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ABSTRACT

A graph is associated to any commutative ring R where the vertices are the

non-zero zero divisors of R with two vertices adjacent if x · y = 0. The zero-divisor

graph has also been studied for various algebraic stuctures such as semigroups

and partially ordered sets. In this paper, we will discuss some known results on

zero-divisor graphs of posets as well as the concept of compactness as it relates to

zero-divisor graphs. We will dicuss equivalence class graphs defined on the elements

of various algebraic structures and also the reduced graph defined on the vertices

of a compact graph. After introducing and discussing some known results on poset

dimension, we will show that poset decomposition can be directly related to the

equivalence classes represented in a reduced graph. Using this decomposition, we

can build a poset of a compact graph with any dimension in a specified interval.

Thus we have a device which gives us the ability to study the dimension of a poset

of a zero-divisor graph.
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1 INTRODUCTION

In [3], Istvan Beck first introduced for any commutative ring R a simple graph G(R)

whose vertices are labeled by the elements of R and any two vertices x and y of G(R)

are adjacent if and only if x · y = 0. By definition, G(R) is a simple graph, and therefore

contains no loops. So the self-annihilating elements of R are not represented in G(R).

Moreover, the zero vertex is adjacent to every ring element in the graph G(R).

Beck was interested in the coloring of the graph G(R). He conjectured that the chro-

matic number of G(R), the minimal number of colors that can be assigned to the vertices

of G such that no two adjacent vertices share the same color, was equal to the clique num-

ber of G(R), the size of the largest complete subgraph of G(R). In 1993, D. D. Anderson

and M. Neeser presented a counterexample of a commutative local ring for which the

chromatic number was strictly greater than the clique number [2]. Later, D. F. Anderson

and P. Livingston [1] simplified Beck’s zero-divisor graph by restricting the graph to the

nonzero zero-divisors.

Recently, the zero-divisor graphs of various algebraic structures have been studied in

[1], [4], [7], and [10]. We will discuss some of these results; however, the main focus of this

paper will be on a wider class of relational structures, that being the class of partially

ordered sets. In 2009, Halas and Jakl introduced the zero-divisor graph for a partially

ordered set, or a poset. In [7], D. Wu and T. Lu charaterized the zero-divisor graphs of

posets and provided a description for building a poset of a compact graph, which we will

discuss in Section 2. In their characterization, Wu and Lu showed that a simple graph G

is the zero-divisor graph of a poset if and only if G is compact. In Section 3, we will see

that for various algebraic structures, a simple graph G is the zero-divisor graph of that

algebraic structure if and only if G statisfies conditions similar to compactness.

In Section 4, we will dicuss equivalence class graphs defined on the elements of various

algebraic structures as well as the reduced graph defined on the vertices of a compact
1



graph. Then after introducing and discussing some known results on poset dimen-

sion in Section 5, we will show that poset decomposition can be directly related to the

equivalence classes represented in a reduced graph. In the main theorem of this paper,

using poset decomposition, we can build a poset of a compact graph with any dimension

in a specified interval. Thus we have a device which gives us the ability to study the

dimension of a poset of a zero-divisor graph.
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2 ZERO-DIVISOR GRAPHS OF POSETS

We begin by defining the simplified zero-divisor graph given by D. F. Anderson and P.

Livingston in [1].

Definition 1 [1] Given a ring R, let Z∗(R) denote the set of nonzero zero-divisors of R.

Let Γ(R) denote the graph whose vertex set is Z∗(R), such that any two distinct vertices

x and y of Z∗(R) are adjacent if x · y = 0.

Figure 1 below shows the zero-divisor graph of Γ(Z12) as defined in the previous

definition. Note that Z∗(Z12) = {2, 3, 4, 6, 8, 9, 10}.

