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ABSTRACT

This thesis presents a real-time Augmented Reality Navigation System(ARNavi) on

Android smartphone that leverages the parallel computing power of mobile GPUs. Unlike

conventional navigation systems, our proposed ARNavi augments navigation information

onto real scene video streaming from device camera in real-time. To achieve this goal, we

implement and accelerate compute intensive part of applications using OpenCL on GPU

integrated on mobile Application Processor (AP). The contributions of this thesis are three-

fold. First, we propose new lane detection algorithm and prediction mechanism based on

geometric coordinates. The result shows that these two algorithms are fast and accurate.

Second, we port and accelerate a complete application on mobile AP. By taking advantage of

CPU-GPU heterogeneous computing techniques, we achieve more than 2.6 times performance

boost compared to CPU only version. Lastly, we successfully integrate OpenCL and OpenCV

on Android platform.
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CHAPTER 1

INTRODUCTION

GPS navigation is one of the most useful applications in our daily lives. It provides

directions and other information while user traveling from one place to another. Most GPS

navigators in the market run on mobile platforms such as smart phone. Given two locations,

the traveling route is calculated and displayed on the traditional map on device’s screen.

Under most circumstances, this is sufficient to provide the user useful information. However,

if the user does not have time to take a glance on the screen due to increasing traffics, or

the user is not able to relate the animation graph with the real-life view, the user might get

confused and miss making a turn or even get lost.

To improve user’s experience, we propose a new navigation system called Real-Time

Virtual Reality Navigation System(ARNavi). Different from conventional navigators’ inter-

face, ARNavi projects navigation information onto real-world camera inputs. The main tasks

of this approach can be divided into two parts. The first part is accelerating lane detection

and reconstruction using OpenCL and the other part is implementing our GPU based point-

to-point coordinates mapping algorithm. Both methods are inspired by the GPU’s massive

thread execution model.

In our proposed ARNavi system, road lanes and driving directions as well as other

information such as road name are highlighted and remapped to real-world image. All
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necessary data are fetched from device’s GPS module and Google Map. By fully exploiting

the parallel computing power of GPU, our implementation delivers the real-time processing

speed on mobile devices. On Samsung Galaxy Note 4, we achieve around 20 frame per

second (FPS) with the help from its Adreno 805 GPU.

This thesis is organized as follows. Chapter 2 provides some necessary backgrounds

including OpenCV, common image processing techniques in lane detection and GPGPU

(General Purpose Computing on GPUs) programming techniques. Chapter 3 presents our

approach to lane detection and reconstruction. In Section 4, we reveal the details of our

GPU based mapping algorithm and their implementation. Chapter 5 presents the details

of OpenCL implementation on AMD PC GPU. In Chapter 6, we go though the entire

porting process of the application on Android platform. Experimental results are presented

in Chapter 7. Finally, we conclude the thesis in Chapter 8.
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CHAPTER 2

TECHNICAL BACKGROUND

2.1 OpenCV

OpenCV (Open Source Computer Vision) [8] is a open source library that focus on

computer vision and machine learning. OpenCV libraries contains more then 2500 state-

of-the-art computer vision algorithms such as general image processing, object detection,

movement detection, 3D model extraction, etc.

OpenCV is originally written in C and C++. Now, its implementation has been

extended to other languages such as C#, Python, Java, Matlab and Perl. OpenCV is a

cross-platform interface and can run on various platforms such as Windows, OS X, Linux,

embedded Linux, iOS, and Android.

Since 2010, a GPU based interface has been initiated with CUDA [3], which is a

heterogeneous programming framework for NVIDIA GPU. Heterogeneous programming lan-

guage allows programmers to program both GPU and CPU and distribute workloads between

two devices and execute them in parallel. The parallelized OpenCV algorithms are highly

optimized for GPU thus their performance is significantly increased. Another integration

with OpenCL is released on 2012. OpenCL is not only the parallel programming language

for AMD’s GPU but also the standard for Apple, ARM, Qualcomm, Imagination Tech-
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nologies and others hardware vendors. With the high portability of OpenCL, the OpenCL

ported OpenCV library has became a truly high performance computer vision libraries across

various platforms.

The OpenCV on Android platform is not promising as other platforms. As of the

writing of this thesis, there is no attempt to utilize the OpenCL functionality on Android

programming. However, we successfully enabled and applied the OpenCV’s OpenCL modules

to our Android application. More details will be presented in Chapter 5.

2.2 Lane Detection

Road lane detection is an important image processing technique in most vision based

driving assistance system. Because of high demand of this technique, it has been well studied

and implemented for many systems.

Entire lane detection consists of three stages: detection, tracking, and reconstruction.

Most applications include only tracking and reconstructions and they take a similar routine

in these two processes. Nowadays, most lane detection algorithms are derivations of edge

detection and color segmentation. Some are even integrated with other technologies such as

laser and ultrasonic systems.

Canny edge detection is the most widely used algorithm in detection stage because of

its effectiveness and processing speed. However, if road has no painted lanes or paint is not

very clear, this method performs poorly. Color segmentation [12] takes advantage of high

color contrast between road and painted lane. By filtering each frame by a threshold in color

space, lanes are separated from the image. A huge drawback of this method is processing

speed.

A spline model is selected in most reconstruction stages due to its simplicity. With

three or more sets of control points, the spline model is able to build any straight or curve

lines. This is a huge advantage over other models. Works like [15], [22] and [23] are developed
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based on this model. This model can be further derived into two subbranches, mono vision

model, and stereo (or even multiple) vision model [16], [10]. Although this model has a huge

advantage in running time, it has two main drawbacks. It has lower noise tolerance and

inability of detect bashed lanes. Both of them are caused by its control points model. The

first situation will cause an incorrect result if noise are selected. The other one will build a

continuous lane instead of dashed lane.

Most processes we mentioned so far are related to image processing. As we know, this

kind of algorithms usually requires better hardware and processor due to its high demand in

computing power. Since image processing deals with data in pixel level, it could lead to an

extreme slowness with the combination of high resolution image and complicated algorithms.

Current solutions to this problem are either improving algorithm or updating hardwares.

2.3 Heterogeneous Computing

2.3.1 GPGPU

GPGPU stands for General-Purpose Computing on Graphic Processing Units. It is

a framework that allows programmers to access many-cores GPU hardware and perform

highly parallel computations on it. GPU consists of thousands of cores, each of which is

capable of performing ALU operations independently. By moving compute intensive parts

of applications to GPU, the result usually leads to a promising speed gain.

GPGPU is also known as Heterogeneous Computing. As the name indicates, GPU

does not work as a standalone device, but it collaborate with CPU. To communicate with

GPU, CPU has to evoke special APIs to get access and control the device. Such APIs are

designed specifically for hardwares and varies from vendors to vendors. The most popular

and widely used programming languages are OpenCL and CUDA. CUDA is a proprietary

API that developed by Nvidia, thus it works only on NVIDIA GPUs. OpenCL is developed

by Khronos group and gradually became the dominant programming language in industry

5



because of its cross platform capability. Many hardware vendors including some leading

manufacturers such as AMD, Intel, Qualcomm, ARM and Imagination Technology have

already adapted OpenCL.

2.3.2 OpenCL

There are challenges when programming with OpenCL. First, GPU architecture is

quite different from CPU, thus programmers have to learn how to program in a parallel

fashion. Second, all preparation works have to be done manually. From initializing hardware

to data transferring between host and device, programmers have to follow certain routines

and specify the configuration explicitly in each step. One small glitch could result in a

failure in launching OpenCL program. Third, programming itself is difficult. Aside from the

syntax itself, some implementations depend on the hardware architecture. The programmer

is recommend to review the hardware programming guide beforehand in case the hardware

vendor changes some functionality from their implementation. Fourth, the optimization level

is highly dependent on the characteristics of application. Lastly, debugging is challenging.

The only debug method in OpenCL kernel is printf function. This limitation makes the

debugging process extremely time consuming especially when the data is huge.

Despite of these difficulties, more researchers and programmers use GPU computing

because of the huge payback. In general, it is not uncommon that GPU ported program is

around 40 to 80 times faster than CPU version. For highly optimized algorithms, acceleration

can reach up to 100 to 200 times.

2.3.3 Basic Implementation of OpenCL

In general, OpenCL program is divided into four parts: initialization, data write to

device memory, kernel execution, data read back from the device. Among these processes,

the kernel is only part that executes on the GPU. In OpenCL’s terminology, the code that

executes on CPU is called host code, the code that executes on GPU is called a kernel. Kernel
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code is written in OpenCL and compiled at runtime. A kernel can also be pre-compiled as

an option.

Before and after launching kernel, most work must be done on host machine. It is a

tedious work and has to be done manually by programmer. This process includes:

• clGetPlatformIDs()

Specify the platform. Usually there is only one platform which is the host machine.

• clGetDeviceIDs();

Specify GPU device that the program executes on.

• clCreateContext()

Creates a context. The rest of the OpenCL tasks (creating devices and memory,

compiling and running programs) is performed within this context.

• clCreateBuffer()

Creates a buffer object that associates which the data will be passed to the device.

• clCreateProgramWithSource()

Creates a program object for a context, and loads the source code specified by the text

strings in a string array into the program object. To load a precompiled binary kernel,

use clCreateProgramWithBinary() instead.

