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ABSTRACT

It is undoubtedly that everything in this world are related and nothing independently

exists. Entities interact together to form groups, resulting in many complex networks. Ex-

amples involve functional regulation models of proteins in biology, communities of people

within social network. Since complex networks are ubiquitous in daily life, network learning

had been gaining momentum in a variety of discipline like computer science, economics and

biology. This call for new technique in exploring the structure as well as the interactions

of network since it provides insight in understanding how the network works and deepening

our knowledge of the subject in hand. For example, uncovering proteins modules helps us

understand what causes lead to certain disease and how protein co-regulate each others.

Therefore, my dissertation takes on problems in computational biology and social network:

cancer informatics and cascade model-ling. In cancer informatics, identifying specific genes

that cause cancer (driver genes) is crucial in cancer research. The more drivers identified,

the more options to treat the cancer with a drug to act on that gene. However, identifying

driver gene is not easy. Cancer cells are undergoing rapid mutation and are compromised in

regards to the body’s normally DNA repair mechanisms. I employed Markov chain, Bayesian

network and graphical model to identify cancer drivers. I utilize heterogeneous sources of

information to discover cancer drivers and unlocking the mechanism behind cancer. Above

all, I encode various pieces of biological information to form a multi-graph and trigger vari-

ous Markov chains in it and rank the genes in the aftermath. We also leverage probabilistic

mixed graphical model to learn the complex and uncertain relationships among various bio-

medical data. On the other hand, diffusion of information over the network had drawn up

great interest in research community. For example, epidemiologists observe that a person

becomes ill but they can neither determine who infected the patient nor the infection rate
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of each individual. Therefore, it is critical to decipher the mechanism underlying the pro-

cess since it validates efforts for preventing from virus infections. We come up with a new

modeling to model cascade data in three different scenarios
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CHAPTER 1

INTRODUCTION

Everywhere we went these days, we realized that events and its interaction can be

described by network. In the technology world, we witness the Internet, the World Wide

Web and a multitude of social networks which shape people’s life. In economics and social

influence, we are increasingly experiencing both the positive and negative impact of a global

networked economy and its influence on people’s value and belief system. In epidemiology,

we discover pathogen disseminating throughout our social networks, complicated by muta-

tion of the disease agents. In the state of art bio-medical research, we are unraveling the

structure of gene regulatory networks, with the prospect of unlocking the mechanism behind

many human diseases. Therefore, there had been a surging interest in understanding how

network can help us draw insight into extracting useful information which benefits the so-

ciety and mankind. On the other hand, recent technological advances have facilitated the

collection of large scale high-dimensional data in various field. These data are not only high

dimensional, but also heterogeneous, where data are of various types and inter-related to

each other. For example, in cancer informatics, it is a common practice to utilize multiple

high-throughput technology platforms to measure genotype, RNA gene expression, CNV,

mutation and methylation levels. One of the key challenges is the identification of key bio-

logical markers that can be leveraged to classify the subject into a known cancer type. There

had been substantial progress in the development of some computational methods to address

this challenge, however existing methods are in lack of the study of heterogeneity across dif-

ferent cancer types and the mixed types of measurements (binary/count/continuous) across

different technology platforms. As a matter of fact, existing methods may fail to identify rel-

evant biological patterns or mechanisms behind many complex human diseases and this call
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for new methods in analyzing heterogeneous data across multiple platform and discipline. In

this dissertation, I studied and developed computational models to integrate data of hetero-

geneous nature arisen from different networks, and finally, methods we are developing can

indirectly infer network structure from the measured data and enable us to extract useful

information. I applied it directly to cancer genomics and social network. My dissertation is

segmented into four chapters, (chp 2-5) with the first three chapters focus on a numbers of

computational methods tackling problems in cancer genomics and the last chapter focus on

social networks. To summarize:

Chapter 2 attempts to answer the question of distinguishing mutations in a given

tumor that drive cancer from the random mutations that have no consequence for cancer.

The vast majority of mutations in most cancers are largely somatic, meaning they occur

during the lifetime of an individual and cannot be inherited from ancestors. The somatic

mutations in a given tumor can be categorized into two types, namely drivers in which its

mutations are responsible for causing cancer and passengers in which its mutations possessing

no consequence for cancer. Therefore identifying the driver mutations is a starting point

in understanding the mechanisms which drive uncontrolled cell growth. In this chapter,

we developed a model by utilizing the patient gene mutation profile, gene expression data

and gene gene interactions network to construct a graphical representation of genes and

patients. We then construct a Markov chain out of these biological entities and Markov

processes for mutation and patients are triggered separately within this multi-graph. After

this process, cancer genes are prioritized automatically by examining their scores at their

stationary distributions in the eigenvector which shed some light in identifying cancer drivers.

Chapter 3 attempts to answer questions regarding the background mutation rate and

driver mutation probability of each gene out of the somatic mutation data. We leverage the

power of Bayesian statistics and introduce a hierarchical Bayesian methodology to estimate

candidate genes driver mutation rates and background mutation rates from somatic mutation

data. We choose a suitable prior distribution for modeling the driver mutations and the
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background mutations for each candidate gene. We apply our method to ovarian cancer data

and accordingly estimate proportion of drivers for this type of cancer. A set of candidate

cancer driver genes is suggested by examining their probability of mutation at the end of

this chapter.

In chapter 4, we discuss how to incorporate different biological data types by means

of a mixed graphical model. The state of art in genomic technologies have collected many

genomic, epigenetic, transcriptomic, and proteomic data of varied types across different

biological conditions. Historically, it was always a challenge to come forward with ways

to integrate data of different types. In this chapter, we leverage the node-conditional uni-

variate exponential family distribution to capture the dependencies and interaction between

different data types. The graph underlying our mixed graphical models contain both un-

directed and directed edges. Furthermore, we incorporate these heterogeneous data across

different experimental condition which lead us to a more holistic view of the biological system

and help unraveling the regulatory mechanism behind complex diseases. We then integrate

the data across related biological conditions through multiple graphical models. We applied

our method to cancer genomics with a goal to discover important bio-markers out of different

cancer data.

In chapter 5, we study the problem of the diffusion of information, influence and

disease over networks. Very often we are only capable of collecting cascade data in which an

infection (receiving) time of each node is recorded but without further transmission informa-

tion over the network. We didn’t know where she obtained the pathogen from, nor how long

it took her to get infected after exposure. As a matter of fact, the goal of this chapter is to

propose a novel model to infer infection rates of diffusion processes. We successfully present

three modelings with a common transmission rate, with different transmission rates and with

different infection rates. We also extent our model to deal with the multiple source problem

in which there exist multiple sources which contribute to the cascade data. We consider

non-overlapping, partially overlapping two sources and fully overlapping multiple sources
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diffusion networks. For non-overlapping networks, the problem is transformed directly to

the identification of the starting time of the second source. For the partially overlapping

scenario, a mixture model is adopted and EM algorithm is devised for obtaining estimators.

The fully overlapping case is an extension of the mixture modeling. We applied our method

on real and synthetic data which demonstrate that our models can accurately estimate the

transmission rates from one source as well as multiple source cascade data.

Each chapter is self-contained and readers can feel free to jump ahead to read any

chapter in different orders.
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CHAPTER 2

RANDOM WALK MODEL APPROACH TO IDENTIFY CANCER DRIVER GENES

Cancer is a disease driven largely by the accumulation of somatic mutations during

the lifetime of a patient. Distinguishing driver mutations from passenger mutations had

posed a challenge in modern cancer research. With the widespread use of microarray ex-

periments and clinical studies, a large numbers of candidate cancer genes are produced and

extracting informative genes out of them is essential. In this chapter, we aim to find the

informative genes for cancer by using mutation data from ovarian cancers. We utilized the

patient mutation profile, gene expression data and gene gene interactions network to build a

graphical representation of genes and patients and construct Markov processes for mutation

and patients separately. After this process, we can prioritize cancers genes automatically

by looking into their scores at their stationary distributions. Comprehensive experiments

show that the utilization of heterogeneous sources of information is very helpful in finding

important cancer genes.

1 Background

Finding important genes for cancer is always an important branch of cancer research.

With the advance of large scale micro-array technology, an unprecedentedly huge amount of

data is produced in terms of micro-array gene expression. This not only promote research on

elucidating the molecular process driving tumor progression, but also demand strong need

to introduce new methodology to improve cancer therapy. Consequently, gene expression

profiles had been widely analyzed and studied which had been proved effectively to identify

tumor subtypes and predict outcomes in patient survival analysis. Further we postulate that
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the genes which cause the same disease or same cancer tend to correlate with each other in

protein protein relationship networks. As a matter of fact, we employ Pearson correlation

coefficients to compute the correlation of the gene expressions of different genes in an at-

tempt to identify co-expressed genes or other important bio-makers that are responsible for

cancer progression in our ranking model. On the other hand, it had been widely perceived

that cancer is not a disease of individual mutation but a group of genes acting together in a

molecular network. Hence the incorporation of publicly available protein protein interaction

database and pathway interaction information in cancer study are crucial in understanding

interactions among genes and unveiling the molecular pathway of cancer. Therefore, we

incorporate the PPI interaction data in our framework to rank the cancer genes. Moreover,

patient somatic mutation profile, which records the mutation profile of each patient on fre-

quency basis is also incorporated in our framework as background information. Combining

all, we aim to find the important genes which play a role in cancer by utilizing these het-

erogeneous sources of data. We propose a framework that encodes various heterogeneous

sources including 1) gene expression profiles 2) patient somatic mutation profile 3) PPI net-

works from HumanNet and pathwayCommons in a graphical model. We then define separate

Markov Chain on the genes and patients and then perform random walk respectively. In-

spired by Google PageRank algorithm, we introduce randomness by allowing each patient to

randomly choose one gene to hop and each gene to randomly choose one patient to hop for

small amount of probability. In this way, not only proximity relationships between connected

gene nodes can be exploited, but also gene nodes which are poorly connected can also be

visited so as to discover all important but not too similar biomakers globally through some

noise introduced through teleportation. Our random walk framework consists of five models

which differ from each other subtlely by the sequence and order they perform the random

walk on our constructed patient gene network. Noticed that in the genes network, we merge

the gene gene interaction network with the gene correlation network in a multigraph which

is capable of connecting multiple edges between a pair of gene nodes. Therefore following
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different orders to traverse this multigraph result in different transition matrices for the genes

and patients as shown in our five different proposed models below. Our works sucessfully

integrate multiple heterogeneous sources of data in a graphical model to find the top ranked

cancer genes. Within our proposed framework, we compute the major eigenvector of each

individual stationary matrix in each model and each gene is being ranked according to the

value of its corresponding entry in that eigenvector. Comprehensive experiments show that

the utilization of heterogeneous sources of information is very helpful in finding important

cancer genes. All the five models are capable of ranking those genes as reported and discov-

ered from other cancer studies within top positions.

2 Related Works

Most of the related works focused on ranking genes in cancer modules and biomolecu-

lar networks [2, 74, 54]. In [75], Re and Valentini utilize random walk and random walk with

restart to rank genes with respect to their likelihood of belonging to each cancer module by

exploiting the global topology of the functional interaction network, and local connections

between genes close to genes in each cancer module. In [27], Erten, Bebek and Koyuturk

come forward with a random walk based algorithm which postulates that genes which are

associated with similar diseases exhibit patterns of topological similarity in PPI networks.

They introduce the concept of topological profile to measure the similarity of genes and come

forward with an algorithm which measures the topological similarity between the seed genes

and candidate genes in ranking. In [70], Petrochilos and Deanna use random walk together

with network community analysis to identify cancer-associated modules in expression data.

Another group of gene ranking methods similar to random walk approach is network propa-

gation technique. In [81], Sharan, Ulitsky and Shamir describe a numbers of computational

approaches, including direct methods, which propagate functional information through the

network, and module-assisted methods, which infer functional modules within the network

7



for the annotation task. In [24], Deng utilizes Markov field to perform network propagation

to predict protein function. In [63], Mostafavi and Ray make use of Guassian Random Field

to perform network propagation. In [98], Zhang and Wei extends the general network prop-

agation framework to involve graphs with nodes and edges to be initialized as positive and

negative numbers for detecting differential gene expressions and DNA copy number varia-

tions (CNV) by modelling gene up/down-regulation or amplification/deletion CNV events

to be positive and negative respectively. Most of the works above are based on propagat-

ing known gene labels across the network, by exploiting the weighted connections between

genes, until a stopping condition is fufilled. This method has an advantage of capturing

hidden clusters to recover false negatives and eliminating false positives, but it also has a

disadvantage of exploring too far similarities between genes too.

3 Random Walk Markov Model

In this section, we demonstrate on how to represent all different sources of informa-

tion and come forward with a framework to integrate all different sources of information in

tackling a cancer gene ranking problem. We construct Markov Chains for both the muta-

tions(genes) and patients and illustrate that the eigenvector of the stationary matrix repre-

sents the rank of each individual gene in our framework.

Heterogeneous Information

In this section, we show how to represent the three sources of information.

1) Patient Mutation Profile: Briefly, Patient-Mutation Profile is a two dimensional binary

(0,1) matrix with rows stand for patients and columns stand for mutations of the genes.

Each entry is either 0 or 1, a 1 indicates that a mutation has occured in the tumor relative

to the germline(a single necleotide base change or the insertion or deletion of base) on that

patient, a 0 otherwise.

2) Gene Gene Interaction Network : We utilize two types of gene gene interaction networks

from two sources: HumanNet v.1 and PathwayCommons. HumanNet is a probabilistic func-
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tional gene network comprising 18,714 validated protein-encoding genes of Homo sapiens,

constructed by using naive Bayesian approach to weigh different types of data evidence col-

lected in humans, yeast and worms according to how well those genes that are known to

function together in Hommo-sapiens and combine into a single interaction score. Pathway-

Commons is a database of publicly available biological pathway information from multiple

sources which focus on protein protein interactions and functional relationships between

genes in signaling and metabolic pathways. For the sake of our problem framework, we

filter out all non human genes and interactions in PathwayCommons and the remaining

interactions are utilized in our problem framework. All the gene gene interaction networks

mentioned above will be represented as an undirected graph G(V,E) where V stands for the

set of genes and edges (i, j) ∈ E are weighted by a weight matrix W , whose element wij is

the weight of the edges (i, j) ∈ E which stands for the strength of interaction between gene

i and gene j compiled from two sources of gene gene interaction networks mentioned above.

3) Gene Expression Profiles : Gene expression is the expression level of a gene on an individ-

ual which is measured through microarray experiment. The gene expression data show the

behaviors of genes in tumor and normal samples which are used to estimate the similarity

between genes, where informative genes with similar functionality are widely believed to

possess similar gene expression through microarray experiments. By using gene expression

data, we are capable of constructing a gene correlation graph/network which is used in our

framework. A gene correlation graph/network is a graph H(V,E), where V represents the

set of genes and an edge (i, j) ∈ E is weighted by the Pearsons correlation coefficient between

the gene expression of gene i and gene j.

3.1 Mutual Reinforcement Model

In Mutual Reinforcement Model, we assign each mutation(gene) a driver score µi and

each patient a patient score πi. We allow each patient to cast a vote on each mutation(gene)

and each mutation(gene) to cast a vote on each patient. Consequently, the driver score of
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a mutation(gene) is determined by the total votes received by the mutation(gene) and the

patient score of a patient is determined by the total votes received by the patient. Therefore,

a high driver score implies that the mutation is shared by patients with high patient scores

whereas a high patient score implies that the patient has mutations with high driver scores.

With the help of patient mutation profile, we begin to lay out some notations. The affinity

matrix A of a bipartite graph is defined as Aij = 1 if and only if patient i has mutation on

gene j and 0 otherwise where m is the total numbers of patients and n stands for the total

numbers of genes. Since the driver score of a mutation µi is directly proportional to the

numbers of patients having that mutation and the patient score πi is directly proportional

to the numbers of mutations possessed by the patient, the driver score and mutation score

are defined mutually to each other which justify the following equations.

µj ∝
∑

i∈k:Akj=1 πi

πi ∝
∑

j∈k:Aik=1 µj

The first of foremost, the probability in which a patient i traverses to mutation(gene) j

is governed by the following matrix

Ar[i, j] =
Aij

n∑
k=1

Aik

Similarly, the probability in which a mutation(gene) j traverses to patient i is governed

by the following matrix

Ac[i, j] =
Aij

m∑
k=1

Akj

Notice that Ar is a row stochastic matrix and Ac is a column stochastic matrix. To augment

10



our model with randomness, we allow for most of the time, each patient will follow the

outgoing edges and hop to one of his neighbors in the gene partite set with the probability

governed by matrix Ar and for a small percentage of time, each patient can choose arbitrar-

ily a mutation(gene) and teleport there. The factor 1 − α reflects the probability that the

patient quits the current matrix Ar for traversal and teleports to any gene. As a patient can

teleport to any mutation(gene) j, each mutation(gene) has equal probability to be chosen.

This justifies the following transition matrix for patients:

Br[i, j] = α ∗ Ar + (1− α) 1
n
Im∗n

where Im∗n is a m by n matrix with all entries 1. Similarly, for the case of mutations(genes),

we allow each mutation(gene) to choose arbitrarily a different patient to do the teleporta-

tion for a small amount of time and hence it justifies the following transition matrix for the

mutations(genes).