6

4 2

3

8

9

10

Figure 1: The Zero-Divisor Graph Γ(Z12)

In this paper, we will discuss the zero-divisor graph for a partially ordered set, or a

poset for short, which was introduced by Halas and Jakl in [5]. A poset with a zero-

divisor graph G will be referred to from now on as a poset of graph G. We define a poset

P to be a pair (X,P) where X is a set and P is a reflexive, antisymmetric, and transitive

binary relation on X. We call X the ground set and P the partial order on X [11]. Given

a partially ordered set, and a finite set A ⊆ X such that A = {a1, a2, ..., ak}, define

L(A) = L(a1, a2, ...ak) := {y ∈ X : ∀ai ∈ A, y ≤ ai} as the lower cone of A. Also, for any

poset, we say the x is the least element of the poset if x ≤ a for all elements a ∈ X.

3



Definition 2 Let P= (X,≤) be a poset with a least element 0. An element x ∈ X is

called a zero-divisor if L(x, y) = 0 for some nonzero element y ∈ X. Then the zero-

divisor graph Γ(P) of a poset P is the graph where the vertex set V (Γ(P)) consists of all

nonzero zero-divisors of P where two distinct vertices a and b are adjacent if and only if

L(a, b) = {0}.

In a poset P = (X,P ), we say that two elements x, y ∈ X are called comparable in P

if either x < y or y < x in P. Two elements are called incomparable in P if neither x < y

nor y < x in P. An element x is said to be covered by another element y in P when x < y

in P and there is no element z ∈ X such that x < z and z < y in P. We say that (X,P ) is

a chain if every distinct pair of elements in X are comparable and (X,P ) is an antichain

if every distinct pair of elements in X are incomparable.

A poset can be graphically represented by a Hasse diagram where each element of the

poset is represented by a vertex in the diagram. For any two elements x, y ∈ X, if x < y

in P, then x appears lower than y in the Hasse diagram. Also, x and y are adjacent if and

only if x covers y or y covers x in P. The chromatic number χ(P ) is the chromatic number

of Γ(P ), and for any subset C of P, C is a clique if for any two elements x and y of C, we

have that L(x, y) = 0. Then the clique number of the poset P, denoted clique(P ), is the

size of the largest clique of P. The figure below shows the graphical representation of a

poset. The elements {a, b, c} of the poset form a chain, and the elements {d, e, f} of the

poset form an antichain.
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a
d e f

b

c

0

P = (X,P )

Figure 2: Hasse Diagram of a Poset

We now introduce the concept of compactness.

Definition 3 [7] A simple graph G is called compact if G has no isolated vertices and

for any two distinct nonadjacent vertices x and y of G, there is a vertex z of G such that

N(x) ∪N(y) ⊆ N(z).

In 2009, D. Lu and T. Wu proved the following theorem:

Theorem 4 [7] A simple graph G is the zero-divisor graph of a poset if and only if G is

a compact graph.

Note that if G is a compact graph, then for any pair of vertices x and y of G, we can

show that either N(x)∩N(y) 6= ∅ or each vertex in N(x) is adjacent to all of the vertices

of N(y). Therefore G is connected with diameter at most 3.

We now introduce some basic terminology. A simple graph G is called an n-compact

graph when G is compact and the clique number ω(G) = n. For n a cardinal number, an

n-partite graph is a graph whose vertex set can be partitioned into n subsets such that

no edge of the graph has both ends in the same partite set. Furthermore, a complete

n-partite graph is an n-partite graph where each vertex is adjacent to every vertex not in

the same partite set, and a graph G is a proper n-partite graph if G is not an r-partite

graph for any r < n. It can be shown that if G is an n-compact graph, then G is a proper

n-partite graph with clique size n.
5



For convenience, denote {1, 2, ..., n} by [1, n], and let ∆n(G) be the set of all vertices

which lie in some clique of size n in G. For an n-compact graph G with parts Ai for

i ∈ [1, n], if ai ∈ ∆n(G) ∩ Ai for each i ∈ [1, n], then the set {ai : i ∈ [1, n]} is a clique

in G. Then we can see that for G an n-compact graph, the induced subgraph on ∆n(G)

is a complete n-partite graph. Then we can see that for each i ∈ [1, n], the elements of

∆n(G)∩Ai have the same neighborhoods. We can define an equivalence relation ∼ such

that for any two elements x and y of G, x ∼ y if and only if N(x) = N(y). Then for each

i ∈ [1, n], we have that [ai] = ∆n(G) ∩ Ai is an equivalence class.