• clBuildProgram()

Builds (compiles and links) a program executable from the program source or binary.

• clCreateKernel()

Creates a kernel object.

• clSetKernelArg() Passes the value of a specific argument of a kernel. One kernel

usually has multiple arguments.

7



• clCreateCommandQueue()

Create a common queue. All computations preformed on GPU are done using a com-

mand queue, which is a virtual interface for the device. It is created with the associated

context. One program can has multiple command queues.

• clEnqueueWriteBuffer()

Enqueue a command to copy data from host memory to device memory.

• clEnqueueNDRangeKernel()

Enqueue a command to execute a kernel on a device. Programmer specifier the working

dimension and workgroup size here.

• clEnqueueReadBuffer()

Enqueue a command to copy data from device memory to host memory.

8



CHAPTER 3

LANE DETECTION AND

RECONSTRUCTION

3.1 Camera calibration

One of the main purpose of camera calibration is to measure the distortion parameters

inherited from the hardware itself. The distribution is caused by the misalignment during the

assembling process. In computer vision area, a common technique to measure the intrinsics

parameters is to take advantage of the chess board patter. As the name indicates, the

chessboard pattern is a bunch of black and white squares that arranged as a chessboard. The

number of the chessboard is flexible as long as the number of rows and columns are different.

By counting the number of corners of the rectangle chessboard, the calibration function is

aware of the position of the board. Since the pattern are predefined, by matching the corners

while board placing at different position, the distortion coefficients can be calculated. The

coefficient is used to eliminate distortion effect. For better result, the board need to be test

at at least 10 positions.

The distortion is much obvious in cheap cameras because the quality of the lenses

are very low. The misalignment during assemble process is another major reason of the
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distortion. Even if with high quality lenses. The camera calibration is designed to minimize

these effects and restore the images as they were in real-life. The detail of this method is

well explained in Chapter 11 of [11], [19] and [24]. Under most circumstance, this is one-time

task since the hardware does not change over time.

Our test platform is Samsung Galaxy Note 4, which has a high quality camera with

various built-in optimizations. Including Back-Illuminated Sensor (BSI), CMOS image sen-

sor, autofocus, and digital image stabilization, etc. According to our test result, the image

obtained by this built-in camera does not have any distortion or deformation. Lines and

angles in the original image are well preserved. Although the camera on this device and

most smart-phones are well built, the camera calibration process is preserved in case the

application runs on old generation hardware.

3.2 Perspective Transformation

In this process, three dimensional view image is transformed and remapped to a two

dimensional view image. To be more specific, a bird-eye’s view. In this view of the world,

we can easily find the relationship between the transformed image and the conventional

GPS view. These two views assume that the user is looking down on top of road. This

transformation is appreciated since it makes subsequent processes much easier because the

data from the GPS application will be mapped to the bird view image.

To do perspective removal, we need to apply a 3 by 3 transform matrix call Homog-

raphy matrix to the 3D view image. This matrix is denoted as H. The value of this matrix

varies since it depend on the position of the camera. However, once the position of the cam-

era is fixed, there is need to do this process again. To obtain a correct matrix, we perform

a similar procedure in previous step. First, we place a known size chessboard in front of our

test vehicle, then take a picture from the camera that mounted on the vehicle. Since the size

of the chessboard predefined, the number of corners and the real-world position of each chess

10



Figure 3.1. Chessboard, detected corners

box is known. By comparing the difference between real data and predefined data, all values

in the H matrix can be calculated. [24] and Chapter 12 of [11] have a detailed description

of how to obtain the homography matrix.

In our implementation, we only take the second half of the image as input because

it’s easier to calculate and close enough to the horizon vanish point. The input image and

output image are shown in Figure 3.1.

The homography matrix is applied to the target image to remove the 3D perspective.

In this process, each pixel in the 3D plane will be mapped into a 2D plane based on the value

of the matrix. As a result, a 2D plane image is returned. See an example in Figure 3.2.

3.3 Pre-processing

The following list contains the OpenCV APIs in the pre-processing:

• Rect();

For selecting certain part of the input image. In our application, we use this function

11



to select the lower half of each frame as the input image.

• warpPerspective();

For perspective transformation. This part takes the homography matrix and applies

it to the input image to get a perspective removed image. Before out the final image,

we this this function with the inversed homography matrix to restore the Perspective

image.

• cvtColor();

This function is used to convert three channel RGB image to a hue image.

• inRange();

This function works as a color filter. Any pixel has the color outside the range will be

removed.

• threshold();

This function takes the result from inRange() and filter the results according to a

threshold. By doing these, we can remove more noises from previous process. After

this process, the result is a pure binary image with values 0 or 255.

• GaussianBlur();

Used to blur the boundary of small object in the object in the input image. These

small objects are usually consider as noises comparing to the target image. This process

usually placed before the Canny edge detection to reduce some noise edges.

• Canny();

This function is mainly used to detect edges in a image.

As a result of preprocessing, the RGB image is transformed into a binary image with

detected edges. It’s the input of our Lane Detection algorithm.

12



Figure 3.2. Perspective transformation

3.4 Lane Detection

In the context of traffic control, a lane is part of carriageway (roadway) that is des-

ignated for use by a single line of vehicles, to control and guide drivers and reduce traffic

conflicts.

The goal of lane detection is to segment and highlight the lanes in the image obtained

by the on-board camera. This process is critical to all Driver Assistance System (DAS) since

lanes are the most important and useful signs on the road. With the lane detection, the

DAS system is bale to notify the driver when getting closer to the edge of the road, or check

the surrounding of the car when it detects an intention of changing lane. In our case, the

detected lanes are used as guiding lines in the virtual reality navigation information mapping

process.

Most lane detection algorithms are based on feature extraction [20], color segmenta-
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tion [12][18] and Hough transformation[14] [13] [21]. These algorithm are usually followed by

another modeling algorithm to reconstruct the lane, such as spline model. The correctness

of these algorithms have been proved to be high enough under most conditions. However,

their execution time are not as appealing as their correctness. On a high end CPU, the

performance can only reach around 15 FPS on average ([21] [15] [10]), which is far less than

what real-time processing requires, around 25-30 FPS. The slowness is caused by algorithms

themselves. As well known, image processing algorithms are computation intensive algo-

rithms. They perform operations at pixel level, which introduces a huge input data. What’s

more is that these algorithms usually use a scan window to scan though the image and bring

the problem to a matrix level, which introduces more complexity. Some research groups

realized this problem and implemented their algorithms based on GPGPU technique and

reached the real-time speed by leveraging the parallel computing power of GPU.

To achieve the real-time processing speed, we designed a light-weight lane detection

algorithm based on a basic property of the lanes, lanes are parallel and symmetric lines.

By taking advantage of this characteristic, two lines are said to be a lane if it’s the longest

parallel lines through the entire image. This conclusion is based on the result of perspective

transformation, see Figure-3.2. It might not seem correct from the driver’s perspective, but

it’s the nature property of a road lane in real world. This algorithm greatly reduced the

total operations by looping through each pixel only once.

Before we go though the algorithm, we introduce the terminologies that being used

in this algorithm.

dist The distance between current non-zero value and previous non-zero value in each row

of the image

order The order of current non-zero pixel in each row of the image. This value will help to

eliminate some useless values in order to reduce the processing time.

node A structure that stores all information of a pixels. Each node has four values including
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Figure 3.3. Distances between adjacent pixels

x,y coordinates, dist and order.

MFAS Most Frequently Appear Segment. MFAS is the accumulation of each dist in the entire

frame.

The lane detection algorithm consists of three steps. Dist takes the result of pre-

processing (Figure-6.5) as input and calculates the distance and order between two adjacent

white pixels in each row. Examples of segments are shown as highlighted lines in Figure-

6.5. Then, the Histogram() function counts and returns the frequency of all segments

that appeared in the image. At last, the MaxSubarry() function analyzes the data from

Histogram() and returns the MFAD. The pseudo-code of each steps are listed in Algorithm

1 , Algorithm 2 and Algorithm 3 respectively.

3.4.1 Distance Between Two Points

The idea behind Dist() function is trivial. While iterating though the entire binary

image, the value of each pixel in each row will be inspected. Since the result of edge detection
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is a binary image, the pixels has only two values, either 0(black) or 255(white). Whenever

encounter a white pixel, the distance from previous white pixel to current white pixel will be

calculated by subtraction. The position of previous pixel is denoted as preP ix. The value of

this distance is denoted as dist. dist is stored at the corresponding position in the nodeMat,

which is a 2D array which has the same size as the edge image. Then the value of preP ix

is updated to the position of current white pixel. At last, the value of order is incremented

and stored in corresponding position of the nodeMat. The value of dist, preP ix, oder will

be set to zero when reach the end of each row. This part is presented from line 8 to line 13

in Algorithm-1.

