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ABSTRACT 

 

In this study, a three-dimensional numerical model of multiple-sized sediment transport 

under current and waves is developed. The coastal circulations are described by a 

three-dimensional hydrodynamic model, which is governed by the three-dimensional 

phase-averaged shallow water flow equations coupled with wave radiation stresses. Methods are 

also developed to determine the bed shear stress due to current only, waves only, and coexistence 

of current and waves, accounting for the nonlinear interaction of the current and waves on bed 

shear stresses. Meanwhile, empirical formulas for bed-load transport capacity, suspended-load 

transport capacity, and near-bed suspended-load concentration under current and waves are 

established for multiple-sized sediments. These formulas are used to close the sediment transport 

model. The flow and sediment transport equations are solved using a finite volume method on 

non-staggered grid. The computational mesh is composed of quadtree rectangular grid on the 

horizontal plane and sigma coordinate in the vertical direction. The SIMPLEC algorithm with 

Rhie and Chow’s momentum interpolation is used to couple the flow velocity and water level. A 

coupled solution procedure is used to solve the discretized sediment transport, bed change and bed 

material sorting equations together. 

The empirical formulas for bed-load and suspended-load transport rates and the near-bed 

suspended-load concentration have been tested intensively using a large volume of single- and 

multiple-sized sediment transport data under current and waves. Statistics show that more than 
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50% of the cases are predicted within a factor of 2 of the measured values and more than 80% of 

the cases are within a factor of 5. The hydrodynamic model has been validated using two 

laboratory cases and two field cases, which demonstrate the reliability of the flow model and its 

coupling with wave model. The multiple-sized sediment transport sediment transport model has 

been validated using three laboratory cases and one field case. The predications of the model are in 

good agreement with the measurements. Sensitivity analyses have also been conducted for the bed 

friction coefficient, suspended-load scale factor, Schmidt Number, bed-load adaptation length, and 

roughness height constant. The developed sediment model has been demonstrated its capability of 

predicting morphologic behavior through the test cases. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Motivations 

 Coastal and estuarine sediment dynamics, which includes a series of processes such as 

erosion, deposition, advection and diffusion, is traditionally one of the important engineering 

problems. The importance has been widely recognized due to 1) the impact of their natural 

processes on human, including discharge of sediment particles from estuarine runoffs, sediment 

transportation and dispersion to offshore deep waters, and beach erosion; and 2) increasing 

utilization of their resources by human, such as dredging of navigation channels and disposal of 

dredged materials. Therefore, it is of great importance to investigate the sediment dynamics in 

estuaries and coastal areas and have a better understanding of the sediment transport processes. 

Accurate predictions of the sediment transport processes are essential for not only assessing the 

impact of the natural processes on human, but also evaluating the influence of engineering projects 

on the environment. It is desirable to have the predictions as accurate as possible, which enables 

the potential for effective environmental management and planning policies to be considered, e.g., 

implementing the optimal dredging and navigational strategies. 

 

1.2 Objectives of the Study 

 Physical model is traditionally used to study the coastal and estuarine sediment transport 
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processes. It is still being used. However, it does have drawbacks, such as high cost, limitations on 

temporal and spatial scales, difficulty of modifying and duplicating, and, the most serious one, the 

question of scaling. Computational modeling is clearly an alternative tool to predict the sediment 

transport in estuaries and coastal areas. Before 1980s, unfortunately, computational modeling was 

a very complicated task due to theoretical and technical difficulties, e.g., many fundamental 

questions in this field were unanswered. In recent decades, thanks to the advancement of 

computation technologies and the improved understanding of current-wave mechanics and 

sediment transport processes, numerical models have become increasingly attractive. Coastal 

management and engineering decisions rely heavily on predictions made by computational models 

of hydrodynamic and sediment-dynamic processes. 

 The sediment transport in coastal and estuarine waters is dependent on many variables, 

including waves, current, bottom stresses, turbulent intensity, sediment type, bottom erosion, and 

sediment settling. The process of advective and diffusive transport is a three-dimensional 

phenomenon, which should be described using three-dimensional models, although most currently 

used estuarine and coastal models primarily use a two-dimensional depth-averaged approach, of 

which the advantage is clearly the computational cost. However, the two-dimensional 

depth-averaged model precludes direct considerations of some of the important phenomena, such 

as undertow current and vertical nonuniformity of sediment concentration. Therefore, in order to 

have a realistic simulation of these complex features, it is required to develop a three-dimensional 

model. Furthermore, with the computer hardware and computation techniques development, such 

as multi-cores CPU, parallel computing, and GPU computing,  the computational burden 

associated with the use of three-dimensional models becomes less and less. 
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 Instead of relating the near-bed suspended-load concentration to the depth-averaged 

concentration in two-dimensional depth-averaged model, the three-dimensional model requires a 

more appropriate and accurate way of determining near-bed suspended-load concentration to 

calculate the sediment erosion or deposition. There exist quite a few near-bed concentration 

relationships in literature, for instance, Smith and McLean (1977), Van Rijn (1984a), Garcia and 

Parker (1991), and Camenen and Larson (2007), most of which were designed for uniform 

sediments or suitable for river applications only. As a result, it is necessary to have a reliable 

formula to predict the near-bed suspended-load concentration for multiple-sized sediment under 

the interaction of current and waves in a three-dimensional sediment transport model. 

 In some coastal management and engineering projects, the bed load and suspended load are 

assumed to instantaneously reach equilibrium state. Consequently, many coastal sediment 

transport models calculate the transport rate using empirical formulas. The tendency of many 

empirical formulas of coastal sediment transport, such as Bijker (1968), Van Rijn (1984b, 1993), 

Bailard (1981), Dibajnia and Watanabe (1992), Ribberink (1998), and Camenen and Larson 

(2007), is to assume uniform or homogeneous sediments (e.g. a well-sorted fine sand). Very few 

studies have concerned nonuniform sediment transport in coastal environments. Therefore, it is 

desirable to develop a reliable formula that can predict the equilibrium transport rate of 

nonuniform sediments to have a quick assessment for the engineering projects and support of 

predictive numerical models of morphology change and channel evolution in coastal areas. 

In summary, the goal of this study is to develop a three-dimensional numerical model for 

multiple-sized sediment transport under current and waves. Meanwhile, empirical formulas for 

bed-load transport capacity, suspended-load transport capacity, and near-bed suspended-load 
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concentration under current and waves are developed and built into the three-dimensional 

numerical model.   

 

1.3 Scope of the Study 

 The complete numerical modeling of sediment transport in coastal and estuarine areas 

consists of two elements: hydrodynamics and sediment transport. The coastal and estuarine flows 

can be described by a hydrodynamic model. The effects of the hydrodynamic forcing agents (the 

current and waves) on sediment dynamics take place primarily through the friction they exert on 

the bed. This is expressed in terms of bed shear stress. Consequently, for sediment transport, more 

attention should be paid to the bottom current field. Of particular interest is the bottom shear stress. 

 In order to achieve the objectives of this study, the following tasks will be carried out: 

1) Interaction of the current- and wave-induced bed shear stresses is nonlinear, which is one 

of the difficult effects to estimate. It is necessary to seek methods to determine the bed shear stress 

due to current only, waves only, and coexistence of current and waves. 

2) Develop sediment transport capacity formulas for bed-load and suspended-load moved by 

current, or by waves, or very commonly by both current and waves acting together, and propose a 

formula for estimating the near-bed suspended-load concentration considering the interaction 

between current and waves. These formulas should be capable of calculating the transport rates of 

multiple-sized sediment and taking into account the hiding and exposure effects among different 

sizes classes of sediment particles on the bed. The developed formulas are tested by a larger 

number of data sets. 

3)  Describe an implicit three-dimensional shallow water flow model which simulates the 
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current induced by short waves in coastal water by adopting the three-dimensional phase-averaged 

shallow water flow equations coupled with wave radiation stresses. Intensively test and verify the 

hydrodynamic model with laboratory and field measurements. 

4) Establish a three-dimensional non-equilibrium sediment transport model to realistically 

simulate the sediment processes under current and waves. A finite volume method is adopted to 

solve the sediment transport governing equations. Experimental and field cases are used to verify 

the model performance. 

 

1.4 Structure of the Dissertation 

 This dissertation includes six chapters. Chapter I states the motivations and objectives of 

this study. It also outlines the approaches to achieve the objectives. Chapter II describes the 

hydrodynamic and sediment transport processes in coastal and estuarine areas and reviews the past 

studies on numerical modeling of coastal hydrodynamics and sediment transport. Chapter III 

presents the newly-developed formulas for bed-load transport capacity, suspended-load transport 

capacity, and near-bed suspended-load concentration under current and waves. Methods to 

determine the bed shear stresses due to current, waves, or both current and waves are provided in 

this chapter. In addition, two new approaches to determine the Schmidt number are presented as 

well. Chapter IV describes and verifies a three-dimensional coastal hydrodynamic model which 

adopts the three-dimensional phase-averaged shallow water flow equations coupled with wave 

radiation stresses.  Laboratory and field cases are used to test the model. Chapter V establishes a 

three-dimensional sediment transport model for multiple-sized sediment under current and waves, 

followed by test cases to demonstrate the model performance. Chapter VI gives conclusions. 
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CHAPTER II 

LITERATURE REVIEW 

 

2.1 Hydrodynamic Processes 

 The hydrodynamic processes in coastal waters are complex, which include current 

circulations, tidal currents, wind-induced currents, wave-current interactions, etc. The most 

important current motions are caused by tides, waves and winds, but the response of coastal waters 

to these forces varies widely, influenced by climate, geomorphology, and stratification. 

Tides are the rise and fall of sea levels caused by the combined effects of the gravitational 

forces exerted by the Moon and the Sun and the rotation of the Earth. The currents caused by the 

rise and fall of the water level due to tides are called tidal currents. The tidal currents consist of two 

parts: a) flood flow, during which the current is coming from the sea to the shore; and b) ebb flow, 

during which the current is coming from shore and returning to the sea. The impacts of tidal 

currents on producing the coastal waters periodically in and out of the bay and harbor are crucial. 

As the name implies, the wind-induced currents are created by the force of the wind 

blowing across a water body and hence exerting stress on the sea surface. This stress causes the 

surface water to move and the movement is transmitted to the underlying water to a depth that is 

dependent mainly on the strength and persistence of the wind.  A wind-driven current does not 

flow in exactly the same direction as the wind, but is deflected by Earth’s rotation, which can be 

quantitatively defined as Coriolis force, a fictitious force exerted on a body when it moves in a 
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rotating reference frame. The Coriolis force is greater at high latitudes and more effective in deep 

water. It is to the right of the wind direction in the Northern Hemisphere and to the left in the 

Southern Hemisphere. 

Wave-current interaction, the interaction between surface gravity waves and a mean flow, 

is also regarded as one of the important processes in coastal hydrodynamics, particularly in the 

nearshore regions. It has a crucial impact on the coastal water exchanging, sediment transport, and 

pollutant diffusion, and shoreline changes. The interaction implies an exchange of energy, which 

is quantitatively described as radiation stress. Radiation stress is the excess shoreward directed 

momentum flux caused by the presence of the surface gravity waves. It describes the additional 

force due to the waves, which changes momentum in the fluid layer. As waves travel from deep 

water to shallow water, the combination effect of refraction, diffraction, shoaling, and breaking 

will take place, and the wave-induced nearshore currents will be formed and developed when 

waves break strongly in surf zones accordingly.  

Attentions and interests have been greatly increased on the complex hydrodynamic 

processes since they are very essential to the coastal engineering and environment protecting, e.g. 

planning and monitoring of coastal construction activities, resource exploration, disposal of 

industrial and domestic waste water, dumping of dredged materials, etc. It is necessary to better 

understand and improve the prediction of the hydrodynamics processes to avoid a drastic impact 

on the environment. Therefore, coastal management and engineering decisions require a numerical 

model constructed with proper governing equations that can provide a realistic simulation and 

prediction of the hydrodynamics in coastal area. 
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The numerical models can be classified to three categories: one-dimensional (1-D), 

two-dimensional (2-D), and three-dimensional (3-D) models. The applications of 1-D models are 

focused on solving problems in lonshore direction, without considering the details over the 

cross-shore. A 2-D model is usually depth-averaged, which describes the flow in horizontal plane 

assuming vertical distributions in the vertical direction are uniform. Application examples are tidal 

flow in well-mixed estuaries and in seas, and wind-driven circulation in shallow lakes (Van Rijn 

1993). Engineering projects sometimes involve flow field with significant variation in vertical 

direction, while the flow pattern in horizontal plane is also of great importance. Examples are salt 

intrusion in estuaries, fresh water discharges in bays, thermal stratification in lakes and seas, 

wind-driven circulations in lakes, seas, and oceans, flow near structures, etc. Even though 

depth-averaged 2-D models have been widely used with certain success, realistic simulation of 

these complex features requires a 3-D model, which can be based on the full 3-D Navier-Stokes 

equations or their simplification with shallow water assumption. The depth-averaged 2-D models 

and 3-D models are briefly discussed in the following sections. 

 

2.1.1 Depth-averaged 2-D Hydrodynamic Models 

 The depth-averaged 2-D models are particularly useful for situations where the flow field 

shows no significant variation in vertical direction and where the fluid density is constant. The 

governing equations of a depth-averaged 2-D model are 

 
   

0
yx

hUhUh

t x y


  
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 (2.1) 
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 (2.3) 

where t is the time; x and y are the horizontal coordinates; h is the local water depth; Ux and Uy are 

the depth-averaged flow velocities in x, y directions;  is the fluid density; Tij (i, j = x, y) are the 

stresses, which include both viscous and turbulent effects; sx and sy are the forces acting on the 

water surface in x, y directions, which can be wave radiation stresses, wind driving forces, or the 

combination of both; bx and by are the bed shear stresses in x, y directions; fc is the Coriolis force 

coefficient. Eq. (2.1) is the mass balance equation. Eqs. (2.2) and (2.3) are the momentum balance 

equations in x, y directions, respectively. 

 Walters and Cheng (1979) developed a finite element 2-D depth-averaged hydrodynamic 

model which computes the tidal and residual currents in an estuary. FESWMS (Finite Element 

Surface Water Modeling System) is another finite element hydrodynamic model that simulates 

two-dimensional, depth-integrated, steady or unsteady surface-water flow in rivers, lakes, 

estuaries, reservoirs, and coastal areas. It supports both super and subcritical flow analyses, and 

area wetting and drying (Froehlich 1989). MIKE 21, developed by Danish Hydraulic Institute 

(DHI), is one of the popular modeling systems for 2-D free-surface flows in lakes, estuaries, bays, 

coastal areas, and seas where stratification can be neglected. It can be applied to a wide range of 
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hydraulic phenomena, including tidal currents, storm surges, secondary circulations (eddies and 

vortices), dam-breaks, and tsunamis (DHI, 2007a). Wu et al. (2011) proposed an implicit 

finite-volume flow model, which computes the depth-averaged 2-D shallow water flow, 

accounting for the effects of wave radiation stresses and turbulent diffusion induced by currents, 

waves, and wave breaking. 

 

2.1.2 3-D Hydrodynamic Models 

 3-D models once are considered as impractical in the economic view. However, with the 

computer hardware and computational techniques development, for instance, multi-cores CPU, 

parallel computing, GPU computing, etc., the computational burden associated with the use of 3-D 

models becomes much less. Therefore, the developments and applications of 3-D hydrodynamic 

models increase rapidly. In 3-D models, the flow field is determined by the Reynolds-averaged 

continuity Eq. (2.4) and Navier-Stokes equations Eq. (2.5), which are written as follows: 

 0i

i

u

x





 (2.4) 

 
  1 1i j iji

i

j i j

u uu p
F

t x x x



 

  
   
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 (2.5) 

where ui (i = 1, 2, 3) are the components of mean flow velocity; Fi are the components of external 

forces, such as gravity and Coriolic force, per unit volume; p is the mean pressure; and ij are the 

stresses, including both viscous and turbulent effects. 

  However, solving the 3-D Navier-Stokes equations to compute the long and short waves 

or current and waves together in detail is very time-consuming and impractical in the time being, 
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even with the ever-increasing capacity of computing technologies. The often used alternative 

approach is the phase-averaged model in which only the long wave or current is simulated using a 

phase-averaged 3-D shallow water flow equations that include the radiation stresses generated by 

short waves. The short wave characteristics and radiation stresses are determined by a spectral 

wave model that solves the wave action balance equation. This phase-averaged modeling approach 

can be much cheaper than the full 3-D model solving the Navier-Stokes equations.   

CH3D-WES (Curvilinear Hydrodynamics in 3-Dimensions - Waterways Experiment 

Station) is a time-varying 3-D numerical hydrodynamic model developed in 1996. It makes 

hydrodynamic computations on a curvilinear or boundary-fitted planform grid. Physical processes 

impacting circulation and vertical mixing that are modeled include tides, wind, density effects 

(salinity and temperature), freshwater inflows, turbulence, and the effect of the earth's rotation 

(Chapman et al. 1996). DHI also developed a hydrodynamic model MIKE 3 which solves the 

Reynolds-averaged Navier-Stokes equations and are suitable for studying phenomena like tidal 

flows, storm surges, wave-driven flows, oceanographic circulations, and density-driven flows. 

The user can choose between a hydrostatic pressure assumption and a generalized sigma 

coordinate transformation, and a non-hydrostatic pressure formulation and a z-level coordinate 

formulation (DHI 2007b). Chen et al. (2003) proposed an unstructured grid, finite-volume, 3-D 

primitive equation ocean model for studying the coastal oceanic and estuarine circulations. The 

model consists of momentum, continuity, temperature, salinity, and density equations and is 

closed physically and mathematically using the Mellor and Yamada leve-2.5 turbulent closure 

submodel. The irregular bottom slope is represented using a -coordinate transformation and the 

horizontal grids comprise unstructured triangular cells. ROMS (Regional Ocean Modeling 
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System) is a 3-D, free surface, terrain-following numerical model that solves finite-difference 

approximations of Reynolds-averaged Navier-Stokes equation using the hydrostatic and 

Boussinesq assumptions (Chassignet et al. 2000, Haidvogel et al. 2000). Warner et al. (2008) 

modified it to include physical processes that are important in nearshore regions by adding 3-D 

radiation-stress terms in the momentum equations based on Mellor (2003, 2005), along with 

effects of a surface wave roller model. The modified ROMS model is applicable for fluvial, 

estuaries, shelf, and nearshore environments. Delft3D-FLOW, developed by Delft Hydraulics 

(2010), is 3-D hydrodynamic simulation program which calculates unsteady flow phenomena that 

result from tidal and meteorological forcing on a rectilinear or a curvilinear, boundary fitted grid. 

The hydrodynamic conditions calculated in the Delft3D-FLOW can be used as input to the other 

modules of Delft3D suite to carry out simulations of flows, sediment transport, waves, water 

quality, morphological development, and ecology in river, estuarine, and coastal areas. 

 

2.1.3 Wave Radiation Stress 

In a coastal circulation model, wave-current interaction is necessary to be considered in the 

hydrodynamic processes. Mathematically, an additional force due to waves should be introduced 

into the momentum equations. This momentum flux, referred to radiation stress, has been studied 

by Longuet-Higgins and Stewart (1964) (LHS), which is a vertically integrated formula, 

successfully explain the wave setup and setdown inside and outside the surface zone. The 

development of this concept provided a better understanding of wave-induced circulation. With 

the additional force due to waves, the momentum equation (2.5) is written as   
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where the extra term Sij added to the right hand side is the radiation stress. Recent studies have 

used 3-D circulation models and LHS to study wave-induced circulation and obtained vertically 

varying currents, eddy coefficients, and reasonably accurate wave-induced circulation (Xie et al 

2001, Sheng and Alymov 2002, Sheng et al. 2010a and 2010b). Mellor (2003 and 2008) and Xia et 

al (2004) questioned the accuracy of the vertically uniform LHS and developed depth-dependent 

radiation stress formulations: M03 (Mellor 2003), X04 (Xia et al 2004), and M08 (Mellor 2008), 

which are based on linear wave theory. Both M03 and M08 consider the wave effects on 

three-dimensional questions of motion. M03 contains error and fails to produce radiation stress of 

LHS when vertically integrated (Ardhuim et al 2008). Later Mellor (2008) revised the formula and 

proposed M08, whose vertically integrated form is consistent with LHS. Xia et al (2004) 

developed a depth-dependent radiation stress (X04) by a simplistic approach which invokes the 

small amplitude approximation in part of the LHS to allow interchange of the time integration and 

vertical integration. 

 

2.2 Sediment Transport Processes 

In recent years, there has been a growing interest in the sediment transport processes 

involved in estuarine and coastal water management, including erosion, deposition, advective and 

diffusive transport, long term geomorphological processes, estuarine and coastal inlet stability, 

and transport of heavy metals and toxic waste via adsorption of contaminants on sediment 

particles. The various physical processes that can affect the distribution of sediment in a coastal 
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environment are shown in Fig. 2.1. In a river, the driving force of the sediment movement is the 

flow itself. In the nearshore region, however, the driving forces are not only currents but waves as 

well. Transporting mechanisms such as wave breaking, onshore or offshore currents in the vicinity 

of sea bottom and oscillatory fluid motion in the swash zone are characteristics of the coastal 

region. Therefore, estuarine and coastal sediment dynamics is very complex and quantitative 

understanding of these various processes is crucial to coastal engineering projects and 

management. 

