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ABSTRACT 

Graphene is a two-dimensional carbon crystal that became one of the most controversial 

topics of research in the last few years. The intense interest in graphene stems from recent 

demonstrations of their potentially revolutionary electromagnetic applications – including negative 

refraction, subdiffraction imaging, and even invisibility – which have suggested a wide range of 

new devices for communications, sensing, and biomedicine. In addition, it has been shown that 

graphene is amenable to unique patterning schemes such as cutting, bending, folding, and fusion 

that are predicted to lead to interesting properties.  

A recent proposed application of graphene is in engineering the scattering properties of 

objects, which may be leveraged in applications such as radar-cross-section management and 

stealth, where it may be required to make one object look like another object or render an object 

completely invisible. We present the analytical formulation for the analysis of electromagnetic 

interaction with a finite conducting wedge covered with a cylindrically shaped nanostructured 

graphene metasurface, resulting in the scattering cancellation of the dominant scattering mode for 

all the incident and all the observation angles. Following this idea, the cylindrical graphene 

metasurface is utilized for cloaking of several concentric finite conducting wedges. In addition, a 

wedge shaped metasurface is proposed as an alternative approach for cloaking of finite wedges.  

The resolution of the conventional imaging lenses is restricted by the natural diffraction 

limit. Artificially engineered metamaterials now offer the possibility of creating a superlens that 

overcomes this restriction. We demonstrate that a wire medium (WM) slab loaded with graphene 

sheets enables the enhancement of the near field for subwavelength imaging at terahertz (THz) 
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frequencies. The analysis is based on the nonlocal homogenization model for WM with the 

additional boundary condition in the connection of wires to graphene. The principle of the 

operation of the proposed lens depends on the enhancement of evanescent waves, wherein the 

excited surface plasmons at the lower and upper graphene interfaces are coupled by an array of 

metallic wires. The resolution and the operating frequency of the subwavelength imaging device 

are mainly determined by the tunability of graphene and the structural parameters of the WM slab. 

The proposed structure has a resolution better than 𝜆/10 with the advantages of broad bandwidth, 

low sensitivity to losses, and tunability with respect to the chemical potential even if the distance 

between two graphene sheets is a significant fraction of wavelength. As a supplementary study, 

the performance of WM slab loaded with nanostructured graphene metasurfaces as a novel sub-

diffraction imaging lens is studied. It is observed that the dual nature (capacitive/inductive) of the 

nanostructured graphene metasurface can be utilized to design a dual-band lens in which the 

subwavelength imaging simultaneously at two tunable distinct frequencies is possible. The 

analytical results which are presented throughout this thesis, are validated with the full-wave 

electromagnetic simulator, CST Microwave Studio. 
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CHAPTER I 

 

1 ELECTROMAGNETIC CLOAKING OF A FINITE CONDUCTING WEDGE WITH 

A NONOSTRUCTURED GRAPHENE METASURFACE 

 

1.1 Introduction 

Recently, the phenomenon of cloaking with electromagnetic metamaterials has attracted 

considerable attention, and it has become the subject of intensive research. The cloaking in general 

is the cancellation of the scattered electromagnetic field from an arbitrarily shaped object by 

utilizing a surrounding cover which causes the total scattering suppression for all observation 

angles in the near and far field. Although obtaining invisibility and camouflaging is the most well-

known application of cloaking, this technique enables some other exciting applications, including 

non-invasive sensing [1], [2], low-noise biomedical sensing and imaging, and low interface 

communications [3]-[7]. 

In order to obtain electromagnetic cloaking, various techniques have been proposed. A 

prominent approach is transformation optics which is based on the manipulation of the 

electromagnetic wave propagation in such a way that the cloak bends the wave around the object 

[8]-[11]. This phenomenon has been realized by applying a surrounding medium with spatially 

inhomogeneous and anisotropic properties. Although this technique can theoretically cause perfect 

cloaking, the experimental fabrication is intensively sensitive to any imperfection [12], [13]. As 

an alternative approach, the plasmonic cloaking method has been proposed in [14]-[22].
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The operation mechanism of this cloak is based on the fact that the volume polarizations 

of the  proposed cloak and the object cancel out each other and the total induced dipole moment 

of the structure is equal to zero thus the corresponding system becomes invisible for all observation 

angles. 

In [23]-[29], another approach has been proposed which is based on the nonresonant 

cancellation of the dominant scattering mode of electrically small dielectric and conducting 

cylinders and spheres. In this method, unlike the aforementioned techniques which have the 

common feature of using bulk volumetric metamaterials, an ultrathin and conformal isotropic 

metasurface is utilized. The induced surface current on the metasurface radiates the anti-phase 

scattered field which cancels the scattered field from the object and leads to a significant scattering 

reduction. The metasurface has been characterized by an average surface reactance with the 

analytical expression obtained for the printed and slotted periodic arrays of some canonical 

subwavelength elements [25], [26]. The desired surface reactance to cancel the dominant scattering 

mode from the object can be obtained by adjusting the structural parameters of the metasurface.  

In order to obtain the maximum scattering cancellation for a conducting object, capacitive 

surface reactance is desired. It is shown in [30] that the periodic array of graphene nanopatches, 

unlike the uniform graphene monolayer which is intrinsically inductive, has dual 

capacitive/inductive properties in the low THz spectrum. The proper capacitive reactance of 

graphene nanopatches can be obtained by a proper selection of the gap, array periodicity, and 

Fermi energy level of graphene. In addition, graphene has unique properties such as low-loss 

surface reactance, large tunability with respect to the applied bias voltage, and mechanical 

flexibility to wrap around an arbitrary shaped object, and it has been shown in [31] that the 

nanostructured graphene metasurface can be effectively used for cloaking both dielectric and 
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metallic cylinders at low THz frequencies. 

The material proposed in this chapter concerns the analysis of electromagnetic interaction 

with finite conducting wedges covered with a nanostructured graphene metasurface, resulting in 

the scattering cancellation of the dominant scattering mode. It should be noted that the 

electromagnetic scattering from an infinite conducting wedge has been analyzed based on a variety 

of analytical and asymptotic approaches, including the uniform theory of diffraction, geometrical 

optics, and geometrical theory of diffraction [32]-[36]. On the other hand, the scattering problem 

of a finite conducting wedge has not been extensively studied [37], [38].  

Here, we propose an analytical approach to cloak a finite conducting wedge with an 

arbitrary opening angle by utilizing a cylindrically shaped nanostructured graphene metasurface. 

We employ the tunability property of graphene to obtain the appropriate surface reactance for 

cloaking the structure with various opening angles by adjusting the graphene’s chemical potential. 

Following this idea, we show that the proposed cylindrically shaped metasurface cloak can 

drastically decrease the total scattering width of several concentric finite conducting wedges. In 

addition, we propose an alternative approach to cloak a finite conducting wedge by a wedge shaped 

metasurface.  

This chapter is organized as follows: In Section 1.2, the formulation and solution of the 

scattering problem of a finite conducting wedge covered by a cylindrically shaped periodic array 

of graphene nanopatches are presented. In Section 1.3, the analytical results are accurately 

validated with full-wave simulations for a wedge with the opening angles of 𝜋 4⁄  and 3𝜋 4⁄ . In 

Section 1.4, we study the performance of the cylindrically shaped metasurface cloak for two 

concentric conducting wedges. In Section 1.5, we propose a wedge shaped metasurface cloak as 

an alternative approach for cloaking a finite conducting wedge. 
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1.2 Formulation and Solution of the Scattering Problem 

The geometry of a finite conducting wedge covered by a conformal nanostructured 

graphene metasurface is shown in Figure 1.1. Figure 1.1(a) illustrates a cross-section view of a 

finite conducting wedge with the radius 𝑅0, the opening angle 𝛼, covered by a cloak of graphene 

nanopatches with the radius 𝑅𝑐, with the space between the cloak and the conducting wedge filled 

with a dielectric of thickness 𝑅𝑐-𝑅0. The structure is considered infinite along the 𝑧-axis. Figure 

1.1(b) demonstrates a 3D view of the same structure. Here, we consider a transverse magnetic 

(TM) polarized plane wave normally incident (𝜃 = 90°) on the structure with the incident angle 

of 𝛾 with respect to the 𝑥-axis in the 𝑥-𝑦 plane. The time dependence of the form 𝑒𝑗𝜔𝑡 is assumed 

and suppressed. 

In order to solve the scattering problem, the total space is divided into three regions as 

shown in Figure 1.1(a). In these regions, the electric fields are expressed in terms of the series 

expansion of Bessel and Hankel functions in the cylindrical coordinates as follows: 

Region I (0 ≤ 𝑅 ≤ 𝑅0 , −𝛼 <  𝜙 <  +𝛼), 

𝐸𝑧
𝐼 = ∑𝐴𝑣𝑖

∞

𝑖=0

𝐽𝑣𝑖
(𝛽1𝑅) cos(𝑣𝑖𝜙) + ∑𝐵𝜏𝑖

∞

𝑖=1

𝐽𝜏𝑖
(𝛽1𝑅) sin(𝜏𝑖𝜙)                  (1.1) 

where 𝛽1 = 𝛽0√𝜀1 is the wave number in region I, 𝛽0 = 𝜔 𝑐⁄  is the free space wave number, 𝜔 is 

the angular frequency, 𝑐 is the speed of light in vacuum, 𝐽𝑣𝑖,𝜏𝑖
(. ) are the Bessel functions of the 

first kind, and 𝑣𝑖 =
(2𝑖+1)𝜋

2𝛼
 and 𝜏𝑖 =

𝑖𝜋

𝛼
 are the eigenvalues obtained subject to the boundary 

condition for the tangential electric field at 𝜙 = ±𝛼 [37]. 

Region II (𝑅0 ≤ 𝑅 ≤ 𝑅𝑐 , −𝜋 <  𝜙 <  +𝜋), 

           𝐸𝑧
𝐼𝐼 = ∑[𝑎𝑛

∞

𝑛=0

𝐽𝑛(𝛽2𝑅) + 𝑏𝑛𝑌𝑛(𝛽2𝑅)] cos(𝑛𝜙) 



5 

 

                + ∑[𝑐𝑛

∞

𝑛=1

𝐽𝑛(𝛽2𝑅) + 𝑑𝑛𝑌𝑛(𝛽2𝑅)] sin(𝑛𝜙).                              (1.2) 

Region III (𝑅𝑐 ≤ 𝑅 ≤ ∞ , −𝜋 <  𝜙 <  +𝜋), 

𝐸𝑧
inc = ∑ 𝐴𝑛

inc

∞

𝑛=0

𝐽𝑛(𝛽0𝑅) cos(𝑛𝜙) + ∑ 𝐵𝑛
inc

∞

𝑛=1

𝐽𝑛(𝛽0𝑅)sin (𝑛𝜙) 

𝐸𝑧
scat = ∑ 𝐴𝑛

scat

∞

𝑛=0

𝐻𝑛
(2)(𝛽0𝑅) cos(𝑛𝜙) + ∑ 𝐵𝑛

scat

∞

𝑛=1

𝐻𝑛
(2)(𝛽0𝑅)sin (𝑛𝜙) 

𝐸𝑧
𝐼𝐼𝐼 = 𝐸𝑧

scat + 𝐸𝑧
inc                                                           (1.3) 

where 𝛽2 = 𝛽0√𝜀2 is the wave number in region II, 𝐽𝑛(. ) and 𝑌𝑛(. ) are the Bessel functions of the 

first and second kind, respectively, 𝐻𝑛
(2)

(. ) are the Hankel functions of the second kind, 𝐴𝑛
inc =

𝐸0(2 𝜉𝑛⁄ )𝑗𝑛cos(𝑛𝛾) and 𝐵𝑛
inc = 2𝐸0𝑗

𝑛sin(𝑛𝛾) are the amplitude coefficients of the incident field, 

𝜉𝑛 = 2 for 𝑛 = 0, and 𝜉𝑛 = 1 for  𝑛 ≠ 0. In (1.1)-(1.3), 𝐴𝑣𝑖
, 𝐵𝜏𝑖

, 𝑎𝑛, 𝑏𝑛, 𝑐𝑛, 𝑑𝑛, 𝐴𝑛
scat, and 𝐵𝑛

scat 

are the unknown amplitude coefficients, which can be characterized into two independent systems: 

𝐵𝑛
scat, 𝑐𝑛, 𝑑𝑛, 𝐵𝜏𝑖

 and 𝐴𝑛
scat, 𝑎𝑛, 𝑏𝑛, 𝐴𝑣𝑖

. Each system of unknown coefficients can be solved 

independently by enforcing the following boundary conditions. 

 

Figure 1.1. Geometry of the finite conducting wedge coated by the graphene-nanopatch 

metasurface: (a) cross-section view and (b) three-dimensional (3D) view.
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First, two-sided impedance boundary conditions should be applied on the surface of the 

metasurface cloak at 𝑅 = 𝑅𝑐, such that the tangential electric and magnetic fields can be related 

via the sheet impedance as follows: 

𝐸𝑧
scat + 𝐸𝑧

inc = 𝐸𝑧
𝐼𝐼                                                           (1.4) 

𝑍𝑠(𝐻𝜙
scat + 𝐻𝜙

inc − 𝐻𝜙
𝐼𝐼) = 𝐸𝑧

𝐼𝐼                                               (1.5) 

where 𝐻𝜙
scat, 𝐻𝜙

inc, and 𝐻𝜙
𝐼𝐼  are the corresponding magnetic field components obtained from the 

Maxwell’s equations. 𝑍𝑠 is the surface impedance of the graphene-nanopatch metasurface covering 

the wedge and given by [30], [31]: 

𝑍𝑠 = 𝑅𝑠 + 𝑗𝑋𝑠 =
𝐷

𝜎𝑠(𝐷−𝑔)
− 𝑗

𝜋

2𝜔𝜀0(
𝜀2+1

2
)𝐷 ln[csc(

𝜋𝑔

2𝐷
)]
 .                          (1.6)  

In (1.6), 𝑅𝑠 is the surface resistance per unit cell related to the conduction losses, 𝑋𝑠 is the 

surface reactance per unit cell,  𝐷 is the periodicity, 𝑔 is the gap size, 𝜀2 is the permittivity of the 

dielectric layer, and 𝜎𝑠 is graphene’s complex surface conductivity which is modeled with the 

Kubo formula using closed-form expressions for the interband (𝜎inter) and intraband (𝜎intra) 

contributions with the analytical expressions obtained in [39]: 

𝜎intra = −𝑗
𝑘𝐵𝑒2𝑇

𝜋ℏ2(𝜔 − 𝑗2𝛤)
(

𝜇𝑐

𝑇𝑘𝐵
+ 2 ln (𝑒

− 
𝜇𝑐

𝑇𝑘𝐵 + 1)) 

𝜎inter =
𝑗𝑒2

4𝜋ℏ
ln (

2|𝜇𝑐| − (𝜔 + 𝑗𝜏−1)ℏ

2|𝜇𝑐| + (𝜔 + 𝑗𝜏−1)ℏ
)                                              

𝜎𝑠 = 𝜎intra + 𝜎inter  .                                                      (1.7) 

In (1.7), ℏ is the reduced Plank’s constant, e is the electron charge, 𝑘𝐵 is Boltzmann’s 

constant, 𝜏 is the relaxation time, T is the temperature, 𝛤 is a phenomenological scattering rate, 

and 𝜇𝑐 is the chemical potential. It should be noted that 𝜎intra dominates 𝜎inter at low THz 

frequencies. In [40], it has been shown that different factors such as substrate type, edge-related 



7 

 

effect, frequency, and incident wave polarization have influences on the value of the momentum 

relaxation time of graphene nanostructures when ℏ𝜔 > 0.2 eV and the dimensions are small. 

However, here, in our designs, the operating frequency is 𝑓0 = 3 THz and leads to ℏ𝜔 = 12.4 

meV, which is much smaller than the optical phonon threshold ℏ𝜔 = 0.2 eV. In this regard, we 

have considered a constant relaxation time in our designs, which is consistent with the measured 

results in [41]-[45]. 

In addition, the tangential components of the electric and magnetic fields should be 

continuous on the surface of the wedge and on the dielectric interface at 𝑅 = 𝑅0, 

𝐸𝑧
𝐼𝐼 = {

𝐸𝑧
𝐼                                    − 𝛼 ≤ 𝜙 ≤ 𝛼

        0                − 𝜋 ≤ 𝜙 ≤ −𝛼 ,  𝛼 ≤ 𝜙 ≤ 𝜋   
                            (1.8) 

𝐻𝜙
𝐼𝐼 = 𝐻𝜙

𝐼           − 𝛼 ≤ 𝜙 ≤ 𝛼  .                                              (1.9) 

The analytical approach details to calculate the unknown scattering coefficients (𝐴𝑛
scat and 

𝐵𝑛
scat) are provided in the Appendix. The scattering problem can be similarly solved for the 

transverse electric (TE) polarized plane wave. It is also worth noting that the first TM harmonic is 

the dominant scattering mode of the scattering from a finite conducting wedge and leads to a large 

total scattering cross-section in comparison to the TE-polarized excitation. Hence, we have 

focused our designs and calculations on a TM-polarized plane-wave excitation. 

To illustrate the efficiency of the proposed structure in the reduction of scattering from a finite 

conducting wedge, we utilize the total scattering width (𝑊total) as a quantitative criterion to 

describe the overall visibility of an object at the operation frequency. The scattering coefficients 

are related to the total scattering cross-section through the formula (normalized with respect to the 

wavelength) [37]: 

𝑊total

𝜆0
=

1

𝜋
{∑|𝐴𝑛

scat|2
∞

𝑛=0

𝜉𝑛 + ∑|𝐵𝑛
scat|2

∞

𝑛=1

}.                                    (1.10) 
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Due to the non-symmetrical geometry of the finite conducting wedge, it is important to 

study the behavior of scattering for different observation angles. Therefore, the bi-static scattering 

cross-section (normalized with respect to the wavelength) is calculated by [37] 

𝑊bistatic

𝜆0
=

2

𝜋
|∑𝐴𝑛

scat

∞

𝑛=0

𝑒
𝑗𝑛𝜋
2 cos(𝑛𝜙) + ∑ 𝐵𝑛

scat𝑒
𝑗𝑛𝜋
2 sin(𝑛𝜙)

∞

𝑛=1

|

2

                 (1.11) 

where 𝜙 is the observation angle. The ultimate goal is the suppression of the total scattering width 

for all the incident angles and obtaining all-angle invisibility independently of the position of 

observer. 

 

1.3 Results and Discussions 

Here, we investigate the total scattering width of a finite conducting wedge with the radius 

𝜆0 20⁄  and the opening angle 𝛼 = 𝜋 4⁄ , covered by a nanostructured graphene metasurface with 

𝑅𝑐 = 1.5𝑅0 as shown in Figure 1.1(a). We consider a dielectric with the relative permittivity 𝜀2 =

4 (i.e., silicon dioxide, SiO2 or boron nitride, BN) between the cloak and the conducting wedge to 

avoid an electric short. By a careful study on the scattering properties of a finite conducting wedge 

with an ideal mantle cloak, it was observed that a cloak with capacitive behavior can significantly 

decrease the total scattering width. For the aforementioned structural parameters, the optimum 

capacitive reactance to obtain the maximum scattering cancellation for all incident angles (𝛾) is 

𝑋𝑠 = −100 Ω. This required surface reactance can be realized by choosing the parameters of the 

designed nanopatches as 𝐷 =  4.62 µm, 𝑔 =  0.5 µm, and 𝜇𝑐 =  0.5 eV. It should be noted that 

since the geometry of this problem is non-symmetric, the total scattering width should be examined 

for all angles of incidence and the appropriate surface impedance should be chosen in such a way 

that the maximum scattering cancellation occurs for all incident angles. In all the calculations, we 
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assume that the operating frequency is 𝑓0 = 3 THz and the temperature is 300°K. 

Figure 1.2 shows the total scattering cross-section of the structure for both uncloaked and 

cloaked cases with the momentum relaxation time varied from 𝜏 =  1.5 ps to 𝜏 =  0.5 ps for the 

incident angle of 𝛾 = 0. It can be clearly seen that even for a relatively short relaxation time of 

𝜏 =  0.5 ps that corresponds to higher losses, the cloaking leads to nearly 5 dB scattering 

suppression, which shows the robustness of the cloaking performance against the effect of losses. 

Also, for the case of 𝜏 =  1.5 ps, the analytical results are validated with CST Microwave Studio 

[46], showing a good agreement. In Figure 1.3, the solid blue line shows the analytically calculated 

total scattering width for the cloaked structure with the relaxation time 𝜏 =  1.5 ps for 𝛾 = 𝜋 2⁄ . 

The solid brown line represents the total scattering width of an uncloaked finite conducting wedge. 

A significant reduction in the total scattering width of the finite conducting wedge is achieved in 

comparison to the case without the cloak (approximately 6 dB). The results for other incident 

angles are omitted here for the sake of brevity.  

 

Figure 1.2.  Analytical and full-wave simulation results for the total scattering width of cloaked 

and uncloaked finite conducting wedge with the opening angle 𝛼 = 𝜋/4 and 𝛾 = 0 for different 

values of momentum relaxation time.
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Figure 1.3. Comparison of analytical and full-wave results for the variation of the total scattering 

width of the finite conducting wedge with and without the metasurface cloak versus frequency for 

𝛼 = 𝜋/4 and 𝛾 = 𝜋/2. 

In order to illustrate the effect of cloaking, a plane wave with the electric field parallel to 

the 𝑧-axis is illuminated on the structure at the design frequency 𝑓0 = 3 THz. Figures 1.4(a) and 

1.4(b) show the vector power flow distribution in the 𝜙-plane for the uncloaked and cloaked finite 

conducting wedge for the incident angle of 𝛾 = 0. In the presence of the metasurface cloak, most 

of the energy is drifted around the wedge without remarkable perturbation. However, for the case 

of no cloak, it is clear that the power distribution is highly perturbed by the object. Figure 1.5 

presents a time snapshot of the corresponding electric field distribution in the 𝑥-𝑦 plane for all the 

three cases, including the cloaked finite conducting wedge by a cylindrically shaped 

nanostructured graphene metasurface [Figure 1.5(c)], the uncloaked conducting wedge surrounded 

by a cylindrically shaped dielectric cover [Figure 1.5(b)], and the isolated finite conducting wedge 

[Figure 1.5(a)] for the incident angles 𝛾 = 𝜋 2⁄ . It is apparent that the wavefronts of electric field 

can be restored in the near and far-field regions of the isolated conducting wedge by covering the 

structure with a graphene-nanopatch metasurface. This means that the capacitive mantle cloak 
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enables to suppress the scattering from the wedge drastically. The other cases, unlike the cloaked 

case, strongly disturb the impinging wave in all directions. These results are consistent with the 

scattering minima shown in Figures 1.2 and 1.3. The results are shown on the same scale for a fair 

comparison. 