Algorithm 1 Dist

1: Input: Binary image I
2: Output: A node matrix nodeMat[row][cols]
3: for i to row do
4: dist← 0
5: preP ix← 0
6: order ← 0
7: for J to col do
8: if I(x, y) 6= (0) then
9: dist← j − preP ix
10: nodeMat(i, j).dist← dist
11: preP ix← j
12: order + +
13: nodeMat(i, j).order ← order
14: end if
15: end for
16: end for

3.4.2 Histogram

The histogram is a simple yet efficient method to get the distribution of numerical

data in a certain range. The histogram function iterates though the nodeMat generated by

the Dist function. Each dist is placed in corresponding bin. The bin spends from 0 to 640,

representing the minimum and maximum length that can be found in a single row. The

16



details are shown in Algorithm-2. A visualized result of Histogram is shown in Figure-6.2.

In this particular example, the target distances is highlighted in the red box. In United

States, the width of a road is between 2.7 meters to 4.9 meters. With the homography we

obtained, 1 meter is equal to 30 pixels. Thus, the width of the road in United Stated varies

from 81 to 147 pixels. In other words, if the length of a piece of a segment is 81 to 147

pixels, it’s likely to be a part of the lane. Based on this fact, we can discard any values that

outside this range.

Algorithm 2 Histogram

1: Input: A node matrix nodeMat[row][cols]
2: //The maximum length of each row is 640
3: Output: int dist Hist[640]
4: for i to row do
5: for j to col do
6: dist Hist[nodeMat[i][j]] + +
7: end for
8: end for

3.4.2.1 MaxSubarray

The last part of lane detection is to select target range from the result ofHistogram().

This algorithm is an optimized max sub array algorithm which runs in linear time O(n).

MaxSunarray() takes the dist hist array and its size as input. Values in the dist hist

is added to the tempsum one by one and compared with current sum. If the temp sum is

lager than the current sum, the value of current sum will be updated, which means the data

is contiguous. Thus, the value of the temporary end point tempend will be increased by 1

(line 4 to 7).

On the other hand, if the temp sum is equal (the minimum distance is 0) to the

current sum, the value of current sum will be set to 0. Which means the data is being

c̈utb̈y 0 and this piece of data loss its continuity. Since current value is zero, we update both

temporary staring point temp start and end point temp end to next position and start to
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Algorithm 3 MaxSubarray

1: Input: int dist hist[640], size of dist hist
2: Output: range.start, range.end
3: for m to size do
4: temp sum← sum+ dist hist[m]
5: if temp sum > sum then
6: sum← sum+ dist hist[m]
7: temp end+ +;
8: else if temp sum = sum then
9: sum← 0
10: temp start← temp end+ 1
11: temp end← temp end+ 1
12: end if
13: maxsum← max(sum,maxsum)
14: if sum ≥ max sum then
15: range.start← temp start
16: range.end← temp end
17: end if
18: end for

look for new contiguous data (line 8 to 11).

Finally, we compare and assign the lager value of sum and current max sum to the

max sum. If the sum is larger, we will return current temp start and temp end as final

range.start and range.end (line 13 to 16).

At this point, we have a nodeMat and an int2 variable range indicates the range of

the target distance.

3.5 Lane Reconstruction

3.5.1 Lane Reconstruction

In this process, the 2D perspective image will be restored to 3D perspective.

First we create a new OpenCV matrix laneframe that has same size as nodeMat.

Since the lanes should be distinguishable from background image, they are highlighted in

sharp color, in our case, we use pure green. In order to display green color, the laneframe
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Figure 3.4. Histogram and range of MFAS
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Figure 3.5. Reconstructed lane

is declared as 3 channels RGB matrix.

A simple approach is used to reconstruct the detected lanes in the RGB matrix.

While iterating though nodeMat, whenever the value of the dist falls into the range, the

color of the pixel at that position is changed to green. When the entire image is processed,

we will have a high lighted lane. Since the lanes are symmetric, the other half of the image

is duplicated according to the value of dist. At this point, the Lane Detection process is

finished. As a result, both edge of the lane is constructed. See Figure-3.5.

3.5.2 Remapping

This step is simply perform a inversed perspective transformation on the lane image

(Figure-3.6). OpenCV ’s API provides a very handy function to convert the homography

matrix H to inversed matrix H−1. The inverted perspective matrix is computed by an

OpenCV function inv() automatically. The inverted matrix is stored in Math. The process

of perspective restoring is identical to the perspective removing process in section 3.2. The

result of this process is overlap with the original image to generate the image with detected

lanes. Result is shown in Figure-3.7.
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Figure 3.6. Reversed perspective transformation.

Figure 3.7. Output image.
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CHAPTER 4

GPS COORDINATE MATCHING

AND AR MAPPING

There are five steps in this process: data fetching, prediction points calculation, real-

world coordinate calculation, coordinate matching and drawing.

The goal of the first step is to fetch the data from GPS module. The second and third

steps are responsible for calculating two sets of data, predicted geometric coordinates and

real world geometric coordinates. The fourth process is to compare and find the matched

points from from previous step. Finally, the matched points are highlighted and overlapped

on top of the input frame in order to indicate the directional information.

4.1 Fetching Data

4.1.1 Fetching Data From GPS Device

GPS receivers are character devices with embedded GPS chips. Once connected, it

searches for satellites signals and returns a set of data that obtained from satellites.

Depending on application, the data we need are different. For a conventional navi-

gation system, only few data are required including the current location, moving direction
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and speed. To filter out the critical information, a parser is usually placed between the GPS

device and the application.

There are bunch of open source GPS libraries available on the Linux system. All of

them included the functionality for basic parsing task. However, these parser are complicated

and returns more data then we need. Since the processing speed is critical in our case, we

implemented a light weight parser to minimize the processing time.

4.1.2 GPS Data Format

There are two standards used in modern GPS devices, NMEA(National Marine Elec-

tronics Association) protocol [6] [4] [7] and SiRF protocol [17] [9]. The NMEA protocol

generates human-readable character string sentences while the SiRF protocol returns binary

strings.

4.1.3 Sentences

NEMA data are series of strings. A single line of string is a sentence. A sentence con-

taining various information such as geometric coordinates, data and time, activated satellites

and signal condition, etc. A sentence starts with an unique identifier which indicates the

information that this sentence carried. There are more than 50 GPS identifiers. However,

not all sentences are available on a single GPS device. The functionality of GPS device varies

depending on the chips it used and purpose.

For most daily used devices, the following sentence are mandatory standard that

required to be included in the GPS chip:

• GPGGA

Global positioning system fix data.

• GPGSA

GPS dilution of precision and active satellites.
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• GPRMC

Recommended minimum specific GPS/Transit data.

• GPGSV

GPS Satellites in view.

4.1.4 GPGGA

GPGGA stands for Global Positioning System Fix Data. In most circumstances, this

information provided by this sentence is far more then enough. The most important infor-

mation is the coordinates of current global position, which is our main purpose of using a

GPS device. A GPGGA sentence is construct as following format:

$GPGGA,hhmmss.ss,llll.ll,a,yyyyy.yy,a,x,xx,x.x,x.x,M,x.x,M,x.x,xxxx

hhmmss.ss = UTC of position

llll.ll = latitude of position

a = N or S

yyyyy.yy = Longitude of position

a = E or W

x = GPS Quality indicator (0=no fix, 1=GPS fix, 2=Dif. GPS fix)

xx = number of satellites in use

x.x = horizontal dilution of precision

x.x = Antenna altitude above mean-sea-level

M = units of antenna altitude, meters

x.x = Geoidal separation

M = units of geoidal separation, meters

x.x = Age of Differential GPS data (seconds)
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xxxx = Differential reference station ID

Based to the format, the sentence return from the device can be dissemble and ex-

plained easily. However, we are interested only in some of the data such as latitude of

position, Longitude of position and which hemisphere (N-S, E-W) we are currently at. The

sentence listed below is the output of a real GPS device (i.e., GlobalSat BU-353).

$GPGGA,193040.660,3421.9688,N,08932.2571,W,0,00,,163.0,M,-29.3,M,,0000*45

By filtering out the unnecessary information, this sentence can be explained as follow: Cur-

rent location is located at:

Northern Latitude (N): 3421.9688

Western Longitude (W): 8932.2571

4.1.5 Sentence Parsing

Parsing is an easy and efficient solution to separate keywords from context. The idea

behind our sentence parser is quite simple, whenever a newline is returned by the GPS driver,

the parser looks for the keyword GPGGA. If the keyword is found, the entire sentence is

parsed to get target values.

In order to achieve the maximum parsing speed, this application has a very unique

parsing algorithm. Because the GPGGA is the only sentence the application needs, the

parsing processing are optimized to get this specific sentence only. Among the identifiers,

the GPGGA is the only one that has a character ’G’ at the fourth position. Thus, only

the fourth character will be examined during the identifier parsing stage. This strategy

guarantees the parsing time is minimum. See Algorithm 4 for details.
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Algorithm 4 GPS Sentence Parser

1: Input: Character stream line form GPS device
2: Output: A gpsObject with latitude and longitude
3: while line is not empty do
4: if line[4] =′ G′ then //Forth char ’G’ in GPGGA
5: for i to 7 do
6: if i < 2 then
7: LAT [i]← line[18 + i] //Copy 18 to 19 char
8: end if
9: if i < 3 then
10: LON [i]← line[30 + i] //Copy 30 to 32 char
11: end if
12: lat[i]← line[20 + i] //Copy 20 to 26 char
13: lon[i]← line[33 + i] //Copy 33 to 39 char
14: end for
15: NS ← line[28]
16: WE ← line[41]
17:

18: if NS ==′ N ′ then
19: gpsObject.Lat = LAT + lat/60
20: else
21: gpsObject.Lat = −(LAT + lat/60)
22: end if
23:

24: if WE ==′ N ′ then
25: gpsObject.Lon = LON + lat/60
26: else
27: gpsObject.Llon = −(LON + lat/60)
28: end if

return gpsObject
29: end if
30: end while
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4.1.6 Difficulties

After applying this parsing function to the application, it leads to a interesting result.

