery system for 

lipophilic drugs remains limited because of their short half-life on the corneal surface, drug 

leakage, low drug loading and relatively poor stability. Furthermore, large scale manufacturing 

of sterile liposomes is expensive and technically challenging (120). In ophthalmology, topical 

polymeric nanoparticles, primarily developed for intravenous administration, have demonstrated 

promising results over the last 10 years. These systems are able to protect the drug against 

chemical and enzymatic degradation, improve tolerance, reduce systemic side effects and 

increase corneal uptake and intraocular half-lives. However, issues such as cytotoxicity of 

polymers before or after internalization into the cells, lack of suitable large scale production 

methods and formation of toxic degradation products hindered progress in the development of 

polymeric nanoparticles (120). In contrast to all these systems, the use of cyclodextrins, and solid 

lipid nanopartilces (SLNs) offer new perspectives to the development of topical ophthalmic 

formulations of poorly water soluble drugs (121). 

 

 

1.3.1.2.1. Cyclodextrins (CD) 

 

CDs are a group of homologous cyclic oligosaccharides consisting of D-(+) 

glucopyranose units linked by α-(1, 4) glycosidic bonds. The chair conformation of the 

glycopyranose units imparts a truncated conical shape to the CD molecules. The surface of the 

CD molecule is hydrophilic in nature due to the presence of secondary hydroxyl groups 

(extending from the wider edge of the cone) and primary hydroxyl groups (residing at the narrow 
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edge of the cone) (122). On the other hand, the central cavity of the CD molecule is lined with 

skeletal carbons and ethereal oxygen’s of the glucose residue, which gives it a relatively 

lipophilic polarity similar to that of a 40% aqueous ethanolic solution (122-124). The natural α- , 

β- and γ-CDs consists of six, seven, and eight glucopyranose units, respectively (Figure 1-11). 

Although hydrophilic in nature these natural CD molecules exhibit limited aqueous solubility 

due to the relatively strong intramolecular hydrogen bonding in the crystal lattice (124, 125).  

Substitution of any of the hydrogen-bonding hydroxyl groups with lipophilic functions, leads to 

dramatic improvement in their aqueous solubility. Modified CD derivatives, with increased 

solubility, of interest in ophthalmology include the hydroxypropylderivatives of βCD (HPBCD) 

and γ-CD, the randomly methylated-β-CD (RMBCD) and sulfobutyl ether-β-CD (SBCD) 

(Figure1-12) (45, 46, 122, 124, 125).  
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Figure 1-11: Characteristic of natural α- , β- and γ-cyclodextrins.  

Reproduced with permission from  Elsevier., ref (124) 
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Figure 1-12: Structural and physiochemical properties of selected cyclodextrins of interest 

for ophthalmic formulations.  

Reproduced with permission from  Elsevier., ref (124) 

 

 

 

CDs act as a host for the guest molecules. The lipophilic central cavity provides a 

microenvironment into which the whole molecule or some part of it enters forming an inclusion 

complex. The formation of the inclusion complexes is thought to be an enthalpy-driven process. 

The water molecules inside the central cavity exist at a higher energy state (enthalpy-rich), due to 

an inability to satisfy the hydrogen bonding potential, and are readily expelled by less polar drug 

molecules, thus lowering the energy of the system (124, 126). Additionally, the release of the CD 

ring strain, hydrophobic interactions, van der waals interaction and London dispersion forces 
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have been suggested to participate in complex formation (126, 127). In aqueous solution, the 

guest molecules continuously associate with and dissociate from the host CD generating a 

dynamic equilibrium between the free drug, drug/CD complex and free CD.  No covalent bonds 

are formed or broken during complex formation and the rate of formation and dissociation of 

complexes is thought to be similar to diffusion controlled mechanisms (124, 126, 128).  

Therefore, complexation with CD neither affects the fundamental ability of the free drug to 

permeate across biological membranes nor does it alter its ability to interact with membrane 

receptors. They act as true carriers by keeping the guest molecules in solution and making them 

available for permeation across the biological membrane (126). Complex formation depends on a 

number of factors such as size, shape and polarity of the guest molecule and on the properties of 

the cyclodextrins used.  Too small a molecule will not be enclosed in the cyclodextrin cavity and 

highly hydrophilic molecules will not expel the enthalpy-rich water molecules, located in the 

central cavity of the cyclodextrins, to form a complex (38, 126).  

CDs, through formation of inclusion complexes in the solution state, have been 

successfully used in ocular therapeutics to increase aqueous solubility, bioavailability, stability 

of drugs and to reduce the ocular irritation.  

Dramatic increase in aqueous solubility of a number of poorly  water soluble drugs such 

as steroids, cyclosporine A, carbonic anhydrase inhibitors, prostaglandins and tropicamide have 

been reported in the presence of cyclodextrins (126).  Additionally, hydrocortisone, available in 

the form of suspension, has now been successfully reformulated as a CD based solution (129). 

The fold increase in solubility of a therapeutic compound in aqueous solution is dependent on the 

concentration of the CD used. Effect of increasing concentrations of CD on aqueous solubility of 
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a poorly water soluble drugs is usually determined using phase-solubility studies according to the 

method of Higuchi and Connors (130). Based on the shape of the phase-solubility plot generated, 

several types of behaviors can be recognized (A type and B type) (Figure1-13). In A-type phase-

solubility profile apparent solubility of the therapeutic agent increases with increasing 

concentration of CD.  The A-type curve is further classified into AP, AL and AN types. An AL 

type curve (linear increase in solubility of the compound as a function of CD concentration) 

indicates formation of a first order complex with CD.  If the complex is first order with respect to 

substrate, but second or higher order with respect to the CD then an AP type curve is obtained 

(positive deviation from linearity with increasing concentrations of CD).  In an AN type curve, 

there is a negative deviation from linearity with increasing concentrations of CD due to induced 

changes in the dielectric constant of the aqueous complexation medium.  A B-type phase 

solubility curve suggests the formation of complexes with limited solubility in the aqueous 

complexation medium. The B-type curve is further classified into two subclasses BS and Bi.  In 

the BS type curve the aqueous solubility of the compound increases with increasing 

concentrations of CD, however, after a point in this type of solubilization process a plateau is 

reached. Further addition of CD results in the formation of additional insoluble inclusion 

complex which precipitates and lowers the drug concentration in solution. The Bi systems are 

similar to the BS types; however, the initial increase in solubility of the drug with increasing CD 

concentrations is not observed (122, 124). 
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Figure 1-13: Schematic representation of A- and B-type phase solubility diagram with 

applicable sub-types.  

Reproduced with permission from  Elsevier., ref (124) 

 

Additionally, a number of in vitro and in vivo reports indicate that complexation of 

poorly water soluble drugs, such as acetazolamide, dexamethasone, hydrocortisone, rufloxacin 

and tropicamide, with cyclodextrins increase their ocular bioavailability when compared with 

suspension formulations or a control solution of the compound (38, 126, 131, 132). The increase 

in ocular bioavailability has been attributed to increased solubility, interaction of CDs with the 

cell membrane, and fast dissociation of the drug/CD complex (38, 126, 133). CDs are relatively 
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large molecules and literature reports indicate that they will permeate the biological membrane 

with great difficulty. Additionally, unlike conventional drug penetration enhancers such as 

EDTA and BAK which disrupt the biological barrier, CDs act as penetration enhancers by 

increasing the availability of drug at the surface of the cornea (45, 126). However, some reports 

indicate that addition of CD resulted in a decrease in drug bioavailability (126, 134). This can be 

attributed to non-optimized usage of CD in the formulations. Maximum bioavailability is 

achieved when just enough CD is added to the vehicle to solubilize the available drug. Excess 

CD will decrease the ocular bioavailability of the drug through enhanced retention of the drug 

molecules in the central CD cavity (125, 134). 

Vehicles used in ocular formulations should be non-irritating to the eye to prevent rapid 

washout of the instilled drug by reflex tearing and blinking. SβCD and HPβCD has been reported 

to be safe, nontoxic and well tolerated by the eye, even at concentrations as high as 10% and 

45% w/v, respectively (126, 135, 136). Additionally, CDs have also been used to reduce ocular 

irritation and to increase the stability of drugs in ophthalmic formulations (45, 137). 

Encapsulation of drug within the CD cavity protects the drug from attack by various reactive 

species and thus reduces the rate of hydrolysis, oxidation, steric rearrangement, racemization and 

enzymatic decomposition (123). Additionally, CDs have also been reported to decrease the photo 

degradation of various light sensitive compounds (138).  
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1.3.1.2.2. Solid Lipid Nanoparticles (SLNs) 

SLNs were introduced in 1991 as an alternative nanoparticulate carrier system to existing 

traditional colloidal carriers such as emulsions, liposomes and polymeric micro- and nano-

particles. They were developed especially to deliver lipophilic drugs, and combine the 

advantages of the traditional systems ( emulsions, liposomes and nanoparticles) while avoiding 

some of their major disadvantages (described above) (119). These particulates are in the 

submicron size range (50-1000 nm) and are made up of biocompatible and biodegradable 

materials. Aqueous SLN dispersions are composed of solid lipids, i.e., the lipids are solid at both 

body and room temperatures, and are stabilized with suitable surfactant/s (Figure 1-14). 

 

Figure 1-14: Schematic representation of solid lipid nanoparticles 

Table 1-2 represents trade name, manufacturer and physiochemical characteristics of 

some of the solid lipids. All the excipients used in their manufacture have approved ‘Generally 

Regarded as Safe’ (GRAS) status and are free from the risk of acute or chronic toxicity (139-

141). Prolonged and/or controlled release of drug can be achieved depending on the localization 

of the drug in the SLN. Three models, namely homogenous matrix model (drug molecularly 

dispersed in the lipid matrix), drug-enriched shell model (drug in the shell) and drug-enriched 

 Lipid 

Surfactant 
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core model (drug in solid core of the particles), have been described (142). Factors that affect the 

incorporation  of the drug  in the SLN include  the chemical nature of the drug and the lipid, 

drug/lipid ratio, the solubility of drug in the melted lipid, nature and concentration of surfactants, 

and production method and process temperature (143). A striking advantage of these particles is 

that large scale production can be carried out in a cost-effective and relatively simple manner 

using high pressure homogenizers (139-141). The use of a solid lipid matrix also provides 

greater flexibility in controlling drug release and achieving greater stability, by protecting the 

encapsulated ingredients from chemical degradation.  

Table 1-2: Trade name, manufacturer and physiochemical description of some of the solid 

lipids used in the present study 

Product Name  Manufacturer Physiochemical description 
   
Compritol 888

®
ATO Gattefosse GmbH  

(Weil am Rhein, 
Germany) 

• Glycerol esters of behenic acid and 
composed of glycerol tribehenate (28-
32%), glycerol dibehenate (52-54%) and 
glycerol monobehenate (12-18%) 

• Main fatty acid present behenic acid 
(≥85%) and amphiphilic in nature 

• MP: 69°C -74°C; HLB: 2; Peroxide 
value ≤ 6 mEq O2/kg   

• Soluble in chloroform, methylen 
chloride and Xylene, Insoluble in 
ethanol and water 

Precirol
®

ATO 5 

 

Gattefosse GmbH  
(Weil am Rhein, 
Germany) 

• Sray dried cetyl palminate 

• MP: 61.9°C-55.9°C 

• Insoluble in water and ethanol 

Dynasan
®

 116 Salsol Germany 
GmbH 
 (Witten, 
Germany) 

• Triglyceride of palmitic acid. 

• Glycerol esters of selected, even-
numbered and unbranced fatty acids 

• MP: 61°C -65°C; AV: 3mg KOH/g; SV: 
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205-215 mg KOH/g; IV: 1g I2/100. 

• Hardly soluble in n-hexane, ether and 
ethanol, and insoluble in water 

Dynasan
®

 114 Salsol Germany 
GmbH 
 (Witten, 
Germany) 

• Triglyceride of myristic acid 

• MP: 55°C -58°C; AV: 3mg KOH/g; SV: 
229-238 mg KOH/g; IV: 1g I2/100. 

• Dynasan 114 is slightly soluble in n-
hexane and diethylether and has a very 
low solubility in ethanol. 

Dynasan
®

 118 Salsol Germany 
GmbH 
 (Witten, 
Germany) 

• Triglyceride of stearic acid 

• MP: 70°C -73°C; AV: 3mg KOH/g; SV: 
186-192 mg KOH/g; IV: 1g I2/100. 

• Dynasan 116 and 118 is slightly soluble 
in n-hexane, as well as in diethylether 
and ethanol. 

• All types are virtually insoluble in water. 

 

 

 

Additionally, due to the high degree of stability of aqueous dispersions (more than 3 

years) and high drug payload, SLNs can be formulated as nanodispersions in liquid dosage 

forms. These dispersions can be administered as topical eye drops. Such formulations will avoid 

blurred vision and will be comfortable due to the small size of the particles (144). Moreover, the 

small size and muco-adhesive properties (141) of SLNs would lead to enhanced ocular 

bioavailability by increasing the residence time in the cul-de-sac and uptake into corneal or 

conjunctival tissues by endocytotic mechanisms. Furthermore, lipid nanoparticles with excellent 

long term stability can be produced in large scale, be lyophilized and also heat sterilized (143).  
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Over the past few years a plethora of studies have been published depticing the 

importance of solid lipid nanoparticles in various administration routes such as parental ( 

intravenous, intramuscular or subcutaneous),  oral, pulmonary, rectal and topical (in cosmetic 

and dermatological preparations). Controlled drug delivery, enhanced bioavailability, increased 

dissolution rates and improvement of tissue distribution and targeting of drugs using these SLNs 

and routes of administration have been achieved (139, 140, 145). It is, however, surprising that 

the number of reports on the potential of SLNs as ocular drug delivery systems is still limited. 

Cavalli et al incorporated tobramycin in SLNs (146) and reported that, compared to an equal 

dose of tobramycin administered by standard commercial eye drops, SLN formulations produced 

improved passage of drug into the aqueous humor. Gokce et al evaluated SLNs as a carrier for 

ocular delivery of cyclosporine. The authors reported improved corneal penetration and 

increased aqueous humor concentrations of cyclosporine, reduced irritation in vivo, and 

negligible cyctotoxicty to corneal cell lines with SLN formulations (144, 147). In a recent study, 

Attama et al. reported sustained release and high permeation of timolol maleate loaded SLNs 

through a bioengineered cornea compared to a timolol maleate solution in distilled water (148). 

Results from these studies demonstrate that formulation of water in-soluble drugs as solid lipid 

nanoparticles may present advantages such as higher solubility, higher dissolution rates, higher 

bioadhesion, corneal penetration and lower tearing and drainage of instilled dose. Additionally, 

formulation as SLN would likely lower the dose needed to achieve clinical effects. 
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1.3.2. Systemic and other routes of administration 

 

1.3.2.1. Modulation of P-gp expressed by the retinal pigmented epithelium 

 

For posterior segment ocular disorders topical administration is usually ineffective. 

Therfore, alternative routes such as systemic administration, intravitreal administration and 

transscleral administration are considered for increasing ocular bioavailability of drugs into the 

back-of-the-eye.  However, as discussed earlier, P-gp an efflux pump expressed by the RPE is 

the principle contributor to the barrier properties of the RPE, with respect to its substrates. These 

proteins are expressed on the apical and basal membranes of the RPE and are responsible for the 

efflux of substrates back into the extracellular space.  

Following systemic or transscleral administration P-gp substrates would diffuse across 

the choroid to the RPE. Transcellular diffusion of P-gp susbtrates across the RPE would however 

be limited as P-gp expressed on the basolateral membrane of the RPE would efflux the 

compound out of the RPE cytoplasm and/or inner membrane leaflet, back into the choroid. Thus 

permeation of P-gp substrates across the RPE basolateral membrane will be restricted (Figure 1-

15 A). If basolateral efflux is inhibited increased vitreal penetration and decreased elimination 

will take place following systemic and/or transscleral administration (Figure 1-15 B). Similarly, 

intravitreally administered P-gp substrates would be effluxed by the basolateral P-gp facilitating 

elimination of the drug from the vitreous humor (Figure 1-16 A). If the basolateral P-gp is 

inhibited decreased elimination from the vitreous would take place (Figure 1-16 B).  
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1-15 A 
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1-15 B 

 

 

Figure 1-15: Schematic representation of (A) impact and (B) inhibition of P-gp on ocular 

bioavailability of systemically/transsclerally administered P-gp substrates. (A) A significant 

amount of the systemically / transsclerally administered dose that reaches the RPE 

cytoplasm through the choroidal stroma is translocated back into the choroidal circulation 

by the basolateral P-gp on the RPE ; (B) Inhibition of the basolateral  P-gp would allow 

greater concentrations of drug to permeate into the neural retina and vitreous humor. 

Arrow thickness depicts diffusion rate and drug amount.  
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1-16 A 

 

1-16 B 

 

 

Figure 1-16: Schematic representation of (A) impact and (B) inhibition of P-gp on ocular 

bioavailability of intravitreally administered P-gp substrates. (A) A significant amount of 

the intravitreally administered dose that reaches the neural retina from the vitreous is 

translocated into the choroidal circulation by the P-gp on the basolateral membrane of the 

RPE; (B) Inhibition of the basolateral P-gp would allow greater concentrations of the drug 

to remain in the vitreous.  
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With back-of–the eye diseases such as retinoblastoma, diabetic retinopathy, macular 

degeneration, proliferative vitreoretinopathy, retinitis and endophthalmitis growing rapidly in 

significance, and a spurt in the discovery and development of lead candidates, many which are 

potential substrates of P-gp and other efflux pumps, a need for non-invasive approaches to 

inhibit the RPE P-gp and improve the back-of-the eye delivery is the need of the day. Thus, 

factors/agents that can modulate the efflux activity of RPE P-gp could probably alter ocular 

pharmacokinetics of P-gp substrates. 

 In the past, a number of strategies attempting to modulate the activity or expression of 

efflux proteins on various mammalian tissues have been investigated. These include the use of 

chemosensitisers, prodrugs, polymers, nanoparticles, transcriptional regulators and monoclonal 

antibodies (149-151). Surprisingly, there are only three studies, to our knowledge, investigating 

the effect of drug-drug interaction at the level of the RPE P-gp and its effect on ocular drug 

pharmacokinetics in vivo. These recent reports evaluated the effect of systemic/systemic, 

systemic/intravitreal or intravitreal/intravitreal co-administration of substrates or inhibitors on 

ocular pharmacokinetics (71, 152, 153).  From a therapeutic point of view, with respect to 

delivery of P-gp substrates to the posterior chamber ocular tissues, the use of an intravitreal 

inhibitor is not feasible considering that high intravitreal levels of the inhibitor can only be 

maintained through multiple intravitreal injections. On the other hand, the use of systemic 

inhibitors is not attractive because of nonspecific systemic exposure to the inhibitor and the 

limited, clinically relevant, inhibitor dose that can be administered. A hitherto uninvestigated and 
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novel alternative approach that could be therapeutically effective as well as minimize systemic 

exposure would be modulation of efflux mediated by P-gp expressed on the RPE through topical 

substrate/inhibitor application.  

Topical eye drops containing antimicrobial, anti-inflammatory, steroids and other agents 

are routinely administered to treat various anterior chamber and / or conjunctival infections or 

diseases. Many of these topically applied xenobiotics are established substrates / inhibitors of P-

gp. Topically applied P-gp substrates / inhibitors can diffuse into the sclera and choroid and 

could thus potentially modulate this efflux activity of RPE P-gp and disturb its barrier function. 

Consequently, ocular pharmacokinetics of co-administered (e.g. intravitreally, periocularly, 

systemically, orally administered) agents, that are substrates of this efflux protein, may be 

significantly altered. This could result in changes in ocular tissue drug distribution. Similarly, 

topically applied P-gp substrates may alter elimination of intravitreally administered substrates.  
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CHAPTER 2 

AIMS OF THE STUDY 

 

The overall goal of this dissertation is to improve drug delivery across ocular barriers 

using various biopharmaceutical approaches. 

The specific aims are: 

• To determine the effect of chitosan, benzalkoniumchoride and ethylene 

diaminetetraacetic acid on transcorneal permeation of acyclovir, a model hydrophilic 

compound (Chapter 3). 

• To investigate the effect of modified cyclodextrins on solubility, stability and 

transconreal permeability of delta-8-tetrahydrocannabinol, a model lipophilic compound. 

(Chapter 4). 

• To develop, optimize and evaluate solid lipid nanoparticles as ocular drug delivery 

systems for another model lipophilic compound, indomethacin. (Chapter 5). 

• To delineate the effect of topically co-administered P-gp substrates/modulators on vitreal 

kinetics of intravitreally administered quinidine, a model P-gp substrate, in rabbits 

(Chapter 6). 
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• To determine the interaction between topically and systemically co-administered P-

glycoprotein substrates/inhibitors and evaluate its effect on vitreal kinetics of quinidine, a 

model P-gp substrate (Chapter 7) 

The rational for choosing the drugs in these specific aims are provided in the introduction of 

their respective chapters. 
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CHAPTER 3 

EFFECT OF CHITOSAN, BENZALKONIUM CHLORIDE AND 

ETHYLENEDIAMINETETRAACETIC ACID ON TRANSCORNEAL PERMEATION 

OF ACYCLOVIR 

 
 
3.1. Abstract 

The objective of this research was to evaluate the effect of chitosan, benzalkonium 

chloride (BAK) and disodium ethylendiaminetetraacetic acid (EDTA), alone and in combination, 

on the permeation of acyclovir (ACV) across excised rabbit cornea. Corneas of male New 

Zealand White rabbits weighing 2-2.5 kg were used for these studies. Transcorneal permeation 

studies were conducted at 34°C using a side-bi-side diffusion apparatus. In the presence of 

0.01% w/v BAK transcorneal permeability of ACV was observed to increase by almost 10.5-

fold, from 3.5 x 10-6   to 37.4 x 10-6 cm/s. When the concentration of BAK was decreased from 

0.01% to 0.005% w/v transcorneal permeability of ACV was almost 3-fold higher (10.4 x 10-6 

cm/s) compared to that of ACV alone. Combination of BAK 0.005% w/v and EDTA 0.01% w/v 

increased the transcorneal penetration of ACV by 2.5-fold (from 3.5 x 10-6 to 8.6 x 10-6 cm/s). 

Chitosan 0.2% and 0.1% w/v increased corneal permeability of ACV by 5.8-fold (7.61 x 10-6 

cm/s) and 3.1-fold (4.1 x 10-6 cm/s), respectively, compared to transcorneal permeability of ACV 

alone. Chitosan at 0.02% w/v did not exhibit any statistically significant effect on ACV’s corneal 
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permeability. BAK at 0.005% w/v,  in combination with 0.01% w/v  EDTA and 0.1% w/v  

chitosan,  increased transcorneal permeation of ACV by 5.5-fold (from 1.32 x 10-6 to 7.3 x 10-6 

cms-1). This study demonstrates that judicious combination of chitosan, BAK and EDTA in 

ophthalmic solutions containing ACV can lead to several folds increase in ACV’s transcorneal 

permeability. The results thus indicate that chitosan can enhance paracellular diffusion of 

hydrophilic agents across the corneal membrane. 

 

 

3.2. Introduction 

In recent years, several polymers have been identified that can safely and reversibly 

disrupt cellular tight junctions (91). Among these, chitosan appears to be a very promising 

candidate. In vitro and in vivo studies demonstrate chitosan's ability to increase passive diffusion 

of compounds across biological membranes, probably through its effect on the tight junction 

proteins (93-103). In the past, utility of absorption enhancers in ophthalmic formulations has 

been limited by their potential adverse effects (116, 154). In contrast, chitosan appears to be well 

tolerated by the corneal cells (115, 155, 156), and also possesses wound healing and 

antimicrobial properties(115), making it a promising transcorneal absorption promoter. 

Additionally, chitosan may increase retention of topically instilled ophthalmic formulations. 

Another significant advantage of chitosan is that its action appears to be reversible (98-100)  

Although the utility of chitosan as an absorption enhancer across multiple epithelial 

barriers has been well established [1-11], its effect on transcorneal permeation of hydrophilic 

molecules and corneal epithelial tight junctions has just recently started attracting attention. 

Reports indicate that N-trimethyl chitosan (TMC), a chitosan derivative that is more soluble than 
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chitosan at neutral pH, can enhance transcorneal penetration of ofloxacin (154). However, since 

multiple mechanisms may be involved in the translocation of this agent across the corneal 

epithelium, the study was inconclusive as to whether chitosan was enhancing transcellular or 

paracellular diffusion of the compound. A recent report by Zambito et al. (157) suggests that 

TMC fails to disrupt the tight junctions of the corneal epithelium and increase paracellular 

transport of tobramycin (used as a paracellular marker). On the other hand, transcellular transport 

of dexamethasone was observed to increase in this study. The results are intriguing as in all other 

epithelial tissues chitosan has been observed to disrupt cellular tight junctions and enhance 

paracellular transport.  

Considering its multi-faceted therapeutic utility, chitosan appears to be an extremely 

promising tool for ocular drug delivery strategies. Thus, further investigation into its effect on 

transcorneal permeation of hydrophilic agents is desired. In view of this, the purpose of this 

study was to evaluate the effect of chitosan on the paracellular diffusion of acyclovir (ACV), in 

an in vitro set up using isolated rabbit cornea. ACV is a hydrophilic antiviral nucleoside analog 

that is highly effective against herpes simplex virus (HSV) induced corneal keratitis. However, 

ACV is known to traverse the corneal epithelium through the paracellular route (158). 

Consequently, permeation of ACV into the deeper layers of the cornea is severely restricted by 

the tight junctions expressed by the corneal epithelial cells. Thus, even though ACV is more 

potent and several folds less toxic than triflurothymidine (TFT), the current drug of choice for 

corneal herpetic keratitis in the United States (159), ACV’s therapeutic utility is limited to 

superficial corneal keratitis. Strategies that can increase ACV’s corneal permeability could 

improve its utility in the treatment of stromal infections. The goal of this study was to investigate 
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whether chitosan could enhance paracellular transport of ACV and thus increase transcorneal 

diffusion. Since in vitro studies using the isolated rabbit cornea have been conducted at pH 

values as low as 5.0, without any damage to the corneal epithelium (160), the parent compound, 

chitosan, rather than TMC was used for this study. 

Another objective of this project was to delineate the effect of benzalkonium chloride 

(BAK) and ethylenediaminetetraacetic acid (EDTA) on the absorption promoting properties of 

chitosan, when used in conjunction. Although BAK and EDTA are commonly included in 

ophthalmic formulations as a preservative system, they also possess penetration enhancing 

properties. Corneal absorption of atenolol, timolol, levobunolol, betataxol, befunolol has been 

reported to increase in the presence of EDTA (161, 162). BAK has also been demonstrated to 

increase corneal permeability of various compounds such as fluorescein (163), horseradish 

peroxide (164), prednisolone phosphate (165), dexamethasone, pilocarpine (166) and ketrolac 

(167). Literature reports indicate that BAK and EDTA up to a concentration of 0.01% and 

chitosan up to a concentration of 1.5% is well tolerated by the corneal cells (115, 168, 169). The 

concentrations of BAK, EDTA and chitosan in this study were selected on the basis of these and 

other reports. 

3.3. Materials 

Acyclovir was obtained from Hawkins Inc (Minneapolis, USA). BAK, EDTA and 

Chitosan (low molecular weight) were purchased form Sigma (St. Louis, Missouri, USA). New 

Zealand White rabbits were procured form Myrtle’s Rabbitry (Thompson Station, TN). All other 

chemicals were obtained from Sigma (St. Louis, Missouri, USA). All solvents were of analytical 

grade and were obtained from Fisher Scientific (St.Louis, Missouri, USA) 
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3.4. Methods 

 

3.4.1. Animal Studies 

Experiments using rabbits conformed to the tenets of the Association for Research in 

Vision and Ophthalmology (ARVO) statement on the Use of Animals in Ophthalmic and Vision 

Research.  

 

3.4.2. Corneal Permeation studies  

New Zealand albino rabbits were used for the determination of in vitro corneal 

permeability. Rabbits were anesthetized using ketamine / xylazine administered intramuscularly 

and were then euthanized with an over dose of pentobarbital, injected into the marginal ear vein. 

The cornea’s were excised with some scleral portion adhered to the cornea which helped to 

secure the membrane in place between the diffusion half-cells during the course of a transport 

study. After removal, the cornea was washed with ice cold DPBS (Dulbecco’s Phosphate Buffer 

Saline, pH 7.40) to remove traces of blood and was mounted on a side-bi-side diffusion half cell 

(PermeGear Inc., Bethlehem, PA, USA) with the epithelial side facing the donor chamber ( 

Figure 3-1). Temperature of the half-cells, and its contents, were maintained at 34°C with the 

help of a circulating water bath. A slight difference in the donor and receiver chamber volumes 

(3.2 mL DPBS was added to the receiver chamber and 3.0 mL DPBS was added to the donor 

chamber of the side-bi-side apparatus) maintained the normal shape of the cornea through 

marginally elevated hydrostatic pressure. DPBS added to the donor side contained ACV (1 mM) 
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alone or ACV in combination with chitosan, BAK and/or EDTA. The contents of both the 

chambers were stirred continuously with a magnetic stirrer Aliquots, 200 µl, were withdrawn  

from the receptor chamber at appropriate time intervals and an equal volume of DPBS was 

immediately replaced. Samples were stored at -80°C until further analysis. 

 

Figure 3-1: Schematic representation of side-bi-side diffusion apparatus 

Chitosan stock solution was prepared in DPBS containing 2% acetic acid (pH 6.00 ±  

0.20) and desired chitosan concentrations were obtained by diluting the stock solution with 

DPBS containing 2% acetic acid (pH 6.00 ±  0.20). For experiments involving chitosan, donor 

solutions were prepared by dissolving ACV, BAK and/or EDTA in the respective chitosan 

solutions.  Transcorneal permeation rates of ACV from a solution containing ACV dissolved in 

DPBS containing 2% acetic acid (pH 6.00 ± 0.20) was used as a control for these experiments. In 

all transport studies the receiver chamber contained DPBS pH 7.40. 

3.4.3. Analytical procedures  

Samples were analyzed using an HPLC system which comprised of Waters 717 plus 

autosampler, Waters 2487 Dual λ Absorbance detector, Waters 600 controller pump and Agilent 
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3395 integrator. A Symmetry®C18   4.6 X 250 mm column was used and the mobile phase 

consisted of 15mM phosphate buffer (pH 2.50) with 1-2% Acetonitrile. The wavelength (λ) and 

flow rate was set at 254 nm and 1 mL/min, respectively. 

3.4.4. Data Analysis 

Rate of ACV transport across excised rabbit cornea was obtained from the slope of a 

“cumulative amount of ACV transported” versus “time” plot. Steady-state flux (SSF) were 

determined by dividing the rate of transport by the surface area as described in equation (1) 

                                               Flux (J) = (dM/dt)/A                                 (1) 

Where, M is the cumulative amount of drug transported and A is the corneal surface area 

exposed to the permeant. 

Corneal membrane permeability was determined by normalizing the SSF to the donor 

concentration, Cd according to equation (2) 

                                   Permeability (P app) =Flux/Cd                                            (2) 

All experiments were conducted at least in quadruplicate and results are expressed as 

mean ± standard deviation. Data obtained was subjected to statistical analysis using Student’s t-

Test. A difference between mean values was considered to be statistically significant when the p-

value was ≤ 0.05.     

3.5. Results: 

3.5.1. Effect of chitosan on transcorneal permeation of ACV. 

Chitosan stock solution (0.2% w/v) was prepared in DPBS containing 2% acetic acid (pH 

6.00 ± 0.20). The desired chitosan concentrations (0.1 and 0.02 %) were obtained following 

appropriate dilutions with DPBS containing 2% acetic acid (pH 6.00 ± 0.20). ACV was then 
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dissolved in the chitosan solutions obtained to yield a final ACV concentration of 1 mM. The 

controls for these studies were prepared by dissolving ACV in the transport medium (DPBS 

containing 2% acetic acid (pH 6.00 ± 0.20)). Figure 3-2 depicts transport of ACV across the 

excised rabbit cornea, as a function of time, alone or in the presence of 0.02%, 0.1% and 0.2% 

w/v chitosan.  Transcorneal permeability of ACV (Figure 3-3) in the presence of 0.2 % w/v (7.61 

x10-6 cm/s) and 0.1% w/v chitosan (4.1 x10-6 cm/s) were almost 5.8- and 3.1-folds greater 

compared to that of ACV alone (1.32 x 10-6 cm/s).  However, when used at a concentration of 

0.02% w/v chitosan could only produce a slight, but statistically insignificant, increase in corneal 

permeation of ACV. Permeability of ACV in the presence of 0.02% chitosan was 2. 34 x 10-6 

cm/s (Figure 3-3), a 1.77-fold increase, compared to that of ACV alone. 

 

                         

 

    

Figure 3-2: Transport of acyclovir (ACV), alone or in the presence of various 

concentrations of chitosan, across the isolated rabbit cornea. Values represent mean ± S.D. 