Bc[i, j] = α ∗ Ac + (1− α) 1
m
Im∗n

Moreover, in the partite set of genes (mutations), we incorporate the information collected

from gene gene interaction network and gene correlation network as described in previous

section to augment our model. As we mentioned, a gene gene interaction network can be rep-

resented as an undirected graph G(V,E) where V stands for the genes and edges (i, j) ∈ E

are weighted by a weight matrix W , whose element wij stands for the strength of interaction

between gene i and gene j, we normalize the matrix W to define the transition probability

matrix between the genes. We define a transition probability matrix Q = D−1W where D

is a diagonal matrix with diagonal elements dii =
∑

j wij. The elements qij of Q represents

the probability of a random transition from gene i to gene j. The matrix Q defines a valid

transition matrix whose elements qij satisfy the probabilistic constraint
∑

j qij = 1. There-
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Figure 2.1. Patient Mutation Network
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fore the transition matrix of the genes following the gene gene interaction network is as follow:

Bg[i, j] = Q = D−1W

In the aftermath of normalizing matrix W , it is time to incorporate information we ob-

tained from gene correlation network as described in section 3.1. Each edge in the gene

correlation network is weighted by matrix H whose elements H(i, j) represents the Pearsons

correlation coefficient between the gene expression of gene i and gene j. To be more precise,

let βu be the gene expression vector of gene u on the patients, then

H(u, v) = corr(βu, βv)

=
∑
t∈V (βu(t)− 1

V
)(βv(t)− 1

V
)√∑

t∈V (βu(t)− 1
V

)2
√∑

t∈V (βv(t)− 1
V

)2

where corr(X, Y ) denotes the Pearson correlation of random variable X and random variable

Y . The idea behind this approach is that if two genes play a role in a specific cancer, their

gene expression may be correlated to each other. Notice that the matrix H contains entries

with value lying between -1 and 1, we take the absolute value of each entry in H. Further,

we normalize the matrix H to define the transition probability between the genes like we

did in the case of matrix W in gene gene interaction network. This results in the following

transition matrix of the genes following the gene correlation network :

Bh = T = D−1H
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Figure 2.2. Microarray Gene Expression Data

3.2 Markov Chain

In this section, we proposed a series of models using the transition probability ma-

trices defined above. Recall µ stands for the score vector of mutations (gene rank) and π

stands for the score vector of patients (patient rank)

1.Random Walk Multiplicative Model Gene Interaction Start(RW-MMGIS):

This model starts with random walk on gene gene interaction network and next gene corre-

lation network and then to patient and back to gene gene interaction network and repeats

which defines the stationary distribution for the mutations and patients:

µ = BT
r BcB

T
hB

T
g µ

π = BcB
T
hB

T
g B

T
r π

(2.1)

2.Random Walk Multiplicative Model Gene Correlation Start(RW-MMGCS):

This model starts with random walk on gene correlation network and heads to gene gene

interaction network and then to patient and back to gene correlation network and repeats

which justifies the stationary distribution for mutations and patients:
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µ = BT
r BcB

T
g B

T
h µ

π = BcB
T
g B

T
hB

T
r π

(2.2)

3.Random Walk Additive Model(RW-AM):

This model differs from the previous ones in a way that the overall transition matrix for

the mutations is a linear combination of transition matrix following gene gene interaction

network, the patient mutation profile and the gene correlation network with each transition

matrix contributing a part to the overall transition matrix for mutations.

µ = (α ∗BT
r Bc + β ∗BT

g + γ ∗BT
h )µ

1 = α + β + γ

π = BcB
T
g B

T
hB

T
r π

(2.3)

4. Random Walk Multiplicative Model Penalized:(RW-MMP)

In this model, we combine the gene gene interaction network and gene correlation network

together in one network before performing a random walk. Recall that the gene gene interac-

tion network is weighted by a weight matrix W , whose element wij stands for the interaction

strength of the interaction between gene i and gene j and the gene correlation network is

weighted by matrix H whose elements Hij represents the Pearson’s correlation coefficients

between the gene expression of gene i and gene j. We penalize each edge in gene gene

interaction network given by matrix W by the exponential value of its corresponding gene

correlation value given by matrix H divided by their mean. Please be noted that each entry

in H had been taken the absolute value. These justify the following equations:
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Figure 2.3. Overall Patient Mutation Network
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σ = mean of all entries of matrix H

Wij = Wij exp(Hij/σ)

Bg[i, j] = Q = D−1W

µ = BT
r BcB

T
g µ

π = BcB
T
g B

T
r π

(2.4)

5. Random Walk Multiplicative Model Average:(RW-MMA)

In this model, we take the average output from the random walk on gene gene interaction

network, gene correlation network and patient mutation profile in each step. For the sake of

clarity, we will write it out as an algorithm as shown in Algorithm 1 below:

Algorithm 1 Random Walk Multiplicative Model Average algorithm (RW-MMA)

procedure Random Walk Multiplicative Model Aver-
age(l,m, r, Bg, Br, Bc, Bh)

R0 ← all entries are 1/n
for t = 1 to max(l,m,r) do

if t <=l then Rleft = BT
r Bc ∗Rt−1

end if
if t <=m then Rmid = BT

g ∗Rt−1

end if
if t <=r then Rright = BT

h ∗Rt−1

end if
Rt =

(σt<=l∗Rleft+σt<=m∗Rmid+σt<=r∗Rright)

σt<=l+σt<=m+σt<=r)

σt<=x = 1 if t <=x and 0 otherwise

end for
return Rt

end procedure

In the aftermath of defining various models, it remains to demonstrate that all the markov

chains in all the five proposed models are valid and all the corresponding transition matrices

converge to unique stationary matrices which result in a unique eigenvector as our ranking

vector in each model.

Lemma: All the above transition matrices define valid Markov Chains that converge to a
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unique stationary eigenvectors.

For the sake of simplicity, the proof of the model Random Walk Multiplicative Model

Gene Interaction Start(RW-MMGIS) is outlined as below, the rest of the models can be

proved similarly. Convergence: To prove convergence, we must prove the Markov chain

defined by the transition matrix CT
r CcC

T
h C

T
g is irreducible and aperiodic. Notice that each

mutation is permitted to teleport to any patient and each patient is permitted to teleport to

any mutation with a small probability. Coupled with the definitions of Br and Bc, all entries

in matrix Cr and Cc are strictly positive. Since Ch and Cg are also positive stochastic with

nonnegative entries, the transition matrix defined by CT
r CcC

T
h C

T
g are all strictly greater than

0 in all entries. This proves that every state in the state space S can be reached from every

other state in the state space in a finite number of moves with positive probability which

proves irreducibility. For aperiodicty, notice the fact that each Pii > 0 which implies that the

minimum number of steps from each state i returning to itself is 1 which proves aperiodicity.

Uniqueness: To prove uniqueness,notice that Cr is a row stochastic matrix and hence CT
r is

column stochastic, in addition, CT
h , CT

r , Cc, C
T
g are all positive column stochastic and hence

the product of positive column stochastic matrices is also positive column stochastic. By

Perron-Frobenius Theorem, 1 is an eigenvalue of multiplicity one of the matrix CT
r CcC

T
h C

T
g

which is the largest and all the other eigenvalues are in modulus smaller than 1. Furthermore

the eigenvector corresponding to eigenvalue 1 has all entries positive. In particular, for the

eigenvalue 1 there exists a unique eigenvector with the sum of its entries equal to 1. This

gives us a unique eigenvector as our rank for the genes. Similar arguments can be applied

for the proof of the existence of our patient rank.

4 Results and Finding

The data sets used for the experiment were taken from the study of Integrated Ge-

nomic Analyses of Ovarian Carcinoma led by the Cancer Genome Atlas. The associated

results and discussions were published in NATURE 2011 [66]. The analysis of 489 clini-
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cally annotated stage III-V HGS-OvCa samples and its corresponding normal DNA were

reported in the article and posted on its associated website. The data incorporates the age

at diagnosis, stage, tumour grade and surgical outcome of patients diagnosed with HGS-

OvCa. We downloaded the TCGA-OV-mutations data and the unified expression profiles

from the TCGA Data Portal website for our purpose. In the aftermath of data cleaning, we

retain mutations containing insertion, deletion and alternation of base only. Finally a pa-

tient mutation profile table which comprises 316 patients and 8404 genes is obtained. Similar

procedures were carried out on obtaining the gene expressions data from the website. Pear-

sons correlation coefficients are calculated on the gene expression data in pairwise fashion to

obtain the gene correlation value between each pair of genes and the gene corelation graph is

constructed. We utilized two different protein protein interaction networks for our experme-

nts. HumanNet is a probabilistic functional gene network which consists of 18,714 protein

encoding genes and 476399 interactions between the genes of Homo sapiens. Pathway Com-

mons is a collection of publicly available metabolic pathway database in conjunction with

interactions from multiple organisms. It was filtered to retain human genes and interactions

for the sake of our experiments. We obtained the required data through its web portal for

download and query.

4.1 Ground Truth Data

We compiled a set of genes published in various literature on several cancer studies

which are certified to be ovarian cancer genes to be our ground truth cancer genes in the

evaluation of our proposed models. Afterwards, the experiments on our five proposed models

are run. A gene scoring vector (gene rank µ) for each of the six models is obtained. We

then evaluate our proposed models by the rankings of the ground truth genes in each of the

six proposed models gene scoring vector µ and demonstrate the effects of integrating more

background information in ranking. Precision/Recall graph and the top 25 genes appeared

in each of the gene scoring vector (gene rank µ) of the five proposed models are presented in

subsequent sections. Table 2.1 below tabulates the collection of ovarian cancer genes (ground
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GENE Literatures

BRCA1 [30],[10],[66]
BRCA2 [25]
BMPR1A [82],[3]
BRIP1 [85]
MLH1 [78]
FHIT [25],[6]
TFRC [53]
FGFR2 [39],[60]
GATA3 [57]
MYST4 [88]
PTEN [69]
FAS [58],[6]
RB1 [85]
SEPT9 [79]
YWHAE [32]
TP53 [66]
PIK3CA [28]
BRAF [28]
KRAS [28]
AIB1 [4]
MSH2 [78]
BMP4 [56],[55]
TRIP1 [40]
MYC [40]
EP300 [40]

Table 2.1. Ground Truth Genes

truth genes) and the associated references.

4.2 Experimental Results

We run the experiments on our six proposed models using the data set we obtained.

In our experiments, we set α = 0.75. For the additive model (RW-AM), we set α = 0.3, β

= 0.3 and γ = 0.4. Three benchmark models are utilized to evaluate our proposed models.

The first one is frequency based in which each gene is awarded a rank in accordance with the

occurrence of mutation which means the higher the frequency of occurrence of mutations on

that gene, the higher rank will be awarded. The other two benchmark models are random
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Model Numbers of Appearances Average Rank

RW-MMGIS 14 40
RW-MMGCS 17 38
RW-AM 15 39
RW-MMP 16 40
RW-MMA 16 42
RW-GC 9 62
RW-PG 4 17
FREQUENCY BASE 4 18

Table 2.2. Top 1 percent of the Rank

walk based in which we perform random walk on gene correlation network (RW-GC) and

patient mutation (RW-PM) network respectively and a gene scoring rank vector µ for each

network is attained. We present the total number of appearances of ground truth genes in

the top 1 percent of the gene rank µ of each model as follows in Table 2.2:

The six proposed models outperform all the benchmark models. This can be demon-

strated from the above table that the number of occurrences of ground truth genes in the

above six models outnumbers the three benchmark models. We found that incorporating het-

erogeneous sources of biological information enhances the performance of identifying ovarian

cancer genes. In the nine models, RW-MMGCS yields the best performance, followed by RW-

MMA and then RW-MMP and then RW-AM and then RW-MMGIS and then RW-MMPFS

and then followed by three benchmark models at last: RW-GC, RW-PG and FREQUENCY

BASE. Please note that a larger gap occurs between the results of two benchmark mod-

els with RW-GC outperforming RW-PG. This underscores that the gene expression data

is more informative than patient mutation profile in locating ovarian cancer genes. All in

all, integrating various heterogeneous sources of information helps in locating ovarian cancer

genes.

4.3 Evaluation

In this subsection, Precision/Recall graph by adjusting the threshold on the rank of

the ground truth genes is presented. Precision is defined as the fraction of the ground truth
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genes among all genes ranked above each threshold. Recall is defined as the fraction of ground

truth genes which are ranked above each threshold among all known ground truth genes.

25 ground truth genes in each experiment are used and the results are tabulated in Figure

2.4. All six proposed models outperform the three benchmark models. RWMMGCS yields

the best performance, followed by RW-MMA and then RW-MMP and then RW-MMGIS

and then RW-AM. RW-MMGCS, RW-MMA and RW-MMP show a very high precision rate

at recall rates running from 0.1 to 0.2. This demonstrates that they are able to locate

several true positive genes (ground truth genes) in topmost positions within the ranked list.

Since we use only 25 ground truth genes in our experiments, we expect to achieve a better

result if more candidate cancer genes are included. Almost all the models decrease their

performances monotonically towards the higher recall rate except FREQUENCY BASE and

RW-PG in which their precision increases a little towards a little higher recall rate and

then plummets sharply. This can be explained by the fact that these two models discover

a multitude of false positive at low recall rate while they obtain a little better precision

towards higher recall rate when they are able to rank a few ground truth genes below the

top ranked genes. Above all, we demonstrate that the integration of more heterogeneous

background information in the ranking helps achieve a better recall/precision rate. There is

one parameter α in our proposed models (RWMMGCS, RW-MMA, RW-MMP, RW-MMGIS)

which is the probability of teleportation of genes and patients. We performed an experiment

on adjusting the value of α from 0 to 1 to inspect its relation to the average rank of the

ground truth genes. The result is tabulated in Figure 2.5. From above, the best α obtained

is around 0.8 which achieves the lowest average ground truth genes ranking. Subsequently, in

our additive model(RW-AM), we have three parameters α, β, γ that have to be determined.

To evaluate these three parameters, we fix one of the parameters each time and adjust the

other two parameters and record the best average ground truth genes ranking and the result
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Figure 2.6. Average Rank of Ground Truth Genes Achieved By Fixing Each Parameter in
RW-AM

is tabulated in Figure 2.6.

5 Conclusion

In this chapter, a Markov Chain Model for discovering important cancer genes through

integration of heterogeneous sources of information are proposed: patient mutation profile,

gene gene interaction network and gene correlation network in an unsupervised manner. Ex-

perimental results demonstrate that our proposed models outperform all benchmark models.

Our future work will focus on developing graph Laplacian in learning cancer genes priority.
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CHAPTER 3

GENERATIVE BAYESIAN MODEL APPROACH TO IDENTIFY CANCER DRIVER

GENES

In this chapter, we approach the cancer driver genes identification problem by means

of Bayesian modeling approach. Cancer is a disease characterized largely by the accumulation

of somatic mutations during the lifetime of a patient. Distinguishing driver mutations from

passenger mutations had posed a challenge in modern cancer research. With the state of

art of micro-array technologies and clinical studies, a large numbers of candidate genes are

extracted. Extracting informative genes out of them is essential. In this chapter, we aim

to find the cancer driver genes using somatic mutation data and protein protein interaction

data. We developed a generative mixture model coupled with Bayesian parameter estimation

to estimate background mutation rates and driver probabilities as well as the proportion of

drivers among sequenced genes. We choose suitable prior distributions for modeling both

driver probabilities and background mutations of each gene. We apply our method to ovarian

cancer data and numerically estimated the solution.

1 Background

Understanding cancer biology and the mechanism behind cancer progression has al-

ways been an important branch of cancer research. Another equally important question is to

discover driver genes whose mutation responsible for cancer progression. There are a numbers

of existing techniques which are proven to be successful in finding candidate genes related

to diseases. For instance, understanding disease-associated variations in human genome had

been shown to be an important step toward enhancing our understanding of the cellular and
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molecular mechanisms that drive cancer and other complex diseases which had enomorous

applications in modeling, clinical outcome and survival prediction analysis. Authors in [34]

apply genome wide linkage analysis and association studies among the genomic samples of

healthy individuals and patients. They successfully pinpoint several chromosomal regions

containing hundreds of polymorphisms up to 400 genes that may potentially play a role in

the manifestation and progression of disease. Sequencing technologies are then employed to

analyse the candidate genes. However, the drawback of this method is that it was expensive

and time consuming. On the other hand, a numbers of computational methods [44, 68, 16]

are primarily used to prioritize and rank the most likely disease-associated genes by utilizing

a variety of heterogeneous data sources such as gene expression, patient mutation profiles

and functional annotation. Authors in [52] propose a random walk based framework that

encodes various heterogeneous sources in a graphical model. Markov chain on the graph is

constructed and random walk is performed which results in a ranking vector in terms of an

eigenvector at their stationary distributions. A numbers of candidate genes could be found

by inspecting the rank. It was widely believed that cancer is not a disease of individual

mutation but a group of genes interacting together in a molecular network. In addition to

that, network-based analyses of diverse phenotype demonstrate that genes which are related

in similar diseases are clustered together into various highly connected sub-networks in pro-

tein protein interaction networks . They will undergo interactions in these sub-networks

and participate in similar biological pathways. Motivated by these findings, our proposed

studies utilize the protein protein interaction network for interacting partners of known can-

cer ground truth genes to find a set of candidate driver genes. Our proposed method takes

as input a set of seed genes ( known cancer ground truth genes), candidate cancer genes

(coded for the disease of interest), and a network of interactions among human proteins.

Subsequently, we use protein-protein interactions to infer the relationship between candi-

date cancer genes and the ground truth genes by calculating the diffusion distance of the

candidate cancer genes and seed cancer genes (known cancer ground truth genes) respec-
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tively. Diffusion distance, a metric based on graph diffusion property, is designed to capture

finer-grained distinctions in proximity for transfer of functional annotation in protein protein

interaction networks. We postulate that cancer driver genes typically participate in similar

biological pathways and are expected to exhibit substantial network cross-talk to each other

in terms of the aggregate strength of paths which connect the corresponding proteins within

the protein protein interaction networks. As a matter of fact, diffusion distance presents an

excellent measure to determine the similarity between the seed cancer driver genes (known

cancer ground truth genes) and the candidate genes. We encoded the diffusion distance

metric as background information in our prior probabillity distribution for the cancer driver

mutations. Our proposed framework introduces a hierarchical Bayesian methodology to es-

timate candidate cancer genes driver mutation rates and background mutation rates from

somatic mutation data and protein protein interaction networks, which shed light on the

overall proportion of cancer drivers among all the candidate genes. We choose a suitable

prior distribution for modelling the driver mutations and the background mutations for each

candidate gene. Diffusion distance as introduced above is incorporated as background in-

formation and is carefully encoded in the prior distribution for each candidate gene. We

apply our method to ovarian cancer data and estimate proportion of drivers for this type of

cancer. A set of candidate cancer driver genes is suggested by examining their probability

of mutation.