Even though the parsing time is around 50 ms, the entire application freeze for 0.5 to 1

second repeatedly. The reason behind it is interesting. It’s caused by the refreshing rate of

the hardware. According to the official manual[1] of our GPS device, the refreshing rate of

GPGGA is around 1Hz.

Since the GPGGA sentence refreshes around every 1 second, before the parser gets

the content, the program will hold and the following code is halt until the process is finished.

By leveraging the multi-threading technique, this problem is solved with smooth and

ease. The technique we used here is to assign another thread to the parser, then detach

it from the main thread and execute the parser function only. Detach means separating a

thread from the main context and let it execute freely. All detached threads run without

effecting each other. The interrupt still exist but does not interfering the main thread.

4.2 Fetching Data From GooGle Data Base

There are two purpose of fetching data from a map data base. The first purpose is to

get the starting point and destination points of our route. The other one is to get the way-

points between them. The starting points, destination point and waypoints are geometric

coordinates used to represent a certain place on a map application.

4.2.1 Google Service

Google Map is the most widely used map application across all platforms. In order

to access Google’s data base, the developers are required to register for a google account

for the Google Directions API Service. Depending on the account type, the service

could be free or expensive. The free API allows 2,500 direction requests per 24 hours with 8

waypoints per request. The other license, API For Work Customer, however, allows 100,000
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Figure 4.1. Waypoints in Google Map.

directions requests per 24 hours with 23 waypoints. This license costs more than a thousand

dollar because it’s for the commercial use. To avoid the high cost of using this service, a

workaround is applied to get the required data. The process is discussed in section 4.2.2.

4.2.2 Waypoints

When navigating from place A to B on a map application, a highlight route will

be shown. Users will follow this route as a guide when they traveling. If their current

locations are away from the route, they adjust their moving direction according to the

c̈orrectd̈irections. This is the basic idea of how navigation software works.

The route are constructed based on serious of points. These points are called way-

points. Waypoints are distributed on the route unevenly. However, they are still distributed

based on some patterns. For example, In figure 4.1 the main waypoints are highlighted at

the corners and the joints of the road. This distribution pattern is used to ensure every

segment between two adjacent way-points are approximately straight.
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4.2.3 Fetching Waypoints

To obtain waypoints, we first specified staring point and destination point in the

Google Map website. After a route is generated, we take the Url and put in a GPS analysis

website (e.g., GPS Visualizer [2]). All waypoints will be extracted and stored in a plain text

form. The number of the waypoints varies depending on the length of the route. It also

depending on the shape of the route. The larger the curve, the more the waypoints. This

mechanism is to make sure that the route between each pair of waypoints are approximately

straight. By calculating the spacial relationship between two waypoints, some hidden infor-

mation such as moving direction, angle to North are revealed. These data play a critical role

in the following process, the prediction point calculation.

To verify the correctness of the extracted waypoints, we manually input the latitude

and longitude of each points to the Google Map application. The results are identical.

With the fetched data, it ensures that the CPU and GPU version executes on the

same set of data and eliminates the variance caused by different input. It is important to

the comparing process.

The extracted waypoints from Figure4.1 are shown in Figure 4.2.

4.3 GeoPoints

Since the waypoints are recorded by satellites, they are consider as the ”correct”

position of any given location on the earth. For convenience, these points are referred to

GeoPoints. Recall that after extracting the waypoints from the Google Map, waypoints

are being chopped into smaller pieces and each pieces are approximately straight line. By

leveraging this property, the distance between two waypoints can be further divided into

even smaller pieces. In this application, the minimum distance between two subwaypoints

is set to one meter for the reason of accuracy. In any navigation system, the accuracy is the

first and foremost requirement.
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Figure 4.2. Waypoints From Waypoint Extraction.
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In order to get the coordinates of the GeoPoints, we have to calculate the angle

formed by two directions. The direction form waypoint one to waypoint two and the direction

of True North direction. This problem is far more difficult than a basic geometric problem

that calculating a coordinate in a 2D plane. The surface of the earth is curved, this problem

is much similar to calculating the distance on a sphere. For simplicity, two main waypoints

are denoted as WP1,WP2. The value of lat1, lon1, lat2, lon2 are corresponding latitude

and longitude of WP1, WP2. See equation 4.1 for details.

θ = arctan

(
cos [lat2× (π/180)]× (lon2− lon1)

lat2− lat1

)
× (180/π) (4.1)

By calculating the distance between WP1 and WP2, the number of sub segments

is revealed since the length of each segment is 1 meter. The total distance of segment is

computed based on equation 4.2. Where R = 6271(km) is the average radius of the Earth,

d is the distance between two given waypoints WP1 and WP2.

Because the distance between two waypoints are varies, one of the main purpose of calculating

d is to dynamically allocate an array that holds the coordinates of all sub-waypoints. The

other purpose is notified the for loop outside the function getGeoPoints() that how many

times it should be repeated.

∆lat = (lat2− lat1)× (π/180)

∆lon = (lon2− lon1)× (π/180)

Lat1 Radian = lat1× (π/180)

Lat2 Radian = lat2× (π/180)

d = 2×R× arcsin

√(
sin

∆lat

2

)2

+ cos (Lat1 Radian)× cos (Lat2 Radian)×
(

sin
∆lon

2

)2

(4.2)

With WP1, WP2, θ and the length of segment seg, the final step is to calculate the
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coordinates of all sub-waypoints between them. Notice that all adjacent waypoints are on

an approximate straight line, it implies that each sub-waypoint has the exact same θ to the

True North direction. As you can see in Figure ??, the calculation is based on some basic

geometry properties. ∆lat, ∆lon are the distances will be added to the WP1 in order to

get the sub-waypoints’ coordinates. Notice that in this equation, we are manipulating the

coordinates, no the length. On earth surface, 1◦ change of latitude or longitude results in 111

km change in length. Since the base of our segment is 1, the length of segment is converted

in meter by multiplying 0.00001. See equation 4.3 for details.

The results are stored as GeoCoords type in an array named geopoints inbetween[].

Size of geopoints inbetween[] is determined by d. Type GeoCoords is a user defined structure

that contains two float type values, the latitude Lat and the longitude Lon. Please notice

that the given example, only works for calculating the sun-waypoints while traveling from

low to high latitude and low to high longitude and on Northern Hampshire and on Eastern

Hampshire at the same time. The equation 4.3 will has some minor changes if any of these

conditions is changed.

∆lon = sin(θ × (π/180))× (seg)× 0.00001

∆lat = cos(θ × (π/180))× (seg)× 0.00001

Lat = lat1 + ∆lat

Lon = lon1 + ∆lon

(4.3)

Depending on the condition of the road, the distance between two main waypoints

are vary. For example, a 5 kmroute on the highway might have only two waypoints since it’s

straight. In contrast, a 1 km route on urban area might have more than 10 waypoints if it has

lost of turns and joints. The matching stage is compares two sets of points, the waypoints

and prediction points, and try to find the matching points from them. It will greatly affect

the computation time of the matching stage due to the length or the complexity.
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Figure 4.3. Relationship between theta and GeoPoints points.
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By limiting the number of sub-waypoints to 1000 meters, the processing speed is

relatively fast while guarantees that the hardware acquires enough data to work with. While

the car reaches the end of the end of waypoint, it reads another 1000 points for next piece

of segment.

4.4 Prediction Points

As its name indicates, the prediction points are geometric points being computed

and estimated based on the coordinates of existing point. Different from sub-waypoints,

all prediction points are stored as GeoCoords with PixCoords type. Type GeoCo-

ords with PixCoordsis similar to type GeoCoords but with two more integer values

that describes its position in the input image. Which is another user defined type. Besides

of two floating point coordinates, it has two more integer values, px and py. These two values

are responsible for storing the pixel coordinates of each predictPoints. Prediction points

change along with the car’s moving direction and current position.

As mentioned in Chapter 3, the input frame is divided into two parts along the center

line. The lower part is used as input in our application. The distance between the top to the

bottom is exactly 12 meters. Thus, the row number of prediction matrix is set to 12. With

this setting, The distance between each adjacent predication points on the vertical axis is

1 meter. In a similar way, the prediction points in the same row are placed every 1 meter.

There are 15 points in each rows. The prediction points can be visualized as a 12 by 15

matrix that is placed in front of the car. In other word, there are 180 prediction points at

any given time.

The entire matrix is divided into three smaller matrices. The first matrix is the center

matrix. which has only one column, containing only 12 elements. The rest of the points are

naturally grouped as two matrices sits aside of the center matrix. Both of them are 12 by 7

matrices. These matrices are denoted as Center Matrix MatC , Left Matrix MatL and Right
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Matrix MatR. See Figure 4.4.