(n=4). 
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Figure 3-3:  Transcorneal permeability of acyclovir (ACV), alone (control) or in the 

presence of chitosan and disodium ethylendiaminetetraacetic acid (EDTA). Values 

represent mean ± S.D. (n=4). * indicates p<0.05 (statistically significantly different from the 

control) 

 

3.5.2. Effect of BAK on permeation of ACV across excised rabbit cornea. 

In these studies the donor solution consisted of ACV (1 mM) alone or in the presence of 

BAK (0.01% or 0.005% w/v). The transport medium consisted of DPBS pH 7.40. BAK 

produced a concentration dependent increase in the transcorneal permeability of ACV. In the 

presence of 0.005% w/v BAK the cumulative amount of ACV transported over time increased 

from 4.24 x 10-5 mg/min to 11.95 x 10-5 mg/min. When the concentration of BAK was increased 
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to 0.01% w/v, cumulative amount of ACV transported across the cornea over time increased to 

44.6 x 10-5 mg/min (Figure 3-4). The apparent permeability of ACV increased from 3.56 x 10-6 to 

10.4 x 10-6   cm/s, a 3-fold increase, in the presence of 0.005% w/v BAK, and from 3.56 x 10-6 to 

37.4 x 10-6
 cm/s in the presence of 0.01% w/v BAK, a 10.5-fold increase (Figure 3-5).  

 

 

 

 

Figure 3-4: Transport of acyclovir (ACV), alone or in the presence of various 

concentrations of benzalkonium chloride (BAK), across the isolated rabbit cornea. Values 

represent mean ± S.D. (n=4). 
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Figure 3-5: Transcorneal permeability of acyclovir (ACV), alone (control) or in the 

presence of benzalkonium chloride (BAK) and disodium ethylendiaminetetraacetic acid 

(EDTA). Values represent mean ± S.D. (n=4). * indicates p<0.05 (statistically significantly 

different from the control) 

 

3.5.3. Effect of BAK in combination with EDTA on transcorneal permeation of ACV 

These studies were undertaken to evaluate the effect of BAK and EDTA, in combination, 

on the transcorneal penetration of ACV. Donor solutions contained ACV (1 mM), BAK (0.005% 

w/v) and EDTA (0.01 % w/v) in DPBS pH 7.40. The flux and corneal permeation profiles of 

ACV alone, or in the presence of BAK and EDTA, across the excised rabbit cornea are depicted 

in Figures 3-5 and 3-6.  BAK and EDTA, in combination, resulted in a 2.5-fold increase in 

ACV’s permeability. The difference in the transcorneal permeability of ACV in the presence of 

BAK 0.005% or BAK (0.005%) and EDTA (0.01%) was not statistically significant (Figure 3-5).  
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Figure 3-6: Transport of acyclovir (ACV), alone or in the presence of benzalkonium 

chloride (BAK) and disodium ethylendiaminetetraacetic acid (EDTA), across the isolated 

rabbit cornea. Values represent mean ± S.D. (n=4). 
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the end of three hours donor and receiver solutions were removed from the side-bi-side diffusion 

cells and both chambers were washed with the respective transport buffer two times. A transfer 

pipette was used for this purpose. Following this, transport buffer containing ACV (1 mM) was 

added to the donor chamber and transport buffer was added to the receiver side. The transport 

studies were continued for another 3 h at 34oC. Similar protocols were followed for the control 

set also, ACV (1 mM) alone, to ensure that the experimental procedure was not damaging the 

corneal epithelial cell layer integrity. The observed permeability coefficients of ACV during the 

initial 3 h transport study, in the presence or absence (control) of the permeation enhancers, and 

during the second 3 h study period, in the absence of any enhancer, were not significantly 

different (data not shown) suggesting that there was no regeneration of tight junctions. The 

control also did not exhibit any statistically significant change in permeability values. 

 

3.6. Discussion 

 The objective of this study was to evaluate the effect of chitosan, alone and in 

combination with BAK and EDTA, on transcorneal permeation of ACV. ACV is a potent anti 

HSV agent and thus has a lot of therapeutic potential in the treatment of HSV induced corneal 

keratitis. However, since ACV is a hydrophilic molecule, transcorneal penetration of this 

therapeutic agent is restricted by the tight junction expressing corneal epithelial cells. This limits 

the therapeutic utility of ACV to superficial corneal herpetic keratitis. In recent reports, peptide 

transporter targeted ACV prodrugs such as valacyclovir and val-val-acyclovir have been reported 

to enhance ACV’s corneal permeability by 3- and 5-fold respectively. However, these ACV 

prodrugs are rapidly hydrolyzed in aqueous solution, with valacyclovir and val-val-acyclovir 
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displaying T90’s (time required for the drug content to decrease by 10%) of 2.6 and 16 h, 

respectively, at pH 7.40 (170). At pH 5.60 valacyclovir displays a T90 of 11 h. The study duration 

was too short to determine the half-life of val-val-acyclovir at pH 5.60 (170). Thus, at 

ophthalmologically relevant pH values, formulations containing these ACV prodrugs will 

probably not yield a product with adequate shelf-life. Other transporter targeted ACV prodrugs 

also demonstrate similar aqueous stability issues (171). Consequently, the utility of these 

prodrugs in ophthalmic formulations could be limited. Additionally, from a broad point of view, 

the applicability of this transporter targeted approach would only be limited to compounds that 

are amenable to corneal peptide transporter prodrug derivatization. Development of a generic 

approach to enhance transcorneal penetration of hydrophilic agents would, on the other hand, 

significantly improve ocular drug delivery options. 

 Chitosan was selected for this study based on reports establishing the reversible tight 

junction disrupting capability of this polymer. Chitosan can also slightly modulate the apical 

membrane characteristics which may aid in transcellular permeation of lipophilic compounds. 

Additionally, its mucoadhesive (155) and antimicrobial properties could also provide several 

advantages in the design of ocular dosage forms. Earlier studies demonstrate that chitosan based 

microspheres can enhance corneal penetration of cyclosporine A (155). In another study, Di Colo 

et al. reported that inclusion of chitosan microspheres in erodible bioadhesive ocular inserts of 

ofloxacin (154) and dexamethasone (157) increased penetration of the therapeutic agents into the 

aqueous humor. In the latter study (157), the authors observed that chitosan microspheres did not 

enhance transcorneal permeability of tobramycin but increased corneal permeability of 

dexamethasone. Tobramycin and dexamethasone were used as paracellular and transcellular 
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diffusion markers, respectively.  The results led the author’s to conclude that chitosan does not 

affect the tight junctions of the corneal epithelial cells (157). However, these results are in sharp 

contrast to other reports on chitosan’s effect on epithelial tight junctions. Several reasons could 

probably explain this anomaly. Since chitosan nanospheres are actively internalized by corneal 

epithelial cells (156) it is probable that the enhanced permeation of dexamethasone or ofloxacin 

observed was as a result of co-internalization with chitosan. Following internalization, a 

lipophilic drug can diffuse out of the intracellular compartment and thus overall transmembrane 

permeability of such agents would increase. On the other hand, a hydrophilic agent would get 

trapped in the aqueous environment of the cytosol, following cellular internalization. Thus 

permeability of hydrophilic agents, through the transcellular route, would not increase in the 

presence of chitosan. Additionally, chitosan is known to affect only the apical membrane and not 

the basolateral cell membrane (103), limiting chitosan’s ability to enhance transcellular diffusion 

of hydrophilic compounds. Studies conducted by Schipper et al. (103) suggest that chitosan 

needs to bind to the epithelial cell surface through charge-charge interactions which induces 

changes in cellular F-actin and ZO-1 organization. Prevention of this interaction by using 

oppositely charged heparin resulted in chitosan not affecting paracellular transport. Since, in the 

studies conducted by Di Colo et al. (157), topically applied chitosan was not in solution state it is 

possible that the chitosan molecules did not get sufficient time to interact with and disrupt the 

tight junctions. Surface exposure of charged moieties from the chitosan microspheres, 

dissolution of the chitosan microspheres in the tear fluid as well as spreading of the dissolved 

chitosan over the corneal epithelium (since the inserts are placed in the conjunctival cul-de-sac 

the) are other factors that can diminish the ability of chitosan to interact with and disrupt the 
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corneal epithelial tight junction proteins, when administered in the form of microspheres. 

Consequently, corneal permeation of hydrophilic agents from such formulations may not show a 

significant increase as in such cases chitosan probably cannot initiate a charge-charge interaction 

with the epithelial cell surface. On the other hand, ophthalmic formulations containing chitosan 

in solution has a much better chance of enhancing paracellular transport. 

 

In this study we observe that chitosan increases the permeability of a hydrophilic 

molecule, ACV, across the corneal membrane. It is well established that ACV permeates the 

corneal membrane by passive paracellular diffusion (158). This increase in ACV’s permeability 

indicates that chitosan does disrupt the corneal tight junctions. Chitosan displayed a dose 

dependent increase in the permeability of ACV with concentrations of 0.1 and 0.2% w/v chitosan 

producing 3.1- and 5.8-folds increase in permeability. At concentrations of 0.02% chitosan, the 

effect was not statistically significant. In these studies, the permeability enhancing effect of 

chitosan could be observed within 30 min of the start of the experiment. Our results are 

consistent with reports by Dodane et al. wherein chitosan was shown to initiate a reduction of 

TEER values in Caco-2 cells within 15 min (98). The slightly longer time taken in the current 

study could be as a result of the multiple epithelial layers of the cornea in comparison to the 

Caco-2 cell monolayers. 

 

BAK also produced marked increase in transcorneal ACV permeation. At 0.01% w/v 

BAK increased ACV permeability by almost 10.5 fold whereas at 0.005% w/v permeability was 

increased 3.0 fold. These results are consistent with other reports investigating the absorption 
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enhancing effect of BAK. EDTA on the other hand, when used in conjunction with BAK, did not 

demonstrate any synergistic effect on the transcorneal permeation enhancing property of BAK. 

This was in contrast to earlier studies which report EDTA’s permeation enhancing properties. 

The difference can probably be explained by the fact that in almost all such earlier studies EDTA 

was present in a calcium free donor solution (168, 169, 172). On the other hand, in the present 

study, both donor and recipient solutions contained calcium in the form of calcium chloride. 

Consequently, the calcium chelating property of EDTA, and hence its effect on tight junctions 

and paracellular permeability, would be markedly greater in the experiments conducted in the 

absence of calcium rather than in those wherein calcium is present (incidentally tear contains 

calcium). The membrane fluidization property of EDTA (173) would probably be overshadowed 

by the activity of BAK. These results are in agreement with those of Scholz et al. (174) wherein 

EDTA was not observed to influence transcorneal permeability of another hydrophilic molecule, 

pilocarpine-HCl. 

A synergistic effect was observed when chitosan, BAK and EDTA were used in 

combination. Whereas, 0.1% w/v chitosan could produce only a 3.1-fold increase in ACV’s 

corneal permeability, chitosan at the same concentration in the presence of BAK and EDTA 

generated a 5.5-fold increase in transcorneal penetration of ACV. Interestingly, osmolality of the 

transport buffer that was employed for the chitosan studies was 328 ± 6 whereas that of DPBS 

(used for the BAK and EDTA studies) was 270 ± 6. Osmolality was measured using Osmette S, 

model 4002 (Precision Systems Inc., Natick, MA). This increase in osmolality led to a 2.7-fold 

decrease in transcorneal ACV permeation (from 3.5 x 10-6 to 1.3 x 10-6 cm/s), which is consistent 

with the findings of Scholz et al. (174).  
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 We also investigated the recovery of the corneal epithelial barrier properties following 

termination of exposure to the penetration enhancer compounds. This is probably the first study 

of this kind involving the isolated rabbit cornea. The results clearly indicate that a 3 h period was 

not sufficient for the corneal epithelial cellular integrity to be re-established. We conducted some 

additional studies in which ACV permeability was studied for five hours following a one hour 

exposure to BAK 0.005%. In these studies also no change in permeability was observed 

following withdrawal of BAK.  Earlier studies with Caco-2 cell lines have demonstrated that 

following a 30 min exposure to chitosan the tight junction proteins need to be re-synthesized de 

novo (99). Smith et al. also demonstrated membrane internalization of the ZO-1 and occludin 

proteins in Caco-2 cells following exposure to chitosan (100). Further, Dodane et al. established 

that if protein synthesis was inhibited during the recovery phase, following exposure to chitosan, 

then regeneration of the tight junctions was hampered. Results from these earlier studies indicate 

that Caco-2 cells require approximately 24 h to completely recover its barrier properties. In all 

these studies investigating tight junction recovery, following exposure to chitosan, the cell lines 

were re-incubated in the culture medium, which is enriched with vital cellular nutrients that 

enable the cells to synthesize essential proteins and maintain homeostasis, during the recovery 

phase. However, in the present study using excised rabbit corneas, the corneal epithelial cells did 

not have access to these vital nutrients. This could probably be a reason behind the lack of any 

signs of recovery of the corneal epithelial tight junctions. Further studies investigating the 

reversibility of chitosan’s effect on corneal permeability of hydrophilic agents and epithelial 

barrier integrity are warranted. 
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 In conclusion, results from this study indicate that chitosan does increase paracellular 

transcorneal diffusion of hydrophilic agents. Ophthalmic formulations of ACV, and probably 

other small hydrophilic agents, containing chitosan can demonstrate significantly greater corneal 

penetration and thus lead to increased therapeutic efficacy. BAK exhibits a synergistic effect on 

the permeation enhancing property of chitosan. Judicial combination of chitosan, BAK and 

EDTA, in ophthalmic solutions, can lead to significant improvements in ocular bioavailability. 

 

“Reprinted with permission from Elsevier. Majumdar S, Hippalgaonkar K and Repka M.A. 

Effect of chitosan, benzalkonium chloride and ethylenediaminetetracetic acid on permeation of 

acyclovir across isolated rabbit cornea Int J of Pharm. 2008; 348 (1-2): 175-178”. 
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CHAPTER 4 

EFFECT OF MODIFIED CYCLODEXTRINS ON SOLUBILITY, STABILITY AND 

TRANSCORNEAL PERMEABILITY OF DELTA-8-TETRAHYDROCANNABINOL 

 
4.1. Abstract 

The purpose of this study was to investigate the effect of cyclodextrins (CDs) on aqueous 

solubility, stability and in vitro corneal permeability of delta-8-Tetrahydrocannabinol (∆8-THC). 

Phase solubility of ∆8-THC was studied in the presence of 2-hydroxypropyl-β-cyclodextrin 

(HPβCD), randomly methylated-β-cyclodextrin (RMβCD) and sulfobutyl ether-β-cyclodextrin 

sodium salt (SβCD). Stability of ∆8-THC in 5% w/v aqueous CD solutions, as a function of pH, 

was studied following standard protocols.  In vitro corneal permeation of ∆8-THC (with and 

without CDs) across excised rabbit cornea was also determined. Phase solubility profile of ∆8-

THC in the presence of both HPβCD and RMβCD was of the AP type, whereas, with SβCD an 

AL type was apparent. Aqueous solubility of ∆8-THC increased to 1.65, 2.4 and 0.64 mg/mL in 

the presence of 25% w/v HPβCD, RMβCD and SβCD, respectively. Significant degradation of 

∆
8-THC was not observed within the study period at the pH values studied, except for at pH 

1.20. Transcorneal permeation of ∆8-THC was dramatically improved in the presence of CDs. 

The results demonstrate that CDs significantly increase aqueous solubility, stability and 

transcorneal permeation of ∆8-THC. Thus, topical ophthalmic formulations containing ∆8-THC 

and modified beta CDs may show markedly improved ocular bioavailability. 
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4.2. Introduction 

Cannabinoids have attracted a great deal of attention as a potential new class of 

antiglaucoma agents (118, 175). Delta-9-tetrahydrocannabinol (∆9-THC), the biologically active 

chemical component of Cannabis Sativa (marijuana), is responsible for a majority of the plant’s 

pharmacological effects. Currently, ∆9-THC is marketed in the USA as Marinol® for the control 

of nausea and vomiting caused by antineoplastic drugs, and to retard weight reduction syndrome 

associated with HIV/AIDS (176). However, ∆9-THC is gaining recognition as a treatment option 

for a host of other medical disorders including glaucoma (177). Earlier studies demonstrate that 

smoking of marijuana and intravenous and oral administration of ∆9-THC and ∆8-THC (delta-8-

tetrahydrocannabinol) reduces the intraocular pressure (IOP), in animals and in humans (178).  

However, since the mechanism surrounding their effect on IOP was initially thought to involve 

the central nervous system, issues such as psychoactivity and side effects associated with these 

routes of administration hindered progress. Recent discovery of CB1 receptor expression in 

various ocular tissues, has renewed interest in the study of topical administration of cannabinoids 

in the treatment of glaucoma (118, 175). A number of pharmacological and histological studies 

strongly suggest direct role of ocular CB1 receptors in the lowering of the IOP by the 

cannabinoids (118, 175). Additionally, ∆9-THC has also been reported to reduce glutamate and 

N-methyl-D-aspartate induced retinal ganglionic cell death through its CB1 agonist activity (118, 

175, 176, 179-182). Moreover, the antioxidant property of ∆9-THC protects neurons against 

oxidative stress associated with glutamate-induced excitotoxicity (118, 181, 182). Therefore, in 

contrast to currently available drugs, topical administration of ∆9-THC would not only reduce the 

IOP but would also protect the retinal ganglionic cells against glutamate and N-methyl D-
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aspartate induced neurotoxicity. However, ∆9-THC is psychotropic, poorly soluble in aqueous 

media and has undesirable side effects (183, 184). Moreover, susceptibility to oxidation, 

hydrolysis, thermal and photolytic degradation in the solution form make the design of ∆9-THC 

ophthalmic formulations a challenging task (184-187).   

∆
8-THC, an isomer of ∆9-THC, has also been shown to be pharmacologically active as an 

antiglaucoma agent (175, 188). The stereochemistry and in vivo and in vitro metabolism profiles 

of both compounds (∆8-THC and ∆9-THC) are similar. However, ∆8-THC is easier and less 

expensive to prepare and is considered to be less psychotropic than ∆9-THC (188-191). 

Additionally, ∆8-THC is chemically more stable, does not undergo oxidation to cannabinol and 

has a much longer shelf life than ∆9-THC (188). Moreover, it has been shown to exhibit 

negligible side effects when administered prior to antineoplastic therapy in cancer patients (191). 

Taking this into consideration, ∆8-THC may be a better choice for topical glaucoma therapy. 

Although more stable, utility of ∆8-THC as a topical ophthalmic agent is limited, just like 

∆
9-THC by its lipophilicity, low aqueous solubility, and resinous nature.  Additionally, a host of 

physiological factors limit ocular bioavailability of topically administered compounds (125, 126, 

175). The multilayered and varied corneal structure severely limits penetration of xenobiotics 

across the corneal membrane. For efficient transcorneal permeation, the therapeutic agents must 

possess optimum hydrophilic and hydrophobic characteristics (175). Moreover, adsorption of 

cannabinoids to glass and plastics poses a significant challenge in formulation, analysis and 

topical delivery of these drugs (192-196). 

In recent years, cyclodextrins (CDs) have been used in ophthalmics for the delivery of 

water insoluble drugs (126, 175). CDs are a group of cyclic oligosaccharides with a relative 
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lipophilic central cavity and a hydrophilic outer surface. The hydrophobic central cavity is able 

to form non-covalent inclusion complexes with various drug molecules. CDs have been reported 

to increase the aqueous solubility, chemical stability and bioavailability of ophthalmic drugs. 

Moreover, inclusion of CDs in ophthalmic formulations has been shown to reduce drug induced 

ocular irritation. Complexation with CDs also improves the ocular permeability of lipophilic 

drugs, without affecting their inherent permeability, by making greater concentration of the free 

drug available at the surface of cornea (126, 175). Additionally, modified beta CDs such as 

sulfobutyl ether-β-cyclodextrin sodium salt (SβCD) and 2- hydroxypropyl-β-cyclodextrin 

(HPβCD) have been reported to be safe for ocular application, even at concentrations as high as 

10% and 45% w/v, respectively (126, 135, 136). Furthermore, topical eye drop formulations 

containing CDs and drugs (HPβCD/ Indomethacin, randomly methylated-β-cyclodextrin 

(RMβCD)/ chloramphenicol) are commercially available in the European market (197). 

Till date there are no, literature reports with respect to the interaction of CDs with ∆8-

THC. Therefore, the objectives of this project were to determine the physiochemical 

characteristic of ∆8-THC and to investigate the effect of three different modified CDs (HPβCD, 

RMβCD and SβCD) on aqueous solubility, stability and in vitro corneal permeability of ∆8-THC. 

 

4.3. Materials 

∆
8-THC was isolated from a mixture of ∆9-THC and ∆8-THC which was produced when 

∆
9-THC was exposed to acidic conditions. HPβCD and RMβCD were purchased form Sigma 

Chemical Co (St Louis, MO, USA) with a degree of substitution of 0.6 and 1.7, respectively. 

SβCD (degree of substitution 6.6), clear glass vials 20 mL and 5 mL were procured from Fisher 
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Scientific (St.Louis, Missouri, USA). One mL clear HPLC vials and polypropylene inserts 200 

µL were purchased from Waters Corporation (Milford, MA, USA). Ultra-high grade 

polypropylene micro centrifuge tubes 1.6mL was obtained from MidSci (St.Louis, Missouri, 

USA). Polyethylene inserts 250 µL were obtained from VWR International (West Chester, PA, 

USA). All glass vials used in this study conformed to USP type I standards (Table 1). HPLC 

grade solvents and other chemicals (analytical grade) were obtained from Fisher Scientific 

(St.Louis, Missouri, USA). Whole eyes from male albino New Zealand rabbits were obtained 

from Pel-Freez Biologicals (Rogers, AK). Eyes were shipped overnight in solution (Hanks' 

Balanced Salt Solutions) over wet ice and were used immediately on receipt. 

 

4.4. Methods 

4.4.1. Binding of ∆
8 

THC to glass and plastics 

Binding of ∆8-THC to glass and plastics was studied at two different concentrations. ∆8-

THC in ethanolic stock was spiked in deionized water to yield ∆8-THC concentrations of 

0.5µg/mL and 0.15µg/mL.  Final concentration of ethanol, in these primary stock solutions, was 

5% v/v and 0.5% v/v, respectively. Primary stock solutions were sampled immediately for 

analysis and also transferred into glass and plastic containers for binding studies (Table 4-1). The 

solutions were exposed to the containers for a period of 30 minutes at room temperature and then 

analyzed for drug content. Care was taken to avoid contact with the caps. The container type, 

their capacity and approximate nominal and fill volumes are described in Table 4-1. Each 

experiment was carried out in sets of six. Change in ∆8-THC concentration in the samples from 

the corresponding initial assay of the primary stock solution was determined. To avoid 
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evaporation of ethanol, the surface-to-volume ratio in the glass and plastic containers were 

minimized and the vials were tightly capped. As a control, the drug content in the primary stock 

solution was also monitored as a function of time. 

 

 

 

Table 4-1: Container types, capacity and approximate nominal and fill volumes in the 

binding studies. 

 
 

 
 
 
 
 
 
 
 
 

4.4.2. Saturation solubility studies 

Saturation solubility studies were carried out using standard shake flask method. Briefly, 

∆
8-THC (in hexane) was purged with nitrogen to evaporate the hexane. Water or the respective 

buffers were then added to dried sample and capped. The samples were continuously agitated at 

100 rpm for 24 h at 25˚C in a reciprocating water bath. At the end of 24 h, the samples were 

centrifuged and the supernatant was analyzed for drug content. Solubility studies were carried 

out in water and in buffers at four pH values: phosphate (pH 3.00 and 7.40), acetate (pH 5.00) 

and borate (pH 9.00) buffers (buffer strength and ionic strength were15mM and 0.03, 

respectively)  

Type of containers 

 

Purchased 

from 

 

Volume Volume Filled 

Polyethylene inserts VWR International 250 µl 200 µl 

Polypropylene inserts Waters Corporation 200 µl 150 µl 

Ultra high grade Polypropylene MidSci 1.6 ml 1.5 ml 

Clear glass vial Fisher Scientific 20 ml 19 ml 

Clear glass vial Fisher Scientific 5 ml 4 ml 

HPLC vials Waters Corporation 1 ml 0.8 ml 
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4.4.3. Stability in aqueous solutions 

Stability of ∆8-THC as a function of pH was studied in the buffer solutions described 

above. Aliquots (19 mL) of the buffer were placed in glass vials and were allowed to equilibrate 

at 25 °C. ∆8-THC stock solution in ethanol (1mL) was added to the buffers, such that the final 

concentration of ethanol was 5% v/v. From these aliquots, 900 µL were added to several one mL 

HPLC vials (USP type I glass). The HPLC vials were tightly sealed to avoid any evaporation of 

ethanol and stored in a vertical position at 25 °C. At predetermined intervals these vials were 

taken out and analyzed for ∆8-THC content.  Additionally, using a similar protocol, stability of 

∆
8-THC at 40°C in phosphate buffer (pH 7.40) was also investigated. Experiments were 

conducted at least in triplicate. Log percent drug remaining was plotted against time and the 

apparent degradation rate constants were calculated from the slope of the line of best-fit. 

Stability of ∆8-THC was also determined in buffer solutions containing 5% w/v CDs and 5% v/v 

ethanol. 

4.4.4. Determination of octanol-water partition co-efficient and Ionization constant  

Predicted values of mlog P (Moriguchi log P) and pKa of ∆8 THC were determined using 

ACD Lab/I-Lab web service (ACD/Log P 8.02, ACD/Pka 8.03). 

4.4.5. Phase solubility Studies 

Complexation of ∆8-THC with various CDs was determined using phase-solubility 

studies according to the method of Higuchi and Connors (198).  Excess amount of   ∆8-THC was 

added to 5 mL aqueous solutions, in screw-capped vials, containing increasing concentrations of 

CDs. The concentrations ranged from 0.72 mM to 181 mM for HPβCD; 0.76 mM to 190 mM for 
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RMβCD; and 0.46 mM to 116 mM for SβCD. The resulting suspensions were shaken at 25 °C 

for 24 h in a reciprocating water bath. Following equilibration, the suspensions were centrifuged 

at 13,000 rpm for 20 minutes at 4 ºC and the supernatant thus obtained was analyzed using an 

HPLC system. Phase-solubility profile was obtained by plotting the solubility of ∆8-THC against 

the concentration of CDs used. Each experiment was carried out at least in triplicate, and the 

binding constants (K1:1) for the drug-cyclodextrin complex were calculated from the linear 

region of the solubility curves using equation (1) 

                                        K1:1= slope/ S0 (1-slope)                                                                       (1)                     

 Where, S0 = Intrinsic solubility of the drug. 

4.4.6. In vitro corneal permeation studies 

Corneas excised from whole eyes, obtained from Pel-Freez Biologicals (Roger, AK), 

were used for the determination of in vitro transcorneal permeability. Whole eyes were shipped 

overnight in Hanks' Balanced Salt Solution, over wet ice, and were used immediately upon 

receipt. The corneas were excised with some scleral portion adhering to help secure the 

membrane between the diffusion half-cells during the course of a transport study. After excision, 

the corneas were washed with ice cold DPBS (Dulbecco’s Phosphate Buffer Saline, pH 7.40) and 

mounted on  side-bi-side diffusion half-cells (PermeGear Inc., Bethlehem, PA, USA) with the 

epithelial side facing the donor chamber. Temperature of the half-cells, were maintained at 34°C 

with the help of a circulating water bath. Excess ∆8-THC was pre-equilibrated, for 24 h at 25°C, 

with DPBS containing 5% w/v of HPβCD, RMβCD or SβCD, separately. The supernatants were 

analyzed for drug content and 3 mL of these solutions were added to the donor chamber of the 

diffusion apparatus, in separate sets of experiment. The receiver chamber contained 3.2 mL of 
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the respective 5% w/v HPβCD, RMβCD or SβCD in DPBS solutions. CDs were added to the 

receiver chamber to maintain sink condition throughout the duration of the experiment. 

Additionally, in vitro corneal permeability of a ∆8-THC suspension formulation (200 µg/mL) 

was also determined as a control. In this case, the donor solution consisted of 3mL of a 200 

µg/mL ∆8-THC suspension and the receiver chamber contained 3.2 mL of a 5% HPβCD in 

DPBS solution. A slight difference in the donor and receiver chamber volumes maintained the 

normal shape of the cornea through marginally elevated hydrostatic pressure. The contents of 

both chambers were stirred continuously with a magnetic stirrer. Aliquots, 600 µL, were 

withdrawn from the receiver chamber at predetermined time points (30, 60, 90, 120, 150 and 180 

min), and replaced with an equal volume of the respective CD solutions. Samples were analyzed 

immediately for drug content. All experiments were carried out at least in quadruplicates. 

. 

4.4.7. Data Analysis 

Rate of ∆8-THC transport across excised rabbit cornea was obtained from the slope of a 

“cumulative amount of ∆8-THC transported” versus “time” plot. Steady-state flux (SSF) were 

determined by dividing the rate of transport by the surface area as described in equation (2) 

                                           Flux (J) = (dM/dt)/A                               (2) 

Where, M is the cumulative amount of drug transported and A is the corneal surface area 

exposed to the permeant. 

Corneal membrane permeability was determined by normalizing the SSF to the donor 

concentration, Cd according to equation (3) 

                                   Permeability (P app) =FLUX/Cd                              (3) 
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4.4.8. Analytical Method 

Samples were analyzed for drug content using an HPLC system which comprised a 

Waters 717 plus autosampler, Waters 2487 Dual λ Absorbance detector, Waters 600 controller 

pump and Agilent 3395 integrator. A Symmetry® C18   4.6 X 250 mm column was used and the 

mobile phase consisted of 20% of a 25 mM phosphate buffer (pH 3.00) with 0.1% 

Triethylamine(TEA) mixture and 80% acetonitrile. The wavelength (λ) and flow rate was set at 

215 nm and 1.5 mL/min, respectively. The limit of detection and limit of quantification of ∆8-

THC was 5 ng /mL and 10 ng /mL, respectively, and the precision RSD at the limit of 

quantification was 4%. 

 

4.5. Results 

4.5.1. Binding of ∆
8 

THC to glass and plastics 

The majority of research laboratories and pharmaceutical companies use glass that 

conforms to USP type I standards (199). Therefore binding of THC to USP type I glass and 

plastic containers was investigated. Binding was evaluated at two different ∆8-THC 

concentrations (0.5 µg/mL and 0.15 µg/mL). The solutions were exposed to the containers 

(Table 4-1) for a period of 30 minutes at room temperature and analyzed for drug content. 

Chemical degradation of the drug was not observed in the 30 minute study period and any 

change in ∆8-THC content was attributed to sticking of the compound to the walls of the glass 

vials or plastic containers. Table 4-2 summarizes the percentage loss of ∆8-THC in the different 

containers at the two different concentrations studied. ∆8-THC demonstrated greatest binding to 
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the plastic containers at 0.15 µg/mL, with the polyethylene and polypropylene inserts not 

showing any detectable ∆8-THC levels at the end of 30 minutes. ∆8-THC concentration was 

below the limit of quantification in four out of the six polyethylene inserts used when the 

primary stock solution concentration was 0.5 µg/mL. In the remaining two polyethylene inserts, 

the concentration of ∆8-THC remaining was only 0.07 µg/mL and 0.12 µg/mL. About 78.7 

percent and 41.2 percent losses in drug content were observed in the polypropylene inserts and 

ultra high grade polypropylene containers, respectively, at the 0.5 µg/mL drug concentration 

within 30 min. At 0.15 µg/mL ∆8-THC, 47% drug loss was observed in the ultra high grade 

polypropylene containers. ∆8-THC did not stick to glass vials meeting the USP Type I standards 

at the concentrations tested, 0.15 µg / mL and 0.5 µg / mL. The percent drug loss in the glass 

vials was observed to be within the RSD of the analytical method. The surface-to-volume ratio of 

the vials, however, had an impact on the binding of ∆8-THC to glass (data not provided).  On the 

basis of these results, further studies were carried out in glass vials meeting USP type I 

specifications only. 
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Table 4-2: Loss of ∆
8 

THC in different containers at two different concentrations.  

 
 
 
 
 
 
 
 
 
 
 
 
 

ND: not detectable 

4.5.2. Saturation Solubility studies 

Saturation solubility of ∆8-THC in water and as a function of pH is illustrated in Figure 

4-1. These studies were carried out at 25 °C for 24 h in a reciprocating water bath. Aqueous 

solubility of ∆8-THC was observed to be 0.26 ± 0.03 µg/mL. The pH dependent solubility 

studies (pH 3.00 - pH 9.00) indicated that solubility of ∆8-THC was independent of solution pH. 

 

Figure 4-1: Solubility of ∆
8
-THC in water and as a function of pH. Values are represented 

as mean ± SD (n=3). 
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Type of container 

 

% Drug loss in 30min 

(0.5µg/ml, 

5%v/v Ethanol) 

% Drug loss in 30min 

(0.15µg/ml, 

0.5% v/v Ethanol) 

Polyethylene inserts 86.4 and 76.0 (n=2) ND 

Polypropylene inserts 78.7 ± 8.1 ND 

Ultra high grade Polypropylene 41.2 ± 4.7 47.0 ± 2.37 

Clear glass vial (20 mL) 2.14 ± 1.69 2.9 ± 1.35 

Clear glass vial (5 mL) 0.99 ± 2.14 2.65 ± 1.42 

HPLC vials     (1 mL) 0 2.94 ± 1.80 
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4.5.3. Stability in aqueous solutions 

Aqueous stability of ∆8-THC was determined within the pH range of 1.2 to 9.0 at 25 °C. 