 

Figure 1.4. Full-wave numerical results for the vector power flow distributions in the 𝜙-plane: (a) 

isolated and (b) cloaked finite conducting wedge for 𝛼 = 𝜋/4 and 𝛾 = 0.

 

 

Figure 1.5. Full-wave numerical results for the electric field distribution in the 𝑥-𝑦 plane for TM 

polarization: (a) isolated, (b) coated by dielectric, and (c) cloaked finite conducting wedge for 𝛼 =

𝜋/4 and 𝛾 = 𝜋/2. 

The normalized bi-static scattering cross-section is another criterion which can describe 

the scattering behavior of an object for different incident angles and observation points. Here, we 

studied the normalized bi-static scattering cross-section of the cloaked and uncloaked finite 

conducting wedge with the opening angle, 𝛼 = 𝜋 4⁄ , for different incident angles. In Figure 1.6(a), 

the solid lines represent the cloaked conducting wedge and the dashed lines show the uncloaked 

conducting wedge for 𝛾 = 0,  𝜋 4⁄ , and 𝜋 2⁄ . Figure 1.6(b) shows the scattering reduction 
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(𝑊bistatic,uncloaked − 𝑊bistatic,cloaked) versus observation angle confirming that the scattering 

width is suppressed effectively for all the observation points. 

 

Figure 1.6. (a) Normalized bi-static scattering cross-section of cloaked and uncloaked finite 

conducting wedge with the opening angle 𝛼 = 𝜋/4 and (b) the scattering reduction, for different 

values of incident angle 𝛾 = 0, 𝜋/4, and 𝜋/2. 

 We now consider a finite conducting wedge with the radius 𝜆0 20⁄  and the opening angle 

𝛼 = 3𝜋 4⁄ , surrounded by graphene nanopatches with 𝑅𝑐 = 1.5𝑅0. The dielectric spacer has the 

relative permittivity 𝜀2 = 4 and the design frequency is chosen to be 𝑓0 = 3 THz. It is observed 

that the appropriate value of the surface reactance which leads to the minimum SW for all incident 

angles at the operating frequency is 𝑋𝑠 = −280 Ω. In order to achieve this required surface 

reactance, the parameters of the optimized cloak are obtained from (1.6) as 𝐷 =  4.62 µm, 𝑔 =

 0.5 µm, 𝜏 = 1.5 ps, and 𝜇𝑐 =  1 eV. Here, we employ the tunability property of graphene and the 

required surface reactance has been obtained only by adjusting the graphene’s chemical potential. 

The other physical parameters of the metasurface cloak are kept the same. 

Figure 1.7 represents the total scattering width (normalized with respect to the wavelength) 

for the corresponding conducting wedge with and without the proposed graphene metasurface. The 
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solid brown line represents the analytically calculated total scattering width of the isolated finite 

conducting wedge and the solid blue line shows the analytical result which is related to the total 

scattering width of the cloaked structure with the incident angle 𝛾 = 0. As shown in Figure 1.7, 

the analytical results are validated with CST Microwave Studio, showing good agreement. Figure 

1.8 demonstrates the total scattering width of cloaked and uncloaked conducting wedge with the 

same structural parameters for 𝛾 = 𝜋 2⁄ . It should be noted that the total scattering reduction 

depends on the incident angle. The scattering reduction for the incident angle 𝛾 = 0 is around 4 

dB and it is approximately 7 dB for 𝛾 = 𝜋 2⁄  [as shown in Figures 1.7 and 1.8]. 

 

Figure 1.7. Comparison of analytical and full-wave results for the variation of the total scattering 

width of finite conducting wedge with and without the metasurface cloak versus frequency for 𝛼 =

3𝜋/4 and 𝛾 = 0.
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Figure 1.8. Comparison of analytical and full-wave results for the variation of the total scattering 

width of finite conducting wedge with and without the metasurface cloak versus frequency for 𝛼 =

3𝜋/4 and 𝛾 = 𝜋/2. 

Figure 1.9 shows the amplitude of the electric field distributions in the 𝑥-𝑦 plane. In Figure 

1.9(c), the field distribution of the cloaked conducting wedge is shown at the design frequency at 

which the minimum scattering is achieved. The suppression of the scattered field leads to a uniform 

and unperturbed planar E-field wave in the near and far-field regions of the structure. Figures 

1.9(b) and 1.9(a) correspond to the finite conducting wedge which is covered by a cylindrically 

shaped dielectric and uncloaked conducting wedge without dielectric, respectively, for the incident 

angle of 𝛾 = 0. It is shown that these structures scatter the illuminated wave and cause a large 

perturbation of the field distribution near the structure. Figure 1.10 demonstrates the electric field 

distribution of the same structure at 𝛾 = 𝜋 2⁄ . In order to have a fair comparison, the same color 

scale is used. 
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Figure 1.9. Full-wave numerical results for the electric field distribution in the 𝑥-𝑦 plane for TM 

polarization: (a) isolated, (b) coated by dielectric, and (c) cloaked finite conducting wedge for 𝛼 =

3𝜋/4 and 𝛾 = 0. 

 

Figure 1.10. Full-wave numerical results for the electric field distribution in the 𝑥-𝑦 plane for TM 

polarization: (a) isolated, (b) coated by dielectric, and (c) cloaked finite conducting wedge for 𝛼 =

3𝜋/4 and 𝛾 = 𝜋/2. 

Although the total scattering width can provide useful information about the general 

suppression of the scattered field from an arbitrary object, the ideal cloak can be realized only 

when the scattering reduction is obtained for all the incident and observation angles. Hence, the 

bi-static scattering cross-section is calculated to measure the strength of the scattering reduction 

for all observation points. Figure 1.11(a) represents the normalized bi-static scattering cross-

section of the cloaked and uncloaked finite conducting wedge with the opening angle of 𝛼 = 3𝜋 4⁄  

for three different incident angles of 𝛾 = 0,  𝜋 4⁄ , and 𝜋 2⁄ . The solid lines present the bi-static 

scattering cross-section of the cloaked conducting wedge and the dashed lines show the bi-static 

scattering cross-section of the uncloaked conducting wedge. A remarkable scattering reduction 
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(𝑊bistatic,uncloaked − 𝑊bistatic,cloaked) for almost all the observation points is achieved as shown 

in Figure 1.11(b). 

As a supplementary study, the total scattering behavior of the structure has been studied 

for different opening angles and different incident angles. Table 1.1 presents the normalized 

scattering width of the uncloaked conducting wedge for various values of 𝛼 and 𝛾. Table 1.2 shows 

the scattering width of the cloaked finite conducting wedge and the proper capacitive reactance in 

order to obtain the cloak for different opening angles of wedge and different incident angles.  The 

structural parameters to realize the appropriate reactance can be obtained by applying (1.6). Due 

to the tunability property of graphene with respect to the chemical potential, it is possible to keep 

the physical parameters (periodicity and gap) the same and obtain different required reactances by 

changing the chemical potential. Tables 1.1 and 1.2 imply a significant decrease in the total 

scattering width. In addition, these results confirm that the cloak is robust for all the angles of 

incidence. 

 

Figure 1.11. (a) Normalized bi-static scattering cross-section of cloaked and uncloaked finite 

conducting wedge with the opening angle 𝛼 = 3𝜋/4 and (b) scattering reduction, for different 

values of the incident angle 𝛾 = 0, 𝜋/4, and 𝜋/2.
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Table 1.1. Total scattering width for different opening and incident angles for the uncloaked 

conducting wedge with R0 =λ0 /20. 

 γ =0, π γ=π/4, 3π/4 γ =π/2 

α=π/10 -4.0453 -4.0514 -4.0575 

α=π/4 -4.1851 -4.2160 -4.2471 

α=π/2 -4.7509 -4.8112 -4.8716 

α=3π/4 -5.8544 -5.8719 -5.8894 

α=π -7.8750 -7.8496 -7.8242 

Table 1.2. Total scattering width for different opening and incident angles for the cloaked wedge 

with R0 =λ0 /20, Rc =1.5R0, and ε2 = 4. 

 𝑿𝒔(Ω) γ =0, π γ=π/4, 3π/4 γ =π/2 

α=π/10 -80 -10.849 -10.8064 -10.4649 

α=π/4 -100 -11.73 -12.01 -10.69 

α=π/2 -180 -8.6946 -9.8304 -10.5063 

α=3π/4 -280 -10.02 -11.3161 -12.6751 

α=π -450 -15.761 -16.8571 -17.9372 

 

1.4 Concentric Finite Conducting Wedges 

In Section 1.3, we have demonstrated that it is possible to cloak an isolated finite 

conducting wedge by covering it with a cylindrically shaped metasurface cloak. Here, we study 

the possibility of obtaining the cloak for multiple concentric conducting wedges by utilizing the 

same proposed cylindrically shaped metasurface cloak. This structure is of particular interest due 
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to its complexity. Although there is an electromagnetic coupling among the objects, we predict 

that the proposed cloak can decrease drastically the total scattering width of the structure. In the 

following, we utilize full-wave electromagnetic simulations by the commercial software CST 

Microwave Studio to investigate the validity of this claim. The combination of two concentric 

finite conducting wedges is assumed as shown in Figure 1.12. The structure is considered infinite 

along the 𝑧-axis. The radius of each conducting wedge is 𝜆0 20⁄ , the structure is covered by a 

metasurface cloak with 𝑅𝑐 = 1.5𝑅0, and the dielectric spacer between cloak and structure has the 

relative permittivity 𝜀2 = 4. The system is illuminated by a TM polarized plane wave normally 

incident (𝜃 = 90°) on the structure with the incident angle of 𝛾 with respect to the 𝑥-axis in the 

𝑥-𝑦 plane.  

 

Figure 1.12. Geometry of two concentric finite conducting wedges with the structural parameters: 

R0 =λ0 /20, Rc =1.5R0, and 𝛼 = 3𝜋/4, surrounded by graphene-nanopatch metasurface: (a) cross-

section view and (b) 3D view.  

Figure 1.13 shows the total radar cross-section (RCS) as a function of frequency from 𝑓 =

 2 THz to 𝑓 = 4 THz.  In Figure 1.13, the solid brown line shows the numerically calculated RCS 

for the cloaked structure, when the structural parameters for the metasurface cloak are chosen the 

same as the physical parameters in the Section 1.3 for cloaking an isolated conducting wedge with 

the opening angle 𝛼 = 3𝜋 4⁄  and incident angle 𝛾 = 0. It is observed that the minimum scattering 
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occurs at a frequency higher than the operating frequency (𝑓0 = 3 THz). This means that the 

appropriate reactance to obtain cloaking at the operating frequency is changed due to the presence 

of the other finite conducting wedge. As a result, the design of the cover should be modified. A 

parametric study leads to the numerical optimization of the parameters of the metasurface cloak 

which is applied to shift the minimum scattering to 𝑓0 = 3 THz. Our study illustrates that the 

proper reactance to cloak this structure for all the incident angles is 𝑋𝑠 = −79 Ω, which can be 

realized by choosing the parameters of the metasurface as 𝐷 =  4.28 µm, 𝑔 =  0.35 µm, 𝜏 =  1.5 

ps, and 𝜇𝑐 =  0.5 eV. The solid blue line shows the numerically calculated RCS for the optimized 

cloak for the incident angle 𝛾 = 0. 

 

Figure 1.13. Full-wave results for variation of the total RCS versus frequency. The brown solid 

line is related to the non-optimized cloak of two concentric finite conducting wedge and the blue 

line corresponds to the optimized cloak. 

In order to provide further clarification, the total RCS of the structure without cloak (dash-

dotted line) and the uncloaked in the presence of the dielectric spacer (dashed line) are plotted in 

Figure 1.14 for the incident angle of 𝛾 = 0. Covering the structure with a dielectric layer increases 

the scattering cross-section due to the fact that the larger objects generally have more significant 
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dominant scattering coefficients which lead to a larger scattering cross-section. It is surprising to 

see how the metasurface cloak causes the drastic reduction of the scattering from the entire object. 

The results for other incident angles are omitted here for the sake of brevity. 

 

Figure 1.14. Full-wave results for the variation of the total RCS of isolated, covered by dielectric, 

and cloaked two concentric finite conducting wedge versus frequency for 𝛼 = 3𝜋/4 and 𝛾 = 0. 

To further show the effect of cloaking, Figure 1.15 presents the vector power flow 

distribution for the uncloaked [Figure 1.15(a)] and cloaked two concentric finite conducting 

wedges [Figure 1.15(b)] for the incident angle of 𝛾 = 0 at the operating frequency 𝑓0 = 3 THz. 

Unlike the uncloaked case, wherein the power distribution is highly perturbed by the object, in the 

cloaked case, a uniform distribution has been obtained indicating that the object is hidden from the 

incoming wave. Figure 1.16 represents the total electric field distributions in the 𝑥-𝑦 plane. The 

structure is excited by a plane wave with the incident angle of 𝛾 = 𝜋 2⁄ . Figure 1.16(c) shows how 

the mantle cloak effectively reduces the scattering from the structure in such a way that a uniform 

field is observed outside the cover. It makes the object hardly detectable for an external observer. 

In the absence of the mantle cloak, the illuminated plane wave induces a strong scattering from 

the structure, as shown in Figures 1.16(a) and 1.16(b). The same color scale is considered for fair 
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comparison. 

 

Figure 1.15. Full-wave numerical results for the vector power flow distributions in the 𝜙-plane: 

(a) isolated and (b) cloaked two concentric finite conducting wedges for 𝛼 = 3𝜋/4 and 𝛾 = 0. 

 

Figure 1.16. Full-wave numerical results for the electric field distribution in the 𝑥-𝑦 plane for TM 

polarization: (a) isolated, (b) coated by dielectric, and (c) cloaked two concentric finite conducting 

wedges for 𝛼 = 3𝜋/4 and 𝛾 = 𝜋/2. 

Figure 1.17 demonstrates the far-field radiation patterns of the cloaked and uncloaked two 

concentric finite conducting wedges for the three cases: 𝛾 = 0, 𝜋 4⁄ , and 𝜋 2⁄ . It can be clearly 

seen that the significant scattering suppression occurs for all the incident angles and all the 

observation points by comparing the cloaked and uncloaked cases (deducting the bi-static 

scattering cross-section of the cloaked case from that of the uncloaked case) as shown in Figure 

1.17(d). It should be noted that by increasing the angle of incidence, the cloaking efficiency 

decreases and the worst case is observed at the incident angle of 𝛾 = 𝜋 2⁄ . Even in this case, the 

presence of the cloak causes a significant scattering reduction. 
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Figure 1.17. Normalized bi-static scattering cross-section of cloaked and uncloaked two concentric 

finite conducting wedges with the opening angle 𝛼 = 3𝜋/4 for the different values of incident 

angle: (a) 𝛾 = 0, (b) 𝛾 = 𝜋/4, and (c) 𝛾 = 𝜋/2. (d) Scattering reduction for the same incident 

angles.  

 

1.5 Wedge Shaped Cloak 

By a careful study of the proposed cylindrically shaped cloak, it reveals that it could not 

efficiently cloak the conducting wedge with a radius larger than 𝜆 20⁄ . In addition, the volume 

occupied by the mantle cloak is large. Here, we propose an alternative approach in order to obtain 

the maximum scattering reduction for a finite conducting wedge by utilizing a wedge shaped cloak. 
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As shown in Figure 1.18, we consider a finite conducting wedge with the radius 𝜆0 10⁄ , the 

opening angle 𝛼 = 3𝜋 4⁄ , and a TM plane wave normally incident (𝜃 = 90°) on the structure with 

the incident angle of 𝛾 with respect to the 𝑥-axis in the  𝑥-𝑦 plane at the operating frequency 𝑓0 =

3 THz. The structure is considered infinite along the z-axis. It should be noted that the thickness 

of the dielectric spacer should be chosen to restore the illuminated electric field wavefronts in the 

near and far-field regions. By applying a numerical optimization based on a parametric study, the 

appropriate thickness for the spacer is 𝑑 = 0.3𝑅0 with the relative permittivity 𝜀𝑟 = 4. For these 

structural parameters, the proper capacitive reactance to achieve the minimum scattering width for 

all the incident angles is 𝑋𝑠 = −56.54 Ω. The proper structural parameters of the nanostructured 

graphene metasurface can be obtained by (1.6) as following: 𝐷 =  4.8683 µm, 𝑔 =  0.475 µm, 

𝜏 =  1.5 ps, and 𝜇𝑐 =  0.5 eV. 

 

Figure 1.18. Geometry of the finite conducting wedge with the structural parameters: R0 =λ0 /10, 

𝑑=0.3R0, and 𝛼 = 3𝜋/4, surrounded by a wedge shaped graphene-nanopatch metasurface: (a) 

cross-section view and (b) 3D view. 

A full-wave electromagnetic simulation is implemented by the commercial software CST 

Microwave Studio to study the scattering behavior of the cloaked and uncloaked wedge. In Figure 

1.19, the solid blue line presents the numerically calculated RCS for the cloaked structure at the 

incident angle 𝛾 = 0, the dash-dotted line shows the RCS of the isolated structure without the 
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cloak and the scattering behavior of the uncloaked structure in the presence of the dielectric layer 

is depicted by the dashed line in Figure 1.19. The result confirms that a dramatic reduction of 

scattering is achieved around the operating frequency for the incident angle of 𝛾 = 0. Figure 1.19 

indicates an important point that when we cover an isolated finite conducting wedge with a 

dielectric layer due to the increasing of its size, more significant scattering coefficients appear 

which cause a larger scattering cross-section. We underline here that due to the complexity of the 

geometry, no analytical method has been proposed to solve the scattering problem. Therefore, the 

design and optimization of the cloak is done numerically with CST Microwave Studio. The results 

for other incident angles are omitted here for the sake of brevity. 

In order to provide further illustration, Figures 1.20(a) and 1.20(b) represent the vector 

power flow distribution for the uncloaked and cloaked finite conducting wedge for the incident 

angle of 𝛾 = 0. The suppression of the scattered fields leads to a uniform and unperturbed power 

distribution in the vicinity of the wedge. Figure 1.21 presents a time snapshot of the amplitude of 

the total electric field distribution for the cloaked [Figure 1.21(c)], the isolated finite conducting 

wedge [Figure 1.21(a)], and the finite conducting wedge covered by a dielectric [Figure 1.21(b)] 

at the design frequency 𝑓0 = 3 THz for the incident angle 𝛾 = 𝜋 2⁄ . It is clearly shown that by 

utilizing the wedge shaped mantle cloak, the wavefronts of the electric field can be restored. On 

the other hand, the electric field distribution is disturbed when the mantle cloak is not implemented. 
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The figures are plotted on the same scale for fair comparison. 

 

Figure 1.19. Full-wave results for the variation of the total RCS of isolated, covered by dielectric, 

and cloaked finite conducting wedge versus frequency for 𝛼 = 3𝜋/4 and 𝛾 = 0. 

 

Figure 1.20. Full-wave numerical results for the vector power flow distributions in the 𝜙-plane: 

(a) isolated and (b) cloaked finite conducting wedges for 𝛼 = 3𝜋/4 and 𝛾 = 0. 

 

Figure 1.21. Full-wave numerical results for the electric field distribution in the 𝑥-𝑦 plane for TM 

polarization: (a) isolated, (b) coated by dielectric, and (c) cloaked finite conducting wedge for 𝛼 =

3𝜋/4 and 𝛾 = 𝜋/2.
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The other criterion which can demonstrate the scattering behavior for all the incident angles 

and all the observation points is the far-field radiation pattern. Figure 1.22 represents the far-field 

pattern of the cloaked and uncloaked finite conducting wedge for three different incident angles of 

𝛾 = 0,  𝜋 4⁄ , and 𝜋 2⁄ . A drastic scattering reduction (𝑊bistatic,uncloaked − 𝑊bistatic,cloaked) is 

observed for the cloaked case in comparison to the uncloaked case for all the observation angles 

as depicted in Figure 1.22(d). When the incident angle increases, the cloaking performance 

becomes less efficient and the worst case is related to the incident angle 𝛾 = 𝜋 2⁄ . Even in this 

case, the cloak results in a dramatic reduction of the scattering from the finite conducting wedge 

for all the observation angles. It should be emphasized that in order to obtain an omnidirectional 

cloaking, the surface impedance of the metasurface should be defined as a function of incident 

angle which goes beyond the scope of this paper. The proposed metasurface cloak is considered 

as the most efficient approach to cloak the conducting wedge as a non-symmetrical object due to 

the advantages of the maximum scattering cancellation, low capacitive reactance, the possibility 

of obtaining cloak even if the radius of the conducting wedge is larger than 𝜆 10⁄ , and occupying 

less volume when it is wrapped around the structure. 