The prediction points are divided in this fashion on purpose, it is much faster to

calculate the predictions points resides in the same side then calculate them in a row or

column. In the matrix, only the coordinates of point P is known, which is the current location

of the car. The coordinates of other points are calculated using prediction algorithm. The

prediction algorithm will be explained shortly.

To calculate the coordinates of a prediction point, the first step is to get the angle

between these two points and the True North direction. Different from calculating the sub-

waypoints, only the staring point’s coordinate is known. The destination point, remains

unknown since the moving direction of the car is unpredictable. It could be any direction

around the car. The next problem is to get the destination point and the angle θ.

The problem can only be solved after the car starts moving. Recall that the GPGGA

sentence is refreshed every 1 second and contains the information of current coordinates.

Which means as long as the car moves more then 0.5 second or 1 second, there will be two

coordinates. The first collected geometric coordinate is considered as the starting point. The

second one is the destination point. Once there are two points, the theta will be calculated

in the same way as in calculating sub-waypoints. Here, we assumed that the cat in the next

second will still move along the same direction.

The getPrediction center() function takes the theta as parameter and calculate the

fist 12 prediction points in the center matrix. The result is denoted as PPC . The PPC will

be stored in corresponding position of a 1-D array called predictionPoints all, which has

180 elements. The purpose of using 1D array is to reduce the complexity of the algorithm.

The body of the getPrediction center() function is very similar to equation 4.3, the only

difference is that in getPrediction center(), ∆lat and ∆lon are added to ending waypoint

EndP instead of the starting waypoint StartP since the ending point is the current location.

After the PPC is calculated, another function getPrediction right() takes the PPC
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Figure 4.4. Prediction Points Matrix.
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and θ as input and calculates the coordinates of points in the Right Matrix. Similarly,

function getPrediction left() calculates coordinates of the points resides in Left Matrix.

Based on the basic trigonometric properties, the same θ can be used in all these functions.

Some minor changes will be added according to the value ot theta. What’s more, the

prediction points in the Left Matrix subtracts the ∆lat while the points in the Right Matrix

add it. The ∆lon will also be determined according to the value of θ. Again, all calculation

we mentioned above are bound to the conditions mentioned in previous section. See figure

4.5.

Algorithm 5 Calculating Prediction Points

//For convenient, predict Points all is denoted as PP all
for i to 12 do

//Prediction Points in the center
PP all[i× 15 + 7]← getPredictPoint(start P, end P, θ, i);
PP all[i× 15 + 7].y ← frame.cols/2;
PP all[i× 15 + 7].x← (frame.rows/12)× (11− i);

end for
for i to 12 do

for j to 7 do
//Prediction Points on the left
PP all[i× 15 + 6− j]← getPredictPoint left(PP all[i× 15 + 7], theta, (j + 1));
PP all[i× 15 + 6− j].y ← PP all[i× 15 + 7].y − (frame.rows/24)× (j + 1);
PP all[i× 15 + 6− j].x← PP all[i× 15 + 7].x

//Prediction Points on the right
PP all[i× 15 + 8 + j]← getPredictPoint right(PP all[i× 15 + 7], theta, (j + 1));
PP all[i× 15 + 8 + j].y ← PP all[i× 15 + 7].y + (frame.rows/24) ∗ (j + 1);
PP all[i× 15 + 8 + j].x← PP all[i× 15 + 7].x

end for
end for

A tricky part here is to assign the geometric coordinates in a correct order. As shown

in Figure , the indexing mechanism is little different when processing the left portion and

right portion.
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Figure 4.5. Relationship between theta and GeoPoints points..
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Figure 4.6. Indexing of Center/Left/Right Portions.
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4.5 Coordinates Matching

This process has two stages. First, each sub-waypoint is subtracted by all prediction

point. The prediction points that has the minimum difference in latitude and longitude of

each row will be stored in array minidx[]. This array has 12 elements, one for each row.

The selected points are the Matched Points. These points are the closet points to the

sub-waypoints. The complexity of this process is O(n2). This is another reason why we use

1-D array to store prediction points and waypoints are instead of 2-D arrays. In that case,

the complexity decreases from O(n4) to O(n2). See algorithm 6

Algorithm 6 Matching

1: for i to 180 do
2: for j to piece do
3: min← abs(PP all[i]− geoPoints[j])
4: if (min < Min[i]) then
5: Min[i]← PP all[i]
6: end if
7: end for
8: end for
9:

10: for i to 12 do
11: for j to 15 do
12: if row min == 0 then
13: row min←Min[i× 15 + j]
14: else
15: temp min←Min[i× 15 + j]
16: if temp min < row min then
17: min idx[i]← i× 15 + j
18: end if
19: end if
20: end for
21: end for

Next step is to verify whether the selected points, or elements in min idx[], are valid

points or not. A prediction is valid if the absolute value of its value is less than a certain

threshold. In our case, the threshold is 0.00002, or 2 meter in length. If a point is valid,

constant 1 will be stored in corresponding slot of valid dist[], which also has 12 elements.
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Then a flag valid points will calculated based on the values in valid dist[]. Flag valid points

plays an important role in the drawing process, its value decides which drawing mechanism

will be invoked.

Recall that in lane reconstruction process, the pixel coordinates of center line are

stored in two arrays named center line x[] and center line y[]. Each of these matrices has

360 elements, the values of these matrix are the pixel coordinates of the blue pixels on the

center line. The prediction points’ x value in the Mat C will be first compared with the

values in center line x[]. If x can be found in the array center line x[], that means in the

current row, there are both a valid prediction points and detected lane. Then, the value in

center line x[] will be copy to the center line yselected[]. The number of updated values

will be accumulated and stored in valid y. Result is shown in figure 4.7.

4.6 Drawing

At this point, the lane detection and GPS data matching is completed. The last step

is to show the result on the screen. The following values play a crucial role in the drawing

function, they are valid point, valid y and center line y selected[].

• valid point

Keeps the number of valid prediction points of each row. One point in each row, twelve

points in total.

• valid y

Keeps track of how many of these valid points has a detected lane at the same row.

One pixel in each row, twelve pixels in total.

• center line y selected[]

Stores the y pixel coordinates of the valid prediction points.
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Figure 4.7. Result Of Matching Algorithm.
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According to the value of two flags, different drawing functions will be invoked for

different situations.

Currently there are two functions. The first function draws AR graph with detected

lanes when valid point and valid y are more then 5. The other function directly draw

the valid prediction points when the value of flags valid y drops blow 5. However, both

function depends on flag1, flag2 but only the first function requires the value in array

center line y selected[]. However, Since the GPS device in our test is not very accurate.

The drawing functions will loop though the out put frame lane frame and change the

value of the pixel at according to the variables mentioned earlier. Both drawing functions

draw on the lane frame. Figure 4.8 shows that there are both matched points 4.9and

detected lane. Figure shows that there is matched points but no detected lane. Figure 4.10

shows that there is no matched points or detected lane.
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Figure 4.8. Matched Points-Detected Lane.
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Figure 4.9. Matched Points-No Detected Lane.
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Figure 4.10. No Matched Points-No Detected Lane.
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CHAPTER 5

OPENCL PORTING

5.1 Motivation

GPUs are originally developed for image related task such as display and texture

rendering. Because of their highly parallel structure, GPUs are very efficient at SIMD (Single

Instruction Multiple Data) operations. Some applications such as matrix multiplication

or image processing algorithm, have been ported to the GPU and been proved that the

execution time are significantly reduced by utilizing GPU cores in a highly parallel fashion.

This computing paradigm is known as GPGPU (General Purpose Computing on Graphic

Processing Unit). This chapter is focusing on parallelization our algorithms using OpenCL.

OpenCL is the the currently dominant programming language for GPGPU. It’s not

only because it’s an standard for GPGPU programming but also because its cross-platform

portability. Comparing to CUDA, which is a standard exclusively for Nvidia graphic cards,

OpenCL works on any mainstream GPUs. The code on PC GPU can be executed on other

platforms with minor changes. To ensure the potability of the our application, OpenCL is

preferred.

The following section reveals the details of the OpenCL implementation of the ARNavi

program.
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Before we start the porting process, we want to know the capability of the hardware

we use. We implemented a GPU based matrix multiplication and test it on Samsung Galaxy

Note4 as a benchmark. By comparing the performance between CPU and GPU, we will

have a rough idea of the computation capability of the hardware.

Samsung Galaxy Note4 has a SnapDragon 805 chipset including a Qualcomm Quad-

core Krait 450 CPU and a Adreno 420 GPU. The input data are 128 × 128,256 × 256 ,

512× 512 and 1024× 1024 matrices. The workgroup size is 16× 16 for all input data. The

profiling data is listed in table 5.1. According to the result, the acceleration rate on Andreno

GPU is quite impressive, with large input 1024, the GPU implementation is almost 25 times

faster on the CPU. We did not further increase the input size since the Matrix Multiplication

took too long to finished on the CPU. See Figure 5.1 for details.