∆
8-THC exhibited pseudo-first order degradation kinetics at all the pH values tested.  Half-lives 

of ∆8-THC in pH 5.00, 7.40 and 9.00 were 195.0 ± 4.2, 266.5 ± 14.0 and 105.0 ± 1.2 h, 

respectively. In pH 1.20 and pH 3.00 buffers, the half-lives were 84.0 ± 2.6 and 94.0 ± 5.4, h, 

respectively (Figure 4-2). A 1.5-fold increase in the degradation rate (from 0.0027 ± 0.00026 hr-1 

to 0.0042 ± 0.00016 hr-1) of ∆8-THC was observed when the studies were carried out at 40° C in 

phosphate buffer pH 7.40. 

 

 

Figure 4-2: Apparent first order degradation rate constant (k x 10
2
, hr 

-1
) of ∆

8
-THC at 

25°C as a function of pH. Results are depicted as mean ± SD (n=3). 
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4.5.4. pH stability profile in the presence of cyclodextrins 

Table 4-3 depicts the pH-stability profile of ∆8-THC in the presence of 5 % w/v CDs. 

HPβCD, RMβCD and SβCD were tested for their ability to improve the solution stability of ∆8-

THC.  Stability was determined in buffer solutions containing 5% w/v CDs at five pH values: pH 

1.20, 3.00 and 7.40 (phosphate), pH 5.00 (acetate) and pH 9.00 (borate). The buffers also 

contained 5% v/v ethanol since preparation of the ∆8-THC controls needed 5% v/v ethanol. All 

three beta cyclodextrins tested dramatically improved the chemical stability of ∆8-THC at all the 

pH values tested. Significant degradation of ∆8-THC was not observed for a period of 2 months 

(last time point tested) in pH 3.00, 5.00, 7.40 and 9.00 buffers. However, at pH 1.20, 20.0 % and 

75% of ∆8-THC degraded in the 5% w/v SβCD and HPβCD solutions, respectively 

Table 4-3: Effect of pH on the degradation of ∆
8
-THC in the absence or in the presence of 

CDs. Results are depicted as mean ± SD (n=3). 

 

 

 

 

 

 

 

pH 

 

Percent delta-8-Tetrahydrocannabinol (  Δ
8
-THC ) degraded 

Without CD          

in 4 days 

 

 

In  the 

presence of 5% 

w/v 

     HPβCD 

in  2 months 

 

 

 In the presence 

of 5% w/v 

RMβCD 

in  2 months 

 

In the presence  

of 5%w/v 

SβCD 

in 2 months 

 

1.20 53.0±1.2 20.0 ±2.3 0 75 ± 4.0 

3.00 63.0± 2.1 4.0 ±0.8 0 0 

5.00 40.0 ± 0.8 2.8 ±1.2 0 0 

7.40 36.0 ± 1.2 3.0 ±0.6 0 0 

9.00 54.0 ± 0.9 3.0 ±1.8 0 0 
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4.5.5. Determination of octanol-water partition co-efficient and Ionization constant  

Predicted values of mlog P (Moriguchi log P) and pKa determined using ACD Lab/I-Lab 

web service (ACD/Log P 8.02, ACD/Pka 8.03, respectively) were 7.53 ± 0.36 and 9.83 ± 0.6, 

respectively. 

4.5.6. Phase solubility Studies 

The phase solubility studies are useful for studying the complexation of poorly soluble 

drugs with CDs because it not only determines the solubilizing capacity of the CDs but also 

provides an insight into the stoichiometry of the inclusion complexes formed. Figure 4-3 

represents the phase-solubility diagrams of ∆8-THC with HPβCD, , respectively. Phase-solubility 

studies were conducted for a period of 24 h. Binding constants (Table 4-4) were calculated from 

the slopes of the linear phase-solubility plots using equation 1.   All the CDs tested, dramatically 

improved the aqueous solubility of ∆8-THC. A 8,250-fold (1.65 mg/mL) and 12,000-fold (2.4 

mg/mL) increase in solubility was observed in the presence of 25% w/v HPβCD and RMβCD, 

respectively. In the presence of 25 % w/v SβCD, aqueous solubility of ∆8-THC was 640 µg/mL. 

Phase solubility data of ∆8-THC with both HPβCD and RMβCD resulted in an AP type Higuchi 

plot. The curve showed positive deviation from linearity, indicating the formation of higher order 

complexes (Figures 4-3a and 4-3b). In contrast, aqueous solubility of ∆8-THC increased linearly 

as a function of SβCD concentration (AL type plot) indicating the stoichiometry of ∆8-THC: 

SΒCD complex is probably 1:1 (Figure 4-3c). The binding constant values were 11555 M-1, 

12200 M-1 and 31000 M-1 for HPβCD, RMβCD and SβCD, respectively. 
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Figure 4-3a 
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Figure 4-3b 
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Figure 4-3c 

 

 

 
 

 
 
Figure 4-3: Phase solubility of ∆

8
-THC in the presence of (a) HPβCD, (b) RMβCD and (c) 

SβCD. Insert in (a) represents that the phase solubility of ∆
8
-THC in the presence of 

HPβCD as AL type up to a concentration of 80 mM HPβCD. Each point represents mean ± 

SD (n=6). 
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Table 4-4: Slope, apparent stability constant (K1:1) and correlation coefficient (R
2
) 

determined from the ∆
8
-THC: HPβCD, ∆

8
-THC: RMβCD and ∆

8
-THC: SβCD aqueous 

phase solubility diagrams.  

 

 
 

 

4.5.7. In vitro corneal permeation studies 

In these studies, the donor solution (3.0 mL) consisted of supernatants of ∆8-THC 

solutions, pre-equilibrated for 24 h at 25 °C in DPBS (pH 7.40) containing 5% w/v HPβCD, 

RMβCD or SβCD. The receiver chamber contained 3.2 mL of the respective solutions of 5% 

HPβCD, 5% RMβCD or 5% SβCD in DPBS. The supernatants of the 5% w/v HPβCD, RMβCD 

and SβCD in DPBS contained 86 µg/ mL, 70 µg/mL and 168 µg/mL of ∆8-THC, respectively. 

The permeability of ∆8-THC, with or without CDs across the excised rabbit cornea is depicted in 

Figure 4-4. In the case of the ∆8-THC suspension, the drug was not detectable in the receiver 

chamber till the last time point tested (3 h).  However, corneal permeation of the resinous, 

unstable and poorly soluble ∆8-THC was dramatically improved in the presence of CDs. The 

apparent permeability of ∆8-THC in the presence of 5%w/v HPβCD, RMβCD and SβCD was 

determined to be 7.6 ± 0.6 x 10-6  cm/s, 6.3 ± 1.3 x 10-6   cm/s and 4.0 ± 0.6 x 10-6   cm/s, 

respectively.  

 

Cyclodexrins Slope x 10
6 

 

K 1:1 (M
-1

) 

 

R
2 

 

HPβCD 7.36 11555 0.997 

RMβCD 7.76 12200 0.994 

SβCD 19.20 31000 0.998 
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Figure 4-4:  Transcorneal permeation of ∆
8
-THC from ∆

8
-THC suspension and ∆

8
-THC in 

the presence of 5% w/v cyclodextrin formulation. ND: not detectable. 

 

 
 
4.6. Discussion: 

The goal of this study was to determine the physiochemical characteristic of ∆8-THC and 

to evaluate the effect of CD on the solubility, stability and corneal permeation of ∆8-THC. ∆8-

THC, an isomer of ∆9-THC, has shown promise as an antiglaucoma agent (175, 188). However, 

similar to ∆9-THC, the utility of ∆8-THC as a topical ophthalmic agent is limited by its lipophilic 

nature, poor aqueous solubility, and resinous nature.  

Highly lipophilic compounds can adsorb to glass and plastic containers and cause 

difficulties in handling and processing and lead to significant loss of content on storage. 

Additionally, adsorption can cause misinterpretation of the data and lack of reproducibility.  The 

results from this study indicate that the extent of ∆8-THC adsorption to polyethylene is 

significantly greater than its adsorption to polypropylene surfaces. The most striking observation 
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was that ∆8-THC did not stick to glass vials meeting the USP Type I standards at the drug 

concentrations tested. (Table 4-2). The percentage loss of ∆8-THC in the glass vials was 

observed to be within the RSD of the method. Therefore, glass that met USP type I specification 

were used in the subsequent studies. The surface-to-volume ratio of the vials (data not provided), 

consistent with earlier reports on ∆9-THC by Blanc et. al (196), had an impact on binding of ∆8-

THC to glass. Increase in the surface-to-volume ratio (low fill volumes in the vials) resulted in a 

significantly greater loss of ∆8-THC in comparison to vials that had a low surface-to-volume 

ratio (high fill volumes).  

Solubility is an important parameter affecting drug permeation across biological 

membranes. ∆8-THC demonstrated very low aqueous solubility (0.26 ± 0.03 µg/mL), consistent 

with its high hydrophobicity (Log P 7.53 ± 0.6).  Wide ranges of aqueous solubility (1-2.8 

µg/mL) and n-octanol/ water partition (6000- 9440000) coefficient have been reported for ∆9-

THC (195, 200). This variation can be attributed to the difficulty in uniformly dissolving the 

resinous molecule, adsorption to glass and plastics, and analytical techniques used for 

quantification. ∆8-THC demonstrated pH independent solubility within the pH range tested (pH 

1-9) (Figure 4-1) which was expected since the drug is known to be weakly acidic in nature and 

exists predominantly in the unionized state below pH 9.00.  

∆
8-THC demonstrated linear pseudo-first order degradation kinetics in aqueous solutions. 

In earlier studies with ∆9-THC, by Garrett et.al (201),  ∆9-THC was found to exhibit a biphasic 

semilogarithmic degradation profile with time, in acidic aqueous solutions below pH 4.00, and 

followed a first order decay above pH 4.00. These studies, however, were carried out at a 

temperature of 60.8 °C and at such high temperatures there is a possibility of multiple 
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degradation mechanisms operating in conjunction. In the present study, hydrolysis of ∆8-THC in 

an acidic pH range was observed to be much faster than that in neutral and basic buffers (Figure 

4-2). Expectedly, a 1.5-fold increase in the degradation rate (from 0.0027 ± 0.00026 h-1 to 0.0042 

± 0.00016 h-1) was observed when the studies were carried out at 40° C in phosphate buffer of 

pH 7.40.  

Effect of increasing concentration of CDs on aqueous solubility of the therapeutic agent 

is usually determined using phase-solubility studies according to the method of Higuchi and 

Connors (122, 202). A-type phase-solubility profiles are obtained when apparent solubility of the 

therapeutic agent increases with increasing concentration of CDs. When the complex is first 

order with respect to CDs then AL- type phase-solubility (linear increase in solubility of the 

compound as a function of CDs concentration) profiles are obtained. If the complex is first order 

with respect to therapeutic agent, but second or higher order with respect to the CDs then AP type 

curve is obtained (positive deviation from linearity with increasing concentration of CDs) (122, 

202).  Phase-solubility studies demonstrate that HPβCD, RMβCD and SβCD, through their 

ability to form inclusion complexes, dramatically improved the solubility of ∆8-THC (Fig 4-3a, 

4-3b and 4-3c).  The plots suggest that SβCD forms a 1:1 inclusion complex (AL type) with ∆8-

THC. With HPβCD or RMβCD the results from this study suggest formation of higher order 

complexes and depict an AP-type phase solubility curve. Recently Mannila et al. (203) 

demonstrated that ∆9-THC yields an AL type phase solubility curve with HPβCD, indicating the 

formation of 1:1 inclusion complexes between HPβCD and ∆9-THC. Besides differences in the 

chemical structure a possible reason for the variations observed in the phase solubility plots 

could be differences in the experimental protocol. While Mannila and coworkers used HPβCD in 
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the concentration range of 0-80mM with a 72 h equilibration period, in the current study the 

HPβCD concentration ranged from 0-181mM with a 24 hour of equilibration time. If 

concentrations up to 80 mM were to be considered both studies demonstrate an AL-type phase 

solubility plot (Figure 4-3a, insert). Phase solubility studies with RMβCD indicate the formation 

of higher order complexes with ∆8-THC, which is consistent with an earlier report by Hazekamp 

and Verpoorte with ∆9-THC (204). However, the observed solubility of ∆8-THC (2.8 mg/mL) in 

the presence of RMβCD (190mM) and the stability constant (K1:1) (12200 M-1) were 

significantly less than the values reported for ∆9-THC by Hazekamp and Verpoorte (14 mg/mL 

in the presence of 187mM RMβCD and K1:1= 15,600 M-1).  This drastic difference could be 

attributed to differences in experimental protocols between the two studies. In the latter study, 

ethanolic stock solutions of both ∆9-THC and RMβCD were used to prepare the complex and the 

equilibration time was 72 h. Additionally, ∆8-THC and ∆9-THC may interact differently with 

RMβCD. The binding constant of ∆8-THC was greater with SβCD than with HPβCD or RMβCD 

(Table 4-4) suggesting that SβCD forms more stable inclusion complexes with ∆8-THC. These 

results are consistent with the reports by Okimoto et al. (205) wherein neutral drugs were shown 

to exhibit greater binding constant with SβCD than with HPβCD. 

Stability in  aqueous solution is  critical for topical ophthalmic formulation(126). The 

ability of CDs to reduce hydrolysis, oxidation and enzymatic decomposition of drugs is well 

documented (206). In this study, ∆8-THC exhibited dramatically improved chemical stability at 

almost all pH values in the presences of CD. (Table 4-3). ∆8-THC, in the presence of 5% w/v 

HPβCD, RMβCD and SβCD demonstrated insignificant degradation in pH 3.00, 5.00, 7.40 and 

9.00 buffers up to a period of 2 months (last point tested) at room temperature. However, at pH 
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1.20, 5% w/v SΒCD and 5% w/v HPβCD failed to prevent the degradation of ∆8-THC which 

could be due to chemical instability of  these CDs under strongly acidic conditions (207). The 

mechanism of enhanced stability of ∆8-THC in the presence of 5% w/v RMβCD, at pH 1.20, is 

unknown at this point but may be explained by strong steric hindrance created by RMβCD 

complexation or by greater inclusion of ∆8-THC in the RMβCD cavity at pH 1.20.  

Cornea is the major pathway for intraocular penetration of topically instilled 

medications(175). In vitro corneal permeability data suggests that the complexation of ∆8-THC 

with HPβCD, RMβCD and SβCD significantly improves transcorneal diffusion of ∆8-THC.  

Complexation of ∆8-THC with HPβCD resulted in a 2-fold increase (from 3.77 x 10-6 cm/s to 7.6 

x 10-6 cm/s) in corneal permeability compared to that of ∆8-THC: SβCD complex. Lower corneal 

permeability of ∆8-THC in the presence of SβCD can be attributed to the higher magnitude of the 

binding constant with SβCD (Table 4-4). A number of reports indicate that the magnitude of the 

binding constant plays an important role in oral bioavailability of drug-cyclodextrin complexes 

(208). A very high binding constant value can lead to the presence of decreased free drug 

fraction at the corneal surface, leading to reduced membrane permeability. Statistically 

significant difference in the corneal permeability of ∆8-THC from ∆8-THC: HPβCD complex 

(7.6 ± 0.6 x 10-6  cm/s), and ∆8-THC: RMβCD complex (6.3 ± 1.3 x 10-6   cm/s) was not 

observed. This observation could be attributed to almost similar binding constants of ∆8-THC 

with HPβCD and RMβCD (Table 4-4). Recently, Kearse and Green (117) evaluated transcorneal 

permeability of ∆9-THC, in vitro, from various vehicles including light mineral oil (LMO) (117). 

With LMO as the vehicle, corneal permeability of ∆9-THC was only 0.018 x 10-6 cm/s, which is 

extremely poor and could explain the observed lack of any IOP lowering effect in vivo (209, 
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210). Incidentally, the authors observed that transcorneal permeation of ∆9-THC in the presence 

of 30 % HPβCD was only 0.033 x 10 -6 cm/s. In the present study ∆8-THC demonstrated a 230-

fold higher permeability (7.6 x 10-6 cm/s) in the presence of 5% w/v HPβCD (Figure 4-4).  

Osmolality of DPBS containing 5% w/v HPβCD was 293 ± 4 mOsm/kg H20 (Osmette S, 

model 4002 (Precision Systems Inc., Natick, MA)). This solution is isotonic indicating that 

corneal integrity would not be affected on exposure to this solution, which is consistent with 

results from previous report from our laboratory (135), wherein Trans-epithelial electrical 

resistance (TEER) values of corneas exposed to DPBS alone or in presence of 5% w/v HPβCD 

for a period of 3 h were observed to be similar. Additionally, transcorneal transport of 

[14C]mannitol, a paracellular marker, and [3H]diazepam, a transcellular marker in the presence of 

DPBS alone or in the presence of 5% w/v HPβCD remained the same indicating the integrity and 

viability of the corneal tissues are maintained during the experimental protocol (135). Osmolality 

of DPBS containing 5% w/v SβCD and 5% w/v RMβCD were 316 ± 4, 366 ± 4 mOsm/kg H20, 

respectively. Although the RMβCD solutions were hypertonic, compared to that of HPβCD, 

which could affect the corneal integrity, the transcorneal permeation of ∆8-THC was similar or 

less than that of HPβCD. RMβCD was thus not studied any further. However, further studies 

evaluating the integrity of cornea in the presence of RMβCD and SβCD are warranted. 

In conculsion, ocular bioavailability of ∆8-THC is low because of its lipophilicity, 

resinous nature, and its limited aqueous solubility and stability. Therefore, there is a need for 

solubility and stability enhancing agents to deliver ∆8-THC into the deeper ocular tissues. Till 

date there are no reports on interaction of CDs (which can act as a solubilizer as well as 

stabilizer) with ∆8-THC. Results from this study demonstrate that all the CDs tested dramatically 
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increase the aqueous solubility, stability and transcorneal permeation of ∆8-THC. Thus, topical 

ophthalmic formulations containing ∆8-THC and CDs may show markedly greater ocular 

bioavailability and IOP lowering activity and could add to the treatment options in glaucoma. 

However, further studies evaluating the effect of RMβCD and SβCD on corneal integrity are 

warranted 
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CHAPTER 5 

INDOMETHACIN LOADED SOLID LIPID NANOPARTICLES FOR OCULAR 

DELIVERY:  DEVELOPMENT, OPTIMIZATION AND IN VITRO EVALUATION 

 
 
5.1. Abstract 

The goal of this study was to develop, optimize using face-centered central composite 

design (FCCD) and evaluate indomethacin loaded solid lipid nanoparticles (IN-SLNs (0.1% 

w/v)) for ocular delivery. IN-SLNs were prepared using hot homogenization method. Type of 

lipid, homogenization pressure, number of homogenization cycles,  fraction of Tween 80 in the 

mixture of surfactants (Poloxamer 188 and Tween 80) while keeping total surfactant 

concentration at 1% w/v, and pH were investigated for the preparation of IN-SLNs. Two factors 

(type of lipid and homogenization pressure) were pre-screened and selected to simplify the 

experimental design and focus on optimization of the other parameters using a three-factor, 

three-level FCCD aimed to minimize the particle size, maximize entrapment efficiency and 

maximize zeta potential. In vitro transcorneal permeation of indomethacin from the IN-SLNs 

was compared with that of indomethacin-solution formulation (IN-SOL) (29.3 % w/v propylene 

glycol and 1% w/v Polysorbate 80) and indomethacin-2-hydroxypropyl-β-cyclodextrin (HPβCD) 

inclusion complex formulation using a side-bi-side diffusion apparatus at 34°C. pH and 
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indomethacin content in all the formulations were 6.8 and 0.1 % w/v, respectively. Corneas 

excised from male New Zealand albino rabbit eyes, obtained from Pel-Freez Biologicals (Roger, 

AK), were used for the determination of in vitro transcorneal transport. Stability of IN-SLNs was 

also evaluated following sterilization (110° C for 30 min) and on storage (40°C, 25°C and 4°C). 

Indomethacin exhibited higher partition coefficient and solubility in Compritol 888® ATO and 

the latter was thus selected as the lipid phase for the preparation of the IN-SLNs.  

Homogenization at 15,000 psi for 6 cycles resulted in smaller particle size. The best predicted 

model for particle size and entrapment efficiency was a quadratic model without any significant 

lack of fit. Neither quadratic model nor any other model were significant for zeta potential 

indicating that zeta potential was not significantly affected by the experimental conditions used 

in this study. In vitro transcorneal permeability of indomethacin from IN-SOL and IN-HPβCD 

formulations was 2.8 ± 0.48 x 10-6 and 4.0 ± 0.9 x 10-6 cm/sec, respectively. IN-SLN formulation 

demonstrated a 4-fold and 3- fold increase in transcorneal permeation of indomethacin (12.2 ± 

1.85 x 106 cm/sec), compared to that of IN-SOL and IN-HPBCD formulations, respectively. IN-

SLNs were physically and chemically stable post sterilization and on storage at all the tested 

temperatures for a period of one month (last time point tested).  Results from this study suggest 

that solid lipid nanoparticles (SLNs) can be used to improve the ocular bioavailability of 

indomethacin.  

5.2. Introduction 

Ocular inflammation is a common eye disorder. Indomethacin, 2-[1-{(4-

chlorophenyl}carbonyl}-5-methoxy-2-methyl-1H-indol-3-yl]acetic acid, is a nonsteroidal anti-

inflammatory drug which inhibits prostaglandin biosynthesis by the inhibition of cyclooxygenase 
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and therefore has analgesic, anti-inflammatory and antipyretic actions (211). A number of reports 

demonstrate that ocular administration of indomethacin is effective in treating ocular surface and 

anterior segment inflammation, including post-operative inflammation after cataract surgery 

(212-214). However, formulation of   indomethacin as topical ophthalmic agent is limited by its 

poor solubility and stability in aqueous solutions (213). Currently, to the best our knowledge, 

topical ophthalmic formulation of indomethacin is not commercially available in the United 

States. Indocollyre® 0.1%  eye drops (a topical extemporaneously prepared hydro-PEG 400 

solution of indomethacin) commercially available in other continents has been reported to induce 

side-effects, such as irritation , superficial punctuate keratitis and local pain, and  also to exhibit  

poor ocular bioavailability (212, 215). 

In the past, a number of strategies attempting to improve the ocular bioavailability and to 

reduce the side effects of indomethacin have been investigated. These include the use of 

nanocapsules, surfactants, oils, polymeric nanoparticles and emulsions (213, 214, 216-218). 

However, the use of oils is limited due to their irritation potential, difficulty in sterilization and 

their influence on intraocular pressure (117, 118). On the other hand, the potential of emulsions 

for topical delivery of indomethacin is limited by its physical instability which can lead to 

agglomeration, drug expulsion and eventual cracking of the emulsions (119). In ophthalmology, 

topical polymeric nanoparticles, primarily developed for intravenous administration, have 

demonstrated promising results over the last 10 years. These systems are able to protect the drug 

against chemical and enzymatic degradation, improve tolerance, reduce systemic side effects and 

increase corneal uptake and intraocular half-live. However, issues such as cytotoxicity of 

polymers before or after internalization into the cells, lack of suitable large scale production 
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method and formation of toxic degradation products hindered progress in the development of 

polymeric nanoparticles (120). 

In recent years, solid lipid nanoparticles (SLNs) have attracted a lot of attention for the 

delivery of water insoluble drugs. SLNs were especially developed to deliver lipophilic drugs, 

combining the advantages of the traditional colloidal systems (emulsions, liposomes and 

polymeric micro- and nano-particles) while avoiding some of their major disadvantages (119). 

These particulates are in the submicron size range (50-1000 nm) and are made up of 

biocompatible and biodegradable materials. All the excipients used in their manufacture have 

approved ‘Generally Regarded as Safe’ (GRAS) status and are free from the risk of acute or 

chronic toxicity (139-141). A striking advantage of these particles is that large scale production 

can be undertaken in a cost-effective and relatively simple manner using a high pressure 

homogenizer (139-141). The use of a solid lipid matrix also provides greater flexibility with 

respect to modifying drug release and improving drug stability by protecting the encapsulated 

ingredients from chemical degradation. SLN colloidal dispersions can be administered as eye 

drops. Such formulations will not lead to blurred vision or pose any ocular comfort issues due to 

their small particulate size (144). Moreover, the small size and muco-adhesive characteristics 

(141) of SLNs would lead to enhanced ocular bioavailability by increasing their residence time 

in the cul-de-sac and promoting uptake into corneal or conjunctival tissues through endocytotic 

mechanisms (143).  

 In the preparation, development and optimization of drug loaded SLNs, many 

formulation variables and parameters appear to have a marked influence on mean particle size, 

drug loading, drug entrapment efficacy, and zeta potential of these lipid nanoparticles (121). 
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Therefore, it is imperative to have a clear understanding of how process conditions and potential 

interaction between process variables affect the physicochemical properties of the drug loaded 

SLNs.  

Response surface methodology (RSM) using a central composite design has been 

extensively used to determine the operation parameters that optimize a specific manufacturing 

process (219, 220).  RSM is a collection of mathematical and statistical techniques based on the 

fit of a polynomial equation to experimental data for experimental design, modeling and analysis 

of problems composed matrices of variables (219-223).  RSM overcomes the limitation of 

classical or empirical methods such as one-factor-at-a-time-method which  is a time-consuming 

process and is incapable of searching global optimal conditions, especially when interaction 

between independents exist (221). Additionally, a relatively small number of runs are required in 

RSM to determine the mathematical trends that allow the prediction of final process parameters 

needed for a specific, optimized outcome (220).  

Thus, the objective of the present investigation was to develop and optimize 

indomethacin loaded SLNs (IN-SLNs, 0.1% w/v) for ocular drug delivery.  Response surface 

methodology (RSM) using the face-centered central composite design (FCCD) was used to 

optimize IN-SLNs formulations. Another objective of this project was to compare the in vitro 

permeation characteristics of indomethacin across isolated rabbit cornea from three formulations: 

IN-SLNs, indomethacin-solution formulation (IN-SOL, 0.1% w/v) and indomethacin-

hydroxypropyl-beta-cyclodextrin formulation (IN-HPβCD, 0.1% w/v). 
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5.3. Materials 

Compritol 888®ATO (glyceryl behenate) and Precirol ®ATO 5 (glyceryl palmitostearate) 

were kindly supplied by Gattefossé (Paramus, NJ, USA).  Dynasan ® 118 (glyceryl tristerate), 

Dynasan ® 114 (glyceryl trimyristate) and Softisan® 154 (hydrogenated palm oil)  were obtained 

as gift samples from Salsol Germany GmbH (Anckelmannsplatz , Hamburg, Germany). 2-

hydroxypropyl-β-cyclodextrin (HPβCD) (average MW: 1380, degree of substitution 0.6)  was 

procured from Sigma Chemical Co (St Louis, MO, USA). HPLC grade solvents, Amicon® ultra 

centrifugal filter device with regenerated cellulose membrane (MWCO 100kD), Poloxamer 188, 

Tween 80, indomethacin and all other chemicals (analytical grade) were obtained from Fisher 

Scientific (St.Louis, Missouri, USA). Whole eyes from male albino New Zealand rabbits were 

obtained from Pel-Freez Biologicals (Rogers, AK). Eyes were shipped overnight in solution 

(Hanks' Balanced Salt Solutions) over wet ice and were used immediately on receipt. 

5.4. Methods 

5.4.1. pH- Saturation Solubility 

Saturation solubility studies as a function of pH were carried out following standard 

shake flask method. An excess amount of indomethacin was added to screw-capped glass vials 

containing various buffers. To achieve uniform mixing, samples were constantly agitated at 100 

rpm for 24 hours at 25˚C in a reciprocating water bath (Fisher Scientific, USA). At the end of 24 

hours, the samples were centrifuged (AccuSpin 17R, Fisher Scientific, USA) and the supernatant 

was analyzed for drug content. Solubility studies were carried out in buffers: phosphate (pH 

1.20, 3.00, 6.80 and 7.40) and acetate (pH 5.00) with a buffer strength and ionic strength of 15 

mM and 0.03, respectively. 
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5.4.2. Formulations 

5.4.2.1. Indomethacin solution formulation (IN-SOL) 

IN-SOL (100 mL) was prepared by mixing indomethacin (0.1 % w/v) with Tween 80 

(1% w/v) and propylene glycol (29.3% w/v).  To this mixture 1 N NaOH (prepared in bidistilled 

and 0.2 µM filtered water), was added in small increments under continuous mixing and stirring 

to dissolve the drug.  NaOH was added until the pH reached 6.80. Finally, phosphate buffer (pH 

6.80) was added to bring the final volume to 100 mL.  

 

5.4.2.2. Indomethacin loaded solid lipid nanoparticles (IN-SLNs) 

5.4.2.2.1. Preparation of indomethacin loaded solid lipid nanoparticles (IN-SLNs) 

IN-SLNs were prepared using hot homogenization method as previously described (141, 

224).  Accurately weighed Compritol 888® ATO (2% w/v) was melted and indomethacin (0.1% 

w/v) was dissolved therein to obtain a clear lipid phase. Simultaneously, aqueous phase, 

containing surfactants (Poloxamer 188 and/or Tween 80) and glycerin (2.25 % w/v), in 

bidistilled water was heated. The hot aqueous phase was then added to the melted lipid phase 

under stirring (magnetic stirrer) to form a premix (600 rpm, 1-2 min). The premix was then 

subjected to emulsification at 16000 rpm for 6 min using T 25 digital Ultra-Turrax (IKA® 

Works, Inc., Willmington, NC, USA) to from a hot pre-emulsion. The obtained pre-emulsion, 

after adjusting to the required volume, was subjected to high pressure homogenization (at 15000 

psi) using thermostated Emulsiflex C5 (Avestin Ottawa, Canada) to result in the formation of a 

hot emulsion dispersion. The temperature during the entire process was maintained at 80 ± 2 °C. 

The obtained hot emulsion was slowly cooled to room temperature to form IN-SLNs.   
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5.4.2.2.2. Experimental design for optimization of IN-SLNs 

In the present study, the factors investigated in the preparation of IN-SLNs were lipid 

type, homogenization pressure, number of homogenization cycles,  fraction of Tween 80 in the 

mixture of surfactants (Poloxamer 188 and Tween 80) at constant total surfactant concentration 

(1% w/v), and  pH.  Two factors, type of lipid and homogenization pressure, were pre-screened 

and only three factors were used for constructing face-centered central composite design 

(FCCD).  

 

5.4.2.2.2.1. Screening Study 

5.4.2.2.2.1.1. Selection of Lipid 

5.4.2.2.2.1.1.1. Partitioning of indomethacin between lipids and phosphate buffer 

Partitioning of indomethacin between lipids (Compritol  888® ATO (melting point (MP) 

:70-72°C), Precirol ® ATO 5 (MP: 56 °C) Dynasan® 116 (MP: 61-65°C), Dynasan ® 118 (MP: 

70-73°C), Softisan 154 (MP: 53-55°C)) and phosphate buffer  (15 mM. pH 6.80 ) was 

determined as described previously (225). Briefly, indomethacin (5mg) was dispersed in a 

mixture of melted lipids (500 mg) and 2 ml of hot phosphate buffer. The mixture was constantly 

agitated at 100 rpm for 30 minutes at 10 °C above the melting point of lipids in a reciprocating 

water bath. At the end of 30 minutes the mixture was cooled and centrifuged (13,000 rpm for 20 

min) (AccuSpin 17R, Fisher Scientific, USA), the aqueous phase was analyzed for drug content. 

All experiments were carried out at least in quadruplicates. The apparent partition coefficient 

(Kapp) of indomethacin was determined using equation (1) 
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Kapp = (A IND- A INDA)/ A INDA                                                                                                                                                   (1) 

 

Where A IND is the amount of indomethacin added (5mg) and A INDA is the amount of 

indomethacin determined in the aqueous phase. 

 

5.4.2.2.2.1.1.2. Solubility of indomethacin in different lipids 

 

Indomethacin, 100 mg, was added to 2 g or 5 g of Compritol  888® ATO, Precirol ®ATO 

5, Dynasan ® 116, Dynasan ® 118 or Softisan ® 154 and the samples were incubated at 10°C 

above the melting points of lipid for 15 minutes. Samples showing good solubility were cooled at 

room temperature for 24 h and were observed for the presence of crystals using light microscopy.  

 

5.4.2.2.2.1.2. Selection of Homogenization Pressure 

 

Three different homogenization operating pressures were evaluated for the preparation of 

IN-SLNs. The hot pre-emulsion was passed through the high pressure homogenizer at 7,500 psi, 

15,000 psi or 20,000 psi for 5 cycles. The formulation used for the preparation of the pre-

emulsion in this study consisted of 0.1% w/v indomethacin, 2% w/v Compritol 888® ATO, 

2.25% w/v glycerin, 1% w/v surfactant (0.75% w/v Tween 80 and 0.25% w/v Poloxamer 188). 