2 Related Work

Most of the computational methods which focus on finding candidate genes could be

found in [44, 68, 16, 86] They identify and discover the most likely disease-associated genes

by utilizing various data sources such as gene expression [44, 68], SNP [62] and functional

annotations [86]. For instance, Sean et al. in [62] utilizes SNPs to investigate on the rela-

tionship between the change of phenotype and the alteration of molecular function so as to

identify candidate genes. In [27], Erten et al. developed a random walk based algorithm
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which postulates that genes which are associated with similar diseases exhibit patterns of

topological similarity in PPI networks. They introduce the concept of topological profile to

measure the similarity of genes and developed an algorithm which measures the topological

similarity between the seed genes and candidate genes in ranking. Many of these candidate

genes finding algorithms utilize protein-protein interaction network to prioritize genes. Gen-

erally speaking, these algorithms take a set of seed proteins (coded by genes known to be

related to the disease of interest), candidate proteins (coded by genes in the linkage interval

for the disease of interest), and an interaction network among human proteins as input and

then they utilize PPI to determine the relationship between seed and candidate proteins and

determine the importance of the candidate gene in accordance with the score which is used

to calculate the relationship between the candidate gene and seed gene. On the other hand,

there are a handful of disease gene prioritization tools like [33] available online. These tools

aim at distinguishing disease-associated genes from false positives in genome-wide associa-

tion studies. The feature is based on human micro-array data which reveals the association

between gene expression and disease-associated variants. In this chapter, we focus on devel-

oping a statistical model to spot out cancer driver genes utilizing protein protein interaction

network and patient mutation profile.

3 Bayesian Modeling

In this section, we introduce hierarchical Bayesian methodology to estimate candidate

cancer genes driver mutation rates and background mutation rates. First of foremost, we

introduce the sources of data which are needed in our framework.

Data Sources

1) Gene Gene Interaction: The gene gene interaction networks are encoded as an undirected

graph G(V,E) where V stands for the genes and edges (i, j) ∈ E are weighted by a weight

matrix W , whose element wij is the weight of the edge (i, j) ∈ E which represents the

strength of interaction between gene i and gene j using two sources of gene gene interaction
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networks described below. Two sources of protein protein interaction networks are utilized:

PathwayCommons and HumanNet v.1. PathwayCommons is a database of biological path-

way information compiled from multiple sources related to PPI interactions and functional

relationships between genes in signalling pathways. Only human genes and interactions in

PathwayCommons are utilized in our framework. HumanNet is a probabilistic functional

gene network constructed using naive Bayesian method to weigh different types of data

evidence collected in humans, yeast and worms in accordance with their functionality in

Homo-sapiens. A single interaction score is calculated as a result.

2) Patient Mutation Profile: Patient-Mutation Profile is a two dimensional binary matrix

with columns representing the genes and rows representing patients. Each entry is either 0

or 1, a 1 indicates that a mutation has occured in the tumor relative to the germline on that

patient, a 0 otherwise.

Network Diffusion

We apply network diffusion model to incorporate gene gene interaction network (PPI) on

the patient mutation profile. By utilizing this method, the discrete ”patient mutation” data

was smoothed out and carries the information regarding the similarity of tumor sample at

the pathway and network level rather than staying only at individual gene level. We first

fused the patient mutation profile with the gene gene interaction network. Then network

diffusion aims at diffusing the information of each mutated gene over this network for each

patient according to the function as follow:

Ft+1 = αFtA0 + (1− α)G (3.1)

G stands for the binary patient mutation profile data, and A0 is a normalized adjacency ma-

trix of the gene gene interaction network. α is used to adjust the extent that the mutation

signal (tumor sample) can propagate in the network. The diffusion function run continu-

ously until Ft+1 converges. The resulting Ft+1 encapsulates the influence of each mutation
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Figure 3.1. Smoothed PPI network

per patient through network diffusion. In this way, patient mutation profile can be analyzed

at pathway level instead of merely at individual gene level, thus it will give a more compre-

hensive insight into similarity between mutated genes which can improve the identification

of cancer drivers.

Diffusion Distance

There are different definition of diffusion distance that one can find in various literature.

The one we adopted is as follow. Given an undirected graph G(V,E), where V being used in

our model is F TF which is the smoothed version of protein protein interaction network de-

scribed above. We define that the probability of a random hop from a node u ∈ V to another

node v ∈ V , is proportional to some kernel function k(u, v) which is a decreasing function

of l(u, v) where l(u, v) is defined in terms of w(u, v) as follow. w(u, v) is the weight of edge

(u, v) which can represent the interaction strength of gene u and gene v in the ”smoothed

PPI network”.

l(u, v) = M − w(u, v)

k(u, v) = exp(− l(u, v)2

α
).

(3.2)
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where M is a positive constant and α is a positive tuning parameter. A smaller w(u, v) will

result in a larger l(u, v) and vice versa. Therefore, starting from node u, we choose to hop

to node v with probability.

φ(u, v) =
k(u, v)∑
z k(u, z)

. (3.3)

where the sum in the denominator runs over all vertices z in V except u itself. We set

k(x, x) = 0 for all x in V . The notation φ(u, v) stands for the transition probability of

the undirected complete graph G, and then run random walks on this graph is performed

based on these transition probabilities. Choosing a positive integer m, let φm(u, v) be the

probability that a random walk of starting at node u will end at node v in exactly m steps.

Next, we define the diffusion distance Sm : V × V → R :

Sm(x, y) =

√∑
u

[φm(x, u)− φm(y, u)]2 (3.4)

where the sum runs over all vertices u ∈ V . Sm(x, y) stands for the difference of the

probability distribution of random walk between vertex x and vertex y. Intuitively, diffusion

distance is considered as an average length of all the paths connecting two vertices in the

graph, and it is related to the probability of arriving from one vertex to another in a random

walk with a fixed number of steps. A small m represents local random walk, where diffusion

distances reflect local topological structure of a graph whereas a large m represents global

random walk, where diffusion distances reflect large scale cluster or connected component.

One advantage of diffusion distance is that it is robust to noise, since the distance between

two points depends on all possible paths of length m between the points. Another advantage

of diffusion distance is that nodes possessing large common low-degree neighborhoods are
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considered to be similar when m is large [15]. This allows nodes that interact through a hub

node in some functional modules to be identified to be similar. Therefore, diffusion distance

may be able to correctly identify functionally similar node pairs.

3.1 Bayesian Model

In this subsection, we introduce a hierarchical Bayesian estimation model to estimate

gene-specific background mutation rates and driver probabilities from somatic mutation data

and protein protein interaction network. Figure 1 shows the model. In this model, for each

gene, we flip a coin at first to determine whether we will be at driver state (which is denoted

as D ) or at passenger state (which is denoted as P ). Depending on whether you are at driver

state or passenger state, we flip another coin to determine if that gene is mutated or not.

Probability mi stands for the driver mutation probability for gene i whereas ni represents the

background mutation probability for gene i. Both mi and ni are determined by the patient

mutation profile and protein protein interaction network data within our model that will be

derived in later sections. According to the model, the probability of having gene i mutated

is justified as followed:

Pr(gi = 1) = pmi + (1− p)ni

Pr(gi = 0) = p(1−mi) + (1− p)(1− ni)
(3.5)

3.1.1 Bayesian Parameter Estimation

We employed Bayesian Parameter Estimation to estimate p, mi and ni. The reason

of using it is that we can incorporate prior knowledge of mi and ni using diffusion distance

derived above. Hence Bayesian Parameter Estimation serves as an appropriate method to

estimate mi and ni. Next, we lay down the definition of various parameters that are needed

in our model as follow:
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Figure 3.2. Bayesian Model Formulation
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Model Parameters
Parameter Meaning
p Probability of being in

driver state
mi Driver mutation prob-

ability of gene i
ni Background mutation

probability of gene i
G Patient mutation pro-

file
N Total numbers of

genes in G
M Total numbers of pa-

tients in G

Table 3.1. Model Parameters Definition

f(m1,m2,m3..mM , n1, n2, n3..nM , p|G) =

N∏
i=1

M∏
j=1

[pmi + (1− p)ni]gij [p(1−mi) + (1− p)(1− ni)]1−gijΘmi
Θni

(3.6)

where Θmi
and Θni

are the prior distribution of mi and ni respectively.

Prior Distribution Of Driver Mutation Of Each Gene Θmi

According to various literatures, genes of similar diseases tend to cluster together into various

highly connected subnetworks in protein protein interaction networks. They interact and

participate in similar biological pathways and exhibit substantial network crosstalk to each

other in terms of the aggregate strength of paths in protein protein interaction network. As a

matter of fact, we can use diffusion distance defined above to measure the similarity between

a known cancer driver gene and a candidate gene in the ”smoothed PPI network”. The

intuition is that if the difference between the candidate gene and a known cancer driver gene

in terms of diffusion distance is small, the candidate gene is also likely a potential cancer

driver gene. We model the prior distribution of mi as Beta Distribution and incorporate

the diffusion distance in it in a way that a smaller diffusion distance difference between

a candidate gene and a known cancer driver gene should lead to a higher probability of
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mutation. Consider a gene set S=(s1, s2, ...sT ) which encapsulates known cancer driver

genes, we then define A(i) for each candidate gene i (denotes as ti) as follow:

A(i)=min (Sm(ti, s1), Sm(ti, s2).....Sm(ti, sT ))

which firstly measures the diffusion distance difference between candidate gene i and all the

known cancer driver genes in set S. We then take the minimum as A(i). Afterwards, we

relate A(i) to the prior distribution of mi as follow:

Θmi
= Beta(αi, βi)

Beta(αi, βi) =
mαi−1
i (1−mi)

βi−1

B(αi, βi)

αi = 1

βi = A(i).

(3.7)

We put A(i) into βi. The reason behind it is that a smaller diffusion distance difference

between a candidate gene and a cancer driver gene should result in a larger probability value

sampled from its corresponding Beta distribution in general.

Prior Distribution Of Background Mutation Of Each Gene Θni

We postulate that the background mutation rate of each gene is in proportion to its length.

The longer the length of the gene, the higher its background mutation rate. We model the

prior distribution Θni
of the background mutation rate of each gene ni using Beta Distribu-

tion as follow:

Θni
= Beta(ai, bi)

Beta(ai, bi) =
nai−1
i (1− ni)bi−1

B(ai, bi)

(3.8)

It remains to derive both ai and bi. We derive them using the mean value of Beta(ai, bi).

We equate the mean value of it to the proportion of the length of the gene out of the total

lengths of all genes.
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mean of Beta(ai, bi) =
ai

ai + bi

bi = 1

ai
ai + bi

=
li∑
j

lj

(3.9)

Intuitively, it encodes the fact that a longer gene length would result in a higher probability

value being sampled from its Beta Distribution with higher chance.

Combining the Priors and the Posterior Probabilities

After defining Θmi
and Θni

, we can plug it into equation (5) as follow:

f(m1,m2,m3..mM , n1, n2, n3..nM , p|G)

=
N∏
i=1

M∏
j=1

[pmi + (1− p)ni]gij [p(1−mi) + (1− p)(1− ni)]1−gijΘmi
Θni

=
N∏
i=1

M∏
j=1

[pmi + (1− p)ni]gij [p(1−mi) + (1− p)(1− ni)]1−gij∗

mαi−1
i (1−mi)

βi−1

B(αi, βi)

nai−1
i (1− ni)bi−1

B(ai, bi)

(3.10)

Taking logarithm:

l = log f(m1,m2,m3..mM , n1, n2, n3..nM , p|G)

=
N∑
i=1

M∑
j=1

[gij log[pmi + (1− p)ni]

+ (1− gij) log[p(1−mi) + (1− p)(1− ni)]

+ (αi − 1) logmi + (βi − 1) log(1−mi)

+ (ai − 1) log ni + (bi − 1) log(1− ni)

(3.11)
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Let Ci =
∑M

j=1 gij, which counts how many patients have gene i being mutated , we can

further simplify (10):

l = log f(m1,m2,m3..mM , n1, n2, n3..nM , p|G)

=
N∑
i=1

[[Ci log[pmi + (1− p)ni]

+ (M − Ci) log[p(1−mi) + (1− p)(1− ni)]

+M(αi − 1) logmi +M(βi − 1) log(1−mi)

+M(ai − 1) log ni +M(bi − 1) log(1− ni)

(3.12)

Optimization

Differentiate with respect to p and set the result to 0.

∂l

∂p
= 0

N∑
i=1

(Ci −Mqi)(mi − ni)
qi(1− qi)

= 0

(3.13)

Differentiate with respect to mi and set the result to 0.

∂l

∂mi

= 0

p(Ci −Mqi)

qi(1− qi)
+
M [αi − 1− [αi + βi − 2]mi]

mi[1−mi]
= 0

(3.14)
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Further solving (13):

(p2M(αi + βi − 1))m3
i

+ (p(1− p)Mni −Mni(αi + βi − 2)(2p2 − 2p)

+ (2Mp− pCi −Mpαi −Mpβi −Mp2αi))m
2
i

+ (Mni(2p
2 − 2p)αi −Mni(2p

2 − 2p)

−Mni(1− p)(αi + βi − 2)

− p(1− p)M + (Mn2
i (p− 1)2(αi + βi − 2))

+ (pMαi − pM + pCi))mi

+ ((1− p)M(αi − 1)ni + (p− 1)2(M −Mαi)n
2
i ) = 0

(3.15)

Differentiate with respect to ni and set the result to 0.

∂l

∂ni
= 0

(1− p)(Ci −Mqi)

qi(1− qi)
+
M [ai − 1− [ai + bi − 2]ni]

mi[1−mi]
= 0

(3.16)
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Further solving (15):

((1− p)2M(ai + bi − 1))n3
i

+ (p(1− p)Mmi −Mmi(ai + bi − 2)(2(1− p)2 − 2(1− p))

+ (2M(1− p)− (1− p)Ci −M(1− p)ai −M(1− p)bi

−M(1− p)2ai))n
2
i

+ (Mmi(2(1− p)2 − 2(1− p))ai

−Mmi(2(1− p)2 − 2(1− p))

−Mmi(p)(ai + bi − 2)

− p(1− p)M + (Mm2
i (p− 1)2(ai + bi − 2))

+ ((1− p)Mai − (1− p)M + (1− p)Ci))ni

+ ((1− p)M(ai − 1)mi + (p− 1)2(M −Mai)m
2
i ) = 0

(3.17)

Unfortunately, these equations are cubic and it is hard to solve these three simultaneous

equations analytically. We resort to solve these three equations numerically.

Algorithm 2 Algorithm

procedure Algorithm
Sample mi from Θmi

for each i
Sample ni from Θni

for each i
Repeat
Solve ∂l

∂p
= 0 using mi and ni for all i

For each i
Using p and ni to solve ∂l

∂mi
= 0 to get mi

Using p and mi to solve ∂l
∂ni

= 0 to get ni
End For
Until Convergence
end procedure

Lastly, we have to calculate the following Hessian matrix after getting all the mi, ni upon

convergence.
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Hmi,ni
=



∂2l
∂m2

1

∂2l
∂m1m2

· · · ∂2l
∂m1nN

∂2l
∂m2m1

∂2l
∂m2

2
· · · ∂2l

∂m2nN

...
...

. . .
...

...
...

. . .
...

∂2l
∂nNm1

∂2l
∂nNm2

· · · ∂2l
∂n2

N



4 Results and Findings

The data sets used for the experiment were taken from the study of Integrated Ge-

nomic Analyses of Ovarian Carcinoma led by the Cancer Genome Atlas. The associated

results and discussions were published in [66]. The analysis of 489 clinically annotated stage

III-V HGS-OvCa samples and its corresponding normal DNA were reported in the article

and posted on its associated website. The data incorporates the age at diagnosis, stage,

tumour grade and surgical outcome of patients diagnosed with HGS-OvCa. We downloaded

the TCGA-OV-mutations data and the unified expression profiles from the TCGA Data

Portal website for our purpose. In the aftermath of data cleaning, we retain mutations con-

taining insertion, deletion and alternation of base only. Finally a patient mutation profile

table which comprises 316 patients and 8404 genes is obtained. We utilized two different

protein protein interaction networks for our experments. HumanNet is a probabilistic func-

tional gene network which consists of 18,714 protein encoding genes and 476399 interactions

between the genes of Homo sapiens. We obtained the required data through its web portal

for download and query.

4.1 Known cancer driver genes

We compiled a set of genes published in various literature on several cancer studies

which are certified to be ovarian cancer genes to be our known cancer driver genes in the

evaluation of our proposed study. For the candidate cancer genes, we use the set of genes

forming the patient mutation profile table as described above for experiment. Table 3.2 below

40



GENE Literatures

BRCA1 [30],[10],[66]
BRCA2 [25]
BMPR1A [82],[3]
BRIP1 [85]
MLH1 [78]
FHIT [25],[6]
TFRC [53]
FGFR2 [39],[60]
GATA3 [57]
MYST4 [88]
PTEN [69]
FAS [58],[6]
RB1 [85]
SEPT9 [79]
YWHAE [32]
TP53 [66]
PIK3CA [28]
BRAF [28]
KRAS [28]
AIB1 [4]
MSH2 [78]
BMP4 [56],[55]
TRIP1 [40]
MYC [40]
EP300 [40]

Table 3.2. Ground Truth Genes

tabulates the collection of ovarian cancer genes (ground truth genes) and the associated

references.

4.2 Experimental Results

Since for each gene, we have to solve three simultaneous equations which are cubic,

we have many variables to estimate. As a matter of fact, it is hard to solve the equations

analytically. We resort to solve the equations numerically. The idea behind the algorithm

is that in each iteration, for each gene we take turns fixing two variables and solve the third

variable. After multiple iterations, we hope the solution can converge. The experimental
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results below demonstrate that all the variables converge and fall in desirable range. Table

3.3 below shows the numbers of variables used in the experiment.