 

 

Figure 2.1 Schematics of Dominant Mechanisms Affecting Sediment Distribution in Shallow 

Coastal Waters (after Sheng and Bulter 1982) 

 

In the coexistence of waves and currents, the bed shear stress is contributed by 

wave-related and current-related bed shear stresses and the combination of two is not in a simple 

linear relation. It has been shown that wave motion can generate sediment suspensions with large 
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concentrations in the near-bed region. The basic mechanism is the entrainment of particles by the 

stirring wave action and the transport of particles by the current motion. The transport of bed 

material particles can be in the form of bed-load and suspended load, depending on the size of the 

bed material particles and the hydrodynamic conditions. The suspended load may also contain 

some wash load which is governed by the upstream supply other than the composition and 

properties of the bed material. When the value of the bed-shear velocity just exceeds the critical 

value for initiation of motion, the particles will be rolling and sliding or both in continuous contact 

with bed. For increasing the values of the bed-shear velocity, the particles will be moving along the 

bed by more or less regular jumps, which are called saltations. When the values of the bed-shear 

velocity exceeds the settling velocity of the particles, the sediment particles can be lifted to a level 

at which the upward turbulent forces will be comparable with or of higher order than the 

submerged weight of the particles and as results the particles may go in suspension (Van Rijn 

1993). The sediment transport capacity or the capacity of flow-carrying sediment is defined as the 

quantity of sediment that can be carried by the flow without net erosion or deposition at an 

equilibrium state in a steady, uniform flow. In such case, the sediment transport rate is a function 

of flow conditions and sediment properties and can be estimated by various empirical formulas in 

literature (Wu 2007). The empirical sediment transport capacity formulas are reviewed in Section 

2.3. However, in conditions of unsteady and non-uniform flow, the actual sediment transport rate 

may be smaller or larger than the transport capacity resulting in net erosion or deposition assuming 

sufficient availability of bed-material. The bed-load transport in unsteady and non-uniform flow 

can be modeled by a formula type of approach because the adjustment of the transport of sediment 

particles close to the bed proceeds rapidly to the new hydraulic conditions. Suspended load 



 

 

16 

transport, however, does not have such a behavior because it takes time to transport the particles 

upward and downward over the depth and therefore it is necessary to model the vertical 

convection-diffusion process (Van Rijn 1993). Therefore, the modeling of sediment transport rate 

under unsteady and non-uniform flow conditions is necessary to provide prediction with sufficient 

accuracy. 

Numerous models of varying complexity aim to describe sediment processes in coastal 

regions.  From the dimensional viewpoint, the sediment models are simply categorized into 1-D, 

2-D, and 3-D models. Even though 1-D models are sometimes used for longshore sediment 

transport, most of the widely used coastal models are primarily 2-D depth-averaged and 3-D. 

 

2.2.1 2-D Depth-averaged Sediment Transport Model 

 The 2-D depth-averaged models solve the depth-averaged sediment transport equations to 

describe the governing suspended sediment transport processes. In 2-D depth-averaged sediment 

transport model, the near-bed suspended sediment concentration, which is required to compute 

sediment deposition rate, can be related to the depth-averaged concentration by analytical 

relationships for the equilibrium (steady-state) vertical concentration profiles (O’Connor and 

Nicholson 1988). Therefore, a depth-averaged 2-D model can adequately reproduce the erosion 

and deposition processes in many situations and it is still very useful for many practical 

engineering applications due to less requirements of data and computer resources in comparison 

with a 3-D model. 

The governing equation of 2-D depth-averaged sediment transport model is 
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where ck and c*k are the actual and equilibrium concentrations of the kth size class of the suspended 

load, respectively; sk is settling velocity of the kth size class of the sediment particle; Es,x and Es,y 

are the horizontal effective diffusion (mixing) coefficients of sediment in x, y directions, 

respectively;  is the adaptation or recovery coefficient; sk is a correction factor for suspended 

load: 
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where   is the water surface elevation; zb is the bed elevation, and  is the thickness of the 

bed-load zone. 

Ariathurai (1974) developed a 2-D finite element sediment transport model for both 

cohesive and non-cohesive sediments. Hayter and Mehta (1986) developed a finite element 

cohesive sediment transport model (CSTM-H), which is a depth-averaged 2-D model using the 

Galerkin weighted residual numerical scheme. Andersen et al. (1988) presented a 2-D 

morphological model for coastal waters, where the sediment transport is computed by a formula 

taking into account the effect of waves. Letter et al. (1998) developed a 2-D finite element model 

for depth-averaged sediment transport in rivers, lakes, reservoirs, estuaries, and coastal areas. 

Cookman and Flemings (2001) developed a 2-D sediment transport model for steady-state, wind- 

and wave-driven coastal circulation model. Ding et al. (2004) introduced the formulations of 

sediment transport rate under combination of wave and current to the CCHE2D-Coast, which is 
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based on a non-orthogonal mesh system, to simulate the sediment transport and seabed 

morphological changes in different coasts with complex bathymetries and shorelines. Sanchez and 

Wu (2011) developed a depth-averaged sediment transport model with emphasis on 

morphodynamic processes near coastal inlets and navigation channels. The model solves the 

depth-averaged two-dimensional non-equilibrium transport equation of total-load sediment, 

considering bed-material hiding and exposure, avalanching and sediment transport over hard 

bottoms. 

 

2.2.2 3-D Sediment Transport Model 

The accuracy of 2-D sediment transport models may not be sufficient for siltation and 

erosion quantities in situations dominated by 3-D flow patterns, such as in harbor entrances due to 

flow separation, near-shore wave-induced currents, wind and density currents (O’Connor and 

Nicholson 1988). In addition, one should notice some disadvantages of 2-D models, such as 

approximation of the near-bed suspended sediment concentration. Consequently, a 3-D sediment 

transport model, which solves the complete 3-D advection-diffusion equation for suspended 

sediment concentration, is generally desirable from a physics point of view. In 3-D models, both 

the horizontal and vertical components of the sediment transport processes are considered.  

The governing equations of the 3-D sediment transport model is 
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where i3 is the Kronecker delta and s is the turbulent diffusivity of sediment. 

An early 3-D model of suspended sediment transport, based on a probabilistic approach 
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was developed by Chiu (1967) but the verification tests indicated that large computer operating 

requirements render this type of scheme uneconomical at that time. Later, Wechsler and Cogley 

(1977) established a 3-D model with a mixed analytical and finite difference approach. Van Rijn 

(1987) developed a 3-D mathematical model (SUTRENCH-3D) to study the morphological 

processes in case of suspended sediment transport.  O’Conner and Nicholson (1988) developed a 

3-D sediment transport model which is based on a splitting technique and a mixed characteristics 

and finite difference approach. Wu et al. (2000a) developed a 3-D numerical model for sediment 

transport model in open channel. In this model, the suspended-load transport is simulated through 

the general convection-diffusion equation with an empirical settling-velocity term, bed-load 

transport is simulated with a nonequilibrium method and the bed deformation is obtained from an 

overall mass-balance equation. Olsen (2003) proposed a 3-D CFD model to compute the formation 

of the meandering pattern in an initially straight alluvial channel. The sediment transport was 

computed as bed load in addition to solving the convection-diffusion equation for suspended 

sediment transport. The bed changes were calculated and the grid was altered during the 

computation as channel erosion and deposition caused wetting and drying. Examples of some of 

the most widely used 3-D models are: NOPP community sediment transport model, a 3-D model 

implements algorithms for an unlimited number of user-defined sediment classes and for the 

evolution of the bed morphology. It is incorporated in a ROMS with a two-way coupling between 

a wave model and the sediment transport module (Warner et al. 2008); DELFT3D, a sediment 

module implements algorithms for up to five different classes, which have to be specified as either 

mud or sand (Van Rijn and Walstra 2003); and ECOM-SED, a model commercialized by 

Hydroqual (Hydroqual 2002) aiming to model sediment transport for both cohesive and 
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non-cohesive sediments, however, only two size classes of each are allowed.  

 

2.3 Formulas for Sediment Transport Rate under Current and Waves 

2.3.1 Bed-load Sediment Transport Rate 

 In general, there exist two main approaches for calculating the bed-load sediment transport 

capacity. The first one is called “stochastic concepts” proposed by Einstein (1942), who carefully 

observed the motion of sand particles under unidirectional flow and found that a specific sand 

particle entrained or picked up by the flow remained in motion for a certain distance defined 

stochastically, stopped to reside on the bottom for a certain period, and then repeated the “pick-up” 

and “reside” process. Based on this observation he concluded that the pick-up rate of sand particles 

is closely related to the time period during which the lift force acting on the particle is greater than 

its immersed weight and introduced a well-known formula for calculating sediment transport 

under unidirectional flow. However, the transport of sediment particles is very complex, not only 

affected by the pick-up rate of a particle as introduced by Einstein (1942), but also based on many 

additional hypotheses. As a result, this approach has barely been applied to estimate the sediment 

transport rate in coastal area.  

Later after Einstein (1942), Bagnold (1963) suggested a different approach that the 

sediment transport rate is closely related to the fluid energy, or power, generated by the fluid 

motion in the vicinity of the bed. Thus, this concept is called “power model”, which assumes that 

the number of sediment particles in motion is related to the bottom shear stress and that the 

particles move at a certain speed according to the flow. This approach is conceptually and 

mathematically simpler than the stochastic approach, and several sediment transport formulas 
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(Dou 1964, Yalin 1972, Van Rijn 1984a, and Wu 2000b) developed so far have been based on the 

power model. In addition, many formulas developed to calculate the bed-load sediment transport 

rate under coexistence of current and waves are related to the bottom bed shear stress. Several 

bed-load sediment transport formulas that consider both current and wave effects are described 

below. 

 Based on Bagnold’s (1966) energetics-based sediment transport model for streams, Bailard 

and Inman (1981) derived a formula for the time-varying transport of bed load over a plane sloping 

bed. It can take into account the effect of the instantaneous velocity profile from current and waves 

combined. The formula can be written as 
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where sbq  is the volumetric bed-load sediment transport rate; s is the specific gravity of sediment; 

u  is the instantaneous velocity vector; is the angel between wave and current directions; b is the 

bed-load efficiency; and < > represents the average overall several wave periods. 

Dibajnia and Watanabe (1992) established a transport rate formula to calculate sheet sand 

transport rate under asymmetric oscillations and superimposed steady current. The formula 

divides the sediment transport into two half-cycles due to the presence of waves. During the first 

half-cycle, sediment moves in the direction of wave propagation, and then it moves in the opposite 

direction during the second half-cycle. An advantage of the formula is that it takes into account a 

possible quantity of sand still in suspension after each half-cycle that moves in the opposite 

direction, which is referred to as a “phase leg”. The volumetric sediment transport rate is given as 
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where  is a parameter defined as 
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where the subscript c and t represent the first (crest) and second (trough) wave cycles, respectively; 

u is the equivalent sinusoidal velocity amplitude; T is the wave period;  represents the amount of 

sand entrained and settled during the half-period; and ’ represents the amount of suspended sand 

remaining from one half cycle to the next half cycle. The following relations are used to estimate 

the values of  and ’: 

 

 

 

  if  1  

0

  if  1  

1

  if  1  

0

  if  1  

1

s c
c c

c

c

s c
c

c

s c
c c

s t
t t

t

t

s t
t

t

s t
t t

T

d

T

d

T

d

T

d

T

d

T

d

























 
   
   


   

 
   
 


  

  
   
 

    


    

 (2.13) 

where c and t are defined as 
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 Dibajnia and Watanabe (1996) extended their bed-load transport rate formula (Dibajnia 

and Watanabe 1992) to mixed sand transport. The extended formula has been verified by using 

sand mixture composed of a find sand with media diameter of 0.2 mm and a coarse sand with 

median diameter of 0.87 mm. In the extended formula, Eq. (2.14) above was modified as 

   
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u
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where pbk is the fraction of the kth size class in the sediment and ak is empirical parameter 

depending on the ratio of the mean diameter of the kth size class of sediment particle to that of the 

other size classes. 

Ribberink (1998) proposed a bed-load transport formula for steady unidirectional flows, 

oscillatory flows, and oscillatory flows with superimposed net current. The formula assumes the 

instantaneous solid flux is a function of the difference between the actual time-dependent bed 

shear stress and the critical bed shear stress. It has been tested over 150 laboratory experiments 

including more than 75 bed-load transport measurements in oscillating water tunnels. The 

Ribberink (1998) formula is written as 
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where        0.5 / 1cwt f u t u t s gd      is the time-dependent Shields parameter and cr is the 

critical Shields parameter. 

Hassan et al. (2001) applied Ribberink’s (1998) bed-load transport formula to calculate the 

transport rate of nonuniform material under oscillatory sheet-flow with considering the hiding and 

exposure effects. Comparing the experimental results with the predicted values, they found that the 
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formula led to better prediction by multiplying the Shields parameter in Eq. (2.16) by a 

hiding/exposure correction factor eff of Day (1980): 
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Van Rijn (2007a) extended a bed-load transport formula in steady river flow to coastal 

flow applying an intrawave approach together with a method to predict bed roughness under 

current and waves. The formula is expressed as 
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where ,b cw   is the instantaneous grain-related bed shear stress due to both current and wave; b,cr is 

the critical bed shear stress according to the Shields;  
1/3

2

* 50 1 /D d s g      is the 

dimensionless particle size;  is the kinematic viscosity coefficient; and fsilt = dsand / d50 is the silt 

factor with fsilt = 1 for d50 > dsand. Van Rijn (2007c) also investigated four methods to take into 

account the hiding and exposure effect over graded bed in river and coastal flows, in which the 

dimensionless bed shear stress parameter T, defined as    , ,/ /cr cr b b cr b crT            for 

uniform sediment, is modified. Thus, the bed-load transport formula is capable to apply for 

nonuniform sediment transport in both river and coastal flows with the following four approaches: 

 

   
50 50

50 50

, 50 , , 50 , ,

, , ,

, , ,

, , ,

Method A:     / / /

Method B:     /

Method C:     /

Method B:     /

k k

k k

k k b k k b cr d k b cr d

k k k cr d cr d

k k k cr d cr d

k k cr d cr d

T d d d d

T

T

T









    

   

   

  

   

   

   

   

 (2.19) 



 

 

25 

where 
b   is the effective bed shear stress due to current and waves; 

50, ,b cr d is the critical shear 

stresses based on d50;  /k b s kgd         and  , , , /
k kcr d b cr d s kgd         are the effective 

mobility parameters based on dk, respectively;    
2

50log 19 / log 19 /k kd d      is the 

hiding-exposure factor according to Egiazaraoff (1965);  
0.25

50/k kd d   is the correction factor 

of effective grain shear stress. Method B is similar to Method A but the  correction is not applied. 

Method C is based on the fraction diameters without roughness correction. Method D is also based 

on the fraction diameters, but no correction is applied. 

Camenen and Larson (2007) developed a formula for bed-load transport under coexistence 

of current and waves based on the Meyer-Peter and Muller (1948) formula. The developed formula 

has been validated against a large set of data of uniform sediment under current only, waves only, 

and coexistence of current and waves. The Camenen and Larson (2007) bed-load formula is 

expressed as follows: 

   ,3

50 ,

,

1 exp
cw net cr

sb w cw m

cwcw net

q a s gd b
 




 
   

 
 (2.20) 

where aw  and b are empirical coefficients; cw,net, cw,m, and cw are the net, mean, and maximum 

Shields parameters due to wave-current interaction, respectively. The detailed methods to 

calculated cw,net, cw,m, and cw can be referred to the original publication. 

 Most recently, van der A et al. (2013) developed a sand transport formula for non-breaking 

waves and currents. The formula is especially developed for cross-shore sand transport under 

wave-dominated conditions and is based on the semi-unsteady, half wave-cycle concept, with bed 

shear stress as the main forcing parameter. It also takes account into the unsteady phase-lag 
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between velocities and concentrations and the effect on the net transport rate related to flow 

acceleration skewness. The van der A et al. (2013) formula is written as, 
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where   is the Shields parameter with the subscripts “c” and “t” implying the “crest” and “trough” 

half cycle respectively; Tcu and Ttu are the durations of accelerating flow within the crest and 

trough half cycles, respectively; cc represents the sand load that is entrained during the wave crest 

period and transported during the crest period; tc represents the sand load that is entrained during 

the wave crest period and transported during the trough period; tt represents the sand load that is 

entrained during the wave trough period and transported during the trough period; and tc 

represents the sand load that is entrained during the wave trough period and transported during the 

crest period. The details of calculating cc, tc, tt, and tc can be referred to van der A et al. 

(2013). The net bed load transport rate for graded sand conditions is calculated as follows: 
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The correction factor  
0.25

50/k kd d  defined by van Rijn (2007c) is applied to the effective 

Shields parameter to account for the hiding and exposure effect among different size fractions. 

 

2.3.2 Suspended-load Sediment Transport Rate  

 Similar to bed-load transport formulas, some of the suspended-load formulas are based on 

the “power model” proposed by Bagnold (1966). Using the concept of “power model” as for the 
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bed-load transport, Bailard (1981) proposed a formula for suspended load under coexistence of 

current and waves 
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where s is the suspended load efficiency. 

In addition to “power concept”, if one assumes the suspended particles move at the same 

speed as the fluid, the suspended-load sediment transport rate can be evaluated by integrating the 

product between vertical distributions of the suspended sediment concentration and velocity. In 

order to obtain the solution of the suspended sediment transport rate, the sediment concentration at 

a certain reference level must be specified. This sediment concentration is called reference 

concentration or near-bed suspended-load concentration. The vertical distributions of velocity and 

suspended-load concentration are also needed to specify in order to calculate the suspended-load 

transport rate. 

 

2.3.2.1 Vertical Distribution of Velocity 

In the presence of current only, the vertical distribution of current velocity can be 

approximated by two common methods. One is the power-law distribution of velocity, 
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where z is the vertical coordinate above the bed, Uc is the depth-averaged current velocity and m is 

empirical coefficient with a value of 6 (Shamov 1959) or 7 (Zhang 1961). The other approach is 

the logarithmic distribution of velocity, 
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where U* is the bed shear velocity,  is the constant of Von Karman with a value of 0.4, zo is the 

zero-velocity level at which u = 0. 

 Nikuradse (1993) found that the logarithmic velocity profile over a bed of closely packed 

spheres of diameter d goes through zero at z0 = d/30. Based on this observation, Nielsen (1992) 

defined the equivalent Nikuradse bed roughness as ks = 30z0. Applying the Nikuradse bed 

roughness, logarithmic velocity profile Eq. (2.25) can also be written as 
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 (2.26) 

In the coastal environment, waves and current are present at the same time. The changes to 

the current profile induced by waves should be considered in coastal sediment transport 

calculations. The effect of presence of waves on the current is intimately related to the processes 

taking place within the wave boundary layer. Although the thickness of the wave turbulent 

boundary layer is quite small when compared to the water depth, it still plays a very important role 

in determining the rate of water fluxes and sediment transport. As a consequence of near-bottom 

wave–current interaction, the prediction of the near-bottom wave–current velocity profile is 

sensitive to the presence of waves. This influence of the wave induced turbulence on the mean 

current can be schematized by introducing an ‘‘apparent’’ bed roughness, which is larger than the 

physical bottom roughness (Madsen 1991). Lundgren (1972) realized that waves change the 

current profile by increasing the eddy viscosity inside a thin layer (z < L) near the bed. Outside this 

layer, the waves do not introduce any mixing so the outer current profile has the usual logarithmic 
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form but with a larger zero intercept of z1 which is written as 
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The wave effect on the outer current profile amounts to a constant shift, 
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or an apparent roughness increase from 30z0 to 30z1 (Nielsen 1992). Inside the thin layer z < L, the 

current profile is 
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where F = L/z0. 

Van Rijn (1993) also proposed a two-layer system to account for the wave effects in the 

near-bed layer, 
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where ks,c is the current-related bed roughness, ka is the apparent roughness related to wave-current 

interaction equal to  , min 10,exp /s c w ck u U   ,  r = 0.8 + - 0.3
in which  is the wave angle, w 

is the maximum thickness of wave boundary layer equal to 0.072Aw(Aw/ks,w)
-0.25

 in which ks,w is the 

wave-related bed roughness. 
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2.3.2.2 Vertical Distribution of Suspended-load Concentration 

In the riverine system, the vertical distribution of suspended-load concentration usually 

can be expressed as the Rouse distribution, 
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where cb* is the near-bed suspended-load concentration,  is the reference level, s is the settling 

velocity, k is von Karman constant with a value of 0.4, and s is the Schmidt number, related to 

sediment size, concentration, etc. 

 Van Rijn (1984c) proposed a two-layer system concentration profile, 
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The concentration profile for z<0.5h is exactly the Rouse distribution. 

Williams et al. (1999) developed a concentration distribution which was validated using 

measured data under combined waves and current, which can be used in the coastal environment. 