All experiments were performed in triplicates. The surfactant composition was arbitrarily 

selected in this particular study. 
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5.4.2.2.2.2. Face-centered Central Composite Design (FCCD)  

A three-factor, three-level FCCD was used to optimize the preparation process of the IN-

SLNs. The three independent factors chosen for the optimization study were number of 

homogenization cycles, fraction of Tween 80 in the surfactant mixture (Tween 80/ Poloxamer 

188 + Tween 80) while keeping the total surfactant concentration constant at 1% w/v and pH.  

These three independent factors were coded as A, B and C, respectively. These three factors and 

the levels of these factors in coded or actual values, along with the dependent variables, are 

defined in Table 5-1. The range for A, B and C were 1 to 10 cycles, 0 to 1 and 4 to 7.4, 

respectively (Table 5-1). Design-expert software (Version 8.0.5, Stat-Ease Inc., Minneapolis, 

U.S.A.) was used to generate the representative combinations of these factors at different levels. 

The entire software generated design consisted of 20 experimental runs (Table 5-2). The design 

consisted of 6 axial points, 8 factorial points and 6 replicates of center point for estimation of 

pure error sum of squares. Using this design, we are able to choose the best model among the 

linear, two-factor interaction, and quadratic model from results of analysis of variance 

(ANOVA). The effects of these factors on responses (dependent variables) were studied: Y1 = 

particle size; Y2 = entrapment efficiency (%) and Y3 = zeta potential. The responses were 

modeled following polynomial equations, equation (2), to evaluate the linear, quadratic and 

interactive effects of independent variables on the response.  

� � �� ������ ����� ��	���
�� �
                                                                     �2�         

Where Y is predicted response (s), B0 is intercept, Bi, Bii, Bij, are model regression coefficients 

and Xi, Xj (i=1, 2 and 3, j=1, 2 and 3 and i ≠ j) are independent variables/factors of the model in 

coded or actual values. 
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To determine if the factors and the interaction between the factors were significant and 

whether the terms in the regression model were statistically significant (p<0.05) the results of 

these experiments were compared using ANOVA.  The coefficient of multiple determinations 

which measured the proportionate reduction of total variation in Y associated with the use of the 

set of X variables was denoted by R2. The validity of the regression model was assessed 

according to statistical assumptions and lack of fit test.  Effect of the variables on each response 

variable was studied by generating response surface plots. All the statistical analyses were 

performed using Design-expert software (Version 8.0.4, Stat-Ease Inc., Minneapolis,U.S.A.). 

Table 5-1: Coded and actual values of factors used in Face Centered central composite 

design (FCCD). 

 

 

 

 

 

Factors  

(Independent Variables) 

Coded 

Symbol 

Levels 

Low (-1) Medium(0) High (+1) 

Number of Homogenization  Cycles 

 
     A 1 6 10 

Fraction of Tween 80 in mixture of 

surfactant (Tween 80/Tween 80+ 

poloxamer 188) 

(Total surfactant concentration 1% 

w/v) 

 

B 0 0.5 1 

pH C 4.00 5.50 7.40 

Dependent Variables Constraints 

Y1= Particle size (nm) Minimize 

Y2=Entrapment Efficiency (%) Maximize 

Y3 =Zeta Potential (mV) Maximize 

pH 6.80 
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Table 5-2: Experimental runs generated by Design Expert software and   the observed 

responses in face centered central composite design for optimization of IN-SLNs. 

 

 

 

 

 

 

 

 

 

 Factors Responses 
Runs Number of 

Homogenization 
Cycles 

(A) 

Fraction of  
Tween 80, total 

surfactant 
concentration, 

1% w/v 
(Tween 80/ 
Tween 80+ 

Poloxamer 188) 
(B) 

pH 
(C) 

Particle 
size 
(nm) 
Y1 

Entrapment 
Efficiency 

(%) 
Y2 

Zeta 
Potential 

(mV) 
Y3 

1 6 0.5 5.50 130 80 -22 
2 10 1 4.00 251 100 -21 
3 10 1 7.40 251 72 -22 
4 6 0 5.50 104 74 -21 
5 6 0.5 5.50 135 81 -21 
6 6 0.5 5.50 138 80 -20 
7 6 0.5 5.50 122 81 -22 
8 6 0.5 4.00 128 90 -22 
9 6 0.5 5.50 127 79 -21 

10 10 0 4.00 101 86 -21 
11 1 0 4.00 572 86 -21 
12 6 1 5.50 319 96 -21 
13 6 0.5 5.50 128 80 -22 
14 1 1 4.00 1030 100 -20 
15 10 0 7.40 100 43 -21 
16 1 0.5 5.50 672 80 -20 
17 6 0.5 7.40 128 52 -22 
18 1 1 7.40 1030 72 -20 
19 1 0 7.40 540 43 -21 
20 10 0.5 5.50 138 81 -21 
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5.4.2.2.3. Optimization and experimental validation. 

Optimized formulation was selected using Design-expert software (Version 8.0.5, Stat-

Ease Inc., Minneapolis, U.S.A.) on the basis of small particle size, higher entrapment efficiency, 

high zeta potential with good desirability. The targeted pH of the optimized IN-SLNs 

formulation was selected as 6.80 during the development of the optimized criteria because 

Indocorylle® (commercial indomethacin formulation is Europe) is marketed at this pH.  

Three new batches of the optimized formulation with the predicted levels of the 

process/formulation parameters were prepared to confirm the validity of the optimization 

procedure. These batches were used for further studies.  

 

 

5.4.2.3 Indomethacin HPβCD formulation (IN-HPβCD) 

To investigate the influence of indomethacin ionization on complexation with HPβCD, 

and to formulate the drug using HPβCD, phase solubility studies at different pH values were 

conducted. 

 

5.4.2.3.1 Phase-solubility studies 

Phase-solubility studies of indomethacin were carried out in buffered HPβCD containing 

solutions according to the method described by Higuchi and Connors (198). The solutions were 

buffered at four pH values: phosphate buffer (3.00, 6.80 and 7.40) and acetate buffer (pH 5.00). 

The buffer strength and ionic strength were 15 mM and 0.03, respectively. An excess amount of 

indomethacin was added to 5 mL of the buffered cyclodextrin solution, in screw capped glass 
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vials, containing increasing concentrations of HPβCD (0 - 145 mM). The resulting suspensions 

were shaken at 25 °C for 24 hours in a reciprocating water bath. Following equilibration, the 

suspensions were centrifuged at 13,000 rpm for 20 minutes at 4 ºC and the supernatant thus 

obtained was analyzed for drug content. Each experiment was carried out at least in triplicate, 

and the binding constants (K1:1) for the drug-cyclodextrin complex were calculated from the 

linear region of the solubility curves using the following equation: 

K1:1= slope/ S0 (1-slope)                                                                                                               (3)                     

Where, S0 = Intrinsic solubility of the drug at different pH values. 

 

5.4.2.3.2 IN- HPβCD formulation preparation  

 

For the preparation of IN- HPβCD formulation, indomethacin (0.1 % w/v) was dissolved 

in 2.5% w/v HPβCD solution prepared in phosphate buffered saline (pH 6.80).  The final pH of 

the IN-HPβCD solution was selected as 6.80 because Indocorylle® is marketed at this pH.  

 

5.4.3. Particle size and zeta potential measurement 

 
The mean particle size and the polydispersity index (PI) of the SLN dispersion was 

determined by photon correlation spectroscopy using Zetasizer Nano ZS Zen3600 (Malvern 

Instruments Inc., Westborough, MA, USA) at 25°C and 173° backscatter detection in disposable 

folded capillary clear cells.  The measurements were obtained using a He-Ne laser of 633 nm and 

the particle size analysis data were evaluated using volume distribution. Zeta potential 

measurements were carried out at 25°C in folded capillary cells using the same instrument. The 
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zeta potential values were obtained from the electrophoretic mobility using the Smoluchowski 

equation.  For measurement of particle size distribution and zeta potential SLNs samples were 

diluted (1: 500) with water and 10 mM HEPES buffer ( pH 6.80), respectively. Bidistilled and 

0.2 µM filtered waters was used for these measurements. All measurements were performed at 

least in quadruplicates. 

 

5.4.4. Assay and entrapment efficiency 

 

 

The lipid in the IN-SLN dispersion was precipitated using 190 proof alcohol and the drug 

content in the supernatant,t after centrifugation (13000 rpm for 20 min), as such or on further 

dilution with 190 proof alcohol, was measured using a HPLC system. Indomethacin content in 

IN-SOL and IN-HPβCD were also measured after dilution with 190 proof alcohol. 

The percentage of indomethacin entrapped in the SLNs (Entrapment efficiency (% EE)) 

was determined by measuring the concentration of free drug in the aqueous phase of undiluted 

IN-SLN dispersion. The EE was evaluated by ultra filtration technique with a 100 kDa 

centrifugal filter device composed of regenerated cellulose membrane (Amicon® Ultra).  An 

aliquot, 500 µL, of undiluted IN-SLN was added to the sample reservoir and centrifuged at 5000 

RPM for 10 min. The obtained filtrate was further diluted with alcohol (190 proof) and analyzed 

for drug content using HPLC. The EE was estimated using equation (4) 

  

                                        EE (%) = ((W i - W f)/ (W i)) x100------- (4) 

       Where   W i = Total drug content W f = amount of free drug in aqueous phase 
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5.4.5. Osmolality and pH measurement 

 

Osmolality was measured by the freezing-point depression method using an Osmette S, 

model 4002 (Precision Systems Inc., Natick, MA). After calibration of the osmometer with 

reference standards (100 and 500 mOsm/kg H20) the osmolality was measured (2 ml sample 

vials were used). The pH was measured using a calibrated Mettler Toledo Seven Easy pH meter 

(Fisher Scientific, St.Louis, Missouri, USA) 

 
5.4.6. Sterilization and stability of the formulations 

 

 

Three batches of optimized IN-SLNs were evaluated for physical and chemical stability 

after autoclaving (110°C for 30 min) and on storage (40°C, 25°C and 4°C).  The stability 

parameters evaluated were particle size, polydisperisity index, zeta potential, entrapment 

efficiency, pH and drug content.  Initial values for the parameters mentioned above were 

determined 24 hours post-preparation and post-sterilization.  IN-SLNs were subjected to moist 

heat sterilization at 110°C for 30 min using a Tuttnauer Brinkmann 3545 EP autoclave (Fisher 

Scientific, St.Louis, Missouri, USA). The samples were then subjected to stability studies at 

40°C, 25°C and 4°C for a period of one month (last point tested). Additionally, the drug content 

in the IN-HPβCD and IN-SOL formulation was also monitored post sterilization (110°C for 30 

min) and on storage (40°C, 25°C and 4°C).  

 

5.4.7. In vitro drug release studies 

 

The in vitro release/diffusion of indomethacin from IN-HPβCD, IN-SOL and IN-SLN 

formulations was determined using dialysis cassettes (Slide-A-Lyser® G2, 10k MWCO Cellulose 
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membrane, Thermo Scientific, Rockford, IL).  The dialysis cassettes, containing 2 mL of one of 

the formulations, were placed in glass vessels filled with 200 mL of phosphate buffer (15 mM, 

pH 6.80). The samples were then continuously agitated at at 37˚C in a reciprocating water bath 

(100 rpm). Aliquots, 500 µL, were withdrawn from the receiver chamber at predetermined time 

points, and replaced with an equal volume of fresh phosphate buffer (15 mM, pH 6.80) to 

maintain sink conditions. Samples were analyzed for drug content using HPLC. All experiments 

were carried out at least in triplicates. 

 

5.4.8. Powder X-ray diffraction (pXRD) studies  

pXRD measurements were carried out with a Bruker D8 Advanced X-ray diffractometer 

with a SOL-X detector The 2θ scan range was 5°-50° with a  step scan of 0.30.  pXRD patterns 

were recorded for indomethacin, compritol 888® ATO, physical mixture (indomethacin and 

compritol  888® ATO) and  lyophilized IN-SLNs .  The ratios of drug and lipids used in these set 

of studies were similar to the weight ratio in the IN-SLNs. Lyophilization was carried out using 

Labconco Freeze Dry systems/Freezone 2.5.  

 

 

5.4.9. Fourier transform infrared spectroscopy (FTIR) studies 

A Perkin-Elmer spectrum 100-FTIR spectrometer (Perkin-Elmer Life and Analytical 

Sciences, Shelton, CT, USA) equipped with universal attenuated total reflection sampling 

accessory was used for recording infrared spectra of samples. FTIR studies were carried out on 

indomethacin, compritol 888® ATO, physical mixture (indomethacin and compritol 888® ATO) 
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blank IN-SLNs and lyophilized IN-SLNs. The spectrum was collected for each sample within the 

wave number region 4000-650 cm-1. The spectra were evaluated for absence or shift in the wave 

number of the characteristic peaks.  The ratios of drug and lipids used in these set of studies were 

similar to the weight ratios in IN-SLNs 

 

5.4.10. Differential Scanning Calorimetry (DSC) analysis 

 

The Differential Scanning Calorimetry (DSC) analysis was carried out using a Diamond 

Differential Scanning Calorimeter (Perkin-Elmer Life and Analytical Sciences, Shelton, CT, 

USA). The samples were weighed  and heretically sealed in aluminum pans and were heated 

from 20°C to 200°C at a heating rate of 10°C/min under nitrogen purge (20 mL/min). An empty 

aluminum pan was used as the reference.  

The DSC analysis was carried out on the following samples: (1) indomethacin (~0.5 mg); 

(2) HPβCD; (3) physical mixture (indomethacin and HPβCD); (4) lyophilized IN-HPβCD; (5) 

lyophilized IN-SLNs formulation; (6) lyophilized blank SLNs; (7) physical mixture 

(indomethacin and Compritol  888® ATO). Additionally, hyper DSC studies (20 to 200°C at 

heating rate of 200 °C /min) on lyophilized IN-SLNs, and physical mixture (indomethacin and 

Compritol  888® ATO) were also performed. Approximately 10 mg of lyophilized IN-SNL, 

blank SLNs and IN-HPβCD was used for the DSC analysis. The physical mixture consisted of 

~0.5 mg indomethacin and ~9.5 mg of HPβCD/or Compritol 888® ATO.  The ratios of drug and 

lipids, and drug and HPβCD used in these set of studies were similar to the weight ratios in IN-

SLNs and IN-HPβCD, respectively.  
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5.4.11. In vitro corneal permeation studies 

 

Corneas excised from whole eyes, obtained from Pel-Freez Biologicals (Roger, AK), 

were used for the determination of in vitro trans-corneal permeability. Whole eyes were shipped 

overnight in Hanks' Balanced Salt Solution, over wet ice, and were used immediately upon 

receipt. The corneas were excised with some scleral portion adhering to help secure the 

membrane between the diffusion half-cells during the course of a transport study. After excision, 

the corneas were washed with ice cold DPBS (Dulbecco’s Phosphate Buffer Saline, pH 7.40) and 

mounted on  side-bi-side diffusion half cells (PermeGear Inc., Bethlehem, PA, USA) with the 

epithelial side facing the donor chamber. Temperature of the half-cells, were maintained at 34°C 

with the help of a circulating water bath.  

Two mL of the optimized IN-SLNs (pre- and post-sterilization), or IN-SOL or, IN-

HPβCD was diluted with 1 mL of 3 mM acyclovir (ACV) solution (in DPBS pH 7.40) and 

immediately added to the donor chamber after adjusting the pH to 6.80. The indomethacin 

content in all the formulations was 0.1 % w/v. The receiver chamber medium consisted of 3.2 

mL of HPβCD (2.5 % w/v) in DPBS (pH 7.40) solution for all the transport studies. A slight 

difference in the donor and receiver chamber volumes helped maintain the normal shape of the 

cornea through marginally elevated hydrostatic pressure. The contents of both chambers were 

stirred continuously with a magnetic stirrer. Aliquots, 400 µL, were withdrawn from the receiver 

chamber at predetermined time points (30, 60, 90, 120, 150 and 180 min), and replaced with an 

equal volume of the 2.5% w/v HPβCD in DPBS (pH 7.40). Samples were stored at -80°C until 

further analysis of indomethacin and acyclovir content. ACV was added to monitor the integrity 
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of the corneal epithelium in the presence of the formulation components. Transcorneal 

permeation of ACV alone (control) was also evaluated as described above except that in this 

study the donor solution consisted of one mL of ACV (3 mM in DPBS pH 7.40) diluted with two 

mL of DPBS (pH 6.80).  Additionally, permeation of indomethacin through the cornea from IN-

HPβCD was also monitored in the presence of surfactants (0.75% w/v Tween 80 and 0.25% w/v 

Poloxamer 188). All experiments were carried out at least in quadruplicate. ACV content in the 

donor chamber was analyzed using ultra filtration technique (Amicon® Ultra 100 kDa centrifugal 

filter device). An aliquot (200 µL) of ACV containing IN-SLN dispersion sample was added to 

the sample reservoir and centrifuged at 5000 RPM for 10 min. The obtained filtrate was further 

diluted with water and analyzed for ACV content using HPLC.  

 In order to evaluate the effect of the addition of ACV on the physiochemical properties 

of the IN-SLNs during the transport experiment additional experiments were undertaken.  In 

these experiments, 1 mL of 3 mM ACV solution (in DPBS pH 7.40) was added to 2 mL of the 

formulation and at the end of three hours osmolality, zeta potential, particle size, and entrapment 

efficiency or IN-SLNs were determined.   

 

5.4.12. Data Analysis 

 

Rate of indomethacin and ACV transport across excised rabbit cornea was obtained from 

the slope of a “cumulative amount of indomethacin or ACV transported” versus “time” plot. 

Steady-state flux (SSF) were determined by dividing the rate of transport by the surface area as 

described in equation (5) 
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                                           Flux (J) = (dM/dt)/A                               (5) 

Where, M is the cumulative amount of drug transported and A is the corneal surface area 

exposed to the permeant. 

Corneal membrane permeability was determined by normalizing the SSF to the donor 

concentration, Cd according to equation (6) 

                                   Permeability (P app) =Flux/Cd                              (6) 

 
5.4.13. Analytical method: 

 

Samples were analyzed for indomethacin and acyclovir content using an HPLC system 

comprised of Waters 717 plus autosampler, Waters 2487 Dual λ Absorbance detector, Waters 

600 controller pump and Agilent 3395 integrator. A Symmetry® C18   4.6 X 250 mm column was 

used for both compounds. Mobile phase for acyclovir consisted of  20 mM phosphate buffer ( pH 

2.50) and  acetonitrile (98:2) and for indomethacin the mobile phase used was methanol, water 

and orthophosphoric acid (70:29.05:0.05). The λmax for indomethacin and acyclovir were 270 and 

254 nm respectively. The flow rate was set at 1 mL/min for both compounds. 

 

5.5. Results  

5.5.1. pH- Saturation Solubility: 

Figure 5-1 illustrates the saturation solubility of indomethacin as a function of pH. These studies 

were carried out at 25 °C for 24 hours in a reciprocating water bath. Solubility of indomethacin 

was observed to be highly dependent on solution pH.  Solubility of the drug in an acid pH (pH 

1.20, 3.00, and 5.00) was observed to be significantly lower than that in the neural buffers (pH 
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6.80 and 7.40).  Aqueous solubility of indomethacin at pH 7.40, pH 6.80, pH 5.00, pH 3.00 and 

pH 1.20 was 732.0 ± 20.0 µg/mL, 340.0 ± 10.0 µg/mL, 10.0 ± 0.06 µg/mL, 1.5 ± 0.05 µg/mL 

and 0.3 ± 0.03 µg/mL, respectively. 

 

 

Figure 5-1: Solubility of indomethacin at 25 °C as a function of pH. Results are depicted as 

mean ± SD (n=3). 

 

 

 

5.5.2. Experimental design  

Five factors i.e. type of lipid, homogenization pressure, number of homogenization 

cycles, fraction of Tween 80 in a mixture of surfactants (Poloxamer 188 and Tween 80, total 

surfactant concentration 1% w/v) and pH were investigated for optimization of the IN-SLNs 
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preparation process. Two factors, type of lipid and homogenization pressure, were pre-screened 

and only three factors were used to construct face-centered central composite design (FCCD).  

 

5.5.2.1. Screening study: Selection of Lipid 

Figure 5-2 illustrates the apparent partition coefficient (Kapp) of indomethacin in various 

lipids. Partitioning behavior of indomethacin between lipid and phosphate buffer (pH 6.80) was 

determined by measuring the free concentration remaining in the aqueous phase. The Kapp was 

calculated using equation 1. The Kapp of indomethacin in Compritol  888® ATO, Precirol®ATO 

5, Dynasan® 114, Softisan 154  and Dynasan ® 118, were 10.2 ± 0.70, 5.1 ± 0.66, 2.71 ± 0.54, 

2.71 ± 0.31 and 2.50 ± 0.26, respectively. Solubility of indomethacin (100 mg) in 2 g and 5g of 

lipid was evaluated by incubating the drug with the lipid, at a temperature 10°C above the 

melting points of lipid, for 15 minutes. Indomethacin remained undissolved and drug crystals 

were observed in 2 g of Precirol®ATO 5, Dynasan® 114, Softisan 154 and Dynasan ® 118. 

Indomethacin was soluble in 5 gm of Precirol®ATO 5, Dynasan® 114, Softisan 154 and Dynasan 

® 118, however, drug crystals were observed in these lipids after 24 hours under light 

microscopy. However, Indomethacin exhibited good solubility (clear yellow  lipid melt) in 2 g or 

5 g of Compritol  888® ATO and no drug crystals were observed on cooling to room temperature 

and after 24 hours under light microscopy. 
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Figure 5-2: Partition Coefficient of Indomethacin in various lipids.  

5.5.2.2. Screening study: Selection of homogenization pressure 

For selection of the optimum homogenization pressure the pre-emulsion was passed 

through the high pressure homogenizer at three different homogenization pressures (7,500 psi, 

15,000 psi and 20,000) for 5 cycles. Figure 5-3 illustrates the mean particle size of the IN-SLNs 

obtained at the three different homogenization pressures. The mean particle size of the IN-SLNs 

at 7500 psi, 15000 psi and 20,000 psi were 300 ± 10 nm, 180 ± 4 nm and 178 ± 10 nm, 

respectively. In these studies Compritol  888® ATO ( 2% w/v) was employed as the lipid phase, 

based on the lipid prescreening experiments, and the surfactant ( 0.75% w/v of Tween 80 and 

0.25 % w/v of Poloxamer 188) was used to prepare the IN-SLNs 
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Figure 5-3: Effect of homogenization pressure on the mean particle size of the IN-SLNs. 

 

5.5.2.3. Face-centered Central Composite Design (FCCD)  

A three-factor, three-level FCCD was used to optimize the IN-SLN formulation process 
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mixture of Poloxamer 188 and Tween 80, while keeping the total surfactant concentration at 1% 
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used as the other formulation components and a homogenization pressure of 15,000 psi was used 

to carry out the experimental runs illustrated in Table 5-2. Compritol 888® ATO and the 

homogenization pressure of 15,000 psi were selected based on the results of the pre-screening 

experiments (Section 5.4.2.1 and 5.4.2.2). The ranges of the responses Y1, Y2, and Y3 were 100 

to 1030 nm, 43 to100% and -20 to -22 mV, respectively (Table 5-2).   Table 5-3 represents the 

ANOVA results with respect to the different models for each dependent variable Y1, Y2, and Y3.  

The linear and quadratic models for the response variable Y1 demonstrated an F-value of 10.20 

and 998.96, respectively. The p-value for the linear and quadratic models for the response 

variable Y2 were <0.0004 and <0.0001, respectively. For response variable Y3, p values of 

0.3415, 0.4678 and 0.0870 were observed for linear, 2FI, and quadratic models, respectively. 

The fitted quadratic model equation generated by the design expert software for the responses 

Y1, Y2, and Y3 are given in Table 5-4.  Tables 5-5, 5-6 and 5-7 represents the ANOVA results for 

the fitted quadratic model for particle size (Y1), entrapment Efficiency (%) (Y2) and zeta 

potential (Y3), respectively.  Where  liner terms A, B and C represents homogenization pressure, 

Tween 80 fraction in the mixture of surfactants (Tween 90 and Poloxamer 188, total  surfactant 

concentration 1% w/v) and pH, respectively. Terms AB, BC and AC represent interaction terms 

and A2, B2 and C2 represent quadratic terms. 
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Table 5-3: Analysis of variance results of different models for each response.  

 
 

Dependent Variable  Model 

Sum of 

Squares df 

Mean 

Square F-Value 

p-value 

Prob > 

F 

Particle size (Y1) Linear  10718.04 3 3572.68 10.20 0.0005* 

2FI 172.6968 3 57.57 0.14 0.9356 

Quadratic  5412.205 3 1804.07 998.96 

< 

0.0001* 

Entrapment Efficiency (%) 

(Y2) 

Linear  4406.5 3 1468.83 56.67 

< 

0.0004* 

2FI  112.5 3 37.50 1.61 0.2344 

Quadratic  296 3 98.67 159.14 

< 

0.0001* 

Zeta Potential (Y3) Linear  1.80 3 0.60 1.20 0.3415 

2FI  1.38 3 0.46 0.90 0.4678 

Quadratic  3.09 3 1.03 2.92 0.0870 

 
2FI: Two factor interaction model; *p<0.05 
 

 

Table 5-4: Fitted Quadratic model equations for particle size (Y1), entrapment efficiency 

(Y2), and zeta potential (Y3) as the responses. 

 
Response Fitted Quadratic  Model Equation 

Particle size (Y1) �����.�� � 81.13 � 20.60 � � 5.33� � 4.66 � � 2.05�� � 1.27�	
� 32.60�	 � 0.42�	  

Entrapment 

Efficiency (Y2) 

�	 � 40.13 � 21.54 � � 24.07� � 4.41�� � 18 �	 � 3.3�	  

 

Zeta Potential (Y3) �� � �28.11 � 0.36 � � 0.68� � 2.8 � � 0.17� � 0.016��
� 0.14�� � 0.04�	 � 1.27�	 � 0.23�	 
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 Table 5-5:  Analysis of variance results of fitted quadratic model for particle size response 

(Y1) 

 

Source Sum of Squares df Mean Square F-Value P-value 

Model 16300.9 7 2328.7 1387.7 < 0.0001 

A 8665.9 1 8665.9 5164.0 < 0.0001 

B 2051.2 1 2051.2 1222.3 < 0.0001 

C 0.9 1 0.9 0.5 0.4731 

AB 170.6 1 170.6 101.7 < 0.0001 

A
2
 2121.5 1 2121.5 1264.2 < 0.0001 

B
2
 205.7 1 205.7 122.6 < 0.0001 

C
2
 4.1 1 4.1 2.5 0.1422 

Residual 20.1 12 1.7   

Lack of Fit 16.7 7 2.4 3.5 0.0927 

Pure Error 3.4 5 0.7   

Cor Total 16321.0 19    

 

 

Table 5-6: Analysis of variance results of fitted quadratic model for percentage entrapment 

efficiency (Y2).  

Source Sum of Squares df 

Mean 

Square F-Value P-value 

Model 4814.9 5 963.0 2139.96 < 0.0001 

B 1166.4 1 1166.4 2592 < 0.0001 

C 3240.0 1 3240 7200 < 0.0001 

BC 112.5 1 112.5 250 < 0.0001 

B
2
 64.8 1 64.8 144 < 0.0001 

C
2
 288.8 1 288.8 641.78 < 0.0001 

Residual 6.3 14 0.45   

Lack of Fit 3.5 9 0.39 0.68 0.7107 

Pure Error 2.8 5 0.57   

Cor Total 4821.2 19    

Model 4814.9 5 963.0 2134.0 < 0.0001 

Cor Total 16321.0 19    
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Table 5-7: Analysis of variance results of fitted quadratic model for zeta potential (Y3).  

 
 
 

 

 

 

The fitted quadratic models for Y1 and Y2 responses demonstrated an insignificant lack of 

fit with p-value of 0.0927 and 0.7107, respectively (Table 5-5 and Table 5-6). On the other hand, 

the fitted quadratic model for Y3 exhibited a significant lack of fit with F-value of 0.1 and p-

value of 0.9961, respectively (Table 5-7).  ANOVA results of the fitted quadratic model for 

response Y1 demonstrated that linear terms (A, B), interaction terms (AB) and quadratic terms 

(A2, B2) were significant (Table 5-5 ) while the linear terms B and C,  interaction term BC and 

quadratic terms B2 and C2 were significant in ANOVA results for response Y2 (Table 5-6). None 

of the terms were significant in the fitted quadratic model for response Y3 (Table 5-7).  Table 5-8 

summaries the results of the regression analysis for responses Y1, Y2 and Y3 for fitting to the 

quadratic model equations given in Table 5-4. The R2, adjusted R2 and predicted R2 were > 

0.9956 for response Y1 and Y2. On the contrary, the R2, adjusted R2 and predicted R2 for 

response Y3 were 0.6394, 0.3148 and 0.2047, respectively.  

 

Source Sum of Squares df Mean Square F-Value P-value 

Model 6.3 9 0.7 2.0 0.1528 

  A 1.6 1 1.6 4.5 0.0592 

  B 0.1 1 0.1 0.3 0.6064 

  C 0.1 1 0.1 0.3 0.6064 

  AB 1.1 1 1.1 3.2 0.1047 

  AC 0.1 1 0.1 0.4 0.5652 

  BC 0.1 1 0.1 0.4 0.5652 

  A
2
 1.8 1 1.8 5.2 0.0556 

  B
2
 0.3 1 0.3 0.8 0.3956 

  C2 1.3 1 1.3 3.6 0.0863 

Residual 3.5 10 0.4   

Lack of Fit 0.2 5 0.0 0.1 0.9961 

Pure Error 3.3 5 0.7   

Cor Total 9.8 19    
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Table 5-8: Summary of results of regression analysis for responses Y1, Y2 and Y3 for fitting 

to quadratic model equations given in Table 5-4 

Quadratic model R
2
 Adjusted R

2
 Predicted R

2
 

Response Y1 0.9988 0.9980 0.9956 

Response Y2 0.9987 0.9982 0.9974 

Response Y3 0.6394 0.3148 0.2047 

 

The three-dimensional (3D) plots, based on the fitted quadratic model to assess the 

change of the response surface, depicting the effect of homogenization cycles  

(A) and ratio of Tween 80 (B) on particle size of IN-SLNs is shown in Figure 5-4.  The response 

surface plot from interaction of pH (C) and fraction of Tween 80 (B) on percentage entrapment 

efficiency of IN-SLNs is presented in Figure 5-5. In these plots (Figure 5-4 and Figure 5-5) the 

fraction of Tween 80 in the mixture of surfactants (Tween 80 and Poloxamer 188) was varied 

while keeping the total surfactant concentration at 1% w/v.  Particle size of IN-SLNs rapidly 

decreased as the number of homogenization cycle (A) increased (Figure 5-5).  As the fraction of 

Tween 80 (B) increased in the formulation an increase in the particle size of the IN-SLNs was 

observed. However, increase in Tween 80 (B) in the formulation led to a significant increase in 

the percentage entrapment of indomethacin in the SLNs at all the pH (C) values tested (Figure 5-

5).  Figures 5-6 and 5-7  represent the 3D response surface plots of effect of homogenization 

cycle (A), fraction of Tween 80 (B) and pH (C) on zeta potential (Y3). Significant changes in the 

zeta potential values were not observed, as indicated by straight plots, with a change in A, B or 

C. 
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Figure 5-4: Response surface plot of effect of A: homogenization cycles; and B: fraction of 

Tween 80 in the mixture of surfactants (Poloxamer 188 and Tween 80, total concentration 

1% w/v) on response particle size (Y1).   
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Figure 5-5: Response surface plot of effect of B: fraction of Tween 80 in the mixture of 

surfactants (Poloxamer and Tween 80, total concentration 1% w/v); and C: pH on response 

entrapment efficiency (Y3).   
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Figure 5-6: Response surface plot of effect of A: homogenization cycle; and B: fraction of 

Tween 80 in the mixture of surfactants (Poloxamer and Tween 80, total concentration 1% 

w/v), on response zeta potential (Y3).   
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Figure 5-7: Response surface plot of effect of B: fraction of Tween 80 in the mixture of 

surfactants (Poloxamer and Tween 80, total concentration 1% w/v), and C: pH, on 

response zeta potential (Y3).   

 

5.5.2.4. Optimization and experimental validation 

 

By analyzing the response surface plots, constraints (Table 5-1) and by solving the fitted 

quadratic model equation optimization of the IN-SLNs formulation was achieved using Design-

expert software (Version 8.0.5, Stat-Ease Inc., Minneapolis, U.S.A.).  The optimum level for the 

homogenization cycle, fraction of Tween 80 in the mixture of surfactants (Tween 80 and 

Poloxamer, total surfactant concentration 1% w/v) and pH were determined to be 6 cycles, 0.75 
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and 6.80, respectively.  Based on the prescreening experimental data Compritol 888®ATO and 

the homogenization pressure of 15,000 psi were chosen for optimization of IN-SLNs 

manufacturing process. Table 5-9 represents the quantitative composition of the optimized IN-

SLN formulation. At these levels of the independent variables, predicted IN-SLNs particle size, 

percentage entrapment efficiency and zeta potential were calculated to be 144 nm, 72 % and – 22 

mV, respectively. 