For any n-compact graph G with parts Ai, i ∈ [1, n] with a vertex a ∈ V (G), we denote

W (a) = {i ∈ [1, n] : N(a) ∩ ∆n(G) ∩ Ai 6= ∅}. Now we define a generalized complete

n-partite graph.

Definition 5 [7] A simple connected graph G is called a generalized complete n-partite
graph if V(G) is a disjoint union of A and H satisfying the following conditions:

1. A = ∆n(G) and the induced graph on A is a complete n-partite graph with parts
Ai, i ∈ [1, n].

2. For any h ∈ H and i ∈ [1, n], h is adjacent to some vertex of Ai if and only if h is
adjacent to every vertex of Ai.

3. For any h1, h2 ∈ H, h1 is adjacent to h2 if and only if W (h1) ∪W (h2) = [1, n].

Now we can give a characterization of the zero-divisor graph of a poset.

Theorem 6 [7] Let G be a graph with ω(G) = n < ∞. Then the following statements
are equivalent:

1. G is the zero-divisor graph of a poset.

2. G is an n-compact graph.

3. G is a generalized complete n-partite graph.

In the proof of Theorem 4, Lu and Wu showed how to build a poset given a n-compact

graph G. We begin by denoting X = V (G) ∪ {0} where 0 6∈ V (G). Now we define an

ordering P on X where for any element x of G, 0 ≤ x and x ≤ x. Now for two elements x

and y in G, we define an equivalence relation∼ such that x ∼ y if and only if N(x) = N(y)
6



Then we can choose, without loss of generality, an element bi from the equivalence class

as a representative of that set. Then let {bi : i ∈ [1, n]} be the set of representatives

chosen from each equivalence class in G. Then for x, y ∈ V (G), we say that x ≤ y if and

only if N(y) ( N(x) or N(y) = N(x) and x ∈ {bi : i ∈ [1, n]}. Then we can make all

of the elements of [bi] \ {bi} comparable to bi but incomparable to each other. With the

given ordering, we have the poset P = (X,P ) with Γ(P ) = G.

Notice that for a given zero-divisor graph, we can sometimes build more than one

poset. We can do this by the way in which we define the ordering on the sets ∆n(G)∩Ai,

for i ∈ [1, n]. Consider the compact graph G in Figure 3 and the posets of G in Figure 4.

e

c

d

a b

gf

G

Figure 3: A Compact Graph G

0

c

b

a

d
e

fg

A

d

a b

0

e

c

g f

B

Figure 4: Examples of Posets of a Compact Graph G

The minimal non-zero elements of the poset will always be the in the set ∆n(G). In

the case of Figure 3, {a, b, c} ∈ ∆n(G). Notice also in Figure 3 that N(e) = N(d), and

thus e and d is also in the set Ai for some i ∈ [1, n]. Thus, for example, we have that
7



a ≤ e, b ≤ e, a ≤ d and b ≤ d, but there is no restriction on the relationship between the

elements e and d in the poset. On the other hand, we also have that f ≤ c and f ≤ b

and also g ≤ a and g ≤ c. In Figure 4 above, the pair of elements d and e were drawn

as a chain in B and as an antichain in A. For any collection of elements such that each

element in the collection has the same neighborhood, we can express that collection of

elements without restriction and still preserve the required ordering on X.
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3 ZERO-DIVISOR GRAPHS OF SOME ALGEBRAIC

SRUCTURES

Recall from Section 2 that I. Beck conjectured that for an arbitrary ring R, the clique

number of G(R) is equal to the chromatic number of G(R). While it has been shown that

his conjecture is not true in general, it does hold for both commutative semigroups and

partially ordered sets.