The distribution can be expressed as 
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Where  * *wcR wGwc s U U    
 

, *wcRU  is the time-averaged bed-shear velocity for 

ripple-scale roughness, *wGU  is the peak wave-only bed-shear velocity for grain-scale roughness, 

and Ls is the vertical length scale for the suspended-load concentration distribution defined by 
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Nielsen (1992), which is determined as 
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The parameters *wcRU  and *wGU  are calculated following Williams et al. (1999).  

 Van Rijn (2007b) investigated the suspended sediment transport by current and waves and 

suggested the vertical distribution of concentrations can be represented by the equation as follows 
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where c is the mean volume concentration at elevation z; (1-c)
5
 corresponds to the decrease in the 

settling velocity for large concentrations; and s,cw is the mixing coefficient for the wave-current 

interaction. The reference concentration close to the bed is given by 
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where  is defined as the maximum value of half the wave-related and half the current-related bed 

roughness with a minimum value of 0.01 m. With the methods defined in Eq. (2.19), Van Rijn’s 

suspended load formula can be applied to nonuniform material. 

 Camenen and Larson (2007) assumed an exponential concentration profile for the 

sediment (an exponential profile for the concentration converges to a physical value when z → 0). 

The suspended load transport can be written as 
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where  is the sediment diffusivity related to the energy dissipation D: 
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where Db, Dc, and Dw, are the energy dissipation from wave breaking, bottom friction due to 

current, and bottom friction due to waves; kb, kc, and kw are coefficients. The reference 

concentration in Eq. (2.37) is defined as 

 
* , exp 4.5 cr

b cR cw m

cw

c A





 
  

 
 (2.39) 

where  3

*3.5 10 exp 0.3cRA D   . 

There exist a few more reference concentration formulas in literature. The expression proposed by 

Smith and Mclean (1977) is 
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where 0 = 2.4 × 10
-3

 is a constant, and C0 = 0.65 is the maximum permissible concentration. Some 

other formulas are similar in form to that of Smith and McLean (1977), e.g. Garcia and Parker 

(1991) and Zyserman and Fredsoe (1994). These formulas follow the form of 
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where A, cm, and n are constants, and X is a combination of the appropriate dimensionless variables 

(such as the Shields parameter ). In the formula of Garcia and Parker (1991), 0.6

* /p sX u R  , 

 50 501 /pR d s gd   , A = 1.3 × 10
-7

, cm = 0.3, and n = 5. Zyserman and Fredsoe (1994) defined 

crX    , A = 0.331, cm = 0.46, and n = 1.75. 
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CHAPTER III 

NONUNIFORM SEDIMENT TRANSPORT CAPACITY AND NEAR-BED SUSPENDED 

SEDIMENT CONCENTRATION UNDER CURRENT AND WAVES 

 

 Quantitatively predicting sediment transport and morphologic evolution in coastal areas is 

necessary in support of engineering activities and studies. It is desirable to develop reliable 

formulas that can predict the equilibrium sediment transport rate to have a quick assessment for the 

engineering projects and support the predictive numerical models of morphology change and 

channel evolution in coastal areas. In addition, capturing the details of the near-bed sediment 

processes in coastal models is essential to predict the bottom change caused by waves and current, 

the entrainment of bed sediment into suspension, etc. 

The influence of nonuniform or heterogeneous sediment properties on coastal processes is 

commonly underestimated due to the difficulty in characterizing and quantifying these types of 

sediments (Holland and Elmore, 2008). The tendency of many empirical formulas of coastal 

sediment transport, such as Bijker (1968), Van Rijn (1984b, 1993), Bailard (1981), Dibajnia and 

Watanabe (1992), Ribberink (1998), and Camenen and Larson (2007), is to assume uniform or 

homogeneous sediments (e.g. a well-sorted fine sand). There exist quite a few near-bed 

concentration relationships in literature, for instance, Smith and McLean (1977), Van Rijn 

(1984b), Garcia and Parker (1991), and Camenen and Larson (2007), which were designed for 

uniform sediments as well. Extensive databases have been established for single-sized sediment 
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transport based on the past laboratory and field measurements (SEDMOC, 1999; Camenen and 

Larson, 2007). In contrast, very few studies have concerned nonuniform sediment transport in 

coastal environments. Dibajnia and Watanabe (1996) extended their bed-load transport rate 

formula (Dibajnia and Watanabe, 1992) to mixed sand transport. Hassan et al. (2001) applied 

Ribberink’s (1998) bed-load transport formula to calculate the transport rate of nonuniform 

material under oscillatory sheet flow. Van Rijn (2007a, b, c) extended his bed-load and 

suspended-load transport formulas in steady river flow to coastal flow under currents and waves 

and investigated the hiding/exposure correction factors for computing multiple-sized sediment 

transport. Recently a nonuniform sand transport formula was developed by van der A et al. (2013), 

considering the hiding and exposure effect through a correction factor, as well as the skewed, 

asymmetric waves. In recent years, laboratory experiments on mixed sediment transport under 

coexisted currents and waves have been conducted by several groups (Inui et al., 1995; Dibajnia 

and Watanabe, 2000; Jacobs and Dekker, 2000; Sistermans, 2001; Ahmed, 2002; De Meijer et al., 

2002; O’Donoghue and Wright, 2004; Hassan and Ribberink, 2005) and can be used to validate 

multiple-sized sediment transport formulas.  

Nonuniform sediment transport exhibits difference from uniform sediment, even when the 

mean grain size is the same for both cases. The hiding, exposure, and armoring among different 

size classes in the nonuniform bed material may significantly affect sediment transport, 

morphological change, bed roughness, wave dissipation, etc. For example, it is often observed that 

bed sediment coarsening can affect the navigation channel near a coastal inlet, and a model 

prediction based on the assumption of single-sized sediment often overpredicts the channel depth 

there. It is necessary to develop multiple-sized sediment transport capacity formula and a near-bed 
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suspended sediment concentration formula to improve the accuracy and reliability of analysis 

methods and models for coastal sedimentation. In this chapter, the Wu et al. (2000b) bed-load and 

suspended-load formulas are extended to multiple-sized sediment transport under non-breaking 

waves and currents for coastal applications. A new formula to predict the near-bed suspended-load 

concentration under current and waves is also proposed. Methods are developed to determine the 

bed shear stress due to waves only and combined current and waves, and in turn applied to 

compute the bed-load and suspended-load transport rates. Different methods in literature have 

been tested and chosen to determine the edge of the bed-load layer, i.e., the reference level. 

 

3.1  Extension of the Wu et al. Formula to Nonuniform Sediment Transport under Current and 

Waves 

Wu et al. (2000b) related the bed-load transport rate to the non-dimensional excess grain 

shear stress and the suspended-load transport rate to the rate of energy available in the flow 

system. Through dimensional analysis and calibration using available measurement data, the 

relations for the fractional transport rates of non-uniform bed load and suspended load were 

derived as 
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where qb*k and qs*k are the bed-load and suspended-load transport rates of sediment size class k by 

volume per unit time and width (m
2
s

-1
); dk is the representative diameter of size class k of the 

sediment mixture; pbk is the fraction of sediment size class k in the bed material; g is the 

gravitational acceleration; γs and γ are the specific weights of sediment and water, respectively;  is 

the shear stress on the wetted perimeter of the cross-section including bed and banks; 
b
  is the bed 

shear stress corresponding to grain roughness; τcri,k is the critical shear stress for the incipient 

motion of sediment size k on the bed; ωsk is the settling velocity; and U is the depth-averaged flow 

velocity. 

The Wu et al. (2000b) formula has been extensively tested by its developers using a large 

set of measurement data. It has been recommended independently by international peers (e.g., 

Ribberink et al., 2002) as one of the top choices in literature for determining the nonuniform 

sediment transport under current. Its advantages include: a) the formulations are simple but well 

proven in sediment transport theory; b) it relates the bed-load transport to the grain shear stress and 

the suspended-load transport to the energy of the flow system, which are commonly accepted 

concepts in sedimentation engineering; c) it considers the effect of bed material size composition 

in the hiding and exposure correction factor, which is omitted in many other existing formulas; and 

d) it has been tested using extensive data sets of single-sized and multiple-sized sediment transport 

in rivers. 

In most coastal processes, the sediment transport is simultaneously influenced by both 

current and waves. However, the interaction of the current and wave induced bed shear stresses is 

nonlinear, which is one of the difficult effect to estimate (Fig. 3.1). To apply Eqs. (3.1) and (3.2) to 

sediment transport under current and waves in coastal context, the most important step is to 
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determine the bed shear stress.  In river systems, the flow is usually quasi-steady, so that the bed 

shear stress is often estimated through measurement of energy slope. For oscillatory flows or 

combined quasi-steady and oscillatory flows, the energy slope is not easy to be measured directly, 

and thus the bed shear stress must be estimated through the theoretical or empirical models of the 

bed roughness. For a sediment bed with sand grains and bed forms (such as sand, ripples, and 

dunes), the bed shear stress is composed of two contributions: the grain shear stress due to the drag 

on individual sand grains, and the form shear stress due to the pressure field acting on the ripples or 

larger bedforms, 

 b b b      (3.3) 

where b , b  , and b  are the total, grain, and form shear stresses, respectively. The methods used 

in the extended Wu et al. sediment transport formula to determine the bed shear stress due to 

current only, waves only and combined current and waves are described below.  

 

 
 

Figure 3.1 Schematic diagram for nonlinear interaction between current and waves bed shear 

stresses (after Soulsby 1997) 
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3.1.1  Bed Shear Stress due to Current 

The bed shear stress due to current is still related to the depth-averaged current velocity 

through the Manning equation, 
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2
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gn
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h


   (3.4) 

where b,c is bed shear stress due to current; Uc is the depth-averaged current velocity; and n is the 

Manning roughness coefficient. The Manning roughness coefficient is converted from the 

equivalent bed roughness height estimated using empirical formulas or specified according to the 

flow and bed conditions. Using the relation between Manning roughness coefficient and Chezy 

coefficient, the Manning roughness coefficient is determined herein as 
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h k
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where ks is the equivalent roughness height, which consists of grain roughness sk   and ripple 

roughness sk  ,   

 s s sk k k    (3.6) 

Note that some scientists (e.g., Camenen and Larson, 2007; van der A et al., 2013) include 

the roughness due to sediment transport when calculating the total equivalent bed roughness in Eq. 

(3.6), whereas others (e.g., Einstein, 1950; van Rijn, 1984a, b) do not. The present study chooses 

not to include the roughness due to sediment transport since it is usually much smaller than the 

form (ripple) roughness.  
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The grain roughness height has been given different values in literature. When the bed 

friction is determined using the Manning equation, the grain roughness height is often set as the 

median sediment size d50 (Strickler, 1923; Wu and Wang, 1999), d65 (Patel and Ranga Raju, 1996), 

or d90 (Meyer-Peter and Mueller, 1948). When the logarithmic formula is used to determine the 

bed friction, 
sk   is given as 2d50 (Camenen and Larson, 2007) and 3d90 (van Rijn, 1984a). In this 

study, 
sk   has a possible range of 1.5d90 to 3d90, with the default value as 3d90. 

The bed forms considered in the coastal context usually are sand ripples. The ripple 

roughness height is estimated using the method of Soulsby (1997), 
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 (3.7) 

where r  and λr are the ripple height and length, respectively; and Ar is a coefficient which varies 

from 5.0 to 40.0. Nielsen (1992) suggested Ar=8.0, and van Rijn (1993) proposed Ar=20.0. The 

default Ar is set as 12.0 in this study.  

In the presence of current only, the ripple height and length are determined using the 

method of Raudkivi (2006): 

  0.35

50245r d   (3.8) 

 0.253

500.074r rd     (3.9) 

where d50 is the sediment diameter in mm. The units of r  and r  in Eqs. (3.8) and (3.9) are mm.  

The bed shear stress due to current in Eq. (3.4) is used for suspended load, whereas in the 

bed-load calculation, one should use the grain shear stress due to current, which is determined by 
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where 
,b c   is the grain shear stress due to current; and n  is the Manning roughness coefficient due 

to grain roughness, which is calculated as 206/1

50dn  . For convenience, Eq. (3.10) can also be 

written as 

 2
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where cf   is the friction coefficient for grain bed shear stress, expressed as 
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 (3.12) 

 

3.1.2 Bed Shear Stress due to Waves 

The bed shear stress due to non-breaking waves is determined using the formula of Jonsson 

(1966): 

 2

,

1

4
b wm w wf U    (3.13) 

where b,wm is the mean bottom wave stress averaged over a wave cycle, Uw is the amplitude of 

wave orbital velocity near the bed at the edge of wave boundary layer, and fw is the bed friction 

coefficient of waves, which is determined using the Soulsby (1997) formula: 

  
0.52

0.237 /w w sf A k


  (3.14) 

where Aw is the wave excursion / 2w w wA U T  , with Tw being the wave period. 
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The mean grain shear stress due to waves is calculated as 

 2

,

1

4
b wm w wf U     (3.15) 

where 
,b wm
  is the mean grain shear stress due to waves averaged over a wave cycle and 

wf   is the 

bed skin friction factor determined by  

  
0.52

0.237 /w w sf A k


   (3.16) 

The equivalent roughness height is determined using Eqs. (3.6) and (3.7). The height and 

length of ripples in the case of only waves are determined using the method of Soulsby and 

Whitehouse (2005): 

 
1.5

50 50

1.0 0.00187 1.0 exp 0.0002

w
r

w w

A

A A

d d

 
    

     
     

 (3.17) 

 

3.5

500.15 1.0 exp 5000r r

w

d

A

    
       
     

 (3.18) 

For asymmetric waves shown in Fig. 3.2, the second-order Stokes theory is applied, i.e. the 

instantaneous wave velocity is described as  

    cos cos2w w wu t U t r t     (3.19) 

where ω is the angular frequency of wave 2 / wT  , and rw is the wave asymmetry coefficient 

defined as rw = uw,max / Uw - 1. Note that the wave asymmetry coefficient rw is different from the one 
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Rw = uw,max / (2Uw) used in several references (e.g., Inui et al., 1995; Dibajnia and Watanabe, 2000; 

Ahmed, 2002). 

 

 
 

Figure 3.2 Sketch of Asymmetric Wave 

 

The bed grain shear stresses averaged in the crest (onshore) and trough (offshore) half 

wave cycles, denoted as , .b wm on
  and , .b wm off

 , are derived as (Camenen, 2002) 

 
2

2

, .

sin sin 21 13 1
1

2 2 6 6 2

w c c
b wm on w w w

c c

U a a
f r r

a a

 
       

 
 (3.20) 

 
2

2

, .

sin sin 21 13 1
1

2 2 6 6 2

w t t
b wm off w w w

t t

U a a
f r r

a a

 
        

 
 (3.21) 
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where /c wc wa T T   and /t wt wa T T  , with 
1

arccos
4

w
wc

w

T U
T

r

  
     

, 
wt w wcT T T  , and 

21 8 wU r   . The bed skin friction coefficient wf   is determined using Eq. (3.16). 

 

3.1.3 Bed Shear Stress due to Combined Current and Waves 

In the case of combined current and waves, the velocity diagram is shown in Fig. 3.3. For 

the onshore half cycle, the angle between current and waves is denoted as φ. Thus, the angle in the 

offshore half cycle is π-φ. The onshore and offshore resultant grain shear stresses due to the 

combined current and waves are expressed as 

  2 2

, , ,

1
2 cos

2
b on cw c wm on c wm onf U U U U        (3.22) 

  2 2

, , ,

1
2 cos( )

2
b off cw c wm off c wm offf U U U U        (3.23) 

where cwf   is the friction coefficient of grain bed shear stress under combined current and waves, 

and Uwm,on and Uwm,off are the root-mean-square values of the wave velocity over the onshore and 

offshore half cycles, respectively. Uwm,on and Uwm,off may be derived from Eqs. (3.20) and (3.21) 

using  2 1
, , , 2wm on b wm on wU f     and  2 1

, , , 2wm off b wm off wU f    . The friction coefficient cwf   is 

computed as 

 (1 )cw u c u wf X f X f      (3.24) 
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with  2 2 20.5u c c wX U U U  . The grain friction coefficients of only current and only waves,  
cf   

and wf  are determined using Eqs. (3.12) and (3.16), respectively. 

The grain shear stress in Eqs. (3.22) and (3.23) are used in the bed-load transport formula. 

For the suspended-load transport formula, one may also derive similar formulations to determine 

the total bed shear stress. Actually, the following simple formulation of the total shear stress is 

found to be adequate in the suspended-load transport formula presented in the next section: 

 2 2

, , , ,2 cosb b c b wm b c b wm          (3.25) 

where b,c and b,wm are determined using Eqs. (3.4) and (3.13), respectively. 

 

 
 

Figure 3.3 Sketch of Waves and Current Interaction 
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3.1.4 Multiple-Sized Sediment Transport Rate under Current and Waves 

The onshore and offshore bed-load transport rates, qb*k,on and qb*k,off, are determined 

respectively using Eq. (3.1) as follows: 

 

2.2

,3

* ,

,

0.0053 ( / 1) 1
b on

b k on bk s k

cri k

q p gd
 

       

 (3.26) 

 

2.2

,3

* ,

,

0.0053 ( / 1) 1
b off

b k off bk s k

cri k

q p gd
 

       

 (3.27) 

The onshore and offshore bed-load transport directions are assumed to be along the 

resultant onshore and offshore velocities as shown in Fig. 3.3. The net transport rate is thus 

calculated by summing the two vectors corresponding to the onshore and offshore bed-load 

transport rates:  

 
* * , * ,

wc wt
b k b k on b k off

w w

T T
q q q

T T
   (3.28) 

The magnitude and angle of the bed-load transport are calculated as 

 

2 2

* , , , ,2
2 cos( )wc wt wc wt

b k bk on bk off bk on bk off on off

w w w

T T T T
q q q q q

T T T

   
       

   
 (3.29) 

 , ,arccos cos( )wc wt
on bk on bk off on off bk

w w

T T
q q q

T T

   
        

   
 (3.30) 

where αon, αoff, and β are the onshore, offshore, and resultant bed-load transport angles with respect 

to the current direction, respectively, as shown in Fig. 3.3. αon and αoff are calculated as 
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,

2 2

, ,

cos
arccos

2 cos

c wm on

on

c wm on c wm on

U U

U U U U

  
  
    

 (3.31) 

 
,

2 2

, ,

cos( )
arccos

2 cos( )

c wm off

off

c wm off c wm off

U U

U U U U

  
  
   
 

 (3.32) 

Certainly it is desirable to differentiate the onshore and offshore suspended-load transport 

rates, but this is not done in this study due to the limit of data availability. The net transport rate of 

the kth size class of suspended load along the current direction is computed as  

 

1.74

3

*

,

0.0000262 ( / 1) 1b c
s k bk s k

cri k sk

U
q p gd

  
           

 (3.33) 

where b is determined using Eq. (3.25), Uc is the depth-averaged current velocity, and ωsk is the 

settling velocity calculated using the Zhang (1961) formula (see Wu, 2007). 

 

3.1.5 Test of the Enhanced Wu et al. Formula against Measurement Data 

Camenen and Larson (2007) compiled a wide range of existing data sets of single-sized 

bed-load and suspended-load under current and waves, which are used to test the developed 

sediment transport formula in this study. Several sets of data on nonuniform or multiple-sized 

bed-load and suspended-load collected from other literature are also used. In addition, the 

developed formulas are also compared with several existing formulas. The test and comparison 

results are presented in the following subsections. 
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3.1.5.1 Test Using Uniform Bed-Load Transport Data  

Table 3.1 summarizes the current and wave conditions and sediment properties for the data 

sets of single-sized bed load under only waves and combined currents and waves compiled by 

Camenen and Larson (2007). Here, “single-sized” does not mean “uniform”, because the 

sediments in a few cases are actually quite nonuniform as indicated by the sediment standard 

deviation, σg, in Table 3.1. Even though the Wu et al. formulas are often used for multiple-sized 

sediment mixtures, it can be used for single-sized cases by setting the number of size classes as 1. 

Most of the data sets in Table 3.1 were from oscillating water tunnels (OWT), some early 

experiments used oscillating trays (OT, i.e. oscillating bed in a tank of still water), and some recent 

ones were conducted in large wave flumes (LWF).  Abou-Seida (1965), Ahilan and Sleath (1987), 

Horikawa et al. (1982), Kalkanis (1964), King (1991), Sawamoto and Yamashita (1986), and 

Sleath (1977) measured the bed-load transport in a half wave cycle. These data sets are used to test 

the onshore (half-cycle average) bed-load transport rate calculated using Eq. (3.26). The remaining 

data in Table 3.1 consider a full wave cycle and are used to test the net bed-load transport rate 

calculated using Eq. (3.28).  

 

Table 3.1 Data Summary for Uniform Bed-load Transport Experiments 

(Courtesy to Camenen and Larson, 2007) 

Author(s) 
Exp. 

facility 
Cycle 

No. 
of 

runs 

s d50 (mm) Uc (m/s) σg Uw (m/s) Tw (s) 

Abou-Seida 

(1965) 
OT Half 

9 

37 

2.23 

2.65 

0.70 

0.14-2.61 

0 

0 
 

0.41-0.80 

0.35-1.28 

2.0-4.8 

1.7-5.1 

Ahilan and 

Sleath (1987) 
OWT Half 

5 

4 

1.14 

1.44 

4.0 

4.3 

0 

0 
 

0.32-0.51 

1.10-1.22 

3.6-3.7 

4.7-4.9 

Horikawa et al. 