Table 5-9: Optimized IN-SLNs formulation using Design expert software.  

Components           Percentage 

          (w/v) 

Indomethacin 0.1 

Compritol  888
®
ATO 2 

Poloxamer 188 0.25 

Tween 80 0.75 

Glycerin 2.25 

pH 6.80 

 

 
. 

 

In order to validate the experimental model, triplicate batches of IN-SLNs were prepared 

by using the statistically optimized conditions. Table 5-10 represents a comparison of the 

predicted and observed responses for the optimized formulation. The observed responses for 
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particle size (Y1), percentage entrapment efficiency (Y2) and zeta potential (Y3) were 140 ± 5 

nm, 72 ± 5% and -21 ± 1.8 mV, respectively. The values were within 5% of the predicted error.  

Table 5-10: Comparative levels of predicted and observed responses for optimized 

formulation. 

Response 

Observed 

(O) 

Predicted 

(P) 

Predicted error (%) 

((O-P)/P )*100 

Y1 (nm) 140 ± 5 144 -2.78 

Y2 (%) 72 ± 5 72 0 

Y3 (mV) -21 ± 1.8 -22 - 4.5% 

 

 

5.5.3. Phase solubility Studies 

 

 

Phase solubility studies are useful for studying the complexation of poorly soluble drugs 

with CD. Figure 5-8 represents the phase-solubility diagrams of indomethacin with HPβCD in a 

buffered solution. The solutions were buffered at four pH values: 3.00, 6.80 and 7.40 (phosphate 

buffer) and 5.00 (acetate buffer). Table 5-11 depicts the binding constants of indomethacin: 

HPβCD complexes at different pH values. Phase-solubility studies were conducted for a period 

of 24 hours. Binding constant was calculated from the slopes of the linear phase-solubility plots 

using equation 3. HPβCD dramatically improved the aqueous solubility of indomethacin at all 

the pH values tested. A 180-fold (from 1.5 µg/mL to 272 µg/mL) and  a 81-fold (from 10 µg/mL 

to 810 µg/mL) increase in solubility of indomethacin was observed in the presence of 20% w/v 

(144 mM) HPβCD at pH 3.20 and pH 5.00, respectively. At pH 6.80 and pH 7.40 an 8.0-fold 

(from 0.34 mg/mL 2.7 mg/mL) and a 5.2-fold (from 0.73 mg/mL to 5.2 mg/mL) increase in 
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solubility was observed in the presence of 20% w/v HPβCD.  In pH 3.20 and pH 5.00 buffers 

aqueous solubility of indomethacin increased linearly as a function of HPβCD concentration (AL 

type plot). On the other hand, at neutral pH (pH 6.80 and pH 7.40), the phase solubility plots 

showed negative deviation from linearity (AN type plot) at higher concentrations of HPβCD 

(Figure 5-8). The binding constants of indomethacin: HPβCD complexes were 1192 M-1, 715 M-

1 and 126 M-1 and 77 M-1  for HPβCD at pH 3.00 and pH 5.00,  pH 6.80 and pH 7.40, 

respectively (Table 5-11) 

 

Figure 5-8: Phase solubility plots of indomethacin in the presence of HPβCD at 25°C as a 

function of pH, following 24 hours equilibration.  Each point represents mean ± SD (n=6).  
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Table 5-11: Slope, apparent stability constant (K1:1) and correlation coefficient (R

2
) 

determined from the linear portion of Indomethacin: HPβCD aqueous phase solubility 

diagrams at different pH values. Solubility of indomethacin (Intrinsic solubility (S0)) in the 

absence of HPβCD at different pH values are also given. 

 

 

 

 

 

 

 

5.5.4. Effect of sterilization and storage: 

Three batches of the optimized IN-SLN formulation were sterilized by autoclaving 

(110°C for 30 min) and were subjected to storage stability studies at 40°C, 25°C and 4°C for a 

period of one month.  Table 5-12 represents the effect of sterilization on the physical parameters 

of the IN-SLNs. These parameters were evaluated one day after sterilization. Post-sterilization 

the mean particle size, polydispersity index (PI), zeta potential, pH and percentage entrapment 

efficiency of the IN-SLNs were observed to be 149 ± 5.0 nm, 0.17 ± 0.03, -22 ± 0.8 mV, 6.65 ± 

0.1 and  71.0 ± 0.2, respectively. Significant difference in all the parameters tested after 

sterilization was not observed. 

 

 

 

 

pH S0  X 10
5  

( mM) 

Slope x 10
5 

 

K 1:1  

(M
-1

) 

 

R
2 

 

7.40 204.0 15.6 77 0.977 

6.80 95.0 12.0 126 0.945 

5.00 2.5 1.8 715 0.992 

3.00 0.4 0.5 1192 0.999 



 
140 

Table 5-12: Effect of sterilization (110°C, 30 min) on mean particle size, PI, zeta potential, 

pH and entrapment efficiency on optimized IN-SLNs formulation.  

 

 

 

 

 

Figure 5-9 represents the effect of sterilization and storage on indomethacin drug content 

in IN-SLNs, IN-HPβCD and IN-SOL formulations. In the case of IN-SLNs a significant decrease 

in drug content was not observed post-sterilization and on storage under the test conditions for a 

period of one month (last time point tested) (Figure 5-9 (A)). However, post-sterilization 

indomethacin content in the IN-HPβCD and the IN-SOL formulations decreased from 100 % to 

84.0 ± 0.3% and 87.7 ± 0.25%, respectively (Figure 5-9 (B), Figure 5-9 (C)).  Additionally, 

further decrease in drug content was observed in IN-HPβCD and IN-SOL formulation on 

storage.   At  40°C, 25°C and 4°C  drug content in the IN-HPβCD formulation decreased (from 

84.0 ± 0.3%) to 67.0 ± 1.0 %, 72.0 ± 0.5 % and 76.0 ± 0.3%, respectively, at the end of one 

month (Figure 5-9 (B)).  In the case of   IN-SOL formulation,  at the end of one month the drug 

content decreased (from  87.7  ±  0.25%) to 73.0  ±  0.9 %, 79.0  ± 0.5 % and 81.0  ±  0.3% at 

40°C, 25°C and 4°C, respectively (Figure 5-9 (C)).  

 

 

Evaluated Parameters Pre-Sterilization Post-Sterilization 

Mean Particle Size (nm) 140 ± 5 149 ± 5.0 

PI 0.16 ± 0.01 0.17 ± 0.03 

Zeta Potential (mV) -21 ± 1.8 -22 ± 0.8 

pH 6.80 ± 0.10 6.65 ± 0.10 

Entrapment Efficiency (%) 72.0 ± 1.5 71.0 ± 0.2 



 

Figure 5-9 (A) 

 

 

Figure 5-9 (B) 
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Figure 5-9 (C) 

Figure 5-9: Effect of sterilization and one month storage under the test conditions on drug 

content in IN-SLNs (A), IN-HPβ
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Effect of sterilization and one month storage under the test conditions on drug 

HPβCD (B) and IN-SOL(C) formulations. 
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Figure 5-10 (A) 

 

 
Figure 5-10 (B) 
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Figure 5-10 (C) 

 
 

 
 
Figure 5-10 (D) 

 

 
Figure 5-10 represents the effect of storage at 40°C, 25°C and 4°C on the mean particle 

size, zeta potential, entrapment efficiency and pH of the IN-SLNs. A significant change was 

not observed with respect to any of these parameters on storage for up to a period of one 

month (last point tested) under any of the test conditions.  
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5.5.5. In vitro drug release studies 

 

Figure 5-11 represents the in vitro cumulative percent release/diffusion of indomethacin 

from IN-HPβCD, IN-SOL and IN-SLN formulations. These studies were carried out using 

dialysis cassettes and the receptor compartment consisted of 15 mM phosphate buffer, pH 6.80 

maintained 37˚C. At all time points tested a significant decrease in the net release/diffusion of 

drug from the IN-SLN dispersion was observed compared to IN-HPβCD and IN-SOL 

formulation. Around 80% of indomethacin was released / diffused across the membrane from the 

IN-HPβCD and IN-SOL formulations in 3 hours. In contrast, only 60 % of drug was released / 

diffused across the membrane from the IN-SLN formulation in the same period. These results 

suggest that release of indomethacin could be modified by using the IN-SLNs.   

 

Figure 5-10:   Comparative cumulative percent release of indomethacin from IN-HPβCD, 

IN-SOL and IN-SLNs formulations. Results are depicted as mean ± SD (n=3). 
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5.5.6. pXRD Studies 

 

Figure 5-12 represents the overlaid X-ray diffractograms of indomethacin, compritol 

888® ATO, physical mixture (indomethacin and compritol 888® ATO), and lyophilized IN-

SLNs. The X-ray diffraction pattern of indomethacin demonstrated four sharp peaks at 2θ angles 

of about 19, 21, 26 and 29°.  The diffraction patterns of compritol 888® ATO was similar to that 

of the physical mixture and showed two peaks at 2θ angles of about 21 and 23°. However, the X-

ray diffractogram of the lyophilized IN-SLNs showed three peaks at 2θ angles of about 19, 21, 

and 23°. The difference in the diffraction pattern of compritol 888® ATO  in bulk lipid and IN-

SLNs could be attributed to stress experienced during lyophilization which may have led to 

transformation of the metastable β’ form to βi form resulting in appearance of the third peak 

(226). 
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Figure 5-11: pXRD diffractograms of indomethacin (blue), compritol 888
®

 ATO (black), 

physical mixture of indomethacin and compritol 888
®

 ATO (green) and lyophilized IN-

SLNs (red). 
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5.5.7. FTIR studies: 

 
Overlaid FTIR spectra of indomethacin, compritol 888® ATO, lyophilized blank IN-

SLNs, and lyophilized IN-SLNs are shown in Figure 5-13. The FTIR spectra of indomethacin 

indicated characteristic stretching bands at 1689.32 cm-1 and 1711.82 cm-1 corresponding to 

carbonyl groups. Peak at 1689.32 cm-1 and 1711.82 cm-1 correspond to benzoyl and acid 

carbonyl stretch, respectively. The presence of peak at 1711.82 could be related to the existence 

of indomethacin in the γ form (227-229). The compritol demonstrated characteristic peaks 

related to C=O (1736.04 cm-1) stretching and C-H stretching (2915.94cm-1/2848.97cm-1).  The 

FTIR spectrums of the physical mixture, lyophilized blank IN-SLNs, lyophilized IN-SLNs were 

similar to that of bulk compritol 888 ® ATO and demonstrated no shift in the wave number of the 

characteristic peaks. The, sharp crystalline bands of indomethacin were absent in the physical 

mixture (Figure 5-14). 
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Figure 5-12: Fourier transform infrared spectra of indomethacin (green), compritol 888
®

 

ATO (red), lyophilized blank IN-SLNs (black) and lyophilized IN-SLNs (blue). 
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Figure 5-13: Fourier transform infrared spectra of physical mixture of indomethacin and 

compritol 888
®

 ATO 

 
 

5.5.8. Differential Scanning Calorimetry (DSC) 

 

Perkin-Elmer Diamond DSC was used to investigate the complexation of indomethacin 

with HPβCD, and to study the melting and recrystallization behavior of the SLNs.  Figure 5-15 

represents the overlaid thermograms of indomethacin, HPβCD, physical mixture of 

Indomethacin and HPβCD and lyophilized IN-HPβCD. DSC thermograms of indomethacin, 

Compritol 888® ATO, physical mixture (indomethacin and Compritol  888® ATO), lyophilized 

blank SLNs and lyophilized IN-SLNs formulation are presented in Figure 5-16.  Indomethacin 

exhibited an endotherm corresponding to its melting point at ~159°C and HPβCD exhibited no 

melting endotherm within the temperature range tested. The drug melting transition was 
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observed in the physical mixture of indomethacin and HPβCD while it was absent in the IN-

HPβCD complex.  The thermal curve of the bulk Compritol 888® ATO and physical mixture 

(indomethacin and Compritol 888® ATO) exhibited an endothermic peak at ~71°C.  The melting 

endoderm of Compritol  888® ATO in lyophilized blank SLNs and IN-SLNs formulation was 

observed at 69.03°C and 67.06°C, respectively. Additionally, an endotherm at 50-55°C 

corresponding to melting point of Poloxamer 188 was also observed in blank SLNs and In-SLNs. 

Hyper DSC thermograms (20 to 200°C at heating rate of 200 °C /min) of physical mixture of 

indomethacin and bulk lipid exhibited a melting endotherm corresponding to melting of 

indomethacin at ~ 158°C, which was absent in IN-SLNs (Figure 5-17).  

 

Figure 5-14: DSC thermograms of A: HPβCD; B: Indomethacin; C:  physical mixture of 

Indomethacin and HPβCD; and D: lyophilized IN-HPβCD formulation. 
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Figure 5-15: DSC thermograms of A: Compritol  888
®

 ATO; B: Indomethacin; C:  physical 

mixture (indomethacin and Compritol  888
®

 ATO);D: lyophilized blank SLNs; and E: 

lyophilized IN-SLNs formulation  
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Figure 5-16: Hyper DSC thermograms of physical mixture (indomethacin and Compritol 

888
®

 ATO) and lyophilized IN-SLNs formulation  

 

 

5.5.9. In vitro corneal permeation studies 

In these studies, the donor solution consisted of 2 mL of the formulation (optimized IN-

SLNs (0.1% w/v indomethacin content) (pre- and post-sterilization) or IN-SOL (0.1% w/v 

indomethacin content) or IN-HPβCD (0.1% w/v indomethacin content)) diluted with 1mL of 3 

mM acyclovir (ACV) solution (in DPBS pH 7.40). The pH of the solution, immediately after 

dilution, was adjusted to 6.80 and the transport experiments were conducted. The receiver 

chamber solution contained 3.2 mL of 2.5% HPβCD in DPBS (pH 7.40) in all cases. The 

transcorneal permeability coefficients of indomethacin, from all formulations tested, are depicted 
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in Figure 5-18.  The in vitro transcorneal permeability of indomethacin from IN-SOL and IN-

HPβCD formulations was 2.8 ± 0.48 x 10-6 cm/sec and 4.0 ± 0.9 x 10-6 cm/sec, respectively. IN-

SLNs formulation demonstrated a 4.3-fold and a 3-fold increase in transcorneal permeability of 

indomethacin (12.2 ± 1.85 x 10-6 cm/sec), compared to that of IN-SOL and IN-HPβCD 

formulations, respectively Transcorneal permeability of indomethacin from the IN-SLNs 

formulation post-sterilization was observed to be 13.2 ± 0.8 x 10-6 cm/sec). Figure 5-19 

represents the permeation of acyclovir through the cornea, alone (control) or in the presence of 

IN-SOL, IN-HPβCD and IN-SLNs (pre- and post-sterilization).  One mL of ACV (3 mM in 

DPBS pH 7.40) was added to two ml of pH 6.80 DPBS (control) or to 2 mL of the formulations. 

The final pH of all formulations was adjusted to 6.80 before conducting transcorneal permeation. 

ACV was added to monitor/compare the integrity/tightness of the corneal tissues in the presence 

of the formulations and during the course of the experiments.  The transcorneal permeability of 

ACV alone (control) and in the presence of IN-SOL, IN-HPβCD, pre-sterilized IN-SLNs and 

post-sterilized IN-SLNs was observed to be 2.2 ± 0.2 x 10-6  cm/sec, 2.0 ± 0.7 x 10-6  cm/sec, 2.6 

± 0.4 x 10-6  cm/sec, 2.4 ± 0.5 x 10-6 cm/sec, and 2.4 ± 0.67 x 10-6 cm/sec, respectively. The 

mean particle size, zeta potential, pH, PI and osmolality of the IN-SLN formulation before and 

after dilution with ACV were similar (Table 5-13). Additionally, on dilution with ACV a 

significant difference in the osmolality of IN-SOL, IN-HPβCD or IN- SLNs were not observed 

(Table 5-14). However, on dilution with ACV, at the end of three hours a 36 % decrease in the 

entrapment efficiency (from 72.0 ± 1.5 % to 46 ± 4.0 %) with the IN-SLN formulation was 

observed (Table 5-13).  Figure 5-20 represents transcorneal permeability of indomethacin from 

IN-HPβCD in the absence or in the presence of surfactants (0.75% Tween 80 and 0.25% 
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Poloxamer). Transcorneal permeation of indomethacin from IN-HPβCD in the absence of and in 

the presence of surfactants was determined to be 4.02 ± 0.84 x 106 cm/sec and 4.45 ± 0.33 x 106 

cm/sec, respectively. 

 

 
 

 
 

 

 
Figure 5-17: Transcorneal permeation of indomethacin from IN-SOL (0.1% w/v), IN-

HPβCD (0.1% w/v) and IN-SLNs (pre-and post-sterilization) (0.1% w/v) formulations.  

Two mL of the formulations were diluted with one mL of ACV (3 mM in DPBS pH 7.40) 

solution. The pH of all the final solutions was adjusted to 6.80 before conducting 

transcorneal permeation studies. Results are depicted as mean ± SD (n=6).  
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Figure 5-18: Transcorneal permeation of acyclovir (ACV), alone (control) or in the 

presence of IN-SOL, IN-HPβCD and IN SLNs (before and after sterilization) formulations. 

One mL of ACV (3 mM in DPBS pH 7.40) was added to two ml of pH 6.80 DPBS (control) 

or to 2 mL of the formulations. The pH of the final solutions was adjusted to 6.80 before 

conducting the transcorneal permeation experiments. Results are depicted as mean ± SD 

(n=6).  

Table 5-13: Effect of dilution of formulations with 1mL of acyclovir solution (3mM) on 

mean particles size, PI, zeta potential, pH and entrapment efficiency of pre-sterilized IN-

SLNs 
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Evaluated Parameters IN-SLN IN-SLNs post dilution  

Mean Particle Size (nm) 140 ± 5 144 ± 10 

PI 0.16 ± 0.01 0.17 ± 0.003 

Zeta Potential (mV) -21 ± 1.8 -22 ± 1.9 

pH 6.80 ± 0.1 6.80 ± 0.10 

Entrapment Efficiency (%) 72.0 ± 1.5 46 ± 4.0 
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Table 5- 14: Effect of dilution of formulations with 1mL of acyclovir solution (3mM in 

DPBS pH 7.40) on osmolality of IN-HPβCD and IN-SLNs formulations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5-19: Transcorneal permeability of indomethacin from IN-HPβCD and IN-HPβCD 

containing 0.75% Tween 80 and 0.25% poloxomer 188 formulations. Results are depicted 

as mean ± SD (n=6). 
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Formulations Osmolality (mOsm/kg H20) 

 

No Dilution After dilution 

IN-HPβCD 285 ± 6 285 ± 5 

IN-SLNs (Pre-sterilization) 278 ± 4 278 ± 3 

IN-SLNs (Post-sterilization) 280 ± 3 280 ± 5 
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5.6. Discussion 

The goal of this study was to develop and optimize the preparation of IN-SLNs (0.1% 

w/v) using face-centered central composite design (FCCD) and to compare corneal permeation 

of indomethacin from IN-SLNs, IN-SOL (0.1% w/v) and IN-HPβCD (0.1% w/v) formulations. 

The final indomethacin content in all the formulation was maintained at 0.1 % w/v because 

Indocollyre®, a topical extemporaneously prepared hydro-PEG 400 solution of indomethacin, a 

commercial indomethacin formulation is available in Europe at this concentration. Five factors 

i.e. type of lipid, homogenization pressure, number of homogenization cycles,  fraction of Tween 

80 in the mixture of surfactants (Poloxamer 188 and Tween 80) while the keeping total 

surfactant concentration at 1% w/v, and pH were investigated for preparation of IN-SLNs. Two 

factors (type of lipid and homogenization pressure) were pre-screened and pre-selected to 

simplify the experimental design and focus on optimization of the other parameters using FCCD. 

 

 Solubility and entrapment efficiency of the drug, determinants of the loading capacity of 

the drug in the lipids, are the two major factors that drive the selection of the lipid phase for the 

preparation of the SLNs. Indomethacin exhibited highest partition coefficient of 10.2 ± 0.70 in 

Compritol 888® ATO (Figure 5-2). Additionally, in contrast to all the other lipids tested, 

indomethacin exhibited good solubility (clear yellow lipid melt) in Compritol 888® ATO (2 g 

and 5 g) and drug crystals were not observed under light microscopy 24 h after cooling to room 

temperature.  Significantly higher entrapment efficiency and drug solubility in Compritol 888® 

ATO could be attributed to differences in the lipid crystalline structure related to the chemical 

nature of the lipid and arrangement of the drug molecules in the lattice. Compritol 888® ATO is a 
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mixture of mono-, di- and tri-glycerides and produces less ordered lipid crystals and with lattice 

defects which helps in accommodating the drug molecules compared to the other triglycerides 

tested (Dynasan 114, Dynasan 118, and Softisan 154). Although, Precirol®ATO 5 (glyceryl 

palmitostearate) is also a mixture of mono-, di- and triglycerides, higher solubility and 

entrapment of the drug in Compritol 888 ATO (glyceryl behenate) could be attributed to 

differences in the chemical composition of the lipids.  Therefore, Compritol 888® ATO was 

selected as the lipid phase for the preparation of the IN-SLNs. The concentration of the lipid in 

all further formulations tested was maintained as 2 % w/v because an increase in the lipid content 

in the formulation could result in larger particle size with broader size distribution (121). 

Cavitational forces in the homogenization gap are responsible for the reduction in the particle 

size of the lipid nanoparticles (230). Increase in the homogenization pressure from 7,500 psi to 

15,000 psi resulted in a decrease in the mean particle size of the IN-SLNs. Increase in the 

homogenization pressure did not result in any further decrease in the mean particle size of the 

IN-SLNs (Figure 5-3). Therefore, 15,000 psi was considered as the optimum homogenization 

pressure for preparation of IN-SLNs.  

A three-factor, three-level FCCD was used to further optimize the preparation of the IN-

SLNs. The three independent factors chosen for the optimization study were: number of 

homogenization cycles (A); fraction of Tween 80 in the mixture of surfactants (Poloxamer 188 

and Tween 80) while keeping the total surfactant concentration at 1% w/v (B); and pH (C). 

Compritol 888® ATO (2% w/v) and homogenization pressure (15000 psi), selected on the basis 

of the results of the pre-screening experiments, were used to carry out the experimental runs. 

Variation in the particle size of the IN-SLNs was observed as a function of number of 
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homogenization cycles and fraction of Tween 80 in the surfactant mixture (Table 5-2). Minimum 

particle size of the IN-SLNs (100 nm) was achieved in run No 15 and the maximum particle size 

of 1030 nm was observed in run number 14 and 18 (Table 5-2).  The ratio of maximum to 

minimum particle size was 10.3. A ratio greater than 10 indicates that transformation is required. 

Transformation is needed if the error, (residuals) is a function of magnitude of response and the 

choice of transformation depends on statistical considerations. In this study power transformation 

was chosen to transform the particle size to stabilize variance and to make the data follow normal 

distribution. Box-cox plot provided in design expert software was used to choose the appropriate 

power transformation (0.68) (Table 5-4, equation Y1).   Analysis of variance (ANOVA) results, 

calculated by Design-expert software, were used to choose the best model equation to fit the 

particle size response (Y1) from among linear, two-factor interaction model (2FI) and quadratic 

model. Quadratic second-order polynomial model was found to be most appropriate for particle 

size response (Y1). This model was highly statistically significant, with F-value 998.96 and p-

value < 0.0001, when compared to other models (Table 5-3). Additionally, the quadratic model 

demonstrated insignificant lack of fit for Y1 (F= 3.5; P>0.05) (Table 5-5).  Two linear 

(homogenization cycles (A), fraction of Tween 80 in the surfactant mixture (B)), one interaction 

(homogenization cycles and fraction of Tween 80 AB), A2 and B2 terms were significant 

(p<0.05) (Table 5-5) and were included in the quadratic model equation for response Y1 (Table 

5-4, equation Y1). Other terms were not significant (p>0.05) and were thus not included in the 

quadratic equation. Although, the linear term C (pH) was not significant and had no effect on the 

particle size (Y1) of the IN-SLNs it was included in the quadratic model equation to ensure that 

the model was hierarchical (Table 5-5).  Positive sign before a factor in polynomial equation 
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indicates that the response increases with the factor and negative sign indicates that the response 

decreases with the factor (231). Particle size response (Y1) (Table 5-4, equation Y1) of the IN-

SLNs is directly related to the number of homogenization cycles (positive sign before A), while 

an inverse relationship exists with the fraction of Tween 80 (-ve sign before B) in the mixture of 

surfactants (Tween 80 and Poloxamer (total surfactant concentration constant at 1% w/v)). The 

coefficient of determination (R2) and adjusted R2 values were 0.9988 and 0.9980, respectively 

(Table 5-8) indicating that the quadratic model equation for the particle size response (Table 5-4, 

equation Y1) could explain 99.88% variability in the particle size response. Additionally, close 

agreement between the predicted (0.9956) and adjusted R2 (0.9980) indicates the accuracy and 

general ability of the polynomial model to predict the particle size response (Y1) (Table 5-8).   

Response surface plots indicated that the homogenization cycles (A) and fraction of 

Tween 80 in the mixture of surfactants (Poloxamer and Tween 80, total concentration 1% w/v) 

(B) had a significant effect on the particle size response (Y1) (Figure 5-4). Increase in the number 

of homogenization cycles, at all tested fractions of Tween 80 in the formulation, led to a decrease 

in the particle size of the IN-SLNs. In high pressure homogenization the fluid is accelerated at 

high velocity and pressure through the narrow gap. Very high shear stress and cavitational forces 

during each pass breaks the particle down to a small size. Thus, higher the number of times the 

fluid is passed through the homogenizer greater the reduction in droplet size. However, at all 

homogenization cycles, IN-SLNs stabilized with only Tween 80 as the emulsifier demonstrated 

highest particle sizes. As the fraction of Tween 80 in the formulation decreased, particle size of 

the IN-SLNs was observed to decrease with all homogenization cycles. This observation is 

consistent with other reports wherein different emulsifier compositions required different 
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homogenization parameters to reduce the particle size of the SLNs due to a difference in the 

velocity of coverage of the new lipid surfaces created (143). At a particular cycle number, the 

observed differences in the particle size of the IN-SLNs stabilized using different combinations 

of surfactants could be explained by the different HLB values of Tween 80 (HLB 18), Poloxamer 

188 (HLB 29) and the combination of Tween 80 and Poloxamer, which could lead to different 

surface absorption and packing properties of the surfactants (232, 233). 

In the case of percentage entrapment efficiency response (Y2), the quadratic model 

equation (Table 5-4, equation Y2) was found to be significant based on the F value of 159.14 (p< 

0.001) (Table 5-3). Additionally, lack of fit for the selected quadratic model was not significant 

(F=0.68; P=0.7107) (Table 5-6). The terms pH (C) and fraction of Tween 80 in the mixture of 

surfactants (B) were significant (Table 5-6) and were therefore included in the equation (Table 5-

4, equation Y2). All other terms that were not significant were excluded from the equation. 

Similarity between the predicted (0.9956) and adjusted R2 (0.9980) indicates the ability of the 

quadratic model to predict the percentage entrapment efficiency response (Table 5-8). In addition 

to solubility of the drug in the lipid phase, physiochemical properties of the drug and processing 

factors can affect the amount of drug incorporated into the delivery systems (234, 235).  As 

indicated by the response surface plot, both the fraction of Tween 80 in the formulation and the 

formulation pH had a significant effect on the percentage of indomethacin incorporated within 

the IN-SLNs (Figure 5-5). Indomethacin (pKa of 4.5) demonstrated a pH dependent  entrapment 

efficiency, consistent with the pH dependent solubility (Fig 5-1),which was expected because the 

drug is known to be weakly acid in nature and exists predominately in the ionized form above 

pH 4.5, which will promote localization in the aqueous phase. However, at all pH values, IN-
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SLNs stabilized by only Tween 80 (no Poloxamer 188), demonstrated higher entrapment 

efficiency. As the fraction of Tween 80 in the formulation decreased, a significant decrease in 

the entrapment of indomethacin in the SLNs was observed at all pH values. Decrease in the 

entrapment with an increase in the concentration of Poloxamer 188 in the formulation could be 

attributed to the higher solubilization of the drug by Poloxamer 188 in the aqueous phase. The 

results are in agreement with the observation regarding the incorporation of diazepam and 

prednisolone in the SLNs where the solubility of the drug in the aqueous-emulsifier phase was a 

determining factor for entrapment efficiency (235, 236).  

The fitted quadratic model equation for the zeta potential response is given in Table 5-4 

(equation Y3). Neither the quadratic model (F value 2.92 (p = 0.087) nor any other model were 

significant indicating that the independent variables A, B and C were not related to response 

variable zeta potential (Y2) (Table 5-3). Additionally, the change in the zeta potential may not be 

predicted by the process factors and by the quadratic model because all the terms in the equation 

(Table 5-4, equation Y2) were statistically insignificant (Table 5-7) and because of the low R2 

value of 63.94% (Table 5-8). Moreover, disagreement between the predicted (0.2047 and 

adjusted R2 (0.3148 (Table 5-8) indicates the inability of the quadratic polynomial model to 

predict the zeta potential response. This suggests that the zeta potential was not significantly 

affected by the experimental variables used in this study. The surface response plots (Fig 5-6 and 

Fig 5-7) for zeta potential of the IN-SLNs as a function of the number of homogenization cycles 

(A), fraction of Tween 80 in the mixture of surfactants (B) and pH (C) also showed no curvature 

indicating that the zeta potential was not dependent on any of the independent variables used in 

this study.   
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By analyzing the response surface plots, constraints (Table 5-1) and by solving fitted 

quadratic model equation, optimization of the IN-SLN formulation was achieved with 15,000 

psi, 6 cycles, indomethacin (0.1% w/v), Compritol 888 ATO (2% w/v), Tween 80 (0.75% w/v), 

Poloxamer 188 (0.25% w/v), glycerin (2.25% w/v) and pH 6.80 (Table 5-9). The targeted pH of 

the optimized IN-SLN formulation was selected as 6.8 during setting of optimization criteria 

because Indocorylle® (commercial indomethacin formulation is Europe) is marketed at this pH. 

The observed values from the triplicate batches prepared were similar to the predicted values and 

were within 5% of the predicted error (Table 5-10). The close agreement between the observed 

and predicted values confirms the validity of the experimental model. Additionally, the mean 

particle size, zeta potential and entrapment efficiency of the three batches were similar indicating 

precision, batch to batch uniformity and controlled experimental conditions (Table 5-10).  

Phase solubility studies demonstrate that HPβCD through its ability to form inclusion 

complexes dramatically improved the solubility of indomethacin at all pH value tested. The 

aqueous solubility of indomethacin increased linearly as a function of HPβCD concentration (AL 

type plot) at pH 3.20 and pH 5.00 indicating the formation of a 1:1 complex at this pH. On the 

other hand, the phase solubility curve showed a negative deviation from linearity (AN type plot) 

at higher concentrations of HPβCD at neutral pH (pH 6.80 and pH 7.40) (Figure 5-8). The 

difference in the phase solubility behavior of indomethacin (pKa 4.5)  as a function of pH could 

be attributed to the difference in interaction of ionized and unionized indomethacin with HPβCD. 

AN type of phase solubility curves of indomethacin with HPβCD at pH 7.40 have been reported 

previously (237). The binding constants of indomethacin (K1:1) was also observed to be pH 
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dependent indicating significant effect of ionization on indomethacin/ HPβCD interaction (Table 

5-11). Highest and lowest binding constant values was observed at pH 3.00 and 7.40, 

respectively. At pH 3.00, indomethacin exists predominately in the unionized form, and this 

form being more lipophilic forms more stable inclusion complexes with HPβCD. The decrease in 

stability constant with the increase of pH above 3.00 could be explained by increased drug 

hydrophilicity as a result of ionization, which probably reduces the affinity for the lipophilic 

HPβCD cavity (238, 239). These findings are consistent with literature reports wherein increase 

in solution pH resulted in a decrease in the stability constants of indomethacin/ HPβCD, flenamic 

acid/ β-CD and flenamic acid/tri-O-methyl-β-cyclodextrin inclusion complexes (237, 240).  

In this study, the pH and indomethacin content of the IN-HPβCD formulation was 

targeted to 6.80 and 1 mg/mL, respectively.  Several reports indicate that maximum ocular 

permeation and bioavailability is achieved only when just enough cyclodextrins (<15%) is added 

to the vehicle to solubilize the available drug. Presence of excess amounts of cyclodextrins will 

decrease the ocular bioavailability due to retention of the drug molecule in the lipophilic central 

cavity of the cyclodextrins (46, 116, 125, 126). The saturation solubility of indomethacin in 2.5 

% w/v HPβCD at pH 6.80 was determined to be 1.1 mg/ml (Figure 5-2). Thus, to avoid excess 

cyclodextrins in the formulation, IN-HPβCD was formulated using 2.5 % w/v HPβCD. 

