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Abstract

The LT Code equations describe the process of encoding input symbols into an error

correcting code that requires no feedback from the receiver. The mathematical process

involved the development of LT Codes is important.

This thesis address the issue of improving the understanding of the LT Code equations

presented in the original paper. This task is accomplished by inserting the mathemati-

cal details when possible, providing graphical results to the equations, and comparing the

equations results against random computer generated simulations results.

This thesis will improve the understanding of how LT Codes equations related to actual

results.
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LIST OF ABBREVIATIONS AND SYMBOLS

k The number of input symbols

K The number of encoding symbols

d The degree of an encoding symbol

δ The allowable failure probability of the decoder to recover the data.

L The number of input symbols unprocessed.

i Degree of encoding symbol

e Erasure probability of the BEC channel.

Pb Bit erasure probability.
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Chapter 1

Introduction

Michael Luby developed and presented LT codes at the 43 rd Annual IEEE Symposium

on Foundations for Computer Science in 2002. They are the first class of erasure codes called

universal erasure codes. The symbol length of the encoding symbols varies from 1 bit to l

bit binary symbols. LT codes have the ability to produce a limitless number of encoding

symbols from the input symbols. They can adjust the number of encoding symbols as needed

so that LT codes are near optimal.

1.1 Application

LT codes offer dependability for transferring data between applications. The advantage

of using LT codes in a one-to-one data delivery system is that the flow and congestion control

mechanisms are designed independently of reliability, M. Adler (1997).

LT Codes offer advantages for the one-to-many data transfer problem, where the receiver

needs to minimize the feedback to the sender. In this type of system retransmitting data

that has already been received by some receivers is inefficiency as given in J. Nonnenmacher

(1996), E. Schooler (1997). The benefit of using LT codes is that a single sender can be used

to dependably transport data to a large number of coexisting receivers without feedback.

The problem of several senders transmitting the same data simultaneously from possible

different locations to one receiver is an issue that can be addressed using LT codes. There

is the possibility that the same data packets are received multiple times. This situation is

well thought-out in J.W. Byers (1999).
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1.2 Purpose

The purpose of this thesis is to examine the mathematical techniques used to develop

the LT Code equations and to provide graphical displays of these equations when possible.

It also provides computer simulations that support the LT code equations. The information

presented is in the same order as given in Luby’s origin paper.
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Chapter 2

LT Codes Design

The lengths of the encoding symbols are selected as required for the situation but the

process is more efficient for large values of code length. The encoder partition the data in k

input symbols of length l. Luby describes the encoding process in Luby (2002). The encoder

works as follows, the data has length of N is partitioned into k = N/l input symbols, each

input symbol is of length l. The process of generating an encoding symbol is conceptually

very easy to describe:

• Randomly choose the degree d of the encoding symbol from a degree distribution.

• Choose uniformly at random d distinct input symbols as neighbors of the encoding

symbol.

• The value of the encoding symbol is the exclusive-or of the d neighbors.

Definition 1 (Decoder recovery rule ,from Luby (2002):) If there is at least one en-

coding symbol that has exactly one neighbor then the neighbor can be recovered immediately

since it is a copy of the encoding symbol. The value of the recovered input symbol is exclusive-

ored into any remaining encoding symbols that also have that input symbol as a neighbor,

the recovered input symbol is removed as a neighbor from each of these encoding symbols and

the degree of each such encoding symbol is decreased by one to reflect this removal.

3



2.1 LT Process

The LT process describes the goal and assessment of the LT code degree distribution.

Let K denote the number of encoding symbols required in the process. The process takes a

broad view of the process of throwing balls into bins. The mean number of balls required

to have at least one ball in each bin is K = k · ln(k/δ) with probability 1 − δ. The balls

represent encoding symbols and the bins represent the input symbols in the analysis of the

LT process.

Definition 2 (LT process, from Luby (2002):) All input symbols are initially uncov-

ered. At the first step all encoding symbols with one neighbor are released to cover their

unique neighbor. The set of covered input symbols that have not yet been processed is called

the ripple, and thus at this point all covered input symbols are in the ripple. At each subse-

quent step one input symbol in the ripple is processed: it is removed as a neighbor from all

encoding symbols which have it as a neighbor and all such encoding symbols that subsequently

have exactly one remaining neighbor are released to cover their remaining neighbor. Some of

these neighbors may have been previously uncovered, causing the ripple to grow, while others

of these neighbors may have already been in the ripple, causing no growth in the ripple. The

process ends when the ripple is empty at the end of some step. The process fails if there is

at least one uncovered input symbol at the end. The process succeeds if all input symbols are

covered by the end.

