
University of Mississippi University of Mississippi

eGrove eGrove

Electronic Theses and Dissertations Graduate School

2019

Performance Evaluation of Blocking and Non-Blocking Concurrent Performance Evaluation of Blocking and Non-Blocking Concurrent

Queues on GPUs Queues on GPUs

Hossein Pourmeidani
University of Mississippi

Follow this and additional works at: https://egrove.olemiss.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Pourmeidani, Hossein, "Performance Evaluation of Blocking and Non-Blocking Concurrent Queues on
GPUs" (2019). Electronic Theses and Dissertations. 1588.
https://egrove.olemiss.edu/etd/1588

This Thesis is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for
inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information,
please contact egrove@olemiss.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by eGrove (Univ. of Mississippi)

https://core.ac.uk/display/288062417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://egrove.olemiss.edu/
https://egrove.olemiss.edu/etd
https://egrove.olemiss.edu/gradschool
https://egrove.olemiss.edu/etd?utm_source=egrove.olemiss.edu%2Fetd%2F1588&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=egrove.olemiss.edu%2Fetd%2F1588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/etd/1588?utm_source=egrove.olemiss.edu%2Fetd%2F1588&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu

PERFORMANCE EVALUATION OF BLOCKING AND NON-BLOCKING

CONCURRENT QUEUES ON GPUS

A Thesis
presented in partial fulfillment of requirements

for the degree of Masters of Science
in the Department of Computer and Information Science

The University of Mississippi

by

Hossein Pourmeidani

December 2018

Copyright Hossein Pourmeidani 2018
ALL RIGHTS RESERVED

ABSTRACT

The efficiency of concurrent data structures is crucial to the performance of multi-

threaded programs in shared-memory systems. The arbitrary execution of concurrent threads,

however, can result in an incorrect behavior of these data structures. Graphics Processing

Units (GPUs) have appeared as a powerful platform for high-performance computing. As

regular data-parallel computations are straightforward to implement on traditional CPU ar-

chitectures, it is challenging to implement them in a SIMD environment in the presence of

thousands of active threads on GPU architectures. In this thesis, we implement a concurrent

queue data structure and evaluate its performance on GPUs to understand how it behaves

in a massively-parallel GPU environment. We implement both blocking and non-blocking

approaches and compare their performance and behavior using both micro-benchmark and

real-world application. We provide a complete evaluation and analysis of our implemen-

tations on an AMD Radeon R7 GPU. Our experiment shows that non-blocking approach

outperforms blocking approach by up to 15.1 times when sufficient thread-level parallelism

is present.

ii

ACKNOWLEDGEMENTS

My first and foremost acknowledgment goes to my family. I’d like to thank my parents

who have supported me till I got here. I would like to start with my mother, my role model,

who always pursued education and hard work to the last day of her life. I thank her for

planting in me the love of learning and believing in my abilities. I would like to thank my

father for the full freedom and trust he granted me to navigate through my self-awareness

journey the way I choose. My deepest thanks goes to my sisters, brothers, and wife for the

endless support and unconditional love. I would like to thank my cousin and best friend

Mohammadreza for being my home away from home. I wouldn’t have done it without him.

I would like to express my gratitude to my research adviser, Dr. Byunghyun Jang, for

encouraging me to think independently and opening for me new doors of knowledge. I am

grateful for all the guidance, help and honest advice he has offered me during my Masters

journey. I have been fortunate to work with him and gain professional skills that are valuable

for my future career.

I am grateful to all my current lab mates David Troendle and Mason Zhao, and

previous lab members Ajay Sharma, Tuan Ta and Esraa Gad for their collaboration. I would

like to especially thank David Troendle for all the insightful discussions and the foundation

on which this thesis was built.

Last but not least, I would like to thank all the professors in the department of

computer science for all the help they are always willing to offer. Special thanks to Dr.

Conrad Cunningham and Dr. Feng Wang for the valuable discussion and the constructive

critique of my thesis.

iii

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . v

INTRODUCTION . 1

RELATED WORK AND BACKGROUND . 3

2.1 Related Work . 3

2.2 Background . 4

DESIGN AND IMPLEMENTATION . 12

3.1 Blocking Algorithm . 12

3.2 Non-blocking Algorithm . 18

EXPERIMENTAL RESULTS . 24

4.1 Experiments Setup . 24

4.2 Performance Evaluation and Analysis 24

CONCLUSION . 32

BIBLIOGRAPHY . 33

VITA . 36

iv

LIST OF FIGURES

2.1 Relaxed queue for BFS. 5
2.2 Bad interleaving: (a) Two threads want to increment the pointer (b) Two

threads updated the pointer but the result is incorrect. 6
2.3 OpenCL platform [17]. 9
2.4 GPU thread scheduler assigns each workgroup to a CU [17]. 10
2.5 Work-group, Wavefront and Work-item [17]. 11
3.1 Bad interleaving in queues: (a) Two threads want to increment the Front

pointer (b) Two threads updated the Front pointer but the result is incorrect. 13
3.2 Two threads are trying to add their values simultaneously in a blocking ap-

proach: (a) Lock is free (b) Lock is acquired by W1 (c) W1 adds its value and
update q (d) Lock is acquired by W2 (e) W2 adds its value and update q. . . 17

3.3 Two threads are trying to add their values simultaneously in a non-blocking
approach: (a) xp(W1) is consistent (b) q is updated by W1 (c) W1 adds its
value (d) xp(W2) is consistent (e) W2 adds its value. 21

3.4 Two threads are trying to delete some values simultaneously in non-blocking
approach: (a) t(W1) is consistent (b) Front is updated by W1 (c) W1 deletes
a value (d) t(W2) is consistent (e) W2 deletes a value. 22

4.1 Blocking Algorithm: (a) Add = 80%, Delete = 20% (b) Add = 50%, Delete =
50%. 26

4.2 Non-blocking Algorithm: (a) Add = 80%, Delete = 20% (b) Add = 50%,
Delete = 50%. 27

4.3 BFS Result for Road Networks: (a) Blocking (b) Non-blocking. 31

v

CHAPTER 1

INTRODUCTION

In shared-memory multiprocessors, multiple active threads run simultaneously and commu-

nicate and synchronize via data structures in shared memory. As the efficiency of these data

structures is critical to performance, designing efficient data structures for multiprocessor

machines has been extensively studied. Designing such concurrent data structures is much

more difficult than sequential ones since threads running simultaneously may interleave ar-

bitrarily and can result in an incorrect behavior. Furthermore, scalability is a challenge in

design of concurrent data structures as contentions among threads can severely undermine

scalability [14]. There exist implementations of different concurrent data structures, such as

stacks [20], queues [2, 3, 7, 15, 21] and skip-lists [19], but most of them target multi-core

CPUs.