As an extension of this work, the fabrication and measurement of the graphene-nanopatch 

cloak in the THz regime are of our particular interest. In this regard, the mechanical flexibility of 

graphene makes it possible to wrap the metasurface cloak around an arbitrary shaped object and 

the chemical potential can be largely tuned either passively by the doping profile or chemical 

modification, or actively by external static electric field (providing an isotropic scalar surface 

conductivity) or external static magnetic field via Hall effect (providing anisotropic and tensor 

surface conductivity) [6]. Therefore, one of the concerns is related to the bias voltage which should 

be applied to all the graphene nanopatches. 
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Figure 1.22. Normalized bi-static scattering cross-section of cloaked and uncloaked finite 

conducting wedge with the opening angle 𝛼 = 3𝜋/4 for different values of incident angle (a) 𝛾 =

0, (b) 𝛾 = 𝜋/4 and (c) 𝛾 = 𝜋/2. (d) Scattering reduction for the same incident angles.
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CHAPTER II 

 

2 GRAPHENE LOADED WIRE MEDIUM FOR TUNABLE BROADBAND 

SUBWAVELENGTH IMAGING 

 

2.1 Introduction 

Since the resolution of traditional optical lenses is restricted by the diffraction limit, 

subdiffraction imaging is of particular interest to the metamaterials community. The conventional 

lenses are not able to transport evanescent near-field modes which carry subwavelength 

information. In order to overcome this limitation, a well-known solution is to use a metamaterial 

lens with negative refractive index property. Veselago pointed out the possibility of the existence 

of a negative index material (NIM) in 1968 [47]. Following this idea, Pendry realized that a NIM 

slab (ε = −1 and μ = −1) can effectively amplify the exponentially decaying evanescent modes 

of a source field, and thus, could focus both the evanescent and propagating spectra [48]. Pendry 

also noticed that a thin slab of silver with only negative permittivity would act as a near-field lens 

[49]. This lens, which is known as a superlens, has important applications in biomedical imaging, 

sensing, and nondestructive characterization of materials [50]-[55]. The physical mechanism 

behind the Pendry’s lens can be described as a resonant excitation of coupled surface plasmon 

polaritons which are supported at the interfaces of the slab. The desired conditions for this 

technique can be realized at a single carefully selected frequency with high sensitivity to the 

absorption and frequency dispersion.
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Due to the fact that Pendry’s subwavelength imaging process physically arises at the lens 

interfaces, it is also possible to utilize a pair of resonant grids or conjugate sheets instead of a bulk 

material [56]-[59]. Graphene as a single atom layer of carbon atoms guides surface plasmons [39], 

[60], [61], and this phenomenon was employed for different metamaterial plasmonic applications 

[62]-[65]. Recently, Ref. [66] presented a frequency tunable graphene lens, in which the 

enhancement of evanescent waves for subwavelength imaging is realized by the well coupled 

graphene sheets that can support surface plasmons. It should be noted that the structure’s 

performance intensely depends on the distance between graphene sheets and the subwavelength 

information is lost when the thickness of the lens is increased. 

Another metamaterial lens with artificially engineered properties has been proposed in 

[67]-[70]. The idea is that both evanescent and propagating harmonics are transformed into the 

transmission-line modes along the wires in a WM slab. The loss sensitivity of this structure is 

remarkably small and the resolution is restricted only by the spacing between the wires. It has been 

shown that the properties of this lens cannot be tuned after fabrication and the thickness of WM 

should be chosen in such a way that it is an integer number of half wavelength to satisfy the 

subwavelength imaging condition. 

Here, we propose a WM slab loaded with graphene sheets that provides both of the 

aforementioned subwavelength imaging properties of the WM and graphene. The enhancement of 

evanescent waves is provided by the coupling of the surface plasmons at the lower and upper 

interfaces. The WM slab has a remarkable effect on the strong coupling and waveguiding of 

evanescent waves to the other side of the structure. The modal dispersion behavior of the proposed 

structure can be described as the perturbation of the surface plasmons of graphene sheets by 

utilizing an array of metallic wires. The proposed lens has advantages of widely tunable 
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subwavelength imaging and the possibility of obtaining image even if the distance between two 

graphene sheets is a significant fraction of wavelength. In addition, the structure has a remarkable 

improvement in comparison to other subwavelength imaging devices in terms of bandwidth and 

position of a source. 

The study of the transmission/reflection behavior of the graphene-dielectric stack, provided 

in [71], was carried out using a simple analytical transfer-matrix method (TMM). Alternatively, 

the analysis can be realized by using the principles of the circuit-theory model described in [72], 

wherein graphene sheets are modeled as shunt admittances. Also, in [73], the optical properties of 

one-dimensional graphene-embedded quarter-wave stack have been investigated by modifying the 

conventional transfer matrix method [71]. Here, we deal with the analysis of the 

transmission/reflection properties of the WM slab loaded with graphene sheets, wherein the 

impinging evanescent waves excite surface plasmons at the interfaces of the structure. A nonlocal 

homogenization model is utilized [74], [75], such that the WM is modeled as a uniaxial anisotropic 

material characterized by a nonlocal dielectric function with a generalized additional boundary 

condition (GABC) at the connection of wires to graphene. We employ two widely used approaches 

to investigate the imaging properties of the structure. First, we placed an infinite magnetic line 

source at a distance from the upper interface of the structure, and calculated the magnetic field 

distribution at the same distance from the lower interface. The resolution of the lens is quantified 

by the half-power beamwidth (HPBW) criterion [76]. In the second approach, the performance of 

the lens is assessed by a double-slit source and then interpreted by the Rayleigh criterion [77]-[81]. 

The analytical results are validated with the full-wave electromagnetic simulator, CST Microwave 

Studio [46], showing good agreement. 
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It is also worth noting that in addition to the theoretical studies described above, 

subwavelength imaging has been verified experimentally with different imaging structures. In 

[82], an experimental validation of subwavelength imaging by a WM slab has been performed at 

microwave frequencies. Also, it has been extended to THz and infrared frequencies by employing 

silver nanorods in [69]. In addition to these WM lenses, recently, subwavelength imaging has been 

theoretically and experimentally studied in [83] by using a fishnet flat lens, wherein a 3D 

metamaterial has been fabricated by Printed-Circuit-Board (PCB) technology. This stacked fishnet 

metamaterial forms waveguide channels, which provide the propagation of quasi-TEM modes in 

the dielectric layers. 

From the experimental point of view, fabrication of the graphene monolayer sheet by itself 

is a severe challenge. Recently, various methods have been proposed to achieve a graphene 

monolayer with the lowest imperfection, namely Chemical Vapor Deposition (CVD) [84] and 

Epitaxy [85]. The process of joining the WM to the intensely thin graphene sheet deals with some 

difficulties due to the fact that the well-known methods such as ohmic contact, soldering, 

plasmonic welding are not applicable in the proposed structure. To overcome this limitation, here 

we show that a small gap between the graphene monolayer and the WM does not change the 

response of the lens because of the strong coupling of the surface plasmons of the graphene sheet 

and the WM slab. This approach has been studied by the full-wave simulation in CST Microwave 

Studio, which confirms this claim. In addition, the possibility of embedding the WM in a dielectric 

slab facilitates the fabrication and growth of the graphene sheets on the interfaces of the lens [86].  

This chapter is organized as follows: In Section 2.2, we present the closed-form expressions 

for the reflection and the transmission coefficients of the WM slab loaded with graphene sheets 

based on the nonlocal homogenization model. The dispersion behavior of odd and even modes and 
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the transmission response of the structure are studied in Section 2.3. In Section 2.4, the 

performance of the proposed lens is analyzed in the presence of the magnetic line source and the 

double-slit source. In Section 2.5, we discuss the tunability and broadband properties of the lens. 

The severe challenges in the practical realization of the lens have been discussed, and a promising 

approach in order to surmount these difficulties has been proposed in Section 2.6. A time 

dependence of the form 𝑒𝑗𝜔𝑡  is assumed and suppressed. 

 

2.2 Nonlocal Model for WM with Graphene Sheets 

Here, we consider a WM slab loaded with graphene sheets as shown in Figure 2.1. The 

WM slab consists of the metallic wires symmetrically arranged in a square lattice with the 

following structural parameters: 𝑎 is the spacing between the wires (lattice constant), 𝑟0 is the 

radius of the wires, 𝜀ℎ is the dielectric permittivity of the slab, and ℎ is the thickness of the 

structure. The metallic wires are oriented along the 𝑧-direction and two graphene sheets are located 

at 𝑧 = 0 and 𝑧 = −ℎ. To determine the transmission/reflection response of the structure with a 

TM plane-wave excitation, the even/odd excitation mode technique is utilized. By considering the 

perfect electric conductor (PEC) and the perfect magnetic conductor (PMC) at the center of the 

wires (𝑧 = −ℎ/2), the even and odd responses of the structure can be obtained. Figure 2.1(b) 

demonstrates the cross-section view in the presence of PEC/PMC symmetries. In the nonlocal 

homogenization model, a WM is characterized by a uniaxial anisotropic material with the effective 

permittivity of 𝜀𝑧𝑧 = 𝜀ℎ[1 − 𝑘𝑝
2 (𝑘ℎ

2 − 𝑘z
2)⁄ ], where 𝑘ℎ = 𝑘0√𝜀ℎ is the wave number of the host 

medium, 𝑘0 = 𝜔 𝑐⁄  is the free space wave number, 𝜔 is the angular frequency, 𝑐 is the speed of 
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light, 𝑘𝑧 is the 𝑧-component of the wave vector 𝑘⃗ = (𝑘𝑥 , 0, 𝑘𝑧), and 𝑘𝑝 is the plasma wave number 

as 𝑘𝑝 = √(2𝜋 𝑎2⁄ ) (ln (𝑎 2𝜋𝑟0) + 0.5275)⁄⁄ . 

 

Figure 2.1. Schematics of a WM slab loaded with graphene sheets: (a) 3D view and (b) cross-

section view of the structure by considering PEC/PMC at the symmetry plane. 

A TM-polarized plane wave excites both transverse electromagnetic (TEM) and the 

extraordinary TM modes in the homogenized WM slab. First, it is assumed that the PEC plane is 

located at 𝑧 = −ℎ 2⁄ . The total magnetic fields in the air region above the structure (region 1) and 

in the WM slab (region 2), as shown in Figure 2.1(b), can be written as follows: 

𝐻𝑦
(1)

= (𝑒𝛾0𝑧 + 𝑅even𝑒
−𝛾0𝑧)𝑒−𝑗𝑘𝑥𝑥 

𝐻𝑦
(2)

= (𝐴TM
+ 𝑒𝛾TM  z + 𝐴TM

− 𝑒−𝛾TM  𝑧 + 𝐵TEM
+ 𝑒𝛾TEM z  + 𝐵TEM

− 𝑒−𝛾TEM  𝑧)𝑒−𝑗𝑘𝑥𝑥               (2.1) 

where 𝐴TM
±

 and 𝐵TEM
±

 are the amplitudes of the extraordinary TM and transmission-line TEM 

modes in the WM slab, 𝑅even  is the reflection coefficient of the even-mode excitation, 𝛾0 =
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√𝑘𝑥
2 − 𝑘0

2, 𝑘𝑥 = 𝑘0 sin𝜃𝑖 is the 𝑥-component of the wave vector 𝑘⃗ = (𝑘𝑥 , 0, 𝑘𝑧), 𝛾TEM = 𝑗𝑘ℎ =

𝑗𝑘0√𝜀ℎ, and 𝛾TM = √𝑘𝑝
2 + 𝑘𝑥

2 − 𝑘0
2. In order to determine the unknown coefficients (𝑅even, 𝐴TM

±
, 

and 𝐵TEM
±

), the two-sided impedance boundary conditions are satisfied at the graphene interface 

(𝑧 = 0): 

𝐸𝑥
(1)

| 
𝑧=0+

= 𝐸𝑥
(2)

| 
𝑧=0−

= 𝑍𝑔[ 𝐻𝑦
(2)

| 
𝑧=0−

− 𝐻𝑦
(1)

| 
𝑧=0+

]                           (2.2) 

where the graphene sheet impedance 𝑍𝑔 is given by 𝑍𝑔 = 1 𝜎𝑠⁄ , and 𝜎𝑠 is graphene’s complex 

surface conductivity (𝜎𝑠 = 𝜎′ + 𝑗𝜎′′) which is modeled with the Kubo formula using closed-form 

expressions for the interband (𝜎inter) and intraband (𝜎intra) contributions [60]:  

𝜎intra = −𝑗
𝑘𝐵𝑒2𝑇

𝜋ℏ2(𝜔 − 𝑗𝜏−1)
(

𝜇𝑐

𝑇𝑘𝐵
+ 2 ln (𝑒

− 
𝜇𝑐

𝑇𝑘𝐵 + 1)) 

𝜎inter ≈ −
𝑗𝑒2

4𝜋ℏ
ln (

2|𝜇𝑐| − 𝜔ℏ

2|𝜇𝑐| + 𝜔ℏ
) 

𝜎𝑠 = 𝜎intra + 𝜎inter  .                                                             (2.3) 

In (2.3), ℏ is the reduced Planck constant, e is the electron charge, 𝑘𝐵 is the Boltzmann’s 

constant, T is the temperature, 𝜏 is the momentum relaxation time, and 𝜇𝑐 is the chemical potential. 

In the low-THz region and below the interband transition threshold, ℏ𝜔 < 2|𝜇𝑐|, 𝜎intra dominates 

over 𝜎inter [39]. In the upper GHz and low-THz range, the imaginary part of surface conductivity 

has a negative value, 𝜎′′ < 0, and graphene acts as an inductive sheet [63], [71]. This behavior of 

the surface impedance is analogous to the subwavelength metallic mesh grid at microwave 

frequencies. It should be noted that when 𝜎′′ < 0, a proper TM surface wave can propagate and 
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for 𝜎′′ > 0, a proper TE surface wave can propagate. In this study, it is assumed that 𝑇 = 300 K, 

𝜀ℎ = 1, 𝜏 = 0.5 ps, 𝑎 = 215 nm, and 𝑟0 = 21.5 nm. 

At the PEC interface (𝑧 = −ℎ 2⁄ ), the tangential electric field vanishes implying that 

(1 𝜀ℎ⁄ )(𝑑𝐻𝑦 𝑑𝑧⁄ ) = 0. Moreover, it has been shown that an additional boundary condition (ABC) 

is required to describe the appropriate boundary condition for the WM connected to the perfect 

electric conductor [87]-[91]. The microscopic ABC which is enforced at the PEC ground plane 

(𝑧 = −ℎ/2+) can be written for the wire current, 𝐼(𝑧), as [92]:  

𝑑𝐼(𝑧)

𝑑𝑧
|
𝑧 = (−ℎ/2)+ = 0                                                     (2.4) 

and in terms of macroscopic fields: 

𝜕

𝜕𝑧
(𝑘0𝜀ℎ𝐸𝑧

(2)
+ 𝑘𝑧𝜂0𝐻𝑦

(2)
) |

𝑧 = (−ℎ/2)+ = 0.                               (2.5) 

In addition, it requires the use of GABC for the microscopic current at the connection of 

wires to graphene [74]: 

[
𝜎𝑠

𝑗𝜔𝜀0𝜀ℎ

𝑑𝐼(𝑧)

𝑑𝑧
+ 𝐼(𝑧)] |

𝑧 = 0− = 0                                         (2.6) 

and in terms of macroscopic fields: 

(1 +
𝜎𝑠

𝑗𝜔𝜀0𝜀ℎ

𝜕

𝜕𝑧
) (𝑘0𝜀ℎ𝐸𝑧

(2)
+ 𝑘𝑧𝜂0𝐻𝑦

(2)
) |

𝑧 = 0− = 0.                        (2.7)  

By enforcing the aforementioned boundary conditions, the closed-form expression of the 

reflection coefficient for PEC symmetry (even excitation) can be obtained by [74] 
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𝑅even =

𝑁even

𝐷even
coth (𝛾TM

ℎ
2) cot (𝑘ℎ

ℎ
2) − (

1
𝛾0

+ 𝑗
𝜂0

𝑍𝑔𝑘0
)

𝑁even

𝐷even
coth (𝛾TM

ℎ
2
) cot (𝑘ℎ

ℎ
2
) + (

1
𝛾0

− 𝑗
𝜂0

𝑍𝑔𝑘0
)
 , 

𝑁even = (
1

𝜀𝑧𝑧
TM

− 1) (
𝜎𝑠𝛾TM

𝑗𝜔𝜀0𝜀ℎ
tanh (𝛾TM

ℎ

2
) + 1) + (1 −

𝜎𝑠𝑘ℎ

𝑗𝜔𝜀0𝜀ℎ
tan (𝑘ℎ

ℎ

2
)) , 

𝐷even = −
𝑘ℎ

𝜀ℎ
(

1

𝜀𝑧𝑧
TM

− 1) (
𝜎𝑠𝛾TM

𝑗𝜔𝜀0𝜀ℎ
+ coth (𝛾TM

ℎ

2
)) +

𝛾TM

𝜀ℎ
(cot (𝑘ℎ

ℎ

2
) −

𝜎𝑠𝑘ℎ

𝑗𝜔𝜀0𝜀ℎ
).  (2.8) 

 The closed-form expression of the reflection coefficient for the PMC symmetry (odd 

excitation) can be derived using a similar approach: 

𝑅odd =

𝑁odd

𝐷odd
tanh (𝛾TM

ℎ
2) tan (𝑘ℎ

ℎ
2) − (

1
𝛾0

+ 𝑗
𝜂0

𝑍𝑔𝑘0
)

𝑁odd

𝐷odd
tanh (𝛾TM

ℎ
2) tan (𝑘ℎ

ℎ
2) + (

1
𝛾0

− 𝑗
𝜂0

𝑍𝑔𝑘0
)
 , 

𝑁odd = (
1

𝜀𝑧𝑧
TM

− 1)(
𝜎𝑠𝛾TM

𝑗𝜔𝜀0𝜀ℎ
coth (𝛾TM

ℎ

2
) + 1) + (1 +

𝜎𝑠𝑘ℎ

𝑗𝜔𝜀0𝜀ℎ
cot (𝑘ℎ

ℎ

2
)) , 

𝐷odd = +
𝑘ℎ

𝜀ℎ
(

1

𝜀𝑧𝑧
TM

− 1)(
𝜎𝑠𝛾TM

𝑗𝜔𝜀0𝜀ℎ
+ tanh (𝛾TM

ℎ

2
)) +

𝛾TM

𝜀ℎ
(tan (𝑘ℎ

ℎ

2
) +

𝜎𝑠𝑘ℎ

𝑗𝜔𝜀0𝜀ℎ
)   (2.9) 

where 𝜀𝑧𝑧
TM = 𝜀ℎ𝑘𝑥

2/(𝑘𝑝
2 + 𝑘𝑥

2) is the relative effective permittivity for TM polarization. The 

results can be validated by considering the limiting case of 𝜎𝑠 → 0. In this case, (2.8) and (2.9) 

turn to the WM slab expressions derived in [91]. The transmission/reflection response of the 

structure (shown in Figure 2.1(a)) can be obtained by the superposition principle as follows: 

𝑅 =
1

2
(𝑅even + 𝑅odd)                                                        (2.10) 

𝑇 =
1

2
(𝑅even − 𝑅odd).                                                      (2.11) 
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2.3 Parametric Study of Dispersion and Transmission Properties 

Here, we are interested in studying the dispersion behavior of the TM𝑥 surface waves and 

the transmission response of the WM slab loaded with graphene sheets in order to determine the 

proper operating frequency regime in which the enhancement of evanescent waves leads to the 

recovering of the source details at the image plane. The ultimate goal is designing a subwavelength 

imaging lens with a high resolution and low distortion properties.  

First, we study the dispersion relation obtained by applying the perfect magnetic conductor 

plane at 𝑧 = −ℎ 2⁄  [as shown in Figure 2.1(b)]. The dispersion of the surface waves is calculated 

by finding the complex roots of the dispersion function [denominator of the reflection coefficient 

in (2.9)]. Figure 2.2 shows the dispersion behavior of the normalized propagation constant (𝑘𝑥 𝑘0⁄ ) 

of the odd TM𝑥 modes of the WM slab loaded with graphene sheets with 𝜇𝑐 = 1.5 eV and ℎ =

2400 nm. At low frequencies (𝑓 < 18 THz), the real part of (𝑘𝑥 𝑘0⁄ ) is close to 1 and the 

imaginary part has a negligibly small negative value, indicating that the proper complex bound 

mode (surface plasmon) interacts weakly with the WM slab and propagates primarily in the air 

region in the vicinity of graphene sheet. With the increase of frequency it interacts stronger with 

the structure, and at a frequency around 19.6 THz a stopband occurs for the first TM𝑥 surface 

plasmon which corresponds to the left bound of the stopband. The cutoff frequency of the second 

proper complex bound mode occurs approximately at 65 THz which is considered as the right 

bound of the stopband. Within the stopband for the proper bound mode (from 19.6 THz to 65 

THz), a proper complex leaky wave with Re(𝑘𝑥 𝑘0⁄ ) > 1 and large Im(𝑘𝑥 𝑘0⁄ )) exists. 

Figure 2.3 illustrates the dispersion behavior of the structure for the odd excitation with 

different thicknesses. It is observed that by increasing the length of the lens, the total behavior of 

the dispersion does not change drastically. However, the resonance has a remarkable shift to the 
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lower frequencies. It leads to the expansion of the stopband regime wherein the propagation of the 

proper (bound) complex modes stops. For example, by changing the length from 400 nm to 3000 

nm, the resonance frequency changes from 49.71 THz to 17.34 THz. 

 

Figure 2.2. Dispersion behavior of the odd modes of a WM slab loaded with graphene sheets. The 

solid line represents the real part of the normalized propagation constant, Re(kx / k0), and the 

dashed line represents the imaginary part of the normalized propagation constant, Im(kx / k0). 

 

Figure 2.3. Dispersion behavior of the odd modes of the WM slab loaded with graphene sheets 

with different structure’s thicknesses in the range from 400 to 3000 nm. The solid line represents 

the real part of the normalized propagation constant, Re(kx / k0), and the dashed line represents the 

imaginary part of the normalized propagation constant, Im(kx / k0). 
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In order to provide further illustrations, Figure 2.4 shows the dispersion behavior of the 

structure for the odd excitation with the various values of the chemical potential. The chemical 

potential can be largely tuned either passively by doping the profile (density and type of carriers) 

or chemical/structural surface modification, or actively by an external static electric field or 

magnetic field [60]. It is observed that the resonance corresponding to the left bound of the 

stopband occurs at lower frequencies by decreasing the graphene’s chemical potential. The length 

of the structure is set to ℎ = 2400 nm for all the cases. 

 

Figure 2.4. Dispersion behavior of the odd modes of the WM slab loaded with graphene sheets 

with different chemical potentials in the range from 0.5 to 1.5 eV. The solid line represents the 

real part of the normalized propagation constant, Re(kx / k0),and the dashed line represents the 

imaginary part of the normalized propagation constant, Im(kx / k0). 