All ophthalmic products should be sterile, and physically and chemically stable on 

storage (241). Indomethacin has been reported to undergo pH dependent hydrolysis to 5-

methoxy-2methyl-indol-3-acetic acid and p-cholorobenzoic acid (237, 242). The ability of SLNs 

to reduce hydrolysis, oxidation and photo-degradation of drugs as a result of  incorporation into 

solid lipid matrices is well documented (119) In this study, incorporation of indomethacin within 
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the SLNs dramatically improved chemical stability of indomethacin. A significant decrease in 

the drug content was not observed with the IN-SLN formulations on sterilization (110°C, 30 

min) and on storage for up to  a period of 1 month (last point tested) under the conditions tested 

(40°C, 25°C and 4°C) (Figure 5-9 (A)). Additionally, the mean droplet size, zeta potential, 

entrapment efficiency and pH of the IN-SLNs remained unaltered post-sterilization and on 

storage (Figure 5-10). However, dramatic loss of indomethacin content from the IN-HPβCD and 

IN-SOL formulations was observed post-sterilization and on storage under the conditions tested 

(Figure 5-9 (B) and Figure 5-9 (C)).  

The IN-SLNs were further characterized to evaluate for molecular interaction using 

pXRD, FTIR and DSC. The inclusion complex of indomethacin and HPβCD was characterized 

using DSC. Compritol 888® ATO and physical mixture (indomethacin and Compritol 888® 

ATO) exhibited similar pXRD diffraction patterns and FTIR spectrum. Additionally, the 

characteristic sharp crystalline peaks of indomethacin were also not observed in the pXRD 

diffractogram and the FTIR spectrum of the physical mixture. Moreover, significant shift or 

lowering of intensity of the FTIR spectrum and pXRD diffraction patterns of the physical 

mixture was not observed (Figure 5-12, Figure 5-13 and Figure 14). This could be due to lower 

ratio of drug and lipids used in physical mixture in these set of studies (similar to weight ratio in 

IN-SLNs), which would result in the masking of the indomethacin peaks in the pXRD and FTIR 

studies by the bulk lipid in physical mixture.   

In the case of the DSC studies, the melting endotherm of indomethacin was not observed 

in the physical mixture of indomethacin and Compritol 888® ATO because enough time was 

given for the drug to get solubilized in the bulk lipid which melts at ~71°C (Figure 5-16).  
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However, in contrast to lyophilized IN-SLNs, when a physical mixture of indomethacin and 

Compritol 888® ATO was subjected to hyper DSC (20 to 200°C at heating rate of 200 °C /min) a 

melting endotherm corresponding to melting of indomethacin at ~ 158°C was observed (Figure 

5-17). This clearly indicates the presence of indomethacin in an amorphous state after 

entrapment within the SLNs.  Additionally, the melting endotherm of bulk Compritol 888® ATO 

in blank SLNs shifted to lower temperatures (from ~71°C to ~ 69°C). The decrease in melting 

point of the bulk lipid core in SLNs has been attributed to the small size of the SLNs, the 

dispersed state of the lipid and the presence of surfactants (235, 243-246). The depression in the 

melting point of the bulk lipid in the IN-SNLs (67.06°C) compared to that of blank SLNs 

(69.03°C) indicates increased lattice defects, resulting from the incorporation of indomethacin, 

which in-turn reduces the degree of crystallinity and hence the melting point of bulk lipid (Figure 

5-16). Similar decrease in melting point of the bulk lipid due to incorporation of drug was 

previously observed (247). The disappearance of the endothermic melting peak of the drug in the 

lyophilized IN-HPβCD suggests molecular encapsulation of drug in the cyclodextrin cavity 

(Figure 5-15).  

Cornea is the major pathway for intraocular penetration of topically instilled medications 

(175)  In vitro corneal permeability data suggests that  incorporation of indomethacin in the 

SLNs led to a significant increase in the transcorneal diffusion of the drug.  A 4.3-fold (from 2.8 

± 0.48 x 10--6 cm/sec to 12.2 ± 1.85 x 10-6 cm/sec) and a 3-fold (from 4.0 ± 0.9 x 10-6 cm/sec to 

12.2 ± 1.85 x 10-6 cm/sec) increase in corneal permeability of indomethacin from the IN-SLN 

formulations was observed compared to that from the IN-SOL and IN-HPβCD formulations, 

respectively (Figure 5-18).  Significant difference in the transcorneal transport of indomethacin 
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from the pre-and post-sterilized IN-SLN formulations was not observed which was expected 

since the physiochemical parameters of indomethacin remained unaltered on sterilization (Figure 

5-18 and Table 5-12). In contrast to IN-HPβCD formulations which did not contain any 

surfactants, IN-SLN formulations were stabilized with 0.75% Tween 80 and 0.25% Poloxamer 

188, and these surfactants could be responsible for the observed increase in corneal permeation 

of indomethacin. To test this hypothesis corneal permeation of indomethacin from the IN-

HPβCD formulation was carried out in the presence of surfactants.  Results demonstrate that 

permeation of indomethacin through the cornea was not modified in the presence of surfactants 

(Figure 5-20). The transcorneal permeability of ACV (a positive control) in the presence of the 

formulations was not statistically significantly different from that of the control, indicating that 

the integrity of the corneal epithelium was not affected by the formulation components (Figure 5-

19) Additionally, the mean particle size, zeta potential, pH, PI and osmolality of the IN-SLN 

formulation before and after dilution were similar indicating that ACV did not affect the physical 

characteristics of the IN-SLNs during the transport experiments (Table 5-13 and Table 5-14). A 

significant decrease in the entrapment efficiency of the drug in the IN-SLNs was not observed on 

storage at all the temperatures tested for a period of one month (last time point tested) (Figure 5-

10). However, on dilution with 1 mM ACV solution, a 36% decrease in entrapment efficiency of 

the drug was observed at the end of three hours (Table 5-13) indicating that the release of 

indomethacin from the IN-SLNs was majorly affected by partitioning of the drug between the 

lipid and the external aqueous phase. These results are consistent with the report by Calvo et.al 

wherein rapid release of the encapsulated indomethacin (85% in two hours), due to partitioning 

effect, from various colloidal formulations on dilution in phosphate buffered  medium (pH 7.40) 



 
169 

was observed (217).  Calvo et.al also evaluated the transcorneal permeability of indomethacin, in 

vitro, from various colloidal systems and Indocollyre®. The transcorneal permeability of 

indomethacin from Indocollyre®, emulsions, nanocapsules and nanoparticles was observed to be 

0.75  ±  0.04 x 10-6 cm/sec, 2.74  ± 0.49 x 10-6 cm/sec,  3.57 ±  0.73 x 10-6 cm/sec and 3.80  ± 

1.81 x 10-6 cm/sec, respectively. In the present study, indomethacin permeability from the IN-

SLNs (12.2 ± 1.85 x 10-6 cm/sec) was 16.2-fold higher compared to that of Indocollyre and 3.0-

fold higher compared to that of the colloidal systems (217). 

 

Conclusions 

In this study RSM was used to develop and optimize the process parameters for the 

preparation of indomethacin loaded SLNs for ocular drug delivery.  Mathematical analysis of the 

quadratic model equation revealed that the number of homogenization cycles and fraction of 

Tween 80 in the formulation had a significant effect on the particle size of the IN-SLNs.   

Amount of Tween 80 and pH of the formulation were predicted to be affect the entrapment of 

indomethacin in the SLNs. However, none of the factors investigated had a significant quadratic 

relationship with zeta potential.  The optimized formulation was achieved using indomethacin 

(0.1% w/v), Compritol 888 ATO (2% w/v), Tween 80 (0.75% w/v), Poloxamer 188 (0.25% w/v), 

glycerin (2.25% w/v), 15000 psi, 6 cycles and pH 6.80.   The observed responses were close to 

the predicted values of the optimized formulation.  The optimized IN-SLNs were physically 

stable during sterilization and on storage for a period of one- month (last point tested) at all the 

storage temperatures (40°C, 25°C and 4°C) tested.  Incorporation of indomethacin in the SLNs 

dramatically improved chemical stability of the drug. Significantly higher in vitro transcorneal 
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permeability of indomethacin from the IN-SLN formulation compared to that from IN-SOL, IN-

HPβCD and the reported corneal permeability of a commercial formulation (Indocollyre®), 

indicates that the formulation of indomethacin in the SLNs could significantly improve the 

ocular bioavailability of the drug. Future experiments are aimed at evaluating the in vivo efficacy 

of these IN-SLNs.  
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CHAPTER 6 

EFFECT OF TOPICALLY CO-ADMINISTERED P-GP SUBSTRATES/MODULATORS 

ON VITREAL KINETICS OF INTRAVITREALLY ADMINISTERED QUINIDINE IN 

RABBITS 

 

 
 
6.1. Abstract 

The purpose of this study was to investigate whether topically administered P-

glycoprotein (P-gp) substrates/modulators can alter vitreal kinetics of intravitreally administered 

quinidine. Male New Zealand rabbits were used under anesthesia. Vitreal kinetics of 

intravitreally administered quinidine (0.75 µg dose) was determined alone and in the presence of 

verapamil (co-administered topically/intravitreally) or prednisolone hemisuccinate sodium (PHS, 

co-administered topically). In the presence of topically instilled verapamil (1% w/v), elimination 

half-life (t1/2) (176 ± 7 min), apparent elimination rate constant (� ) (0.0039 ± 0.0001 min-1) and 

mean retention time (MRT) (143 ± 30 min) of intravitreally administered quinidine were 

significantly different from that of the control (105 ± 11 min, 0.0066 ± 0.0007 min-1 and 83 ± 13 

min, respectively). A 2-fold increase in the t1/2 with a corresponding decrease in �  and a 1.5-fold 

increase in the MRT of quinidine was observed in the presence of topically co-administered 2% 

w/v PHS. Intravitreal co-administration of quinidine and verapamil resulted in a significant 
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increase in the t1/2 (159 ± 9 min) and a decrease in the �  (0.0043 ± 0.0002 min-1) of quinidine. 

The vitreal pharmacokinetic parameters of sodium fluorescein, alone or in the presence of 

topically instilled verapamil, did not show any statistically significant difference, indicating that 

ocular barrier integrity was not affected by topical verapamil administration. Results from this 

study suggest that topically applied P-gp substrates/modulators can alter vitreal pharmacokinetics 

of intravitreally administered P-gp substrates, possibly through the inhibition of P-gp expressed 

on the basolateral membrane of the retinal pigmented epithelium. 

 

6.2. Introduction: 

The retina is the primary target for most posterior segment ocular disorders such as age-

related macular degeneration, diabetic macular edema, retinitis pigmentosa, endophthalmitis and 

proliferative vitreoretinopathy (79). Drug delivery to the posterior chamber ocular tissues is, 

however, challenged by various physiological barriers such as the cornea, conjunctiva, sclera and 

the blood-ocular-barriers (52, 56, 57, 158, 248, 249). The retinal pigmented epithelium (RPE), 

which forms the outer blood-retinal-barrier, limits vitreal penetration of drugs administered by 

the systemic and trans-scleral routes (36, 71, 75). P-glycoprotein (P-gp), a 170 kDa ATP 

dependent membrane bound efflux protein, expressed on the RPE plays a major role in 

restricting diffusion of P-gp substrates from the choroidal stroma into the neural retina across the 

RPE (68, 69).    

P-gp  displays broad specificity, accepting many structurally, functionally and 

mechanistically unrelated compounds (72), and its role in limiting drug penetration across 

biological barriers is well established. P-gp mediated drug efflux at the blood-brain-barrier is a 
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major factor behind poor penetration of chemotherapeutic agents, that are P-gp substrates, into 

the brain following systemic administration (250, 251). A number of reports also illustrate 

intestinal P-gp’s role in limiting systemic bioavailability of orally administered agents. 

Moreover, upregulation of P-gp expressed by tumor cells is considered to be a major mechanism 

behind multidrug resistance (60, 252-254). Additionally, it has also been demonstrated that P-gp 

expressed on the canalicular membrane of the hepatocytes and the luminal surface of the 

proximal kidney tubule cells, including nephrons, expedite hepatic and renal elimination of 

substrates.  

Generally, P-gp is expressed on the apical membrane of epithelial cells, preventing drug 

transport from the lumen into the systemic circulation (e.g. intestinal epithelium) or from the 

systemic circulation into the brain (endothelial cells of the Blood-Brain-Barrier) (60). An earlier 

report, however, suggests that P-gp is expressed on both apical as well as basal membranes of the 

RPE cells (69). P-gp on the RPE cells may thus affect permeation of substrates from the vitreous 

humor into the systemic circulation, and vice versa (56, 57), and could be a major factor behind 

the inability of systemic, periocular and transscleral routes of administration to generate and 

maintain therapeutic concentrations of P-gp substrates in the retina. Thus, factors/agents that can 

modulate the efflux activity of RPE P-gp could probably alter ocular pharmacokinetics of P-gp 

substrates.  

In the past, a number of strategies attempting to modulate the activity or expression of 

efflux proteins on various mammalian tissues have been investigated. These include the use of 

chemosensitisers, prodrugs, polymers, nanoparticles, transcriptional regulators and monoclonal 

antibodies (149-151). Surprisingly, there are only three studies, to our knowledge, investigating 
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the effect of drug-drug interaction at the level of the RPE P-gp and its effect on ocular drug 

pharmacokinetics in vivo. These recent reports evaluated the effect of systemic/systemic, 

systemic/intravitreal or intravitreal/intravitreal co-administration of substrates or inhibitors on 

ocular pharmacokinetics (71, 152, 153).  However, so far, the effect of topically administered P-

gp substrates/inhibitors on the functional activity of P-gp expressed on the RPE has not been 

reported.  

Topical eye drops containing antimicrobial and anti-inflammatory agents, steroids and 

other therapeutic compounds are routinely administered to treat various ocular infections and 

disorders. Many of these agents are P-gp substrates/inhibitors and can diffuse into the RPE. The 

objective of this study was to determine whether topically administered P-gp substrates could 

modulate the functional activity of RPE P-gp and alter the vitreal pharmacokinetics of another P-

gp substrate, quinidine, administered intravitreally. Erythromycin (60) prednisolone (P-gp 

substrates commonly applied topically) (255) and verapamil (a P-gp inhibitor used in earlier 

reports investigating inhibition of RPE P-gp) were administered topically. Quinidine, used in an 

earlier study to evaluate functional activity of RPE P-gp (71), was used as a model P-gp substrate 

in this study and its pharmacokinetic parameters were evaluated.  

 

6.3. Materials: 

Microdialysis probes (CMA/20; 20,000 Dalton molecular weight cut-off and 10 mm 

shaft) were obtained from CMA/Micro-dialysis Inc (North Chelmsford, MA, USA). 

Erythromycin, prednisolone hemisuccinate sodium (PHS), verapamil hydrochloride, fluorescein 

sodium and quinidine hydrochloride were purchased form Sigma Chemical Co. (St Louis, MO, 
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USA). Ketamine hydrochloride and Xylazine were procured from Fort Dodge Animal Health 

(Fort Dodge, IA, USA) and Lloyd Laboratories (Shenandoah, IA, USA), respectively. 

Pentobarbital was obtained from Virbac AH, Inc. (Fort Worth, TX, USA). Solvents used were 

purchased from Fisher Scientific (St. Louis, Missouri, USA). 

New Zealand male albino rabbits (NZW) were procured from Myrtle’s Rabbitry 

(Thompson Station, TN, USA). Experiments conformed to the tenets of the Association for 

Research in Vision and Ophthalmology (ARVO) statement on the Use of Animals in Ophthalmic 

and Vision Research and followed the University of Mississippi IACUC approved protocols 

 

 

6.4. Methods: 

6.4.1. In vitro probe recovery 

Probe recovery was determined by placing the probe in an isotonic phosphate buffered 

saline (IPBS) solution, pH 7.40, at 37 ºC, containing a known concentration of quinidine 

(equivalent to an intravitreal dose of 0.75 µg) alone or in the presence of verapamil or PHS. The 

probe was perfused with sterile IPBS (with or without verapamil) at a flow rate of 2 µL/min, and 

the dialysate was collected every 20 minutes. Relative recovery was calculated using equation 1.  

                                Recovery in vitro = Cd / Cs       (1) 

Cd = Dialysate quinidine concentration.  

Cs = Quinidine concentration in IPBS. 

The concentration of quinidine in the vitreous humor samples was calculated by dividing the 

dialysate concentration with the in vitro recovery factor obtained as described above. 
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6.3.2. Probe implantation  

Rabbits (weighing 2-2.5 Kg) were anesthetized using ketamine (35 mg/kg) / xylazine (3.5 

mg/kg) administered intramuscularly and were maintained under anesthesia throughout the 

duration of the experiment (ketamine / xylazine administered intramuscularly every 40 minutes).  

Prior to probe implantation, 1% tropicamide was applied topically to dilate the pupil. A 22G 

needle was then inserted into the posterior chamber of the eye .The point of insertion was 

approximately 3 mm below the corneal-scleral limbus. The needle was withdrawn, and the 

vitreal probe was implanted immediately. The position of the probe was adjusted so that the 

semipermeable membrane was in the mid-vitreous section. The probes were continuously 

perfused with sterile IPBS (pH 7.40) at a flow rate of 2 µL/min using a CMA/100 microinjection 

pump (CMA/Micro-dialysis Inc). Following probe implantation, animals were allowed to 

stabilize for a period of 2 hours prior to drug administration. Vitreal samples were collected 

every 20 minutes for a period of 9 hours. Samples were collected in microcentrifuge tubes and 

stored at -20 ºC until further analysis. At the end of the study, animals were euthanized, under 

deep anesthesia, with an overdose of sodium pentobarbital administered through the marginal ear 

vein. 

6.4.3. Drug administration 

Quinidine was administered intravitreally (0.75 µg dose in 50 µL of IPBS). Studies were 

carried out with quinidine administered alone (control) or in the presence of topically co-

administered erythromycin (0.2% w/v, pH 7.40), verapamil (0.5% w/v and 1% w/v, pH 6.00) and 

PHS (1% w/v and 2% w/v, pH 7.40). One hundred microliters of the inhibitor solution was 

instilled in the conjunctival sac. In the preliminary studies, erythromycin (0.2% w/v) was applied 
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topically at 0, 2 and 4 hours post intravitreal quinidine injection. Subsequently, the topical P-gp 

substrate/inhibitor administration time was modified to 2, 4 and 6 hours post quinidine 

administration, to prolong the residence of the topically applied agent in the RPE tissue. Further 

studies with verapamil and PHS were carried out with topical instillation at 2, 4 and 6 hours post 

intravitreal administration. All solutions were prepared in sterile IPBS. 

Vitreal pharmacokinetics of quinidine (0.75 µg) was also studied in the presence of 

intravitreally administered verapamil (100 µg). In this study, verapamil was co-administered 

intravitreally with quinidine (injection volume 50 µL; co-dissolved), following the probe 

stabilization period. Additionally, IPBS (pH 7.40) containing verapamil (1 mg/mL) was 

continuously perfused through the concentric probes to maintain high verapamil levels in the 

vitreous humor throughout the duration of the experiment.  

 

6.4.4. Fluorescein kinetics 

Vitreal kinetics of intravitreally administered fluorescein (dose - 10µg, injection volume 

50 µL), alone or in the presence of topically co-administered verapamil (1% w/v, IPBS pH 6.00), 

were studied to ensure preservation of the barrier properties of the RPE in the presence of topical 

verapamil (1% w/v). In these experiments, 100µL of 1%w/v verapamil solution was applied at 2, 

4 and 6 hours post intravitreal fluorescein administration.  
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6.4.5. Distribution of prednisolone hemisuccinate sodium (PHS) and verapamil in ocular 

tissues following topical or intravitreal application 

 

 In a separate set of studies, verapamil (1% w/v, pH 6.00) or PHS (2% w/v, pH 7.40) was 

applied topically in the cul-de-sac of the rabbit’s eye at 2, 4, and 6 hours post probe stabilization. 

At the end of 7 hours (for the verapamil studies) and 9 hours (for the PHS studies), rabbits were 

euthanized, eyes were enucleated and ocular tissues were collected and analyzed for drug content 

using an HPLC system. Additionally, ocular tissue concentrations of verapamil at the end of 7 

hours, following intravitreal administration, as described earlier, was also determined. 

 

6.4.6. Bioreversion of PHS to Prednisolone 

 

 PHS, a hemisuccinate ester prodrug of prednisolone, (256) requires hydrolysis (chemical 

or enzymatic) of the ester bond to generate free prednisolone. The presence of esterase activity in 

rabbit ocular tissues has been demonstrated and well documented with ester prodrugs of 

pilocarpine, dipivefrin, gancyclovir and acyclovir (257-259). Bioreversion of PHS was studied in 

vitreous humor and in the ocular tissues such as the cornea, iris-ciliary body and RPE/choroid as 

previously described (258). Vitreous humor was centrifuged, and the supernatant was used. All 

the other ocular tissues were homogenized in 5 mL chilled IPBS with a tissue homogenizer 

(Tissuemiser, Fisher Scientific, St Louis, USA) for periods of 30 seconds, with 1 minute 

intervals, in an ice bath. The homogenates were centrifuged at 13,000 rpm for 10 min at 4°C, and 

the supernatants were used for the PHS enzymatic hydrolysis studies. Protein content in the 
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supernatant was measured using the Bradford Protein estimation kit (Sigma Chemical Co, St 

Louis, MO), and the final protein content was adjusted to 1 mg/mL with IPBS.  

Hydrolysis studies were carried out in triplicate at 37°C in a shaking water bath (75 

reciprocations per min). One Hundred (100) µL of PHS stock solution was added to the required 

volume of the tissue homogenates and to vitreous humor to obtain a final PHS concentration of 

10 µg/mL. At predetermined time points, 100 µL samples were withdrawn, and an equal volume 

of ice cold methanol was immediately added to the sample to arrest the enzymatic degradation 

process.  Stability of PHS (10 µg/mL) in IPBS was also studied as a control.  

 

6.4.7. Analytical procedures 

6.4.7.1. Sample preparation 

 For studies involving distribution of PHS and verapamil in ocular tissues following 

topical or intravitreal application, enucleated eyes were rinsed with ice cold IPBS, to remove any 

traces of blood, and blotted dry using Kimwipes®. Aqueous and vitreous humor samples were 

collected using a 27G needle attached to a 1 mL tuberculin syringe. Eyes were then dissected and 

iris-ciliary bodies, lenses and retina/choroid tissues were isolated and weighed. Tissues were 

homogenized in ice cold IPBS using a Tissuemiser. Homogenates were diluted with an equal 

volume of ice cold acetonitrile:methanol (50:50) mixture, and centrifuged at 13,000 rpm for 20 

minutes at 4oC. The supernatant was analyzed for drug content. Aqueous and vitreous humor 

samples were used as such, or diluted with IPBS, and taken for analysis. Extraction efficiency of 

PHS and verapamil from the ocular tissues was almost 100%.  
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6.4.7.2. Chromatography 

Quinidine and verapamil were analyzed using an HPLC system comprised of a Waters 

717 Plus autosampler, Waters 2475 multi λ Fluorescence detector, Waters 600 controller pump 

and Agilent 3395 integrator. A Symmetry® C18  (4.6 x 250 mm) column was used, and the flow 

rate was set at 1 mL/min for both the compounds. Quinidine analysis was carried out using 20 

mM phosphate buffer (pH 2.50) with 20% acetonitrile as the mobile phase, at an excitation 

wavelength of 250 nm and emission wavelength of 440 nm. Verapamil quantification was 

performed at an excitation wavelength of 280 nm and emission wavelength of 320 nm using 

acetonitrile and 0.07% v/v o-phosphoric acid in deionized water (33:67) as the mobile phase. 

Fluorescein and prednisolone analyses were performed using reversed phase HPLC procedures 

as previously described (Macha and Mitra, 2001; Chang Y. Cho, 2003) 

 

6.4.8. Data analysis: 

Vitreal pharmacokinetic parameters of quinidine were determined by non-compartmental 

analysis using WinNonlin, version 5.2 (Pharsight; Mountain View, CA). Terminal slopes of the 

vitreous concentration-time profile were estimated by the log-linear regression, and the apparent 

elimination rate constant (� � was derived from the slope. Elimination half-life (t1/2) was 

calculated from the equation: t1/2 = 0.693/� . The area under the vitreal concentration-time curve 

from time “0” to time “t” and from time “300” to time “540” was calculated by linear trapezoidal 

method and extrapolated to infinity 

 according to Eq 2. 
 

AUC�$% � AUC�$& �
C'
λ)                                                                                                                  �2� 



 

                                                                                                                                              
The area under the statistical moment curve (AUMC
 

 where,  is the quinidine concentration at last time point (540 min). The mean retention tim

(MRT) was calculated using the equation: MRT = AUMC

calculated as: CL= Dose/AUC

distribution at steady-state Vss = (Dose x AUMC

after a single intravitreal bolus dose was described by a biexponential profile 

in Eq 4. 

C= Ae -αt + Be-βt                                                                                                                           

 
In which A and B are zero time concentration coe

disposition rate constants of the initial and terminal phase, respectively. Vitreous humor was 

considered as part of the apparent central compartment and all other exchanging compartments 

including, the anterior chamber, were considered as part of the apparent peripheral compartment. 

Elimination was assumed to take place through plasma from the apparent central compartment. 

This model is illustrated as follows:

 

  

Quinidine is administered into the vitreous h

the amount of the drug in the vitreous humor and other exchanging compartments, respectively. 

A similar model has been used to describe the kinetics of intravitreally administered fluorescein 

and other drugs (260-262) . In the open two
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The area under the statistical moment curve (AUMC0-∞) was calculated using Eq 3.

is the quinidine concentration at last time point (540 min). The mean retention tim

(MRT) was calculated using the equation: MRT = AUMC0-∞ / AUC0-∞. The total clearance was 

calculated as: CL= Dose/AUC0-∞. CL300-540 = Dose/AUC300-540. The apparent volume of 

= (Dose x AUMC0-∞)/ (AUC0-∞) 2.The time course o

after a single intravitreal bolus dose was described by a biexponential profile (260)

t                                                                                                                                                    

In which A and B are zero time concentration coefficients, t the time (min) and 

disposition rate constants of the initial and terminal phase, respectively. Vitreous humor was 

considered as part of the apparent central compartment and all other exchanging compartments 

ior chamber, were considered as part of the apparent peripheral compartment. 

Elimination was assumed to take place through plasma from the apparent central compartment. 

This model is illustrated as follows: 

Quinidine is administered into the vitreous humor (X1), and the variables X1 and X2 represent 

the amount of the drug in the vitreous humor and other exchanging compartments, respectively. 

A similar model has been used to describe the kinetics of intravitreally administered fluorescein 

. In the open two-compartment model represented by equation 4, the 

                                                                                                                                           
) was calculated using Eq 3. 

 
       

is the quinidine concentration at last time point (540 min). The mean retention time 

. The total clearance was 

The apparent volume of 

.The time course of fluorescein 

(260) as expressed 

                         (4) 

fficients, t the time (min) and α and β are the 

disposition rate constants of the initial and terminal phase, respectively. Vitreous humor was 

considered as part of the apparent central compartment and all other exchanging compartments 

ior chamber, were considered as part of the apparent peripheral compartment. 

Elimination was assumed to take place through plasma from the apparent central compartment. 

umor (X1), and the variables X1 and X2 represent 

the amount of the drug in the vitreous humor and other exchanging compartments, respectively. 

A similar model has been used to describe the kinetics of intravitreally administered fluorescein 

compartment model represented by equation 4, the 
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rate constant of drug transfer from the apparent peripheral to the apparent central compartment 

(k21) was calculated according to Eq 5.  

 

k	� �
αB � βA
A � B                                                                                                                          �5� 

The elimination rate constant of fluorescein from the apparent central compartment (k10) was 

determined using Eq 6. 

k�� �
αβ
k	�                                                                                                                                    �6� 

Rate constant of fluorescein transfer from the apparent central compartment to the apparent 

peripheral compartment (k12) was calculated using Eq 7. 

                                                                 
k�	 � α � β � �k	� � k���                                                                                                                 (7) 
 
 
Data obtained was subjected to statistical analysis using Students t-test. A p value ≤ 0.05 was 

considered to denote a statistically significant difference. 

 

6.5. Results: 

6.5.1. Effect of topically applied erythromycin on vitreal kinetics of intravitreally 

administered quinidine 

 Vitreal kinetics of intravitreally administered quinidine (0.75 µg dose, 50 µL injection 

volume) was studied either alone or in the presence of topically co-administered erythromycin 

(100 µL of a 0.2% w/v solution in IPBS, pH 7.40). The erythromycin solution was administered 

either at 0, 2 and 4 hours or at 2, 4 and 6 hours following intravitreal quinidine administration. 
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When erythromycin was applied at 0, 2 and 4 hours, vitreal pharmacokinetic parameters i.e. t1/2 

(104 ± 7 min), CL (0.0086 ± 0.0030 mL.min-1) and  �  (0.0066 ± 0.0004 min-1) were not 

significantly different from that of the control values (105 ± 11 min, 0.0048 ± 0.0012 mL.min-1 

and 0.0066 ± 0.0007 min-1, respectively). A change in the topical erythromycin dosing times to 

2, 4 and 6 hours following intravitreal quinidine administration also did not produce a significant 

difference in the pharmacokinetic parameters. Higher doses of erythromycin, in a solution form, 

could not be administered due to the limited aqueous solubility (2 mg/mL) of erythromycin. 

 

 

6.5.2. Effect of topically co-administered verapamil on intravitreal kinetics of quinidine 

 Effect of topically co-administered verapamil (100 µL applied at 2, 4 and 6 hours) on the 

intravitreal kinetics of quinidine (0.75 µg) was examined at two different verapamil 

concentrations (0.5% w/v & 1% w/v). Verapamil had limited solubility at pH 7.40 (1 mg/mL) 

(71). Thus, verapamil solutions used in this study were prepared in IPBS pH 6.00 ± 0.10. The 

concentration-time profiles of quinidine following intravitreal administration, alone or in the 

presence of topically co-administered verapamil (0.5% w/v & 1% w/v), are illustrated in Figures 

6-1A and 6-1B. The vitreal pharmacokinetic parameters have been provided in Table 6-1. At a 

concentration of 0.5% w/v, verapamil did not produce any significant change in the vitreal 

kinetics of quinidine.  However, at 1% w/v, topical verapamil produced a 1.7-fold decrease in the 

�  (from 0.0066 ± 0.0007 to 0.0039 ± 0.0001 min-1), a 1.7-fold increase in t1/2 and a 1.7-fold 

increase in the MRT. Statistically significant differences between the mean vitreal quinidine 

concentrations of the 1% verapamil treated group and the control group was observed from the 
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360 minute time point onwards (Fig. 6-1B). Significant differences in AUC0-∞ and CL were not 

observed from those of the control. However, when partial areas were taken into account a 1.7- 

fold increase in AUC300-540 and a 1.7-fold decrease in CL300-540 were observed. 

 

Figure 6-1A 

 

 

 

 

0.01

0.1

1

10

0 100 200 300 400 500

V
it

re
a
l 

C
o
n

ce
n

tr
a
ti

o
n

 (
µ

g
/m

L
)

Time (minutes)

Quinidine

Quinidine + Topical Verapamil 0.5% w/v



 
185 

 

Figure 6-1B 

 

 
 

Figure 6-1: Vitreal concentration-time profile of quinidine (0.75 µg) alone (control) or in 

the presence of topically co-administered (A) verapamil 0.5% w/v and (B) verapamil 1% 

w/v  Data points represent mean ± standard deviation of four determinations. 
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Table 6-1: Vitreal pharmacokinetic parameters of intravitreally administered quinidine 

(0.75 µg dose) alone or in the presence of topically co-administered verapamil (0.5% w/v or 

1% w/v). Verapamil was administered at 2, 4 and 6 hours after intravitreal quinidine 

administration 

 
 
 

Kinetic 
Parameters 

Quinidine 

 

Quinidine + Verapamil 
(0.5% w/v)  

Quinidine + 
Verapamil 
(1% w/v)  

 �  (min-1) 
0.0066± 0.0007 0.0066 ± 0.0010 0.0039 ± 0.0001 *** 

AUC0-∞ (µg x min/mL) 
168 ± 56 180 ± 41 158 ± 37 

CL (mL/min) 
0.0048 ± 0.0012 0.0043 ± 0.0008 0.0049 ± 0.0012 

VSS     (mL) 

 

0.41 ± 0.14 0.37 ± 0.12 0.72 ± 0.30 

MRT ∞ (min) 83 ± 13 84 ± 13 143 ± 30 ** 

AUC300-540 (µg x 
min/mL) 

 
7.73 ± 1.32 9.05 ± 0.38 12.86 ± 1.25* 

CL300-540 (mL/min) 
 

0.099 ± 0.017 0.080 ± 0.004 0.060 ± 0.013* 

. 