Recently, Graphics Processing Units (GPUs) have become one of the most preferred

platforms for high-performance parallel computing. This computing model is generally re-

ferred to as General Purpose Computing on GPU (GPGPU) or GPU computing. While the

aforementioned concurrent data structures have been implemented and evaluated on many

different multi-core CPU architectures but little has been studied on GPU. With the recent

introduction of improved memory models including atomic primitives on GPUs, existing con-

current data structures for multi-core CPUs can be ported to GPUs. Regular data-parallel

computations with little or no synchronization have been efficiently implemented on the

GPUs. However, irregular workloads are known to be difficult to implement due to their

1

dynamic behavior of control flow and parallelism. Achieving scalable performance of those

workloads needs efficient concurrent data structures to use for thread synchronization and

communication. In medium-scale parallel machines with tens of active thread contexts, it

may be manageable to support synchronizations among them but with thousands of active

threads, this would cause significant performance overhead on GPUs. The appearance of

OpenCL [16] has made general purpose programming on GPUs easier but the design and

implementation of concurrent data structures still remains challenging.

In this thesis, we present the evaluation of blocking and non-blocking implementations

of concurrent queue data structure on GPUs. To the best of our knowledge, this is the first

attempt to understand their behaviors on GPUs in depth. All of our implementations are

written in OpenCL C++ programming model and rely on OpenCL’s atomic primitives such

as atomic compare-and-exchange and atomic exchange. We evaluate our implementations

using several micro-benchmarks and a real-world application. All of our evaluation are

carried out on a AMD Radeon R7 GPU.

The rest of this thesis is organized as follows. Chapter 2 presents related work and

background. Chapter 3 describes the design and implementation of the proposed blocking

and non-blocking concurrent queues. Chapter 4 shows the experimental results. Conclusions

are made in Chapter 5.

2

CHAPTER 2

RELATED WORK AND BACKGROUND

In this chapter, we review previous works on the topic of concurrent data structures (CDS),

and provide the background information required to understand this thesis.

2.1 Related Work

Concurrent queues have been studied for three decades. Most of them have targeted multi-

core CPUs, and only a few works targeted GPUs. In the section, we review several CPU-

based CDS implementations and a few GPU-based studies that we found.

The majority implementations of CDSs are Compare and Swap (CAS) based non-

blocking. Mellor-Crummey [9] proposed a concurrent queue which is blocking based on fetch-

and-store. Since enqueue and dequeue operations access both Front and Rear, enqueuers

and dequeuers interfere each other’s cache line and therefore results in limited scalability.

Min et al. [12] proposed a scalable cache-optimized queue, which is also blocking. They

entirely remove CAS failure in enqueue operation by replacing CAS with fetch-and-store

and considerably decrease cache line interference among enqueuers and dequeuers. Although

the queue shows better performance it includes a CAS retry loop in dequeue operation.

Michael and Scott [11] presented the most widely used non-blocking concurrent queue

algorithm. It updates Front, Rear, and Rear’s next by a non-blocking approach by using CAS.

If the CAS fails, the thread is repeated until it succeeds in CAS. However, beyond a rather

low concurrency level, the frequent CAS retries result in a complete loss of scalability [1],

3

[4]. Ladan-Mozes and Shavit [6] proposed a new concurrent lock-free queue with reduction

in number of CAS operations from two to one in an enqueue operation. The fewer number

of required CAS operations results in less possibility of CAS failure and better scalability.

In [13], pairs of concurrent enqueue and dequeue operations have the ability to alter values

without accessing the shared queue itself. Unfortunately, this approach is applicable to only

small queues since the enqueue operation cannot be eliminated until all former values have

been dequeued in order to preserve the correct FIFO queue semantics. Hoffman et al. [5]

decreased the possibility of CAS retries in an enqueue operation by replacing baskets of

mixed-order entities with the standard totally ordered list. Unfortunately, using a basket

in the enqueue operation causes a new overhead in the dequeue operation because linear

search among Front and Rear is needed to find the first non-dequeued node. In addition, a

contention restriction scheme between losers who failed the CAS is required. As a result, in

some architectures, the baskets queue performs worse than the Michael and Scott’s queue

[4].

Xiao and Feng introduced inter-block synchronization that synchronizes threads across

blocks on a GPU by communicating through global memory [22]. Stuart and Owens pre-

sented the implementations of barriers, mutexes, and semaphores on GPUs [18] and Michael

presented lock-free hash tables [10]. Our evaluation of the blocking and non-blocking queues

considered in this thesis is the first attempt to gain a detailed understanding of the perfor-

mance of concurrent queues on GPUs.

2.2 Background

This section surveys topics on concurrent data structures, OpenCL, and atomic operations

related to our work.

4

2.2.1 Concurrent Data Structures

Most data structures being designed are a kind of conventional sequential data structures.

In concurrent data structures, the semantics of conventional data structures are relaxed in

order to get simpler and more efficient and scalable implementations. For example, when

traversing a graph through BFS algorithm by using a concurrent queue, it might be enough

to allow each thread do the enqueue operation to add their values in the queue, and not

necessarily in the same order. As shown in Figure 2.1, threads T1, T2 and T3 can add their

elements to the queue in any orders.

1

5 6

432

7 8

N

U

L

L

T2T1

3 42

T3

N

U

L

L

T2 T1

2 43

T3

Figure 2.1. Relaxed queue for BFS.