Similarly, the response of the structure for the even excitation can be obtained by applying 

the PEC symmetry in Figure 2.1(b). In this regard, Figure 2.5 shows the dispersion behavior of the 

normalized propagation constant (𝑘𝑥 𝑘0⁄ ) of the even TM𝑥 modes of the WM slab loaded with 

graphene sheets with 𝜇𝑐 = 1.5 eV and ℎ = 2400 nm. When the real part of (𝑘𝑥 𝑘0⁄ ) is close to 1 
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and the imaginary part has a small negative value, it indicates that the proper complex (bound) 

mode interacts weakly with the structure and propagates in the air region in the vicinity of graphene 

sheets (the solid/dashed brown lines at the frequencies below 50 THz). The other mode as an 

improper complex leaky wave (solid/dashed blue lines) has a similar dispersion behavior for 

Re(𝑘𝑥 𝑘0⁄ ) for the frequencies up to 50 THz. Since Im(𝑘𝑥 𝑘0⁄ ) of this mode has a large value, the 

wave attenuates and does not radiate. In this paper, we are interested in subwavelength imaging at 

low THz frequencies. Therefore, the dispersion behavior at high THz frequencies (frequencies 

higher than 50 THz) has not been discussed in details. By a careful study of the dispersion relation 

for odd and even excitations, it concludes that the significant resonance of the structure is 

associated with the odd modes at low-THz frequencies, and thus, we restrict our analysis to the 

modes obtained with the PMC symmetry. However, at frequencies higher than 50 THz, the 

dispersion behavior of the TM𝑥 surface waves for the even excitation, shown by the black line in 

Figure 2.5, keeps increasing unlike other modes and the imaginary part has a small negative value. 

Therefore, it should be mentioned that both even and odd excitations play important roles in the 

formation of resonances with a higher value of 𝑘𝑥 𝑘0⁄  in this frequency range. 
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Figure 2.5. Dispersion behavior of the even modes of the WM slab loaded with graphene sheets. 

The solid line represents the real part of the normalized propagation constant, Re(kx / k0), and the 

dashed line represents the imaginary part of the normalized propagation constant, Im(kx / k0). 

The other criterion that can provide more quantitative and detailed information about the 

structure’s performance in subwavelength imaging is the transmission response of the device as a 

function of wave vector 𝑘𝑥/𝑘0 [93]. The behavior of the transmission coefficients is sensitive to 

the variations in the operating frequency. Therefore, the transmission magnitude |𝑇| as a function 

of Re(𝑘𝑥 𝑘0⁄ ) is calculated at different frequencies of operation in the range from 16 to 21 THz 

and is depicted in Figure 2.6. It is shown that the reduction of the frequency of operation reveals a 

significant resonant phenomenon which leads to the enhancement of the amplitude of the 

evanescent modes for a certain range of 𝑘𝑥. The observed resonant enhancement deteriorates the 

subwavelength imaging since some of the spatial harmonics are amplified by a large factor. In 

contrast, for the frequencies close to 19 THz, the resonant behavior has not been observed in the 

transmission coefficients and the transmission magnitude is close to unity for a larger range of 

spatial harmonics. 
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Figure 2.6. Magnitude of the transmission coefficient as a function of kx / k0 calculated for a WM 

slab loaded with graphene sheets in the range from 16 to 21 THz. 

We study in detail the dispersion behavior and the transmission response considered as two 

important parameters in the formation of the subwavelength imaging. As shown in Figures 2.2 and 

2.6, at frequencies lower than 18 THz, the imaginary part of the normalized propagation constant 

of the proper bound mode has a small value [Im(𝑘𝑥 𝑘0⁄ ) ≈ 0], and thus, the transmission intensity 

will be large at the resonance that leads to the overamplification of some of the Fourier components 

(𝑘𝑥). This phenomenon diverges the transmission and deteriorates the subwavelength imaging. For 

this reason, the subwavelength imaging is not possible in this region. In addition, the real part of 

the normalized propagation constant, Re(𝑘𝑥 𝑘0⁄ ), is nearly equal to 1, which leads to a 

transmission resonance at the vicinity of Re(𝑘𝑥 𝑘0⁄ ) = 1. At 18 THz < 𝑓 < 19.6 THz, the 

imaginary part of the propagation constant increases and prevents the divergence of the 

transmission and effectively moderates the effects of the resonance. It should be mentioned that 

although the imaginary part of (𝑘𝑥/𝑘0) by itself would not cause a fundamental improvement in 

the image resolution, any finite amount of Im(𝑘𝑥/𝑘0) in the slab will not allow the transmission to 

diverge. In this region, by increasing the frequency the resonance peak shifts to a greater value of 

Re(𝑘𝑥 𝑘0⁄ ) of the proper complex bound mode, which means that a larger number of Fourier 
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components can be transferred with a transmission coefficient equal or slightly greater than 1, 

leading to a better resolution for the structure. At 19.6 THz < 𝑓 < 22 THz the subwavelength 

imaging is obtained by coupling of evanescent waves from the source to the leaky wave with both 

large values of Re(𝑘𝑥 𝑘0⁄ ) and Im(𝑘𝑥 𝑘0⁄ ), which exists in the stopband region for the proper 

complex bound waves. At frequencies higher than 22 THz, the transmission coefficient decays 

drastically because of the large value of Im(𝑘𝑥 𝑘0⁄ ) and the small value of Re(𝑘𝑥 𝑘0⁄ ) of the leaky 

wave; as a result, the structure has a poor performance in terms of subwavelength imaging. By a 

careful study of the dispersion relation and the transmission coefficient, it can be concluded that 

the proper frequency regime is 18.5 − 22 THz for the aforementioned parameters. In Sec. 2.4, we 

investigate the validity of this claim. 

In order to provide more clarifications regarding the distinct properties of the WM slab 

loaded with graphene sheets in comparison with the isolated WM slab and parallel graphene sheets, 

Figure 2.7 shows the dispersion behavior of the bound modes for these three cases with the 

following parameters: 𝑎 = 215 nm, 𝑟0 = 21.5 nm, 𝜇𝑐 = 1.5 eV, and ℎ = 2400 nm. The blue 

solid line represents Re(𝑘𝑥 𝑘0⁄ ) for the even excitation of the isolated WM slab. At frequencies 

around 62.5 THz corresponding to ℎ = 𝜆 2⁄ , a stopband occurs for the first TM𝑥 surface-wave 

mode. It is observed that the second stopband can be obtained by utilizing the odd excitation at 

𝑓 = 125 THz (ℎ = 𝜆). This phenomenon arises due to the fact that the WM slab acts as a Fabry-

Perot resonator at frequencies in which the thickness of the structure is an integer number of half 

wavelength (ℎ = 𝑛𝜆 2⁄ , 𝑛 = 1, 2, 3, . ..). The solid and dashed orange lines present the dispersion 

behavior of the two parallel graphene sheets for the even and odd excitations, respectively. It can 

be clearly seen that the dispersion behavior of the WM slab loaded with graphene sheets is 

remarkably different from the isolated WM slab and two parallel graphene sheets. Figure 2.7 
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conveys two important points. First, at low frequencies, the modal behavior of the proposed 

structure can be described as a perturbation of the surface plasmons of two parallel graphene sheets 

and it is similar to the dispersion of bound modes in the WM slab at higher frequencies resulting 

in a Fabry-Perot stopband. The graphene sheets and the WM slab can modulate each other’s 

surface plasmons when they are placed in ultimate close vicinity of each other. Second, the 

resonance behavior of the proposed structure can be explained in terms of the Fabry-Perot 

resonance when the electrical thickness of the slab is larger than its physical thickness (ℎ = 2400 

nm) [72], [94], [95]. It is worth noting that the intrinsically inductive property of graphene at low-

THz frequencies provides the required excess length to satisfy the Fabry-Perot resonance 

condition.  

 

Figure 2.7. Dispersion behavior of the WM slab loaded with graphene sheets (black line), the 

isolated WM slab (blue line), and two parallel graphene sheets (orange line). The solid lines 

represent the real part of the normalized propagation constant for even excitation (PEC symmetry) 

and the dashed lines represent the real part of the normalized propagation constant for odd 

excitation (PMC symmetry). 
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In Figure 2.8, we show the transmission characteristics of the WM slab loaded with 

graphene sheets, the isolated WM slab, and two parallel graphene sheets at the operating frequency 

of 𝑓 = 19 THz. Due to the fact that the structure thickness is not an integer number of the half 

wavelength (ℎ = 𝜆/6.58) the transmission magnitude of the WM slab is lower than 1 [lg(|𝑇|) =

0] and decays rapidly. The transmission of two graphene sheets has two resonances at 𝑘𝑥 𝑘0⁄ =

3.623 and 3.816, then it drops drastically. Figure 2.7 shows that the first resonance corresponds 

to the odd excitation (dashed orange line), and the second resonance is related to the even 

excitation (solid orange line) [66]. Rather differently, the transmission curve is smooth and close 

to unity [lg(|𝑇|) = 0] for a large range of 𝑘𝑥  in our proposed structure, which means that two 

graphene sheets are strongly coupled (even if the thickness of the slab is a large fraction of 

wavelength) and the near field can be effectively transferred by the array of metallic wires. The 

physical mechanism of our proposed structure can be explained as the resonant excitation of the 

surface waves supported by the graphene sheets assisted by the canalization effect of the WM slab.  
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Figure 2.8. Magnitude of the transmission coefficient as a function of kx / k0 calculated for a WM 

slab loaded with graphene sheets, isolated WM slab, and two parallel graphene sheets. 

 

2.4 Study of Resolution 

In order to evaluate the subwavelength imaging resolution of a structure, various 

techniques have been proposed. Here, we utilize two well-known methods to characterize the 

imaging properties of the structure. The performance of the lens is studied in the presence of the 

magnetic line and double-slit sources, and the resolution is evaluated by using the HPBW and the 

Rayleigh criteria. 

 

2.4.1 Magnetic Line Source 

We consider an infinite magnetic line source oriented along the 𝑦-direction and placed at 

a distance 𝑑 from the upper interface of the structure. The geometry is shown in Figure 2.9. The 
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current density of the infinite magnetic line source is 𝑱𝑚 = 𝐼0𝛿(𝑧 − 𝑑)𝛿(𝑥)𝒚̂, with the excited 

magnetic field given by 

𝑯(𝑥, 𝑧) =
𝐼0𝑘0

2

𝑗𝜔𝜇0
[
1

4𝑗
𝐻0

(2)(𝑘0𝜌)] 𝒚̂                                              (2.12) 

where 𝜌 = √𝑥2 + (𝑧 − 𝑑)2 and 𝐻0
(2)(𝑘0𝜌) is the zero order Hankel function of the second kind. 

The magnetic field at a distance 𝑑 from the lower interface of the structure can be obtained by a 

Sommerfeld-type integral as [76]:  

𝐻𝑦(𝑥) =
𝐼0𝑘0

2

𝑗𝜋𝜔𝜇0
∫

1

2𝛾0
𝑒−𝛾0(2𝑑)𝑇(𝜔, 𝑘𝑥) cos(𝑘𝑥𝑥)𝑑𝑘𝑥

∞

0
                        (2.13)  

where 𝛾0 = √𝑘𝑥
2 − 𝑘0

2 is the propagation constant in free space and 𝑇(𝜔, 𝑘𝑥) is the transfer 

function of the structure defined in (2.11). 

 

Figure 2.9. Geometry of the WM slab loaded with graphene sheets excited by a magnetic line 

source placed at a distance 𝑑 from the upper interface, with the image plane at a distance 𝑑 from 

the lower interface. 

Figure 2.10 shows the square normalized amplitude of the magnetic field profile calculated 

at the image plane as a function of 𝑥 𝜆⁄  at the operating frequency of 𝑓 = 19 THz. It is assumed 

that the magnetic line source is located at 𝑑 = 150 nm. The blue solid line has been obtained by 
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the numerical integration of the Sommerfeld integral in 2.13. According to the HPBW criterion, 

the resolution is approximately 0.1𝜆. The dashed line represents the performance of the proposed 

lens studied by using the electromagnetic simulator CST Microwave Studio and the same 

resolution is obtained (0.1𝜆). The black solid line represents the magnetic field profile for the 

propagation in free space with the resolution of 0.65𝜆. The resolution of the proposed structure is 

approximately 6.5 times better than the resolution in free space. The resolution of 𝜆/10 for the 

structure has been obtained analytically and verified with the full-wave simulation. At 𝑓 =

19 THz, as shown in Figure 2.6, the enhanced transmission curve is relatively smooth and flat in 

the range before approaching the first peak (𝑘𝑥 < 10 𝑘0), which means that the structure transfers 

the evanescent fields in this range without distortion. The amplitude of the transmission exceeds 1 

[lg(|𝑇|) = 0] at the resonance (𝑘𝑥 = 18 𝑘0) and causes the enhancement of the decaying 

evanescent wave components. This amplification is helpful to compensate the decaying effect of 

the air gaps above and below the structure (2𝑑 = 300 nm). 

 

Figure 2.10. The square normalized amplitude of the magnetic field Hy calculated at the image 

plane for 𝑓 =  19 THz. The black curve represents the field profile when the structure is absent. 

The blue curve is the field profile in the presence of the structure and the dashed line corresponds 

to the CST Microwave Studio result. 
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In the CST Microwave Studio, the magnetic line source is modeled by a current-carrying 

square loop and the structure is assumed periodic along the 𝑦-direction and the width of the slab 

has been fixed at 2.22𝜆0 along the 𝑥-direction. The metallic wires are modeled as the copper metals 

(𝜎 = 5.8 × 107 s
m⁄ ) and the effect of ohmic losses is taken into account. A snapshot of the 

magnetic field (𝐻𝑦) in the 𝑥-𝑧 plane calculated using CST is shown in Figure 2.11 at 𝑓 = 19 THz. 

The image can be observed at the lower interface of the structure. The resolution of the image is 

𝜆/10 and it is nearly insensitive to the effect of losses. 

 

Figure 2.11. CST simulation result for the magnetic field distribution Hy of a WM slab loaded with 

graphene sheets. The magnetic line source is located at a distance of 𝑑 = 150 nm from the upper 

interface of the structure and the image plane is located at the same distance from the lower 

interface.  

 

2.4.2 Double-Slit Source 

To obtain a rough estimate of the resolution of the proposed structure, we utilize the double-

slit source at a distance 𝑑 from the upper interface of the structure as shown in Figure 2.12. The 

double-slit source consists of two subwavelength slits (2𝑤) spaced at a distance of 2𝑏 apart (center 

to center). As a starting point, we consider a TM-polarized electromagnetic wave, with 𝐻𝑦 , 𝐸𝑥, 
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and 𝐸𝑧 components, impinging on the structure. The incident electric field 𝐸𝑖(𝑘𝑥) and the 

transmitted electric field 𝐸𝑡(𝑘𝑥) can be written as [80] 

𝑬𝑖(𝑘𝑥) = 𝑒−𝑗𝑘𝑥𝑥+𝑗𝑘𝑧𝑧(−𝑘𝑥𝒛̂ − 𝑘𝑧𝒙̂)                                            (2.14) 

𝑬𝑡(𝑘𝑥) = 𝑇𝑒−𝑗𝑘𝑥𝑥𝑒+𝑗𝑘𝑧(𝑧+ℎ)(−𝑘𝑥𝒛̂ − 𝑘𝑧𝒙̂)                                     (2.15) 

where 𝑇 is the transmission function of the WM slab loaded with graphene sheets, which is 

obtained in Sec. 2.2. The electric field of the double-slit source (𝐸𝑠) can be calculated by [80] 

𝑬𝑠 = ∫ 𝑑𝑘𝑥𝑣𝑘𝑥
𝑒𝑗𝑘𝑧𝑧 (−𝑧̂ cos(𝑘𝑥𝑥) + 𝑥̂

𝑗𝑘𝑧

𝑘𝑥
sin(𝑘𝑥𝑥))                        (2.16)

∞

0

 

where 𝑣𝑘𝑥
= (

4

𝜋𝑘𝑥
) sin(𝑘𝑥𝑤) cos (𝑘𝑥𝑏) is the Fourier component of the aperture. The distribution 

of the transmitted near field at the image plane can be obtained by the integration of (2.15) with 

𝒱𝑘𝑥

𝑘𝑥
 over 𝑘𝑥. 

 

Figure 2.12. Geometry of the WM slab loaded with graphene sheets excited by a double-slit source 

placed at a distance 𝑑 from the upper interface, with the image plane at a distance 𝑑 from the lower 

interface. 
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To verify the subwavelength resolution, we study the electric field distribution by means 

of two narrow slits with 2𝑤 = 1000 nm separated by the distance of 2𝑏 = 1500 nm (𝜆/10 for 

the central operating frequency 𝑓 = 20 THz). Figure 2.13 depicts the normalized electric field 

intensity distribution calculated at the image plane (𝑑 = 150 nm) for 𝑓 = 18.5 THz (the lowest 

proper operating frequency). The black solid line represents the normalized intensity of the electric 

field for propagation in free space. It is observed that in the absence of the proposed structure, the 

subwavelength information is lost rapidly with the distance from the source plane and two slits are 

not resolvable. The field intensity profile at the image plane is depicted by the blue solid line when 

the structure is present. In the presence of the structure, the image is completely resolved according 

to the Rayleigh criterion which states that the total intensity at the mid-point of the sum intensity 

profile of two just-resolved slit source is 81% of the maximum intensity [96]. In Figure 2.13, the 

dashed and dash-dotted lines represent the imaging performance with and without the proposed 

lens which are obtained with CST Microwave Studio. It can be clearly seen that there is remarkable 

agreement between analytical and simulation results.  

 

Figure 2.13. The normalized electric field intensity distribution calculated at the image plane 

for 𝑓 = 18.5 THz. The black curve represents the field profile when the structure is absent. The 

blue curve is the field profile in the presence of the structure and the dashed and dash-dotted lines 

correspond to the CST Microwave Studio results. 
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Unlike other subwavelength imaging devices which have the common restriction of narrow 

spectral bandwidth and the increase/decrease of the incident wave frequency results in the 

complete loss of the resolution in the image plane, it is possible to obtain subwavelength imaging 

in a broad frequency range with no change in the parameters of the structure. In Figure 2.14, we 

provide the normalized electric field intensity distribution profiles at the image plane in the 

frequency range from 18 to 22 THz. It is apparent that the resolution of the structure becomes 

degraded with increasing the frequency. It is worth noting that even in the worst case (𝑓 = 22 

THz), two subwavelength slits can be resolved according to the Rayleigh criterion. Therefore, the 

proposed structure can cover a wide range of frequencies even if the parameters of the structure 

are kept the same. Figure 2.14 reveals two important points. First, the position of the maximum 

intensity is not matched with the position of the slit source center (the shift value is smaller than 

1/6 of the slits separation). This shift effect arises from the imperfect property of the transmission 

function. As shown in Figure 2.8, the transmission magnitude (|𝑇|) does not behave uniformly and 

exceeds unity especially for the frequencies lower than 19 THz, and thus the near field evanescent 

waves are effectively restored but in a manner of overamplification. This phenomenon would 

result in the destructive effects for the image profile of a double-slit source such as the large side 

lobes, the fat profile of the main lobe, and the significant shift of the intensity peak position. 

Second, as shown in Figure 2.14, an extra bump appears between the two maxima of the intensity 

profile for 𝑓 = 18 THz. The bump also arises from the imperfect transmission of the evanescent 

waves with a huge overamplification at the resonance as shown in Figure 2.6. Fortunately, the 

level of the bump and the shift of maxima as the artifacts of imaging are not significant enough to 

cause a considerable effect on resolving the two slits at the frequency range 𝑓 = 18.5 to 22 THz. 
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Figure 2.14. The normalized electric field distribution calculated at the image plane for a WM slab 

loaded with graphene sheets in the range from 18 to 22 THz. 

The total electric field distribution of the WM slab loaded with graphene sheets, the isolated 

WM slab, and two parallel graphene sheets with the following parameters: 𝑎 = 215 nm, 𝑟0 =

21.5 nm, ℎ = 2400 nm, and 𝜇𝑐 = 1.5 eV, are calculated in the 𝑥-𝑧 plane by using CST 

Microwave Studio and are shown in Figure 2.15. Figure 2.15 shows a plane wave with 𝑓 = 19 

THz, which is incident on the double-slit source from the left. Figures 2.15(a) and 2.15(b) represent 

the field distributions in the presence of two graphene sheets and the isolated WM slab, 

respectively. In these cases, all subwavelength information is lost at a short distance away from 

the slits. The near fields decay rapidly and the two subwavelength slits are not resolved at the 

position of the image plane. On the other hand, Figure 2.15(c) illustrates that the WM slab loaded 

with graphene sheets can effectively transmit the near field information of the source to the image 

plane and the two subwavelength slits are clearly resolved. The results are consistent with the 

transmission behaviors of the aforementioned cases in Figure 2.8. 



54 

 

 

Figure 2.15. CST simulation results for the electric field distribution of (a) two graphene sheets, 

wherein all subwavelength information is lost and two slits are not resolvable, (b) a WM slab, 

showing that the subwavelength information is not transmitted to the image plane, and (c) a WM 

slab loaded with graphene sheets that restores the field distribution from the object plane. The 

double-slit source is located at a distance of 𝑑 = 150 nm from the upper interface of the structure. 

Two slits are separated by a distance of 2𝑏 = 1500 nm and the width of the slits is 2𝑎 = 1000 

nm.  
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2.5 Tunable and Broadband Subwavelength Imaging 

In this section, we present a possibility of tuning the imaging frequencies of the WM slab 

loaded with graphene sheets by changing the chemical potential of graphene. As shown in Figure 

2.4, the structure’s performance depends intensely on the chemical potential of graphene. It is 

observed that by decreasing the chemical potential, the appropriate operating frequency range, 

which leads to a high resolution subwavelength imaging, will decrease. For instance, if we change 

the chemical potential from 1.5 eV to 0.5 eV, the operating frequency range decreases from (18.5-

22) THz to (10.5-13) THz. 