A semigroup is a set of elements with an associative binary operation. A semigroup is

called reduced if for any element x ∈ S we have that if xn = 0 for any positive integer n

then x = 0, and idempotent if x2 = x for each x ∈ S. A semigroup that is commutative

and idempotent is a semilattice. In this paper, the semigroup S will be a commutative

semigroup with a zero element. In 2007, it was shown in [10] by Nimbhorkar, Wasadikhar

and Demeyer that Beck’s conjecture, that is the chromatic number of the graph is equal

to the clique number of the graph, holds for commutative semigroups with a zero element.

As with commutative rings, we can consider the zero-divisor graph Γ(S) of a commu-

tative semigroup with a zero element, which was defined by DeMeyer et al. in [4]. We

can easily see that the zero-divisor graph Γ(S) of a semigroup S is a compact graph [7].

D. Lu and T. Wu also proved a characterization of the zero-divisor graphs of reduced

semigroups with 0.

9



Theorem 7 [7] Let G be a simple graph with ω(G) = n < ∞. Then the following

statements are equivalent:

1. G is the zero-divisor graph of a reduced semigroup with 0.

2. G is a generalized complete n-partite graph such that for any nonadjacent vertices

x, y ∈ V (G), there is a vertex z ∈ V (G) with W (z) = W (x) ∪W (y).

3. G is the zero-divisor graph of a semilattice with 0.

Notice that this theorem is similar to the characterization of the zero-divisor graph

of a poset given in Section 2.

In [5], Beck’s conjecture was proven by Halas and Jukl for posets with 0. First recall

that a prime ideal is an ideal I such that if ab ∈ I then either a ∈ I or b ∈ I. A prime

ideal is said to be a minimal prime ideal if it does not properly contain any other prime

ideal. Also, the annihilator of an element x of a poset, denoted ann(x), is the set of

all elements y in the poset such that L(x, y) = 0. Then by [5], every minimal prime

ideal of a poset P = (X,P ) is of the form ann(x) for some x ∈ X, and if the clique

number of the poset is finite, then the number of minimal prime ideals, say n, is finite

and χ(P ) = clique(P ) = n+ 1.

10



4 EQUIVALENCE GRAPHS

We first note that the annihilator of an element x of a ring R, denoted ann(x) is the set

of all elements r in R such that x · r = 0. Then we define equivalence classes on the

nonzero zero-divisor elements such that for any x, y ∈ Z∗(R), we have that x ∼ y if and

only if ann(x) =ann(y). In 2002, S. Mulay [8] introduced the graph of equivalence classes

of a ring R, denoted EG(R), whose vertices correspond to the equivalence classes of the

elements of Z∗(R).

In 2006, T. Lucas showed that, like the zero-divisor graphs, the diameter of an equiv-

alence class graph is at most three [6]. However, unlike the zero-divisor graphs, there are

no complete equivalence class graphs with more than two vertices.

In the equivalence class graph above, we defined our equivalence relation on the el-

ements of the ring. But we can also define an equivalence relation on the vertices of a

compact graph G. Define the equivalence relation x ∼ y if and only if N(x) = N(y), for

x, y ∈ V (G). Then the reduced graph EG is the graph whose vertices correspond to the

equivalence classes of the elements of G. Then any two elements, say [a] and [b] of EG,

are adjacent if and only if [a] · [b] = 0, or equivalently, for a1 ∈ [a] and b1 ∈ [b], we have

that a1 · b2 = 0. Figure 5 below shows the reduced graph of Z12.

[6][4]

[2][3]

Figure 5: The Reduced Graph of Z12

Lu and Wu showed that a graph G is compact if and only if its reduced graph

11



EG is compact. Furthermore, G is the zero-divsor graph of a poset if and only if EG

is the zero-divisor graph of a poset [7]. Therefore, given a reduced graph EG, we can

build a poset with a least element 0 whose zero-divisor graph is EG.

To do so, we consider a compact graph G and let EG be the graph of equivalence

classes of G. Then we can build the poset of the reduced graph EG using the construction

defined by Lu and Wu in [7] and outlined in Section 2. Figure 6 gives the poset for the

equivalence class graph Γ(Z12) shown in Figure 5.