 
 
 6.5.3. Vitreal kinetics of quinidine in the presence of intravitreally administered verapamil 

The effect of intravitreal co-administration of verapamil (100 µg) on the vitreal kinetics 

of quinidine was also examined. In these studies the microdialysis probe perfusion solution 

contained verapamil, (1 mg/mL) to maintain a significantly higher verapamil/quinidine ratio in 

the vitreous humor. Figure 6-2 represents the vitreous concentration-time profile of quinidine in 

the presence of intravitreally co-administered verapamil. A 1.6-fold increase in MRT (from 83 ± 
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13 min to 131± 16 min), a 1.5-fold decrease in �  (from 0.0066 ± 0.0007 min-1 to 0.0043 ± 

0.0002 min-1)   and a corresponding 1.5-fold increase in t1/2 (from 105 ± 11 min to 159 ± 9 min) 

of quinidine were observed in the presence of intravitreally co-administered verapamil (Table 6-

2). Statistically significant differences between the mean vitreal quinidine concentrations of the 

treated and control groups were observed from the 100 minute time point onwards (Fig. 6-2). 

 

Figure 6-2: Vitreal concentration-time profile of quinidine (0.75 µg) alone (control) or in 

the presence of intravitreally co-administered verapamil (100 µg, administered along with 

quinidine). Data points represent mean ± standard deviation of four determinations. 
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Table 6-2: Vitreal kinetic parameters of quinidine (0.75 µg dose) alone or in the presence of 

intravitreally co-administered verapamil (100 µg). Verapamil solution (1 mg/mL in IPBS) 

was used as the perfusate. Values represented as mean ± standard deviation (n=4).  

*p<0.05, **p<0.01, ***p<0.001 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.5.4. Effect of topical prednisolone hemisuccinate sodium (PHS) on vitreal kinetics of 

quinidine 

Prednisolone is practically insoluble in water (Karssen et al., 2002), and therefore its 

water soluble derivative PHS was used in this study. The effect of topically administered PHS 

(1% w/v and 2% w/v) on the vitreal kinetics of intravitreally administered quinidine was studied 

Kinetic 
Parameters 

Quinidine 

 

Quinidine  
+ 

Intravitreal 
Verapamil 

 

 �  (min-1) 0.0066± 
0.0007 

0.0043 ± 0.0002 
*** 

AUC0-∞ (µg x 
min/mL) 

168 ± 56 180 ± 72 

CL (mL/min) 0.0048 ± 
0.0012 

0.0046 ± 0.0014 

VSS     (mL) 

 

0.41 ± 0.14 0.63 ± 0.27 

MRT ∞ (min) 83 ± 13 131 ± 16 ** 

AUC100-540 (µg x 
min/mL) 

 
40 ± 0.03 56 ± 11* 

AUC300-540 (µg x 
min/mL) 

 
7.73 ± 1.32 13.31 ± 2.28** 

CL300-540 (mL/min) 0.099 ± 0.017 0.057 ± 0.009** 
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(Table 6-3 and Figs. 6-3A & 6-3B). One hundred microliters of a 1% or 2% w/v PHS solution 

were instilled at 2, 4 and 6 hours following quinidine administration. Topical co-administration 

of PHS 1% w/v resulted in a 1.4-fold increase in the t1/2 and a 1.4-fold decrease in the �  of 

quinidine. However, statistically significant changes in AUC300-540 and CL300-540 were not 

observed at this dose. Co-administration of 2% w/v PHS produced a 2.0-fold increase in the t1/2 

and a 2-fold decrease in the �  of quinidine.   A 1.4-fold increase in CL300-540 and AUC300-540 

were also observed. Moreover, a 1.6-fold increase in MRT of quinidine was observed when 

compared to that of the control. Statistically significant differences between the mean vitreal 

quinidine concentrations of the 2% PHS treated group and the control group was noted from the 

360 minute time point onwards (Fig. 6-3B). 

 

 

 

 

 

 

 

 

 

 

 

 



 
190 

 

 

 

Figure 6-3A 
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Figure 6-3B 

 
 
 

 
 
 

Figure 6-3: Vitreal concentration-time profile of quinidine (0.75 µg) alone (control) or in 

the presence of topically co-administered predinisolone hemisuccinate sodium (A) 1% w/v 

(B) 2% w/v. Data points represent mean ± standard deviation of four determinations. 
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Table 6-3: Vitreal pharmacokinetic parameters of quinidine (0.75 µg dose), following 

intravitreal administration in the presence and absence of topically co-administered 

prednisolone hemisuccinate sodium (PHS). Values represented as mean ± standard 

deviation (n=4). 

 

  
 

Kinetic 
Parameters 

Quinidine 

 

Quinidine 
+  

PHS 1% w/v  

Quinidine 
+  

PHS 2% w/v  
�  (min-1) 0.0066± 0.0007 0.0048 ± 0.0004** 0.0033 ± 0.0004***† 

 

AUC0-∞ (µg x min/mL) 168 ± 56 191 ± 42 151 ± 21.6 

CL (mL/min) 0.0048 ± 0.0012 0.0040 ± 0.0009 0.0050 ± 0.0007 

VSS     (mL) 

 

0.41 ± 0.14 0.37 ± 0.14 0.65 ± 0.20 

MRT ∞ (min) 83 ± 13 87 ± 16 129 ± 21** † 

 

AUC300-540(µg x min/mL) 

 

7.73 ± 1.32 8.70 ± 0.79 11.76 ± 0.40*† 

 

CL300-540(mL/min) 

 

0.099 ± 0.017 0.087 ± 0.008 0.063 ± 0.002*† 

 
*, **, *** indicates statistical significant difference between quinidine (control) and treated groups 
(Quinidine+ PHS 2% w/v and Quinidine + PHS 1% w/v); *p<0.05, **p<0.01, ***p<0.001 

† indicates statistical significant difference between Quinidine + PHS 2% w/v and Quinidine + 
PHS 1% w/v; †p<0.05 
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6.5.5. Ocular tissue distribution of verapamil and PHS 

Table 6-4 represents ocular tissue concentrations of verapamil (post topical and 

intravitreal administration) and PHS sodium (following topical administration). Topical and 

intravitreal routes of administration generated similar verapamil concentrations in the 

RPE/choroid at the end of 7 hours. The 7 hour time point was selected for verapamil since the 

effect of topical verapamil on the vitreal quinidine kinetics became evident at around this time 

(significant change in the mean vitreal concentrations between the treated and control groups) in 

the pharmacokinetic profile (Fig. 6-1A).  Very low/insignificant verapamil concentrations were 

observed in the vitreous humor following topical verapamil administration, indicating that the 2 

hours stabilization period was sufficient to seal the scleral port created during probe 

implantation. PHS tissue concentrations were evaluated at the end of the experiment (9 h). 

Interestingly, following topical administration, the fraction of PHS sodium appearing in the 

vitreous humor (concentration in the vitreous humor as a percentage of the topically 

administered dose) was significantly higher than that observed with verapamil. 
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Table 6-4: Ocular distribution of verapamil and PHS. Verapamil tissue concentrations 

were determined 7h after topical (100 µL of a 1% w/v solution applied 2, 4 and 6 h post 

intravitreal quinidine administration) and intravitreal administration (dose: 100 µg). 

Ocular distribution of topically-applied PHS (100 µL of a 2% w/v solution applied at 2, 4 

and 6 h post intravitreal quinidine administration) was determined 9 h after intravitreal 

quinidine administration, and the values have been reported for both intact PHS and free 

prednisolone concentrations observed. Values represent mean ± standard deviation (n=4).* 

Generated as a result of bioreversion of PHS in the ocular tissues 

 

6.5.6. Bioreversion of PHS 

Table 6-5 depicts the apparent pseudo-first-order degradation rate constants and half-lives 

of PHS in ocular tissue homogenates (1 mg/mL protein content), including vitreous humor. 

Tissue homogenates were prepared in IPBS pH 7.40. PHS was hydrolyzed to the parent drug, 

prednisolone, suggesting the role of esterases in the bioreversion of PHS. Degradation rate 

constants were obtained from log concentration of PHS remaining versus time plots. Hydrolysis 

rate constant obtained from the control (PHS in IPBS) were subtracted from the overall observed 

rate constants to estimate rate constants for the enzyme mediated hydrolytic process.  

 

Tissues 

Verapamil concentration 
PHS Topical application 

(2% w/v) 

Topical 
Application 

 

Intravitreal 
Administration 

 

Intact PHS 
concentrati

on 

Concentration 
of free 

Prednisolone 
* 

 

Aqueous Humor (µg/mL) 7.9 ± 3.2 1.5 ± 0.3 10.2 ± 1.1 5.0 ± 1.4 

Iris-Ciliary Body (µg/gm) 4.4 ± 1.6 27.0 ± 10.0 7.0 ± 1.5 13.3 ± 4.3 

Lens (µg/gm) 6.3 ± 1.2 45.1 ± 4.2 - - 

Vitreous Humor (µg/mL) 0.086 ± 0.003 31.5 ± 1.4 0.64 ± 0.21 0.49 ± 0.29 

Retina-Choroid (µg/gm) 47.0 ± 8.1 52.0 ± 12.2 8.8 ± 1.2 16.7 ± 1.6 
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Table 6-5: Apparent first order degradation rate constants (k) x 10
3
, min

-1
 and half-lives 

(t1/2, min), of PHS (prednisolone hemisuccinate sodium) in ocular tissue homogenates (1 

mg/mL protein content). Values represent mean ± standard deviation (n=4). 

 

 
 

 

 

6.5.7. Intravitreal kinetics of fluorescein in the presence of topically applied verapamil  

Figure 6-4 illustrates the vitreous concentration-time profile of fluorescein, alone or in 

the presence of topically co-administered verapamil. Vitreal fluorescein concentration-time data 

could be best fitted to a two-compartment open model. One hundred microliters of verapamil 

(1% w/v, pH 6.00) was applied topically at 2, 4 and 6 hours after fluorescein administration to 

evaluate the effect of topical verapamil administration on the barrier properties of the RPE. The 

vitreal pharmacokinetic parameters of fluorescein, such as elimination half-life, CL, AUC, 

steady-state volume of distribution and apparent elimination rate constant, remained unchanged 

in the presence of topically co-administered verapamil (Table 6-6).  

 

Drug / Kinetic 
parameters 

Control Cornea Vitreous humor Iris-ciliary 
RPE/Ch

oroid 

PHS 
K x 10

3 

(min
-1

) 0.33 ± 0.05 0.81 ± 0.07 3.06 ± 0.34 2.00 ± 0.06 
1.20 ± 
0.05 

t1/2 (min) 2118 ± 333 852 ± 74 228 ± 28 347 ± 10 578 ± 27 
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Figure 6-4: Vitreal concentration-time profile of fluorescein (10.0 µg) alone or in the 

presence of topically co-administered verapamil (1%w/v, 100 µL administered at 2, 4 and 6 

h after intravitreal fluorescein administration). Data points represent mean ± standard 

deviation of four determinations 
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Table 6-6: Vitreal kinetics of intravitreally administered fluorescein (10 µg). Values 

represent mean ± standard deviation (n=4).   

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6.6. Discussion 

The goal of this novel study was to evaluate whether a drug-drug interaction could occur 

between intravitreally and topically co-administered P-gp substrates and its effect on the ocular 

pharmacokinetics of the intravitreally administered compound.  

Duvvuri et.al demonstrated that intravitreal co-administration of verapamil and quinidine 

resulted in increased vitreal elimination of quinidine. Moreover, when quinidine was 

administered systemically and verapamil was co-administered  intravitreally, the vitreal AUC of 

quinidine increased significantly (71).  In another in vivo study, Senthikumari et al. reported a 

Kinetic 
Parameters 

Fluorescein 

 

k10 (min -1) 0.021 ± 0.01 

k12 (min -1) 0.02 ± 0.01 

k21 (min -1) 0.0135 ± 0.004 

AUC (µg x min/mL) 3272 ± 632 

K10  t ½ (min) 38.6 ± 20.3 

CL (mL/min) 0.003 ± 0.0005 

MRT ∞ (min) 124 ± 49 

V SS   (mL) 0.37 ± 0.1 

β (min-1) 0.0049 ± 0.0009 

β t ½ (min) 122 ± 39 
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significant increase in the ocular tissue concentrations of intravitreally administered rhodamine-

123 in the presence of a P-gp inhibitor applied intravenously (Senthilkumari et al., 2008a). The 

authors hypothesized that the increased vitreal rhodamine-123 concentrations were probably the 

result of inhibition of efflux mediated by P-gp expressed on the ocular tissues. In a subsequent 

study, the investigators studied systemic co-administration of both compounds (rhodamine-123 

and the inhibitor) but did not observe an increase in vitreal rhodamine-123 concentrations, 

probably because of inadequate inhibitor concentrations at the target site (Senthilkumari et al., 

2008b).  

The above three studies, to our knowledge the only published reports investigating in vivo 

RPE P-gp mediated efflux, evaluated the effect of either intravitreal or systemically co-

administered inhibitors on vitreal kinetics of P-gp substrates. From a therapeutic point of view, 

with respect to delivery of P-gp substrates to the posterior chamber ocular tissues, the use of an 

intravitreal inhibitor is not feasible considering that high intravitreal levels of the inhibitor can 

only be maintained through multiple intravitreal injections. On the other hand, the use of 

systemic inhibitors is not attractive because of nonspecific systemic exposure to the inhibitor and 

the limited, clinically relevant, inhibitor dose that can be administered.  

A hitherto uninvestigated and novel alternative approach that could be therapeutically 

effective as well as minimize systemic exposure would be modulation of efflux mediated by P-

gp expressed on the RPE through topical substrate/inhibitor application. As discussed earlier, 

several therapeutic agents that are P-gp substrates are currently administered topically. Literature  

also suggests that a fraction of topically administered agents may reach the RPE (263-267). 

Taking both factors into consideration, this study was undertaken to evaluate the feasibility of 
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modulating ocular kinetics of intravitreally administered substrates through local application of 

P-gp substrates/inhibitors. 

Erythromycin, 0.2% w/v, applied at 0, 2 and 4 hours or at 2, 4 and 6 hours following 

intravitreal quinidine administration, did not significantly affect the pharmacokinetic parameters 

of quinidine. Higher doses of erythromycin were not tested because of limited aqueous 

solubility. Topical verapamil, at a concentration of 0.5% w/v, also did not produce any 

significant change in the vitreal quinidine kinetics. The inability of 0.5% w/v verapamil and 

0.2% w/v erythromycin to affect the pharmacokinetic parameters of quinidine could be due to 

insufficient inhibitor concentrations at the RPE, at these doses. Co-administration of topical 

verapamil 1% w/v resulted in a significant decrease in the apparent elimination rate constant and 

an increase in the vitreal half-life and mean retention time of quinidine in the posterior chamber 

(Table 6-1). Significant differences in AUC0-∞  and CL, from those of the control, were not 

observed possibly because the inhibitory effect of the topically administered agents becomes 

significant only when vitreal quinidine concentrations reduce to the low levels observed at the 

midpoint of the study, or, because adequate inhibitor concentrations are achieved at the RPE at 

that point of time. Consistent with the findings with verapamil and erythromycin, PHS 

demonstrated a dose-dependent effect on the vitreal pharmacokinetic parameters of quinidine 

(Table 6-3). At a concentration of 2% w/v, PHS produced a much more significant change 

compared to 1% w/v, probably because of higher concentrations of prednisolone generated at the 

target site, the RPE.  

In the studies involving topical application of 1% verapamil (Figure 6-1B) and 2% PHS 

(Figure 6-2B), statistically significant difference between the mean vitreal quinidine 
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concentrations of the control and the treated groups were observed from the 360 minute time 

point. In the case of 1% PHS a statistically significant difference between the means of the 

control and treated groups was observed only after 460 minutes. When partial areas were taken 

into account, significant differences in AUC300-540 and CL300-540 were observed in the 1% w/v 

verapamil and 2% w/v PHS treated groups, from that of control, demonstrating an interaction of 

topically administered P-gp substrates with RPE P-gp. These results illustrate the importance of 

the permeability kinetics of the topically applied agents.  

Fluorescein has been used as a marker compound to monitor the integrity and tightness of 

the blood-retinal barriers. The vitreal pharmacokinetic parameters of fluorescein were not 

affected by topical co-administration of 1% w/v verapamil (Table 6-6), and the values obtained 

in this study were consistent with previously published values (260). The results thus strongly 

suggest that the observed effect of topical verapamil on the vitreal kinetics of quinidine is  a 

result of verapamil interacting with RPE P-gp.  

Since prednisolone rather than PHS is known to interact with P-gp, bioreversion of PHS to 

prednisolone is necessary. In vitro metabolism studies confirmed bioreversion of  PHS, to 

generate free prednisolone, in the ocular tissues (Table 6-5). At higher topical doses of PHS, 

greater quantities of PHS would be reaching the RPE, and thus greater concentrations of 

prednisolone would be generated. Interestingly, the ocular tissue distribution studies, following 

topical administration of verapamil and PHS, revealed that significantly higher fractions of the 

topically administered PHS dose reached the vitreous humor (almost 5-fold higher) compared to 

verapamil. Cheruvu et al. indicated that compounds with high logP values demonstrate lower 

trans-scleral permeability, possibly because of an interaction with the proteins expressed on the 
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Bruch’s membrane (268). The higher vitreal PHS concentrations observed could be a result of 

greater aqueous solubility of PHS at physiological pH ranges, favoring greater diffusion across 

the Bruch’s membrane and/or because of changes in the binding affinity with the Bruch’s 

membrane proteins. The ocular tissue concentration data (Table 6-4) also suggests that verapamil 

and PHS migrate laterally along the cornea/aqueous humor route, and possibly also across the 

conjunctiva, into the sclera. The results further demonstrate that following topical administration, 

sufficient verapamil and PHS concentrations can accumulate in the choroid/RPE tissue and 

inhibit P-gp on the basolateral membrane of RPE. In fact, the concentration of verapamil in the 

RPE /choroid tissue 7 hours post topical verapamil instillation was similar to that obtained after 

intravitreal administration. Insignificant vitreal concentrations, however, suggest that very little 

verapamil could traverse across the RPE into the neural retina. 

The elimination rate of quinidine from the vitreous humor was observed to decrease in 

the presence of intravitreally administered verapamil (Table 6-2), suggesting functional 

involvement of P-gp expressed on the basolateral membrane of the RPE, or apical membrane of 

the retinal endothelial cells. These results are contrary to that of Duvvuri et al. wherein quinidine 

elimination was observed to increase in the presence of intravitreal verapamil. The authors had 

suggested P-gp expressed on the neural retina, facing the vitreous, probably influences 

elimination of P-gp substrates from the vitreous humor. However, there are no other reports 

corroborating P-gp expression on the neural retina. Besides P-gp expression on the apical 

membrane of the retinal endothelial cells, most in vitro and ex vivo studies suggest functional 

activity of P-gp is localized on the basolateral membrane of the RPE. A study by Steuer et.al 

demonstrated higher permeability of verapamil (2.6-fold) and rhodamine (3.5-fold) across 
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isolated RPE in the neural retina to choroid direction compared to the choroid to neural retina 

direction, demonstrating the significance of P-gp localized on the basolateral membrane 

(choroidal side) of the RPE (Steuer et al., 2005). The results by Senthilkumari et al. also suggest 

functional expression of P-gp on the basolateral membrane of the RPE (Senthilkumari et al., 

2008a). Biochemical and functional studies carried out by Kennedy et al.  is the only study, to 

our knowledge, that suggests expression of P-gp on the apical membrane of the RPE. However, 

the authors postulated that P-gp localized on the apical RPE probably serves additional functions 

such as modulation of volume sensitive chloride efflux or functions as lipid translocase, etc. (69). 

However, since the intravitreal verapamil dose administered was not mentioned by the authors 

(71), there is a possibility that the verapamil dose administered in the earlier study was sufficient 

to inhibit P-gp on the neural retina but not interact with P-gp expressed on the basolateral 

membrane of the RPE. 

Taken together, the above results demonstrate that topically administered P-gp substrates 

can migrate along the corneal-scleral pathway and possibly across the conjunctiva into the sclera 

and significantly alter elimination profiles of intravitreally administered P-gp substrates. This 

interaction can be used to modulate drug elimination from the posterior chamber of the eye. The 

impact of this strategy might be significantly more marked with topical and systemic co-

administration (currently under investigation), considering the low plasma concentrations of the 

P-gp substrates generated compared to the vitreous humor concentrations obtained following 

intravitreal administration. This technique may also help modulate efflux activity of other 

transporters, such as the multidrug resistant proteins, expressed on the RPE. Further investigation 

of this novel approach is warranted. 
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CHAPTER 7 

INTERACTION BETWEEN TOPICALLY AND SYSTEMICALLY CO-

ADMINISTERED P-GLYCOPROTEIN SUBSTRATES/INHIBITORS: EFFECT ON 

VITREAL KINETICS 

 
 
 
7.1. Abstract 

 

The objective of the present study was to investigate the effect of topically co-

administered P-glycoprotein (P-gp) substrates/inhibitors on the vitreal kinetics of a systemically 

administered P-gp substrate. Anesthetized male rabbits were used in these studies. Concentration 

time profile of quinidine in the vitreous humor, following intravenous administration, was 

determined alone and in the presence of topically co-administered verapamil, prednisolone 

sodium phosphate (PP), and erythromycin. The vitreal pharmacokinetic parameters of quinidine 

in the presence of verapamil (apparent elimination rate constant (� ): 0.0027 ± 0.0002 min-1; 

clearance (CL_F): 131 ± 21 mL/min; area under curve (AUC0-∞): 39 ± 7.0 µg.min/mL; mean 

residence time (MRT): 435 ± 20 min) were significantly different from that of the control 

(0.0058 ± 0.0006 min-1, 296 ± 46 mL/min, 17 ± 3 µg.min/mL,  and 232 ± 20 min, respectively). 

A 1.7-fold decrease in the vitreal �  and a 1.5-fold increase in the vitreal AUC of quinidine were 
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observed in the presence of topical PP. Statistically significant differences between the vitreal 

profiles of the control and erythromycin treated group were also observed. Plasma concentration 

time profiles of quinidine, alone or in the presence of the topically instilled compounds, 

remained unchanged indicating uniform systemic quinidine exposure across groups. This study 

demonstrates an interaction between topically and systemically co-administered P-gp substrates, 

probably through the modulation of P-gp on the basolateral membrane of the retinal pigmented 

epithelium, leading to changes in the vitreal kinetics of the systemically administered agent. 

 

7.2. Introduction 

Drug delivery to the back-of-the eye through the systemic route is a challenging task 

(269).  The blood-retinal barrier (BRB), consisting of the inner and outer BRB, prevents access 

of xenobiotics from the systemic circulation into the back-of-the eye (52). The retinal pigmented 

epithelium (RPE), which constitutes the outer BRB, acts as a major barrier to not only 

systemically administered agents but also to compounds administered by the periocular routes 

(270). The RPE is a single layer of hexagonal epithelial cells that forms the outermost layer of 

the retina and is separated from the choroid by the Bruch’s membrane (268). It carries out 

essential biochemical functions such as phagocytosis of photoreceptor outer segments, transport 

regulation between the photoreceptors and the choriocapillaries and the uptake and conversion of 

the retinoids (55). However, the RPE also presents a significant barrier to the ocular penetration 

of many therapeutic agents (270).  

Following systemic administration therapeutic moieties can easily diffuse out of the leaky 

choroiocapillaries into the choroidal stroma (52, 56, 57). The tight junctions of the RPE, 
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however, regulates further diffusion of hydrophilic and macro molecules from the choroidal 

stroma into the retina (57).  Furthermore, P-glycoprotein (P-gp), a membrane bound protein 

involved in the efflux of many hydrophobic molecules, expressed on the basolateral membrane 

of the RPE (henceforth referred to as RPE P-gp), plays a vital role in RPE’s barrier properties 

towards lipophilic compounds. The physiological role of this efflux protein is to protect the eye 

from harmful toxic substances. However, through their protective action, RPE P-gp severely 

limits ocular penetration of many systemically, as well as periocularly, administered drugs (270). 

Thus, modulation of the activity of RPE P-gp could alter the penetration of substrates from the 

systemic circulation into the vitreous humor and subsequent elimination from the posterior 

chamber. This could significantly alter the ocular pharmacokinetic parameters of the 

systemically administered P-gp substrate.  

Effect of a drug-drug interaction at the level of the RPE P-gp, and its effect on ocular 

drug pharmacokinetics in vivo, has attracted attention only in recent years. Literature reports the 

effect of systemic/systemic, systemic/intravitreal or intravitreal/intravitreal co-administration of 

inhibitors and model marker compounds on ocular pharmacokinetics (71, 152, 153). In the 

previous chapter (Chapter 6, we demonstrated, for the first time, an interaction between topically 

and intravitreally co-administered P-gp substrates wherein the topically administered P-gp 

modulators altered the vitreal kinetics of an intravitreally administered P-gp substrate, quinidine 

(270).  

  The objective of the current research project was to determine the effect of topical P-gp 

inhibitors on the vitreal kinetics of a systemically co-administered P-gp substrate.  For this 

purpose, two currently marketed ophthalmic formulations, erythromycin ophthalmic ointment 
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(USP, 0.5%) and prednisolone sodium phosphate (USP, 1%, (PP)), were administered topically. 

Additionally, a 1% verapamil solution was also prepared for topical administration. 

Erythromycin and PP are routinely administered topically to control ocular infections and 

inflammation, respectively, and are well established P-gp inhibitors (270, 271). Verapamil is 

another well known P-gp substrate/inhibitor (71). Quinidine, which was used in our previous 

study (Chapter 6) as the marker compound (270), was used as a model P-gp substrate in this 

study also and its vitreal and plasma pharmacokinetic parameters were determined.  

 

7.3. Materials 

 

 

Verapamil hydrochloride and quinidine hydrochloride were obtained from Sigma-Aldrich 

(St Louis, MO, USA). Prednisolone sodium phosphate (PP) ophthalmic solution (USP, 1%) and 

erythromycin ophthalmic ointment (USP, 0.5%), were procured from Butler Animal Health 

Supply (Dublin, OH, USA). Ketamine hydrochloride and Xylazine were purchased from Fort 

Dodge Animal Health (Fort Dodge, IA, USA) and Lloyd Laboratories (Shenandoah, IA, USA), 

respectively. Pentobarbital was obtained from Virbac AH, Inc. (Fort Worth, TX, USA). HPLC 

grade solvents and other chemicals (analytical grade) were obtained from Thermo Fisher 

Scientific (Waltham. MA, USA). Microdialysis concentric probes (CMA/20; 20000 Dalton cut-

off, 0.5 X 10 mm polyarylethersulphone membrane and 14 mm shaft), used for sampling the 

vitreous chamber, were purchased from CMA/Micro-dialysis (North Chelmsford, MA, USA). 

New Zealand male albino rabbits (NZW) were procured from Myrtle’s Rabbitry 

(Thompson Station, TN, USA). All the animal experiments conformed to the tenets of the 

Association for Research in Vision and Ophthalmology (ARVO) statement on the Use of 
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Animals in Ophthalmic and Vision Research and followed the University of Mississippi IACUC 

approved protocols.  

 

7.4. Methods: 

7.4.1. Microdialysis probe implantation and recovery studies 

7.4.1.1. In vivo Probe implantation 

Rabbits (weighing 2-2.5 Kg) were anesthetized using ketamine (35 mg/kg) / xylazine (3.5 

mg/kg) administered intramuscularly and were maintained under anesthesia throughout the 

duration of the experiment (ketamine / xylazine administered intramuscularly every 40 min). 

Before probe implantation, the median ear artery of the rabbit was cannulated using a 24G X 

3/4’’ SURFLO® Teflon I.V. Catheter with an injection plug (Terumo ®, Somerset, NJ, USA) for 

collection of blood samples.  Following cannulation, microdialysis probe implantation was 

carried out as previously described (270). Briefly, eyes were proptosed, after dilating the pupil 

with 1% tropicamide solution, and a 22G needle was carefully inserted into the vitreous 

chamber. The point of insertion was approximately 3 mm below the corneal-scleral limbus. The 

needle was retracted, and the vitreal probe was implanted immediately. The position of the probe 

was adjusted so that the semipermeable membrane was in the mid-vitreous section. The probes 

were continuously perfused with sterile Isotonic phosphate buffer saline (IPBS ; pH 7.4) at a 

flow rate of 2 µL/min using  microdialysis pump control module and syringe drives 

(Bioanalytical Systems, Inc. Mount Vernon, IN, USA). Following probe implantation, animals 

were allowed to stabilize for a period of 2 h before drug administration. Vitreal samples were 

collected every 20 min for a period of 9 h. Samples were collected in microcentrifuge tubes and 
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stored at -20 ºC until further analysis. At the end of the study, animals were euthanized with an 

overdose of sodium pentobarbital administered through the marginal ear vein. A limitation of the 

anaesthetized rabbit model, accompanied with microdialysis, is that only a limited number of 

terminal elimination half-lives may be reached, particularly for compounds with long half-lives, 

which could affect half-life calculations. However, considering the goals of this research project, 

which is to investigate if the vitreal elimination kinetics are altered, this model and experimental 

protocol serves the purpose. 

7.4.1.2. In vitro probe recovery 

 Probe recovery values were determined by placing the probe in an IPBS solution, pH 

7.40, at 37ºC, containing a known concentration of quinidine. The probe was continuously 

perfused with sterile IPBS at a flow rate of 2 µL/min, and the dialysate samples were collected 

every 20 min. Recovery of quinidine was calculated using eq (1):   

                                Recovery in vitro = Cd / Cs                                                                                                  (1) 

where, Cd is the quinidine concentration in the dialysate and Cs is the quinidine concentration in 

IPBS.   

The actual concentrations of quinidine in the vitreous humor during the in vivo pharmacokinetic 

study were calculated using eq (2): 

             Quinidine concentration in the vitreous humor = Cq / Recovery in vitro                     (2) 

where, Cq is concentration of quinidine in the dialysate.    

In all the studies,   Recovery in vitro   was determined prior to and at the end of in vivo experiment 

and average Recovery in vitro   values were used to determine the  actual concentration of quinidine 

in the vitreous humor. 
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7.4.2. Drug administration 

After the probe stabilization period, quinidine hydrochloride, formulated in propylene 

glycol/IPBS (40:60, pH 7.40), was administered intravenously through the marginal ear vein (5 

mg/kg BW). Vitreal kinetics of quinidine following intravenous administration was studied alone 

(control) or in the presence of the topically applied substrates/inhibitors; verapamil (1%, pH 

6.00), erythromycin 0.5% ophthalmic ointment and PP (1%). Four animals were studied on each 

treatment day and the animals were dosed sequentially by groups (control followed by inhibitor 

groups). One hundred microliters of verapamil and PP were instilled in the conjuctival sac 2, 4 

and 6 h after intravenous quinidine administration.   In the case of the erythromycin study, a 

single dose of 0.5 mg erythromycin (100 mg ointment) was applied in the conjunctival sac 2 h 

after the intravenous quinidine injection. Verapamil solution was prepared by dissolving 

verapamil hydrochloride in sterile IPBS (pH 6.00) to yield a 1% solution; PP and erythromycin 

ophthalmic formulations were used as such. Verapamil and PP were dosed three times based on 

the data from and as a continuation of our previous work (Chapter 6) (270), wherein we 

demonstrated the effect of topical inhibitor on the vitreal kinetics of an intravitreally 

administered substrate. Erythromycin was dosed only once since an ointment formulation was 

used. 

  In our previous study (Chapter 6) (270), to delineate the effect of the vehicle on the ocular 

tissue barrier properties we had studied the vitreal kinetics of intravitreally administered 

fluorescein (marker compound to monitor the integrity and tightness of blood-retinal barrier), 

alone or in the presence of topically co-administered verapamil (1% w/v, vehicle: IPBS pH 
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6.00). The vitreal pharmacokinetic parameters of fluorescein remained unchanged in the 

presence of topically co-administered verapamil (270) indicating tightness and integrity of the 

blood-retinal barrier was not altered. None of the other components of the vehicle would interact 

with P-gp. Since the vehicle used in the current study is the same, a separate vehicle control was 

thus not included. 

Vitreal microdialysis samples were collected every 20 min for a period of 9 h. Blood 

samples (0.5mL) were also collected concurrently, in both control and inhibition studies groups, 

from the catheter implanted in the central ear artery of each rabbit. Blood samples were drawn 

and then collected in heparinized vials at approximately 10, 15, 30, 60, 90, 120, 240, 360 and 

480 min after intravenous quinidine administration. The exact time of blood collection was noted 

and a plasma concentration time profile was constructed accordingly.  Plasma was separated 

from the whole blood by centrifugation at 13000 rpm for 10 min at 4 ºC (Accuspin Micro 17R, 

Thermo Fisher Scientific (Waltham. MA, USA)) and was stored at -20 ºC until further analysis.  