Experimental Data
Varables Type Numbers of variables

of this type
p 1
mi 8404
ni 8404

Table 3.3. Experimental Data

Using mean to start the experiment

We use the mean of Θni
and Θmi

to start the experiment and Table 3.4 below tabulates the

result. The solution converges after 500 rounds and the optimal p we found is 0.0312. The

Experimental Data
Numbers of Rounds Variable Average of difference

of this variable com-
pared to previous
round

50 p 0.012
50 mi 2.3607e−02

50 ni 1.7943e−01

100 p 0.006
100 mi 3.6676e−03

100 ni 1.4591e−03

200 p 0.0002
200 mi 1.316e−04

200 ni 1.6501e−04

500 p 0.0001
500 mi 0.4128e−05

500 ni 0.6716e−05

Table 3.4. Experimental Results Using Mean

largest mi found is 0.6120 and the smallest mi found is 4.5632e− 05.

Using mode to start the experiment

We use the mode of Θni
and Θmi

to start the experiment and Table 3.5 below tabulates the

result. The solution converges after 500 rounds and the optimal p we found is 0.035. The
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Experimental Data
Numbers of Rounds Variable Average of difference

of this variable com-
pared to previous
round

50 p 0.038
50 mi 2.5712e−02

50 ni 1.3654e−02

100 p 0.003
100 mi 2.3716e−04

100 ni 3.0861e−04

200 p 0.0002
200 mi 1.0871e−05

200 ni 2.4195e−05

500 p 0.0001
500 mi 0.4531e−06

500 ni 0.5971e−06

Table 3.5. Experimental Results Using Mode

largest mi found is 0.6213 and the smallest mi found is 2.1732e− 05.

Using a value from prior to start the experiment

We sample a value out of Θni
and Θmi

within one standard derivation randomly to start

the experiment and Table 3.6 below tabulates the result. The solution converges after 500

rounds and the optimal p we found is 0.031. The largest mi found is 0.5676 and the smallest

mi found is 3.5783e− 05.

4.3 Findings

In this subsection, we obtain the probability vectors mi in three experiments. We

recorded the top 1 percentage (around 100) of each probability vector in each experimental

setting. Table 3.7 tabulates a bunch of genes which appear in all top 1 percentage of the

probability vectors that we believed to be cancer driver genes.

Biological Findings
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Experimental Data
Numbers of Rounds Variable Average of difference

of this variable com-
pared to previous
round

50 p 0.031
50 mi 4.0182e−02

50 ni 3.6325e−02

100 p 0.002
100 mi 2.2665e−02

100 ni 1.3412e−02

200 p 0.0001
200 mi 1.1107e−04

200 ni 0.8703e−04

500 p 0.0001
500 mi 0.517e−05

500 ni 0.6316e−05

Table 3.6. Experimental Results Using Prior Distribution

In this subsection, we explain the potential roles of some of the 25 potential cancer driver

genes found above from the molecular and biological points of view.

1.) AP2B1 is medium and highly expressed in tumor sample and expressed highly in protein

level. A network analysis revealed a subnetwork with three genes BMP7, NR2F2 and AP2B1

that were consistently over expressed in the chemoresistant tissue or cells compared to the

chemosensitive tissue or cells.

2.) It was found that the Wnt signaling coreceptor LRP6 is up-regulated in a subpopulation

of human breast cancers which defines a class of breast cancer subtype and is a target for

therapy.

3.) The knockdown of annexin A11 expression lead to reduced cell proliferation and colony

formation ability of ovarian cancer cells. Furthermore, epigenetic silencing of annexin A11

conferred cisplatin resistance to ovarian cancer cells and hence it is believed that annexin

A11 is associated with the tumor recurrence in ovarian cancer patients.

4.) GRM8 is among the 77 significantly mutated genes identified by statistical analysis to

be driver genes .
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Genes Commonly Found in The Above
Three Experiments Within Top 1 Percentage Of Their Rank
AP2B1 B2M
LP6 ANXA11
INSIG2 CCT3
GRM8 CRY1
DACH1 PPIC
NSUN2 PRKCZ
HIVEP3 MAPK8
DICER1 ATM
RAD51 BUB1
ADIPOQ IGF1
THBS2 EFEMP1
MTHFD2 FBXW7

Table 3.7. Cancer Drivers Discovered Within Top 1 Percent of Their Rank

5.) SPARC is overexpressed in highly invasive subclone and ovarian cancer tissues and plays

an important role in ovarian cancer growth, apoptosis and metastasis.

6.) The expression of BIRC6 in the cytoplasm is associated with epithelial ovarian cancer

differentiation and is believed to be a novel predictor for poor prognosis of epithelial ovarian

cancer (EOC) patients after curative resection. Univariate analyses and multivariate anal-

yses revealed that BIRC6 was an independent significant predictor for overall survival and

play an important role in oncogenesis.

7.) The HIVEP2 gene, located on 6q23-q24, belongs to a family of genes which encodes

large zinc fingers containing transcription factor proteins. The overall median expression

level in breast cancer was significantly lower than that in normal breast tissue (normalized

median value of 4.49 versus 17.68; p≤ 0.0001). It was believed that the down-regulation

of the HIVEP2 may be one of the genetic events responsible for breast cancer, and their

transcription may be regulated by complex mechanisms involving interactions with other

factors and/or by other genetic/epigenetic mechanisms.

8.) Network analysis indicates that MAPK8 is functionally connected to 3 altered genes:

PIK3R1 PRKDC and TP53. TP53 is a well known cancer gene.

9.) There is interaction between gene NSUN2 and FBXW7. Both are found in our rank
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among top position. NSUN2 is experimentally found to be essential in cancer cells, and

FBXW7, a tumour-suppressor gene, has been found to be mutated in cancer cells. In nor-

mal cells, NSUN2 and FBXW7 both function to regulate cellular differentiation via two

different mechanisms. FBXW7 regulates cell differentiation by inhibiting c-Myc and pro-

teins in Notch pathway, and NSUN2 functions to maintain normal cell differentiation when

activated by LEF1/ β-catenin complex, which is part of Wnt pathway. It has been found

that the loss of FBXW7 results in elevated expression of c-Myc, which results in an upreg-

ulation of NSUN2. As a matter of fact, NSUN2 stabilizes the mitotic spindle in fast cell

proliferation in cancer cell growth.

10.) DACH1 protein levels increase with the invasiveness of the ovarian cancer. As the cancer

progresses from benign and borderline to metastatic, DACH1 protein expression increases

as well. Moreover, with the increase in expression, the subcellular distribution of DACH1

changes from nucleus in normal tissue to cytoplasm in cancer.

11.) It is suspected that DICER1 mutations in nonepithelial ovarian cancers may be onco-

genic. The recurrent, focal nature of the DICER1 mutations and incomplete loss of DICER1

enzymatic activity observed in nonepithelial ovarian tumors suggest that, in certain cell

types, aberrant miRNA processing may be oncogenic.

5 Conclusion

We developed a simple generative mixture model coupled with Bayesian parameter

estimation to estimate background mutation rates and driver probabilities of each gene as

well as the proportion of drivers among sequenced genes using somatic mutation data and

protein protein interaction network data. We apply our model to ovarian cancer data and

numerically estimated the solution. Upon convergence, we are able to discover and identify

some new candidate cancer driver genes like SPARC, DACH1 etc.
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CHAPTER 4

MIXED GRAPHICAL MODEL APPROACH TO IDENTIFY CANCER DRIVER GENES

The state of the art in bio-medical technologies has produced many genomic, epige-

netic, transcriptomic, and proteomic data of varied types across different biological condi-

tions. Historically, it has always been a challenge to produce new ways to integrate data

of different types. Here, we leverage the node-conditional uni-variate exponential family

distribution to capture the dependencies and interactions between different data types. The

graph underlying our mixed graphical model contains both un-directed and directed edges.

In addition, it is widely believed that incorporating data across different experimental con-

ditions can lead us to a more holistic view of the biological system and help to unravel the

regulatory mechanism behind complex diseases. We then integrate the data across related

biological conditions through multiple graphical models. The performance of our approach

is demonstrated through simulations and its application to cancer genomics.

1 Introduction

The Big Data era presents many challenges to modern data analysis. One of the in-

evitable consequences is the emergence of diverse and complex data sets comprising variables

of different types in which the data variables are measured on the same set of samples and

produce measurements of different types, such as binary, discrete, categorical, continuous,

etc.

For example, one of the prominent Big Data applications is High-throughput biomed-

ical research. The recent proliferation of genomics technologies has created large and well-

characterized genomic data sets that are publicly available on many platforms such as The

47



Cancer Genome Atlas (TCGA), etc. Examples include mutations and aberrations such

as copy number variations (CNV) and single nucleotide Polymorphisms (SNPs) which are

typically binary or categorical, gene expression and miRNA expression data measured by

micro-arrays and RNA-sequencing technologies that are count-valued, and epigenetics data

measured by methylation arrays, which are continuous. Each of these data types, e.g. ge-

nomic, transcriptomic or proteomic data, provides a local and single layer view of the molec-

ular system. However, all of these data are related since they belong to the same biological

system under different aspects and scale. Therefore, it is beneficial to develop methods to

integrate data of diverse types in order to obtain a global and holistic view of the biological

system.

On one hand, multivariate distributions such as graphical models have been success-

fully applied to models with one type of data, typically gene expression for finding important

bio-markers. However, as noted above, we have to decipher the relationships among differ-

ent types of biological data in order to achieve a complete understanding of the molecular

basis of disease. Therefore, it is of utmost importance to develop a class of mixed graphical

models that can directly model dependencies among gene expression levels (counts), methy-

lation data (continuous) as well as mutation (binary) data. We leverage exponential family

distributions to model rich dependencies between variables of different data types. We allow

the conditional distribution of each node to belong to the exponential family which could be

Bernoulli, Poisson, exponential etc.

In this paper, we focus on the problem of learning regulatory relationships among het-

erogeneous genomic variables from various biological conditions with overlapping regulatory

mechanisms. Genomic variables can be genomic variants (for instance, mutations and copy

number alterations), epigenetic states (for instance, methylation status), and gene expres-

sion profiles (for instance, miRNA expression). Biological conditions can belong to different

tissues or cancer types, etc. Different diseases have both shared regulatory mechanisms and

disease specific regulations. Therefore, we utilize the mixed graphical model of exponential

48



family distributions mentioned above to jointly learn conditional dependencies among a set

of binary, count and continuous variables across a set of distinct but related conditions.

To summarize, we introduce our model and various background knowledge in section

2. In sections 3 and 4 we formulate the problem of inferencing multiple mixed graphical

models into an optimization problem. We then propose an algorithm for parameter estima-

tion in section 5. We then illustrate our method through simulations and cancer genomic

data in section 6. We then conclude our paper in section 7.

2 Related Work

There has been an overwhelming amount of research effort in estimating sparse un-

directed graphical models in high-dimensional settings. Most of the work focuses on graphical

models where the nodes represent either continuous or discrete variables (single type), but

not both. For example, much attention has focused on estimating Gaussian graphical models

among a set of random variables with a joint multivariate normal distribution, where zero

entries in the precision matrix correspond to conditional independence. Meinshausen and

Buhlmann [59] further estimate the precision matrix using a marginal penalized regression

approach. Yuan and Lin [97], Friedman, Hastie and Tibshirani [31] and others proposed

a penalized log-likelihood approach to estimate the precision matrix. Danaher, Wang and

Witten [22] extend the approach to infer multiple Gaussian graphical models based on data

collected from distinct but related conditions. In addition, Chun et al [19] proposed joint

conditional Gaussian graphical models using multiple sources of genomic data. For discrete

variables, the Ising model has been widely used to model conditional independence among

variables. Hofling and Tibshirani [38] presented a pseudo-likelihood approach to estimate the

sparse binary pairwise Markov networks under high-dimensional setting. In the case of both

discrete and continuous variables, Lauritzen’s [45] earlier seminal work focused on a mixed

graphical model in the low-dimensional setting. Lee and Hastie [46] extend Lauritzen’s [45]
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work and proposed a pairwise graphical model over continuous and discrete variables using a

group lasso penalty in a high-dimensional setting. Our work is inspired by Lauritzen’s work

[45] to extend to exponential family distribution to allow for modelling dependencies among

differing data types. On the other hand, a related line of research considers a non-parametric

approach to estimate conditional dependence relationships between variables. Probabilistic

graphical models using copulas [26, 50] or rank-based estimators [95, 49] are proposed for

mixed data. However, they are less efficient when compared to parametric families, especially

under high dimensional regimes.

3 Model

3.1 Pairwise graphical model

We consider the pairwise graphical model, in the following form:

p(x) ∝
{ p∑
s=1

fs(xs) +

p∑
s=2

∑
t≤s

fts(xs, xt)
}
, (4.1)

where x = (x1, x2, ...., xp)
T and fts = 0 for {t, s} /∈ E. Here, fs(xs) denotes the node

potential function, and fts(xs, xt) denotes the edge potential function. We then simplify

the pairwise interaction term by assuming that fts(xs, xt) = θstxsxt = θtsxsxt so that the

parameters associated with edges form a symmetric square matrix Θ = (θst)p∗p with the

diagonal elements being zero. The joint density can then be written as

p(x) ∝
{ p∑
s=1

fs(xs) +
1

2

p∑
s=1

∑
t6=s

fts(xs, xt)− A(Θ)
}
, (4.2)

where A(Θ) denotes the log-partition function, a function of θ. For {s, t} /∈ E, the edge

potentials satisfy θstxsxt = θtsxsxt = 0. We define the neighbours of the s th node as

N(xs) = {xt : θst = θts 6= 0}.
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3.2 Mixed graphical model

We now consider modeling of the conditional distribution of a random vector Y :=

(Y1, ..., Yp) ∈ Y1 ∗ ... ∗ Yp, conditioned on a random vector X := (X1, ..., Xq) ∈ X1 ∗ ... ∗ Xq.

Suppose that we have a graph GY = (VY , EY ), with nodes VY associated with variables in

Y . Denote the set of neighbors in VY for any node s ∈ VY by NY (s). Suppose further that

we also have a set of nodes VX associated with the variables in X, and that for any node

s ∈ VY , we denote its set of neighbors in VX as NX(s). Suppose that the variables Y are

locally Markov with respect to their specified neighbors, so that

P [Ys|YVY −s
, X] = P [Ys|YNY (s), XNX(s)]. (4.3)

Moreover, suppose that the conditional distribution Ys conditioned on the rest of

YVY −s
and X is given by the following uni-variate exponential family:

P (Ys|YVY −s
, X) = exp

{
fs(ys) +

∑
xt∈NX(ys)

θtsxtys

+
∑

yt∈NY (ys)

θ,tsytys − AYs|YVY −s
,X(YVY −s

, X)
} (4.4)

Suppose fs(ys) = α1sys + α2sy
2
s +

∑K
k=3 αksBks(ys), where αks is a parameter, which could

be 0, and Bks(ys) is a known function for k = 3, ..., K. Under this assumption, (4.4) belongs

to the exponential family. The assumed form of fs(ys) is quite general. We now consider

some special cases of (4.4) corresponding to commonly-used distributions in the exponential

family, for which fs(ys) takes a very simple form.

For the case of Gaussian distribution with domain R,

P (Ys|YVY −s
, X) ∝ exp

{
α1sys −

1

2
y2
s +

∑
s 6=t

θ,stysyt +
∑
s 6=t

θstysxt

}
. (4.5)
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For the case of Poisson distribution with domain {1, 2, 3...},

P (Ys|YVY −s
, X) ∝ exp

{
α1sys − log(ys!) +

∑
s 6=t

θ,stysyt +
∑
s 6=t

θstysxt

}
. (4.6)

Theorem 1. Consider a p-dimensional random vector Y := (Y1, ..., Yp) and a q-dimensional

random vector X := (X1, ..., Xq). Then, the node-wise conditional distributions satisfying

the Markov condition in (4.3) as well as the exponential family condition in (4.4), are indeed

consistent with a graphical model joint distribution and has the form:

P (Y |X) ∝ exp
{ p∑
s=1

fs(ys) +

p∑
s=1

∑
xt∈NX(ys)

θtsxtys

+

p∑
s=1

∑
t6=s

yt∈NY (ys)

θ,ts
2
ytys

} (4.7)

Proof. We now prove that any function that is capable of generating the conditional density

in (4.4) is in the form (4.7). The following proof is similar to that in Besag [8].

Define Q(Y |X) = log(P (Y |X)/P (0|X))

We then write Q(Y |X) as

Q(Y |X) =

p∑
s=1

ysGs(ys, X) +
∑
t6=s

Gts(yt, ys, X)

2
ytys

+
∑
t6=s

t6=j,s6=j

Gtsj(yt, ys, yj, X)

6
ytysyj + ...

(4.8)

where we write the function Q(Y |X) as the sum of interactions of different orders. Note

that the factor of 1
2

is due to Gst(ys, yt) = Gts(ys, yt) similar factors apply for higher-order

interactions.
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Q(Y |X)−Q(Y 0
s |X) = log(

P (Y |X)

P (Y 0
s |X)

)

= log(
P (Ys|YVY −s

, X)

P (0|YVY −s
, X)

)

(4.9)

where Y 0
s = (Y1, Y2, ..Ys−1, 0, Ys+1, ..Yp). It follows that

log(
P (Ys|YVY −s

, X)

P (0|YVY −s
, X)

) = Q(Y |X)−Q(Y 0
s |X)

= ys(Gs(ys, X) +
∑
t6=s

Gts(yt, ys, X)

2
yt + ...)

(4.10)

Set yi = 0 if i 6= s, then

fs(ys) +
∑

xt∈NX(ys)

θtsxtys = ysGs(ys, X). (4.11)

Set yi = 0 if i 6= s and i 6= t, then

fs(ys) +
∑

xt∈NX(ys)

θtsxtys + θ,tsytys = ysGs(ys, X) + ysyt
Gts(yt, ys, X)

2
. (4.12)

Combining (4.11) and (4.12),

θ,tsysyt = ysyt
Gts(yt, ys, X)

2
. (4.13)

Replace s by t and vice versa, we have

θ,stysyt = ysyt
Gst(yt, ys, X)

2
. (4.14)

Therefore, if θ,st = θ,ts, then Gst(yt, ys, X) = Gts(yt, ys, X).