The following figures are from Thomas Stockhammer (2009),present a graphical repre-

sentation of the LT encoding process. The encoding symbols are denoted by Yi and the

input symbols are denoted by Xj as in figure 2.1. At the first step all encoding symbols

with one neighbor are released to cover their unique neighbor. Encoding symbol Y5 is re-

leased to cover its one neighbor input symbol X5 as shown in figure 2.2. The set of covered

input symbols that have not yet been processed is called the ripple, and input symbol X5

is in the ripple. When symbol X5 is processed, it is removed as a neighbor of encoding

symbol Y4,Y5, and Y6 as illustrated in figure 2.3. Encoding symbol Y4 is released to cover

4



Figure 2.1. Encoding symbols and Input symbols

Figure 2.2. Input symbol in the ripple
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Figure 2.3. Input symbol is processed

its one neighbor input symbol X2 as shown in figure 2.4; at this point X2 is in the ripple.

Input symbol X2 is processed, it is removed as a neighbor of encoding symbol Y1,Y4, and

Y7 as illustrated in figure 2.5. The LT process is completed in figures 2.6, 2.7, 2.8, 2.9, 2.10,

and 2.11. Note in figure 2.8 that the ripple increases to two input symbols. This process

continues until the ripple is empty at the last step. The process fails if there is at least one

uncovered input symbol at the end. The process succeeds if all input symbols are covered

by the end.
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Figure 2.4. Input symbol X2 is in the ripple

Figure 2.5. Input symbol is processed
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Figure 2.6. Input symbol three in in the ripple

Figure 2.7. Input symbol three is processed
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Figure 2.8. Input symbols one and six are in the ripple

Figure 2.9. Input symbols are processed
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Figure 2.10. Input symbol four in the ripple

Figure 2.11. The LT Process is complete
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Chapter 3

LT Degree Distribution

Each encoding symbol’s degree is selected separately by the execution of a probability

degree distribution formula.

Definition 3 (Degree distribution, from Luby (2002):) For all d, ρ(d) is the proba-

bility that an encoding symbol has degree d.

The performance of the LT process is influenced by following variables.

• The degree distribution ρ(·).

• The number of encoding symbols K.

• The number of input symbols k.

The goal is to design the degree distribution to comply with these goals.

• As few encoding symbols as possible on average are required to ensure success of the

LT process.

• The average degree of the encoding symbols is as low as possible.

The LT process can be analyzed similar to solving the problem of throwing balls into bins.

Definition 4 (All-At-Once distribution, from Luby (2002):) ρ(1) = 1

The classical balls and bins process suggest that k · ln(k/δ) encoding symbols are required

to encoded k input symbols with probability 1− δ.

11



3.1 Some preliminary probabilistic analysis

In this section the task is to determine what is the possibility of an encoding symbol of

degree i is released when there are L input symbols that remain unprocessed.

Definition 5 (Encoding symbol release, from Luby (2002)) Let us say that an en-

coding symbol is released when L input symbols remain unprocessed if it is released by the

processing of the k − Lth input symbol, at which point the encoding symbol randomly covers

one of the L unprocessed input symbols.

Definition 6 (Degree release probability, from Luby (2002)) Let q(i, L) be the prob-

ability that an encoding symbol of degree i is released when L input symbols remain unpro-

cessed.

Proposition 7 (Degree release probability formula, from Luby (2002))

• q(1, k) = 1.

• For i = 2, . . . , k, for all L = k − i+ 1, . . . , 1

q(i, L) =
i(i− 1) · L ·

∏i−3
j=0(k − (L+ 1)− j)∏i−1
j=0 k − j

• For all other i and L, q(i, L) = 0.

Proof. From Luby (2002), This is the probability that i−2 of the neighbors of the encoding

symbol are among the first k− (L+ 1) symbols processed, one neighbor is processed at step

k − L, and the remaining neighbor is among the L unprocessed input symbols.

Definition 8 (Overall release probability, from Luby (2002)) Let r(i, L) be the prob-

ability that an encoding symbol is chosen to be of degree i and is released when L input symbols

remain unprocessed, i.e. r(i, L) = ρ(i) ·q(i, L). Let r(L) be the overall probability that an en-

coding symbol is released when L input symbols remain unprocessed, i.e., r(L) =
∑

i r(i, L).