Designing concurrent data structures for multicore systems exhibits several challenges

in terms of performance and correctness. On today’s machines, the layout of cores and

memory, the layout of data in memory, and the communication load on the different elements

of the multicore architecture all affect performance. Algorithmic improvements that seek

to enhance performance often make it more difficult to design and verify a correct data

5

T2T1

1

2

3

Array

4

5

6

Pointer

3

(a)

1

2

3

Array

4

5

6

Pointer

4

(b)

Figure 2.2. Bad interleaving: (a) Two threads want to increment the pointer (b) Two threads
updated the pointer but the result is incorrect.

structure implementation. Figure 2.2 shows an example of incorrect behavior in concurrent

data structures that is called bad interleaving. Suppose we wish to increment a pointer to

refer to the next element in a shared array. If we allow concurrent increments of the pointer

by multiple threads, this implementation behaves incorrectly. Suppose that the pointer

initially refers to the element number 3, and two threads run on different cores concurrently

want to increment the pointer as shown in Figure 2.2a. Then there is a risk that both threads

read 3 from the pointer, and therefore both store 4. As you can see in Figure 2.2b, this is

clearly incorrect because the pointer must refer to the element number 5 instead of 4 at the

end.

Based on the synchronization mechanism, concurrent data structures are categorized

into two strategies: Blocking and Non-blocking. Blocking approaches prevent bad interleav-

ings by using a mutual exclusion lock (also known as a mutex or a lock). A lock is a construct

that, at any point in time, is unowned or is owned by a single work-item. If a work-item

W1 wishes to acquire ownership of a lock that is already owned by another work-item W2,

then W1 must wait until W2 releases the ownership of the lock. While it is easy to achieve a

6

correct shared data structure this way, this simplicity comes with performance degradation

because the lock suffers from sequential bottleneck and memory contention. Sequential bot-

tleneck means that at any point in time, at most one operation is doing useful work. In order

to reduce sequential bottleneck, we need to decrease the number and length of sequentially

executed code sections that means decreasing the number of locks acquired, and decreasing

lock granularity, a measure of the number of instructions executed while holding a lock. If

the lock protecting our data structure is implemented in a single memory location, as many

simple locks are, then in order to acquire the lock, a work-item must repeatedly try to mod-

ify that location that causes memory contention. Blocking concurrent data structures needs

to be designed efficiently and correctly in order to avoid deadlocks. Also, no completion is

guaranteed in blocking approach [14].

For non-blocking approach, there are several different types of completion guarantees

that can be assured. The two well-known ones are wait-free and lock-free. Wait-free synchro-

nization ensures that all the operations finally complete after a finite number of processing

steps. Lock-free synchronization guarantees that some of the operations will complete af-

ter a finite number of processing steps. Wait-free is a stronger non-blocking guarantee of

progress than lock-free, and lock-free in turn is stronger than blocking. As stronger progress

conditions seem desirable, implementations that make weaker guarantees have generally eas-

ier design and verification. Non-blocking algorithms for several work-items need the use of

atomic primitives, such as Compare-And-Swap (CAS). The CAS operation atomically reads

from a memory location, compares the value read to a given value, and if the comparison

succeeds then swaps the old value with the new value. A non-blocking approach has many of

the same disadvantages that the blocking approach has like sequential bottleneck and mem-

ory contention for a single location. Many non-blocking algorithms may suffer from ABA

problem. The ABA problem occurs when a work-item reads a location twice and another

work-item runs between the two reads and modifies the data structure, does other work, then

modifies the data structure back, thus the first thread thinks that nothing has been modified.

7

As a scenario, suppose multiple concurrent work-items all attempt a dequeue operation that

removes the first element, located in node A, from the queue by using a CAS to redirect the

front pointer to point to a previously-second node B. The problem is that it is possible for

the queue to change completely just before a specific dequeue operation attempts its CAS,

so that by the time it does attempt it, the queue has the node A as the first node as before,

but the rest of the queue including B is in a completely different order. This CAS of the

front pointer from A to B may now succeed, but B might be anywhere in the queue and the

queue will behave incorrectly [14].

2.2.2 OpenCL

All our code is written in OpenCL C++ programming language. A detailed introduction

to OpenCL can be found in [16]. OpenCL targets a parallel computing platform for hetero-

geneous systems consisting of CPUs, GPUs, and other processors. The OpenCL platform

model includes a host connected to one or more OpenCL devices each of which is composed

of certain number of Compute Units (CUs) and further Processing Elements (PEs) as shown

in Figure 2.3. An OpenCL application begins its execution on a host and puts device com-

mands in the queue to communicate with device. The PEs in a CU run a single stream of

instructions as SIMD units. The OpenCL program is composed of two parts: a host pro-

gram that runs on the host and kernels that run on the devices. The declaration of kernel

functions must be preceded by kernel. The host program describes the context for the ker-

nels and controls their execution. When the host launches a kernel for execution, a thread

index space (called an NDRange) is configured. An instance of the kernel is mapped to each

thread (called work-item) in the NDRange. The command get global id (dim) returns the

unique global work-item ID value for dimension specified by dim. Each work-item runs the

same code but uses possibly different data. The scheduler assigns each workgroup (a group

of work-items defined by programmer) to a CU until all work-items have been executed as

shown in Figure 2.4. Workgroups are composed of work-items. AMD GPUs execute on

8

HOST

Compute Unit

Compute Device 1

Compute Unit

Compute Device N

Processing
Element

Figure 2.3. OpenCL platform [17].

wavefronts (group of work-items) while each workgroup consists of an integer number of

wavefronts as shown in Figure 2.5. Work-items in the same wavefront executed in lock-step

in a compute unit. If a conditional branch causes some of threads to diverge from the rest,

the remaining threads must wait for the divergent threads to finish. Different workgroups

must communicate with each other through global memory. The only method to implement

synchronization among arbitrary threads in a NDRange is through the atomic operations

that are running in global memory.

2.2.3 Atomic Operations on GPUs

We end this section with a short explanation on atomic operations that we use in this thesis.