(1982) 
OWT Half 6 2.66 0.20-0.70 0  0.76-1.27 2.6-6.0 

Kalkanis (1964) OT Half 27 2.63 1.68-2.82 0  0.28-0.71 3.2-6.2 

King (1991) OWT Half 178 2.65 0.14-1.10 0  0.30-1.21 2.0-12.0 
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Sawamoto and 

Yamashita 

(1986) 

OWT Half 
7 

15 

1.58 

2.65 

1.50 

0.2-1.8 

0 

0 
 

0.44-1.25 

0.74-1.25 

3.8 

3.8 

Sleath (1977) OT Half 

12 

8 

14 

1.14 

2.58 

2.61 

3.04 

1.89 

4.24 

0 

0 

0 

 

0.08-0.17 

0.31-0.37 

0.27-0.67 

1.3-9.0 

0.6-2.0 

0.5-2.7 

Dibajnia and 

Watanabe 
(1992) 

OWT Full 
25 

76 

2.65 

2.65 

0.20 

0.20 

0 

-0.26-0.22 
 

0.63-1.00 

0.64-1.00 

1.0-4.0 

1.0-4.0 

Watanabe and 

Isobe (1990) 
OWT Full 

12 

51 

2.65 

2.65 

0.18, 

0.87 

0.18, 

0.87 

0 

-0.30-0.25 
 

0.27-0.43 

0.27-0.43 

3.0, 6.0 

3.0, 6.0 

Ahmed and Sato 

(2003) 
OWT Full 15 2.65 0.21-0.74 0  0.97-1.54 3.0 

Ribberink and 

Chen (1993) 
OWT Full 

4 

4 

2.65 

2.65 

0.13 

0.13 

0 

0.02-0.06 
1.38 

0.64-1.23 

0.64-1.23 

6.5 

6.5 

Ribberink and 

Al Salem (1994) 
OWT Full 

10 

30 

2.65 

2.65 

0.21 

0.21 

0 

-0.11-0.56 
1.52 

0.95-1.87 

0.37-1.37 

5.0-12.0 

5.0-12.0 

Dohmen-Janssen 

and Hanes 

(2002) 

LWF Full 4 2.65 0.24 

-0.05 

 
-0.03 

1.33 0.89-1.05 6.5, 9.1 

Dohmen-Janssen 

(1999) 
OWT Full 27 2.65 0.13-0.32 0.23-0.45  0.46-1.70 4.0-12.0 

Ramadan (1994) OWT Full 5 2.65 0.21 0.02-0.47 1.52 0.81-0.84 6.5 

Ribberink 

(1995) 
OWT Full 5 2.65 0.21 -0.45-0.45 1.52 0.86-1.27 6.5 

Katopodi et al. 

(1994) 
OWT Full 4 2.65 0.21 0.18-0.43 1.52 0.95-1.69 7.2 

Janssen et al. 

(1996) 
OWT Full 12 2.65 0.13 0.23-0.43 1.42 0.49-1.47 4.0-12.0 

Van der Hout 
(1997) 

OWT Full 11 2.65 
0.21, 
0.32 

0.23-0.45 1.44–1.52 0.46-1.70 4.0-12.0 

Cloin (1998) OWT Full 5 2.65 0.19 0.01-0.41 2.09 0.83-1.49 6.4-7.2 

Hassan et al. 

(1999) 
OWT Full 3 2.65 0.24 0.03 4.13 0.83-1.22 6.5 

 

Figs. 3.4 and 3.5 compare the predicted and measured transport rates of uniform bed-load 

with waves only and combined current and waves, respectively. In the figures,  the solid line is a 

line with slope of 45°, which means the predicted transport rates have a perfect agreement with the 

measurement; the dashed lines indicate the predicted transport rates are within a factor of 2 of  the 
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measurements, which is half or twice as the measured values; and the dashed dotted lines are the 

lien with a factor of 5, which indicates the predicated values are 1/5 or 5 times as the 

meausurements. One can see that the predicted and measured rates match reasonably well, even 

though some scatter occurs. The errors can be from both formulation and measurement. In 

addition, the bed shear stress is difficult to measure when waves are included, and it has to be 

estimated using empirical models which may add uncertainties in the predicted sediment transport 

rates. 

Tables 3.2 show the performance statistics for predicted uniform bed-load transport rates 

with waves only and combined current and waves. One type of performance statistics used is the 

percentages of test cases in which the ratio of predicted to measured transport rates, r, is in error 

ranges of 0.8–1.25, 0.667–1.5, 0.5–2.0, and 0.2–5.0. For both waves only and combined current 

and waves, about 50% of the cases are predicted within a factor of 2 of the measured values, and 

more than 75% of the cases are within a factor of 5. The other statistics used are the logarithmic 

root-mean-square error (Erms) and bias defined as  

  

2

,

1 ,

1
log log

N
b predicted

rms

i b measured

q
E

N q

  
    

   
  (3.34) 

   ,

1 ,

1
log log

N
b predicted

i b measured

q
bias

N q

 
   

 
  (3.35) 

The logarithmic root-mean-square errors are 0.429 and 0.515 for the cases of waves only 

and combined current and waves, respectively. The logarithmic bias are -0.067 and 0.017 for cases 

of waves only and combined current and waves, respectively. 
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Figure 3.4 Comparison of Predicted and Measured Transport Rates of Uniform Bed Load with 

Waves Only (Solid line – Perfect agreement; Dashed lines – factor 2; Dashed dotted lines – factor 

5) 

 



 

 

51 

 
 

Figure 3.5 Comparison of Predicted and Measured Transport Rates of Uniform Bed Load with 

Combined Current and Waves 
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Table 3.2 Statistics for Predicted Transport Rate of Uniform Bed Load 

Conditions 
% of Calculated Transport Rates in Error Range  

Log(Erms) Log(bias) 
0.8-1.25 0.67-1.5 0.5-2.0 0.2-5.0 

Uniform, Waves only 17.1 34.7 52.8 86.5 0.429 -0.067 

Uniform, Current and Waves 23.2 34.2 48.5 75.1 0.515 0.017 

 

 

3.1.5.2 Test Using Nonuniform Bed-Load Transport Data  

Table 3.3 summarizes data sets for multiple-sized bed load measured by Inui et al. (1995), 

Dibajnia and Watanabe (2000), Ahmed (2002), O’Dononghue and Wright (2004), and Hassan and 

Ribberink (2005) under waves and measured by de Meijer et al. (2002) under combined current 

and waves. These experiments were conducted in oscillating water tunnels (OWT) or oscillating 

flow tunnels (OFT). The number of size classes was 2 or 3, which implies that narrowly graded 

sediment mixtures were used in the experiments. Each size class is represented by the average 

value of its lower and upper bound diameters. 

The key parameters in the developed bed-load formula have been carefully assessed. It is 

found that the grain roughness height sk   is one of the most important parameters. In previous 

section, it is found that 903sk d   gives overall adequate bed-load transport rate values for the 

uniform bed-load test cases. However, the value of 3d90 for sk   significantly overpredicts the 

transport rates for these nonuniform bed-load experiments, as shown in Figs. 3.6. After trial and 

error, it is found that 901.5sk d   provides better predictions, as shown in Figs. 3.7. The difference 

in sk   for uniform and nonuniform cases might be owing to that d50 is used to represent the 

sediment mixture size in the uniform cases whereas a mean size-class diameter is used to represent 

each size class in the nonuniform cases. Table 3.4 shows the statistics for the predicted fractional 
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bed-load transport rates with different values of 
sk  . The accuracy when using 1.5d90 for 

sk   is 

generally good. About 60% of the cases are predicted within a factor of 2 of the measured values, 

and more than 75% of the cases are within a factor of 5. The logarithmic root-mean-square errors 

and bias are 0.307 and 0.051, respectively. 

     

Table 3.3 Data Summary for Nonuniform Bed-load Transport Experiments 

Author(s) 
Exp. 

Facil. 
Cycle 

No. of 

runs 

No. 

of 
sizes 

s d50 (mm) σg 
Uc 

(m/s) 
Uw (m/s) Tw (s) 

Ahmed 

(2002) 
OWT Full 

4 

15 

2 

3 

2.65 

2.51-2.59 

0.37-0.47 

0.23-0.59 
1.36–1.9 

0 

0 

1.32-1.67 

1.17-1.50 

3.0 

3.0 

Hassan and 

Ribberink  

(2005) 

OWT Full 
5 

5 

2 

3 

2.65 

2.65 

0.15, 

0.19 

0.24 

1.85–4.21 
0 

0 

0.82-1.20 

0.64-1.27 

6.5 

12.0 

O’Dononghue 

and Wright 

(2004) 

OFT Full 
2 

4 

2 

3 

2.65 

2.65 

0.28 

0.19, 

0.28 

1.85 
0 

0 

1.20 

1.20 

5.0, 

7.5 

5.0, 

7.5 

De Meijer et 

al. (2002) 
OWT Full 

1 

1 

3 

3 

2.65 

2.65 

0.19 

0.19 
 

0.192 

0.371 

1.45 

0.95 

7.20 

7.20 

Inui et al. 
(1995) 

OFT Full 16 2 2.65 0.37-0.70  0 0.24-0.77 
3.0, 
5.0 

Dibajnia and 

Watanabe 

(2000) 

OFT Full 18 2 2.65 0.29-0.51 

 

0 0.97-1.54 3.0 

 

 

Table 3.4 Statistics for Predicted Fractional Transport Rate of Nonuniform Bed-load 

Conditions sk   
% of Calculated Transport Rates in Error Range  

Log(Erms) Log(bias) 
0.8-1.25 0.67-1.5 0.5-2.0 0.2-5.0 

Nonuniform, Waves 

only, or Cuurent and 

Waves 

3d90 4.0 14.1 33.6 64.4 0.623 0.445 

1.5d90 23.5 38.3 57.0 75.2 0.307 0.051 
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Figure 3.6 Comparison of Predicted and Measured Fractional Transport Rates of Nonuniform Bed 

Load ( sk  =3d90) 
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Figure 3.7 Comparison of Predicted and Measured Fractional Transport Rates of Nonuniform Bed 

Load ( sk  =1.5d90) 
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3.1.5.3 Test Using Uniform Suspended-Load Transport Data 

The data sets compiled by Camenen and Larson (2007) for uniform or single-sized 

suspended-load transport are used to validate the present suspended-load transport capacity 

formula. Table 3.5 summarizes the current and wave conditions and sediment properties. Most of 

the data were measured in wave flumes or basin, and the data by Nielsen (1984) are obtained from 

field campaigns. All the data consider current and waves combined. 

 

Table 3.5 Data Summary for Uniform Suspended-load Transport Experiments 

(Courtesy to Camenen and Larson, 2007) 

Author(s) 
Exp. 

facility 

No. of 

runs 
d50 (mm) σg h (m) Uc (m/s) Hsig (m) Tw (s) 

Nielsen 

(1984) 
Field 27 0.16-0.49  0.80-1.58 0.04-0.54 0.42-0.80 5.3-12.9 

Bosman 
(1982) 

Wave 
flume 

16 0.10 1.43 0.34-0.56 -0.34-0.32 0.18-0.28 1.7-2.0 

Roelvink 

(1987) 

Large 

Scale 

Flume 

11 0.22-0.24 1.09–1.3 0.71-2.72 -0.11-0.01 0.47-0.73 5.12 

Steetzel 
(1987) 

Large 

Scale 
Flume 

8 0.21 1.27 0.78-1.63 

-0.18 

 
-0.07 

0.65-1.10 5.4 

Nieuwjaar 

and Kaaij 

(1987) 

Flume 22 0.20-0.22 1.34–1.55 0.49-0.52 -0.45-0.45 0.07-0.19 2.4-2.6 

Havinga 

(1992) 
Basin 27 0.10 1.3 0.40- 0.43 0.10-0.32 0.07-0.14 2.1-2.3 

Grasmeijer 
and 

Sistermans 

(1995) 

Flume 46 0.10 1.38 0.29-0.32 -0.04-0.25 0.10-0.17 2.3 

Sistermans 

(2002) 
Flume 15 0.16-0.19 1.34–1.49 0.50-0.53 0.20-0.36 0.12-0.19 2.5-2.8 

 

 

Fig. 3.8 compares the predicted and measured transport rates of uniform suspended load, 

and Table 3.6 shows the statistics of comparison. Unlike the developed bed-load transport Eq. 
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(3.28), the developed suspended-load transport rate Eq. (3.33) is not sensitive to the grain 

roughness height, whereas the coefficient Ar in Eq. (3.7) is an important parameter. The 

predictions of all cases are obtained using the default parameters in the formula described in 

Section 3.1.1, such as the grain roughness 
sk   =3d90 and the coefficient Ar in Eq. (3.7) set as 12.0. 

The agreement between predictions and measurements is generally good, with 59% of the cases 

within a factor of 2 and 97% of the cases being predicted within a factor of 5 of the measured 

values. The logarithmic root-mean-square errors and bias are 0.329 and 0.068, respectively. 

 

Table 3.6 Statistics for Predicted Transport Rate of Uniform Suspended Load 

Conditions 
% of Calculated Transport Rates in Error Range  

Log(Erms) Log(bias) 
0.8-1.25 0.67-1.5 0.5-2.0 0.2-5.0 

Uniform, Current and Waves 21.4 40.5 58.9 97.0 0.329 0.068 
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Figure 3.8 Comparison of Predicted and Measured Transport Rates of Uniform Suspended Load 
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3.1.5.4 Test Using Nonuniform Suspended-Load Transport Data 

Due to limited data availability, only two sets of experiment data on nonuniform or 

multiple-sized suspended-load transport measured by Jacobs and Dekker (2000) and Sistermans 

(2001) are used to test the developed formula. Table 3.7 lists the current and wave conditions and 

sediment properties. Both sets of experiments were conducted in flumes. Each set had three runs, 

and all considered current and waves combined. The experiments of Sistermans (2001) used 13 

size classes, all of which are used in this study. The experiments of Jacobs and Dekker (2000) used 

9 size classes of bed sediment, but several coarse size classes were rarely moving so that 7 size 

classes are used here. 

 

Table 3.7 Data Summary for Nonuniform Suspended-load Transport Experiments 

Author(s) 
Exp. 

facility 

No. of 

runs 

No. of 

sizes 
d50 (mm) σg h (m) Uc (m/s) Hsig (m) Tw (s) 

Jacobs and 
Dekker 

(2000) 

Flume 3 7 
0.23 
0.26 

0.26 

1.75 
1.57 

1.62 

0.52 
0.49 

0.52 

0.18 
0.19 

0.16 

0.13 
0.15 

0.20 

2.7 
2.8 

2.9 

Sistermans 

(2001) 
Flume 3 13 

0.18 

0.22 

0.21 

2.13 

1.78 

1.83 

0.52 

0.53 

0.52 

0.22 

0.15 

0.19 

0.12 

2.6 

2.7 

2.5 

 

 

Fig. 3.9 compares the predicted and measured fractional transport rates of nonuniform 

suspended load. Table 3.8 shows the related statistics. The predictions for all cases are obtained 

using the default parameters of the formula described in Section 3.1.1, such as the grain roughness 

sk   =3d90 and the coefficient Ar in Eq. (3.4) set as 12.0. The agreement between predictions and 

measurements is generally good, with about half of the cases being predicted within a factor of 2 of 

the measured values, and 85% of the cases within a factor of 5.  The logarithmic root-mean-square 
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errors and bias are 0.435 and 0.058, respectively. The accuracy is reasonably good, considering 

that nonuniform sediment transport is much harder to maintain at equilibrium state for all size 

classes during the experiments than uniform sediment transport. 

 

Table 3.8 Statistics for Predicted Fractional Transport Rate of Nonuniform Suspended Load 

Conditions 
% of Calculated Transport Rates in Error Range  

Log(Erms) Log(bias) 
0.8-1.25 0.67-1.5 0.5-2.0 0.2-5.0 

Nonuniform, Current and Waves 20.0 28.3 50.0 85.0 0.435 0.062 
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Figure 3.9 Comparison of Predicted and Measured Fractional Transport Rates of Nonuniform 

Suspended Load 
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3.2 Development of a New Formula for Near-bed Suspended Sediment Concentration 

 In order to quantitatively evaluate the bottom change and the entrainment rate of bed 

sediment into suspension caused by current and waves in coastal applications, it is more 

appropriate and accurate to use a 3-D model in which the local sediment is directly related to the 

near-bed suspended sediment concentration. Most of the formulas for near-bed suspended-load 

concentration have been developed for uniform material or suitable for river applications only. In 

this section, a new formula for near-bed suspended-load concentration under combined current 

and waves is presented.  

 

3.2.1 Definition of Near-bed Suspended-load Concentration 

The near-bed concentration of suspended load is defined as the sediment concentration at 

the upper bound of the bed-load layer or the interface between the bed-load and suspended-load 

layers, as shown in Fig. 3.10. It is often used to determine the near-bed sediment exchange flux or 

set as a reference for the sediment concentration profile along the water depth. Because the 

bed-load layer is usually very thin, the sediment concentration in the bed-load layer can be 

assumed approximately constant and equal to the near-bed concentration of suspended load. 

Therefore, the near-bed concentration of suspended load can be related to the bed-load transport 

rate, layer thickness, and velocity as follows (Einstein, 1950; van Rijn, 1984b; Wu, 2007), 

 *
*

,

b k
b k

b k

q
c

U
  (3.36) 

where cb*k  is the near-bed concentration of suspended load,   is the bed-load layer thickness, and 

Ub,k  is the bed-load velocity. Methods to calculate the bed-load transport rate, layer thickness, and 
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velocity are discussed in the following subsections. 

 

3.2.2 Bed-load Sediment Transport Rate 

The bed-load transport rate can be calculated using existing empirical formulas. In this 

study, the bed-load transport rate formula of Wu et al. (2000b) (Eq. 3.1) is chosen because of its 

advantages over other formulas in literature, which has been listed in Section 3.1. In addition, it 

has been extended to multiple-sized sediment transport with current and waves for coastal 

applications and shown reliable predictions over all the test cases, which has been discussed in 

detail in the previous section. 

 

 
 

Figure 3.10 Definition of Near-bed Concentration 
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It is desirable to differentiate the onshore (Eq. 3.26) and offshore (Eq. 3.27) bed-load 

transport rates, then use Eq. (3.29) to calculate the net bed-load transport rate. However, due to the 

limit of data available and for simplicity, Eq. (3.1) is used to estimate the net bed-load transport 

rate without considering the onshore and offshore direction. Therefore, the total grain bed shear 

stress due to current and waves in Eq. (3.1) is calculated in the way similar to the total shear stress 

in Eq. (3.25):  

 2 2

, , , ,2 cosb b c b wm b c b wm
              (3.37) 

where 
b
  is the total grain shear stress due to current and waves; ,b c

  and ,b wm
  are determined 

using Eqs. (3.11) and (3.15), respectively. 

 

3.2.3 Reference Level 

The reference level, also known as bed-load layer thickness, is the edge of the bed-load layer. The 

reference level is usually related to the sediment size, water depth, or bed form height. Most 

recently, van Rijn (2007c) suggested the reference level is the maximum value of half the 

wave-related and half the current-related bed roughness values with a minimum value of 0.01m.In 

this study, the reference level is defined as, 

  50max 2.0 ,0.01 ,0.5 rd h    (3.38) 

where the ripple height is calculated using the method of Raudkivi (2006) in the presence of 

current only, and the method of Soulsby and Whitehouse (2005) in the presence of only waves, and 

set as the larger value between the two methods in the case of currents and waves coexisted. 
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3.2.4 Bed-load Velocity 

For simplicity, one can assume the bed-load velocity equals to the current velocity. 

However, lag exists between flow and bed-load transport. Bed load usually moves by rolling, 

sliding, and saltating, depending on flow and sediment conditions. Saltation is the dominant mode 

of bed-load transport, while rolling occurs only near the threshold of entrainment and between 

individual saltation jumps (Bridge and Dominic 1984). Van Rijn (1984a) investigated the 

characteristics of particle saltation and developed an empirical formula for the bed-load velocity. 

Wu (2007) recalibrated it using several sets of experiment data and revised it as follows 

 
 

0.51.64
/ 1

b

s k

u
T

gd


 



 (3.39) 

where T is the non-dimensional excess bed shear stress defined as 
,/ 1b cri kT    . Eq. (3.39) 

was validated using data measured in cases of currents only. It is extended in this study to the cases 

of waves and currents coexisted. 