 

7.4.3. Distribution of prednisolone/prednisolone sodium phosphate (PP) and erythromycin 

in the ocular tissues following topical administration 

In a separate set of studies, following the probe stabilization period, PP and erythromycin 

ophthalmic ointment were applied topically in the conjuctival sac of the rabbit eye at 2, 4 and 6 h 

and at 2 h, respectively. At the end of 9 h, post quinidine administration, animals were 

euthanized, eyes were enucleated and ocular tissues were collected and analyzed for drug 

content.  No further attempts were made to understand the time course of levels of inhibitors in 

plasma, vitreous and other ocular tissues following topical application.   
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7.4.4. Enzymatic conversion of PP to prednisolone 

Prednisolone rather than PP, a phosphate ester of prednisolone, is known to interact with 

P-gp. Therefore, bioreversion rates of PP to prednisolone were determined in the aqueous humor, 

vitreous humor, lens, RPE/choroid and iris-ciliary body following previously described 

procedures (135, 270). Studies were carried out in triplicate at 37°C in a shaking water bath (75 

reciprocations per min). One hundred (100) µL of PP stock solution was added to the required 

volume of the tissue homogenates and aqueous and vitreous humor to obtain a final PP 

concentration of 5 µg/mL. The protein content in the tissue homogenates was determined using 

the Bradford method (272). At predetermined time points, 100 µL aliquots were withdrawn, and 

an equal volume of ice cold methanol was immediately added to the sample to arrest the 

enzymatic degradation process.  Stability of PP (5 µg/mL) in IPBS was also studied as a control 

and the values were subtracted from the overall reaction rates to estimate the enzyme mediated 

degradation rates. The bioreversion rates were normalized to the protein content in the tissue 

homogenates. 

7.4.5. Analytical procedures: 

7.4.5.1. Ocular tissue collection and sample preparation  

With respect to studies involving ocular distribution of PP and erythromycin following 

topical application, vitreous and aqueous humor were collected as previously described (270). 

Ocular tissues such as iris-ciliary bodies, lens and retina/choroid, were weighed and 

homogenized in ice cold IPBS or methanol using a Tissuemiser (Thermo Fisher Scientific 

(Waltham. MA, USA)). Homogenates were further diluted with ice cold acetonitrile:methanol 
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(50:50) mixture, centrifuged and analyzed for drug content. Centrifugation was carried out at 

13,000 rpm for 20 min at 4oC.  Aqueous and vitreous humor samples were used as such, or 

diluted with methanol, and taken for analysis. Extraction efficiency of PP and erythromycin from 

ocular tissues was > 95%. 

 

7.4.5.2. HPLC Analysis  

Microdialysis and plasma samples were analyzed for quinidine content using a reverse 

phase HPLC procedure as previously described (71). The HPLC system comprised of Waters 

717 plus autosampler, Waters 2475 multi λ Fluorescence detector, Waters 600 controller pump 

and Agilent 3395 integrator. A Symmetry® C18  4.6 X 250 mm column was used and the mobile 

phase consisted of 20 mM phosphate buffer (pH 2.50) with 12 % acetonitrile at a flow rate of 1 

mL/min. Excitation and emission wavelength were set at 250 nm and 440 nm, respectively.   

Microdialysis samples were directly injected into the HPLC. Plasma samples were analyzed after 

dilution with ice-cold acetonitrile:methanol (50:50) mixture and centrifugation. For 

quantification of quinidine in microdialysis samples calibration standards (2 ng/mL to 200 

ng/mL) were prepared in IPBS. For analysis of quinidine in plasma samples, calibration curve 

(15 ng/mL to 3000 ng/mL) was prepared by spiking the blank rabbit plasma with known 

concentrations of quindine in IPBS, followed by protein precipitation with acetonitrile:methanol 

(50:50) mixture. The standard curves generated coefficient of determination (r2) values greater 

than 0.9999. The limit of quantification of quinidine in the microdialysis and plasma samples 

was 2 ng/ mL and 10 ng/ mL, respectively. The percentage relative standard deviation (intra-day 

and inter-day) for quinidine QC samples in IPBS and rabbit plasma were below 2% and 5.8%, 

respectively. Quinidine samples were analyzed in a single run or in groups. QC samples in IPBS 



 
214 

(2, 5, 15, 100 and 160 ng/mL) and plasma (spiked concentration: 25, 75, 1000 and 2000 ng/mL) 

were always included in the runs after every 25-30 samples. The accuracy (intra-day and inter-

day) at different concentrations were within range of 99.9-101.4% and 98.0-105.0% for QC 

samples in IPBS and rabbit plasma, respectively.   Prednisolone and PP content in the 

bioreversion and ocular disposition studies were determined using reversed phase HPLC 

procedure as previously described with minor modification (273).  Analysis was carried out 

using Waters 2487 Dual λ Absorbance detector. The mobile phase consisted of isopropanol and 

0.2 % v/v o-phosphoric acid in deionized water (25: 75, pH 3.00). A YMC-Pack J’sphere ODS-

M80 (4.6 x 250 mm) column was used for separation, and the flow rate and wavelength (λ) were 

set at 0.8 mL/min and 245 nm, respectively.  

 

7.4.5.3. Liquid Chromatography/Mass spectrometry (LC-ESI-TOF) analysis 

 Erythromycin content in the ocular tissues, including vitreous and aqueous humor, were 

determined using Liquid chromatography/Mass spectrometry (LC-ESI-TOF). Primary stock 

solution of erythromycin and internal standard, roxithromycin, (IS) were prepared in 100% 

methanol and secondary stock solutions were prepared in IPBS. Calibration curve was prepared 

by spiking known concentration of erythromycin in blank ocular tissues, vitreous humor and 

aqueous humor. The samples were allowed to stand for 30 min and then were homogenized in 

methanol using a Tissuemiser to produce calibration standards (10 to 500 ng/mL) of 

erythromycin. 

The liquid chromatograph used was an Agilent Series 1100 comprised of the following 

modular components: quaternary pump, a vacuum solvent microdegasser, an autosampler with 
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100-well tray. The mass spectrometric analysis was performed by using the LC-ESI-TOF (Model 

#G1969A, Agilent Technologies, Palo Alto, CA, USA) equipped with an ESI source. All 

acquisitions were performed under positive ionization mode with a capillary voltage of  3500 V. 

Nitrogen was used as the nebulizer gas (30 psig) as well as the drying gas at 11 L/min at a 

temperature of 350 ºC. The voltage of PMT, fragmentor and skimmer was set at 850V, 100V and 

60V respectively. Full scan mass spectra were acquired from m/z 200-1000. Data acquisition and 

processing was done using the AnalystTM QS software (Agilent Technologies, Palo Alto, CA, 

USA).  

Separation was achieved on a synergi Hydro-RP; 100 x 2.0 mm I.D.; 4 µm particle size 

(Phenomenex, Torrance, CA, USA).  The column was equipped with a guard column (Supelco, 

Bellefonte, PA, USA).  The mobile phase consisted of water with 0.1 % formic acid (A), and 

acetonitrile with 0.1 % formic acid (B) at a flow rate of 0.3 mL/min, with the following gradient 

elution: 0 min, 75 % A/25 % B to 20% A/80 % B over 10 min. Each run was followed by a 5 

min wash with 100 % B and an equilibration period of 11 min with 75 % A/25 % B. The total 

run time for analysis was 10 min. Ten microliters of the sample was injected and peaks were 

assigned with respect to the mass of the compounds and comparison of the retention times. The 

limit of detection of Erythromycin was 0.05 ng/mL and each sample contained 100 ng/mL IS. 

This method involved the use of the [M+H]+ ions in the positive ion mode with extractive ion 

monitoring (EIM). In the positive ion mode, the protonated species [M+H]+ at m/z 734.4680 for 

erythromycin and 837.5324 for  IS were observed 
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7.4.6. Data analysis  

Non-compartmental pharmacokinetic analysis was carried out for the quinidine 

concentration time profile in the vitreous humor using WinNonlin, version 5.2 (Pharsight; 

Mountain View, CA). The pharmacokinetic parameters were calculated using the formulae 

described earlier (270). Briefly, terminal slopes of the vitreous concentration-time profile were 

estimated by log-linear regression, and the apparent elimination rate constant (� � was then 

derived from the slope. Elimination half-life (t1/2) was calculated from the equation: t1/2 = 

0.693/� . The area under the vitreal concentration-time curve (AUC0-∞) and the area under the 

moments curve (AUMC0-∞) were estimated by the trapezoidal rule. The mean residence time 

(MRT) was calculated using the equation: MRT = AUMC0-∞ / AUC0-∞. The total clearance was 

calculated as: CL= Dose/AUC0-∞. The peak vitreal concentration (Cmax) and the time to reach the 

peak concentration (tmax) were determined from the observed values 

The time course of plasma quinidine concentration, after a single systemic dose was best 

described by a two-compartment open model as expressed in eq (3). 

                    C= Ae -αt + Be-βt                                                                                                                                    (3)                                          

In which A and B are zero time concentration coefficients, t the time (min) and α and β are the 

disposition rate constants of the initial and terminal phase, respectively. The rate constant of drug 

transfer from the apparent peripheral to the apparent central compartment (k21), elimination rate 

constant from the apparent central compartment (k10) and rate constant of quinidine transfer from 

the apparent central compartment to the apparent peripheral compartment (k12) were calculated 

as previously described (270). Data obtained was subjected to statistical analysis using one-way 



 
217 

analysis of variance (ANOVA) followed by the post-hoc Dunnett’s test for multiple comparison 

(JMP software ( SAS Institute Inc, Cary, NC)). Homogeneity of variances between the groups 

was checked using Bartlett’s test before performing ANOVA. Results were considered 

statistically significant if p value was ≤ 0.05. 

7.5. Results 

 

7.5.1. Effect of topically applied verapamil on the vitreal kinetics of systemically 

administered quinidine 

The vitreal concentration-time profile of quinidine after systemic administration (5 

mg/kg) alone (control) or in the presence of topically administered verapamil is illustrated in 

Figure 7-1, and the pharmacokinetic parameters have been provided in Table 7-1. Verapamil 

HCl displayed low solublility at pH 7.40 (1 mg/mL), and therefore solutions were prepared in 

sterile IPBS at pH 6.00. With respect to the vitreal pharmacokinetic parameters of intravenously 

administered quinidine, topically instilled verapamil (100 µL of 1 % w/v), administered at 2, 4 

and 6 h after systemic quinidine administration, produced a 1.9-fold increase in the MRT (from 

232 ± 20 to 435 ± 20 min), a 2.2-fold decrease in the  �  (from 0.0058 ± 0.0006 min-1 to 0.0027 

± 0.0002 min-1) and a 2.3-fold increase in the AUC0-∞ of quinidine in the vitreous humor.  
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Figure 7-1: Vitreal concentration-time profile of quinidine (5 mg/kg, systemic 

administration) alone (control) or in the presence of topically co-administered verapamil 

1% w/v (100 µL administered at 2, 4 and 6 h after quinidine administration). Data points 

represent mean ± standard deviation of four determinations.  
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Table 7-1: Vitreal pharmacokinetic parameters of systemically administered quinidine (5 

mg/kg) alone or in the presence of topically co-administered verapamil , prednisolone 

sodium phosphate ophthalmic solution, USP (1% w/v) and erythromycin ointment. 

Verapamil and prednisolone sodium phosphate were administered at 2, 4 and 6 h after 

systemic quinidine administration. Single dose of erythromycin ophthalmic ointment 

(100mg) was applied at 2 h after quinidine administration. Single control group 

(Quinidine) has been compared to each treatment group. Values represented as mean ± 

standard deviation (n=4).  * p<0.05, **p<0.01, ***p<0.001 (difference from control) 

 

Kinetic 
Parameters 

Quinidine 

 

Quinidine 
+ 

Verapamil 
(1% w/v) 

Quinidine 
+ 

Prednisolone 
(1% w/v) 

Quinidine 
+ 

Erythromycin 
(0.5 % w/w) 

 �  (min-1) 0.0058 ± 
0.0006 

0.0027 ± 
0.0002 *** 

0.0035 ± 
0.0001 ** 

0.0040 ± 0.0002 
** 

�  half-life 
(min) 

120 ± 14 256 ± 24*** 198 ± 21* 173 ± 11* 

T max   (min) 115 ± 30 146 ± 23 120 ± 40 115 ± 30 

C max (µg/mL) 0.06 ± 0.02 0.08 ± 0.01 0.07 ± 0.007 0.08 ± 0.02 

AUC0-∞  

 (µg x min/mL) 17 ± 3 39 ± 7.0** 26 ± 2.0* 32 ± 9* 

AUC0-last  

(µg x min/mL) 
16 ± 2 28 ± 5.0* 22 ± 1.6* 28 ± 9* 

VZ_F (mL) 50642 ± 2486 47661 ± 4490 47708± 5245 38592± 10690 

CL_F (mL/min) 296 ± 46 131 ± 21*** 193 ± 15* 161 ± 50** 

AUMC0-∞ 

(µg x min2/mL) 
 

4024 ± 926 
17225± 
4230*** 

7519 ± 1289* 10328 ± 3424* 

MRT ∞ (min) 232 ± 20 435 ± 20*** 288 ± 30* 310 ± 23** 
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7.5.2. Effect of topically applied prednisolone sodium phosphate (PP) on vitreal kinetics of 

systemically administered quinidine 

PP is a phosphate ester of prednisolone and is currently marketed in the United States as 

an ophthalmic anti-inflammatory formulation. Therefore, effect of topically administered PP on 

the vitreal kinetics of systemically administered quinidine (5 mg/kg) was investigated (Fig. 7-2). 

One hundred microliters of a 1% w/v PP solution was instilled at 2, 4 and 6 h after quinidine 

administration. Table 7-1 presents the vitreal pharmacokinetic parameters of quinidine.  Topical 

PP co-administration produced a 1.7-fold decrease in the �  (from 0.0058 ± 0.0006 to 0.0035 ± 

0.0001 min-1), a 1.7-fold increase in t1/2 and a 1.3-fold increase in the MRT.  Moreover, a 1.5-

fold increase in the vitreal AUC0-∞ of quinidine, compared to that of the control, was observed 

when PP was co-administered. 

 

7.5.3. Effect of topical erythromycin on vitreal kinetics of systemically administered 

quinidine 

 Vitreal kinetics of intravenous quinidine (5 mg/kg) was also studied either alone or in the 

presence of topically administered erythromycin in the form of the marketed erythromycin 

ophthalmic ointment. In these set of studies, 100 mg of the ointment (0.5% w/w) was applied 

topically two hours after systemic quinidine administration. Figure 7-3 depicts the vitreous 

concentration-time profile of quinidine alone or in the presence of topically administered 

erythromycin. The vitreal pharmacokinetic parameters have been presented in Table 7-1.  In the 

control group, the �  for quinidine was found to be 0.0058 ± 0.0006 min-1   whereas in the 

presence of  topical erythromycin  it was found to be 0.0040 ± 0.0002 min-1. A corresponding 
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1.5- fold increase in the vitreal elimination half-life (t1/2) was also observed. Additionally, a 

significant increase in the AUC0-∞ and MRT of quinidine in the vitreous humor was also evident. 

 

 

 

 

Figure 7-2: Vitreal concentration-time profile of quinidine (5mg/kg, systemic 

administration) alone (control) or in the presence of topically co-administered PP 1% w/v 

(100 µL administered at 2, 4 and 6 h after quinidine administration). Data points represent 

mean ± standard deviation of four determinations. Control group data is the same as that 

in Figure 7-1 and has been replotted to facilitate comparison. 
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Figure 7- 3: Vitreal concentration-time profile of quinidine (5mg/kg) alone (control) or in 

the presence of topically co-administered erythromycin ophthalmic ointment, 0.5% w/w 

(100 mg, administered 2 h after quinidine administration). Data points represent mean ± 

standard deviation of four determinations. Control group data is the same as that in Figure 

7-1 and has been replotted to facilitate comparison. 
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Plasma kinetics of systemically administered quinidine (5 mg/kg), alone or in the 

presence of topically co-administered verapamil, PP and erythromycin was determined and 

compared, to evaluate the effect of topical inhibitors on plasma kinetics of quinidine and to 
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ensure uniform systemic exposure in all study groups. Figures 7-4A, 7-4B and 7-4C, represent 

the plasma concentration time profiles of quinidine alone or in the presence of verapamil, PP and 

erythromycin, respectively. Quinidine plasma concentration time data, alone or in the presence 

of the inhibitors, was best explained by a two-compartment open model based on the Akaike 

Information criterion (AIC) and the Schwarz Bayesian Criterion (SBC) values (minimum for the 

2 compartment model compared to 1 and 3 compartment models). Therefore, a two compartment 

open model was used to calculate the pharmacokinetic parameters. The plasma pharmacokinetic 

parameters of quinidine, such as elimination half-life, CL, AUC, k10  , k21 , k12, steady-state 

volume of distribution and  apparent elimination rate constant   remained unchanged in the 

presence of the topically co-administered inhibitors (Table 7-2). 

 

7.5.5. Ocular tissue distribution of PP and erythromycin following topical administration: 

Table 7-3 represents concentrations of PP and erythromycin in the aqueous humor, vitreous 

humor and other ocular tissues at the end of the experiment (9 h). Topical administration of PP 

generated significantly high concentrations of prednisolone (generated from PP by enzymatic 

action) in the ocular tissues.  Erythromycin concentrations in all the ocular tissues were 

significantly lower compared to PP. However, significant levels of erythromycin were observed 

in the vitreous humor even at 7h post application. The lower concentrations of erythromycin 

generated in the ocular tissues compared to that of PP may be due to the differences in the dosing 

regimen.  It should be noted that only a single dose of erythromycin, 100 mg of the 0.5% 

ointment, was applied 2 h after quinidine administration, whereas in the case of verapamil and 

PP, 100 µL of a 1% w/v solution was applied at 2, 4 and 6 h after quinidine administration. 
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Figure 7-4A  
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Figure 7-4B 
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Figure 7-4C 

 

 

 

Figure 7-4: Plasma-time profile of quinidine (5 mg/kg, systemic administration) alone 

(control) or in the presence of topically co-administered (A) verapamil 1% w/v, (B) 

prednisolone sodium phosphate 1% w/v, (C) erythromycin ophthalmic ointment, 0.5% w/w 

Data points represent mean ± standard deviation of four determinations. 
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Table 7-2: Plasma pharmacokinetic parameters of systemically administered quinidine (5 

mg/kg) alone or in the presence of topically co-administered verapamil , prednisolone 

sodium phosphate ophthalmic solution, USP (1% w/v) and erythromycin ointment. 

Verapamil and prednisolone sodium phosphate were administered at 2, 4 and 6 h after 

systemic quinidine administration. Single dose of Erythromycin ophthalmic ointment 

(100mg) was applied at 2 h after quinidine administration. No significant differences in the 

parameters were observed. Single control group (Quinidine) has been compared to each 

treatment group. 

 
  

 
 
 

 

 

Kinetic 
Parameters 

Quinidine Quinidine + 
Verapamil 
(1% w/v) 

Quinidine + 
Prednisolone 

(1% w/v) 

Quinidine + 
Erythromycin 
(0.5 % w/w) 

k10 (min -1) 0.015 ± 0.003 0.015 ± 
0.007 

0.015 ± 0.002 0.027 ± 0.02 

k12 (min -1) 0.021 ± 0.015 0.027 ± 
0.011 

0.040± 0.009 0.047 ± 0.04 

k21 (min -1) 0.024 ± 0.016 0.020 ± 
0.007 

0.031 ± 0.015 0.02 ± 0.004 

AUC (µg x min/mL) 210 ± 20 233 ± 65 235 ± 54 231 ± 35 

K10  t ½ (min) 52 ± 21 52 ± 20 48.5 ± 9 37 ± 15 

CL (mL/min) 25 ± 3 23 ± 8 22 ± 5.5 22 ± 4 

MRT ∞ (min) 144 ± 58 170 ± 63 189 ± 44 142 ± 33 

V d (mL) 3756 ± 1636 3588 ± 487 3719 ± 1314 3196 ± 1276 

β (min-1) 0.006 ± 0.001 0.0051 ± 
0.002 

0.0055 ± 
0.001 

0.0057 ± 0.001 

β t ½ (min) 135 ± 83 142 ± 53 134 ± 38 124 ± 23 
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Table 7-3: Ocular distribution of verapamil, prednisolone sodium phosphate, and 

erythromycin ophthalmic ointment after topical administration. 

 

 

 

 

 

 

 

Prednisolone sodium phosphate (100 µL of a 1% w/v solution applied 2, 4 and 6 h post systemic administration)  
and erythromycin ( 100 mg of 0.5% w/w ointment applied at 2 h post systemic administration) tissue concentration 
were  determined 9 h after  topical administration. PP values have been reported for both intact PP and free 
prednisolone concentrations observed.  Verapamil tissue concentrations were determined 7h after topical (100 µL of 
a 1% w/v solution applied 2, 4 and 6 h post intravitreal quinidine administration). Values represent mean ± standard 
deviation (n=4). 
* Generated as a result of bioreversion of PP in the ocular tissues. 
# values from our previous study (Chapter 6) (270). 
 

 

 

 

 

 

Tissues 

Topical  
Application of 

1 % w/v 
Verapamil#  

Topical  
Application of 

0.5% w/w 
Erythromycin 

 

Topical application of  
1% w/v PP 

Intact PP 
concentration 

Concentration 
of free 

Prednisolone * 

 

Aqueous 
Humor µg/mL  

7.9 ± 3.2  4.7 ± 1.0  11 ± 5.4  76.0 ± 2.0  

Iris-Ciliary 
Body µg/g 

4.4 ± 1.6  1.53 ± 0.31  4.1 ± 0.6  32.0 ± 7.0  

Lens µg/g 6.3 ± 1.2  0.26 ± 0.04  - 16.0 ± 4.0  
Vitreous 

Humor µg/mL 
0.086 ± 0.003 1.4 ± 0.15  1.8 ± 0.01  15.0 ± 2.0  

Retina-
Choroid µg/g 

47.0 ± 8.1  1.74 ± 0.05  3.0 ± 1.2  43.0 ± 10.0  
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7.5.6. Enzymatic conversion of PP to prednisolone 

Tissue homogenates were prepared in IPBS pH 7.4. Vitreous and aqueous humor were 

used as such. PP was rapidly hydrolyzed to the parent drug, prednisolone, by the ocular 

phosphatases. Table 7-4  depicts the apparent first order degradation rate constants and half-lives 

of PP in the ocular tissue homogenates (1 mg/mL protein content), including aqueous and 

vitreous humor. Degradation rate constants were obtained from the log concentration of PP 

remaining versus time plots. Hydrolysis rate constant obtained from the control (PP in IPBS) 

were subtracted from the overall observed rate constants to estimate rate constants for the 

enzyme mediated hydrolytic process.  

 

Table 7-4: Apparent first order degradation rate constants (k) x 10
3
, min

-1
 and half-lives  

(t1/2, min), of PP (prednisolone  sodium phosphate) in ocular tissue homogenates (1 mg/mL 

protein content). Values represent mean ± standard deviation (n=4). 

 

 

 

 

Drug / Kinetic 
parameters 

 

Control 
 
 

Aqueous 
humor 

 

Vitreous 
humor 

 

Iris-
ciliary 

 
 

RPE/Choroid 
 
 

PP 

(k) x 103 

(min-1) 
0.36 ± 0.03 22.5 ± 4.0 0.83 ± 0.02 2.9 ± 0.09 3.17 ± 0.05 

t1/2 (min) 1933 ± 160 31 ± 6.0 835 ± 17.0 239 ± 8.0 218 ± 4.0 
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7.6. Discussion 

The role of RPE P-gp in limiting the penetration of systemically or periocularly 

administered substrates into the posterior chamber of the eye is well established (270). 

Surprisingly, very few studies have focused on strategies to overcome the efflux activity of this 

RPE P-gp. Duvvuri et al. reported that inhibition of the RPE P-gp, with the help of an intravitreal 

inhibitor (71). In another in vivo study, Senthikumari et al. demonstrated that systemically 

administered P-gp inhibitors significantly altered the ocular tissue concentrations of an 

intravitreally injected P-gp substrate (152). Both routes of inhibitor administration, however, 

suffer from major drawbacks such as concerns associated with intravitreal injections and 

nonspecific systemic exposure of the inhibitor from intravenous administration and the limited, 

clinically relevant, inhibitor dose that can be administered (270).  

In our previous study (Chapter 6), exploring the feasibility of a novel approach for 

inhibiting the RPE P-gp, we demonstrated that topical inhibitors could decrease the elimination 

rate of intravitreally administered P-gp substrates (270). In the present study we carried this 

investigation further to examine the effect of a topical substrate/inhibitor administration on the 

ocular penetration of a systemically administered P-gp substrate.  Although systemic 

administration of ophthalmic drugs also poses non-specific systemic exposure concerns, this 

novel topical substrate/inhibitor co-application approach could help decrease the systemic dose 

necessary to achieve ocular therapeutic response. 

The Cmax and Tmax of quinidine in the vitreous humor were observed to be 0.06 ± 0.02 

µg/mL and 115 ± 30 min, respectively. The vitreal AUC of quinidine was found to be 8% of the 

systemic AUC (Table 7-1 and 7-2). These results are consistent with previous literature reports 
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(71).  Co-administration of topical verapamil and PP at 2, 4 and 6 h after systemic (i.v.) 

quinidine administration resulted in a significant decrease in the apparent vitreal �  and in an 

increase in the vitreal t1/2 and MRT of quinidine (Table 7-1 and Fig. 7-1 and 7-2). Consistent 

with this, erythromycin also produced a significant decrease in the vitreal �  and an increase in 

the vitreal t1/2 and MRT of quinidine (Table 7-1, Fig. 7-3). These findings strongly suggest that 

topically co-administered P-gp inhibitors interact with the RPE P-gp resulting in decreased 

vitreal elimination of the systemically administered P-gp substrate.  

Duvvuri et al. reported a significant increase in the Cmax, and the rate of entry of 

quinidine into the vitreous and a significant decrease in the Tmax of quinidine following systemic 

administration of quinidine and intravitreal administration of the inhibitor (71). However, in the 

present study a statistically significant difference in the Cmax and Tmax of quinidine in the vitreous 

humor, on topical co-administration of the three inhibitors, was not observed (Table 7-1).  This 

may be explained by the fact that Duvvuri et al. administered the intravitreal inhibitor 20 minutes 

prior to systemic quinidine administration whereas in the present study the inhibitors were 

applied 2 hours post quinidine administration, by which time the vitreal quinidine absorption 

phase would have been over.  

Significant differences in the central compartment pharmacokinetic parameters of 

quinidine, in the presence and absence of topically co-administered verapamil, PP or 

erythromycin, were not observed (Table 7-2 and Fig. 7-4).  These findings strongly suggest that 

the quinidine dose administered across groups were uniform and that the observed effect of the 

topically co-administered verapamil, PP and erythromycin, on the vitreal kinetics of quinidine 

was as a result of modulation of the efflux activity of RPE P-gp. 
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Topically co-administered verapamil produced a 1.7-fold decrease in the terminal 

elimination rate constant of intravitreally administered quinidine while AUC0-∞ and CL remained 

unchanged (270). Here, however, verapamil, with a similar dosing regimen, generated a greater 

(2.2-fold) decrease in the elimination rate constant of quinidine from the vitreous humor and also 

a significant increase in the vitreal AUC0-∞ and a decrease in CL.  This is probably due to lower 

quinidine concentrations generated at the P-gp binding site in the RPE cytosol on intravenous 

administration. At the end of 2h, when the topical inhibitors were administered, the free plasma 

quinidine concentration was 0.05 µg/mL (considering almost 80-90% protein binding (274, 275)) 

and free vitreal quinidine concentration achieved was 0.06 µg/mL following systemic 

administration (current study), while vitreal free concentration of quinidine was 0.3 µg/mL (as 

estimated using microdialysis) following intravitreal injection. Assuming that similar verapamil 

concentrations were generated at the RPE/choroid following topical administration in both the 

studies (present and chapter 6), the verapamil to quinidine ratio would be significantly higher at 

the RPE P-gp binding site when quinidine is administered systemically. This results in greater 

inhibition and thus a significant decrease in the CL and elimination rate constant and a 

significant increase in the vitreal AUC0-∞ in the presence of verapamil, when compared to 

intravitreal administration (270).   

Interestingly, 1% w/v PP produced a greater decrease in the vitreal �  compared to 1% 

w/v prednisolone hemisuccinate sodium (PHS) in our previous study (Chapter 6) (270). 

Additionally, a statistically significant difference in the AUC0-∞ and CL of quinidine was also 

observed in the presence 1% w/v PP. This can be explained by the low concentrations of 

quinidine generated in the vitreous humor (following systemic administration), rapid 
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bioreversion rates of PP to prednisolone and by the formulation components of the PP 

ophthalmic solution. Prednisolone and not PP is known to interact with P-gp (270). In vitro 

metabolism studies confirmed faster bioreversion of PP to prednisolone in the RPE/choroid (t1/2: 

218 min) compared to the hemisuccinate ester (PHS) (t1/2: 578 min) (270). This is possibly as a 

result of differences in the phosphatase and esterase levels in the ocular tissues (276).  

It is also interesting to note that topical PP (1%) generated significantly higher 

concentrations of prednisolone (15.0 ± 2.0 µg/mL) in the vitreous humor compared to the vitreal 

prednisolone levels achieved with topical 2% PHS (0.49 ± 0.29 µg/mL) (270). Moreover, 2 % 

PHS generated only 16.7 ± 1.6 µg/g of prednisolone in the RPE/choroid tissue (270) whereas 1% 

w/v PP generated 43 ± 10 µg/g (Table 7-3) of prednisolone. The higher levels of prednisolone 

obtained in the posterior segment ocular tissues supports our earlier observation that hydrophilic 

moieties on topical application tend to permeate to the back-of-the eye tissues better (270). 

Additionally, the PP formulation used in this study contains benzalkonium chloride (BAK, 

0.01% w/v) and ethylenediaminetetraacetic acid (EDTA) as formulation components. The role of 

BAK and EDTA in enhancing corneal, conjunctival and scleral permeation of compounds is well 

documented (174, 277, 278). Thus PP might have diffused across the conjunctiva and into the 

sclera much more efficiently generating higher PP and prednisolone concentrations in the 

RPE/choroid. The significantly higher PP and prednisolone concentrations in the aqueous humor, 

lens and iris-ciliary body also supports enhanced transcorneal PP permeation in the presence of 

BAK and EDTA and rapid generation of prednisolone in the aqueous humor. Prednisolone being 

very lipophilic would then rapidly partition into the anterior segment ocular tissues and then 

laterally migrate along the iris-ciliary to the sclera and then the RPE and vitreous humor. Thus, 
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overall the results suggest that BAK and EDTA enhanced penetration of PP into the back-of-the 

eye tissues.  

The levels of verapamil (approximately 0.2 µM) obtained in the vitreous humor (1 h after 

the last dose) (270) were much lower compared to PP (approximately 3.7 µM) and prednisolone 

(approximately 41 µM) in the vitreous humor even at 3 h after the last dose. Although similar 

concentrations of prednisolone (43 ± 10.0 µg/g; approximately 120 µM) and verapamil (47 ± 8.1 

µg/g; approximately 95 µM ) (270) were generated at the RPE/choroid in both studies the extent 

of RPE P-gp inhibition was less with prednisolone compared to verapamil (Table 7-1). This is 

probably because verapamil is a more potent P-gp inhibitor (prednisolone IC50 is 300 µM 

compared to an IC50 of 4.7 µM for verapamil; a 65-fold difference) (271, 279). 

Further, in our previous study (Chapter 6), erythromycin, at a concentration of 0.2% w/v 

applied at 2, 4 and 6 h after intravitreal quinidine administration did not significantly affect the 

pharmacokinetic parameters of quinidine (270). On the contrary, in the present investigation 

erythromycin ophthalmic ointment produced a statistically significant difference in the vitreal �  

, AUC0-∞, CL and MRT of  systemically administered quinidine. A single application of the 

ointment, 100 mg of 0.5% w/v applied 2 h after systemic quinidine administration, exhibited 

significant levels of erythromycin in the vitreous humor and RPE/choroid, even after 7h post 

erythromycin application, suggesting depot formation and sustained release of the drug from the 

residual formulation in the cul-de-sac.  The observed effect on quinidine pharmacokinetics can 

probably be explained by the higher ocular tissue concentrations of erythromycin achieved in 

this study and the low concentrations of free quinidine in the plasma and RPE (as discussed 

earlier) and thus higher erythromycin to quinidine ratio in the RPE P-gp microenvironment.     
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  Besides P-gp, the RPE is known to express other transporters (e.g. multi drug resistant 

proteins (MRPs), organic anion transporting polypeptides (OATPs)) (269) with which quinidine may 

interact (280-282). Though quinidine is a preferred substrate of P-gp and has been widely used as a P-

gp substrate/inhibitor (71, 150, 283, 284) some involvement of other transporters cannot be ruled out 

completely. Future studies to optimize this approach will involve more specific P-gp/ MRP inhibitors 

and substrates. Additionally, the effect of the inhibitor type, concentration, time of application and 

time course of inhibitors in the vitreous, plasma and other ocular tissues following topical 

application on ocular kinetics of systemically/intravitreally administered P-gp substrates will  

also be the object of consideration in our future studies. 

  In conclusion, this study demonstrates for the first time that topically applied P-gp 

inhibitors can diffuse to the RPE and alter the elimination kinetics of a systemically administered 

P-gp substrate, probably through inhibition of the RPE P-gp. The degree of inhibition will 

depend on the physicochemical characteristics of the inhibitor and its affinity for P-gp and the 

concentration of the therapeutic agent in the plasma or vitreous humor. Formulation factors such 

as inclusion of permeation and viscosity enhancers may play a major role in yielding effective 

levels of the inhibitor at the RPE. This interaction may be used positively for drug delivery 

purposes through the use of potent, pharmacologically inactive, efflux inhibitors.  
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