Here, we investigate a structure with the same parameters as in the previous section except 

that the graphene’s chemical potential is changed from 1.5 eV to 0.5 eV. Figure 2.16 shows the 

square normalized amplitude of the magnetic field profile calculated at the image plane as a 

function of 𝑥 𝜆⁄  at the operating frequency of 11 THz. We consider 𝑑 = 150 nm and the magnetic 

line source is placed at 𝑧 = 150 nm. The blue solid line is obtained by the analytical technique at 

the image plane. The resolution based on the HPBW criterion is  0.065𝜆. The dashed line shows 

the full wave simulation result achieved by using CST Microwave Studio and the HPBW 

resolution is equal to 0.088𝜆. The black solid line corresponds to the magnetic field propagation 

in free space with the resolution of 0.38𝜆. The resolution of the proposed structure improves nearly 

5.85 times in comparison to free space. According to HPBW criterion, the resolution of 𝜆/15 has 

been obtained analytically and validated by the full-wave simulation. As an important point, it 

should be mentioned that the better performance of the lens in terms of the resolution in 

comparison with the case of 𝜇𝑐 = 1.5 eV is because the dispersion curve of the structure has a 

larger value of Re(𝑘𝑥 𝑘0⁄ ) at the resonance frequency which leads to the higher and more uniform 

transmission response. 



56 

 

 

Figure 2.16. The square normalized amplitude of the magnetic field Hy calculated at the image 

plane for 𝑓 = 11 THz. The black curve represents the field profile when the structure is absent. 

The blue curve is the field profile in the presence of the structure and the dashed line corresponds 

to the CST Microwave Studio result. 

In addition to the tunability, we investigate the possibility of obtaining subwavelength 

imaging in a broad frequency range for the proposed structure with 𝜇𝑐 = 0.5 eV and ℎ =

2400 nm. In Figure 2.17, the magnetic line source is placed at 𝑑 = 150 nm and the magnetic field 

profiles are calculated at the image plane in the frequency range from 10.5 to 13 THz. It can be 

seen that the resolution based on the HPBW criterion is better than 𝜆/7 in this frequency range. 

Therefore, the proposed structure can cover a wide range of frequencies with fixed structural 

parameters. 
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Figure 2.17. Subwavelength imaging performance of a WM slab loaded with graphene sheets (μc=

0.5 eV) at different frequencies. The square normalized amplitude of the magnetic field Hy 

calculated at the image plane located at 𝑑 = 150 nm from the structure in the range from 10.5 to 

13 THz. 

The proposed structure has a remarkable improvement in comparison to other 

subwavelength imaging devices such as stacked graphene monolayers, wherein the source and 

object are positioned in the immediate vicinity of the lens [66], and the WM slab, where the source 

and image planes are located at a distance 𝑑 =  𝑎/2 from the WM [67]-[70]. It is observed that 

our lens can provide subwavelength imaging even when the source and object planes are placed at 

distances larger than the lattice constant of the WM slab. For example, here we assume a WM slab 

loaded with graphene sheets with 𝜇𝑐 = 0.5 eV and ℎ = 2400 nm at the operating frequency of 

𝑓 = 11 THz. The image/source plane has been considered to be at different distances in the range 

from 𝑑 = 150 nm to 𝑑 = 600 nm. It should be mentioned that although the distance is increased 

significantly in comparison to the lattice constant, the resolution of 𝜆/5 is obtained for 𝑑 =

600 nm (𝑑 = 2.79𝑎) as shown in Figure 2.18. In order to obtain a better resolution with the same 

structure, a stronger amplification of the near field to compensate the exponentially decaying effect 
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of the air gaps is necessary. This phenomenon can be realized by reducing the frequency. For 

example, if the magnetic line source is placed at 𝑑 = 500 nm (𝑑 = 2.32𝑎), the magnetic field 

profile at the image plane shows the resolution of 𝜆/6.66 at the operating frequency 𝑓 = 10 THz 

which is improved in comparison to the resolution of 𝜆/5.55 at 𝑓 = 11 THz. This result is omitted 

here for the sake of brevity. 

 

Figure 2.18. Subwavelength imaging performance of a WM slab loaded with graphene sheets (μc=

0.5 eV) at different distances of the source and image planes from the structure. 

 

2.6 Fabrication Guide 

The investigation on growing of graphene has been a controversial subject for researchers 

since its discovery in 2003. Two of the recently proposed methods are Chemical Vapor Deposition 

(CVD) [84] and Epitaxy [85]. As mentioned in [84], the CVD is more desirable from the 

fabrication point of view, wherein the graphene is grown on a nickel substrate, and then it can be 

transferred to a silicon-dioxide (SiO2) substrate. It is worth noting that this transfer process can be 

applied to any arbitrary substrate (Figure 2.1 in [86]), and the material properties of the graphene 

will be maintained and depend only on the initial nickel substrate. 
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It should be emphasized that throughout this paper we have assumed an ideal contact 

between the graphene and the WM. Additionally, we have assumed that the wires are of identical 

length. In fact, these two assumptions face with challenges when it comes to a fabrication process. 

Recently, the joining of nanowires has become a critical issue for device integration and 

miniaturization [97]. Various joining processes such as welding and soldering have been 

developed for the formation of the nanowire contacts. However, up to now, it has not been possible 

to solder or weld a nanowire to a graphene monolayer. In addition, the well-known plasmonic 

welding only concerns joining two similar plasmonic materials, which is not applicable here.  

To avoid the problem with connecting the wires to graphene and a non-uniform wire 

growth that may occur in the fabrication process, we consider a gap between the wires and the 

graphene sheets as depicted in Figure 2.19. As an example, we consider a WM slab loaded with 

graphene sheets with the following parameters: 𝑎 = 215 nm, 𝑟0 = 21.5 nm, 𝜇𝑐 = 1.5 eV, 𝜀ℎ = 1, 

and ℎ = 2400 nm. Figure 2.20 shows the normalized amplitude of the magnetic field profile 

calculated at the image plane as a function of 𝑥/𝜆 at the operating frequency of 𝑓 = 19 THz for 

different values of the gap (𝑔 = 0, 10, 15, and 25 nm). The magnetic line source is located at 𝑑 =

150 nm from the upper side of the structure. The solid blue line represents the performance of the 

structure for an ideal contact between the nanowires and the graphene sheets, and the resolution of 

the structure is 𝜆/10. By increasing the gap up to 10 nm, the strong coupling between the surface 

plasmons of the graphene sheets and the WM leads to a subwavelength imaging with high 

resolution and low distortion as shown in Figure 2.20. The response of the structure for 𝑔 = 10 

nm is shown by the brown star symbols. Further increase in the gap size causes a significant 

distortion in subwavelength imaging, wherein remarkable side lobes appear in the magnetic field 

distribution at the image plane. This phenomenon arises due to strongly confined surface plasmons 
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on graphene sheets, which consequently avoids the strong coupling between the surface plasmons 

of graphene and the WM slab for larger gaps.  

 

Figure 2.19. Schematics of a WM slab embedded in a dielectric slab with the permittivity of εh 

loaded with graphene sheets which are placed at a distance of 𝑔 (gap size) on the upper and lower 

interfaces of the structure. 

 

Figure 2.20. The square normalized amplitude of the magnetic field Hy calculated at the image 

plane located at 𝑑 = 150 nm from the structure at the operating frequency of 𝑓 = 19 THz for 

different values of gap (𝑔 = 0, 10, 15, and 25 nm). 

In addition, in order to clarify qualitatively the effect of the gap on the imaging performance 

of the lens, snapshots of the magnetic field in the 𝑥-𝑧 plane calculated using CST Microwave 
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Studio are shown in Figure 2.21 at 𝑓 = 19 THz for different values of the gap size. It can be 

observed that for 𝑔 = 10 nm [Figure 2.21(a)], the results are promising and consistent with those 

for the ideal contact case [Figure 2.11]. The magnetic field distributions for 𝑔 = 15 nm and 𝑔 =

25 nm, which are shown in Figures 2.21(b) and 2.21(c), respectively, confirm the deterioration 

effect with the increase of the gap size. 

 

Figure 2.21. CST simulation results for the magnetic field distribution Hy of a WM slab loaded 

with graphene sheets for different values of the gap size, (a) 𝑔 = 10, (b) 𝑔 = 15, and (c) 𝑔 = 25 

nm. 

It is worth mentioning that if the wires are embedded in a dielectric slab such as silicon-

dioxide, the fabrication of the lens becomes easier in a way that the gap allows the graphene to be 

attached to the substrate and avoids a direct connection of wires to graphene. This also relaxes the 

requirements on the wires, as it is only important that the wires do not protrude from the substrate. 

Our study shows that for a WM slab loaded with graphene sheets with the following parameters: 

𝑎 = 215 nm, 𝑟0 = 21.5 nm, 𝜇𝑐 = 1.5 eV, and ℎ = 2400 nm, by embedding the wires in a 

dielectric with the permittivity of 𝜀ℎ = 4, the dispersion relation of the structure with the ideal 
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contact shifts to lower frequencies and subwavelength imaging can be obtained at the frequencies 

around 𝑓 = 9.8 THz with the resolution of 𝜆/8.334. According to our study, it has been concluded 

that the required gap size to restore the fine details of the source at the image plane will be 𝑔 = 1 

nm, which is smaller than that of the WM in the air due to the fast damping of the surface plasmons 

of the graphene in the dielectric spacer medium, which prevents the adequate surface plasmon 

coupling of the graphene sheets and the WM slab. The results are omitted here for the sake of 

brevity.
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CHAPTER III 

 

3 TUNABLE DUAL-BAND SUBWAVELENGTH IMAGING WITH A WIRE MEDIUM 

SLAB LOADED WITH NANOSTRUCTURED GRAPHENE METASURFACES 

 

3.1 Introduction 

The resolution of the conventional imaging systems is restricted by the natural diffraction 

limit. In order to overcome this limitation, various kinds of subdiffraction near-field imaging 

mechanisms have been proposed. One well-known solution is to use a metamaterial lens with 

negative refractive index property. In 1968, Veselago theoretically pointed out a novel kind of 

electromagnetic materials with simultaneously negative permeability and permittivity, known as 

negative index materials (NIM) [47]. Following this idea, Pendry proposed a class of “perfect 

lenses”. Pendry realized that a NIM slab, with the relative parameters ε=-1 and μ=-1, not only 

focus the propagating waves, but also amplify the exponentially decaying evanescent waves of a 

source field [48]. The NIM lens is far from being implemented into the imaging devices due to the 

high sensitivity to the energy dissipation and loss (the imaginary part of ε and μ) [98]. Thus, the 

term “super lens” is used for the lenses such as the plasmonic silver film [49], [99], the magneto-

inductive lens [100], and the swiss-roll structure [101] which take this practical limit into account. 

Super lenses can recover the subwavelength information through evanescent enhancement; 

unfortunately, such lenses are restricted by an extremely short working distance between the 

source, lens, and image, and have a narrow resonant frequency range.
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These subwavelength imaging lenses have important potential biomedical and 

microelectronics applications in sub-diffraction microscopy, lithography, tomography, sensing, 

and nondestructive characterization of materials [50]-[55]. 

Indeed, the Pendry’s subwavelength imaging process physically arises at the lens 

interfaces, and not within the metamaterials volume. Therefore, it is also possible to utilize a pair 

of resonant grids, conjugate sheets, and metasurfaces which can support surface-wave modes 

(surface plasmon-polaritons) instead of a bulk material [56]-[59].  

Graphene as a two dimensional material with unique electronic, mechanical, and optical 

properties [39], [60], [61] has been employed for different metamaterial applications [62]-[65]. In 

contrast to the above mentioned metamaterials, graphene is widely tunable by the change of 

graphene’s electrochemical potential via chemical doping, magnetic field, and electrostatic gating 

[39]. Recently, Ref. [66] presented a frequency tunable graphene lens, in which the enhancement 

of evanescent waves for subwavelength imaging is realized by the well-coupled surface plasmons 

supported by the graphene sheets. It should be noted that the performance of lens intensely depends 

on the distance between graphene sheets and the resolution reduces rapidly when the thickness of 

the lens is increased. 

Another approach which is based on the canalization principle was proposed in [67]-[70]. 

A slab of WM with the thickness equal to an integer number of half wavelength is capable of 

transforming both the evanescent and propagating harmonics into the transmission-line modes 

along the wires. The loss sensitivity of this structure is remarkably small and the resolution is 

restricted only by the periodicity of the wires.  This technique has been theoretically predicted and 

confirmed experimentally in [69], [82]. It has been shown that due to the employment of metal, 
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the properties of this lens cannot be tuned after fabrication and the lens has narrow spectral 

bandwidth.  

It has been shown that the periodic array of graphene nanopatches, unlike the uniform 

graphene monolayer which is intrinsically inductive [6], has dual capacitive/inductive properties 

in the low-THz spectrum [30]. The required capacitive/inductive reactance of GNM can be 

obtained by a proper selection of the gap, array periodicity, and Fermi energy level of graphene. 

Here, this unique property of GNM is exploited to design a dual-band subwavelength imaging 

device. At lower THz frequencies the behavior of the GNM is similar to that of the metallic patches 

(capacitive) [76] and at higher THz frequencies it behaves similar to graphene monolayer 

(inductive). We show that a WM slab loaded with GNMs has the advantages of widely tunable 

subwavelength imaging and the possibility of obtaining image even if the distance between GNMs 

is significant fraction of wavelength. The principle of operation of our lens is based on the 

enhancement of evanescent waves which is provided by the coupling of the surface plasmons at 

the lower and upper interfaces. The WM slab has a remarkable effect on the strong coupling and 

waveguiding of evanescent waves to the other side of the structure. 

In order to analyze the transmission/reflection properties of the WM slab loaded with 

GNMs, a nonlocal homogenization model is utilized [74], [75], wherein the WM is modeled as a 

uniaxial anisotropic material characterized by a nonlocal dielectric function with a generalized 

additional boundary condition (GABC) at the connection of wires to graphene. The subwavelength 

imaging resolution of a structure can be assessed by various techniques. Here, we employ two 

well-known methods to evaluate the imaging properties of the proposed structure. The 

performance of the lens is studied in the presence of the double-slit and magnetic line sources, and 

the resolution is quantified by using the half-power beamwidth (HPBW) [76] and the Rayleigh 
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[77]-[81] criteria. The analytical results are validated with the full-wave electromagnetic simulator, 

CST Microwave Studio [46], showing good agreement. 

The practical realization of the proposed lens has several challenges. First, the synthesis of 

a large area continuous graphene film with mono-dispersity and large charge carrier mobility faces 

with severe problems such as inevitable flocculation and coalescence. Recently, various methods 

have been proposed to achieve a graphene monolayer with the lowest imperfection such as 

Exfoliation [102], Chemical Vapor Deposition (CVD) [84] and Epitaxy [85]. Second, the graphene 

should be fabricated in a form of nanoscale patches. Ref. [103] presents a novel method in direct 

synthesis of large-scale graphene films using CVD on thin nickel layers, and patterning the films 

and transferring them to arbitrary substrates. Also, recent advances in pattering of graphene has 

been studied in [104]-[107]. Third, the process of joining the WM to the intensely thin GNM deals 

with some obstacles due to the fact that the well-known methods such as ohmic contact, soldering, 

plasmonic welding are not applicable in the proposed structure. To overcome this limitation, here 

we show that a small gap between the GNM and the WM does not change the response of the lens 

because of the strong coupling of the surface plasmons of the GNMs and the WM slab. This 

approach has been studied by the full-wave simulation in CST Microwave Studio, which confirms 

this claim.  

This chapter is organized as follows: In Section 3.2, we present the closed-form expressions 

for the reflection and the transmission coefficients of the WM slab loaded with GNMs based on 

the nonlocal homogenization model. The dispersion behavior of odd and even modes and the 

transmission response of the structure are studied in Section 3.3. In Section 3.4, the performance 

of the proposed lens is analyzed in the presence of the magnetic line source and the double-slit 

source. The critical challenges in the practical realization of the lens have been discussed, and a 
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promising approach in order to overcome these obstacles has been proposed in Section 3.5. The 

conclusion is drawn in Section 3.6. A time dependence of the form 𝑒𝑗𝜔𝑡  is assumed and 

suppressed. 

 

3.2 Nonlocal Model for WM with Graphene Nanopatches 

As shown in Figure 3.1, we consider a WM slab loaded with two-dimensional (2D) GNM 

[with a typical geometry as depicted in Figure 3.1(c)] illuminated by a TM polarized uniform plane 

wave obliquely incident at an angle 𝜃𝑖. In this structure, 𝐷 is the period of the patches and wires, 

𝑔 is the gap between the patches, 𝑟0 is the radius of the wires, 𝜀ℎ is the permittivity of the dielectric 

slab, and ℎ is the thickness of the structure. The metallic wires are oriented along the 𝑧-direction 

and two GNMs are located at 𝑧 = 0 and 𝑧 = −ℎ. To determine the transmission/reflection 

response of the structure with a TM plane-wave excitation, the even/odd excitation mode technique 

is utilized. By considering the perfect electric conductor (PEC) and the perfect magnetic conductor 

(PMC) at the center of the wires (𝑧 = −ℎ/2), the even and odd responses of the structure can be 

obtained, respectively. Figure 3.1(b) demonstrates the cross-section view in the presence of 

PEC/PMC symmetries. 

In our analytical model, the two GNMs are treated as impedance sheets, whereas the WM 

slab is modeled as a uniaxial anisotropic material characterized by a nonlocal effective dielectric 

function along the wires 𝜀𝑧𝑧 = 𝜀ℎ[1 − 𝑘𝑝
2 (𝑘ℎ

2 − 𝑘z
2)⁄ ], where 𝑘ℎ = 𝑘0√𝜀ℎ is the wave number of 

the host medium, 𝑘0 = 𝜔 𝑐⁄  is the free space wave number, 𝜔 is the angular frequency, 𝑐 is the 

speed of light, 𝑘𝑧 is the 𝑧-component of the wave vector 𝑘⃗ = (𝑘𝑥 , 0, 𝑘𝑧), and 𝑘𝑝 is the plasma 

wave number as 𝑘𝑝 = √(2𝜋 𝑎2⁄ ) (ln (𝑎 2𝜋𝑟0) + 0.5275)⁄⁄  [76].  
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Figure 3.1. Schematics of a WM slab loaded with GNMs: (a) 3D view, (b) cross-section view of 

the structure by considering PEC/PMC at the symmetry plane, and (c) top view. 

A TM-polarized plane wave excites both TEM and the extraordinary TM modes in the 

homogenized WM slab. First, it is assumed that the PEC plane is located at 𝑧 = −ℎ 2⁄ . The total 

magnetic fields in the air region above the structure (region 1) and in the WM slab (region 2), as 

shown in Figure 3.1(b), can be written as follows: 

𝐻𝑦
(1)

= (𝑒𝛾0𝑧 + 𝑅even𝑒
−𝛾0𝑧)𝑒−𝑗𝑘𝑥𝑥 

𝐻𝑦
(2)

= (𝐴TM
+ 𝑒𝛾TM  z + 𝐴TM

− 𝑒−𝛾TM  𝑧 + 𝐵TEM
+ 𝑒𝛾TEM z  + 𝐵TEM

− 𝑒−𝛾TEM 𝑧)𝑒−𝑗𝑘𝑥𝑥       (3.1) 

where 𝐴TM
±

 and 𝐵TEM
±

 are the amplitudes of the extraordinary TM and transmission-line TEM 

modes in the WM slab and 𝑅even  is the reflection coefficient of the even-mode excitation. The 

propagation constant in free space is 𝛾0 = √𝑘𝑥
2 − 𝑘0

2 and 𝑘𝑥 is the 𝑥-component of the wave vector 

𝑘⃗ = (𝑘𝑥 , 0, 𝑘𝑧). The value of 𝛾0 is purely imaginary if 𝑘𝑥 = 𝑘0 sin𝜃𝑖 (propagating mode in free 

space), and it becomes real valued if 𝑘𝑥 > 𝑘0 (evanescent modes in free space). Therefore, the 

distribution of the electromagnetic field in region 1 can include both the spatial harmonics of 

propagating plane waves and evanescent modes (the subwavelength spatial spectrum). In (3.1), the 
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propagation constants of the TEM and TM modes are  𝛾TEM = 𝑗𝑘ℎ = 𝑗𝑘0√𝜀ℎ and 𝛾TM =

√𝑘𝑝
2 + 𝑘𝑥

2 − 𝑘0
2. In order to determine the unknown coefficients (𝑅even , 𝐴TM

±
, and 𝐵TEM

±
), the two-

sided impedance boundary conditions are satisfied at the GNM interface (𝑧 = 0): 

𝐸𝑥
(1)

| 
𝑧=0+

= 𝐸𝑥
(2)

| 
𝑧=0−

= 𝑍𝑔[ 𝐻𝑦
(2)

| 
𝑧=0−

− 𝐻𝑦
(1)

| 
𝑧=0+

]                             (3.2) 

where 𝑍𝑔 is the surface impedance of the GNM and given by [30], [31]: 

𝑍𝑔 = 𝑅𝑠 + 𝑗𝑋𝑠 =
𝐷

𝜎𝑠(𝐷−𝑔)
− 𝑗

𝜋

2𝐷𝜔𝜀0(
𝜀ℎ+1

2
) ln[csc(

𝜋𝑔

2𝐷
)]
 .                           (3.3)  

In (3.3), 𝑅𝑠 is the surface resistance per unit cell related to the conduction losses, 𝑋𝑠 is the 

surface reactance per unit cell,  and 𝜎𝑠 is the graphene’s complex surface conductivity modeled 

with the Kubo formula using closed-form expressions for the interband (𝜎inter) and intraband 

(𝜎intra) contributions [60]: 

𝜎intra = −𝑗
𝑘𝐵𝑒2𝑇

𝜋ℏ2(𝜔 − 𝑗𝜏−1)
(

𝜇𝑐

𝑇𝑘𝐵
+ 2 ln (𝑒

− 
𝜇𝑐

𝑇𝑘𝐵 + 1)) 

𝜎inter ≈
𝑗𝑒2

4𝜋ℏ
ln (

2|𝜇𝑐| − 𝜔ℏ

2|𝜇𝑐| + 𝜔ℏ
)  

𝜎𝑠 = 𝜎intra + 𝜎inter .                                                            (3.4) 

In (3.4), ℏ is reduced Plank’s constant, e is the electron charge, 𝑘𝐵 is Boltzmann’s constant, 

𝜏 is the relaxation time, T is the temperature, and 𝜇𝑐 is the chemical potential. It should be 

mentioned that in the low-THz region and below the interband transition threshold, ℏ𝜔 < 2|𝜇𝑐|, 

𝜎intra dominates over 𝜎inter [60]. As an example, Fig. 2 shows the imaginary part of the surface 

impedance of a free-standing GNM in air as a function of frequency with the following structural 

parameters: 𝐷 = 215 nm, 𝑔 =  21.5 nm, 𝜀ℎ = 1, 𝜏 = 0.5 ps, and 𝜇𝑐 =  0.5, 1, and 1.5 eV. The 
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surface impedance of GNM changes from capacitive to inductive as the frequency increases. It can 

be seen that when the imaginary part of surface impedance, Im(𝑍𝑠), has a negative value, the GNM 

behaves as a capacitive reactive surface similar to the metallic patches, and the GNM acts as an 

inductive reactive surface like a metallic mesh-grid and graphene monolayer when Im(𝑍𝑠) has a 

positive value. In addition, by employing the tunability property of graphene, the frequency at 

which the transition from capacitive to inductive surface impedance occurs for GNM can be tuned 

via the chemical potential even if the other structural parameters are kept the same. This tunability 

and dual property of GNM are the motivation to present a tunable dual-band imaging device. In 

this study, it is assumed that 𝑇 = 300 K, 𝜀ℎ = 1, 𝜏 = 0.5 ps, 𝐷 = 215 nm, and 𝑟0 = 21.5 nm. In 

all following results, the full graphene interband and intraband conductivities are considered. 