 

3.2.5 Derivation of Near-bed Concentration 

With the bed-load transport rate calculated by Eq. (3.1) and the bed-load velocity 

determined by Eq. (3.39), the near-bed concentration calculated by Eq. (3.36) can be simplified as 

 

1.7

*

,

0.0032 1bk k b
b k

cri k

p d
c



 

 
   

 

 (3.40) 

where *b kc  is the volumetric concentration of suspended load at the reference level, and b   is 

determined using Eq. (3.37). 
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3.2.6 Suspended Sediment Transport Rate 

Due to the lack of measurement data for the near-bed sediment concentration which is 

usually in the unmeasured zone, it is difficult to validate directly the accuracy of the developed 

near-bed suspended-load concentration Eq. (3.40).  However, there are a number of laboratory and 

field measurements of the suspended-load depth-averaged concentration or transport rate, as 

shown in the previous subsection. Therefore, one of the feasible ways to verify the accuracy of the 

developed near-bed concentration formula is to compare the measured suspended-load transport 

rate to that calculated by integrating the product between the suspended sediment concentration 

and current velocity along the vertical from the reference level (edge of bed-load layer) to the 

water surface (Fig. 3.11), 

 *

h

s k kq c udz


   (3.41) 

where ck and u are the local suspended-load concentration and current velocity, respectively, and z 

is the vertical coordinate above the bed. 

 
 

Figure 3.11 Definition of Suspended-load Transport Rate 
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3.2.6.1 Vertical Distribution of Current Velocity 

In the presence of current only, the vertical distribution of current velocity can be 

approximately determined with two common methods. One is the power-law distribution of 

velocity, 

   
1/

1
m

c

m z
u z U

m h

  
  

 
 (3.42) 

where z is the vertical coordinate above the bed and Uc is the depth-averaged current velocity. The 

other approach is the logarithmic distribution of velocity, 

   *5.75 log 30.2
s

z
u z U

k

 
  

 
 (3.43) 

where U* is the bed shear velocity, which can be related to the depth-averaged current velocity by 

integrating Eq. (3.43) along the bed to the water surface, 

 
 

0

0
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5.75 log 30.2
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h

sz

h z U
U

z
dz

k




 
 

 


 (3.44) 

where z0 is the level at which the flow velocity is zero. 

 In the presence of waves, it should consider the effect of waves, e.g., an increase in the 

apparent roughness, in the current velocity profile. Van Rijn (1993) suggested a two-layer 

logarithmic distribution, which considers the effect of bed-form roughness inside the near-bed 

mixing layer (which is three times the thickness of wave boundary layer) and the effect of apparent 

roughness outside the near-bed mixing layer. 
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 (3.45) 

where ks,c is the current-related bed roughness, ka is the apparent roughness related to wave-current 

interaction defined as  , min 10,exp /a s c w ck k u U     with 20.8 0.3     , w is the 

maximum thickness of wave boundary layer equals to  
0.25

,0.072 /w w s wA A k


and ks,w is the 

wave-related bed roughness. 

 

3.2.6.2 Vertical Distribution of Suspended-load Concentration 

In this study, three existing distributions of suspended-load concentration, including Rouse 

(1937), van Rijn (1984b), and Williams et al. (1999) are used, among which the distribution of 

Williams et al. (1999) was validated by its developers using measured data under combined waves 

and currents. 

 The Rouse distribution can be expressed as, 
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 
 (3.46) 

where s is the settling velocity, κ is von Karman constant with a value of 0.4, and s is the 

Schmidt number, related to sediment size, concentration, etc.  Several existing methods and new 

approaches to determine the Schmidt number are discussed in the following section. 

 The concentration profile proposed by van Rijn (1984b) is 
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 (3.47) 

The concentration profile for z<0.5h is exactly the Rouse distribution. 

The distribution of Williams et al. (1999) can be expressed as 
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where  * *wcR wGwc s U U    
 

, *wcRU  is the time-averaged bed-shear velocity for 

ripple-scale roughness, *wGU  is the peak wave-only bed-shear velocity for grain-scale roughness, 

and Ls is the vertical length scale for the suspended-load concentration distribution defined by 

Nielsen (1992), which is determined as 
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 (3.49) 

The parameters *wcRU  and *wGU  are calculated following Williams et al. (1999).  

 

3.2.6.3 New Approaches to Determine the Schmidt Number 

There are several existing methods in literature to determine the Schmidt number. Brush et 

al. (1962), Matyukhin and Prokofyev (1996), and Majumdar and Carstens (1967) experimentally 

showed that 1s  for fine particles and 1s   for coarse particles. Einstein and Chien (1954) 

suggested that s should be smaller than 1 and calculated as 
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where L = log (1+BK) with BK = 0.3. Van Rijn (1984b) also proposed a formula to determine the 

Schmidt number, 
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 (3.51) 

Einstein and Chien (1954) obtained a relation between s/(U*) and ss/(U*) shown in 

Fig. 3.12. Based on the experimental data, through the linear and nonlinear regressions, a linear 

and a polynomial curve are proposed respectively to fit the data. The linear fitting curve is 

expressed as 

 
* *
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Thus the Schmidt number can be calculated as 

 *0.054 0.8258s

s

U



   (3.53) 

The polynomial fitting curve is only valid with 0.02 ≤ s/U* ≤ 2.04 and expressed as 
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 (3.54) 

where the ratio between s/(U*) and ss/(U*) is assumed to be constant with s/U* < 0.0169 or 

s/U* > 2.04. According to this relation, the Schmidt number can be determined as 
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 These two new approaches will be compared with the methods of Einstein and Chien 

(1954) and Van Rijn (1984b) in Section 3.2.7. 

 

 
 

Figure 3.12 Relation between s/(U*) and ss/(U*) 

 

 

3.2.7 Test of the Developed Formula 

In this section, the suspended-load transport rates are calculated using Eq. (3.41) with the 

developed near-bed concentration formula and compared with the measurement data. The dataset 

includes single- and multiple-sized suspended sediment transport data under current only and 
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current-waves coexisted situations collected from literature. 

 

3.2.7.1 Test Using Suspended-load Transport Data under Current Only 

A large set of uniform total-load data was selected form Brownlie’s (1981) compilation to 

test the developed formula. The non-uniform sediment data collected by Toffaletti (1968) were 

also used to test the formula, including experimental data observed by Nomicos, Einstein-Chien, 

and Vanoni-Brooks, and field data in the Rio Grande, Middle Loup, Niobrara, and Mississippi 

Rivers. Because the measurement data are total load instead of suspended load only, the 

suspended-load transport rate calculated by the developed formula was combined with the 

bed-load transport rate calculated by Eq. (3.1) to obtain the total load. The power-law current 

velocity distribution in Eq. (3.42), the Rouse (1937) distribution of suspended-load concentration 

in Eq. (3.46), and the near-bed suspended-load concentration in Eq. (3.40) are used in calculating 

the suspended-load transport rate with Eq. (3.41). The polynomial fitting curve Eq. (3.55) is used 

to determine the Schmidt number. 

Figs. 3.13 and 3.14 compare the predicated and measured transport rates of uniform and 

non-uniform total load under current only, respectively. Table 3.9 shows the statistics of 

comparison. For uniform cases, about 77% of the test cases are predicted within a factor of 2 of the 

measured values and about 95% of the cases are within a factor of 5. For nonuniform cases, about 

48% of the test cases are predicted within a factor of 2 of the measured values and about 85% of the 

cases are within a factor of 5. The logarithmic root-mean-square errors are 0.353 and 0.559 for 

uniform and nonuniform cases, respectively. The logarithmic bias are 0.087 and 0.131 for uniform 

and nonuniform cases, respectively. The results of nonuniform cases are not as good as those of 
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uniform cases but reasonable because of the complex interaction among different size classes.  

 

Table 3.9 Statistics for Predicted Transport Rate of Total Load under Current Only 

Conditions 
% of Calculated Transport Rates in Error Range 

Log(Erms) Log(bias) 
0.8-1.25 0.67-1.5 0.5-2.0 0.2-5.0 

Uniform, Current only 29.5 55.3 77.3 94.7 0.353 0.087 

Nonuniform, Current only 18.2 30.7 48.4 84.5 0.559 0.131 
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Figure 3.13 Comparison of Predicted and Measured Transport Rates of Uniform Total Load under 

current only 
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Figure 3.14 Comparison of Predicted and Measured Fractional Transport Rates of Non-uniform 

Total Load under current only 
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3.2.7.2 Test Using Suspended-load Transport Data under Combined Current and Waves 

The data sets compiled by Camenen and Larson (2007) for uniform suspended-load 

transport listed in Table 3.5 are used to validate the present near-bed suspended-load concentration 

formula. Due to limited data availability, only two sets of experiment data on nonuniform 

suspended-load transport measured by Jacobs and Dekker (2000) and Sistermans (2001) listed in 

Table 3.7 are used to test the performance of the developed formula on nonuniform sediment 

transport. In the results presented below, the van Rijn’s (1993) current velocity distribution in Eq. 

(3.44), the suspended-load concentration distribution of William et al. (1999) in Eq. (3.48), and the 

near-bed suspended-load concentration in Eq. (3.40) are used in calculating the suspended-load 

transport rate in Eq. (3.41). 

Figs. 3.15 and 3.16 show the comparisons of predicated and measured transport rates of 

uniform and non-uniform suspended load under combined current and waves, respectively. Table 

3.10 shows the performance statistics. The coefficient Ar in Eq. (3.7) is set as 12.0 for all the test 

cases. Because the near-bed suspended-load concentration is related to the bed load, the calculated 

suspended-load transport rate is also related to the grain roughness height. The overall best value 

of grain roughness is 3d90 for all the uniform and nonuniform cases. For uniform cases, more than 

70% of the test cases are predicted within a factor of 2 of the measured values and more than 90% 

of the cases are within a factor of 5. For nonuniform cases, about 47% of the test cases are 

predicted within a factor of 2 of the measured values and about 87% of the cases are within a factor 

of 5. For uniform cases, the logarithmic root-mean-square errors and bias are 0.386 and -0.036, 

respectively. For nonuniform cases, the logarithmic root-mean-square errors and bias are 0.404 

and 0.121, respectively. This accuracy is generally acceptable for sediment transport, particularly 
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under current and waves, which are very complex and little understood. Additional errors are from 

the bed shear stress, which is difficult to measure when waves are included and has to be 

determined using empirical models of bed roughness. On the other hand, the data sets of 

nonuniform sediment transport under combined current and waves are very limited.  Only two sets 

of experiment data are found from literature to test the developed formula. It is absolutely 

meaningful to test the developed formula with more laboratory and field experiments of 

nonuniform sediment transport under various conditions of current and waves in order to obtain a 

more reliable statistical analysis. 

 

Table 3.10 Statistics for Predicted Transport Rate of Suspended Load under Combined Current and 

Waves 

Conditions 
% of Calculated Transport Rates in Error Range 

Log(Erms) Log(bias) 
0.8-1.25 0.67-1.5 0.5-2.0 0.2-5.0 

Uniform, Current +Waves 24.8 51.5 72.7 93.3 0.386 -0.036 

Nonuniform, Current + Waves 16.7 31.7 46.7 86.7 0.404 0.121 
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Figure 3.15 Comparison of Predicted and Measured Transport Rates of Uniform Suspended Load 

under Combined Current and Waves 
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Figure 3.16 Comparison of Predicted and Measured Fractional Transport Rates of Non-uniform 

Suspended Load under Combined Current and Waves  
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3.3 Comparison of the Developed Formulas with Other Formulas 

 To better analyze the performance of the enhanced Wu et al. bed-load transport rate 

formula, suspended-load transport rate formula, and the near-bed suspended-load concentration 

formula, several coastal sediment transport formulas are tested with the same uniform and 

nonuniform dataset presented above (Tables 3.1, 3.3, 3.5, and 3.7) and compared with developed 

formulas.  For uniform bed-load data, the formulas of Bailard (1981), Camenen and Larson 

(2007), Dibajnia and Watanabe (1992), Ribberink (1998), van Rijn (2007a), and van der A et al. 

(2013) are used. For nonuniform bed-load data, the formulas include Dibajnia and Watanabe 

(1996), Hassen et al. (2001), van Rijn (2007c), and van der A et al. (2013). The existing formulas 

of Bailard (1981), Camenen and Larson (2007), and van Rijn (2007b) are tested with the uniform 

suspended-load data and compared with the developed suspended-load transport rate formula and 

near-bed suspended-load concentration formula, among which the van Rijn (2007b) is also tested 

with nonuniform suspended-load data. All these existing formulas have been listed and reviewed 

in Section 2.3. 

 Figs. 17 and 18 compare the transport rates calculated by these formulas with 

measurements under waves only and combined current and waves for uniform bed-load data, 

respectively. Fig. 19 shows the transport rates calculated by these formulas with measurement 

under combined current and waves for nonuniform bed-load data. Table 3.11 shows the statistical 

analysis for predicated bed-load transport rates by using different formulas. For uniform bed-load 

sediment transport under waves only, the Camenen and Larson (2007) formula, van Rijn (2007a) 

formula, and the developed formula have relatively good predictions over theother compared 

formulas. The logarithmic root-mean-square and bias of the developed formula are the smallest 
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among all the compared formulas. The formulas of Dibajnia and Watanabe (1992) and van de A et 

al. (2013) don’t have so good predictions as other formulas.  For uniform bed-load sediment 

transport under combined current and waves, the Ribberink (1998) formula, van Rijn (2007a) 

formula, and the developed formula have more than 70% of the cases are within a factor of 5. For 

nonuniform bed-load sediment transport under combined current and waves, the Hassen et al. 

(2001) formula, van Rijn (2007c) formula, and the developed formula have more than 70% of the 

cases are within a factor of 5. The predicted values given by the developed formula have the best 

agreement with the measured data, showing the smallest logarithmic root-mean-square and bias. 

In overall, the formulas of Camenen and Larson (2007), Ribberink (1998), the Hassen et al. 

(2001), and Van Rijn (2007a, c) show reasonable predictions. The Dibajnia and Watanabe (1992, 

1996) cannot provide a good agreement between predicted and measured transport rates for all the 

test cases. 
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Figure 3.17 Comparison of Predicted and Measured Transport Rates of Uniform Bed Load with 

Waves Only using Different Foumulas 
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Figure 3.18 Comparison of Predicted and Measured Transport Rates of Uniform Bed Load with 

Combined Current and Waves using Different Foumulas 
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Figure 3.19 Comparison of Predicted and Measured Transport Rates of Nonuniform Bed Load 

with Combined Current and Waves using Different Foumulas 
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Table 3.11 Statistics for Predicted Bed-load Transport Rates using Different Formulas 

Conditions Formulas 
% of Calculated Transport Rates in Error Range 

Log(Erms) Log(bias) 
0.8-1.25 0.67-1.5 0.5-2.0 0.2-5.0 

Uniform 
Waves 

Bailard (1981)  18.7 30.1 45.1 74.4 0.584 0.021 

Camenen and Larson 

(2007)  
19.2 30.3 52.8 83.9 0.475 1.941 

Dibajnia and 
Watanabe (1992)  

12.4 24.9 40.7 73.1 0.713 -0.430 

Ribberink (1998)  14.8 28.5 49.5 79.3 0.494 0.083 

Van Rijn (2007a)  17.4 29.5 47.4 81.1 0.496 0.073 

Van der A et al. 

(2013) 
12.1 24.4 41.2 73.3 0.539 -0.204 

Eq. (3.26) or (3.28)  17.1 34.7 52.8 86.5 0.429 -0.067 

Uniform 

Current+Waves 

Bailard (1981)  10.5 22.8 38.8 76.8 0.470 0.074 

Camenen and Larson 

(2007)  
16.0 26.2 45.1 65.0 0.403 0.107 

Dibajnia and 

Watanabe (1992)  
11.8 21.9 35.0 57.0 0.875 -0.555 

Ribberink (1998)  19.4 34.2 49.8 71.3 0.634 0.155 

Van Rijn (2007a)  15.6 27.0 45.6 73.0 0.510 -0.163 

Van der A et al. 
(2013) 

17.3 25.7 37.6 54.9 0.616 -0.133 

Eq. (3.28)  23.2 34.2 48.5 75.1 0.515 0.017 

Nonuniform 

Current+Waves 

(Fractional 

Rate) 

Dibajnia and 

Watanabe (1996)  
10.7 24.8 36.2 56.4 0.532 0.011 

Hassen et al. (2001)  20.1 31.5 45.6 71.1 0.399 0.168 

Van Rijn (2007c)  16.8 30.2 54.4 73.8 0.313 0.063 

Van der A et al. 

(2013) 
18.1 30.9 45.0 67.1 0.476 0.151 

Eq. (3.28) 23.5 38.3 57.0 75.2 0.307 0.051 

 

 

 Figs 3.20 and 3.21 compare the suspended-load transport rates calculated by the different 

tested formulas with measurements under combined current and waves for uniform and 

nonuniform  cases, respectively. Table 3.12 compares the performance statistics of these formulas 

on predicting the suspended-load transport rates under current and waves. For uniform cases, the 

predications given by van Rijn (2007b), Eq. (3.33), and Eq. (3.40) are with a good agreement with 
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the measurements, more than 50% of the test cases are within and more than 90% of the test cases 

are within factor of 5.These three methods have comparable performance and are better than the 

methods of Bailard (1991) and Camenen and Larson (2007).  For nonuniform cases, Eq. (3.33) and 

Eq. (3.40) perform better than van Rijn’s (2007c) method. In comparison of Eq. (3.33) and Eq. 

(3.41) with the developed near-bed concentration Eq. (3.40), both methods have comparable 

performance. 
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Figure 3.20 Comparison of Predicted and Measured Transport Rates of Uniform Suspended Load 

under Combined Current and Waves using Different Formulas 
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Figure 3.21 Comparison of Predicted and Measured Transport Rates of Nonuniform Suspended 

Load under Combined Current and Waves using van Rijn (2007c) 
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Table 3.12 Statistics for Predicted Suspended-load Transport Rates using Different Formulas 

Conditions Formulas 
% of Calculated Transport Rates in Error Range 

Log(Erms) Log(bias) 
0.8-1.25 0.67-1.5 0.5-2.0 0.2-5.0 

Uniform 
Current+Waves 

Bailard (1981)  12.1  23.6  49.7  90.9  0.431  -0.235 

Camenen and Larson 

(2007)  
15.2  24.2  41.2  79.4  0.537  -0.082 

Eq. (3.41) with cb by 
van Rijn (2007b) 

25.5  46.1  66.1  92.7  0.361 -0.206 

Eq. (3.33) 21.4 40.5 58.9 97.0 0.329 0.068 

Eq. (3.41) with cb by 

Eq. (3.40) 
24.8 51.5 72.7 93.3 0.386 -0.036 

Nonuniform 

Current+Waves 
(Fractional Rate) 

Eq. (3.41) with cb by 

van Rijn (2007c) 
15.0  26.7  36.7  83.3  0.473  -0.280 

Eq. (3.33) 20.0 28.3 50.0 85.0 0.435 0.062 

Eq. (3.41) with cb by 

Eq. (3.40) 
16.7 31.7 46.7 86.7 0.404 0.121 

 

 

3.2.8 Comparison of Different Methods for Calculating Schmidt Number 

In section 3.2.5.3, linear and nonlinear regressions have yielded two fitting curves (Eqs. 

3.47 and 3.49) for the relation between s/(U*) and ss/(U*) in Fig 3.12. In this section, a unity 

constant, the two new approaches, and the methods of Einstein and Chien (1954) in Eq. 3.44 and 

van Rijn (1984b) in Eq. 3.45 are, respectively, applied into the vertical distribution of 

suspended-load concentration (Eq. 3.43) with the new developed formula for near-bed 

suspended-load concentration to calculate the suspended-load rate under current only. Same 

dataset as used for testing the developed near-bed suspended-load concentration is used here.  

Table 3.13 shown below indicates different methods have similar results, i.e., the 

percentages of calculated transport rates in error range are very closed to each other. The approach 

of Van Rijn (1984b) provides a poor estimation in cases of current only with uniform or 

nonuniform sediment in comparison with other methods, but it gives a better agreement in the case 
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of uniform sediment transport under combined current and waves. The values of Erms of the linear 

and polynomial fitting curves are smaller than those of other approaches in overall. Consequently, 

the two developed new approaches are good choices to estimate the Schmidt number, while one 

may assume a Schmidt number of 1.0 in Eq. (3.43) for simplicity. 