We use two atomic operations offered by OpenCL, namely, atomic cmpxchg and atomic xchg,

to implement our blocking and non-blocking queues. The atomic cmpxchg function takes

three arguments, namely, a pointer p, a comparable value cmp, and a new value val. It reads

the value old at location pointed by p. If old equals cmp, it stores val at location pointed by

9

GPU DEVICE

Compute Unit 0

Processing Elements

Compute Unit 1

Processing Elements

Compute Unit N

Processing Elements

Work-Items

Work-Groups

ND-RANGE

Figure 2.4. GPU thread scheduler assigns each workgroup to a CU [17].

p; otherwise it leaves the contents of p unchanged. It always returns old. By comparing the

return value with cmp, one can check if the execution of atomic cmpxchg has successfully

stored val. An atomic cmpxchg function of a work-item W1 to pointer p may fail if some

other work-item W2 updates the contents of p with a value different from cmp of W1. The

atomic xchg function takes two arguments, namely, a pointer p and a new value val. It swaps

atomically the value old at location pointed by p with val. It always returns old.

10

WORK-GROUP

Wavefront

WORK-ITEM

Figure 2.5. Work-group, Wavefront and Work-item [17].

11

CHAPTER 3

DESIGN AND IMPLEMENTATION

In this chapter we present our blocking and non-blocking concurrent queues that are based

on linked list data structures. It is written in OpenCL and designed for executing on modern

GPUs supporting atomic compare-and-swap operations. The queue in both implementations

is created by nodes, each including two fields: next, a pointer to the next node in the queue,

and value, the data value stored in the node. Two global pointers, Front and Rear, point to

the front and rear nodes on the list that are used to locate the correct node when dequeuing

and enqueuing, respectively. Figure 3.1 shows an example of bad interleaving in concurrent

queues. Suppose we wish to increment the Front pointer to refer to the next element in a

shared queue. If we allow concurrent increments of Front pointer by multiple work-items,

this implementation behaves incorrectly. Suppose that the Front pointer initially refers to

the first element, and two threads run on different cores concurrently want to increment the

Front pointer as shown in Figure 3.1a. Then there is a risk that both threads read 0 from

the Front pointer, and therefore both store back 1. As you can see in Figure 3.1b, this is

clearly incorrect because the pointer must refer to the element number 2 instead of 1 at the

end.

3.1 Blocking Algorithm

A general way to implement a concurrent queue is to use a lock. At any point in time, a lock

is unowned or owned by a single work-item in order to guarantee mutually exclusive access to

12

N

U

L

L

W2W1

Value 1 Value 2 Value 3

Front

Value 0

0 1 2 3

(a)

N

U

L

L

Front

Value 2 Value 3Value 0 Value 1

0 1 2 3

(b)

Figure 3.1. Bad interleaving in queues: (a) Two threads want to increment the Front pointer
(b) Two threads updated the Front pointer but the result is incorrect.

a queue. If a work-item W1 wants to acquire ownership of a lock that is already is owned by

another work-item W2, then W1 must wait until W2 releases ownership of the lock. We must

be careful when using locks in GPUs because they can easily result in a SIMD Deadlock

easily. SIMD Deadlock is due to a structural conflict among work-item synchronizations

and SIMD-lockstep execution when the work-items are from the same wavefront. In this

kind of deadlock, the work-item that acquired the lock will wait at the convergence point

for the remaining work-items to join in order to proceed to execute the unlock instruction,

whereas the remaining work-items are waiting to acquire the lock before they can step to

the convergence point and this inter-waiting causes a deadlock.

We implement two functions Acquire and Release by using the two synchronization

primitives atomic cmpxchg and atomic xchg to atomically change the lock from unowned to

owned and vice versa. In the Acquire function, each work-item reads the value of lock. If

the value of lock equals 0, it means that the lock is unowned. Then, it stores 1 at location

pointed by lock and changes the lock from unowned to owned. Otherwise, it leaves the

contents of lock unchanged. In both cases, it returns the old value of lock that can be 0 or

13

1. By comparing the return value with 0, we can check whether the work-item could acquire

the lock or not. In the Release function, the work-item that acquired the lock changes the

lock from owned to unowned by atomically swapping the value of lock with 0. The following

pseudo-code shows these functions:

Acquire (*Lock) {

return atomic cmpxchg (*Lock, 0, 1) == 0;

}

Release (*Lock) {

atomic xchg (*Lock, 0);

}

We present a blocking queue by having separate locks for the Front and Rear pointers

of a linked-list-based queue. Separate locks allow enqueue and dequeue operations to run

simultaneously. In this approach, we need a dummy node in order to prevent acquiring both

Front and Rear locks when the queue is empty and therefore it avoids deadlock. Front always

points to the dummy node. We support three operations on the queue, namely, Initialize,

Enqueue and Dequeue. The Initialize function creates a queue with a dummy node. The

responsibility of Enqueue and Dequeue functions are the addition and removal of entities to

and from the rear and front positions respectively. A work-item inside Enqueue and Dequeue

tries to acquire the LockR and LockF respectively. If the work-item fails, it repeatedly tries

to acquire the lock since the lock will be released soon by the work-item that acquired the

lock. The variable q shows the index value after Rear pointer. The following pseudo-code

shows our blocking queue implementation.

14

kernel void Initialize (Q, q) {

Q [0].next = NULL;

Front = &Q[0];

Rear = &Q[0];

q = q+1;

}

kernel void Enqueue (Q, q, value) {

int idx = get global id(0);

do {

if (Acquire (&LockR)) {

Q [q].data = value [idx];

Rear->next = &Q[q];

Rear = &Q[q];

FlagR [idx] = 1;

q = q+1;

Release (&LockR);}

}while (FlagR [idx] != 1);

}

15

kernel void Dequeue (Q, pvalue) {

int idx = get global id(0);

do {

if (Acquire (&LockF)) {

if (Front->next == NULL) {

FlagF [idx] = 1;

error;}

else {

pvalue = Front->next->data;

Front = Front->next;

FlagF [idx] = 1;}

Release (&LockF);}

}while (FlagF [idx] != 1);

}

For example, Figure 3.2 shows two work-items that want to add their values to the

queue simultaneously. At the beginning, the queue has two nodes and q shows the index

value after Rear pointer (q=2). The enqueue always starts by checking that lock is free

or not. Suppose that W1 runs the atomic operation in the Acquire function before W2 in

order to acquire the lock. W1 could acquire the lock because the lock is free. At the same

time, W2 could not acquire the lock and has to wait for W1 because the lock is held by

W1. Then, W1 adds its value to the queue in a node that is identified by q, updates the q

and releases the lock as shown in Figures 3.2b and 3.2c. Now, W2 could acquire the lock by

calling the Acquire function since lock is not held by any work-items. As shown in Figures

3.2d and 3.2e, W2 first acquires the lock, adds its value in a node that is identified by q

(q=3), updates the q and releases the lock.