Figure 3.1 plots the degree release probability formula curves for encoding symbols of

degree i = 2, i = 3, i = 5, i = 10, and i = 15 with k = 1000 inputs symbols.

12



Figure 3.1. Degree release probability formula

3.2 The Ideal Soliton distribution

The preferred results for the distribution is to have the minority number of released

encoding symbols cover an input symbol that is currently in the ripple. The purpose is to

keep the number of input symbols in the ripple at the least possible number. The number of

input symbols in the ripple should be maintained large enough to complete the LT process.

The number input symbols should not be to a reasonable number.

The Ideal Soliton distribution performance is unacceptable when applied to a real system

but it helps to explain the Robust Soliton distribution.

Definition 9 (Ideal Soliton Distribution, from Luby (2002)) The Ideal Soliton dis-

tribution is ρ(1), . . . , ρ(k), where

• ρ(1) = 1/k

• For all i = 2, . . . , k, ρ(i) = 1/i(i− 1)

Note that
∑

i ρ(i) = 1 as required for a probability distribution.

k∑
i=1

ρ(i) = 1

13



k∑
i=1

ρ(i) = ρ(i) +
k∑
i=2

1

i(i− 1)

k∑
i=1

ρ(i) =
1

k
+

k∑
i=2

1

i(i− 1)

Proof by mathematical induction,

For k = 2
2∑
i=1

ρ(i) =
1

2
+

2∑
i=2

1

i(i− 1)

2∑
i=1

ρ(i) =
1

2
+

1

2(2− 1)

2∑
i=1

ρ(i) =
1

2
+

1

2
= 1

For the term,
k∑
i=2

1

i(i− 1)

2∑
i=2

1

i(i− 1)
=

1

2(2− 1)
=

1

2

3∑
i=2

1

i(i− 1)
=

1

2(2− 1)
+

1

3(3− 1)
=

2

3

4∑
i=2

1

i(i− 1)
=

1

2(2− 1)
+

1

3(3− 1)
+

1

4(4− 1)
=

3

4

The general pattern appears to be,

k∑
i=2

1

i(i− 1)
=
k − 1

k

For k = n
n∑
i=2

1

i(i− 1)
=
n− 1

n
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For k = n+ 1
n+1∑
i=2

1

i(i− 1)
=

(n+ 1)− 1

n+ 1

Induction steps,

n∑
i=2

1

i(i− 1)
=
n− 1

n

n∑
i=2

1

i(i− 1)
+

1

(n+ 1)((n+ 1)− 1)
=
n− 1

n
+

1

(n+ 1)((n+ 1)− 1)

n+1∑
i=2

1

i(i− 1)
=
n− 1

n
+

1

(n+ 1)n

n+1∑
i=2

1

i(i− 1)
=
n− 1

n

(n+ 1)

(n+ 1)
+

1

n(n+ 1)

n+1∑
i=2

1

i(i− 1)
=

n2 − 1

n(n+ 1)
+

1

n(n+ 1)

n+1∑
i=2

1

i(i− 1)
=
n2 − 1 + 1

n(n+ 1)

n+1∑
i=2

1

i(i− 1)
=

n2

n(n+ 1)

n+1∑
i=2

1

i(i− 1)
=

n

(n+ 1)

n+1∑
i=2

1

i(i− 1)
=
n+ 1− 1

(n+ 1)

n+1∑
i=2

1

i(i− 1)
=

(n+ 1)− 1

(n+ 1)

Figure 3.2 is a plot of the points 1 to 50 of the Ideal soliton distribution.

A method for selecting a sample from the distribution is to generate a random real value

v ∈ (0, 1], and then for i = 2, . . . , k, let the sample value be i if 1/i < v ≤ 1/i − 1, and

15



Figure 3.2. Ideal Soliton for k = 100

let the sample value be 1 if 0 < v ≤ 1/k. The expected degree of an encoding symbol is∑k
i=1 i/i(i − 1) = H(k), where H(k) ≈ ln(k) is the harmonic sum up to k. This method

was derived by Luby, Luby (2002). Figure 3.3 displays a plot of sample select equations for

k=100 input symbols and figure 3.4 displays the first 40 points.

Proposition 10 (Uniform release Probability, from Luby (2002)) For the Ideal Soli-

ton distribution, r(L) = 1/k for all L = k, . . . , 1

Proof. From Luby (2002), for L = k all encoding symbols of degree one are released, and

an encoding symbol is of degree one with probability 1/k, and thus the statement is true

16



Figure 3.3. Sample selection for k = 100

Figure 3.4. Sample selection for k = 100

17



for L = k.