For higher interaction term, set yi = 0 if i 6= s and i 6= t and i 6= j then
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Figure 4.1. 2 Blocks MRF

fs(ys) +
∑

xt∈NX(ys)

θtsxtys + θ,tsytys + θ,jsyjys

= ysGs(ys, X) + ysyt
Gts(yt, ys, X)

2
+ yjys

Gjs(yj, ys, X)

2

+ yjysyt
Gtsj(yt, ys, yj, X)

6
.

(4.15)

Gtsj(yt, ys, yj, X) = 0. Similarly, we can show that fourth-and-higher-order interactions are

zero. Hence, we arrive at the following formula for Q(Y |X):

Q(Y |X) =

p∑
s=1

fs(ys) +

p∑
s=1

∑
xt∈NX(ys)

θtsxtys +

p∑
s=1

∑
t6=s

yt∈NY (ys)

θ,ts
2
ytys. (4.16)

Furthermore, Q(Y |X) = log(P (Y |X)/P (0|X)), so the function P takes the form

P (Y |X) ∝ expQ(Y |X)

= exp
{ p∑
s=1

fs(ys) +

p∑
s=1

∑
xt∈NX(ys)

θtsxtys +

p∑
s=1

∑
t6=s

yt∈NY (ys)

θ,ts
2
ytys

}
.

(4.17)

X could be ”cause” variables, while Y could be ”effect” variables. Suppose that we have

an undirected graph GY = (VY , EY ), with nodes VY associated with variables in Y , an
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undirected graph GX = (VX , EX), with nodes VX associated with variables in X. Suppose

in addition, we have directed edges EXY from nodes in VX to VY . Thus, the overall graph

structure (Figure 4.1) has both undirected edges EX and EY among nodes solely in X and

Y respectively, as well as directed edges EXY , from nodes in X to Y . For any node s ∈ VY ,

we denote its set of neighbors in GY by NY (s), and likewise we denote its neighbors in VX ,

by NY X(s). Then,

P (X, Y ) = P (Y |X)P (X) (4.18)

where P (Y |X) and P (X) are as follow:

P (Y |X) = exp
{ p∑
s=1

fs(ys) +

p∑
s=1

∑
xt∈NX(ys)

θtsxtys

+

p∑
s=1

∑
t6=s

yt∈NY (ys)

θ,ts
2
ytys − AY |X(θ(X))

} (4.19)

P (X) = exp
{ q∑
s=1

fs(xs) +
1

2

q∑
s=1

∑
xt∈NX(xs)

θstxsxt − A(Θ)
}

(4.20)

Biological Motivation: We can use the above design to model the interactions between binary

mutation variables (SNPs) and continuous gene expression variables (microarrays) as SNPs

are fixed point mutations that influence the dynamic and tissue specific gene expression.

Thus, we can take X to be Bernoulli nodes representing SNP and Y to be Gaussian nodes

representing gene expression and form directed edges from X to Y .

3.3 General Mixed Graphical Model

In this section, we extend our mixed graphical models to handle a chain graph struc-

ture. A DAG G = (V,E) consists of a set of vertices V and a set of edges E with no

directed cycle. We use X := (X1, .., Xq) to denote the set of random variables representing

the vertices, V , of our network model. Suppose further that V can be partitioned into a
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series of disjoint exhaustive sets V1, ..., Vm, such that Vi ∩ Vj = 0 ∀i 6= j and ∪mj=1Vj = V .

These exhaustive sets Vi are connected subgraphs consisting only of undirected edges. All

edges between nodes in the same set are undirected, and all edges between different sets

are directed. In addition, the sets can be ordered in such a way that all arrows point from

a set with a smaller number to one with a larger number. As a matter of fact, for any

undirected edge (s, t) ∈ E, we have that s, t ∈ Vi, for only one i ∈ [m] and for any directed

edge (s, t) ∈ E, we have that s ∈ Vi, t ∈ Vj, with i < j. We then define the general class of

mixed graphical models associated with the above definition. For any i ∈ [m], indexing the

m subsets {Vi}mi=1, we define the set of parents of set Vi as follow:

Pa(i) = ∪mj=1{Vj ∃directed(s, t) ∈ E, s ∈ Vj, t ∈ Vi}. (4.21)

We also use the notation Pa(t) to denote the set of parent nodes of any node t ∈ V :

Pa(t) = {s ∃directed(s, t) ∈ E}. (4.22)

We then factorize the joint distribution in terms of the conditional distributions as follows

P (X) =
m∏
i=1

P (XVi |XPa(i)), (4.23)

where P (XVi|XPa(i)) is specified by the mixed CRF detailed in (4.7).

P (XVi |XPa(i)) = exp
{ ∑
xs∈XVi

fs(xs) +
∑

xs∈XVi

∑
t∈Pa(s)

θtsxtxs

+
∑

xs∈XVi

∑
t6=s

t∈NVi
(s)

θ,ts
2
xtxs − Ai(θ(XPa(i)))

}
.

(4.24)
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Then the overall joint distribution (4.23) is as follow:

P (X) = exp
m∑
i=1

{ ∑
xs∈XVi

fs(xs) +
∑

xs∈XVi

∑
t∈Pa(s)

θtsxtxs

+
∑

xs∈XVi

∑
t6=s

t∈NVi
(s)

θ,ts
2
xtxs − Ai(θ(XPa(i)))

}
.

(4.25)

4 Extension

4.1 Unknown Blocks Ordering

Recovering the graph when its ordering of the blocks is unknown is a NP hard problem,

when the number of parents of each block is restricted to 2. This is because of the exponential

search space that one has to traverse to obtain the optimal network. Although this might

seem computationally infeasible, using local search procedures we are able to provide a

solution using heuristic hill-climbing [18]. The greedy hill-climbing approach starts with a

prior network. The prior network could be a random DAG structure; or a DAG structure

elicited by an expert. From this prior network we iteratively try to improve the structure’s

score defined in (4.26) by utilizing search operators. We always apply a change that improves

the score until no improvement can be made.

logP (X)− logM

2
DIM [G]. (4.26)

where M is the number of training instances and DIM [G] is the number of independent

parameters in the network. The first term is a likelihood score and the second is a penalty

term for complex networks. The BIC score has the following properties: (a) As we increase

the number of samples, the emphasis moves from model complexity to fit to data. In other

words, as we obtain more data we are more likely to consider more complicated structures.
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5 Learning

In this section, we perform learning on our model (4.25). Specifically, we observe n

i.i.d. samples {X(j)}nj=1. We are interested in (1) parameter learning which is to estimate

the unknown parameters θ, and (2) structure learning, which is to estimate the unknown

edge-set E of the underlying mixed graph. These tasks are also referred to as graphical model

estimation and selection respectively. Before we dig into the learning, we observe that our

class of mixed graphical model distribution in (4.25) is specified by mixed CRF distributions

(4.23) over the blocks. Therefore, we reduce the problem of estimating the overall mixed

graphical model to that of estimating the corresponding mixed CRFs. In order to learn any

of the mixed CRF P (XVi |XPa(i)), only the sample sub-vectors restricted to XVi and XPa(i)

are required. Therefore, the overall graphical model estimation problem can be reduced to

the set of sub-problems of estimating the mixed CRFs:

P (XVi |XPa(i)) = exp
{ ∑
xs∈XVi

fs(xs) +
∑

xs∈XVi

∑
t∈Pa(s)

θtsxtxs

+
∑

xs∈XVi

∑
t6=s

t∈NVi
(s)

θ,ts
2
xtxs − Ai(θ(XPa(i)))

}
.

(4.27)

As the graph factors according to mixed CRFs, we therefore estimate each CRF indepen-

dently. We then perform the node-wise neighborhood estimation. Neighborhood estimation

approaches seek to learn the sparse network structure through an l1 − norm regularization

to estimate the set of edge parameters, the non-zeros of which correspond to the selected

node-neighbors. Estimating the CRF (4.27) then reduces to estimating the univariate node-

conditional distribution of variable Xs for each s ∈ Vi given all other nodes in Vi and Pa(i).

We have
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P (Xs|XVi−s, XPa(i), θs) = exp
{
C(Xs|XVi−s, XPa(i), θs)

−D(XVi−s, XPa(i), θs)
}
,

(4.28)

where

C(Xs|XVi−s, XPa(i), θs) = fs(xs) +
∑

t∈Pa(s)

θtsxtxs

+
∑
t6=s

t∈NVi
(s)

θ,ts
2
xtxs,

(4.29)

and

D(XVi−s, XPa(i), θs) = log

∫
X

exp
{
C(Xs|XVi−s, XPa(i), θs)

}
dXs. (4.30)

Furthermore, since the log partition function (4.30) is complicated, it is natural to replace

the log-partition terms by a Monte-Carlo approximation through importance sampling and

then minimize the resulting approximated formulation. Assume we have k ii.d samples

Yk = {Y (j)}kj=1 drawn from a random vector Y ∈ Xq with known probability density P (Y )

and therefore given θ, we can use importance sampling to approximate (4.30) as

log{ 1
k

∑k
j=1

exp

{
C(Y

(j)
s |Y (j)

Vi−s,Y
(j)
Pa(i)

,θs)

}
P (Y

(j)
s |Y (j)

Vi−s,Y
(j)
Pa(i)

,θs)
}.

Remark Note that there exist restrictions on θs [17] required for

D(XVi−s, XPa(i), θs) ≤ ∞ in order for the conditional densities (4.28) to exist.

Therefore, for each node Xs within Vi, its node-conditional distribution is specified by three

sets of parameters, namely θs, which is its nodewise weight, θVi := {θst}t∈Vi which is the

vector of intra-block edge-weights (same set) of node s and also θPa(i) := {θts}t∈Pa(i) which

represents the vector of inter-block edge weights (different sets) of node s. Then, given n i.i.d.

samples from our mixed graphical model of (4.28) with unknown parameters, we calculate
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the negative log likelihood of the node-conditional distribution as:

min
θs

1

n

n∑
j=1

{
−C(X(j)

s |X
(j)
Vi−s, X

(j)
Pa(i), θs)

+D(X
(j)
Vi−s, X

(j)
Pa(i), θs)

}
+ λ‖θVi‖1 + λ‖θPa(i)‖1,

(4.31)

where λ determines the degree of sparsity in the connections between Xs and XVi−s and

also the degree of sparsity in the connections between Xs and nodes in Pa(i). We further

assume that the observation are from different classes, indexed by k varying from 1 to K,

are independent. Different classes can arise from different tissue types or different cancer

types, etc, which contain both shared regulations and disease specific regulations. Given

the observed data {X(j)(k)}nk
j=1 for class k with nk samples, we then calculate the pseudo-

likelihood, which is formed by the product of all node-conditional distributions as below:

l(Θk, X(k)) =

nk∑
j=1

∑
s∈V

{
−C(X(j)(k)

s |X(j)(k)
T (s)−s, X

(j)(k)
Pa(T (s)), θ

(k)
s )

+D(X
(j)(k)
T (s)−s, X

(j)(k)
Pa(T (s)), θ

(k)
s )
}
.

(4.32)

We use Θk = {θk} to denote the set of parameters of class k. We also use T (s) to denote the

block where the node s belongs. The above derivation treats different biological conditions

differently from biological measurements such as CNVs, and estimates multiple biological

networks from different biological conditions jointly.

After we derive the optimization for a single class, we then proceed to formulate our problem

for joint analysis of multiple classes. The idea behind our joint mixed graphical model

analysis across different biological conditions is that there exist some commonalities shared

among multiple classes, such as shared regulatory mechanisms. We therefore propose two

penalization approaches (fused lasso and group lasso) to facilitate borrowing information
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from multiple biological conditions for the estimation of the joint mixed graphical models.

arg min
Θ1,...,ΘK

K∑
k=1

l(Θk, X(k)) + P (Θ1, ...,ΘK). (4.33)

In the case of the fused graphical lasso:

P (Θ1, ...,ΘK) = λ1

K∑
k=1

m∑
i=1

‖θ(k)
Vi
‖1 + λ1

K∑
k=1

m∑
i=1

‖θ(k)
Pa(i)‖1

+ λ2

∑
k<k,

m∑
i=1

‖θ(k)
Vi
− θ(k,)

Vi
‖1

+ λ2

∑
k<k,

m∑
i=1

‖θ(k)
Pa(i) − θ

(k,)
Pa(i)‖1,

(4.34)

where λ1 and λ2 are tuning parameters. The fused graphical lasso penalty forces the graphs

from multiple biological conditions are the same except for a few edges.

In the case of the group graphical lasso:

P (Θ1, ...,ΘK) = λ1

K∑
k=1

m∑
i=1

‖θ(k)
Vi
‖1 + λ1

K∑
k=1

m∑
i=1

‖θ(k)
Pa(i)‖1

+ λ2

m∑
i=1

∑
(u,v)∈Vi

√√√√ K∑
k=1

(θ
(k)
Vi

)2
uv

+ λ2

m∑
i=1

∑
(u,v)∈Pa(i)

√√√√ K∑
k=1

(θ
(k)
Pa(i))

2
uv.

(4.35)

The group graphical lasso penalty here puts the related biological conditions as one group

which implies that the underlying multiple graphs are the same.

Parameters Tuning

For the selection of tuning parameters, we utilize the following Bayesian information
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criterion (BIC) type of approach to choose λ1 and λ2 which minimizes:

BIC(λ1, λ2) = −2
K∑
k=1

Inl(Θk
λ1,λ2

, X(k)) + EkInnk (4.36)

where l(Θk
λ1,λ2

, X(k)) is the pseudo-likelihood (4.32) for the observation from the kth class

with the tuning parameters λ1 and λ2, and Ek is the number of edges in the kth mixed

graphical model.

5.1 Algorithm

In this section, we introduce an numerical algorithm which solves the optimization

problem above. This constrained optimization problem (4.33) can be simplified and solved by

replacing it with a series of distributed problems through an augmented Lagrangian scheme.

We first make the objective function separable by rewriting

arg min
{Z(k)}{Θ(k)}

K∑
k=1

l(Θk, X(k)) + P (Z). (4.37)

subject to the constraint that Z(k) = Θ(k) for k = 1, , , , K where {Z} = {Z(1), ..., Z(K)}.

Then, we can perform the optimization and regularization locally and coordinate them glob-

ally via constraints by further rewriting the problem using the scaled augmented Lagrangian,

[9, 37] that is,

L({Θ}, {Z}, {U}) =
K∑
k=1

l(Θk, X(k)) + P (Z) +
d

2

K∑
k=1

‖Θk + Uk − Zk‖2
F , (4.38)

where {U} = {U1, ..., UK} are dual feasibility-tolerance variables, and d is a scalar constant.

The augmented Lagrangian optimization problem can be solved by the alternating direction

method of multipliers (ADMM) which guarantees converge to the global optimum. The
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skeleton of the algorithm at the ith iteration includes the following three steps:

{Θ(i)} = arg minΘL({Θ}, {Z(i−1)}, {U(i−1)})

{Z(i)} = arg minZL({Θ(i)}, {Z}, {U(i−1)})

{U(i)} = {U(i−1)}+ ({Θ(i)} − {Z(i)})

(4.39)

Briefly, to estimate Θ, we utilize a coordinate-wise descent approach to obtain each parameter

in Θ, and directly apply a well-suited proximal gradient algorithm, which can achieve ε

optimality within O(1
ε
) iterations. To update Z, the optimization problem is separable with

respect to each pair of elements in the matrix, and thus can be solved using the fused lasso

signal approximator or the group lasso operator, depending on the choice of penalty P in

(4.34) or (4.35).