 

Figure 3.2. Imaginary part of the surface impedance, Im(Zs), of a free-standing GNM with different 

chemical potentials in the range from 0.5 to 1.5 eV. 

At the PEC interface (𝑧 = −ℎ 2⁄ ), we assume that (1 𝜀ℎ⁄ )(𝑑𝐻𝑦 𝑑𝑧⁄ ) = 0 which is 

equivalent to impose that the tangential electric field vanishes at the PEC plane. Furthermore, it 

has been shown for the case wherein the WM is connected to the perfect electric conductor, an 
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additional boundary condition (ABC) is required [87]-[91]. The microscopic ABC which is 

enforced at the PEC ground plane (𝑧 = −ℎ/2+) can be written for the wire current, 𝐼(𝑧), as [92]: 

𝑑𝐼(𝑧)

𝑑𝑧
|
𝑧 = (−ℎ/2)+ = 0                                                        (3.5) 

and in terms of macroscopic fields: 

𝜕

𝜕𝑧
(𝑘0𝜀ℎ𝐸𝑧

(2)
+ 𝑘𝑧𝜂0𝐻𝑦

(2)
) |

𝑧 = (−ℎ/2)+ = 0.                            (3.6) 

In addition, it requires the use of GABC for the microscopic current at the connection of 

wires to graphene at 𝑧 = 0− [74], [75]: 

[
𝜎𝑠

𝑗𝜔𝜀0𝜀ℎ

𝑑𝐼(𝑧)

𝑑𝑧
+ 𝐼(𝑧)] |

𝑧 = 0− = 0                                        (3.7) 

and in terms of macroscopic fields: 

(1 +
𝜎𝑠

𝑗𝜔𝜀0𝜀ℎ

𝜕

𝜕𝑧
) (𝑘0𝜀ℎ𝐸𝑧

(2)
+ 𝑘𝑧𝜂0𝐻𝑦

(2)
) |

𝑧 = 0− = 0.                      (3.8)  

By enforcing the aforementioned boundary conditions, the closed-form expression of the 

reflection coefficient for PEC symmetry (𝑅even) can be obtained by [74], [75] 

𝑅even =

𝑁even

𝐷even
coth (𝛾TM

ℎ
2
) cot (𝑘ℎ

ℎ
2
) − (

1
𝛾0

+ 𝑗
𝜂0

𝑍𝑔𝑘0
)

𝑁even
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coth (𝛾TM

ℎ
2) cot (𝑘ℎ

ℎ
2) + (

1
𝛾0

− 𝑗
𝜂0

𝑍𝑔𝑘0
)
 , 

𝑁even = (
1

𝜀𝑧𝑧
TM

− 1) (
𝜎𝑠𝛾TM

𝑗𝜔𝜀0𝜀ℎ
tanh (𝛾TM

ℎ

2
) + 1) + (1 −

𝜎𝑠𝑘ℎ

𝑗𝜔𝜀0𝜀ℎ
tan (𝑘ℎ

ℎ

2
)) , 

𝐷even = −
𝑘ℎ

𝜀ℎ
(

1

𝜀𝑧𝑧
TM

− 1) (
𝜎𝑠𝛾TM

𝑗𝜔𝜀0𝜀ℎ
+ coth (𝛾TM

ℎ

2
)) +

𝛾TM

𝜀ℎ
(cot (𝑘ℎ

ℎ

2
) −

𝜎𝑠𝑘ℎ

𝑗𝜔𝜀0𝜀ℎ
).   (3.9) 
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The closed-form expression of the reflection coefficient for the PMC symmetry (𝑅odd) can 

be derived by using a similar approach: 

𝑅odd =

𝑁odd

𝐷odd
tanh (𝛾TM

ℎ
2) tan (𝑘ℎ

ℎ
2) − (

1
𝛾0

+ 𝑗
𝜂0

𝑍𝑔𝑘0
)

𝑁odd

𝐷odd
tanh (𝛾TM

ℎ
2) tan (𝑘ℎ

ℎ
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1
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)
 , 
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1
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TM

− 1)(
𝜎𝑠𝛾TM
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ℎ
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𝐷odd = +
𝑘ℎ

𝜀ℎ
(

1

𝜀𝑧𝑧
TM

− 1)(
𝜎𝑠𝛾TM

𝑗𝜔𝜀0𝜀ℎ
+ tanh (𝛾TM

ℎ
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)) +

𝛾TM
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(tan (𝑘ℎ

ℎ

2
) +

𝜎𝑠𝑘ℎ
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) (3.10) 

where 𝜀𝑧𝑧
TM = 𝜀ℎ𝑘𝑥

2/(𝑘𝑝
2 + 𝑘𝑥

2) is the relative effective permittivity for TM polarization. The 

results can be validated by considering the limiting case of 𝜎𝑠 → 0. In this case, (3.9) and (3.10) 

turn to the WM slab expressions derived in [91]. The transmission/reflection response of the 

structure (shown in Figure 3.1(a)) can be obtained by the superposition principle as follows: 

𝑅 =
1

2
(𝑅even + 𝑅odd)                                                         (3.11) 

𝑇 =
1

2
(𝑅even − 𝑅odd).                                                       (3.12) 

 

3.3 Parametric study of Dispersion and Transmission Properties 

In order to determine the appropriate operating frequency regime wherein the enhancement 

of evanescent waves leads to the recovering of the source details at the image plane, we study the 

dispersion behavior of the TM𝑥 surface waves and the transmission response of the WM slab 
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loaded with GNMs. The ultimate goal is designing a subwavelength imaging lens with a high 

resolution and low distortion properties. 

The dispersion relation of the lens can be obtained by applying the perfect electric 

conductor (PEC) and perfect magnetic conductor (PMC) planes at 𝑧 = −ℎ 2⁄  [as shown in Figure 

3.1(b)]. The response of the structure for even excitation can be achieved by finding the complex 

roots of the dispersion function [denominator of the reflection coefficient, 𝑅even , in (3.9)]. 

Similarly, the response of the structure for the odd excitation can be obtained from the reflection 

coefficient, 𝑅odd, in (3.10). At lower THz frequencies, the GNM behaves as a capacitive reactive 

surface. The significant resonance of the structure is associated with the even modes, and thus, we 

restrict our analysis to the modes obtained with the PEC symmetry. Conversely, the functionality 

of GNM changes to the inductive at higher THz frequencies. As a result, the significant resonances 

correspond to the odd modes and we study only the modes which are obtained with the PMC 

symmetry. Figure 3.3 shows the dispersion behavior of the normalized propagation constant 

(𝑘𝑥 𝑘0⁄ ) of the odd/even TM𝑥 modes of the WM slab loaded with GNMs with the following 

structural parameters: 𝜇𝑐 = 0.5 eV and ℎ = 2400 nm. At low frequencies (𝑓 < 20 THz), the real 

part of (𝑘𝑥 𝑘0⁄ ) for the proper bound forward mode (the solid brown line) is close to 1 and the 

imaginary part has a negligibly small negative value, indicating that the proper complex bound 

mode (surface plasmon) interacts weakly with the WM slab and propagates primarily in the air 

region in the vicinity of graphene sheet. In this regime, the real part of the proper bound backward 

mode (the solid blue line) has extremely large value and the imaginary part has a negligibly small 

positive value. This mode is highly dispersive and strongly interacts with the structure (the field is 

primarily concentrated below the GNM in the wire medium). At the frequencies around 22.8 THz 

stopband occurs for the first TM𝑥 surface bound mode. In the same way, the propagation of the 
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second TM𝑥 surface bound mode, which corresponds to the PMC symmetry, stops at the 

frequencies near 25.9 THz. 

 

Figure 3.3. Dispersion behavior of the even/odd modes of a WM slab loaded with GNMs (μc=

0.5 eV and ℎ = 2400 nm). The solid line represents the real part of the normalized propagation 

constant, Re(kx / k0), and the dashed line represents the imaginary part of the normalized 

propagation constant, Im(kx / k0). 

It should be mentioned that the strong enhancement of the evanescent waves ideally can 

be obtained when the dispersion response of the structure becomes maximally flat at the operating 

frequency. Physical mechanism behind this condition can be described as the efficient coupling of 

evanescent waves with larger wave vectors to the surface modes which causes the resonant 

interaction. It can be shown that the turning point (the frequency at which the forward and 

backward waves become near to each other) to some extent has the required conditions for the 

subwavelength imaging with low distortion and high resolution. In order to validate this claim, we 

utilize the transmission response of the device as a function of wave vector 𝑘𝑥/𝑘0 which can 

provide more quantitative and detailed information about the structure’s performance in 
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subwavelength imaging [93]. The behavior of the transmission coefficient is sensitive to the 

variations in the operating frequency. Therefore, the transmission magnitude |𝑇| as a function of 

Re(𝑘𝑥 𝑘0⁄ ) is calculated at different frequencies of operation and depicted in Figure 3.4. At 𝑓 =

22.8 THz and 25.9 THz, |𝑇| has a smooth behavior which exceeds unity and leads to amplification 

of the near field in the range 1< Re(𝑘𝑥 𝑘0⁄ ) < 4. On the other hand, at the frequencies of 22 THz 

and 25 THz, |𝑇| has two transmission peaks which are not beneficial, due to the lower transmission 

between the poles. In addition, the observed resonant enhancement deteriorates the subwavelength 

imaging since some of the spatial harmonics are amplified by a large factor. By a careful study of 

the dispersion relation and the transmission coefficient, it can be concluded that the appropriate 

frequencies for subwavelength imaging are 22.8 THz and 25.9 THz for the aforementioned 

parameters. In Section 3.4, we investigate the validity of this claim. 

 

Figure 3.4. Magnitude of the transmission coefficient as a function of Re(kx / k0) calculated for 

the structure at different operating frequencies (𝑓 =  22, 22.8, 25, and 25.9 THz). 

In contrast to the other well-known subwavelength imaging devices which operate at single 

carefully selected frequency and cannot be tuned after fabrication, this lens has large tunability 

with respect to the chemical potential as shown in Figure 3.2. Therefore, the presence of graphene 
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provides more degrees of freedom regarding the operating frequency. It is observed that by 

increasing the chemical potential, the frequency in which the imaginary part of the surface 

reactance of the GNM is equal to zero, increases to higher frequencies. The chemical potential can 

be largely tuned either passively by doping the profile (density and type of carriers) or 

chemical/structural surface modification, or actively by an external static electric field or magnetic 

field [60]. Figure 3.5 shows the dispersion behavior of the normalized propagation constant 

(𝑘𝑥 𝑘0⁄ ) of the odd/even TM𝑥 modes of the WM slab loaded with GNMs with the following 

structural parameters: 𝜇𝑐 = 1.5 eV and ℎ = 2400 nm. It can be seen that by changing the chemical 

potential from 0.5 eV to 1.5 eV, the operating frequencies increase to 33.5 THz and 43.88 THz, 

respectively.  

 

Figure 3.5. Dispersion behavior of the even/odd modes of a WM slab loaded with GNMs (μc=

1.5 eV and ℎ = 2400 nm). The solid line represents the real part of the normalized propagation 

constant, Re(kx / k0), and the dashed line represents the imaginary part of the normalized 

propagation constant, Im(kx / k0). 
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It is worth noting that by decreasing the length of the lens, the overall dispersion behavior 

does not change drastically. However, the first and second stopbands will shift to the higher 

frequencies. For example, by changing the length from 2400 nm to 1200 nm, the operating 

frequencies change to 38 THz and 46.85 THz (the chemical potential is assumed as 𝜇𝑐 = 1.5 eV). 

At lower THz frequencies the dispersion behavior of WM slab loaded with GNMs is 

similar to some extent to that of WM slab loaded with metallic patch arrays which is studied in 

details in [76]. As shown in Figure 3.3, the forward and backward modes do not join each other at 

the turning point. This phenomenon is taken place due to the presence of loss in graphene. In [76], 

the metallic patch arrays are assumed ideally lossless. Therefore, the forward and backward 

branches are connected at the turning point.  On the other hand, at higher THz frequencies, there 

are significant differences between the dispersion behavior of the proposed lens and the WM slab 

loaded with graphene monolayer sheets. These differences occur as a result of the presence of 

GNMs which leads to the propagation of backward wave and the dispersion curve does not become 

maximally flat at the left bound of the stopband for the proper complex mode. 

 

3.4 Study of Resolution 

In this section, we employ two widely used approaches to investigate the imaging 

properties of the structure. First, we placed an infinite magnetic line source at a distance from the 

upper interface of the structure, and calculated the magnetic field distribution at the same distance 

from the lower interface. The resolution of the lens is quantified by the HPBW criterion [76]. In 

the second approach, the performance of the lens is assessed by a double-slit source and then 

interpreted by the Rayleigh criterion [77]-[81]. 
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3.4.1 Magnetic Line Source 

In order to characterize the resolution of the lens, we consider an infinite magnetic line 

source directed along the 𝑦-direction and located at a distance 𝑑 from the upper interface of the 

lens. This distance is chosen typically less than 𝜆0/8, where 𝜆0 is the free-space wavelength. 

Therefore, the impinging evanescent waves can effectively interact with the structure and lens can 

recover fine details of the source through evanescent enhancement. The geometry is shown in 

Figure 3.6. The current density of this two-dimensional infinite magnetic line source is 𝑱𝑚 =

𝐼0𝛿(𝑧 − 𝑑)𝛿(𝑥)𝒚̂, with the excited magnetic field given by 

𝑯(𝑥, 𝑧) =
𝐼0𝑘0

2

𝑗𝜔𝜇0
[
1

4𝑗
𝐻0

(2)(𝑘0𝜌)] 𝒚̂                                            (3.13) 

where 𝐻0
(2)(𝑘0𝜌) is the zero-order Hankel function of the second kind and 𝜌 = √𝑥2 + (𝑧 − 𝑑)2. 

The magnetic field at the image plane (distance 𝑑 from the lower interface of the structure) when 

the slab illuminated by the source can be expressed by a Sommerfeld-type integral as [76]:  

𝐻𝑦(𝑥) =
𝐼0𝑘0

2

𝑗𝜋𝜔𝜇0
∫

1

2𝛾0
𝑒−𝛾0(2𝑑)𝑇(𝜔, 𝑘𝑥) cos(𝑘𝑥𝑥)𝑑𝑘𝑥

∞

0
                        (3.14)  

where 𝛾0 = √𝑘𝑥
2 − 𝑘0

2 is the propagation constant in free space and 𝑇(𝜔, 𝑘𝑥) is the transfer 

function of the structure defined in (3.12). It should be mentioned that the structure is assumed 

unbounded in the 𝑥 and 𝑦 directions. 
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Figure 3.6. Geometry of the WM slab loaded with GNMs excited by a magnetic line source placed 

at a distance 𝑑 from the upper interface, with the image plane at a distance 𝑑 from the lower 

interface. 

Figures. 3.7(a) and 3.7(b) show the square normalized amplitude of the magnetic field 𝐻𝑦  

calculated at the image plane as a function of 𝑥 𝜆⁄  at the operating frequencies of 22.8 THz and 

25.9 THz, respectively. It is assumed that the magnetic line source is located at 𝑑 = 150 nm. In 

Figures. 3.7(a) and 3.7(b), the blue solid lines have been obtained by the numerical integration of 

the Sommerfeld integral in (3.14) and the half-power beamwidths (HPBWs) are equal to 0.12𝜆 

and 0.16𝜆. The brown dashed lines represent the performance of the proposed lens which is studied 

by using electromagnetic simulator CST Microwave Studio and according to the HPBW criterion, 

the resolutions are approximately 0.1𝜆 (𝑓 = 22.8 THz) and 0.14𝜆 (𝑓 = 25.9 THz). The black 

solid lines represent the magnetic-field profile for the propagation in free space and the HPBWs 

are equal to 0.74𝜆 (𝑓 = 22.8 THz) and 0.84𝜆 (𝑓 = 25.9 THz). Therefore, the resolution better 

than 𝜆/6 for both dual operating bands has been obtained analytically and verified with the full-

wave simulation.  

As shown in Figure 3.4, although the amplitude of the transmission slightly exceeds 1 

[lg(|𝑇|) = 0] in the range of 1< Re(𝑘𝑥 𝑘0⁄ ) < 4 at the operating frequencies of 22.8 THz and 25.9 
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THz,  the total behavior of the transmission curve is relatively smooth and flat which means that 

the structure transfers the evanescent fields in this range without distortion. This insignificant 

amplification is helpful to compensate the decaying effect of the air gaps above and below the 

structure (2𝑑 = 300 nm). 

 

Figure 3.7. The square normalized amplitude of the magnetic field Hy calculated at the image plane 

for (a) 𝑓 =  22.8 THz and (b) 𝑓 =  25.9 THz. The black curve represents the field profile when the 

structure is absent. The blue curve is the field profile in the presence of the structure and the dashed 

line corresponds to the CST Microwave Studio result. 

In the CST Microwave Studio, the magnetic line source is modeled by a current-carrying 

square loop and the structure is assumed periodic along the 𝑦-direction. The width of the slab has 

been fixed at 2.45𝜆0 (at the operating frequency of 𝑓 = 22.8 THz) along the 𝑥-direction. The 

metallic wires are modeled as the copper metals (𝜎 = 5.8 × 107 s
m⁄ ) and the effect of ohmic 

losses is taken into account. A snapshot of the distribution of magnetic field 𝐻𝑦  in the 𝑥-𝑧 plane 

calculated using CST is depicted in Figures. 3.8(a) and 3.8(b) for 𝑓 = 22.8 THz and 25.9 THz. 

The image is formed at the lower interface of the structure and the resolution of the proposed 
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structure is approximately 5 times better than in free space for both of the operating frequencies. 

The resolution of the image is nearly insensitive to the effect of losses. Figure 3.8 clearly shows 

the canalization of the near field along the wires. The slight quantitative disagreement between the 

analytical and simulation results in Figure 3.7 arises due to the fact that the structure is considered 

finite in the 𝑥-direction in the CST simulation and the reflection of surface waves at the edges of 

the structure leads to side lobe artifacts in the subwavelength imaging. 

 

Figure 3.8. CST simulation result for the magnetic field distribution Hy of a WM slab loaded with 

GNMs at (a) 𝑓 =  22.8 THz and (b) 𝑓 =  25.9 THz. The magnetic line source is located at a 

distance of 𝑑 = 150 nm from the upper interface of the structure and the image plane is located at 

the same distance from the lower interface. 

 

3.4.2 Double-Slit Source 

The double-slit technique has been typically utilized to estimate the resolution of 

subwavelength imaging devices. In this method, the resolution of lens corresponds to the minimum 
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possible distance for which a distinct image of two subwavelength slits can be resolved. As 

sketched in Figure 3.9, the double-slit source which is placed at a distance 𝑑 from the upper 

interface of the structure consists of two subwavelength slits (2𝑤) with the center to center 

separation of 2𝑏. 

We consider a TM-polarized plane wave, with 𝐻𝑦 , 𝐸𝑥, and 𝐸𝑧 components, impinging on 

the structure. The incident electric field 𝐸𝑖(𝑘𝑥) and the transmitted electric field 𝐸𝑡(𝑘𝑥) can be 

written as [80] 

𝑬𝑖(𝑘𝑥) = 𝑒−𝑗𝑘𝑥𝑥+𝑗𝑘𝑧𝑧(−𝑘𝑥𝒛̂ − 𝑘𝑧𝒙̂)                                         (3.15) 

𝑬𝑡(𝑘𝑥) = 𝑇𝑒−𝑗𝑘𝑥𝑥𝑒+𝑗𝑘𝑧(𝑧+ℎ)(−𝑘𝑥𝒛̂ − 𝑘𝑧𝒙̂)                                  (3.16) 

where 𝑇 is the transmission function of the WM slab loaded with nanostructured graphene 

metasurfaces, which is obtained in Section 3.2. The electric field of the double-slit source (𝐸𝑠) can 

be obtained by [80] 

𝑬𝑠 = ∫ 𝑑𝑘𝑥𝑣𝑘𝑥
𝑒𝑗𝑘𝑧𝑧 (−𝑧̂ cos(𝑘𝑥𝑥) + 𝑥̂

𝑗𝑘𝑧

𝑘𝑥
sin(𝑘𝑥𝑥))                    (3.17)

∞

0

 

where 𝑣𝑘𝑥
= (

4

𝜋𝑘𝑥
) sin(𝑘𝑥𝑤) cos (𝑘𝑥𝑏) is the Fourier component of the aperture. The distribution 

of the transmitted near field at the image plane can be obtained by the integration of (3.16) with 

𝒱𝑘𝑥

𝑘𝑥
 over 𝑘𝑥. 
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Figure 3.9. Geometry of the WM slab loaded with GNMs excited by a double-slit source placed at 

a distance 𝑑 from the upper interface, with the image plane at a distance 𝑑 from the lower interface. 