 

Table 3.13 Statistics for Predicted Transport Rate by Using Different Methods for Schmidt 

Number 

Conditions 
Methods for Schmidt 

Number 

% of Calculated Transport Rates in Error Range 
Log(Erms) 

0.8-1.25 0.67-1.5 0.5-2.0 0.2-5.0 

Uniform 

Current only 

Constant = 1 40.4 61.2 79.6 95.2 0.352 

Einstein and Chien 

(1954) 
40.9 62.6 79.2 95.1 0.362 

Van Rijn (1984b) 22.9 43.2 70.3 93.9 0.439 

Linear Curve 40.3 61.1 79.6 94.8 0.360 

Polynomial Curve 40.0 61.4 79.5 94.8 0.360 

Nonuniform 

Current only 

Constant = 1 15.4 29.5 47.1 85.9 0.514 

Einstein and Chien 

(1954) 
15.2 30.6 47.1 85.3 0.515 

Van Rijn (1984b) 12.5 25.6 43.6 78.8 0.578 

Linear Curve 16.3 27.8 46.9 83.2 0.530 

Polynomial Curve 17.6 29.7 48.2 86.1 0.505 
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CHAPTER IV 

3-D HYDRODYNAMIC MODEL UNDER CURRENT AND WAVES  

 

4.1 Flow Model 

4.1.1 3-D Phase-Averaged Shallow Water Flow Equations 

The 3-D phase-averaged shallow water flow equations are simplified from the 

Navier-Stokes equations by assuming hydrostatic pressure. In this study, an implicit 3-D shallow 

water flow model (Wu, 2014) is adopted, in which only the long wave or current is simulated using 

a phase-averaged 3-D shallow water flow equations that include the radiation stresses generated by 

short waves. The short wave characteristics and radiation stresses are determined by a spectral 

wave model that solves the wave action balance equation. The 3-D shallow water equations in the 

Cartesian coordinate system are written as 

 0
u v w

x y z

  
  

  
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where t is the time; x and y are the horizontal coordinates; z is the vertical coordinate pointing 

upward; u, v, and w are the velocities in x-, y-, and z-directions;  is the water surface elevation 

above the reference (still) sea level; pa is the atmospheric pressure; g is the gravitational 

acceleration;  is the density of flow; 0 is the flow density at the water surface; Sxx, Sxy, Syx, and Syy 

are wave radiation stress terms; fc is the Coriolis force coefficient; and tH and tV are the eddy 

viscosities in the horizontal and vertical directions.  

To obtain the wave radiation stresses, the flow model is coupled with a spectral wave 

deformation model called CMS-Wave, which solves the spectral wave-action balance equation 

and provides wave characteristics to the flow model.  The spectral wave-action balance equation 

will be briefly discussed later.  

 

4.1.2 Eddy Viscosity 

Even though the developed model can use different eddy viscosities in the vertical and 

horizontal directions in cases where the vertical and horizontal turbulence structures are 

significantly different, an isotropic eddy viscosity is used in this study. Considering flows in 

coastal context are usually large scale in large domains, high-order turbulence closures are usually 

expensive to use. Therefore, only zero-order turbulence closure models have been implemented in 

the current version of the developed model, including parabolic eddy viscosity model, subgrid 

model and mixing length model. Among these options, the mixing length model is found to be 

applicable for a variety of problems. The classical mixing length model of Prandtl (1925) is 

usually used for two-dimensional shear flows. For the 3-D shallow water flows, the mixing length 

model is modified in this study as follows: 
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    
2 2

2 2

t mV V mH Hl S l S    (4.4) 

where νt is the eddy viscosity, lmV is the vertical mixing length, lmH is the horizontal mixing length, 

2 2 1/2[( ) ( ) ]
V

S u z v z      , and 2 2 2 1/2[2( ) 2( ) ( ) ]
H

S u x v y u y v x            . Eq. (4.4) 

is a combination of the horizontal and vertical mixing length models and ignores the contribution 

of vertical velocity that is assumed much smaller than the horizontal velocities in the case of 

shallow water flow. The vertical and horizontal mixing lengths are determined as 

 1 /mVl z z h   (4.5) 

 min( , )mH ml l c h  (4.6) 

where z is the vertical coordinate above the bed, l is the horizontal distance to the nearest solid 

wall, h is the total flow depth, к is the von Karman constant, and cm is a coefficient which can be 

calibrated (Wu 2007) and set as about 0.3 in this study.  

Eq. (4.5) is the mixing length for vertical two-dimensional open-channel flow proposed by 

Саткевич (1934). Eq. (4.6) was used by Wu (2007) in a depth-averaged 2-D flow model. Both are 

modified from Prandtl’s mixing length 
ml z  of boundary layer flows. Eq. (4.5) can be applied 

in the entire depth of open-channel flow, whereas the mixing length of Prandtl is only for the 

log-law layer near wall boundary. Eq. (4.6) considers the constraint of the horizontal eddy scale by 

the local flow depth.  

In the case of coexisted currents and waves, the horizontal mixing length is determined using 

Eq. (4.6), and the vertical mixing length is given by 

 
2 2(1 )mV mc mwl Xl X l    (4.7) 
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where lmc is the mixing length due to currents determined with Eq. (4.5); lmw is the mixing length 

due to waves, set as aκH, with a being a coefficient and H the representative wave height; and X is 

a weighting factor  2 2 20.5c c wmX U U U   in which Uc is the current speed, and Uwm is the 

maximum orbital bottom velocity of wave. The coefficient a will be discussed in the model test 

section. 

 

4.1.3 Boundary Conditions 

For Eqs. (4.1) - (4.3), the flow discharge or velocity is needed at inflow boundaries, while 

the water level is usually given at outflow boundaries for a subcritical flow or at inflow boundaries 

for a supercritical flow. At the water surface, the free-surface kinematic condition is applied: 

 h h hu v w
t x y

    
  

  
 (4.8) 

where uh, vh, and wh are the flow velocities at the water surface. 

The surface shear stress due to wind is calculated as  

 si a D iC WW   (4.9) 

where a  = air density at sea level [~1.2 kg/m
3
]; DC  = wind drag coefficient; 

iW = wind velocity 

at 10 m above water level [m/s]; and 
i iW W W . The drag coefficient is calculated using the 

formula of Hsu (1988) and modified for high wind speeds based on field data by Powell et al. 

(2003).  

Near rigid wall boundaries, such as beaches and islands, the wall-function approach is 

employed. By applying the log-law of velocity, the resultant wall shear stress, 
w , is related to the 
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flow velocity, PV  , at the center, P, of the control volume close to the wall by the following 

relation:  

 w PV    (4.10) 

where λ is a coefficient determined as  ln Pu Ey

    with P Py u y

  , in which yP is the 

distance from cell center P to the wall, and E is a coefficient related to wall roughness (Wu, 2007). 

Since λ is related to u*, iteration is needed to solve Eq. (4.10).   

The bed shear stress can be determined using Eq. (4.10) by treating the bed as a solid wall, 

but the following method is used to take into account the effect of waves on the bed shear stress:  

 
2 2 2 2 2 20.5 , 0.5bx f b b b wm by f b b b wmc u u v U c v u v U          (4.11) 

where bx and by are the bed shear stresses in x- and y-directions; ub and vb are the x- and 

y-velocities on the first node above the bed;  and cf is the bed friction coefficient.  fc  is treated as a 

calibrated parameter or determined using the following formula: 

 
 

2

0ln /
f

P

c
z z

 
  
 

 (4.12) 

where κ is the von Karman constant (=0.4); Pz  is the elevation of the first node near the bed where 

ub and vb are defined; and  0z  is the bed roughness height coefficient defined as ks/30, in which ks 

is the equivalent bed roughness height. ks is related to the Manning’s n by Eq. (3.5) if n is given. 
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4.2 Wave Model 

4.2.1 Spectral Wave-Action Balance Equation 

The spectral wave transformation model, CMS-Wave, is used here to simulate variations 

of wave-action density in time, space, wave directions, and frequency. CMS-Wave is a spectral 

wave transformation model and solves the wave-action balance equation using a forward 

marching finite difference method (Mase et al. 2005; Lin et al. 2008). CMS-Wave includes 

physical processes such as wave shoaling, refraction, diffraction, reflection, wave-current 

interaction, wave breaking, wind wave generation, white capping of waves, and the influence of 

coastal structures. The wave-action balance equation of the wave-action density N is written as 

 

2
2 2

2

( )( ) ( ) 1
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2 2

yx
g g b

c Nc N c NN N N
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t x y y y y
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 (4.13) 

where N = N(x,y,σ,θ,t) = E(x,y,σ,θ,t)/σ; E is the spectral wave density representing the wave energy 

per unit water surface area per frequency interval;  is the wave angular frequency (or intrinsic 

frequency); t is the time; x, y are the coordinates in two horizontal directions;  is wave angle 

relative to the positive x-direction; C and Cg are the wave celerity and group velocity, respectively; 

cx, cy, and c are the characteristic velocities with respect to x, y and , respectively;  is an 

empirical coefficient; b is a parameter for wave breaking energy dissipation; and Q includes 

source/sink terms of wave energy due to wind forcing, bottom friction loss, nonlinear wave-wave 

interaction, etc. 

The first term on the left-hand side of Eq. (4.13) represents the local rate of change of 

action density in time and is dropped in CMS-Wave which considers a steady wave field at each 

time interval based on a quasi-steady approach. The second and third terms represent propagation 
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of wave action density in a horizontal x-y plane. The fourth term represents depth-induced and 

current-induced refraction (with propagation velocity c in  space). The expressions for these 

propagation speeds are given as 
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(4.15) 

where U, V are the depth-averaged velocities in x and y directions, k is the wave number, and h is 

the water depth.  

The first term on the right-hand side of Eq. (4.13), introduced by Mase (2001), represents 

the energy dissipation due to the diffraction effect in the alongshore y-direction, which is implicitly 

perpendicular to wave direction. Mase (2001) suggested the coefficient  has a possible value 

between 2.0–3.0. The second and third terms on the right-hand side represent wave energy loss due 

to wave breaking and other sources/sinks of wave energy. 

 

4.2.2 Wave Radiation Stress 

The wave radiation stresses are calculated using the formula of Mellor (2008): 
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(4.16) 

where E is the wave energy, k is the wave number,  is the angle of wave propagation to the 

onshore direction, f is the wave frequency, h is the still water depth, D is the total water depth, z’ is 
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the vertical coordinate referred to the still water level, and ED is a modified Dirac delta function 

which is 0 if z ≠ η and has the following quantity: 

  / 2D
h

E E



   (4.17) 

 It is noted that the wave-current interactions also include Stokes drift and roller (Walstra et 

al. 2000; Sheng and Liu, 2011). The present model adopts the roller model implemented in the 

CMS2D model by Sanchez (2013), which is not described here since it is not used in the model test 

cases presented in this study. The Stokes drift has different formulations depending on Lagrangian 

and Eulerian averaging. Based on Eulerian averaging, the Stokes drift is zero below wave trough 

and nonzero between the wave crest and trough. Because the flow model domain covers only from 

the phase-averaged water surface to the bed, how to take into account the Stokes drift between the 

wave crest and phase–averaged water level is still a problem under investigation and does not have 

a commonly accepted treatment. Because the term ED in Eq. (4.16), which is the wave energy due 

to pressure between the wave crest and phase-averaged water surface, can indirectly account for 

the effect of the corresponding Stokes drift, the Stokes drift is simply lumped into the 

phase-averaged currents in the present model. This needs to be considered in the interpretation of 

model results, as demonstrated in test case 4. 

 

4.3 Numerical Solution Methods 

The wave-action balance equation (4.13) is solved on a nonuniform Cartesian grid using an 

implicit finite difference forward marching scheme from seaside boundary to the land side. The 

details on the numerical methods of the wave model are referred to Mase (2001) and Mase et al. 

(2005). The following subsections introduce the numerical methods of the flow model and the 
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coupling between flow and wave models. 

 

4.3.1 Computational Mesh and Data Structure 

 The present model a multiple-level quadtree rectangular mesh on the horizontal plane for 

the convenience of local refinement around structures or in high-gradient regions, and the sigma 

coordinate in the vertical direction to efficiently track the water and bed surface changes. An 

example of the mesh is shown in Fig. 4.1. For simplifying the mesh, a cell is refined by splitting 

into four equal child cells on the horizontal plane. Corresponding to this refining, any cell has one 

or two faces on each of its south, north, west, and east sides. For further simplification, we 

eliminate those isolated single refined or coarse cells. This means that a cell should be refined if all 

of its adjacent cells on either x or y direction are refined, and on the other hand, a cell should not be 

refined if all of its adjacent cells are not refined. Through this handling, each cell has only four to 

six faces even though its each side may have one or two faces, as shown in Figs. 4.1 and 4.2, so that 

the computational mesh will be less complicated. Fig. 4.2 shows the connectivity of the mesh on 

the horizontal plane. The 3-D cell includes a face on each of the top and bottom sides. 
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Figure 4.1 Example of the mesh: (left) horizontal quadtree mesh and (right) vertical sigma 

coordinate 

 

In combination with the vertical sigma coordinate, the nodes on the quadtree mesh at all 

horizontal layers are numbered in a fully unstructured approach, in which all cells are numbered in 

a one-dimensional sequence and pointers are used to determine the connectivity of neighboring 

cells for each cell.  

 

 
 

Figure 4.2 Control volume in the horizontal quadtree mesh 
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One may use staggered or non-staggered approach to arrange the primary variables u, v, w 

and η. The staggered approach uses a different grid system for each of these variables, while the 

non-staggered grid uses only one grid system for all of them. Considering the staggered approach 

is more complicated than the non-staggered approach near the interface between coarse and fine 

meshes, as shown in Fig. 4.2, the non-staggered grid is used in this study. All the primary variables 

are arranged at cell centers, and the fluxes are stored at cell faces. 

 

4.3.2 Discretization of 3-D Phase-Averaged Shallow Water Flow Equations 

Integrating the continuity equation (4.1) over the 3-D control volume (whose side view is 

shown in Figs. 4.2), applying Green’s theorem and discretizing the temporal derivative by the 

backward difference scheme, one can derive the following equation: 

 
1

, ,

, , , , , ,

1 1 1 1

0
e w n s

n n m m m m
P j P j

ek j wk j nk j sk j t j b j

k k k k

V V
F F F F F F

t



   

 
      


     (4.18) 

where Δt is the time step length; ΔVp,j is the volume of the control volume (cell) at node P with 

vertical cell index j; the superscript n denotes time level; F denotes the convective fluxes across 

cell faces; the subscripts w, e, s, n, b and t denote the west (negative x), east (positive x), south 

(negative y), north (positive y), bottom (negative z) and top (positive z) sides of the control volume; 

the subscript k is the index of the horizontal faces, with a value of 1 or 2; and mw, me, ms and mn are 

the numbers of cell faces at west, east, south and north sides of the cell. For the control volume 

shown in Fig. 4.2, mw=1, me=2, ms=1 and mn=2. For simplicity, mw, me, ms, mn, and the superscript 

n+1 will be omitted in the following notations.  

The convective fluxes at cell faces are defined as  
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, , , , , ,

, , , , , ,
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,

,

,
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b j b j b j t j t j t j

F u A F u A

F v A F v A

F w A F w A

   

   

   

 (4.19) 

where ΔA denotes the areas of cell faces, and w  denotes the velocity normal to the bottom and top 

faces of the cell. w  is related to the vertical velocity w as well as the horizontal velocities. 

Eq. (4.18) is rearranged as  

 
1

, ,

, , , , , ,

n n

P j P j

t j b j ek j wk j nk j sk j

k k k k

V V
F F F F F F

t

   
      

  
     (4.20) 

Because the vertical flux at the bed is zero, Eq. (4.20) is used to determine the vertical flux 

and in turn the vertical velocity at the top face of each cell by sweeping from the bed to water 

surface in each vertical line.  

Integration of the momentum equations (4.2) and (4.3) over the 3-D control volume and 

discretization of the temporal derivative using the backward difference scheme, the convective 

terms using an upwinding scheme and the diffusion terms using the central difference scheme 

leads to 

 1 1 1 1

, , , , ,

,

1n u n

P j l j l j u ek j ek wk j wku
l k kP j

u a u S D D
a

   
    

 
    (4.21) 

 1 1 2 2

, , , , ,

,

1n v n

P j l j l j v nk j nk sk j skv
l k kP j

v a v S D D
a

   
    

 
    (4.22) 

where a
u
 and a

v
 denote the coefficients for the discretized u and v momentum equations, 

1

, , ./ u

wk j wk j P jD g A a  , 
1

, , ,/ u

ek j ek j P jD g A a  , 
2

, , ,/ v

sk j sk j P jD g A a  , 
2

, , ,/ v

nk j nk j P jD g A a  , and Su, Sv 

include the source terms and the variables at time level n generated from discretization of the 

temporal derivative terms. Note that the first summation in Eqs. (4.21) and (4.22) is applied with 
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the index, l, sweeping over all the neighboring cells of cell P. The convection terms can be 

discretized using several numerical schemes with upwinding capability, such as the hybrid 

upwind/central scheme (Spalding, 1972), exponential scheme (Spalding, 1972) and HLPA scheme 

(Zhu, 1991). The HLPA scheme is approximately second-order accurate, while the hybrid and 

exponential schemes have accuracy between first and second orders. Details of these schemes can 

be found in Wu (2007). 

 

4.3.3 Solution of Discretized Equations 

The SIMPLEC algorithm is used in this study to couple the flow velocity and water level. 

Eq. (4.21) is used to compute the u velocity for an assumed water level field in an iterative manner. 

Application of under-relaxation (Majumdar, 1988) leads to 

 * * 1 * 1 *

, 1 , , , ,(1 ) o

P j u P j ek j ek wk j wk u P j

k k

u H D D u   
 

     
 

   (4.23) 

where *  is the guessed water level, 
*

,P ju  is the approximate solution of u-velocity, ,

o

P ju  is the 

u-velocity in the previous iteration step, 
*

1 ,P jH  denotes the first term on the right-hand side of Eq. 

(4.21) and αu is the relaxation factor that is set as about 0.8 in this study. 

One can derive the relation between the water level and velocity corrections from Eq. 

(4.23):   

 1 * 1 1

, , , ,

n

P j P j u wk j wk ek j ek

k k

u u D D    
    

 
   (4.24) 
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where   is the water level correction      . In the SIMPLEC algorithm, 

1 1

, , , ,1 u u

wk j wk j u l j P j

l

D D a a
 

  
 

  and 1 1

, , , .1 u u

ek j ek j u l j P j

l

D D a a
 

  
 

 . The relation of water level 

and velocity corrections for the SIMPLE algorithm is similar to Equation (4.24), with 
1

,wk jD   and 

1

,ek jD    replaced by 
1

,wk jD  and 
1

,ek jD . 

Similarly, one can have the v-equation and the corresponding correction equation: 

 * * 2 * 2 *

, 2 , , , ,(1 ) o

P j v P j nk j nk sk j sk v P j

k k

v H D D v   
 

     
 

   (4.25) 

 1 * 2 2

, , , ,

n

P j P j v sk j sk nk j nk

k k

v v D D    
    

 
   (4.26) 

where 
*

2 ,P jH
 
denotes the first term on the right-hand side of Eq. (4.22),  

2 2

, , , ,1 v v

sk j sk j v l j P j

l

D D a a
 

  
 

  and 2 2

, , , ,1 v v

nk j nk j v l j P j

l

D D a a
 

  
 

 . Here, αv is the relaxation 

factor for the v-equation. 

In order to avoid the checkerboard splitting for the collocated arrangement (Patankar, 

1980), the momentum interpolation technique proposed by Rhie and Chow (1983) is adopted to 

evaluate the variable values at cell faces from the quantities at cell centers. For example, the 

u-velocity at w-face and the v-velocity at s-face are determined as 
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(4.27) 
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in which fx,p and fy,p are the weighting factors used to interpolate the values of a variable at cell 

faces w and s from the values at two adjoining cell centers P and W or P and S, respectively; 

1 ,PWk jH 
 and 2 ,PSk jH 

 stand for 1 ,P jH 
 and 2 ,P jH 

 when applying Eqs. (4.23) and (4.25) on the cells 

centered by W and S, respectively. The velocity corrections corresponding to Eqs. (4.27) and 

(4.28) for the SIMPLEC algorithm are derived as 

  1 1

, , ,

n

wk j wk j u wk j Wk Pu u Q         (4.29) 

  1 2

, , ,
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sk j sk j v sk j Sk Pv v Q         (4.30) 
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     
    

With the definition of fluxes at cell faces and Eqs. (4.29) and (4.30), one can derive the flux 

corrections at w and s faces: 

  , , ,wk j wk j Wk j Wk PF F a        (4.31) 

  , , ,sk j sk j Sk j Sk PF F a        (4.32) 

where 
1

, , ,Wk j u wk j wk ja Q A   , 
2

, , ,Sk j v sk j sk ja Q A   , and ,wk jF 
 and ,sk jF 

 are the fluxes at faces w and s in 

terms of the velocities ,wk ju
 and ,sk jv

 evaluated using Eqs. (4.28) and (4.29). 

Summation of Eq. (4.20) over each vertical line and application of the free-surface 

kinematic condition (4.8) leads to the depth-integrated continuity equation:  

 
1

, , , ,

1 1 1 1

0
n n J J J J
P P

P ek j wk j nk j sk j

k j k j k j k j

A F F F F
t

 

   


     


     (4.33) 



 

 

106 

where J is the number of cells at the vertical line, and ΔAP is the area of the cell projected onto the 

horizontal plane. 

Inserting Eqs. (4.31) and (4.32) into (4.33) leads to the following equation for water level 

correction: 

 P P Wk Wk Ek Ek Sk Sk Nk Nk

k k k k

a a a a a S    

                 (4.34) 
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The set of non-linear discretized equations are solved iteratively. The iteration process 

consists of inner and outer iteration loops. The inner iteration is designed for iteratively solving 

each of the discretized momentum equations (4.21) and (4.22) and the water-level-correction 

equation (4.34). The outer iteration loop visits the discretized equations in the following sequence 

in each time step as required by the SIMPLEC algorithm: 

a) Guess the water level field η
*
; 

b) Solve the momentum equations (4.23) and (4.25) to obtain 
*

,P ju  and 
*

,P jv ; 

c) Use the Rhie and Chow’s momentum interpolation to determine the horizontal velocities 

and fluxes at cell faces; 

d) Calculate   using Eq. (4.34); 

e) Correct η by      , and update ,P ju
 
and ,P jv  using Eqs. (4.24) and (4.26) and 

horizontal fluxes using Eqs. (4.31) and (4.32); 
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f) Determine the vertical fluxes at top and bottom faces using the discretized continuity 

equation (4.20) by sweeping from the bottom to the water surface along each vertical line, 

and then the vertical velocity 
,P jw  at cell centers using the derived vertical fluxes; 

g) Treat the corrected water level, η, as a new guess η
*
, and repeat the procedure from steps 2 

to 6 until a converged solution is obtained. 