6 Experiment

6.1 Simulated Data

We consider three blocks of variables in our simulation as follows: We consider two

mixed graphical models G1 = (V 1, E1) G2 = (V 2, E2) (representing two classes) each con-

sisting of three blocks of variables (block A, block B and block C). Block A comprises 50

Gaussian variables, block B contains 50 Bernoulli variables and block C contains 50 Pois-

son variables. We order the directionality such that block A points to block B, and block

C points to both block A and block B. The topologies of the two simulated networks are

generated as follows: In both models, each node in block A is connected to its two nearest

neighbors in block A and each node in block B is connected to its two nearest neighbors in

block B and likewise for block C. For the inter-block edges, for each node x in block A, we

randomly picked three nodes in block B and form an edge from node x to the three chosen

nodes. For each node y in block C, we randomly picked three nodes in block B and block A

and form an edge from node y to each of the chosen nodes. We then proceed to set the edge
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Algorithm 3 ADMM algorithm

Require: Data {X(j)(k)}nk
j=1

1: Initialize Θ(k) = 0,U (k) = 0, Z(k) = 0, t = 0.8, β = 0.5 for k = 1, ...K
2: Choose a scalar d > 0
3:

4: for i = 1, 2, 3, .... and repeat until convergence do
5: for k = 1, ..K do
6: for each parameter θ(k) in Θ(k) do
7: t = t(i−1);
8: Repeat until convergence;

9: v = 1
d+t

(d(z
(k)
(i−1) − u

(k)
(i−1)) + t(θ

(k)
(i−1) − t

dl(Θ(k),X(k))

dθ
(k)
(i−1)

)));

10: t = βt;
11: Return t(i) = t and θ

(k)
(i) = v;

12: end for
13: end for
14: for k = 1, ..K do

15: Z
(k)
(i) =arg minZ(k)

{
d
2

∑K
k=1‖Z(k) − (Θ

(k)
(i) + U

(k)
(i) )‖2

F + P (Z)

}
16: and solve it depending on the penalty type P ;
17: Set A(k) = Θ

(k)
(i) + U

(k)
(i−1);

18: end for
19: If (P = fused lasso penalty){
20: for each (u, v)

21: Solve min{Z(k)
uv }

{
d
2

∑K
k=1(Z

(k)
uv −A(k)

uv )2 + λ1

∑K
k=1 | Zk

uv | +λ2

∑
k≤k, | Zk

uv − Zk,

uv |
}

22:

23: using fused lasso signal approximator
24:

25: }
26:

27: else {
28: for each (u, v)

29: Solve min{Z(k)
uv }

{
d
2

∑K
k=1(Z

(k)
uv − A(k)

uv )2 + λ1

∑K
k=1 | Zk

uv | +λ2

√∑K
k=1(Z

(k)
uv )2

}
30:

31: using group lasso signal approximator
32:

33: }
34:

35: U
(k)
(i) = U

(k)
(i−1) + (Θ

(k)
(i) − Z

(k)
(i) )

36: end for
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potential θij for the two classes as follow:

θ
(k)
st =



0.3 if (s, t) ∈ Ek and s ∈ A and t ∈ A and k = 1

0.1 if (s, t) ∈ Ek and s ∈ B and t ∈ B and k = 1

−0.7 if (s, t) ∈ Ek and s ∈ C and t ∈ C and k = 1

0.1 if (s, t) ∈ Ek and s ∈ A and t ∈ B and k = 1

0.1 if (s, t) ∈ Ek and s ∈ C and t ∈ A and k = 1

0.1 if (s, t) ∈ Ek and s ∈ C and t ∈ B and k = 1

0.1 if (s, t) ∈ Ek and s ∈ A and t ∈ A and k = 2

0.4 if (s, t) ∈ Ek and s ∈ B and t ∈ B and k = 2

−0.3 if (s, t) ∈ Ek and s ∈ C and t ∈ C and k = 2

0.3 if (s, t) ∈ Ek and s ∈ A and t ∈ B and k = 2

0.3 if (s, t) ∈ Ek and s ∈ C and t ∈ A and k = 2

0.3 if (s, t) ∈ Ek and s ∈ C and t ∈ B and k = 2

6.1.1 Results

For both classes, we employ a Gibbs sampler. Speaking, we iterate through the nodes,

and sample from each nodes conditional distribution. To ensure independence, after a burn-

in period of 3000 iterations, we select samples from the chain 500 iterations apart. Using the

proposed method, we discovered the network structure for two classes over a range of tuning

parameters (λ1 and λ2). We recorded the total number of identified edges for each pair

of tuning parameters (λ1 and λ2) and calculated the number of true positive edges and the

number of false positive edges. We then investigate the performance of the tuning parameter

selection procedure by checking the sensitivity and specificity of the selected model. The
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sensitivity and specificity are defined below.

sensitivity =
TP

TP + FN

specificity =
TN

TN + FP

(4.40)

where TP refers to true positives, FP refers to false positives, TN refers to true negatives

and FN refers to false negatives. For each pair of tuning parameters, we calculated the corre-

sponding sensitivity, specificity. Figure 4.2(a) shows the sensitivities of our mixed graphical

model with fused lasso penalty over a range of tuning parameters, while Figure 4.2(b) shows

the sensitivities of our model with group lasso penalty. Figure 4.3(c) shows the specificities

of our model with fused lasso penalty over a range of tuning parameters, while Figure 4.3(d)

shows the specificities of our model with group lasso penalty. The results demonstrate that

our method achieves high sensitivities (0.927 for group lasso and 0.88 for fused lasso penal-

ties) and specificities (0.91 for group lasso penalty, 0.83 for fused lasso penalty) using the

BIC-type model selection approach.

6.2 Real Data

Brain cancer and Colorectal cancer We applied our method to the publicly avail-

able TCGA datasets of two cancer types: colorectal carcinoma (coadread) and glioblastoma

multiforme (GBM). We obtained the mutation, copy number variation (CNV) and the gene

expression data from TCGA data portal resulting in 768 subjects for coadread and 702 GBM

subjects. For both GBM and coadread, we use level III RNA-sequencing data for the gene

expression so that the gene expression levels can be modeled with the Poisson distribution.

For the CNV and mutation data, we utilize both the Level II nonsilent somatic mutations in

conjunction with Level III copy number variation data. We merge them together forming a

binary matrix with the rows and columns corresponding to samples and genes respectively.

We then filtered out genes with mutation rate occur less than 8% of the patients in the
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Figure 4.2. Performance of our mixed graphical model on three blocks with various λ1 and
λ2. BIC value depicted as a black dot
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Figure 4.3. Performance of our mixed graphical model on three blocks with various λ1 and
λ2. BIC value depicted as a black dot
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mutation CNV data.

Since it is well known that both the CNV and fixed point mutation (block X) affect gene

expression level (block Y), we can use this relationship to order two blocks of variables as

follow: P [X, Y ] = P [Y |X]P [X], where P [Y |X] is a pairwise Poisson conditional random

field and P [X] stands for the pair-wise Ising model in both classes.

We set λ2 = 0 assuming that there is no any similarity between coadread and GBM. We

also select the optimal value for the tuning parameter controlling sparsity as λ1 = 0.5 by

BIC. We discovered 736 edges for coadread and 617 edges for GBM respectively. Among the

interactions of coadread, 27.9% are CNV-CNV interactions, 53.4% are gene-gene interactions

and 18.7% are CNV-gene interactions. Among the interactions of GBM, 28.2% are CNV-

CNV interactions, 44.2% are gene-gene interactions and 27.6% are CNV-gene interactions.

In addition, there are 551 coadread-specific interactions, 432 GBM-specific interactions, and

185 common interactions. Among the 185 common interactions are common oncogenes such

as PTEN, TP53, P IK3CA etc which play important roles in different cancers. Our overall

estimated networks for GBM and coadread are shown in Figures 4.6 and 4.7.

Among the coadread-specific interactions, we identify several connections between biological

data of different types which could be bio-markers or driver genes. Examples include: The

mutation of MLH1 is connected to TCF7L2 gene expression. MLH1 [71] is a tumor sup-

pressor gene involved in DNA mismatch repair. Germline mutations in this gene are known

to cause Lynch syndrome. The most common malignancies in Lynch syndrome are colorec-

tal and endometrial carcinomas. In addition to germline mutations, somatic mutations in

this gene have been described in colorectal and endometrial cancers. TCF7L2 gene [84] is

involved in the Wnt β signaling pathway, and all factors are thought to be important in the

etiology of colon cancer. MCC gene mutation is linked to the gene expression of TCF7L1.

MCC is a candidate colorectal tumor suppressor gene that is thought to negatively regulate

cell cycle progression. In [42], it is discovered that a high level of TCF7L1 mRNA expression

correlates with shorter survival of patients and knocking out TCF7L1 can reduce growth of
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a colorectal tumor cell line in vitro. The mutation of PIK3R1 is linked to the expression

of GSK3B. PIK3R1 [48] has been reported as an oncogene in colon cancer. GSK3B [83]

is part of the GABAB R/GSK-3β/NF-KB signaling pathway on regulating proliferation of

colorectal cancer cell, and the down-regulation of GSK3B triggers the proliferation of colon

cancer cell. The mutation of both the KRAS gene and the APC gene are linked to the

expression of PIK3CG. KRAS [5] is involved in the modulation of several downstream

effectors, that include: RAF/MEK/ERK, PI3K/AKT , RAlGDS/p38MAPK pathway

and is found to be frequently dysregulated in colorectal cancer. APC [43] is a tumor sup-

pressor gene which is commonly mutated in colon cancer. For PIK3CG, a reduction of

PIK3CG [80] expression is detected immunohistochemically in 85% of human colorectal

cancers and was closely associated with invasion, metastasis, and poor differentiation. In

addition, down-regulation of PIK3CG expression and hypermethylation of promoter regions

are also detected in primary colon cancers. The mutation of gene TGFB1 is linked to the

expression of CCND1. TGFB1 [14] is a tumor suppressor gene regarding tumor initiation

and over-expression of CCND1 [47] is significantly associated with both poor overall sur-

vival and disease free survival among the colon cancer patients.

On the other hand, among the GBM-specific interactions, we found the following connec-

tions among different biomarkers: CDKN2A mutation is linked to the gene expression of

ERBB3. CDKN2A [76] is a tumor suppressor gene whose loss is associated with short-

ened overall survival in lower grade Astrocytomas and ERBB3 is found to be differentially

expressed between the proneural tumors and the mesenchymal tumors in GBM [87]. The

mutation of PIK3CA is linked to both the GAB1 and GAB2 gene expression. PIK3CA

[20] is a well known oncogene. GAB1 and GAB2 [51] play important roles in cancer cell

signaling. In particular, it has been demonstrated that the up-regulation of GAB2 is corre-

lated with the World Health Organization (WHO) grade of gliomas and that patients with

high GAB2 expression levels exhibited shorter survival time. The mutation of ERBB2

is linked to the expression of PDGFRB gene. ERBB2 [87] is a proto-oncogene which is
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frequently mutated in GBM. PDGFRB [93] is over-expressed in GBM microvascular pro-

liferation. Another mutation LZTR1 [72] which is thought to act as a tumor suppressor

is connected to SPRY 2 expression. SPRY 2 [90] is a known regulator of receptor tyrosine

kinases (RTKs) which promotes glioma cell and tumor growth and cellular resistance to tar-

geted inhibitors of oncogenic RTKs; SPRY 2 [90] is also related to glioblastoma subtypes and

patient survival. It is also found that SPRY 2 is under-expressed in the proneural tumors

in GBM. Mutation of PTEN is linked to the expression of ADAM10 gene. PTEN [11] is

frequently mutated in mesenchymal tumor of GBM. And over-expression of ADAM10 gene

[13] has been observed in human glioma tissue and especially in tumor sphere cultures. The

mutation of PDGFRA is linked to the gene expression of FOXO3. PDGFRA [87] is fre-

quently mutated in proneural tumors of GBM. For FOXO3, a recent study [73] examining

FOXO3 expression in patient HGGs suggests a strong association between high expression

and poor prognosis, while another study [94] using two human GBM cell lines demonstrates

that FOXO3 expression induces TMZ resistance.

Gene Enrichment Analysis We performed gene enrichment analysis on the 40 genes with

the highest degree (hub nodes) in their respective gene network in both GBM and Colorectal

cancer. As shown in Figure 4.4 and 4.5, we discovered that the identified functions in both

cancers are related to tumor development like pathway signalling events and cell apoptosas

events etc.

Comparison with other methods We applied the method by Danaher [22] to

the above cancer dataset (coadread and GBM) by treating both CNV/mutation and gene

expression as continuous variables. It results in 451 interactions for coadread, and 348 in-

teractions for GBM. Among the interactions of coadread, 1.4% are CNV-CNV interactions,

93.8% are gene-gene interactions and 4.8% are CNV-gene interactions. Among the interac-

tions of GBM, 2.1% are CNV-CNV interactions, 91.5% are gene-gene interactions and 6.4%

are CNV-gene interactions. This highlights our method is better at capturing interactions
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Figure 4.4. Functions discovered by Gene Enrichment Analysis on hub nodes of GBM
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and also more capable of identifying CNV-CNV interactions and CNV-gene interactions.

Luminal-A breast cancer and Basal-like breast cancer We applied our method to

two major subtypes of breast cancer: luminal A cancers and basal-like cancers. Luminal

A cancers tend to grow slowly and possess good prognosis, while basal-like cancers tend to

grow quickly and have poor prognosis. As usual, we obtained the CNV, mutation as well

as gene expression data from TCGA data portal resulting in 232 luminal A cancer subjects

and 174 basal cancer subjects. We used the fused lasso penalty to the data-sets for the two

cancer subtypes, and the proposed BIC approach to choose the tuning parameters (λ1 = 0.4,

λ2 = 0.5). We identified 321 edges for luminal A cancer and 296 edges for basal cancer,

respectively. Among them, there are 118 luminal-specific interactions, 93 basal-specific in-

teractions, and 203 common interactions. Among the common interactions were genes such

as PTEN, BRCA1, EP300, SMAD4, TP53, PIK3CD, etc. The overall networks for the two

sub-types are shown in Figures 4.8 and 4.9 . We then identify genetic variants that are

potentially implicated in each cancer subtype among the subtypes specific interactions. We

identify 4 hub nodes in the two networks which can differentiate between the two sub-types.

We discovered that gene KIT has a higher degree in basal cancer gene network than in lu-

minal A cancer gene network (30-13). Gene EGFR also has a higher degree in basal cancer

gene network than in luminal A cancer gene network (16-6). Both genes KIT and EGFR

are amplified and over-expressed in basal type cancer [65]. On the other hand, gene CDK6

has a higher degree in luminal A cancer gene network than in basal cancer gene network

(13-5) and ESR1 gene is only present in the luminal A gene network but not in the basal.

CDK6 is one member of the cyclin-dependent kinase family, which is found to be amplified

in luminal A cancer [65]. Similarly, gene ESR1 [65] is one of two main types of estrogen

receptors which is typically highly expressed in luminal A cancer. The module containing

the four hub nodes for luminal A and basal cancer are shown in Figure 4.10 and Figure 4.11

respectively.
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Figure 4.6. Graphical model estimation of GBM (Blue:GENE-GENE Red:CNV-CNV
Green:CNV-GENE)

Figure 4.7. Graphical model estimation of COADREAD (Blue:GENE-GENE Red:CNV-
CNV Green:CNV-GENE)
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Figure 4.8. Graphical model estimation of BASAL (Blue:GENE-GENE Red:CNV-CNV
Green:CNV-GENE)

Figure 4.9. Graphical model estimation of LUMINAL-A (Blue:GENE-GENE Red:CNV-
CNV Green:CNV-GENE)
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Figure 4.10. Gene network of 4 hubs nodes (KIT, CDK6, EGFR, ESR1) across Luminal-A
cancer

Figure 4.11. Gene network of 4 hubs nodes (KIT, CDK6, EGFR, ESR1) across Basal cancer
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7 Conclusion

In this paper, we employ the exponential families for the problem of estimating mul-

tiple related mixed graphical models from high dimensional data with different discrete and

continuous variables and with observation across distinct and related biological conditions.

This framework had been demonstrated using real cancer data. For future work, it is natural

to develop hypothesis testing such that the mixed graphical models can be supplemented by

a p-value on each edge to determine the confidence level of its existence in the overall mixed

graphical model.
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CHAPTER 5

EFFICIENT CASCADE MODELLING OF DIFFUSION NETWORK BY PARETO

DISTRIBUTION

Time plays an essential role in the diffusion of information, influence and disease over

networks. Usually we are only able to collect cascade data in which an infection (receiving)

time of each node is recorded but without any transmission information over the network. In

this chapter, we given all the fer the transmission rates among nodes by Pareto distributions.

Pareto modeling has several advantages. It is naturally motivated and has a nice interpret-

ability. The scale parameter of a Pareto distribution naturally fits in the starting time of a

transition, i.e., the infection time of a parent node in the cascade data is the starting point

for a transition from the parent to its receiver. The shape parameter (alpha) serves as the

transition rate. The larger the alpha is, the faster the transition is and the larger probability

for disease or information to spread in a short time period is. Pareto modeling is mathemati-

cally simple and computationally easy. It has explicit solutions for the optimization problem

which maximizes time-dependent pairwise transmission likelihood between all pairs of nodes.

We present three modelings with a common transmission rate, with different transmission

rates and with different infection rates. We also extent the Pareto modeling to deal with

the multiple source problem. We consider non-overlapping, partially overlapping two sources

and fully overlapping multiple sources diffusion networks. For non-overlapping networks, the

problem is transformed to the identification of the starting time of the second source. For

the partially overlapping scenario, a mixture model is adopted and EM algorithm is utilized

for obtaining estimators. The fully overlapping case is an extension of the mixture mod-

eling. The number of sources can be selected by an usual Akaike or Bayesian information
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criterion. Experiments on real and synthetic data show that our models accurately estimate

the transmission rates from one source as well as multiple source cascade data.

1 Background

Diffusion network and its propagation have attracted a great deal of research atten-

tion recently [1, 7, 21, 35, 41, 64, 89, 92]. It has been applied to many problem domains

varying from social networks to viral marketing. Inferring diffusion network from cascades

has become one of the major tools to understand social behaviors or virus infection. Cascade

data about a diffusion process in a network often record the diffusion traces but without any

information on network structure. For example, epidemiologists can observe that a person

becomes ill at what time but they can neither determine who infected the patient nor the

infection rate of each individual in virus infection. In information dissemination, we observe

when a blog posts a piece of news or when a piece of information is tweeted by Twitter.

However, as is often the case, the blogger does not link to her source and we had no idea

where she obtained the information, how long it took her to post it or the extent in which

the piece of information could be spread further. In viral marketing, viral marketers can

track when customers purchase products or subscribe to services, but it is hard to determine

who influence the customers’ decisions, how long it takes for them to make up their decision,

or the extent they pass their opinion or recommendation on to other customers. In all these

circumstances, we observe where and when but not so much on how a piece of information

or antigen can propagate through a network. As a matter of fact, it is of utmost inter-

est to decipher the mechanism underlying the process since understanding diffusion process

validates efforts for preventing from virus infections, predicting information propagation, or

maximizing the profit of selling a product. Our goal of this paper is to propose a novel

modeling to infer infection rates of diffusion processes.

80



2 Related Works

Most of the previous works have focused on developing network inference algorithms

and evaluating their performance experimentally on different synthetic and real networks.

The models which are most related to our works are [35, 64, 77]. In [77], authors devel-

oped a method called NETRATE to model the underlying diffusion process. It infers the

transmission rates between nodes of a network by computing the model which maximizes the

likelihood of the observed data in terms of temporal traces observed by cascades of infections.