16

Dummy

Node

N
U

L
L

N
U

L
L

W2W1

Value 0

0 1 2 3

q = 2

(a)

Dummy

Node

N

U
L

L

W1

Value 0

W2

0 1 2 3

q = 3

(b)

Dummy

Node

N

U
L

L

Value 0 Value 1

W2

0 1 2 3

q = 3

(c)

Dummy

Node

N
U

L
L

Value 0 Value 1

W2

0 1 2 3

q = 4

(d)

Dummy

Node

N

U
L

L

Value 0 Value 1 Value 2

0 1 2 3

q = 4

(e)

Figure 3.2. Two threads are trying to add their values simultaneously in a blocking approach:
(a) Lock is free (b) Lock is acquired by W1 (c) W1 adds its value and update q (d) Lock is
acquired by W2 (e) W2 adds its value and update q.

17

3.2 Non-blocking Algorithm

In this section, we present a non-blocking queue by using only one atomic primitives in an

enqueue operation. Like our blocking algorithm, we have a dummy node at the front of queue

that guarantees both Front and Rear always point at a node on the linked list. Therefore,

preventing problems that occur when the queue is empty or contains just a single entity and

also removes contention among enqueuing and dequeuing processes even when there is just

a single entity in the queue. The variable q shows the index value of Rear pointer.

Like our blocking algorithm, the Initialize function creates a queue with a dummy

node. In the Enqueue function, our algorithm first stores the value of general variable q in a

private variable xp, then checks the consistency of xp. If the private variable xp of work-item

W2 was consistent, then W2 links the new node to the end of queue and updates the Rear

pointer. Otherwise, it means that another work-item W1 added an entity after W2 stores the

general variable q in its private variable xp and W2 needs to update its private variable xp.

The following pseudo-code shows our non-blocking enqueue implementation.

kernel void Initialize (Q) {

Q [0].next = NULL;

Front = &Q[0];

Rear = &Q[0];

}

18

kernel void Enqueue (Q, q, value) {

int idx = get global id(0);

do {

xp = q;

if (atomic cmpxchg (&q, xp, q+1) == xp) {

Q [xp+1].data = value [idx];

FlagR [idx] = 1;

Q [xp].next = &Q [xp+1];

Rear = &Q [q];}

}while (FlagR[idx] != 1);

For example, Figure 3.3 shows two work-items that want to add their values to the

queue in non-blocking approach. At the beginning, the queue has two nodes, q shows

the index value of Rear pointer (q=1) and two private variables of xp for each work-item

(xp(W1)=xp(W2)=1). The enqueue always starts by checking the consistency of xp. Suppose

that W1 runs the atomic operation before W2 in order to check the consistency of its xp.

W1 could come inside the if statement because both q and its xp are equal to 1 and updates

the value of q to 2. At the same time, W2 could not come inside the if statement because

the value of q and its xp are not equal. Then, W1 adds its value to the queue in a node that

is identified by xp(W1)+1 as shown in Figures 3.3b and 3.3c. Now, W2 needs to update its

xp. As shown in Figures 3.3d and 3.3e, W2 first updates its xp, updates the q and adds its

value in a node that is identified by xp(W2)+1.

In the Dequeue function, Front always points at the last node that was dequeued.

Like the Enqueue function, our algorithm first stores the address of general pointer Front in

a private variable t, then checks the consistency of t. If the private variable t of work-item

W2 was consistent, then W2 updates the Front pointer. Otherwise, it means that another

work-item W1 removed an entity after W2 stores the address of general pointer Front in its

19

private variable t and W2 needs to update its private variable t. The following pseudo-code

shows our non-blocking dequeue implementation.

kernel void Dequeue (Q, pvalue) {

int idx = get global id(0);

do {

t = &Front;

if (Front->next == NULL) {

FlagF [idx] = 1;

error;}

else {

pvalue = Front->next->data;

if (atomic cmpxchg (&Front, t, t+1) == t){

FlagF [idx] = 1;}

}

}while (FlagF [idx] != 1);

}

For example, Figure 3.4 shows two work-items that want to delete some values from

the queue in non-blocking approach. At the beginning, the queue has four nodes and two

private variables of t for each work-item (t(W1)=t(W2)=0). The dequeue always starts by

checking the consistency of t. Suppose that W1 run the atomic operation before W2 in

order to check the consistency of its t. W1 could come inside the if statement because both

Front and its t mention to the node with index 0 and updates the Front pointer. At the

same time, W2 could not come inside the if statement because the Front pointer and its t

are not mention to the same node. Then, W1 deletes a value from the queue as shown in

Figures 3.4b and 3.4c. Now, W2 needs to update its t. As shown in Figures 3.4d and 3.4e,

W2 first updates its t, updates the Front pointer and deletes a value from the queue.

20

Dummy

Node

N
U

L
L

N
U

L
L

W2W1

Value 0

0 1 2 3

q = 1

xp = 1 xp = 1

(a)

Dummy

Node

N

U
L

L

W1

Value 0

W2

0 1 2 3

q = 2

xp = 1

xp = 1

(b)

Dummy

Node

N

U
L

L

Value 0 Value 1

W2

0 1 2 3

q = 2

xp = 2

(c)

Dummy

Node

N
U

L
L

Value 0 Value 1

W2

0 1 2 3

q = 3

xp = 2

(d)

Dummy

Node

N

U
L

L

Value 0 Value 1 Value 2

0 1 2 3

q = 3

(e)

Figure 3.3. Two threads are trying to add their values simultaneously in a non-blocking
approach: (a) xp(W1) is consistent (b) q is updated by W1 (c) W1 adds its value (d)
xp(W2) is consistent (e) W2 adds its value.