To verify the subwavelength resolution, we study the electric field distribution by means 

of two narrow slits with 2𝑤 = 500 nm separated by the distance of 2𝑏 = 2000 nm (in terms of 

wavelength, 𝜆 6.57⁄  at 𝑓 = 22.8 THz and 𝜆 5.79⁄  at 𝑓 = 25.9 THz). Figure 3.10 depicts the 

normalized electric field intensity distribution calculated at the image plane (𝑑 = 150 nm) for 𝑓 =

22.8 THz and 25.9 THz. The field intensity profile at the image plane is depicted by the solid blue 

and dash-dotted brown lines when the structure is present and the operating frequencies are 𝑓 =

22.8 THz and 25.9 THz, respectively. In the presence of the structure, the image is completely 

resolved according to the Rayleigh criterion which states that the total intensity at the mid-point 

of the sum intensity profile of two just-resolved slit source is 81% of the maximum intensity [86]. 

Figure 3.10 reveals that the resolution of the structure is better than 𝜆 6.57⁄  at the operating 

frequency of 𝑓 = 22.8 THz and it is greater than 𝜆 5.79⁄  at the operating frequency of 𝑓 = 25.9 

THz.  

By a careful study, it can be concluded that when the separation of two slits is chosen 2𝑏 =

 1820 nm, the Rayleigh criterion is satisfied and the resolution is 𝜆 7.23⁄  at the operating frequency 

of 22.8 THz. In addition, the proper separation for fulfillment of Rayleigh criterion is 2𝑏 =  1600 
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nm at the operating frequency of 𝑓 = 25.9 THz, thus, the resolution is equal to 𝜆 7.24⁄ . Figure 

3.11 shows the normalized electric field intensity distribution calculated at the image plane (𝑑 =

150 nm) for 𝑓 = 22.8 THz and 25.9 THz when the separation of the slits is chosen 1820 nm and 

1600 nm. These results confirm the resolution which is obtained by employing the magnetic line 

source. 

 

Figure 3.10. The normalized electric field intensity distribution calculated at the image plane 

for 𝑓 = 22.8 THz and 25.9 THz. The structural parameters of the double-slit source are 2𝑤 =

500 nm,  2𝑏 = 2000 nm, 𝑑 =  150 nm. The red bars demonstrate the positions of slits. 

 

Figure 3.11. The normalized electric field intensity distribution calculated at the image plane 

for 𝑓 = 22.8 THz and 25.9 THz when the separation of the slits is chosen 1820 nm and 1600 nm. 
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3.5 Fabrication Guide 

Graphene is a two-dimensional carbon crystal that has become one of the most 

controversial topics of research in the last few years. Although the theoretical studies on the 

graphene have been done for decades, it was first produced and isolated in 2005 [108]. The recent 

studies on the growth of an ideal graphene monolayer with the lowest number of defects and 

highest electron mobility lead to several well-known production techniques which are presented 

in Refs. [84-86], [107]. In particular, Ref. [84] reported a simple approach to fabricate relatively 

high quality of a sheet of graphene in large scale via CVD on the nickel substrate. In CVD, the 

substrate is exposed by one or more gas molecules (Argon gas and methane). The carbon in 

methane has reacted with the nickel substrate and during a cooling process, diffuses out of the 

nickel to form the graphene film. CVD is more preferable from the fabrication point of view due 

to the remarkable advantages of imperviousness and high purity. Furthermore, the possibility of 

transferring the CVD growth graphene film to any arbitrary substrate is discussed in [86]. 

In addition, for the practical configuration of the proposed lens, the GNM should be 

manufactured by precisely patterning the graphene monolayer. It has been shown that the graphene 

is conformable to diverse patterning schemes which result in interesting properties. The patterned 

graphene has the capability to be used in various applications such as transparent electrodes, field 

effect transistors, biosensors and energy devices. The recent progresses in graphene’s patterning 

have been studied in Refs. [103-107]. In this paper, we utilized the dual capacitive/inductive 

property of graphene which is synthesized in form of nanoscale graphene patches for designing a 

tunable dual-band subwavelength imaging device. 

It should be emphasized that an ideal contact between the GNMs and the WM slab is 

assumed throughout this paper. It has been shown that the recent advances in joining of nanowires 
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such as soldering, welding, and mechanical bonding [97] cannot be applied for connection of nano 

wires to graphene. In addition, the plasmonic welding only concerns joining two similar plasmonic 

materials, which is not applicable in the proposed lens. The other implicit assumption which is 

considered in the analytical approach in Section 3.2 is that the wires are supposed to be with 

identical length. These two hypotheses face with challenges when it comes to a fabrication process.  

In order to surmount the obstacles in connecting the wires to graphene and a non-uniform 

wire growth which may occur in the fabrication process, we consider a gap between the wires and 

the GNMs as sketched in Figure 3.12. As an example, we consider a WM slab loaded with GNMs 

with the following parameters: 𝐷 = 215 nm, 𝑔 = 21.5 nm, 𝑟0 = 21.5 nm, 𝜇𝑐 = 0.5 eV, 𝜀ℎ = 1, 

and ℎ = 2400 nm. 

 

Figure 3.12. Schematics of a WM slab embedded in a dielectric slab with the permittivity of εh 

loaded with GNMs which are placed at a distance of 𝛿 (gap size) on the upper and lower interfaces 

of the structure. 

 Figure 3.13 shows the normalized amplitude of the magnetic field profile calculated at the 

image plane as a function of 𝑥/𝜆 at the operating frequency of 𝑓 = 22.8 THz for different values 

of the gap (𝛿 = 0, 5, 7.5, and 10 nm). The magnetic line source is located at 𝑑 = 150 nm from the 
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upper side of the structure. The dashed blue line represents the performance of the lens for an ideal 

contact between the nanowires and the GNMs, and the resolution of the structure is 𝜆/10 (as shown 

in Figure 3.7(a)). By increasing the gap up to 5 nm, the strong coupling between the surface 

plasmons of the GNMs and the WM ameliorates the deterioration effect of the gap and leads to a 

subwavelength imaging with high resolution (>𝜆/8) and low distortion. The response of the 

structure for 𝛿 = 5 nm is shown by the solid black line in Figure 3.13 and it behaves similar to the 

blue dashed line when an ideal connection (𝛿 = 0 nm) is considered. Further increase in the gap 

size causes a significant distortion in subwavelength imaging, wherein large side lobes and fat 

profile of the main lobe appear in the magnetic field distribution at the image plane. This 

phenomenon arises due to the fact that the gap prevents the efficient coupling between the surface 

plasmons of GNMs and the WM slab.  

 

Figure 3.13. The square normalized amplitude of the magnetic field Hy calculated at the image 

plane located at 𝑑 = 150 nm from the structure at the operating frequency of 𝑓 = 22.8 THz for 

different values of gap (𝛿 = 0, 5, 7.5, and 10 nm). 

As shown in Figure 3.13, the gap has a substantial effect on the performance of the lens, in 

such a way that it is not possible to obtain a low distorted image at the same operating frequency 
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when the gap size is larger than 5 nm. The supplementary studies on the effects of gap have been 

shown that by increasing the gap size the proper operating frequency for subwavelength imaging 

slightly shifts to the lower frequencies. This frequency shift phenomenon is not valid for the 

considerably large gap (𝛿 ≥ 10 nm) because of a weak coupling between the surface plasmons of 

GNMs and the WM slab. Figure 3.14 shows the normalized amplitude of the magnetic field profile 

calculated at the image plane as a function of 𝑥/𝜆 for different gap sizes (𝛿 = 0, 5, and 7.5 nm) at 

the slightly changed frequencies. The black solid line represents the response of the structure for 

𝛿 = 5 nm. It can clearly be seen that the resolution of the lens is improved and has a less 

disagreement with the ideal contact of the WM slab and GNMs (𝛿 = 0 nm). Also, the result for 

the gap size, 𝛿 = 7.5 nm, is shown by the dotted red line at the operating frequency of 𝑓 = 22.3 

THz. In this case, the result proves the claim that by a 0.5 THz shift in the operating frequency, 

the source details can be refined at the image plane without remarkable distortion and high 

resolution. 

 

Figure 3.14. The square normalized amplitude of the magnetic field Hy calculated at the image 

plane located at 𝑑 = 150 nm from the structure for different values of gap (𝛿 = 0, 5, and 7.5 nm) 

at the slightly changed frequencies. 
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4 CONCLUSION 

Graphene has been attracting a great deal of attention in the past decade due to its 

outstanding promising applications. In the first chapter, we proposed an analytical method to cloak 

a finite conducting wedge with an arbitrary opening angle by a cylindrically shaped nanostructured 

graphene metasurface. The required surface reactance for cloaking the conducting wedge with 

various opening angles can be obtained by tuning graphene’s chemical potential. It is observed 

that the cylindrically shaped mantle cloak can effectively suppress the total scattering width of 

several concentric electromagnetically coupled conducting wedges. In addition, we proposed an 

alternative method for cloaking a finite conducting wedge with a wedge shaped metasurface cloak. 

Due to the advantages of the maximum scattering cancellation and low capacitive reactance, this 

approach gives the possibility of obtaining cloak even if the radius of the conducting wedge is 

larger than 𝜆 10⁄ .  

In the second chapter, a possibility of subwavelengh imaging by a WM slab loaded with 

graphene sheets is investigated. It has been shown that the presence of graphene provides 

significant flexibility in designing a subwavelength imaging device at THz frequencies. The 

physical mechanism behind the operation of our lens is based on the enhancement of evanescent 

waves. The presence of wires improves the strong coupling of the surface plasmons supported by 

the upper and lower interfaces of the structure. This lens not only has the advantages of operating 

in a wideband region due to graphene’s tunability and low loss sensitivity, but also has the 

possibility of increasing the structure’s thickness. In addition, the source/image plane can be 

located at a distance larger than the lattice constant of the WM slab. The severe challenges in the 
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implementation of the proposed lens have been investigated and a promising approach in order to 

overcome those difficulties has been proposed. As an extension of this study, the performance of 

WM slab loaded with nanostructured graphene metasurfaces as a novel subwavelength imaging 

device is studied in the third chapter. It has been shown that the presence of graphene patch arrays 

provides significant flexibility in designing a tunable dual-band subwavelength imaging device. 

The results are studied analytically and validated against the full-wave numerical results obtained 

with CST Microwave Studio. 

 



91 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LIST OF REFERENCES 

 

 

 

 

 

 

 

 

 

 

 

 

 



92 

 

 

[1] Alù and N. Engheta, “Cloaked near-field scanning optical microscope tip for noninvasive near-

field imaging,” Phys. Rev. Lett., vol. 105, no. 26, pp. 263906, Dec. 2010. 

[2] F. Bilotti, S. Tricarico, F. Pierini, and L. Vegni, “Cloaking apertureless near-field scanning 

optical microscopy tips,” Optics Lett., vol. 36, no. 26, pp. 211–213, Jan. 2011. 

[3] Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett., vol. 102, pp. 233901, Jun. 2009. 

[4] D. H. Kwon and D. H. Werner, “Restoration of antenna parameters in scattering environments 

using electromagnetic cloaking,” Appl. Phys. Lett., vol. 92, no. 11, pp. 113507, Mar. 2008. 

[5] M. Farhat, C. Rockstuhl, and H. Bağcı, “A 3D tunable and multi-frequency graphene 

plasmonic cloak,” Opt. Express, vol. 21, no. 10, pp. 12592-12603, 2013. 

[6] P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS 

Nano, vol. 5, no. 7, pp. 5855–5863, Jul. 2011. 

[7] I. F. Akyildiz and J. M. Jornet, “The internet of nano-things,” IEEE Wireless Communications, 

vol. 17, no. 6, pp. 58-63, 2010. 

[8] J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science, vol. 

312, no. 5781, pp. 1780–1782, Jun. 2006. 

[9] U. Leonhardt, “Optical conformal mapping,” Science, vol. 312, no. 5781, pp. 1777–1780, Jun. 

2006. 

[10] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. 

Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science, vol. 314, no. 

5801, pp. 977–980, Nov. 2006. 

[11] J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. 



93 

 

Lett., vol. 101, p. 203901, 2008. 

[12] Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: Perfect but sensitive to 

tiny perturbations,” Phys. Rev. Lett., vol. 99, no. 11, pp. 113903, Sep. 2007. 

[13] R. Fleury and A. Alù, “Cloaking and invisibility: A review,” Forum for Electromagnetic 

Research Methods and Application Technologies (FERMAT), vol. 1, no. 7, pp. 1-24. 2014. 

[14] A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial 

coatings,” Phys. Rev. E, vol. 72, no. 1, pp. 016623, Jul. 2005. 

[15] B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental 

verification of Epsilon-Near Zero metamaterial coupling and energy squeezing using a 

microwave waveguide,” Phys. Rev. Lett., vol. 100, no. 3, pp. 033903, Jan. 2008. 

[16] A. Alù, D. Rainwater, and A. Kerkhoff, “Plasmonic cloaking of cylinders: finite length, 

oblique illumination and cross-polarization coupling,” New J. Phys., vol. 12, no. 10, pp. 

103028, Oct. 2010. 

[17] A. Alù and N. Engheta, “Cloaking and transparency for collections of particles with 

metamaterial and plasmonic covers,” Opt. Express, vol. 15, no. 12, pp. 7578–7590, Jun. 2007. 

[18] A. Alù and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and 

potentials,” J. Opt. A: Pure Appl. Opt., vol. 10, no. 9, pp. 093002, Sep. 2008. 

[19] A. Alù and N. Engheta, “Effects of size and frequency dispersion in plasmonic cloaking,” 

Phys. Rev. E, vol. 78, no. 4, p. 045602, Oct. 2008. 

[20] F. Bilotti, S. Tricarico, and L.Vegni, “Plasmonic metamaterial cloaking at optical 

frequencies,” IEEE Trans. Nanotech., vol. 9, no. 1, pp. 55–61, 2010. 

[21] A. Monti, F. Bilotti, and A. Toscano, “Optical cloaking of cylindrical objects by using covers 



94 

 

made of core-shell nanoparticles,” IEEE Trans. Nanotech., vol. 9, no. 1, pp. 55–61, 2010. 

[22] A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-

zero metamaterials working at optical frequencies,” Opt. Commun., vol. 285, pp. 3412–3418, 

2012. 

[23] A. Alù, “Mantle cloak: Invisibility induced by a surface,” Phys. Rev. B, vol. 80, no. 24, pp. 

245115, Dec. 2009. 

[24] P. Y. Chen and A. Alù, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B, 

vol. 84, no. 20, pp. 205110, Nov. 2011. 

[25] Y. R. Padooru, A. B. Yakovlev, P. Y. Chen, and A. Alù, “Analytical modeling of conformal 

mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays,” J. Appl. 

Phys., vol. 112, no. 3, pp. 034907, Aug. 2012. 

[26] Y. R. Padooru, A. B. Yakovlev, P. Y. Chen, and A. Alù, “Line-source excitation of realistic 

conformal metasurface cloaks,” J. Appl. Phys., vol. 112, no. 10, pp. 104902, Nov. 2012. 

[27] P. Y. Chen, F. Monticone, and A. Alù, “Suppressing the electromagnetic scattering with an 

helical mantle cloak,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 1598–1601, 2011. 

[28] P. Y. Chen, C. Argyropoulos, and A. Alù, “Broadening the cloaking bandwidth with non-

foster metasurfaces,” Phys. Rev. Lett., vol. 111, p. 233001, 2013. 

[29] Z. H. Jiang and D. H. Werner, “Exploiting metasurface anisotropy for achieving near-perfect 

low-profile cloaks beyond the quasi-static limit,” J. Phys. D: Appl. Phys., vol. 46, p. 505306, 

2013. 

[30] Y. R. Padooru, A.B. Yakovlev, C. S. R. Kaipa, G. W. Hanson, F. Medina, and F. Mesa, “Dual 

capacitive-inductive nature of periodic graphene patches: Transmission characteristics at low-



95 

 

THz frequencies,” Phys. Rev. B, vol. 87, pp. 115401, 2013. 

[31] P. Y. Chen, J. Soric, Y. R. Padooru, H. M. Bernety, A. B. Yakovlev, and A. Alù, 

“Nanostructured graphene metasurface for tunable terahertz cloaking, ” New. J. Phys., vol. 15, 

pp. 123029, 2013. 

[32] C. A. Balanis, Advanced engineering electromagnetics, New York: Wiley, 1989. 

[33] P. Y. Ufimtsev, Fundamentals of the physical theory of diffraction, John Wiley & Sons, 

2014. 

[34] F. Hacivelioglu, L. Sevgi, and P. Y. Uiimtsev, “Electromagnetic wave scattering from a 

wedge with perfectly reflecting boundaries: Analysis of asymptotic techniques,” IEEE 

Antennas Propag. Mag., vol. 53, no. 3, pp. 232-253, 2011. 

[35] R. Ross and M. A. K. Hamid, “Scattering by a wedge with rounded edge,” IEEE Trans. 

Antennas Propag., vol. 19, no. 4, pp. 507-516, 1971. 

[36] W. G. Lim and J. W. Yu, “Scattering by a dielectric-loaded conducting wedge with concaved 

edge: TE case,” Prog. Electromag. Res., vol. 89, pp. 85-100, 2009. 

[37] L. I. Klinkenbusch, “Two-dimensional scattering of a plane wave by a finite wedge,” Arch. 

für Elektrotech., vol. 75, no. 4, pp. 261-269, 1992. 

[38] A. Y. Shepilko and Y. V. Shepilko, “Scattering of a plane electromagnetic wave by a metal-

dielectric composite cylinder,” Int. Conf. on Mathematical Methods in Electromagnetic Theory 

(MMET), vol. 2, pp. 474–476, 2000. 

[39] G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface 

conductivity model of graphene,” J. Appl. Phys., vol. 103, pp. 064302, 2008. 

[40] H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, 



96 

 

“Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nature Photonics, 

vol. 7, pp. 394-399, 2013. 

[41] M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” 

Phys. Rev. B, vol. 80, p. 245435, 2009. 

[42] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. 

Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, “Electronic confinement and coherence 

in patterned epitaxial graphene,” Science, vol. 312, pp. 1191-1196, 2006. 

[43] J. Y. Kim, C. Lee, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Far-infrared study of 

substrate-effect on large scale graphene,” Appl. Phys. Lett., vol. 98, pp. 201907, 2011. 

[44] J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. 

Spencer, D. Veksler, and Y. Chen, “Measurement of the optical absorption spectra of epitaxial 

graphene from terahertz to visible,” Appl. Phys. Lett., vol. 93, pp. 131905, 2008. 

[45] Y-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. D. Sarma, H. L. 

Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity in 

graphene,” Phys. Rev. lett., vol. 99, pp. 246803, 2007. 

[46] CST Microwave Studio 2014, CST GmbH http://www.cst.com. 

[47] V. G. Veselago. "The Electrodynamics of Substances with Simultaneously Negative Values 

of 𝜀 and 𝜇," Sov. Phys. Usp., vol. 10, no. 4, pp. 509-514, 1968. 

[48] J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett., vol. 85, no. 18, p. 

3966, 2000.  

[49] S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the Near 

http://www.cst.com/


97 

 

Field,” J. Mod. Opt., vol. 50, no. 9,  pp. 1419-1430, 2003.  

[50] A. Grbic and G. V. Eleftheriades, “Overcoming the Diffraction Limit with a Planar Left-

Handed Transmission-Line Lens,” Phys. Rev. Lett., vol. 92, no. 11, p. 117403, 2004.  

[51] T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-Field 

Microscopy Through a SiC Superlens,” Science, vol. 313, no. 5793, pp. 1595-1595, 2006.  

[52] R. Merlin, “Radiationless Electromagnetic Interference: Evanescent-Field Lenses and 

Perfect Focusing,” Science, vol. 317, no. 5840, pp. 927-929, 2007.  

[53] S. C. Kehr, Y. M. Liu, L. W. Martin, P. Yu, M. Gajek, S. Y. Yang, C. -H. Yang, M. T. 

Wenzel, R. Jacob, H. -G. von Ribbeck, M. Helm, X. Zhang, L. M. Esh, and R. Ramesh, 

“Microspectroscopy on Perovskite-Based Superlenses,” Opt. Mater. Express, vol. 1, no. 5, pp. 

1051-1060, 2011.  

[54] P. Li and T. Taubner, “Multi-Wavelength Superlensing with Layered Phonon-Resonant 

Dielectrics,” Opt. Express, vol. 20, no. 11, pp. 11787-11795, 2012.  

[55] H. Liu, B. Wang, L. Ke, J. Deng, C. C. Chum, S. L. Teo, L.Shen, S. A. Maier, J. H. Teng, 

“High Aspect Subdiffraction-Limit Photolithography via a Silver Superlens,” Nano Lett., vol. 

12, no. 3, pp. 1549-1554, 2012.  

[56] S. Maslovski, S. Tretyakov, and P. Alitalo, “Near-field Enhancement and Imaging in Double 

Planar Polariton-Resonant Structures,” J. Appl. Phys., vol. 96, no. 3, pp. 1293-1300, 2004. 

[57] S. I. Maslovski and S. A. Tretyakov, “Phase Conjugation and Perfect Lensing,” J. Appl. 

Phys., vol. 94, no. 7, pp. 4241-4243, 2003. 

[58] S. I. Maslovski, “Subwavelength Imaging with Arrays of Plasmonic Scatterers,” Opt. 



98 

 

Commun., vol. 285, no. 16, pp. 3363-3367, 2012.  

[59] S. I. Maslovski and S. A. Tretyakov, “Perfect Lensing with Phase-Conjugating Surfaces: 

Toward Practical Realization,” New J. Phys., vol. 14, no. 3, p. 035007, 2012.  

[60] G. W. Hanson, “Quasi-Transverse Electromagnetic Modes Supported by a Graphene 

Parallel-Plate Waveguide,” J. Appl. Phys., vol. 104, no. 8, p. 084314, 2008.  

[61] B. Wang, Z. Xiang, Y. Xiaocong, and T. Jinghua, “Optical Coupling of Surface Plasmons 

between Graphene Sheets,” Appl. Phys. Lett., vol. 100, no. 13, p. 131111, 2012.  

[62] A. Vakil, and N. Engheta, “Transformation Optics Using Graphene,” Science, vol. 332, no. 

6035, pp. 1291-1294, 2011.  

[63] G. W. Hanson, A. B. Yakovlev, and A. Mafi, “Excitation of Discrete and Continuous 

Spectrum for a Surface Conductivity Model of Graphene,” J. Appl. Phys., vol. 110, no. 11, p. 

114305, 2011.  