Table 5.1. Profiling Data On Adreno 420 GPU

Input Size Workgroup Size CPU Time (sec) GPU Time (sec) Ratio
128× 128 16× 16 0.0143 0.0023 6.2174
256× 256 16× 16 0.1195 0.0187 6.3903
512× 512 16× 16 2.6246 0.1807 14.5247
1024× 1024 16× 16 38.2791 1.5770 24.2733

5.2 Porting OpenCV Functions

In general, image processing algorithms are usually performed on a pixel level. The

image processing algorithm loops though all pixels in a single image to perform some opera-

tions. For example, to convert a RBG image into gray scale image, each pixel’s 24 bit RGB

value will be converted to a 8 bit gray scale value and assigned to that pixel. However, some

algorithms might access each pixel multiple times, such as Gaussian Blur and Affine Trans-

formation. Depending on the complexity of the algorithm and image size, the execution time

of image processing could take a long time. At this point, the CPU version of ARNavi has

been completed and tested on PC. For 640x480 input, the average frame rate is 32 fps.
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Figure 5.1. Acceleration Rate Of Matrix Multiplication On Adreno 420 GPU.

In the ARNavi, image processing algorithms are the most time consuming algorithms.

It takes about 80% of total execution time for the image processing. If these function

are executed on GPU, their performance will be increased significantly. OpenCV research

team already realized the power of GPU and developed two GPU implementations of their

OpenCV functions. The only difference of these two versions is the target hardware. gpu

module is for Nvidia GPU while ocl module is for AMD and other OpenCL supported devices.

In OpenCV version 2.4.9 and beyond, ocl functions has became standard and does

not required any manual initialize work as previous releases. As long as the libOpneCL.so

library presents on host machine and detected by OpenCV, the ocl functions are called

instead of serial version. There is some trade offs when invoking the ocl function. The first

one is the overhead of converting data type. The data type must converted form Mat to

ocl :: Mat before the GPU can process it. The other trade off is the overhead of data copy

time. Since the data are copied from host memory to device memory, the overhead could
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be large if the image is large. However, if the data transferring time is relative small to the

overall processing time, it can be omitted.

To convert data between Mat and ocl :: Mat , OpenCV provides two convenient

functions:

• To copy data from Mat to ocl::Mat

oclmat name.uploads(mat name)

• To copy data from ocl::Mat to Mat

oclmat name.downloads(mat name)

Inside these function, the values of each pixels are read and then stored in a opencl

vector type clf loat4. clf loat4 holds up to 4 floating point values which is big enough to fits

in the value of pixel. No matter the pixel has 3 or 4 channels. Most image type such as RGB,

RGBA, BGRA can be fit in this vector without problem. Another reason to use vector is

that GPUs are vector processors, it’s much faster to process vector type than scalar type on

the GPU.

To use a ocl functions, just simply put ocl :: class name in front of a CPU functions

that will be executed on GPU.

5.3 Porting User Functions

According to the profiling data, the following functions are considered as time con-

suming functions. These functions are ported to GPU using OpenCL.

• Lane Detection

• Prediction Points And Waypoints Matching

Since the details of the functions are explained in previous chapter, in this chapter, we will

mainly focus on analysis the structure of the key algorithms and the implementation of the

OpenCL code.

50



5.3.1 Lane Detection

5.3.1.1 Parallel Implementation

In previous section, we presented the details of the Lane Detection algorithm (LD).

Here, we will only go through the implementation details of the parallel version of Lane

Detection.

A quick recap of how Lane Detection algorithm works. In the Canny Edge Detection

process, the three channel RGB image transformed into a single channel gray image. To be

more specific, a binary image. For each pixel, it can has only two values, either 255 for white

or 0 for black. The task for Lane Detection is to find out the white pixels that belongs to

a lane. Thus, the LD goes through each row and calculates the Most Frequently Appear

Segment of the image. Starting from the first element, the segment counter increases by

one as it goes through the row. When encountering a white pixel, the distance between two

pixels is calculated and stored at the corresponding position in another matrix. After that,

the counter reset itself to zero and ready for next row.

In this process, the value of length is calculated between two adjacent pixels, the

current white pixel and the previous white pixels. Thus, there is a data dependence between

pixels. A thread must continuously process the entire row until it reaches the last element

of the row. This process cannot be subdivided into more sub processed because of the

data dependence. As a result, each row is treated as a chunk, or workgroup in OpenCL

terminology.

The key of GPU parallelization is to chunk the data into pieces and process them

parallelly. In our case, the minimum size of chunks are on row. That limits the number of

threads that can being process at the same time. In our case, there are only 360 threads

executing at the same time for a 360 by 640 image. The implementation is shown in Figure

5.2.

Algorithm 7 is the pseudo-code of the parallelized Lane Detection. On CPU, the LD
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Figure 5.2. Scheme Of Parallel Lane Detection.
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use a double for loop the go through the pixels in the input image. the complexity of this

operation is O(mn), where m,n is the number of the row and column of the image. On GPU,

the complexity is reduced to O(n) since there are 360 threads executing at the same time.

Algorithm 7 Parallel Implementation of Lane Detection

gid← get global id(0); //1-dimension
dist← 0;
predist← 0;
order ← 0;
for i to cols do //cols = 640

if mat[cols× gid+ j] 6= 0; then
dist← j − predist;
nl dist[cols× gid+ j]← dist;
predist = j
order + +;
nlorder[cols× gid+ j]← order;

end if
end for

The parallelization level is highly depends on the algorithm. If the algorithm does not

have any data dependency, the performance can be further improved because more threads

are involved. For example, to convert a color image to a gray image, every element is treated

as a stand alone item. Thus, on the GPU, a thread is assigned to every single of the pixel.

In this case, there are 230400 threads executing at the same time (although the real number

of executing threads are limited by the number of CUs and size of wavefront).

5.3.2 Prediction Points And Waypoints Matching

5.3.2.1 Parallel Implementation

Before diving into the OpenCL implementation of the Prediction Points and Way-

points Matching algorithm (Matching for short), let’s briefly go though the matching algo-

rithm works on CPU.

The main purpose of this function is to find the matched (or closest) points to the

waypoints in the prediction points matrix. These mathed points are considered as valid if
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they fulfill some conditions. The process is simple, for every elements in the prediction point

matrix (180 in total), a subtraction is performed with all elements in the waypoints array

(WP []). The minimum value is first selected then compared with a threshold. If the value

is less that the threshold, the index of that prediction point is stored in a corresponding

position of another matrix, the matched points array. Then, we go through the matched

point array and change the color of the matched points. The highlighted route indicates the

direction the user should follow.

The CPU implementation is listed in 6. The complexity of this function is O(mn).

Where m,n are the size of PPall array and WP array. The total number of operations of

this process is 180× 1271 = 228, 926.

The OpenCL implementation of this function is listed in Algorithm 8. Here, we use

one dimension threads only. Although this process can be done using two dimension threads,

the overhead is too high comparing to the execution time of the algorithm itself. To use

two dimension threading technique, these two 1D arrays have to be converted into two 2D

arrays. In our case, we need to duplicated the 180 elements array and 1000 elements array

into two 180× 1000 arrays. This is the major overhead with this approach. After the GPU

finished the computation, we will use another double for loop to find the minimum values of

each row from the 2D array. These processes adds another overhead to the application.

Algorithm 8 Parallel Implementation of Lane Detection

gid← get global id(0); //1-dimension
for i to pieces do //pieces=1000

temp← fabs(PP all[gidy]−WP [gidx]);
if (temp < min and < 0.00002) then

min← temp
min idx[gid]← min

end if
end for
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CHAPTER 6

ANDROID PORTING

6.1 Android

6.1.1 Backgrounds

Android is a mobile operating system based on Linux kernel and developed by Google.

It’s free of use to users and developers. Programming language of Android system is Java, a

easy-to-use object oriented programming language. With it’s highly developed UI and high

hardware compatibility, Android has become one of the most popular operating system on

mobile platforms. To extends the profitability of our application, we choose Android as our

develop platform.

Because of the success and popularity of Android OS, the OpenCV team and Khronos

Groups finally extend their interests to this platform. Recently, OpenCV team released a

library and Java package are specially designed for Android platform. The package is named

OpenCV4Android. This release includes most frequently use functions and modules. Some

function, due to the lack of the backend support on Android, are missing from the original

library. On the other hand, the OpenCL is already well supported by the mobile GPUs.

However, due to its complex environment configuration and hardware requirement, this

technology is still remain silent on Android platform. One of our goal is to enable and
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combine these two APIs on Android platform.

In our previous work, we successfully ported the LBP facedection on a Linux embed-

ded system with OpenCV-CL support. This experiment not only achieved a performance

boots but also proved that by porting parts of the code to the GPU, the power consumption

can be reduce significantly. Similar results are expected after ported the ARNvi to Android.

Unfortunately, the ocl module, which is the glue between OpenCV and OpenCL, was

no included in OpenCV4Android 2.4.10 release. As this thesis being written, there is no

attempts to utilize the ocl modules of the OpenCV on Android platform.

However, with numerous test and experiments, the ocl modules are eventually set up

and functioning correctly via the help of JNI (Jave Native Interface) and other tweaks. In

remaining chapters, more details of the environment configuration and porting process will

be revealed.

6.2 Java Native Interface And Java Native Develop-

ment Kit

6.2.1 Introduction

In Java, the Java Native Interface is a programming frameworks that allows the Java

program to call and be called by the native functions. By interacting with native code, the

Java program expends it’s functionality by embedding user defined classes that does not

provided by Java standard APIs.