0

[6][4]

[2] [3]

Figure 6: The Poset of the Equivalence Class Graph of Z12

Recall from Figure 4 that with the poset of a zero-divisor graph we could interpret

elements with the same neighborhoods as any collection of chains and antichains. In

the poset of the equivalence class graph, those elements are captured by the equivalence

classes, giving a single poset.

The equivalence class graph of a ring cannot be complete; however, the reduced graph

of a compact graph G could be complete as the graph is defined on the neighborhoods

of the elements of G and not on the annihilators of the ring. Using the construction of

the poset of a reduced graph outlined above, we can see that a complete reduced graph

EG with n vertices produces a poset which, excluding the least element 0, is an antichain

with n elements.

12



5 POSET DIMENSION

The concept of poset dimension was first introduced by Dushnik and Miller in 1941. The

dimension of a poset depends upon the the linear extensions of the poset. Let P and Q

be two partial orders on a set X. If x ≤ y in P implies that x ≤ y in Q for x, y ∈ X, or

equivalently P ⊆ Q then we call Q an extension of P. The set of all extensions of P is

also a partially ordered set by inclusion. Then P is the unique minimal element, and the

maximal elements are the linear orders on X, called linear extensions of P. Then we have

the following definition:

Definition 8 [11] Let P = (X,P ) be a finite poset. Then the dimension of (X,P ),

denoted dim(X,P ), is the least positive integer n for which there is a family R =

{L1, L2, ..., Ln} of linear extensions of P such that P = ∩R =
n⋂

i=1

Li.

A family R of linear extensions of P is called a realizer of P on X if P = ∩R. As

repetitions of linear orders are allowed in a realizer of P, a poset of dimension n has a

realizer R = {L1, L2, ..., Lm} for every m ≥ n. Figure 7 illustrates a poset with five linear

extensions. However, R = {L4, L5} realizes P. So the dimension of the poset is at most

2.

0

1 2

3 4

P = (X,P )

3

4

1

2

0

L1

3

4

2

1

0

L2

4

3

1

2

0

L3

4

3

2

1

0

L4

3

1

4

2

0

L5

Figure 7: Linear Extensions of a Poset P = (X,P )
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a b c d

0 P3

Figure 8: Posets P1, P2, and P3
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0

L1
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0

L2

b

a

d

c

0

L3

Figure 9: Linear Extensions of Posets P1, P2, and P3

In Figure 8, we have a chain P1 = (X,P1), and the posets P2 = (X,P2) and P3 =

(X,P3) where, excluding the least element 0, the poset P2 is a collection of chains and

the poset P3 is an antichain. From Figure 9, the family R1 = {L1} realizes P1, and the

family R2 = {L1, L3} realizes P2. Also, note that the family R3 = {L1, L2} realizes P3.

In fact, a poset has dimension one if and only if it is a single chain. Therefore, the poset

given in Figure 7 has dimension 2.
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A crown on 2n vertices is a poset whose Hasse diagram is two sets of nonzero elements

A = {ui : i ∈ [1, n]} and B = {vi : i ∈ [1, n]} where ui ≤ vj whenever i 6= j.

Proposition 9 A poset whose non-zero elements are the union of a crown with 2n ele-

ments and an antichain of any size has dimension n. Similarly, the poset whose non-zero

elements are the union of a crown with 2n elements and one or more chains of any length

has dimension n.

It is known that the poset dimension of a crown with 2n elements is n. Therefore

we know that a crown of size 2n has a realizer of size n. If we consider the union of a

crown and an antichain, then we need the elements of the antichain to be incomparable

with each other and with the elements of the crown. Then we can list the elements of

the anitchain 1, 2, ..., n at the bottom of one linear extension of the crown, and list the

elements of the anitchain in the opposite order, that is n− 1, n, ..., 2, 1 at the top of the

remaining n − 1 linear extensions of the crown. Thus the dimension of the poset is n.