21

Dummy

Node

N
U

L
L

W2W1

Value 0

0 1 2 3

t = 0 t = 0

Value 1 Value 2

Front

(a)

Dummy

Node

N

U
L

L

W1

W2

0 1 2 3

t = 0

t = 0Front

Value 1 Value 2

(b)

N

U
L

L

W2

0 1 2 3

t = 1Front

Dummy

Node
Value 1 Value 2

(c)

N

U

L
L

Value 2

W2

0 1 2 3

t = 1

Front

Dummy

Node

(d)

N
U

L
L

Value 2

0 1 2 3

Dummy

Node

Front

(e)

Figure 3.4. Two threads are trying to delete some values simultaneously in non-blocking
approach: (a) t(W1) is consistent (b) Front is updated by W1 (c) W1 deletes a value (d)
t(W2) is consistent (e) W2 deletes a value.

22

Our non-blocking algorithm does not suffer from ABA problem because when a work-

item reads a location twice and another work-item runs between the two reads and modifies

the data structure, does other work and been modifies the data structure back, then the first

thread observes that the data structure has been modified. Let’s consider the aforementioned

scenario. Suppose multiple concurrent work-items all attempt a dequeue operation that

removes the first element, located in node A, from the queue by using an atomic cmpxchg to

redirect the front pointer to point to a previously-second node B. It is possible for the queue

to change completely just before a specific dequeue operation attempts its atomic cmpxchg,

so that by the time it does attempt it, the queue has the node A as the first node as before,

but the rest of the queue including B is in a completely different order. This atomic cmpxchg

of the front pointer from A to B does not succeed because the private variable t and front

pointer do not match and the work-item has to update its private variable t. Therefore, the

queue will behave correctly.

23

CHAPTER 4

EXPERIMENTAL RESULTS

4.1 Experiments Setup

We test our blocking and non-blocking concurrent queue implementations on a AMD Radeon

R7 APU. The APU has 12 compute units including 8 compute units on the GPU device and

4 compute units on the CPU device. The maximum clock frequencies of the GPU and CPU

devices are 720 MHz and 3.5 GHz, respectively. The maximum work group size is 256 for

the GPU device and 1024 for the CPU device. The OpenCL C programming implements the

atomic operations on 32-bit signed and unsigned integers to locations in global and local

memory spaces.

4.2 Performance Evaluation and Analysis

We use a micro-benchmark and real-world application as a benchmarking workload.

4.2.1 Micro-benchmark

The performance of blocking and non-blocking queues for a fixed number of work-items may

depend on the combination of operations and the total number of operations. We evaluate

each approach for a number of different combination of operations. In our micro-benchmark,

we demonstrate each different operation combination as a pair [x, y], where the operation

stream has x% add and y% delete operations. For each operation combination, we change

the total number of operations from 10,000 to 100,000 in steps of 10,000. Also, we examine

24

different number of work-items per work group, 64, 128 and 256, to show the influence of

work group size on execution time.

We measure the performance of blocking and non-blocking concurrent queues on

two different types of operation combinations. One is unbiased and has 50% add and 50%

delete operations, while the other one is add-dominated and has 80% add and 20% delete

operations. The performance of each approach is measured on three different work group

sizes and ten different operation counts.

Figure 4.1 shows the performance results for our blocking concurrent queue on GPU.

Figure 4.1a shows the results for an input operation with 80% add and 20% delete operations,

while Figure 4.1b has equal combination of add and delete. Also, Figure 4.2 shows the

performance results for the non-blocking approach while Figure 4.2a and 4.2b show the

result for 80% add, 20% delete and 50% add, 50% delete combination respectively. Results

show that non-blocking implementation outperforms blocking implementation significantly

across different number of operations.

As the operation increases, more add and delete operations involve more atomic

operations. As a result, the speedup diminishes due to the overhead of atomic operations

and complicated control flow of the implementation. Nonetheless, the [80, 20] and [50, 50]

combinations still benefit a speedup of nearly 7 and 5 respectively with hundred thousand

operations as shown in Table 4.1 and 4.2. Also, we observe that work group size does not

affect the speedup much due to the sequential bottleneck problem in both blocking and non-

blocking algorithms and we cannot benefit from a bigger work group size with more thread

parallelism.

Interestingly, we see that as the percentage of add operations increases, the speedup

also increases (compare the upper panels with the lower panels in Figure 4.1 and 4.2). This is

because with more add operations, the required number of control flow for queue modification

decreases resulting relatively less number of thread divergence. This is the reason for better

performance in 80% add, 20% delete scenario. Overall, the best speedup obtained by the

25

(a)

(b)

Figure 4.1. Blocking Algorithm: (a) Add = 80%, Delete = 20% (b) Add = 50%, Delete =
50%.

26

(a)

(b)

Figure 4.2. Non-blocking Algorithm: (a) Add = 80%, Delete = 20% (b) Add = 50%, Delete
= 50%.

27

Table 4.1. Speedup for 80% Add, 20% Delete.

Number of Operations WG Size = 64 WG Size = 128 WG Size = 256

10,000 13.2 12.5 12.1
20,000 15.1 14.9 14.5
30,000 11.6 11.2 12
40,000 9.3 9.3 9.1
50,000 7.7 8.3 8.3
60,000 7.4 8.5 8.3
70,000 8.2 7.4 7.6
80,000 7.5 8.5 8.3
90,000 7.4 7.8 7.7
100,000 6.9 7.2 7.9

Table 4.2. Speedup for 50% Add, 50% Delete.

Number of Operations WG Size = 64 WG Size = 128 WG Size = 256

10,000 6.8 7.1 7.2
20,000 7.9 8.1 8.4
30,000 9.1 8.6 9.2
40,000 7.2 6.5 7.3
50,000 6 5.8 6.1
60,000 6.2 5.4 6.4
70,000 5.8 5.4 5.9
80,000 5.4 5.1 5.5
90,000 5.8 4.8 5.8
100,000 5.4 4.8 5.5

non-blocking implementation is 15.1 higher compared to the blocking implementation.