Native functions on Android platform is usually written in C/C++. At compile time,

the native code are compiled as a shared libraries and stored on the device. This library can

be loaded and accessed by Java code later. To compile a native library, the Android SDK

has to to access to the headers and libraries in the Java Native Development Kit which are

specifically implemented for the ARM structure. In other word, Java NDK just a toolset that
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Figure 6.1. JNI Workflow.

providing C/C++ support on Android platform. It contains most frequently used headers

such as stdlib.h, stdio.h, iostream and fsstream. As at run time, the Java program must

loads the compiled binary before calling the native functions. Data from Java side will be

passed to the native function as a Java Objects (jobject). In side the native function, the

jobject will be dereference and treated as standard C/C++ variables. After the computing

is done, all data will be rebuild as jObject and passed back to the Java side. Figure-6.1

shows the basic work flow of a Android JNI application.

6.2.2 Environment Configuration And Building Process

To get more information about programming environment set up for Java SDK and

NDK,or compiling process for JNI programs, please refer to [5] for more details.
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6.2.3 Implementation

The code snips of HelloJNI demonstrate the basic implementation of a JNI appli-

cation on Android. The HelloJni.java and HelloJni.cpp are the implementations on the

Java and native code. This application simply return a message using C++ native function

stringFromJNI(). HelloJni.java

public class He l l oJn i extends Act iv i ty {

. . . . . .

public native St r ing stringFromJNI ( ) ;

stat ic {

System . loadLibrary ( ” He l l oJn i ” ) ;

}

}

HelloJni.cpp

#include < j n i . h>

extern ”C”{

j s t r i n g

Java com example he l l o jn i He l l oJn i s t r ingFromJNI ( JNIEnv∗ env , j o b j e c t t h i z ){

char ∗mes = ” HelloWorld From Native Code ! ”

char msg [ 2 0 0 ] ;

s p r i n t f (msg , ”%s ” , mes ) ;

return env−>NewStringUTF (msg ) ;

}

}

There are three important steps when programming with Java JNI. The first step is

to declare a public native method in Java code. As shown in the HelloJni.java file, the native

must be added and placed in front of the return type. The second step is to create a native
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function includes the method name and the package name. Since one Java program might

contains several package, each package might have their own native functions. This naming

convention prevents the situation that the host code calling each other’s native functions

when the native functions have same name. The last and the most important step is to load

the share library compiled from the source code in the host side. Whitout this step, the

native function cannot be invoked.

In theory, by employing JNI supported to Android applications, it is possible to

embed any C/C++ functions or libraries to a Android. As long as the C/C++ are compile

correctly using the toolchain for the processor. Thus, OpenCV and OpenCL should run on

Android platform with correct configuration.

6.3 OpenCV on Android

OpenCV4Android is the official release from OpenCV research team that targeting

Android platform. The latest version was 2.4.10 which released on 2014-10-02 along with

the PC and iOS version. The OpenCV4Android SDK contains several pre-built Android

Application Packages files(apk) called OpenCV Manager and bunch Java class files.

The apk files are pre-built for most commonly seen hardwares structures on the

market. For examples, armeabi, armV 7a,armv7a− neon and mips. The user has to make

sure the OpenCV library matches the device’s structure. Otherwise, OpenCV application

won’t correctly invoke the functions in the libraries. If the target device is not in the

supporting list of the pre-builrt package, the user can also build their own libraries with the

source code. For Smasung Galaxy Note 4, we use armv7a.

The responsibility of the OpenCV Manger is to maintain and manage the OpneCV

libraries on the user device. It provides some kind of managing mechanism to allow the

dynamic OpenCV libraries shared between applications on the same device.

The OpenCV Java class are Java wrappers with built-in native OpenCV function
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Figure 6.2. OpenCV4Android Model For End User
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calling routines. These wrappers hides the Java Native Interface from the user and greatly

simplified the initialization work.

To embedded OpenCV in Android Applications, the corresponding OpenCV Man-

ager must be install on the target device. More importantly, the NDK environment must be

set up correctly before hand. Otherwise, the native code will not be compiled. As we men-

tioned before, the NDK is the key to compile the native functions since it contains the basic

support of C/C++. Here, the OpenCV libraries are considered as part of the native libraries

because they are written with C/C++. Since the OpenCV libraries are already compiled as

dynamic shared libraries (libopencv java.so), the android application simply loads it to the

System instead of recompiling it. For all dynamic (.so) and static(.a) libraries, programmer

can put them in the Android.mk file and compile them with C or C++ source files. Thus,

the native files will be compiled as one big library instead of many small libraries. In such

fashion, it’s more easy to manage and keep track of the libraries.

There are two approaches of invoking OpenCV functions on Android. Via Java

OpenCV APIs (see Figure 6.3) or directly invoked from the the native code (see Figure

6.4). The code snips produce same results but with two approaches. They both read in a

RGB image, convert it to gray scale image, and then display on a ImageV iew widget. Is

easy to tell that using Java API is not efficient as native interface. For each function call in

Java code, there is a corresponding native call. But in approach 2, there is only one native

call for the entire process, which has less overhead.

The first example shows the routine of calling OpenCV functions from Java. Since

the Java APIs inherits the structure of original design from standard OpenCV, the calling

routines are very similar to the routines on PC. As you can see, the function calls are almost

identical exception some minors changes. The OpenCV APIs on Java makes writing OpenCV

functions extremely easy. If programmers has programing experience with OpenCV, they can

easily adopt this programming style and writing OpenCV programs immediately. However,

there is a main drawbacks of this approach. The OpenCV are not fully ported to Java.
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Figure 6.3. Calling OpenCV Functions In Java Code.
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Figure 6.4. Calling OpenCV Function In Native Code.
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Some functions are missing from the original implementation due to the limitation of Java

language and lack of the back end support.

The other approach, comparing to the first approach, the initializing part are the

same. However, the following process, is slightly different. The addresses of the matrices will

be passed stored as long variables and passed as parameters in user defined native function.

In the native scope, all addressed passed from Java side will be resolved as type jlong and

dereferenced as a pointer. Each pointer points to the address of a OpenCV matrices declared

in the memory and assigned to C++ OpenCV matrices. From here, the rest of the code is

identical to the original code. In fact, except for the dereference part, the programs source

code can be use mutually on the PC and Java. More importantly, the OpenCV function call

does not rely on the Java APIs, that means, even if the there is no Java packages for the

features we want to use, we call still call the functions as long as the corresponding libraries

are presented on the system. Even the OCL modules. Still, if there is no hardware support

or back end support for that function, an error occur. This approach, in my opinion, is the

best way to integrated native functions in Android application.

6.4 OpenCL on Android

To enable the OpenCL functionality on Android device, the development device must

be OpenCL compatible. The OpenCL library is usually placed in the /system/vendor/lib

folder. If the libOpenCL.so is missing on the device but the GPU did support OpenCL, the

user can always download the source code of the driver from hardware vendor’s website and

compile it manually. The latest mobile GPUs made by Qualcomm (Adreno 4xx serious) and

ARM (Mali T7xx serious), are officially supporting OpenCL 1.2.

There are two prerequisites before programming OpenCL programs on Anrdoid. First

prerequisite is to set up the NDK and enable building native functions on Java. Second, the

OpenCL headers and library on the device must be copied and placed in the local project. To
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ensure the compatibility, the programmer can always pull the existing lirary from the device.

The device manufacturer might modified part of the original source code while leaving the

user unaware. In this case, the compiler might complain about the undeclared function

names while during the compile and linking processes.

In previous section, we discussed the implementation routine of an native OpenCV

programs on Android. Actually, the same routine can be applied to building OpenCL pro-

grams. A quick recap, there are five stages of a native program. First, create entry point

on Java side. Then, pass data to native code as Java objects. On third stage, Java objects

will be dereference and stores as native variables. After calling the native functions, which

is stage four, the processed data will be passed back to the Java side in the final stage. As

we mentioned in Chapter 5, for all OpenCL programs, the kernel configuration is important

and highly depends on the hardware. Even a small mismatch on the configuration could

leads to a unexpected errors. In worse cases, the GPU device might stuck in a dead loop

and freeze the device. To make sure the OpenCL code works properly on the mobile GPU,

its the programmer’s responsibility to find out the hardware’s specification and change the

kernel configuration correspondingly.

In this thesis, we choose the Adreno 420 GPU as our main test device. It’s not only

because it supports the full OpenCL 1.2 specifications but more importantly, the workgroup

size and local workgroup size hava the exactly the same as AMD graphic cards. In fact, we

can reuse the code for AMD graphic cards without only minor changes.

In Section 5.1 , we tested Matrix multiplication on the Samsung Galaxy Note 4 with

Adreno 420 GPU. The result is quite impressive. The performance of GPU implementation

increased almost 3 times. By porting our application to the GPU, we believe there should

be a promising speed gain in the parallel version.
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6.5 Implementation on Android

With the help of the Java JNI, we are able to port entire C/C++ application to Java

without struggling too much. Since the most implementation can be reuse as native code

without any changes, the only thing we need to do is to create an entry point that triggers

the native processes. That is, except declaring native function and data on Java, the entire

application will be execute natively. This is the only way to invoke OpenCV and OpenCL

function calls on Android platform. The workflow of the application is shown in Chart X.