Similarly, we can show that the dimension of a poset whose non-zero elements is the

union of a crown and one or more chains of any length is also n. Figure 10 illustrates the

union of a crown and an antichain below.

a

e

b

f

c

g

d

h

1 2 · · · n

0

L1 = 1 < 2 < · · · < n < b < c < d < h < e < a < f < g < h
L2 = a < c < d < f < b < e < g < h < n < n− 1 < · · · < 1
L3 = a < b < d < g < c < e < f < h < n < n− 1 < · · · < 1
L4 = a < b < c < h < d < e < f < g < n < n− 1 < · · · < 1

Figure 10: An Example of a Poset with Dimension 4

Now let a subposet be a restriction of the ordering P to a nonempty subset Y of

X, denoted (Y, P (Y )). We can show that poset dimension is continuous in that small
15



removals or additions to the poset cannot greatly affect the dimension. In fact, for a

chain C ⊆ X where X − C 6= ∅, the removal of C changes the dimension by at most 2.

Theorem 10 [11] Let P = (X,P ) be a poset and let C ⊆ X be a chain with X −C 6= ∅.

Then dim (X,P ) ≤ 2 + dim (X − C,P (X − C)).

Note that a single point is also a chain. Then there is a better result on the removal

of a single point.

Theorem 11 [11] Let P = (X,P ) be a poset and with |X| ≥ 2 and let x ∈ X. Then

dim (X,P ) ≤ 1 + dim (X − {x}, P (X − {x}).

Given a poset P = (X,P ), we can also consider the dimension of a subposet of P.

With the following property, we see that dimension is monotonic.

Monotonic Property of Dimension [11] Let P = (X,P ) be a poset, and let ∅ 6=

Y ⊆ X. Then dim (Y, P (Y )) ≤ dim(X,P ).

Thus we see that the dimension of a poset is both continuous and monotonic.

Now we can relate the dimension of a poset to the width of that poset, or the number

of elements in a maximum antichain.

Theorem 12 [11] Let P = (X,P ) be a poset. Then dim (X,P ) ≤ width(X,P ).

Therefore, given a poset (X,P ) where |X| = n, we know that dim (X,P ) ≤ width(X,P ) ≤

n. We can easily show that for |X| ≤ 5, dim (X,P ) ≤ 2, and similarly for |X| ≤ 7, we

have that dim (X,P ) ≤ 3. We can find a tighter bound for the dimension of small posets.

Theorem 13 [11] Let P = (X,P ) be a poset with |X| ≥ 4. Then dim (X,P ) ≤ |X|
2

.

Now for a poset (X,P ) let F = {(Yx, Qx) : x ∈ X} be a family of posets. We define

the lexicographical sum of F over (X,P ), denoted
∑

x∈(X,P )

(Yx, Qx), as the poset (Z,R)

where Z = {(x, y) : x ∈ X, y ∈ Yx} and (x1, y1) ≤ (x2, y2) in R if and only if x1 < x2 in P

or x1 = x2 and y1 ≤ y2 in Qx. Then we call {(Yx, Qx) : x ∈ X} the poset decomposition

of (X,P ). Now we can state the following result.
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Lemma 14 [11] Let P = (X,P ) be a poset and let F = {(Yx, Qx) : x ∈ X} be a family

of posets. Then

dim(
∑

x∈(X,P )

(Yx, Qx)) = max{dim(X,P ),max{dim(Yx, Qx) : x ∈ X}}.

We are now able to state and prove the main theorem of this paper. In the following

theorem, we will consider the reduced graph (built from the equivalence classes defined on

the neighborhoods) of a compact graph G. We can then extend the ordering of the poset

of the reduced graph to the elements of the compact graph G, allowing us to define the

ordering on each equivalence class in the poset of G without restriction. We then generate

a poset decomposition of the poset of G by defining an ordering on each equivalence

class. We do this by building the subposet on each set in the decomposition using chains,

antichains and crowns. Using Lemma 14, we can then describe the dimension of the poset

of a compact graph.

Theorem 15 Let G be a compact graph. Then there are posets Q= (Y,Q) such that

Γ(Q) =EG, P= (X,P ) such that Γ(P ) =G, and a family (Yv, Qv) such that (X,P ) =∑
v∈(Y,Q)

(Yv, Qv) and

2 ≤ dim(X,P ) ≤ max{dim (Y,Q),
⌊

k
2

⌋
}

where k = max{|Yv| : v ∈ Y }.