4.2.2 Breadth First Search (BFS)

Queue is used when data do not need to be processed right away, but need to be processed

in FIFO order like Breadth First Search (BFS). For a graph G = (V, E) and a root vertex s,

BFS traverses the edges of G to explore every vertex that is reachable from s. BFS proceeds

in the following steps:

• Step 1: Visit the adjacent unvisited vertex and enqueue it in a queue.

• Step 2: If no adjacent vertex remains, dequeue the first vertex from the queue.

• Step 3: Repeat Step 1 and Step 2 until the queue is empty.

28

Table 4.3. Number of nodes and edges in each road networks.

Road Network Number of Nodes Number of Edges

Pennsylvania 1,088,092 1,541,898
Texas 1,379,917 1,921,660

California 1,965,206 2,766,607

BFS is a graph algorithm that has wide applications in different fields and can benefit from

GPU acceleration. Therefore, concurrent queues play a significant role in BFS algorithm

on GPUs. In this section, we want to compare our blocking and non-blocking concurrent

queues by using BFS as an application while our evaluation is done on GPU.

4.2.2.1 Input graph data

We need a high performance system for analysis and manipulation of large networks as an

input graph data. The system must be optimized for maximum performance and compact

graph representation and easily scales to massive networks with hundreds of millions of

nodes, and billions of edges. It needs to efficiently manipulate large graphs, calculates

structural properties, generates regular and random graphs, and supports attributes on nodes

and edges. Moreover, edges and attributes in a graph or a network need to be changed

dynamically during the computation.

We use the Stanford Large Network Dataset Collection (SNAP) library that is devel-

oped as a result of some research in analysis of large social and information networks. We

measure the performance of blocking and non-blocking concurrent queues on road networks

[8] consisting of Pennsylvania, Texas and California road networks as an input graph for our

BFS. The road network indicates intersections and edges roads connecting the intersections.

Intersections and endpoints are indicated by nodes and the roads connecting these intersec-

tions or road endpoints are indicated by undirected edges. Table 4.3 shows the number of

nodes and edges of each road network.

29

4.2.2.2 Performance results

Figure 4.3a and 4.3b show the performance results for our blocking and non-blocking concur-

rent queues on GPU. Our queue does not show a considerable speedup on the non-blocking

implementation in comparison to the blocking implementation for all road networks as much

as we saw earlier in the micro-benchmark. This is because the non-blocking implementation

could show better performance than blocking just when there is sufficient data-level paral-

lelism during each addition and deletion while data-level parallelism in BFS is low. Also,

the non-blocking implementation shows the same scalability compared to the blocking one.

As mentioned earlier, work group size does not affect the speedup too much due to the

sequential bottleneck problem in blocking and non-blocking algorithms and we cannot ben-

efit from a bigger work group size with more thread parallelism. Overall, the best speedup

obtained by the non-blocking implementation is just around 1.1x compared to the blocking

implementation in our BFS algorithm.

Table 4.4. Speedup for BFS Algorithm.

Number of Operations WG Size = 64 WG Size = 128 WG Size = 256

California 1.12 1.09 1.10
Pennsylvania 1.14 1.09 1.12

Texas 1.13 1.13 1.12

30

(a)

(b)

Figure 4.3. BFS Result for Road Networks: (a) Blocking (b) Non-blocking.

31

CHAPTER 5

CONCLUSION

This study evaluates the performance of blocking and non-blocking concurrent queues on

AMD Radeon R7 GPU. Both implementations are built upon the array based linked list

implementation. The non-blocking implementation consistently shows better performance

compared to the blocking implementation for carrying out addition, deletion, and search

operations on various number of operations. Our evaluation shows that for sufficient thread-

level parallelism, the non-blocking implementation outperforms (up to 15.1) the blocking

implementation. For insufficient thread-level parallelism, a concurrent queue does not ben-

efit much from the non-blocking implementation due to the underutilization of hardware

resources. The non-blocking concurrent queues obtain higher speed up (up to 13.2) with

the presence of sufficient thread-level parallelism compared to the insufficient thread-level

parallelism.

32

BIBLIOGRAPHY

33

BIBLIOGRAPHY

[1] Panagiota Fatourou and Nikolaos D Kallimanis. Revisiting the combining synchroniza-
tion technique. In ACM SIGPLAN Notices, volume 47, pages 257–266. ACM, 2012.

[2] John Giacomoni, Tipp Moseley, and Manish Vachharajani. Fastforward for efficient
pipeline parallelism: a cache-optimized concurrent lock-free queue. In Proceedings of the
13th ACM SIGPLAN Symposium on Principles and practice of parallel programming,
pages 43–52. ACM, 2008.

[3] Anders Gidenstam, H̊akan Sundell, and Philippas Tsigas. Cache-aware lock-free queues
for multiple producers/consumers and weak memory consistency. Principles of Dis-
tributed Systems, pages 302–317, 2010.

[4] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining and the
synchronization-parallelism tradeoff. In Proceedings of the twenty-second annual ACM
symposium on Parallelism in algorithms and architectures, pages 355–364. ACM, 2010.

[5] Moshe Hoffman, Ori Shalev, and Nir Shavit. The baskets queue. Principles of Dis-
tributed Systems, pages 401–414, 2007.

[6] Edya Ladan-Mozes and Nir Shavit. An optimistic approach to lock-free fifo queues.
Distributed Computing, 20(5):323–341, 2008.

[7] Patrick PC Lee, Tian Bu, and Girish Chandranmenon. A lock-free, cache-efficient
shared ring buffer for multi-core architectures. In Proceedings of the 5th ACM/IEEE
Symposium on Architectures for Networking and Communications Systems, pages 78–
79. ACM, 2009.

[8] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. Community
structure in large networks: Natural cluster sizes and the absence of large well-defined
clusters. Internet Mathematics, 6(1):29–123, 2009.

[9] John M Mellor-Crummey. Concurrent queues: Practical fetch-and-phi algorithms. Tech-
nical report, ROCHESTER UNIV NY DEPT OF COMPUTER SCIENCE, 1987.

[10] Maged M Michael. High performance dynamic lock-free hash tables and list-based sets.
In Proceedings of the fourteenth annual ACM symposium on Parallel algorithms and
architectures, pages 73–82. ACM, 2002.