[64] A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene Hyperlens for Terahertz 

Radiation,” Phys. Rev. B, vol. 86, no. 12, p. 121108, 2012.  

[65] T. Zhang, L. Chen, and X. Li, “Graphene-Based Tunable Broadband Hyperlens for Far-field 

Subdiffraction Imaging at Mid-infrared Frequencies,” Opt. Express, vol. 21, no. 18, pp. 20888-

20899, 2013.  

[66] P. Li and T. Taubner, “Broadband Subwavelength Imaging Using a Tunable Graphene-

Lens,” ACS Nano, vol. 6, no. 11, pp. 10107-10114, 2012.  

[67] P. Ikonen, P. Belov, C. Simovski, and S. Maslovski, “Experimental Demonstration of 

Subwavelength Field Channeling at Microwave Frequencies Using a Capacitively Loaded 



99 

 

Wire Medium,” Phys. Rev. B, vol. 73, no. 7, p. 073102, 2006.  

[68] P. A. Belov and M. G. Silveirinha, “Resolution of Subwavelength Transmission Devices 

Formed By a Wire Medium,” Phys. Rev. E, vol. 73, no. 5, p. 056607, 2006.  

[69] M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength Imaging at Infrared 

Frequencies Using an Array of Metallic Nanorods,” Phys. Rev. B, vol. 75, no.3, p. 035108, 

2007.  

[70] M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Ultimate Limit of Resolution of 

Subwavelength Imaging Devices Formed by Metallic Rods,” Opt. lett., vol. 33, no. 15, pp. 

1726-1728, 2008.  

[71] C. S. Kaipa, A. B. Yakovlev, G. W. Hanson, Y. R. Padooru, F. Medina, and F. Mesa, 

“Enhanced Transmission with a Graphene-Dielectric Microstructure at Low-Terahertz 

Frequencies,” Phys. Rev. B, vol. 85, no. 24, p. 245407, 2012.  

[72] C. S. R. Kaipa, A. B.Yakovlev, F. Medina, F.Mesa, C. A. M. Butler, and A. P. Hibbins, 

“Circuit Modeling of the Transmissivity of Stacked Two-Dimensional Metallic Meshes,” Opt. 

Express, vol. 18, no. 13, pp. 13309-13320, 2010.  

[73] Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Photonic Band Gap of a Graphene-

Embedded Quarter-Wave Stack,” Phys. Rev. B, vol. 88, no.24, p. 241403, 2013.  

[74] A. B. Yakovlev, Y. R. Padooru, G. W. Hanson, A. Mafi, and S. Karbasi, “A Generalized 

Additional Boundary Condition for Mushroom-Type and Bed-of-Nails-Type Wire Media,” 

IEEE Trans. Microwave Theory Tech., vol. 59, no. 3, pp. 527-532, 2011.  

[75] A. B. Yakovlev, Y. R. Padooru, S. Karbasi, G. W. Hanson, and A. Mafi, “Nonlocal 

Homogenization Model for the Analysis of Absorbing Properties of Mushroom Structures with 



100 

 

Graphene Patches at Microwaves,” IEEE AP-S Int. Symp. and URSI Radio Science Meeting, 

Toronto, ON, Canada, 2010.  

[76] C. S. Kaipa, A. B. Yakovlev, S. I. Maslovski, and M. G. Silveirinha, “Near-Field Imaging 

with a Loaded Wire Medium,” Phys. Rev. B, vol. 86, no. 15, p. 155103, 2012.  

[77] B. D. F. Casse, W. T. Lu, Y. J. Huang and S. Sridhar, “Robust Method to Determine the 

Resolution of a Superlens by Analyzing the Near-Field Image of a Two-Slit Object,” Physics. 

Optics, vol. 1105, 2011.  

[78] S. H. Jiang and R. Pike, “A Full Electromagnetic Simulation Study of Near-Field Imaging 

Using Silver Films,” New J. Phys., vol. 7, no. 1, p. 169, 2005.  

[79] P. Kolinko and D. Smith, “Numerical Study of Electromagnetic Waves Interacting with 

Negative Index Materials,” Opt. Express, vol. 11, no. 7, pp. 640-648, 2003.  

[80] W. T. Lu and S. Sridhar, “Near-Field Imaging by Negative Permittivity Media,” Microw. 

Opt. Tech. Lett., vol. 39, no. 4, pp. 282-286, 2003.  

[81] X. Yang, Y. Liu, J. Ma, J. Cui, H. Xing, W. Wang, C. Wang, and X. Luo, “Broadband Super-

Resolution Imaging by a Superlens with Unmatched Dielectric Medium,” Opt. Express, vol. 

16, no. 24, pp. 19686-19694, 2008.  

[82] P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental Study of the 

Subwavelength Imaging by a Wire Medium Slab,” Appl. Phys. Lett., vol. 89, no. 26, p. 262109, 

2006.  

[83] Z. Wei, Y. Cao, Z. Gong, X. Su, Y. Fan, C. Wu, J. Zhang, and H. Li, “Subwavelength 

Imaging with a Fishnet Flat Lens,” Phys. Rev. B, vol. 88, no. 19, p. 195123, 2013.  

[84] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, 



101 

 

“Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor 

Deposition,” Nano Lett., vol. 9, no. 1, pp. 30-35, 2008.  

[85] P. W. Sutter, J-I Flege, and E. A. Sutter, “Epitaxial Graphene on Ruthenium,” Nat. Mater., 

vol. 7, no. 5, pp. 406-411, 2008. 

[86] A. Reina, H. Son, L. Jiao, B. Fan, M. S. Dresselhaus, Z. Liu, and J. Kong, “Transferring and 

Identification of Single- and Few-Layer Graphene on Arbitrary Substrates,” J. of Phys. Chem. 

C, vol. 112, no. 46, pp. 17741-17744, 2008.  

[87] M. G. Silveirinha, “Additional Boundary Condition for the Wire Medium,” IEEE Trans. 

Antennas Propag., vol. 54, no. 6, pp. 1766-1780, 2006.  

[88] M. G. Silveirinha, C. A. Fernandes, and J. R. Costa, “Additional Boundary Condition for a 

Wire Medium Connected to a Metallic Surface,” New J. Phys., vol. 10, no. 5, p. 053011, 2008.  

[89] O. Luukkonen, M. G. Silveirinha, A. B. Yakovlev, C. R. Simovski, I. S. Nefedov, and S. A. 

Tretyakov, “Effects of Spatial Dispersion on Reflection From Mushroom-Type Artificial 

Impedance Surfaces,” IEEE Trans. Microwave Theory Tech., vol. 57, no. 11, pp. 2692-2699, 

2009.  

[90] A. B. Yakovlev, M. G. Silveirinha, O. Luukkonen, C. R. Simovski, I. S. Nefedov, and S. A. 

Tretyakov, “Characterization of Surface-Wave and Leaky-Wave Propagation on Wire-

Medium Slabs and Mushroom Structures Based on Local and Nonlocal Homogenization 

Models,” IEEE Trans. Microwave Theory Tech., vol. 57, no. 11, pp. 2700-2714, 2009.  

[91] M. G. Silveirinha, C. A. Fernandes, and J. R. Costa, “Electromagnetic Characterization of 

Textured Surfaces Formed by Metallic Pins,” IEEE Trans. Antennas Propag., vol. 56, no. 2, 



102 

 

pp. 405-415, 2008.  

[92] M. G. Silveirinha, and C. A. Fernandes, “Homogenization of 3-D-Connected and 

Nonconnected Wire Metamaterials,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 4, pp. 

1418-1430, 2005. 

[93] L. Solymar and E. Shamonina, “Waves in Metamaterials,” Oxford University Press, 2009.  

[94] F. Medina, F. Mesa, and D. C. Skigin, “Extraordinary Transmission through Arrays of Slits: 

A Circuit Theory Model,” IEEE Trans. Microwave Theory Tech., vol. 58, no. 1, pp. 105-115, 

2010.  

[95] C. S. Kaipa, A. B. Yakovlev, F. Medina, and F. Mesa, “Transmission through Stacked 2D 

Periodic Distributions of Square Conducting Patches,” J. Appl. Phys., vol. 112, no. 3, p. 

033101, 2012.  

[96] M. Born and E. Wolf, “Principles of Optics: Electromagnetic Theory of Propagation, 

Interference and Diffraction of Light,” Cambridge University Press: Cambridge, 1999.  

[97] X. Li, F. Gao, and Z. Gu, “Nanowire Joining Methods,” Open Surf. Sci. J., vol. 3, pp. 91-

104, 2011. 

[98] X. Zhang and Z. Liu, “Superlenses to Overcome the Diffraction Limit,” Nat. Mat., vol. 7, 

no. 6, pp. 435-441, 2008. 

[99] N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–Diffraction-Limited Optical Imaging with a 

Silver Superlens,” Science, vol. 308, no. 5721, pp. 534-537, 2005. 

[100]  F. Mesa, M. J. Freire, R. Marquès, and J. D. Baena,  “Three-Dimensional Superresolution 

in Metamaterial Slab Lenses: Experiment and Theory,” Phys. Rev. B, vol. 72, no. 23, p. 



103 

 

235117, 2005. 

[101]  M. C. K. Wiltshire, “Radio Frequency (RF) Metamaterials.” Phys. Status Solidi B, vol. 244, 

no. 4, pp. 1227-1236, 2007. 

[102] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. 

T. Nguyen, and R. S. Ruoff, “Synthesis of Graphene-Based Nanosheets via Chemical 

Reduction of Exfoliated Graphite Oxide,” Carbon, vol. 45, no. 7, pp. 1558-1565, 2007. 

[103] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. Min Kim, K. S. Kim, J-H. Ahn, P. Kim, J-Y. Choi, 

and B. H. Hong, “Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent 

Electrodes,” Nature, vol. 457, no. 7230, pp. 706-710, 2009. 

[104] J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li., “Patterning of Graphene,” Nanoscale, vol. 4, 

no. 16, pp. 4883-4899, 2012. 

[105]  J-Y. Hong and J. Jang, “Micropatterning of Graphene Sheets: Recent Advances in 

Techniques and Applications,” J. Mat. Chem., vol. 22, no. 17, pp. 8179-8191, 2012. 

[106]  W. Xiong, Y. S. Zhou, W. J. Hou, L. J. Jiang, Y. Gao, L. S. Fan, L. Jiang, J. F. Silvain, and 

Y. F. Lu, “Direct Writing of Graphene Patterns on Insulating Substrates under Ambient 

Conditions,” Scientific reports, vol. 4, 2014. 

[107]  J. B. Park, W. Xiong, Y. Gao, M. Qian, Z. Q. Xie, M. Mitchell, Y. S. Zhou, G. H. Han, L. 

Jiang, and Y. F. Lu, “Fast Growth of Graphene Patterns by Laser Direct Writing,” Appl. Phys. 

Lett. 98, 123109 (2011). 

[108] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov and A. 

K. Geim, “Two-Dimensional Atomic Crystals,” Proc. Natl. Acad. Sci. U. S. A., vol. 102, pp. 

10451–10453, 2005. 



104 

 

 

 

 

 

 

 

 

APPENDIX 

 

 

 

 

 

 

 

 



105 

 

 

Here, we provide the procedure details to obtain the unknown scattering coefficients. As a 

starting point, by inserting (1.1) and (1.2) into (1.8) and using the orthogonality relations for the 

trigonometric functions on [−𝜋, 𝜋] we obtain: 

[𝑎𝑛𝐽𝑛(𝛽2𝑅0) + 𝑏𝑛𝑌𝑛(𝛽2𝑅0)]𝜋𝜉𝑛 = ∑𝐴𝑣𝑖

∞

𝑖=0

𝐽𝑣𝑖
(𝛽1𝑅0)< cos(𝑣𝑖𝜙) , cos(𝑛𝜙) > .   (A. 1) 

Substituting (1.1) and (1.2) into (1.9) and applying the orthogonality relations for the 

trigonometric functions on [−𝛼, 𝛼] yields: 

𝛽1

𝑗𝜔
𝐴𝑣𝑖

𝐽𝑣𝑖
′ (𝛽1𝑅0)𝛼 =

𝛽2

𝑗𝜔
∑ [𝑎𝑛𝐽𝑛

′ (𝛽2𝑅0) + 𝑏𝑛𝑌𝑛
′(𝛽2𝑅0)] < cos(𝑣𝑖𝜙)

∞

𝑛=0

, cos(𝑛𝜙) >     (A. 2) 

where < 𝑇1, 𝑇2 >= ∫ 𝑇1𝑇2𝑑𝜙
𝛼

−𝛼
 is the inner product on the interval [−𝛼, 𝛼]. It should be mentioned 

that the prime symbol indicates the partial derivative with respect to the entire argument of the 

Bessel and Hankel functions. 

The insertion of (A.2) into (A.1) leads to: 

𝑎𝑛𝐽𝑛(𝛽2𝑅0)𝜋𝜉𝑛 − ∑
𝛽2

𝛽1

∞

𝑖=0

𝐽𝑣𝑖
(𝛽1𝑅0)

𝐽𝑣𝑖
′ (𝛽1𝑅0)𝛼

∑ 𝑎𝑚𝐽𝑚
′ (𝛽2𝑅0)

∞

𝑚=0

× 

< cos(𝑣𝑖𝜙) , cos(𝑚𝜙) > < cos(𝑣𝑖𝜙) , cos(𝑛𝜙) > 

= −𝑏𝑛𝑌𝑛(𝛽2𝑅0)𝜋𝜉𝑛 + ∑
𝛽2

𝛽1

∞

𝑖=0

𝐽𝑣𝑖
(𝛽1𝑅0)

𝐽𝑣𝑖
′ (𝛽1𝑅0)𝛼

∑𝑏𝑚𝑌𝑚
′ (𝛽2𝑅0) ×

∞

𝑚=0

 

< cos(𝑣𝑖𝜙) , cos(𝑚𝜙) > < cos(𝑣𝑖𝜙) , cos(𝑛𝜙) >                               (A. 3) 
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(A. 3) can be written in the form of a system of linear equations as follows: 

[𝑋]𝑛×𝑚[𝑎𝑚]𝑚×1 = [𝑌]𝑛×𝑚[𝑏𝑚]𝑚×1                                       (A. 4) 

where 

[𝑋]𝑛×𝑚 = [
𝐽0(𝛽2𝑅0)𝜋𝜉0 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝐽𝑛(𝛽2𝑅0)𝜋𝜉𝑛

] + [
𝐻00 ⋯ 𝐻0𝑚

⋮ ⋱ ⋮
𝐻𝑛0 ⋯ 𝐻𝑛𝑚

]                   (A. 5) 

𝐻𝑛𝑚 = ∑
𝛽2

𝛽1

∞

𝑖=0

𝐽𝑣𝑖
(𝛽1𝑅0)

𝐽𝑣𝑖
′ (𝛽1𝑅0)𝛼

𝐽𝑚
′ (𝛽2𝑅0)< cos(𝑣𝑖𝜙) , cos(𝑚𝜙) >< cos(𝑣𝑖𝜙) , cos(𝑛𝜙) >   (A. 6) 

[𝑌]𝑛×𝑚 = [
−𝑌0(𝛽2𝑅0)𝜋𝜉0 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ −𝑌𝑛(𝛽2𝑅0)𝜋𝜉𝑛

] + [
𝑃00 ⋯ 𝑃0𝑚

⋮ ⋱ ⋮
𝑃𝑛0 ⋯ 𝑃𝑛𝑚

]             (A. 7) 

𝑃𝑛𝑚 = ∑
𝛽2

𝛽1

∞

𝑖=0

𝐽𝑣𝑖
(𝛽1𝑅0)

𝐽𝑣𝑖
′ (𝛽1𝑅0)𝛼

𝑌𝑚
′ (𝛽2𝑅0)< cos(𝑣𝑖𝜙) , cos(𝑚𝜙) >< cos(𝑣𝑖𝜙) , cos(𝑛𝜙) > .   (A. 8) 

Here we assume 𝑚 = 𝑛. Therefore, (A4-1) can be rewritten as: 

[𝑌]−1
𝑛×𝑛

[𝑋]𝑛×𝑛[𝑎𝑛]𝑛×1 = [𝑏𝑛]𝑛×1                                          (A. 9) 

[𝑍]𝑛×𝑛 = [𝑌]−1
𝑛×𝑛

[𝑋]𝑛×𝑛                                              (A. 10) 

[
𝑍00 ⋯ 𝑍0𝑛

⋮ ⋱ ⋮
𝑍𝑛0 ⋯ 𝑍𝑛𝑛

] [

𝑎0

⋮
𝑎𝑛

] = [
𝑏0

⋮
𝑏𝑛

]                                              (A. 11) 

When (1.2) and (1.3) are substituted in (1.4) and (1.5) yields: 

𝐴𝑛
inc𝐽𝑛(𝛽0𝑅𝑐) + 𝐴𝑛

scat𝐻𝑛
(2)(𝛽0𝑅𝑐) = 𝑎𝑛𝐽𝑛(𝛽2𝑅𝑐) + 𝑏𝑛𝑌𝑛(𝛽2𝑅𝑐)                 (A. 12) 

𝑎𝑛 [𝐽𝑛(𝛽2𝑅𝑐) +
𝛽2𝑍𝑠

𝑗𝜔𝜇0
𝐽𝑛
′ (𝛽2𝑅𝑐)] + 𝑏𝑛 [𝑌𝑛(𝛽2𝑅𝑐) +

𝛽2𝑍𝑠

𝑗𝜔𝜇0
𝑌𝑛

′(𝛽2𝑅𝑐)] 
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= 𝑍𝑠 [
𝛽0

𝑗𝜔𝜇0
(𝐴𝑛

inc𝐽𝑛
′ (𝛽0𝑅𝑐) + 𝐴𝑛

scat𝐻𝑛
(2)′(𝛽0𝑅𝑐))]                              (A. 13) 

(A. 13) by using (A. 12) can be expressed as:  

𝑎𝑛 (𝐽𝑛(𝛽2𝑅c) [1 −
𝛽0𝑍𝑠

𝑗𝜔𝜇0

𝐻𝑛
(2)′(𝛽0𝑅c)

𝐻𝑛
(2)(𝛽0𝑅c)

] +
𝛽2𝑍𝑠

𝑗𝜔𝜇0
𝐽𝑛
′ (𝛽2𝑅c))

+ 𝑏𝑛 (𝑌𝑛(𝛽2𝑅c) [1 −
𝛽0𝑍𝑠

𝑗𝜔𝜇0

𝐻𝑛
(2)′

(𝛽0𝑅c)

𝐻𝑛
(2)

(𝛽0𝑅c)
] +

𝛽2𝑍𝑠

𝑗𝜔𝜇0
𝑌𝑛

′(𝛽2𝑅c))

= 𝐴𝑛
inc

𝛽0𝑍𝑠

𝑗𝜔𝜇0

(𝐽𝑛
′ (𝛽0𝑅c) −

𝐻𝑛
(2)′

(𝛽0𝑅c)

𝐻𝑛
(2)

(𝛽0𝑅c)
𝐽𝑛(𝛽0𝑅c))                                            (A. 14) 

(A. 14) can be written in the form of a system of linear equations as follows: 

[𝐿]𝑛×𝑛[𝑎𝑛]𝑛×1 + [𝑀]𝑛×𝑛[𝑏𝑛]𝑛×1 = [𝐴𝑛
inc]

𝑛×1
                          (A. 15) 

where 

[𝐿]𝑛×𝑛 = [
𝐿0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐿𝑛

]                                                    (A. 16) 

𝐿𝑛 =

𝐽𝑛(𝛽2𝑅c) [1 −
𝛽0𝑍𝑠

𝑗𝜔𝜇0

𝐻𝑛
(2)′(𝛽0𝑅c)

𝐻𝑛
(2)(𝛽0𝑅c)

] +
𝛽2𝑍𝑠

𝑗𝜔𝜇0
𝐽𝑛
′ (𝛽2𝑅c)

𝛽0𝑍𝑠

𝑗𝜔𝜇0
[𝐽𝑛′ (𝛽0𝑅c) −

𝐻𝑛
(2)′

(𝛽0𝑅c)

𝐻𝑛
(2)

(𝛽0𝑅c)
𝐽𝑛(𝛽0𝑅c)]

 

[𝑀]𝑛×𝑛 = [
𝑀0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑀𝑛

]                                                    (A. 17) 
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𝑀𝑛 =

𝑌𝑛(𝛽2𝑅c) [1 −
𝛽0𝑍𝑠

𝑗𝜔𝜇0

𝐻𝑛
(2)′

(𝛽0𝑅c)

𝐻𝑛
(2)

(𝛽0𝑅c)
] +

𝛽2𝑍𝑠

𝑗𝜔𝜇0
𝑌𝑛

′(𝛽2𝑅c)

𝛽0𝑍𝑠

𝑗𝜔𝜇0
[𝐽𝑛′ (𝛽0𝑅c) −

𝐻𝑛
(2)′

(𝛽0𝑅c)

𝐻𝑛
(2)

(𝛽0𝑅c)
𝐽𝑛(𝛽0𝑅c)]

. 

Inserting (A. 9) into (A. 15) we obtain: 

([𝐿]𝑛×𝑛 + [𝑀]𝑛×𝑛[𝑌]−1
𝑛×𝑛

[𝑋]𝑛×𝑛)[𝑎𝑛]𝑛×1 = [𝐴𝑛
inc]

𝑛×1
                     (A. 18) 

 [𝐾]𝑛×𝑛 = [𝐿]𝑛×𝑛 + [𝑀]𝑛×𝑛[𝑌]−1
𝑛×𝑛

[𝑋]𝑛×𝑛                                  (A. 19) 

[
𝐾00 ⋯ 𝐾0𝑛

⋮ ⋱ ⋮
𝐾𝑛0 ⋯ 𝐾𝑛𝑛

] [

𝑎0

⋮
𝑎𝑛

] = [
𝐴0

inc

⋮
𝐴𝑛

inc
]  .                                          (A. 20) 

𝑎𝑛 can be calculated directly from the coefficient 𝐴𝑛
inc by utilizing (A. 20) and then 𝑏𝑛 can 

be obtained by inserting 𝑎𝑛 in (A. 9). Finally, 𝐴𝑛
scat can be achieved by substituting the values of 

𝑎𝑛 and 𝑏𝑛 in (A. 12). Similarly, 𝐵𝑛
scat can be obtained. 
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