Moreover, for each n in the interval [dim (Y,Q),
⌊

k
2

⌋
], the theorem above can be satis-

fied with dim(X,P ) = n.

Proof Let G be a compact graph and let P= (X,P ). Now suppose that dim(X,P ) = 1.

Then P is a single chain with |X| elements. Then for any x, y ∈ X where x, y 6= 0,

L(x, y) 6= 0. Thus {0} is the only zero-divisor element. So for a nonempty zero-divisor

graph, the dimension of the poset is at least 2.

Let G be a compact graph. Then from each equivalence class of G, we can choose a

representative bi for i ∈ [1, n]. Then let the set {bi : i ∈ [1, n]} denote the set of vertices

in the reduced graph EG. Then we can build a poset on EG, say Q = (Y,Q).

17



Now consider X = V (G) ∪ {0}. Then we say that Yv = [v] for any v ∈ {bi : [1, n]}.

Thus X =
⋃
v∈Y

Yv. We extend the ordering Q to the set X such that for any a ∈ Yv and

b ∈ Yw, we have that a ≤ b if and only if v ≤ w in Q. Then we can define any ordering on

Yv and call it Qv. Thus we have an ordering P on X such that (X,P ) =
∑

v∈(Y,Q)

(Yv, Qv).

Now we can define each Qv without restriction. Consider |Yv| = k, and build Qv as an

antichain with k elements. Then dim(Yv, Qv) = 2. Now let k ≥ 2n for some 3 ≤ n ≤
⌊

k
2

⌋
.

Now build Qv as the union of a crown with 2n elements and an antichain with k − 2n

elements. Note that by Proposition 9, dim(Yv, Qv) = n.

Thus P = (X,P ) is a poset of the graph G, and

2 ≤ dim(Y,Q) ≤ dim(X,P ) ≤ max{dim(Y,Q),
⌊

k
2

⌋
}

where k = max{|Yv| : v ∈ Y }. Moreover, for each n in the interval [dim (Y,Q),
⌊

k
2

⌋
], the

theorem above can be satisfied with dim(X,P ) = n.

�
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A APPENDIX

1. A graph is r-partite if the vertices can be partitioned into r disjoint subsets so that
every edge joins vertices in distinct subsets.

2. A clique in a graph is a subset of vertices of the graph that are all pairwise adjacent;
i.e. a vertex set which induces a complete subgraph.

3. If a graph G contains a clique of size n and no clique has more than n elements,
then the clique number of the graph is said to be n; if the clique size is unbounded,
then the clique number is infinite. It is denoted by ω(G).

4. The chromatic number of a graph G, denoted χ(G), is the minimal number of colors
which can be assigned to the vertices of G such that no pair of adjacent vertices
has the same color.

5. A graph is compact if it is a simple connected graph satisfying the property that
for every pair of non-adjacent vertices x and y, there is vertex z adjacent to every
vertex adjacent to x and/or y.

6. A graph is said to be complete if every vertex in the graph is adjacent to every
other vertex in the graph. The notation for a complete graph on n vertices is Kn.

7. A complete bipartite graph is a bipartite graph such that every vertex in one par-
titioning subset is adjacent to every vertex in the other partitioning subset. If the
subsets have cardinality m and n, then this graph is denoted by Km,n.

8. A complete r-partite graph is an r-partite graph such that every vertex in any
partitioning subset is adjacent to every vertex in all of the other partitioning subsets.

9. A graph is said to be connected if there is a path between every pair of vertices of
the graph.

10. The diameter of a connected graph is the greatest distance between any two vertices.

11. A graph consists of a set of vertices, a set of edges, and an incident relation, de-
scribing which vertices are adjacent (i.e., joined by an edge) to which.

12. The neighborhood of a vertex v in a graph is the set of all vertices adjacent to v. It
is denoted by N(v).

13. A simple graph is one with no loops on a vertex and no multiple edges between a
pair of vertices.
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