 

4.3.4 Weting and Drying Techniques 

It is of importance to handling the wetting and drying processes in surface water flow 

simulation. The present model uses a threshold flow depth (a small value such as 0.01 m in 

experimental cases and 0.05 m in field cases) to judge drying and wetting. If the flow depth at a 

vertical line is larger than the threshold value, the vertical line is considered to be wet; otherwise, 

the vertical line is dry. For the convenience of solution algorithm, each dry vertical line is 

represented by the same number of nodes as the neighboring wet vertical line. Because a fully 

implicit solver is used in the present model, all the wet and dry nodes participate in the solution. 

The nodes on all dry vertical lines are assigned a zero velocity. On the water edges between the dry 

and wet nodes, the wall-function approach is applied (Wu 2014). 

 

4.3.5 Coupling of Flow and Wave Models 

 The flow and wave models are coupled together using a process called steering. The time 

interval at which the wave model is run is called the steering interval or wave time step. The 

steering process is summarized below:  
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a) The wave model is run first using the initial water level, current velocity, and bed 

elevation; 

b) Wave information such as wave height, period, dissipation, radiation stress gradient, and 

wave unit vector are interpolated spatially from the wave grid to the flow grid and passed to 

the flow model;  

c) The flow model is run until the next steering interval using wave characteristics that are 

linearly interpolated throughout time during the specified steering interval. At each flow 

time step, variables such as wave length and bottom orbital velocities are updated using the 

new water depth and current velocity;  

d) Water level, current velocity, and bed elevation are interpolated from the flow grid to the 

wave grid and passed to the wave model;  

e) The wave model is then run again for the following wave time step;  

f) Steps b) - e) are repeated until the end of the simulation. 

 

4.4 Model Testing 

The developed model was tested by four cases. The first two cases are tidal flows in 

estuaries, through which the stability, efficiency and reliability of the model for unsteady flows are 

quantitatively validated. The third case is wind-induced current case, which shows the validity of 

mixing length model in simulating the wind-induced velocity profile. The fourth case is undertow 

current due to waves on a sloping beach, which validates the coupling of the wave and flow 

models. 
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4.4.1 Tidal Flow in San Francisco Bay 

 San Francisco Bay is the largest estuary on the west coast of the U.S.A. It includes four 

bays: Suisun Bay, San Pablo Bay, Central Bay and South Bay, as shown in Fig. 4.3. The 

simulation domain includes the full bay and the open sea. Because the domain is very irregular, the 

used mesh consists of 72081 quadtree rectangular cells on the horizontal plane and 6 layers in the 

vertical direction. Fig. 4.4 shows the computational mesh, with dots representing locations of cell 

centers. The coarsest cell size is 3200×3200 m near the offshore ocean boundary, and the finest 

cell size is 25×25 m near the southern shoreline of Pacific coast. The bathymetry data covering the 

full bay area was downloaded from USGS’s San Francisco Bay Bathymetry Web Site 

(http://sfbay.wr.usgs.gov/sediment/sfbay/index.html). The measured tidal levels are used at the 

offshore boundary. The simulation period is 120 hours long in April 25–30, 2003. The simulation 

starts from a static condition (zero flow velocity), but with a two-day ramp period to get reasonable 

initial tidal flow field. The Coriolis coefficient is 0.000089. The bed friction coefficient cf is set as 

0.002. The computational time step is 15 minutes.  
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Figure 4.3 Computational domain and measurement stations in San Francisco Bay, CA 

 

 

Figs. 4.5 and 4.6 show the computed flow patterns near the Golden Gate Bridge and Port 

Chicago in flood and ebb tides. One can see that the wetting and drying processes on the flood 

plain are handled well.  Fig. 4.7 compares the measured and simulated water levels at four stations: 

Alameda, Golden Gate Bridge, Richmond, and Mallard Island. The amplitudes and phases of the 
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tidal levels are well predicted. There is no significant phase difference between the measurement 

and simulation. Fig. 4.8 compares the measured and simulated flow velocities at the upper, middle 

and bottom layers of water in station Richmond. The general trend of the temporal variation of 

velocity is reasonably well obtained. 
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Figure 4.4 Computational mesh for San Francisco Bay (dots: cell centers) 
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Figure 4.5 Computed depth-average flow patterns near Golden Gate Bridge: (a) flood tide and (b) 

ebb tide 
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Figure 4.6 Computed depth-average flow patterns near Port Chicago: (a) flood tide and (b) ebb tide 
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Figure 4.7 Measured and simulated tide levels in San Francisco Bay 
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Figure 4.8 Measured and simulated velocities at station Richmond, San Francisco Bay 
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4.4.2 Tidal Flow in Gironde Estuary 

The Gironde Estuary, located in southwestern France, is the passage of the Garonne River 

and the Dordogne River into the Atlantic Ocean, as shown in Fig. 4.9. The water body is about 

2–14 km wide, and the navigation channel is about 6–30 m deep. The estuary is partially mixed 

and macrotidal, with a 12 hour and 25 minutes tidal lunar period and a tidal amplitude of 1.5–5 m 

at the mouth (Li et al., 1994). The simulation domain is about 80 km long, starting from the mouth 

to the Garonne River and the Dordogne River. The horizontal domain is represented by a uniform 

mesh with a size of 250 m × 125 m for each cell, and each vertical line is divided to 6 layers. The 

data measured from May 19–25, 1975 is used to validate the developed model. The computational 

time step is 15 minutes. At the estuary mouth, the tidal elevation is given by the recorded time 

series at station “Pointe de Grave”. At the two upstream ends, the flow discharges of the Garonne 

River and the Dordogne River are specified according to the measured data at La Réole and 

Pessac. The bed friction coefficient cf is estimated as 0.002.   

Fig. 4.10 compares the measured and simulated water levels at stations Richard and Ile 

Verte. The amplitude and phase are well predicted by the numerical model. No obvious phase 

difference exists between the measured and simulated tidal levels. Fig. 4.11 shows the comparison 

of the measured and simulated flow velocities at 1 m under the water surface and 1 m above the 

bed in stations Blaye and PK68. The agreement is reasonably good.  
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Figure 4.9 Sketch of Gironde Estuary, France 
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Figure 4.10 Measured and calculated water levels at selected stations in Gironde Estuary 

 

 
Figure 4.11 Measured and calculated flow velocities at selected stations in Gironde Estuary 
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4.4.3 Wind-induced Current in a Flume 

The developed model is tested using the experiment data of wind-induced currents 

acquired by Baines and Knapp (1965). The experimental apparatus consisted of a wind channel 

with a cross-section of 0.9144 m by 0.9144 m and a length of 12.8 m. The test section was 9.144 m 

long, and the water depth was 0.3048 m. Observations were made at different points over the depth 

for two wind conditions with average wind speeds of 3.901 and 6.096 m/s. In the numerical model, 

the same conditions were deployed. The channel is discretized with square grid cells of side 0.061 

m. Eighteen layers are used in the depth direction. The relative layer thickness (layer thickness 

over flow depth) from top to bottom is 0.005, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.065, 0.085, 0.1, 

0.1, 0.1, 0.1, 0.1, 0.1, 0.05, 0.03 and 0.01. The bed friction coefficient cf is 0.005. The mixing layer 

model is used, with two different vertical mixing length functions. One is the classical formula of 

mixing length for open-channel flow expressed in Eq. (4.5) and the other one is newly proposed as 

follows:  
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 (4.35) 

The measured and calculated velocities for the two cases with wind speed of 3.902 and 

6.096 m/s are compared in Figs. 4.12 and 4.13, respectively. It can be seen that the model with the 

vertical mixing vertical length function (4.35) reproduces well the current velocity profile in the 

entire water depth, except some error at the water surface. The model with the classical mixing 

length function in Eq. (4.5) predicts well the velocity profile in the middle and lower depth layers, 

but has larger errors near the water surface.  
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It should be noted that the results obtained by Eq. (4.35) are better than those by Eq. (4.5), 

but the model is less stable and requires shorter time step when Eq. (4.35) is used. The time step is 

15 sec when Eq. (4.5) is used, and 1 sec when Eq. (4.35) is used. If the current velocity near the 

water surface is not the main concern, Eq. (4.5) can be used since it is much more efficient in 

computation.   
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Figure 4.12 Measured and simulated current velocities induced by wind with a speed of 3.901 m/s 
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Figure 4.13 Measured and simulated current velocities induced by wind with a speed of 6.096 m/s 

 

 

4.4.4 Undertow Flow Induced by Waves on a Slopped Beach 

The undertow is a near-bottom compensating cross-shore flow for mass transport and 

Stokes drift in the surf zone. The developed 3-D shallow water flow model coupled with the 

CMS-Wave model was applied to simulate the undertow flow in this case. The experiment was 

conducted by Ting and Kirby (1994) in a two-dimensional wave tank, 40 m long, 0.6 m wide and 

1.0 m deep, as shown in Fig. 4.14. The bottom slope was 1:35, and the water depth in the 

horizontal region was 0.4 m. The experimental data were obtained with a wave height of 0.128 m 

in the horizontal region and a wave period of 5 sec.  
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Figure 4.14 Cross-shore Plan of Ting and Kirby (1994) Undertow Flow Experiment Setup 

 

The computational domain included the horizontal region and the beach. The cross-shore 

grid spacing was 0.5 m, and 16 layers with a uniform spacing were used in the vertical direction. 

The simulation starts from a still water condition and reaches to the phase-averaged steady state 

reported in the experiment. The time step was 60 sec. The total simulation period was 3 hours, 

which was much longer than the time required to reach a steady flow state. The bed friction 

coefficient cf is set as 0.0035. The mixing length model in Eq. (4.7) is used, with the current mixing 

length determined by Eq. (4.5) but two different functions for the vertical wave mixing length. 

Both functions can be written as lmw =aκH, with the coefficient a defined differently. In one 

function a has a constant value of 0.3 over the flow depth, and in the other function a is expressed 

as 
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where δ is the bottom layer thickness, set as 0.1h in this test case. Note that for simplicity, δ is not 

related to the wave boundary layer thickness. However, this can be done in the future by using 

more test cases. The coefficient 0.6 in Eq. (4.36) is calibrated by comparing the calculated and 



 

 

122 

measured undertow current velocities. Its validity for other conditions needs to be validated 

further. 

Fig. 4.15 compares the measured and calculated cross-shore profiles of mean water levels 

and wave heights. The calculation results are obtained with the option of constant coefficient a as 

0.3 over the depth, but the wave height and water level calculated by using Eq. (4.36) are very 

similar. In this experiment, the wave breaks at the location x=7.795 m. The predicted wave 

breaking location is slightly on the offshore side of the measured one. The model underpredicts the 

maximum wave height. This may be because the wave model is designed for random waves, 

whereas the present case uses regular waves. The model predicts well the wave setup. The 

measured and calculated mean water levels are in general good agreement.  

 

 
 

Figure 4.15 Wave height and mean water level in the case of Ting and Kirby (1994) undertow flow 

experiment 
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Fig. 4.16 shows the undertow current pattern in the cross-shore vertical plane calculated 

using the constant a option. The calculated undertow offshore flow and upper onshore flow are 

qualitatively reasonable. Fig. 4.17 shows the calculated and measured phase-averaged flow 

velocities in six stations at x= 7.795, 8.345, 8.795, 9.295, 9.795, and 10.395 m. The results using 

both options of coefficient a are reported in Fig. 4.17. When the constant coefficient a is used the 

model predicts gentle gradients of velocity between the upper onshore and lower offshore flows, 

which are less accurate than the sharper gradients obtained by the variable coefficient a, in 

comparison with sharp gradients observed in the experiment. The undertow layer thickness is also 

better predicted by using the option of variable coefficient a. However, noticeable differences exist 

between the calculated onshore currents between the two options and the measured data. Because 

the model predicts a steady flow state, the calculated onshore and offshore fluxes are equal 

because of mass balance ensured by the numerical model; however, the onshore flux is smaller 

than the offshore flux in the experiment, which is due to that only the currents under the wave 

trough were sampled so that the onshore current is not accurately represented in the measurements. 

In particular, the Stokes drift is not included in the measurement data, whereas the present flow 

model lumps the Stokes drift into the phase-averaged currents. Considering the uncertainty or 

error in the measured onshore current, we can make a conclusion that the model with the option of 

variable coefficient a expressed in Eq. (4.36) can more accurately simulate the undertow current 

induced by waves over a sloping beach than using the option of constant coefficient a. In general, 

both options give qualitatively reasonable results. 
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Figure 4.16 Calculated undertow flow in the case of Ting and Kirby (1994) experiment 
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Figure 4.17 Vertical profile of cross-shore current in the case of Ting and Kirby (1994) experiment 
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CHAPTER V 

3-D NONUNIFORM SEDIMENT TRANSPORT MODEL UNDER CURRENT AND WAVES  

 

 Some coastal sediment transport models are based on the assumption that the bed load or 

total load (both bed load and suspended load) instantaneously reaches the equilibrium state, 

calculate the sediment transport rate using empirical formulas, and then determine the bed change 

by solving the sediment mass balance equation or the Exner (1925) equation (Stuiksma et al. 1985, 

Chesher et al. 1993, Roelvink and Banning 1994, Ranasinghe et al. 1999, Cayocca 2001, 

Fortunato and Olveira 2004, Buttolph et al. 2006, and Warner et al. 2008). However, because of 

the dynamic nature of currents and waves on the coast, the sediment transport in coastal waters 

usually is not in states of equilibrium. The assumption of local equilibrium may lead to unrealistic 

results and significant errors in cases of strong erosion and deposition. Therefore, a 

non-equilibrium transport model, which is more realistic for sediment transport, is adopted in the 

present study. Compared to the equilibrium model, the non-equilibrium model describes the 

temporal and spatial lags between flow and sediment transport. 

The water column is usually divided into bed-load zone and suspended-load zone due to 

the different behaviors between bed load and suspended load. The bed-load zone is from the bed 

elevation to a certain reference level, which is usually assumed to be about twice the sediment 

diameter or half the bed-form height. The method to determine the reference level in this study has 
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been discussed in Chapter 3. The suspended-load zone is from the reference level to the water 

surface. The present sediment transport model solves the actual transport equations for both bed 

load and suspended load. The governing equations of non-equilibrium suspended-load and 

bed-load sediment transport are presented in the following sections. 

 

5.1 Suspended-load Sediment Transport Equation 

 The suspended load is transported by the turbulent flow in the water column above the 

bed-load layer. The governing equation of nonuniform suspended-load transport in tensor notation 

is written as 
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 (5.1) 

where ck is the local concentration of the kth size class of suspended load; s is the turbulent 

diffusivity of sediment, which is assumed to be proportional to the turbulent eddy viscosity as 

/s t s   , in which s is the Schmidt number; sk is the settling velocity, which will be discussed 

later; and δj3 is the Kronecker delta with “3” indicating the vertical direction. 

 

5.2 Bed-load Sediment Transport Equation 

 The bed load moves by rolling, sliding, and saltating within the bed-load layer. The bed 

load is simulated using the equilibrium transport model (Wang and Adeff 1986, van Rijn 1987, 

Spasojevic and Holly 1994, and Olsen 2003) or the non-equilibrium transport model (Wu et al. 

2000a). The non-equilibrium transport model is more adequate. Because the bed-load layer is very 

thin, the bed-load transport equation in the 3-D model has the same formulation as the horizontal 
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2-D model equation, which is written as 
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where 
bkq  and 

*b kq  are the actual and equilibrium (capacity) transport rates of the kth size class of 

bed load and 
*b kq  is determined using the bed-load capacity formula developed in Chapter 3 (Eqs. 

3.26 - 3.29); 
bku  is the bed-load velocity; L is the adaptation length of sediment, which is related 

sediment transport and bed form scales and treated as a calibration parameter in this study (Wu, 

2007); and bx  and by  are the direction cosines of the calculated bed shear stress, which are 

calculated as 

 2 2 2 2/    and   /bx bx bx by by by bx byu u u u u u      (5.3) 

where bxu  and byu are the x- and y-components of bed-load velocity or the flow velocity near the 

bed. 

 

5.3 Settling Velocity 

The settling velocity in clear water is calculated using the following relation proposed by 

Wu and Wang (2006): 
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 (5.4) 

where the coefficients M, N, and n are given as 
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where Sp is the Corey shape factor, usually equal to 0.7 for naturally worn particles. 

 

5.4 Bed Change and Bed Material Sorting 

 The fractional bed change is determined by 
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where  /b k
z t   is the rate of change in bed elevation due to size class k; 

mp is the porosity of 

sediment deposit, and Dbk and Ebk are the near-bed deposition and entrainment fluxes of sediment, 

respectively. The near-bed sediment exchange flux, Dbk - Ebk, is calculated by 

    *    1,2,...,bk bk sk bk b kD E c c k N     (5.7) 

where bkc  and *b kc  are the actual and equilibrium (capacity) near-bed sediment concentrations, 

respectively. The equilibrium (capacity) near-bed sediment concentration is calculated using an 

empirical equation described in a later section. 

 The total rate of change in bed elevation, /bz t  , is determined by 
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 The size gradation of bed material may vary along the vertical direction due to historical 

sedimentation. To consider this variation, the bed material above the nonerodible layer is divided 

into multiple layers, as shown in Fig. 5.1. Bed material sorting is the process in which the bed 

material changes composition. The sorting of sediments is calculated using the mixing layer 

concept (Hirano 1971, Karim and Kennedy 1982, Rahuel et al. 1989, Armanini and di Silvio 1988, 

Wu 1991, and van Nielerk et al. 1992). The mixing layer is the top layer of the bed, in which all 
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sediment particles are subject to exchange with those moving with flow, i.e., entraining from the 

mixing layer to the water column or depositing from the water column to the mixing layer. The 

second layer is a subsurface layer. More underlying subsurface layers can be added. However, the 

sediment particles in the subsurface layers do not directly exchange with the moving particles. 

 The temporal variation of the bed-material gradation in the mixing layer is calculated as 

(Wu 2007) 
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 (5.9) 

where m is the mixing layer thickness; pbk is the fraction of the kth size class of bed material 

contained in the mixing layer; and *

bkp  is the pbk when / / 0b mz t t       and the fraction of the 

kth size class of bed material contained in the second layer when / / 0b mz t t     . The first 

term on the right-hand side of Eq. (5.9) represents the exchange between moving sediment and bed 

material, while the last term accounts for the exchange between the mixing layer and the second 

layer, due to rise or descent of the lower bound of the mixing layer. 

 The bed-material gradation in the second layer is calculated by 
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where s is the second layer thickness; and psbk is the fraction of the kth size class of bed material 

contained in the second layer. Eq. (5.10) assumes no exchange between the second and third 

layers. 
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Figure 5.1 Multiple Layer Model for Bed Material Sorting 

 

5.5 Boundary Conditions 

5.5.1 Vertical Boundary Conditions 

 The net vertical sediment flux across the water surface should be zero and, thus, the 

suspended-load boundary condition at the water surface is 
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 There are usually two approaches to specify the suspended-load boundary condition at the 

interface between the suspended-load and bed-load zone. One approach is to assume the near-bed 

suspended-load concentration to be at equilibrium: 

  *    1,2,...,
b

k bz z
c c k N

 
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where cb*k is the equilibrium sediment concentration of kth size at the interface. The model in this 

study adopts the other approach, which is to assume that the near-bed sediment entrainment flux is 

at the capacity of flow picking up sediment under the considered flow conditions and the bed 

sediment configurations: 
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where Ebk is the entrainment flux of the sediment at the interface. Correspondingly, the deposition 

flux at the interface is defined as 

    1,2,...,bk sk bkD c k N   (5.14) 

where cbk is the suspended-load concentration at the interface between the suspended-load and 

bed-load zones. 

 

5.5.2 Horizontal Boundary Conditions 

 Traditional lateral boundary conditions are used in the developed sediment transport 

model. At solid boundary, i.e., interface between dry and wet cells, there is no sediment flux across 

the boundary. Inflow boundaries may be assigned a specific concentration, or the equilibrium 

concentration. Outflow boundaries are assigned a zero-gradient boundary condition for sediment 

concentration. 