As demonstrated, all OpenCV Mat matrices are first declared on the host side. Then,

after the address are resolved and associated with native variables on the native side, native

code takes care of the rest of the job. As mentioned before, to utilize the OCL module, data

type Mat must be converted to ocl :: oclMat. Then, the workload will be transfered to the

GPU and being processed parallelly. After two other OpenCL ported function are executed,

the final result, which is a Mat, will be passed back to the host side and store as Bitmap.

The last step is simply displaying the result using Android APIs.
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Figure 6.5. Workflow of ARNavi Application
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CHAPTER 7

EXPERIMENTAL RESULTS

7.1 Test Data

Instead of streaming live data from camera and GPS device, we made several changes

to the application to be able to work on prerecorded data. This way we can minimize the

affect caused by uncontrollable factors such as light condition or strength of signal.

To record input video with GPS data included, we implemented a small application

for this specific task. The idea is simple that while recording a video, each frame is associated

with three variables, the number of current frame, the latitude and longitude acquired from

the GPS parser. These data are stored in three separate arrays of the same size. After the

recording process is finished, the arrays are written to a text file in the format shown in

Table 7.1.

Numbers in first column are frame numbers. The second and third columns are geo-

metric coordinates recorded at the moment when the frame is written. When the application

starts to query frames from the video file, we use a variable to keep track of how many frames

are being read. Then, we can use that number to get the latitude and longitude for a specific

frame. Of course, the text file must be parsed and stored as two separate arrays, one for

latitude and the other for longitude.
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Table 7.1. Prerecorded GPS Data.

Frame# Latitude Longitude
1 34.34580833 -89.5212
2 34.34580833 -89.5212
3 34.34566833 -89.52117667
4 34.34552167 -89.52114833
. . .
. . .
. . .
100 34.34521167 -89.52109167
. . .
. . .
. . .

7.2 Test Method

Both serial and parallel implementations are tested on Samsung Galaxy Note 4. The

only difference is that the parallel version runs part of its code on GPU. The average pro-

cessing time of one frame will be the main comparison criterion.

Wall clock timer is the main tool in our profiling work. When profiling on GPU,

we use OpenCL profiler due to two reasons. The accuracy and the resolution. Since the

OpenCL profiler is designed for the hardware, it works better on the GPU hardware thus

return more precise data. For resolution, using OpenCL profiler is able to break down the

application and measure the performance of each OpenLC function. In our case, we are able

to get much detailed profiling data. The total execution of our OpenCL function can be

divided into three parts, the read/write buffer time and kernel execution time. Read/write

buffer times are the data copying overhead between the device memory and host memory.

The kernel execution time is the actual execution time of the parallelized algorithm. How

to evaluate these data is critical to the final result. To give a more fare comparison, the

read/write buffer overhead are considered as part of the GPU execution time since they are

the trade off of using OpenCL. The performance of PC will also be presented.
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7.3 Test Platform

Mobile Platform

Device: Samsung Galaxy Note 4

OS: Android Chipset: Snapdragon 805

CPU:Quad-core Qualcomm Krait 450 , 2.7GHz × 4

GPU:Qualcomm Adreno 420 GPU @ 600MHz

OpenCL:1.2 full

OpenCV:Open4Android 2.4.10

7.4 Test Results

In this section, we evaluated the performance of two implementations of our applica-

tion. First, we will take a look at the total execution time to get a rough idea of the overall

performance. Then, we tear down the application and exam the performance of each ported

parts. At last, we give a detailed analysis to the Lane Detection and the Matching algorithm

by contrasting the detail profiling data. For convenient, two implementations will be refer

as ARNavi C and ARNavi G, the image processing part one and part two will be referred

as Imgproc1 and Imgproc2. The Lane Detection and Matching algorithm will be referred as

LD and Match respectively.

Figure 7.1 shows the total execution time of the two implementations. The result

is quite impressive. Whit 640 × 360 input image, the CPU version takes 0.1381 second to

process one frame while the GPU version takes only 0.05291 second. ARNavi G is 2.63 times

faster the the ARNavi C.

Figure 7.2 shows the execution time of 4 ported sections, Imgproc1, Imgproc2, LD and

Match. The detail profiling data is listed in Table 7.2. As you can see, the major accelerations

come from Imgproc1 and Imgporc2. The execution time of Imgproc1 reduced from 0.051274
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Figure 7.1. CPU vs GPU: Total Execution Time.

second to 0.033178 second (1.5 times faster). The processing speed of Imgproc2 reduced from

0.09358 second to 0.016878 second (5 times faster). The Match algorithm is 6.7 times faster

on GPU (0.00) comparing to the CPU version. However, the LD algorithm, its performance

drops from 0.00207 to 0.002595 second.

Table 7.2. Profiling Data Of Ported Portion.

Imgproc1 LD Match Imgproc2
CPU(s) 0.051274 0.00207 0.001792 0.069358
GPU(s) 0.033178 0.002595 0.000264 0.016878

Figure 7.3 compares the performance of the two implementation of LD algorithm. The

GPU version is 0.5 ms slower than the CPU version. This conclusion is made on the behalf

of the total execution time. But if we compare the execution time of the algorithm only

(the kernel execution time on the GPU), the GPU version is actually faster then the CPU

version. However, to make a fair comparison, we have to include the data transfer time,
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Figure 7.2. CPU vs GPU: Performance Comparison Of Ported Portion.

or the overhead. In this function, the overhead is the read1, read2 and write operation.

Overhead cannot be avoided because it’s part of the process. Before the LD starts, the data

being processed must be copy from the host memory to the device memory. Which means

the data of a 360 single channel image is being transfered. Recall that in order to reduce

the complexity of the algorithm, we convert the image into a 1 dimension array which has

230400 elements. After the data copy is done, the computation starts. Recall that in the

LD algorithm, besides the computation, the threads have to go though a if statement and

series statements. Although there are 180 threads running at the same time, if one thread

has more work to do, other threads have to wait until it finished its job. That’s why the

kernel execution time does not improve as much as the image processing part. As a result,

the algorithm generates two arrays to store the result. They have the same size as the input

array, 230400 elements each. To transfer these amout of data to the host memory, the GPU

version is suffering from the long data read back time.
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Figure 7.3. CPU vs GPU: Lane Detection.
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Figure 7.4. CPU vs GPU: Matching Algorithm.
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Figure7.4 is the detailed comparison of the Matching function on CPU and GPU.

Different from the Lane Detection, this algorithm runs much faster on the GPU then the

CPU, even includes the data transfer time. This can be explained based on the data size

and algorithm itself. If you compare the the amount of data that being transfer in Lane

Detection algorithm and Matching algorithm, the answer is quite obvious. The data being

transfered is much smaller. Only two 1D arrays are being passed to the OpenCL Kernel,

one has 180 elements and the other has 1000 elements. As result, the data copy time read1

and read2 are very small. When the kernel runs, the 180 threads simultaneously starts the

process. Different from LD, the computation in Match algorithm is much simpler. After

1000 loop, a new array is returned, which requires low data copy time.

If you take a close look to Figure 7.3 and Figure 7.4, you may notice something

interesting about the data copy time in these two functions. For data writing time(copy

data to device memory), the transferring time of LD and Match is almost identical even

though the data size of LD is much larger then Match. What’s more, with same amount

of data, the data read back time in LD is much larger than the data write time. One of

the possibility is that the OpenCL library released by QualComm is being modified. The

clEnqueWriteBuffer() function might automatically converted to clEnqueMapBuffer(),

which is known as the ”Zero Cpoy” function in OpenCL. What this function does is that when

copying data from host to device, a pointer points to the data is being passed to the kernel

instead of copying the data. In this case, the data copy time will be shorten significantly.

However, this is only valid on APU because CPU and GPU shares the same memory. On

desecrated GPU, the data will be copy to device anyway. To verify the assumption, we

measured the data read/write time of the Matrix Multiplication test program. With varies

input size, the average buffer write fluctuates around 0.000009 to 0.000023, but the buffer

read back time increased along with the buffer size, see Table 7.3. This result proved our

assumption.
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Table 7.3. Buffer Read/Write Time Of Matrix Multiplication.

Size WorkgroupSize Write 1 Write 2 Kernel Read
128× 128 16× 16 0.000007 0.000007 0.001629 0.000059
256× 256 16× 16 0.000012 0.000012 0.018122 0.000082
512× 512 16× 16 0.000018 0.000018 0.167533 0.000104
1024× 1024 16× 16 0.000007 0.000004 1.572792 0.000223
2048× 2048 16× 16 0.000006 0.000004 14.9273 0.004804
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CHAPTER 8

CONCLUSION

This thesis presents the implementation of a navigation system based on our pro-

posed lane detection algorithm and prediction algorithm. The result shows that these two

algorithms are fast and accurate.

We also demonstrate that by porting applications to an embedded GPU on mobile

processor, the performance of the application can be boosted significantly. Our test program,

ARNavi, is 2.63 times faster then its CPU implementation. We also successfully integrate

the OpenCL and OpenCV on Android platform. As of the writing of this thesis, there is no

attempt on this. We believe that more and more computer vision applications will benefit

from this combination of OpenCV and OpenCL.
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