Another similar line of work is [64] in which the authors utilized a generative probabilistic

model for inferring diffusion networks using sub-modular optimization. Meyers and Leskovec

in [64] developed an algorithm called CONNIE in which they infer the connectivity of the

network as well as the prior probability of infection of each node using a convex program

and heuristics. Both papers assumed the transmission rate between all nodes to be fixed

and their models are only applicable to one source. Works on the similar line that utilizes a

generative probability model to infer the network which generate all the cascades with the

maximum likelihood formulation include NETINF [35] and InfoPath [36], which have been

demonstrated to perform incredibly well on synthetic data. Authors in [23] further extended

the work to investigate the condition in which the network structure could be recovered

from the traces of cascade. They are capable of identifying a natural incoherence condition

for such a model which depends on the network structure, the diffusion parameters as well

as the sampling process of the cascades. This condition captures intuitions that the net-

work structure could be recovered if the co-occurrence of a node and its non-parent nodes

is small in the cascades and with enough cascades, the probability of success in recovery

is approaching one in a rate exponential in the number of cascades. On the other hand,

another line of research has done by [29] in which the authors aim to discover the source

of infection using incomplete and partially observed cascade traces. They developed a two

stage graphical model, which at first learns a continuous time diffusion network model based

on historical diffusion traces and then identifies the source of an incomplete trace of cascades
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by maximizing the likelihood of the trace under the learned model. Furthermore,[91] studies

the problem of transferring structure knowledge from an external diffusion network with

sufficient cascade data to help predict the hidden links of the diffusion network. In our work,

we employ a similar line of reasoning and assumption of a generative probabilistic model.

What we contribute are (1) new modelings (2) extension to multiple sources, which to the

best of our knowledge hadn’t appeared in the above schemes and in the literature.

An overview of the proposed model

This article presents a model for inferring the mechanisms underlying diffusion processes

based on historical diffusion traces. To achieve this goal, we make some basic assumptions

about the temporal structures which generate the diffusion process and incorporate into our

model. First, diffusion process occur over on a static unknown network. Second, infections

along the edges (between each pair of individuals) of the network occur independently of

each other. Third, infection can occur at different times and the probability of a parent

node infecting a child node is determined by a probability density function depending on the

time of infection of the parent node, the time of infection of the child node and infection rate.

Finally, we observe the time of occurrence of all infections in the network during the time

window recorded. Our objective is to infer the infection rate and the likelihood of infection

across its edges after recording the times of infection of each individual node within the time

window in a network. We cast the problem as a maximum likelihood problem and are able to

calculate the infection rate efficiently. In this consideration, we are motivated to use Pareto

distribution. An important characteristic of the Parate distribution is its slow convergence

to zero, which enables occasional long-range transmissions of infectious agents in addition to

principal short-range infections [12, 96, 61]. The scale parameter of the Pareto distribution

naturally fits in the starting time of a transition, i.e., the infection time of a parent node

in the cascade data is the starting point for a transition from the parent to its child. The

shape parameter (alpha) serves as the transition rate. The larger the alpha is, the faster the

transition is and the larger probability for disease or information to spread in a short time
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period is. Not only Pareto modeling has an intuitive motivation and nice interpretation,

but also is mathematical simple and computational easy. We present three modelings: (1)

with a common transmission rate; (2) with different transmission rates; (3) with different

infection rates. All of them have explicit solutions for the optimization problem. On the

other hand, in real world scenarios, there may exist multiple sources contributing to the dis-

semination of content or pathogens in a network. For instance, in virus outbreak, one source

of pathogen can start in North America whereas another one starts in Europe and the two

sources converge after people from the two geographical regions commute through common

access point like airport. We extended our model to include multiple sources. Three cases

are considered: (1) nonoverlaping two source; (2) partially overlapping two sources; (3) fully

overlapping sources. In the first case, the problem is translated to the identification of the

starting time of the second source. For the latter two scenarios, mixture distributions are

adopted and and EM algorithms are utilized to obtain estimates of the infection rates of

multiple sources accordingly. Our model differs from the traditional ones such as in [23] and

[77]. They intend to recover the network and try to estimate variations among all pairwise

edges, which unavoidably leads to models with a large number of parameters. In contrast,

our works focus on modeling the diffusion rate among the network. Our models are simple

and easy to interpret, as well as easy to compute. Moreover, we extend our modeling to mul-

tiple source diffusion processes, while to the best of our knowledge, it is extremely difficult

to extend their model to consider more than one source.

3 Framework

Before introducing our model, we first give some basic concepts which are essential

to information diffusion. Then we describe the cascade data and assumption of cascade

modeling assumptions.
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3.1 Basic terminology and Pareto distribution

Let f(t) be the probability density function (pdf) of T . Then the cumulative distribu-

tion function (cdf) can be denoted as F (t) = P (T ≤ t) =
∫ t

0
f(x)dx. The survival function

S(t) is the probability that an event does not happen by time t:

S(t) = P (T > t) = 1− F (t) =

∞∫
t

f(x)dx. (5.1)

Given functions f(t) and S(t), we further define the hazard function H(t), which represents

the instantaneous rate that an event occurs just right after time t given that it already sur-

vives up to time t. That is,

H(t) = lim
∆t→0

P (t ≤ T ≤ t+ ∆t|T ≥ t)

∆t
=
f(t)

S(t)
. (5.2)

A random variable T is said to have a Pareto (Type I) distribution if its survival

function (also called tail function) is of the form

S(t) =

(
t0
t

)α
I(t ≥ t0) + I(t < t0),

where I(·) is the indictor function, t0 is the scale parameter which is (necessarily positive)

minimum possible value of T and α is the shape parameter which is positive. It follows (by

differentiation) that the probability density function and hence the hazard function are

f(t) =
αtα0
tα+1

I(t ≥ t0); H(t) =
t0
t
I(t ≥ t0).

The Pareto distribution is a simple model for nonnegative data with a power law probability

tail [67]. An important characteristic of the Parate distribution is its slow convergence to

zero, which enables occasional long-range transmissions of infectious agents in addition to

principal short-range infections [12]. Two parameters of the Pareto distribution have an in-

tuitive interpretation when modeling diffusion of information or disease over networks. The
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scale parameter naturally fits in the starting time of a transition, i.e., the infection time of a

parent node in the cascade data is the starting point for a transition from the parent to its

receiver. The shape parameter (alpha) serves as the transition rate. The larger the alpha is,

the faster the transition is and the larger probability for disease or information to spread in

a short time period is. The fact that the hazard rate of the Pareto distribution decreasing

with the time makes the Pareto distribution more realistic in applications than some other

distributions such as the exponential distribution, which has a constant hazard rate over

the time. In epidemiology, the Pareto distribution has been widely used for describing epi-

demic behavior such as the probability of outbreaks of different sizes or the rate of incidence

[96, 61].

Data

Observations are recorded on a fixed set ofN objects and result in a cascade T = {t1, t2, ..., tN}.

It is an N dimensional vector recording when the ith node is infected at ti, where ti ∈

(0, Tmax] ∪ {∞}. Symbol ∞ labels that the node is not infected during the observation

window [0, Tmax]. Without loss of generalization, we can assume 0 ≤ t1 ≤ t2 ≤ ... ≤ tN .

3.2 Modeling pairwise infection likelihood

Define f(ti|tj) as the conditional likelihood of transmission from node j and node

i. The conditional transmission likelihood depends on the infection times (tj, ti). A node

cannot be infected by a node infected later in time. In other words, a node j that has

been infected at a time tj may infect a node i at a time ti only if tj ≤ ti. We first give a

general framework of modeling the likelihood of a cascade. We then proceed to the three

different modelings. Consider a cascade T = {t1, t2, ..., tN}. We first compute the likelihood

of the observed infections t≤T = (t1, t2, ..., tN |ti ≤ Tmax). Since we assume infections are

conditionally independent given the parents of the infected nodes, the likelihood factorizes

over nodes as

f(t≤T ) =
∏

ti≤Tmax

f(ti|t1, t2, ..., ti−1, ti+1, ..., tN) (5.3)
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Computing the likelihood of a cascade thus boils down to computing the conditional likeli-

hood of the infection time of each node given the rest of the cascade. Following the inde-

pendent cascade model proposed by Kempe [41], we assume that a node gets infected once

the first parent infects the node. Given an infected node i, we compute the likelihood of a

potential parent j to be the first parent,

f(ti|tj)×
∏

k 6=j,tk≤ti

S(ti|tk) (5.4)

We now compute the conditional likelihood by summing over the likelihoods of the mutually

disjoint events considering each potential parent as the first parent in turn resulting in

f(ti|t1, t2, ...., tN) =
∑
tj<ti

f(ti|tj)×
∏

j 6=k,tk≤ti

S(ti|tk) (5.5)

and therefore the likelihood of the infection in a cascade is

f(T ) =
∏

ti≤Tmax

∑
tj<ti

f(ti|tj)×
∏

k 6=j,tk≤ti

S(ti|tk) (5.6)

In the next section, we have three Pareto modelings for one source diffusion network and in

Section IV, we consider two sources modeling based on Pareto distributions.

4 One Source Diffusion Modeling

With one source diffusion network, we first consider a simple Pareto model in which

every node in the network has the same dissemination rate α. Then extend models to deal

with different dissemination rate on each parent node and with different infected rate on

each child node.

4.1 Same infection rate α for all nodes

We employ the Pareto distribution to model the diffusion process with same infection

rate α, which is the scale parameter of the Pareto distribution and is needed to be estimated.
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The another scale parameter of the Pareto distribution can naturally be interpreted as onset

time of infection of the parent node. If one node is infected by node j, the inflection time of

the node follows a Pareto distribution with parameters tj and α. In other words, its density

function is of form

f(t|tj, α) =
αtαj
tα+1

, for t > tj,

where tj is the infection time of node j. The condition of tj < t means that the infection

time of a parent node must be earlier than the infection time of a child node. On the other

hand, if node k is not responsible for the infection of a node, i.e, the node is not infected by

node k, then its survival function is modeled as

S(t|tk, α) =

(
tk
t

)α
, for t ≥ tk,

where tk is the infection time of node k. With this modeling, we first consider an ordered

cascade data T : t1 ≤ t2 ≤ t3 ≤ · · · ≤ tN ≤ Tmax, in which all nodes are infected before Tmax.

The cases with uninfected nodes can be easily extended later.

We can obtain the following likelihood function (5.5) for the ith (i > 1) node.

f(ti|t1, t2, ..., ti−1) =
i−1∑
j=1

[
f(ti|tj, α)×

i−1∏
k=1,k 6=j

S(ti|tk, α)

]

=
i−1∑
j=1

[
αtαj

tα+1
i

i−1∏
k=1,k 6=j

tαk
tαi

]

=
(i− 1)α

ti

(
t1
ti

t2
ti
· · · ti−1

ti

)α
.

87



Then the likelihood function of (5.6) can be written as

f(T |α) =
N∏
i=2

f(ti|t1, ..., ti−1;α)

= (
N∏
i=2

i− 1

ti
)αN−1(

t1
tN

)(N−1)α(
t2
tN−1

)(N−2)α...(
tN−1

t2
)α.

Taking logarithm, the log-likelihood is

l = log f(T |α) (5.7)

= (N − 1) logα + α
N−1∑
k=1

(N − k) log
tk

tN−k+1

+ c,

where c is a term free of parameter α. Differentiating l with respect to α and solving

dl/dα = 0 gives the maximum likelihood estimator of α as follows.

α̂ =
N − 1

−
∑N−1

k=1 (N − k) log tk
tN−k+1

. (5.8)

proposition α̂ > 0 in (5.8) is optimal which gives the maximum value of l.

Proof: α̂ > 0 follows directly from

N−1∑
k=1

(N − k) log
tk

tN−k+1

=
N∑
i=2

i−1∑
j=1

log
tj
ti

with each term log(tj/ti) < 0. The second derivative of l,

d2l

dα2
=
−(N − 1)

α2
< 0,

implies that α̂ is the maximizer of l. �
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The above cascade likelihood argument can be easily extended to include uninfected nodes

which survive at Tmax. Suppose that there are N − K infected nodes and K uninfected

nodes in the cascade data. Then the survival log-likelihood term for those uninfected nodes,

K logS(tmax|t1, ..., tN−K), is

Kα

N−K∑
k=1

log
tk
Tmax

.

The derivation of the optimal α in this case follows similarly and yields

α̂ =
N −K − 1

−
∑N−K

k=1

[
(N −K − k) log tk

tN−K−k+1
+K log tk

Tmax

] .
Due to this easy extension, we only consider cascades with all nodes being infected later

on. Assume a set of C independent cascades C = {T (1), T (2), · · · , T (C)} with T (c) =

{t(c)1 , t
(c)
2 , · · · , t(c)N }. The log-likelihood of C is the sum of the log-likelihoods of the individual

cascade given as following

C∑
c=1

log f(T (c)|α),

and the maximum likelihood estimator of α is

α̂ =
C(N − 1)

−
∑C

c=1

∑N−1
k=1 (N − k) log

t
(c)
k

t
(c)
N−k+1

. (5.9)

We have obtained estimator of the transition rate of the network. The modeling is

mathematically convenient and easy to interpret. However, a common infection rate for all

nodes in the network may be too restrictive. For example, some diseases may have different

infection rates at the different periods after the first burst. Individuals in a network may

disseminate information at different rates. A more realistic modeling shall have different αi

for each parent node or for each child node.

89



4.2 Different αj for each sender

In this model, instead of having the same infection rate α for each node, it allows

αj for each sender which encodes the infection ability of each parent node j. A large αj of

node j means its higher risk of infecting others at the onset after being infected and the risk

subsides substantially after that. A smaller αj means node j possesses a longer duration to

infect others. Let α = (α1, ..., αN−1). The likelihood of the whole cascade of (5.6) is derived

as follows

f(T |α) =
N∏
i=2

[
i−1∑
j=1

f(ti|tj, αj)×
i−1∏

j 6=k,k=1

S(ti|tk, αk)

]

=
α1t

α1
1

tα1+1
2

×
(
α2t

α2
2

tα2+1
3

tα1
1

tα1
3

+
α1t

α1
1

tα1+1
3

tα2
2

tα2
3

)
×
(
α3t

α3
3

tα3+1
4

tα1
1

tα1
4

tα2
2

tα2
4

+
α2t

α2
2

tα2+1
4

tα3
3

tα3
4

tα1
1

tα1
4

+
α1t

α1
1

tα1+1
4

tα2
2

tα2
4

tα3
3

tα3
4

)
× · · ·

=
N∏
i=2


(∑i−1

j=1 αj

)
ti

i−1∏
j=1

(
tj
ti

)αj

 .
(5.10)

Taking logarithm l = log f(T |α) and derivative with respect to each αi, we have

∂l

∂α1

=
N∑
i=2

[
1∑i−1

k=1 αk
+ log

(
t1
ti

)]
(5.11)

∂l

∂α2

=
N∑
i=3

[
1∑i−1

k=1 αk
+ log

(
t1
ti

)]
(5.12)

∂l

∂α3

=
N∑
i=4

[
1∑i−1

k=1 αk
+ log

(
t1
ti

)]
(5.13)

Setting (5.11) and (5.12) to be zero, we obtain the estimator of α1

α̂1 =
1

(N − 1)(log t2 − log t1)
.
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With (5.12 and (5.13) being zero, we get the following derivation of α2

α̂2 =
1

(N − 2)(log t3 − log t2)
− 1

(N − 1)(log t2 − log t1)
.

In general, we have

∂l

∂αj
=

N∑
i=j+1

[
1∑i−1

k=1 αk
+ log

(
t1
ti

)]
(5.14)

and for j = 2, · · · , N − 1

α̂j =
1

(N − j) log(tj+1/tj)
− 1

(N + 1− j) log(tj/tj−1)
.

Note that except for α1, the estimator of αj is determined by three infection times at tj−1,

tj and tj+1. To ensure positive α̂j, the condition

t2N−2j+1
j > tN−jj+1 t

N+1−j
j−1 (5.15)

must hold. If the cascade data satisfy this condition (5.15) for all consecutive three infection

time periods, this modeling is useful and mathematically sound. However, this condition

may not be satisfied for some cascade data in which the inference of this model is invalid

and the maximum likelihood estimator does not exist. In such cases, we would like to model

a different infection rate for each child node.

4.3 Different αi for each receiver

In this model, we assign αi for each receiver which encodes the susceptibility of each

node. A large αi for node i means node i has a much higher chance of getting infected at

the beginning than later. A smaller αi for node i means node i is subject to infection for

a longer period of time. Let α = (α2, ..., αN). Then the likelihood of the whole cascade is
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derived as follow:

f(T |α) =
N∏
i=2

[
i−1∑
j=1

f(ti|tj, αi)×
i−1∏

k 6=j;k=1

S(ti|tk, αi)

]

=
α2t

α2
1

tα2+1
2

×
(
α3t

α3
2

tα3+1
3

tα3
1

tα3
3

+
α3t

α3
1

tα3+1
3

tα3
2

tα3
3

)
×
(
α4t

α4
3

tα4+1
4

tα4
1

tα4
4

tα4
2

tα4
4

+
α4t

α4
2

tα4+1
4

tα4
3

tα4
4

tα4
1

tα4
4

+
α4t

α4
1

tα4+1
4

tα4
2

tα4
4

tα4
3

tα4
4

)
× · · ·

=
N∏
i=2

(i− 1)αi
ti

i−1∏
j=1

(
tj
ti

)αi

.

Take the derivative of the log-likelihood l = log f(T |α) to be zero, we have the solution

∂l

∂α2

=
1

α2

+ log t1 − log t2 := 0⇒ α̂2 =

(
log

t2
t1

)−1

∂l

∂α3

=
1

α3

+ log(t1t2)− 2 log t3 := 0⇒ α̂3 =

(
log

t23
t1t2

)−1

Continuing the calculation, we obtain an estimator of αi which gives the maximum likelihood

of l.

α̂i =

[
i−1∑
j=1

log

(
ti
tj

)]−1

> 0. (5.16)

proposition The estimator α̂i in (5.16) is optimal which gives the maximum value of l.
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Proof: We have to calculate the Hessian matrix H as follows.

H =

(
∂2l

∂αi∂αj

)N
i,j=2

=



∂2l
∂α2

2

∂2l
∂α2α3

· · · ∂2l
∂α2αN

∂2l
∂α3α2

∂2l
∂α2

3
· · · ∂2l

∂α3αN

...
...

. . .
...

∂2l
∂αNα2

∂2l
∂αNα3

· · · ∂2l
∂α2

N



=



−α−2
2 0 · · · 0

0 −α−2
3 · · · 0

...
...

. . .
...