 

5.6 Discretization of Sediment Transport Equations 

5.6.1 Suspended-load Transport Equation 

The suspended-load transport equation is discretized based on the same mesh as the flow 

model, which is quadtree rectangular mesh in the horizontal plane and sigma coordinate in the 

vertical direction (see Figs. 4.1).  Figs. 5.2 and 5.3 show the vertical mesh and 3-D control volume 

for the sediment model, respectively. The bed load is a thin layer below the suspended load region. 
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Figure 5.2 Vertical Mesh for Sediment Transport Model 

 

To solve the suspended-load transport equation (5.1), the sediment settling term can be 

treated as a source term or combined with the vertical convection term. Wu et al. (2000a) 

suggested the former approach would be better. Thus, Eq. (5.1) can be rewritten as 
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Integrating Eq. (5.15) over a 3-D control volume (see Fig. 5.3), yields 
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(5.16) 

where VP,j is the control volume of cell P with the vertical cell index j; u, v, and w are the 

velocities in  x-, y-, and, z-directions; the subscripts w, e, s, n, b and t denote the west (negative x), 

east (positive x), south (negative y), north (positive y), bottom (negative z) and top (positive z) 

sides of the control volume; the subscript m is the index of the horizontal faces, with a value of 1 or 

2; and mw, me, ms, and mn are the numbers of cell faces at the west, east, south, and north sides of 

the cell. For the control volume shown in Fig. 5.3, mw=1, me=2, ms=1, and mn=1. 

 Discretization of the temporal derivative in Eq. (5.16) using the backward difference 

scheme, the convection terms using exponential scheme, and source term using an upwinding 

scheme, and the diffusion terms using the central difference scheme leads to 
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where t is the time step length; the superscript n denotes time level; the subscripts W, E, S, N, B 

and T denote the west (negative x), east (positive x), south (negative y), north (positive y), bottom 

(negative z) and top (positive z) neighboring nodes of node P; a is coefficients; and S is the source 

term. 



 

 

135 

 

Figure 5.3 3-D Control Volume of Node P and its Neighboring Cells 

 

 

With discretizing the convection by exponential scheme and source terms by the 

upwinding scheme, the coefficients a and S are expressed as 
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where A denotes the areas of cell faces; F and D are defined as 
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 Rearranging Eq. (5.18) by putting all the 1

,

n

k Pc   terms on the left hand side of the equation, 

the final discretization form of Eq. (5.15) can be written as 
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where 
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 Note that the convection terms are also discretized using other numerical schemes with 

upwinding capability, such as the hybrid upwind/central scheme (Spalding, 1972), exponential 

scheme (Spalding, 1972) and HLPA scheme (Zhu, 1991). The HLPA scheme is approximately 

second-order accurate, while the hybrid and exponential schemes have accuracy between first and 

second orders. With different discretization schemes, the final discretization form of Eq. (5.1) 
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remains the same as Eq. (5.20) but with the coefficients defined in different ways. Details of these 

schemes can be found in Wu (2007). The exponential difference scheme is used in this study. 

 

5.6.2 Bed-load Transport Equation 

 The bed-load model in this study is assumed to be a thin layer below the lowest level of the 

vertical grid (see Fig. 5.2). Therefore, the bed-load transport equation is discretized based on the 

quadtree rectangular mesh in a 2-D horizontal plan. The bed-load transport equation (5.2) can be 

integrated over a 2-D control volume and resulted in 
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 Discretizing Eq. (5.22) using the same manner as the suspended-load transport equation, 

yields, 
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where the coefficients a
q
 and the source term q

kS  are defined as 
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 Rearranging Eq. (5.22) by putting all the 1

,

n

bk Pq   terms on the left hand side of the equation, 

the final discretization form of Eq. (5.24) can be written as 
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where 
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5.6.3 Bed Change and Bed Material Sorting Equations 

 The bed change equations (5.8) is discretized as 
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 Thus, the total change in bed elevation is determined by 
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 After the bed change is calculated, the bed elevation is updated by 
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 The bed material sorting equations (5.9) and (5.10) are discretized as 
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5.7 Solution of Discretized Sediment Transport Equations 

 To solve the discretized sediment transport equations, the equilibrium near-bed 

suspended-load concentration and bed load transport rate need to be determined using empirical 

formulas. In general, these formulas can be written as 

 * *

* *,   b k bk bk b k bk bkc p c q p q   (5.32) 

 In the present model, the sediment transport, bed change, and bed material sorting are 

solved in a coupled approach. To couple the sediment calculation, the bed-material gradation in 

Eq. (5.32) is treated implicitly: 
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 Also from Eqs. (5.13) and (5.14), one can derive 
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 Substituting Eqs. (5.30), (5.33), and (5.34) into Eq. (5.27) yields 
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Summing Eq. (5.35) over all size classes and using Eq. (5.28) yields the following equation 

for the total change in bed elevation: 
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 Thus, the sediment equations can be solved iteratively in the following sequence: 

a) Calculate the flow field; 

b) Determine ,b Pz  using Eq. (5.36) with estimated  1n

bkc   and 1n

bkq  ; 

c) Calculate 1n

bkp   using Eq. (5.30); 

d) Calculate 1

*

n

b kc   and 1

*

n

b kq   using Eq. (5.33); 

e) Calculate 1n

bkc   and 1n

bkq   using Eqs. (5.20) and (5.25); 

f) Use the calculated 1n

bkc   and 1n

bkq   as new estimates and repeat steps b) - e) until the 

convergent solution is obtained; 

g) Update the bed topography using Eq. (5.9) and the bed-material gradations in the 

subsurface layers. 
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5.8 Model Testing 

5.8.1 Erosion in a Basin due to Clear Water Inflow 

The developed sediment transport model was applied to a laboratory case of erosion due to 

clear water inflow from a narrow channel in a rectangular basin with a sandy bed layer over a hard 

bottom. The experiment is good for testing the sediment transport model under strong erosion 

conditions in the presence of a hard bottom. Thuc (1991) carried out a movable bed laboratory 

experiment in a 5-m long and 4-m wide rectangular basin, with a narrow 0.2-m-wide inlet and a 

1.2-m-wide outlet. The initial water depth was 0.15 m, with a 0.16-m layer of sand (d50 = 0.155 

mm) over a concrete bottom. The estimated sand settling velocity is 0.013 m/s. The inflow 

depth-averaged current velocity is 0.6m/s. Bed elevation changes along the longitudinal centerline 

at 1 and 4 hour were measured. However, no measurements of bed-load or suspended-load were 

available in this experiment. 

The computational grid (see Fig. 5.4) had a constant resolution in the x-direction of 0.1 m 

and a variable resolution in the y-direction between 0.0333 and 0.1333 m. The computational mesh 

consisted of 62 rows and 69 columns. The computational time step was 30 sec. A water flux 

boundary was applied at the upstream end and a water level boundary was applied to the 

downstream end. Three different values of bed friction coefficients, 0.008, 0.009, and 0.01, were 

used to obtain the best morphologic change results. 

Fig. 5.5 compares the measured and calculated bed changes along the longitudinal 

centerline at 1 and 4 hr. The calculated erosion and deposition depths are in good agreement with 

the measured data, in particular at time 4 hr. It was found that cf = 0.009 provides the best 

agreement between the calculated and measured bed elevations. 
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Figure 5.4 Computational Grid for the Thuc (1991) Experiment Case 

 

 

Figure 5.5 Comparison of Calculated and Measured Bed Elevations at 1 and 4 hr for the Thuc 

(1991) Test Case 
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5.8.2 Channel Infilling and Migration: Waves Parallel to Flow 

 The developed sediment transport model was applied to an experiment which concerns the 

migration and sedimentation of a channel perpendicular to the current direction. The current and 

the waves are in the same direction.  Van Rijn (1986) carried out the experiment in a flume with 

17-m in length, 0.3-m in width, and 0.5-m in depth. A channel with side slopes of 1:10 and a depth 

of 0.125 m was excavated in the measuring section of the flume as shown in Fig. 5.6. The velocity 

and sediment concentration profiles at initial time were measured at five locations as shown in Fig. 

5.6. The bed material consisted of fine well sorted sand with d50 = 0.1 mm and d90 = 0.13 mm. The 

water depth and current velocity upstream of the channel were 0.255 m and 0.18 m/s. Regular 

waves with a period of 1.5 s were generated by a simple wave paddle. The wave height at the 

upstream was 0.08 m. Sand with the same size and composition as the bed material was supplied at 

a constant rate of 0.0167 kg/m/s at the upstream end to maintain equilibrium conditions. 

 

 
 

Figure 5.6 Side View of the Experiment Flume (after van Rijn 1986) 
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The computational grid had a constant resolution of 0.1 m in the x-direction and 0.1 m in 

the y-direction. The mesh was divided into 13 layers in vertical (z-) direction with finer layers 

towards the bed. The computational time step was 120 sec. A water flux boundary was applied at 

the upstream end and a water level boundary was applied to the downstream end. The bottom 

friction coefficient was set as 0.07 in the model. A range of suspended-load scale factors and 

Schmidt numbers was used to analyze sensitivity of the results to these parameters. 

Fig. 5.7 shows the measured and computed velocity profiles at initial time (t=0). The 

calculated results have a good agreement with the measurement. The calculated concentration 

profiles at initial time for different suspended-load scale factors and Schmidt numbers are shown 

in Figs. 5.8 and 5.9. The suspended-load scale factor is used to multiply the equilibrium near-bed 

suspended load concentration determined by the empirical formula (3.40). The calculated 

concentration profiles generally agree with the measurements. With larger suspended-load scale 

factor and smaller Schmidt Number, the calculated results are more closed to the measurement. 

The variations of the bed level after 10 hour for different suspended-load scale factors and Schmidt 

numbers were also compared with the measurement as shown in Figs 5.10 and 5.11. The 

calculated bed change shows best agreement with the measurement with suspended-load scale 

factor equal to 2.7 and Schmidt number equal to 1.0. 
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Figure 5.7 Comparison of the Measured and Calculated Velocity Profiles at Initial Time 
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Figure 5.8 Comparison of the Measured and Calculated Concentration Profiles at Initial Time for 

Different Suspended-load Scale Factors 



 

 

147 

 
Figure 5.9 Comparison of the Measured and Calculated Concentration Profiles at Initial Time for 

Different Schmidt Numbers 
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Figure 5.10 Comparison of the Measured and Calculated Bed Changes at 10 hour for Different 

Suspended-load Scale Factors 

 

 
 

Figure 5.11 Comparison of the Measured and Calculated Bed Changes at 10 hour for Different 

Schmidt Numbers 
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5.8.3 Channel Infilling and Migration: Waves Perpendicular to Flow 

The developed sediment transport model was applied to an experiment which was 

conducted by van Rijn and Havinga (1995) in a wave-current basin. Irregular waves (JONSWAP 

form) were generated by a directional wave generator. The flume was 26.5 m in length and 4 m in 

width. The channel had side slopes of 1:10 as shown in Fig. 5.12. The bed material consisted of 

fine well sorted sand with d50 = 0.1 mm and d90 = 0.13 mm. The water depth and current velocity 

upstream of the channel were 0.42 m and 0.245 m/s. Irregular waves were generated perpendicular 

to the current with a peak period of 2.2 s and significant wave height of 0.105 m at the upstream. 

Sand with the same size and composition as the bed material was supplied at a constant rate of 

0.022 kg/m/s at the upstream end to maintain equilibrium conditions. 

 

 

Figure 5.12 Computational Grid for the Van Rijn and Havinga (1995) Experiment Case 

 

 The computational grid had a constant resolution of 0.1 m in the x-direction and 0.1 m in 

the y-direction. The mesh was divided into 13 layers in vertical (z-) direction with finer layers 

towards the bed. The computational time step was 60 sec. A water flux boundary was applied at 

the upstream end and a water level boundary was applied to the downstream end. A range of 
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bed-load adaptation lengths and roughness height constants was used to test this case. 

The calculated bed level change after 23.5 hours for different bed-load adaptation lengths 

and roughness height constants are shown in Figs. 5.13 and 5.14. Four different values of bed-load 

adaptation length were used: 1 , 5, 10, and 15 m. From Fig. 5.13, one can observe that the results 

barely changed with the variation of the bed-load adaptation length. This is due to the fact that the 

suspended load is dominant in this case. 

 

 
 

Figure 5.13 Comparison of the Measured and Calculated Bed Change at 23.5 hour for Different 

Bed-load Adaptation Lengths 

 

Four different values of roughness height constant z0 (=ks/30) were used: 0.00054, 

0.00057, 0.0006, and 0.00063m. A roughness height constant of 0.00057 m gives the best 

agreement between the calculated and measured bed level change. Overall, the model performs 
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well in calculating the bed level change including upstream erosion, channel infilling, and 

downstream erosion. 

 

 
 

Figure 5.14 Comparison of the Measured and Calculated Bed Change at 23.5 hour for Different 

Roughness Height Constants 

 

5.8.4 Tidal Flow and Channel Infilling at Shark River Inlet, NJ 

 The comprehensive performance of the developed model was tested by a field case which 

involves tidal flow and channel infilling at Shark River Inlet, NJ. The Shark River Inlet is located 

in Monmouth County along the Atlantic Highlands region of the New Jersey shore and is the 

northernmost inlet on this coast. The inlet is stabilized by two parallel rubble stone jetties (Beck 

and Kraus 2010). This case is useful for testing the developed model’s hydrodynamic and 

morphologic capabilities for an inlet with a relatively small bay with dual-jetties entrance. Water 
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level data from Belmar, NJ, a site within Shark River Estuary (Fig. 5.14), were compared to model 

calculations for a 10-day period from August 15-25, 2009. The measurement of morphology 

change over a 4-month period from January to April 2009 was also available to compare the 

calculated results. 

 

 

 
 

Figure 5.15 Location Map for Shark River Inlet, NJ 
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 The model domain covered a local scale of approximately 11 km centrally located around 

Shark River Inlet. A telescoping grid was used. The smallest 8-m cell size was used within the 

main throat of the inlet and the largest 128-m cell size was used in the ocean. The cell size around 

the groins and beach was 16 m. The total of active ocean cells was approximately 20,000 (Fig. 

5.16). In the vertical (z-) direction, 6 layers were used.  

Bathymetry needed to develop the model grid for the backbay, entrance channel, and ocean 

was assembled from several datasets and converted to mean sea level (MSL) as given by the local 

tidal datum for Long Branch, NJ. Water level from a tidal gage at Sandy Hook, NJ was applied at 

the open ocean boundary. Wave data from Wave Information Study station 129 provided input 

parameters for generating spectral waves for CMS-Wave. The initial bed composition was defined 

by assuming an initial log-normal grain size distribution, and specifying an initial geometric 

standard deviation σg = 1.8 mm and median grain size d50 = 0.26 mm (Sanchez et al. 2011). Five 

size classes are used to represent the sediment mixture. The Manning’s coefficient was modified at 

discrete locations of the grid, ranging from 0.02 to 0.06 s/m
1/3

. For example, larger Manning’s 

coefficient was used around the structures to increase the friction. Non-erodible hard bottom cells 

are specified around the two jetties where structure protection is imposed at the field. A time step 

of 30 minutes is used. The steering interval between flow and wave models is 3 hour. 
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Figure 5.16 Computational Mesh for the Shark River Inlet Case 
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Fig. 5.17 shows the measured and calculated water levels at Belmar tidal gage from August 

15–25, 2009. The model reproduces well the measured tidal level. Fig. 5.18 shows a comparison of 

measured and calculated morphology changes in the inlet after 4-month simulation. The model 

provides a generally good agreement of deposition patterns within the inlet channel. The 

morphological change around the jetties is zero due to the specified non-erodible hard bottom 

cells. Fig.5.19 shows the d50 of the bed material after 4-month simulation. The coarse sediment is 

transported towards the shore. Figs. 5.20-5.24 compare the measured and calculated bathymetry 

across five transects after the 4-month simulation period. The locations of the five transects are 

shown in Fig. 5.18. Transects 1 and 2 represent the along channel sedimentation patterns in the 

direction of currents. Both transects extend from the bridge pilings eastward toward the ocean. The 

model reproduced well the trend of deposition and erosion in in these two transects. Transect 3 is 

located within the jettied part of the channel. The model illustrated a good agreement between the 

measured and calculated deposition in the center of the channel.  The model generally captured the 

channel infilling at the location of greatest change in Transect 4. Calculated and measured 

morphology changes in transect 5 are very closed and resulted in a good agreement.  
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Figure 5.17 Comparison of Measured and Calculated Water Level at Belmar 
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Figure 5.18 Measured (top) and Calculated (bottom) Morphology Change for a 4-month Period 

(January-April 2009) at Shark River Inlet, FL. 
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Figure 5.19 Calculated d50 of the bed material after a 4-month Period (January-April 2009) at 

Shark River Inlet, FL. 
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Figure 5.20 Measured and Calculated Bathymetry across Arc 1 (transect). Distance is Measured 

from West to East. 

 

 
 

Figure 5.21 Measured and Calculated Bathymetry across Arc 2 (transect). Distance is Measured 

from West to East. 
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Figure 5.22 Measured and Calculated Bathymetry across Arc 3 (transect). Distance is Measured 

from South to North. 

 

 
 

Figure 5.23 Measured and Calculated Bathymetry across Arc 4 (transect). Distance is Measured 

from South to North. 
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Figure 5.24 Measured and Calculated Bathymetry across Arc 5 (transect). Distance is Measured 

from South to North. 
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CHAPTER VI 

CONCLUSIONS 

 

A three-dimensional numerical model of multiple-sized sediment transport under current 

and waves has been developed. The hydrodynamic model simulates the current induced by short 

waves in coastal water by adopting the three-dimensional phase-averaged shallow water flow 

equations coupled with wave radiation stresses. The sediment transport model simulates the 

sediment transport processes under current and waves by solving the nonequilibrium sediment 

transport equations with a finite volume method. 

In order to close the developed 3-D sediment transport model, the Wu et al. (2000b) 

bed-load and suspended-load formulas have been extended to multiple-sized sediment transport 

under non-breaking waves and currents for coastal applications. Methods have been developed to 

determine the bed shear stress due to waves only and combined current and waves, and in turn 

applied to compute the bed-load and suspended-load transport rates. The developed formulas have 

been tested by a large number of data, which include single- or multiplied-sized bed-load and 

suspended-load under current and waves. Statistics show that more than 50% of the cases are 

predicted within a factor of 2 of the measured values and more than 75% of the cases are within a 

factor of 5. 

A new formula to predict the near-bed suspended-load concentration under current and 

waves has also been established. Different methods in literature have been tested and chosen to 
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determine the edge of the bed-load layer, i.e., reference level. In the presence of waves, van Rijn’s 

(1993) two-layer logarithmic distribution is used to predict the velocity profile. The distribution of 

Williams et al. (1999) is used to represent the concentration profile since it was validated by its 

developers using measured data under combined waves and currents. Two new approaches have 

been also developed to determine the Schmidt number. Analysis shows the new approaches are 

good choices to estimate the Schmidt number, while one may assume a unit Schmidt number for 

simplicity. The developed formula has been tested by using sediment data under current only and 

combined current and waves. Statistics shows more than half of the test cases are predicted within 

a factor of 2 of the measured values and about 90% of the cases are within a factor of 5. 

The extended Wu et al. (2000b) formulas and the new near-bed suspended-load 

concentration formula have been compared with other existing formulas in literature. The 

comparisons have been demonstrated that the developed formulas have better reliability and 

performance under different conditions over other formulas. 

The adopted hydrodynamic model is coupled with a spectral wave deformation model, 

which solves the spectral wave-action balance equation and provides wave characteristics to the 

flow model.   The developed flow model uses the multiple-level quadtree rectangular mesh on the 

horizontal plane and the sigma coordinate in the vertical direction. The SIMPLEC algorithm is 

used to couple the flow velocity and water level. The developed model has been tested by four 

cases: tidal flow in San Francisco Bay, tidal flow in Gironde Estuary, wind-induced current in a 

flume, and undertow flow induced by waves on a slopped beach. The first two cases are tidal flows 

in estuaries, through which the stability, efficiency and reliability of the model for unsteady flows 

have been quantitatively validated. The wind-induced current case has shown the validity of 
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mixing length model in simulating the wind-induced velocity profile. The undertow flow case has 

validated the coupling of the wave and flow models. The flow model has demonstrated its 

reliability and reasonable prediction through these four test cases. 

In the sediment transport model, the suspended-load transport equation is solved using the 

same finite volume method as the flow model. A coupled solution procedure is implemented to 

solve the multiple-sized sediment transport, bed change and bed material sorting equations 

together. The developed sediment transport model has been validated by four test cases: erosion in 

a basin due to clear water inflow, channel infilling and migration with waves parallel to flow, 

channel infilling and migration with waves perpendicular to flow, and tidal flow and channel 

infilling at Shark River Inlet, NJ. In these test cases, sensitivity analyses have been conducted for 

the bed friction coefficient, suspended-load scale factor, Schmidt Number, bed-load adaptation 

length, and roughness height constant. It has been shown that the model is somehow sensitive to 

the bed friction coefficient, suspended-load scale factor, Schmidt number, and roughness height 

constant. The model is not sensitive to bed-load adaptation length in the test case where the 

suspended load is dominant. The developed model has been demonstrated its capability of 

predicting morphologic behavior through the test cases. 

Overall, the developed model has been validated using a variety of measurement data in 

experimental and field cases, showing the predictions are in generally good agreements with the 

measurements. In the future, the developed model will be enhanced to consider cohesive sediment 

transport in coastal and estuarine waters, which has also gained attention from scientists and 

engineers.   
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