[11] Maged M Michael and Michael L Scott. Simple, fast, and practical non-blocking and
blocking concurrent queue algorithms. In Proceedings of the fifteenth annual ACM
symposium on Principles of distributed computing, pages 267–275. ACM, 1996.

34

[12] Changwoo Min, Hyung Kook Jun, Won Tae Kim, and Young Ik Eom. Scalable cache-
optimized concurrent fifo queue for multicore architectures. IEICE TRANSACTIONS
on Information and Systems, 95(12):2956–2957, 2012.

[13] Mark Moir, Daniel Nussbaum, Ori Shalev, and Nir Shavit. Using elimination to imple-
ment scalable and lock-free fifo queues. In Proceedings of the seventeenth annual ACM
symposium on Parallelism in algorithms and architectures, pages 253–262. ACM, 2005.

[14] Mark Moir and Nir Shavit. Concurrent data structures., 2004.

[15] Thomas Preud’Homme, Julien Sopena, Gael Thomas, and Bertil Folliot. Batchqueue:
Fast and memory-thrifty core to core communication. In Computer Architecture and
High Performance Computing (SBAC-PAD), 2010 22nd International Symposium on,
pages 215–222. IEEE, 2010.

[16] AMD Accelerated Parallel Processing. Software development kit (sdk). URL
http://developer. amd. com/sdks/amdappsdk.

[17] AMD OpenCL Programming. User guide 2. URL
http://developer.amd.com/wordpress/media/2013/12/AMD OpenCL Programming User Guide2.pdf.

[18] Jeff A Stuart and John D Owens. Efficient synchronization primitives for gpus. arXiv
preprint arXiv:1110.4623, 2011.

[19] H̊akan Sundell and Philippas Tsigas. Fast and lock-free concurrent priority queues for
multi-thread systems. Journal of Parallel and Distributed Computing, 65(5):609–627,
2005.

[20] R Kent Treiber. Systems programming: Coping with parallelism. International Business
Machines Incorporated, Thomas J. Watson Research Center, 1986.

[21] Philippas Tsigas and Yi Zhang. A simple, fast and scalable non-blocking concurrent
fifo queue for shared memory multiprocessor systems. In Proceedings of the thirteenth
annual ACM symposium on Parallel algorithms and architectures, pages 134–143. ACM,
2001.

[22] Shucai Xiao and Wu-chun Feng. Inter-block gpu communication via fast barrier syn-
chronization. In Parallel & Distributed Processing (IPDPS), 2010 IEEE International
Symposium on, pages 1–12. IEEE, 2010.

35

VITA

HOSSEIN POURMEIDANI

hpourmei@go.olemiss.edu

https://www.linkedin.com/in/hossein-pourmeidani-b3a701126/

• Education

∗ Master’s of Science, Computer Science, University of Mississippi, November 2018

∗ Master’s of Science, Computer Engineering, Islamic Azad University, September 2012

∗ Bachelor’s of Science, Computer Engineering, Islamic Azad University, September 2010

• Publications

Conference Papers

∗ H. Pourmeidany, Partial Way-Access Set-Associative Cache for Low Energy Consumption,

International Conference on Computer and Information Technology, 2011.

∗ M. Habibi, H. Pourmeidani, Hierarchical TCAM/TMR Defect Tolerance Technique for Nan-

odevice RAM Repairing, International Conference on Applied Electronics, 2012.

∗ H. Pourmeidani, M. Habibi, Hierarchical Defect Tolerance Technique for NRAM Repairing

with Range Matching CAM, The 21st Iranian Conference on Electrical Engineering, 2013.

∗ H. Pourmeidani, M. Habibi, A Range Matching CAM for Hierarchical Defect Tolerance

Technique in NRAM Structures, International Conference on Applied Electronics, 2013.

Journal Papers

36

∗ M. Habibi, H. Pourmeidani, A Hierarchical Defect Repair Approach for Hybrid Nano/CMOS

Memory Reliability Enhancement, Microelectronics Reliability, Vol. 54, Issue 2, pp. 475-484, 2014.

∗ H. Pourmeidani, A. Sharma, K. Choo, M. Hasan, K. Kim, M. Choi, B. Jang, Dynamic Tem-

perature Aware Scheduling for CPU-GPU 3D Multicore Processor with Regression Predictor, Journal

of Semiconductor Technology and Science, Vol. 18, No. 1, pp. 115-124, 2018.

• Teaching Experience

∗ Teaching Assisstant 08/2017 –12/2018

Courses: Computer Organization and Assembly Language and Models of Computation

∗ Instructor 08/2012 –08/2016

Course: Assembly Language, Hardware 2, Computer Programming, Graphic Laboratory, Com-

puter Networks, Computer Networks Laboratory, Visual Basic Programming

• Research Experience

∗ Research Assistant 08/2016 –08/2017

To mitigate high temperatures on CPU-GPU 3D heterogeneous processors, a novel dynamic temperature-

aware task scheduling approach for compute workloads using OpenCL framework is proposed in this

project. Our experimental results demonstrate that the proposed scheduling technique is a viable

solution to address the hotspots and heat dissipation issue of 3D stacked heterogeneous processors

under reasonable performance tradeoffs.

37

• Skills

∗ Softwares: Cadence IC Design, Pspice & Hspice, Ledit, Matlab, Simplescalar & Simwattch,

Xilinx ISE, Gem5, Flex & Bison, Multi2Sim, McPAT, HotSpot, JFLAP

∗ Languages: C/C++, OpenCL, Haskell, Python

∗ Op. Systems: Linux, Windows

• Honors

∗ Member of Iranian Microelectronics Association (IMA), 2013

∗ Member of Irans Center for Integrated Circuits (ICIC), 2011

∗ Ranked in Top 2% of Applicants for Entrance to Master of Computer Architecture, 2010

∗ Ranked in Top 15% of Applicants for Entrance to Bachelor of Computer Engineering, 2005

∗ Member of Isfahan Mathematics House, 2002

∗ Taking Part in the Second Stage of Math Olympiad for Iranian Middle School Students, 2000

38

	Performance Evaluation of Blocking and Non-Blocking Concurrent Queues on GPUs
	Recommended Citation

	tmp.1569246484.pdf.LKqDN