0 0 · · · −α−2
N


.

It is invertible and negative definite obviously. This proves that α̂ maximizes l. �

Note that α̂i is determined by log ratios of ti and tj for j = 1, 2, · · · , i− 1. This makes sense

since the ith infected node can be infected from any of the first i− 1 infected nodes and its

infected rate is determined by the infection times of its parent nodes.

5 Multiple Source Modeling

In this section, we extend our model to the case where cascade T is contributed by two

sources and further to multiple source cascades. We want to model the circumstance that

there are two or more sources of pathogens which cause the infection among the population.

We first consider two cases about two source cascades. One is that the cascade contributed

by each source does not overlap with each other. Therefore the problem is translated to

the identification of the starting time of the second source. The other is to deal with a a

partially overlapped cascade from two sources. We use a mixture distribution to model this

case and propose an EM algorithm to obtain the estimators. Later we consider the case that

has fully overlapping cascade from multiple sources.
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5.1 Non-overlap two source cascade modeling

This case depicts a scenario in which one source starts the dissemination process and

begin to infect other nodes. All the nodes infected by the source cease to infect others

before the second source starts the dissemination process. Therefore the whole cascade T =

{t1, t2, · · · , tN} consists of two sub-cascades T1 = {t1, t2, · · · , tK−1} and T2 = {tK , t2, · · · , tN}

which are contributed by source 1 and source 2 respectively. Let α and β be the infection

rate of source 1 and source 2 respectively. When a node is infected by node j within T1, the

probability of infection time t (t > tj) is denoted as

f(t|tj, α) =
αtαj
tα+1

.

Similarly, when a node is infected by node m within T2, the probability of infection is denoted

as

f(t|tm, β) =
βtβm
tβ+1

.

Collectively, the likelihood of the whole cascade T is derived as follow:

f(T |α, β) =
K−1∏
i=2

(
i−1∑
j=1

f(ti|tj, α)×
i−1∏

k=1,k 6=j

S(ti|tk, α)

)

×
N∏

i=K+1

(
i−1∑
j=K

f(ti|tj, β)×
i−1∏

k=K,k 6=j

S(ti|tk, β)

)

= (
K−1∏
i=2

i− 1

ti
)αK−2(

t1
tK−1

)(K−2)α(
t2
tK−2

)(K−3)α...(
tK−2

t2
)α

(
N∏

i=K+1

i−K
ti

)βM−1(
tK
tN

)(M−1)β(
tK+1

tN−1

)(M−2)β...(
tN−1

tK+1

)β,

(5.17)
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where M = N −K. Taking logarithm, we have

l(α, β,K|T ) = log f(T |α, β)

= log f(T1|α) + log f(T2|β)

:= l1(1, K − 1, α) + l2(K,N, β).

Given K, solving ∂l/∂α = 0 yields

α̂(K) = − K − 2∑K−2
i=1 (K − 1− i) log ti

tK−i

(5.18)

Similarly, solving ∂l/∂β = 0 provides an estimator of β given K, that is,

β̂(K) = − N −K − 1∑N−1
i=K (N − 1− i) log ti

tN−i+K

. (5.19)

It can be easily shown that α̂(K) and β̂(K) are positive and maximize l1 and l2 respectively

for each K(1 < K < N). To determine the starting point of the second source, we choose

the index K such that the likelihood of the cascade l is maximized. The algorithm to find

the maximum likelihood estimator is summarized as follows.

Algorithm 4 Non-overlapping Algorithm

Input: T = {t1, t2, · · · , tN}
Initialization: MaxL = −∞
For K = 2 To N − 1

1 Calculate α̂ using (5.18) ;

2 Calculate β̂ using (5.19);

3 l(K,α, β) = l1(1, K − 1, α̂) ∗ l2(K,N, β̂);
4 MaxL = max{l(K,α, β),MaxL}

End For

Output: K̂, α̂ and β̂ that maximizes MaxL.
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5.2 Overlapping two source cascade modeling

This case depicts a scenario in which one source with infection rate α starts the dis-

semination process to infect nodes and then after a while the second source with infection

rate β starts the dissemination process. Therefore the whole cascade T = {t1, t2, · · · , tN} can

be divided into two sub-cascades namely T1 = {t1, t2, · · · , tK−1} and T2 = {tK , tK+1, · · · , tN}

in which timestamps in T1 are contributed only by source 1 and timestamps in T2 are con-

tributed by both source 1 and source 2. When node i (i < K) within T1 is infected by node

j, its density probability of infection time is denoted as

f(t|tj, α) =
αtαj
tα+1

.

The log-likelihood of T1 then can be derived similarly as before

l1(K,α) = log

[
K−1∏
i=2

i−1∑
j=1

f(ti|tj, α)×
i−1∏

k=1,k 6=j

S(ti|tk, α)

]

= (K − 2) logα +
K−1∑
i=2

[
(K − i)α log

ti−1

tK−i+1

+ log
i

ti+1

]
.

One the other hand, if node i (i > K) within T2 is infected by node j, its density

distribution of the infection time follows

f(t|tj, α, β, π) = πf1(t|tj, α) + (1− π)f2(t|tj, β)

= π
αtαj
tα+1

+ (1− π)
βtβj
tβ+1

where π is the probability that a node is infected due to source 1. Since we do not know

which source infects node i, we employ an EM framework for the mixture model. The

observed sub-cascade data T2 are viewed as incomplete. The complete sub-cascade data

shall be Z = {ti, zi}Ni=K+1 where zi is an “unobserved” indicator vector with zi = 1 if node i

is infected by source 1 and 0 otherwise. Let θ = (α, β, π,K). The complete log-likelihood of
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Z is then derived by

lc2(θ|Z)

=
N∑

i=K+1

zi log[πf1(ti|θ)] + (1− zi) log[(1− π)f2(ti|θ)] (5.20)

=
N∑

i=K+1

log

{
i−1∑
j=K

[
πf1(ti|tj, α)

i−1∏
k 6=j,k=K

S(ti|tk, α)

]zi
(5.21)

×

[
(1− π)f2(ti|tj, β)

i−1∏
k 6=j,k=K

S(ti|tk, β)

]1−zi
 (5.22)

=
N∑

i=K+1

[
log(

i−K
ti

) + (1− zi) log((1− π)β)+

zi log(πα) + [ziα + (1− zi)β]
i−1∑
j=K

log

(
tj
ti

)]

The terms in (5.21) and (5.22) stand for the likelihood of node i being infected by T2 from

source 1 and source 2, respectively. Hence the complete log-likelihood of the whole cascade

is

lc(θ|T ) = l1(K,α) + lc2(θ|Z). (5.23)

The EM algorithm obtains a sequence of estimates {θ(s), s = 0, 1, 2, · · · } by alternating E

step and M step until some convergence criterion is met. We first provide the EM algorithm

for each K, then grid-search from 2 to N − 1 for the optimal K to maximize lc(θ|T ).

E-step: Calculate Q function, the conditional expectation of the complete log-likelihood,

given T and the current estimate θ(s). For i > K, since zi is either 1 or 0, E(zi|θ(s), T ) =

Pr(zi = 1|θ(s), T ), which is denoted by y
(s)
i . By the Bayes rule, we have

y
(s)
i =

π̂(s)L1(ti|θ(s))

π̂(s)L1(ti|θ(s)) + (1− π̂(s))L2(ti|θ(s))
, (5.24)

97



where

L1(ti|θ(s)) =
(i− 1)α(s)

ti

i−1∏
j=1

(
tj
ti

)α
(s)

and

L2(ti|θ(s)) =
(i−K)β(s)

ti

i−1∏
m=K

(
tm
ti

)β
(s)

.

y
(s)
i can be interpreted as soft labels at the sth iteration. Replacing zi with y

(s)
i in (5.23), we

obtained Q(θ|θ(t)).

M-step: Update the estimate of the parameters by maximizing the Q function, i.e,

θ(t+1) = argmaxθQ(θ|θ(s)),

which yields the following updates:

π̂(s+1) =
1

N −K − 1

N∑
i=K+1

y
(s)
i (5.25)

α̂(s+1) =
−[(K − 2) +

∑N
i=K+1 y

(s)
i ]∑K−1

i=2

∑i−1
j=1 log

tj
ti

+
∑N

i=K+1 y
(s)
i

∑i−1
m=K log tm

ti

(5.26)

β̂(s+1) =
−
∑N

i=K+1(1− y(s)
i )∑N

i=K+1(1− y(s)
i )
∑i−1

m=K log tm
ti

(5.27)

For given K, we obtain an approximated maximum likelihood estimator θ(K) when iterations

of E step and M step converge. We determine the index K such that the log-likelihood of

the whole cascade is maximized and The algorithm to approximate the maximum likelihood

estimator is summarized as follows. Although there are explicit solutions for each of updating

E and M steps, Algorithm (5) may be inefficient since it involves two loops, which may be

computationally expansive, especially when N is large. To overcome this limitation, we

consider the completely overlapping multiple source cascades under the assumption that all

sources have a roughly same start point.
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Algorithm 5 Partially Overlapping Algorithm

Input: T = {t1, t2, · · · , tN}, ε, maxit
Initialization: MaxL = −∞
For K = 2 To N − 1

Set: π(1) = 0.5, π(0) = 0, s = 1, α(1) = β(1) = 1
While (|π(s) − π(s−1)| > ε and s < maxit) Do

1 Update π(s+1) by (5.24) and (5.25);
2 Update α and β using (5.26) and (5.27);
3 s = s+ 1;

End While

1 Compute lc(θ̂|T ) = l1(K, α̂) + lc2(θ̂|Z);

2 MaxL = max{lc(θ̂|T ),MaxL}
End For

Output: K̂, π̂, α̂ and β̂ that maximizes MaxL.

5.3 Fully Overlapping Multiple Source Modeling

Suppose that an incident occurs and is broadcasted by D different social media imme-

diately. Each media has its own rate to disseminate information in the diffusion network. We

only know the diffusion traces, without any knowledge on the network structure and source

of information. This is a case of fully overlapping multiple source cascade problem and can

be dealt with a mixture model and EM algorithm. Assume that source d has dissemination

rate αd for d = 1, 2, · · · , D. Denote the probability of a node infected by source d as πd. Let

α = (α1, α2, · · · , αD)T and π = (π1, π2, · · · , πD)T . Similarly as before, the infection time of

a node infected by node j follows a mixture distribution with the density function

f(t|tj, π, α) =
D∑
d=1

πd
αd
t

(
tj
t

)αd

(5.28)

Treat t1 as the starting time and each of the following ti associated with an “unobserved”

indicator vector zi = (zi1, zi2, · · · , ziD)T , where zid = 1 if node i is infected by source d and
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0 otherwise. Hence the complete log-likelihood of the cascade T is

lc(α, π|T )

=
N∑
i=2

log

{
i−1∑
j=1

D∏
d=1

[
πdfd(ti|tj, αd)

i−1∏
k 6=j,k=1

S(ti|tk, αd)

]zid}

=
D∑
d=1

[
log(αd)

(
N∑
i=2

zid

)
+ αd

(
N∑
i=2

zid

)
i−1∑
j=1

log

(
tj
ti

)]

Working out the E step and M step, we have the following updates for d = 1, · · · , D:

y
(s)
id =

π
(s)
d Ld(ti|α(s)

d )∑D
k=1 π

(s)
k Lk(ti|α(s)

k )

π
(s+1)
d =

1

N − 1

N∑
i=2

y
(s)
id

α
(s+1)
d =

∑N
i=2 y

(s)
id∑N

i=2 y
(s)
id

∑i−1
j=1 log(tj/ti)

,

where Ld(ti|α(s)
d ) =

(i−1)α
(s)
d

ti

∏i−1
j=1(

tj
ti

)α
(s)

. The procedure continues until it converges.

The next question arises naturally: how to determine D, the number of sources. For

D = 1, this model reduces to the one source modeling with a common infection rate, while

for D = N − 1, this model is equivalent to the one with different infection rate for each

receiver. Hence this question is also to be asked in another way: how to choose model?

5.4 Experiments

5.4.1 Simulation

We generate cascades data to mimic the diffusion process. To construct the ground

truth model for our analysis, we generate a cascade of N timestamps based various values of

infection rate α and produce the infection time of each node accordingly. We fix a α value

and t1 value. For each node i (i = 2, · · · , N), we randomly select its parent node m from its

100



parent list {t1, t2, · · · , ti−1} with the probability of

(t1t2 · · · tm−1tm+1 · · · ti−1)α∑i−1
k=1(t1t2 · · · tk−1tk+1 · · · ti−1)α

.

Once its parent node m is chosen, we generate the timestamp ti by sampling from the Pareto

distribution with the starting point being tm and tail index α. We repeat the generation

process for C times. Upon generating all the ti, we applied the equation (5.9) to obtain α̂.

Then we compute the normalized mean absolute error (MAE) as an assessment criterion.

The normalized MAE is defined as

MAE =

∣∣∣∣α− α∗α

∣∣∣∣ ,
where α is the true infection rate from the ground truth model whereas α∗ is the averaged

value of 100 infection rate estimates (α̂). We examine the effects of the normalized MAE’s

of the estimator on different values of α, on different values of N and on different values of C

We observed that utilizing more cascades leads to more accurate estimate of the normalized

MAE and the error rate can be bought down to around 20% when the number of cascades

reach around 1000 and Figure (5.2) shows the result.

5.4.2 Comparison with NETRATE

We compare our model with the widely used NETRATE model [77]. Since our ap-

proach and NETRATE are based on likelihoods, it is natural to select model based on

some criteria with the common form of log-likelihood augmented by a model complexity

penalty term. For example, Akaike information criterion (AIC), Bayesian information crite-

rion (BIC), the normalized entropy criterion (NEC) etc. have yielded good results for model

choice in a range of applications. Here, we use BIC for model selection and comparison.

BIC is defined as negative twice of the the log-likelihood plus p log p, where p is the number

of independent parameters. That is, BIC = −2l + p log(N). A model with a smaller BIC

101



0.2
0

0.2
5

0.3
0

Number of Timestamps

No
rm

aliz
ed

 M
AE

200 500 1000 2000 5000 7500

Figure 5.1. Normalized MAE vs the cascade size

Size NETRATE Our Model
200 -58.945 -247.652
400 -376.184 -606.475
600 -776.347 -1538.85

Table 5.1. BIC of our model comparing with NETRATE. Smaller BIC implies a better
modeling.

is preferred. Table (5.1) lists BIC values of our model and NETRATE in the cascade data

generated in the same way as previously described. Our model has a much smaller BIC than

NETRATE for all cases. The results can be explained by the difference of the parameter

number in two approaches. Our model is much simpler than theirs and the model complexity

penalty in our model is much smaller than that in their model. As a result, our model has a

better generalization performance than theirs also has a better interpretation than theirs.

5.4.3 Twitter data application

We obtained real cascade data from Twitter. By using the Tweepy API of Python, we
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Figure 5.2. Normalized MAE with respects to numbers of cascades

were able to compile three sets of data on February 14, 2017 from Donald Trump’s Twitter

profile and Senator Bernie Sanders’ Twitter profile. The first data set tracked the tweet from

Trump: “Obamacare continues to fail. Humana to pull out in 2018. Will repeal, replace &

save healthcare for ALL Americans.” The second data set tracked the tweet from Trump:

“The real story here is why are there so many illegal leaks coming out of Washington?

Will these leaks be happening as I deal on N.Korea etc?” The third data set tracked the

tweet from Sanders: “Talk about cowardice. Republicans are trying to ram through Pruitt’s

confirmation before the American people find out what is in his emails.” We extract the

timestamps of each cascade and calculate α̂. The result is tabulated in Table (5.2). As

shown in the Table (5.2), the first and the second tweets from Trump have a higher α̂ value

than the third tweet from Sanders. That implies that Trump’s messages are more easily
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Tweet # of Timestamps α̂
Trump (Obamacare) 1560 3.083
Trump (Illegal Leak) 2272 2.789
Sanders (Cowardice) 1102 1.382

Table 5.2. Estimated α on real twitter data

disseminated in a very short burst of time compared to Sanders.

6 Conclusion

We have developed a flexible model structure underlying diffusion processes that

assume the infection time following the Pareto power-law. This modeling not only provides

intuitive interpretation but also brings in mathematical and computational ease. It infers

transmission rates between nodes of a network by computing a model which maximizes time

dependent pairwise transmission likelihood between all pairs of nodes. We present three

different modelings to account for different transmission rates and infection rates of each

node. Experiments on real and synthetic data show that our models accurately estimate

their transmission rates. Moreover, our model has a advantage compared to the widely used

NETRATE [77] model due to its simplicity. It usually produces a much smaller BIC than

NETRATE, which indicates our model is simpler and fits data better.
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CHAPTER 6

FUTURE WORKS

Nowadays, deep learning methods have achieved state-of-the-art accuracy on many

prediction tasks such as image classification . A deep learning model automatically learns

complex functions which map inputs to outputs. The advantage of it is it can eliminate

the necessity to use hand-crafted features or rules. One version of deep learning is called

Convolutional Neural Networks (CNNs), which capture both local and global representations

in the input samples to learn the most crucial features which help make better predictions.

CNNs have been used successfully in computer vision; natural language processing and

bioinformatics.

1 Deep Learning on Image and Bio-medical data for cancer classification

Inspired by the above mentioned success of using deep convolutional network, we

propose to train deep multi-instance networks for cancer classification and predictions using

both image data like mammogram and other high throughput biomedical data like gene

expression, methylation etc. The proposed deep architecture should have multiple convolu-

tional layers, one linear regression layer, one ranking layer, and one loss layer.

2 Deep Learning on understanding gene regulation and histone chromatin mark

Histone modifications are among the most important factors which control gene reg-

ulation in epigenetics. These chromatin marks are typically high-dimensional and highly

structured and our prime objective is to understand what the relevant factors or marks are

and how they interact and work together. I propose to use deep learning to model the

complex dependencies among input signals. I propose to use Long Short-Term Memory
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(LSTM) modules to encode the input signals and to model how various chromatin marks

work together to control the gene expression.
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