ρ(1) =
1

k
given

q(1, L) = 1 given

r(L) =
1∑
i=1

r(i, L)

=
1∑
i=1

ρ(i) · q(i, L)

= ρ(1) · q(1, L)

=
(1

k

)
(1)

r(L) =
1

k
(3.1)

For all other values of L,

r(i, L) = ρ(i) · q(i, L)

ρ(i) =
1

i(i− 1)

q(i, L) =
i(i− 1) · L ·

∏i−3
j=0(k − (L+ 1)− j)∏i−1
j=0(k − j)

r(i, L) =
1

i(i− 1)

i(i− 1) · L ·
∏i−3

j=0(k − (L+ 1)− j)∏i−1
j=0(k − j)

r(i, L) =
L ·
∏i−3

j=0(k − (L+ 1)− j)∏i−1
j=0(k − j)

r(L) =
∑
i

r(i, L)

r(i, L) =
k∑
i=2

L ·
∏i−3

j=0(k − (L+ 1)− j)∏i−1
j=0(k − j)

18



It can be verified that k · r(i, L) can be interpreted as the probability that when throwing

balls uniformly at random among k− 1 bins, eliminating each bin as it is covered by a ball,

that it is the (i − 1)rst ball thrown that lands in one of L designated bins. These events

are mutually exclusive for different values of i, and since i = 2, . . . , k − L+ 1 covers all the

possible outcomes,

k · r(i, L) = k
k−L+1∑
i=1

r(i, L) = 1

The Ideal soliton distribution behavior is not the actual behavior as note by Luby. The Ideal

Soliton distribution performs disappointingly when applied to an actual system because the

ripple size of one is too small.

3.3 Robust Solition Distribution

The Ideal Soliton distribution performs inadequately when implemented in an actual

system because there is only one input symbol in the ripple. Any change in the ripple could

cause the encoding process to fail. The Robust Soliton distribution increases the number of

input symbols in the ripple therefore reducing the probability that it will vanish before the

process is complete.

The inspiration for the design of the Robust Soliton distribution is to maintain the mean

number of input symbols in the ripple at approximately ln(k/δ)
√
k during the process.

Definition 11 (Robust Soliton distribution, from Luby (2002)) The Robust Soliton

distribution is µ(·) define as follows. Let R = c · ln(k/δ)
√
k for some suitable constant c > 0.

Define

τ(i) =


R/ik for i = 1, . . . , k/R− 1

R ln(R/δ)/k for i = k/R

0 for i = k/R + 1, . . . , k

Add the Ideal Soliton distribution ρ(·) to τ(·) and normalize to obtain µ(·):

19



• β =
∑k

i=1 ρ(i) + τ(i).

• For all i = 1, . . . , k, µ(i) = (ρ(i) + τ(i))/β.

The variable τ(·) makes sure that the ripple’s initial size is adequate. Consider the process

in the middle. Suppose that an input symbol is processed and L input symbols remain

unprocessed. Each time an input symbol is processed that symbol is removed from the

ripple; another input symbol should be added to replace the processed one. Let R denote

the size of the ripple then (L−R)/L is the probability that an encoding symbol adds to the

ripple. This implies that it requires L/(L−R) released encoding symbols on average to add

one to the ripple.

From Proposition 7 it is possible to verify that the release rate of encoding symbols of

degree i for i within a constant factor of k/L make up a constant portion of the release

rate when L input symbols remain unprocessed. Thus, if the ripple size is to be maintained

at approximately R, then the density of encoding symbols with degree i = k/L should be

proportional to

ρ(i) · L

(L−R)
=

L

i(i− 1) · (L−R)

L

i(i− 1) · (L−R)
=

k/i

i(i− 1) · (k/i−R)

L

i(i− 1) · (L−R)
=

k/i

i(i− 1) · (k/i−R)

L

i(i− 1) · (L−R)
=

k/i

i(i− 1) · ((k − iR)/i)

L

i(i− 1) · (L−R)
=

k/i

i(i− 1) (k−iR)
i
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L

i(i− 1) · (L−R)
=

k/i

(i− 1) · (k − iR)

L

i(i− 1) · (L−R)
=

k

i(i− 1) · (k − iR)

L

i(i− 1) · (L−R)
=

k

i(i− 1) · (k − iR)
+

1

i(i− 1)
− 1

i(i− 1)

L

i(i− 1) · (L−R)
=

1

i(i− 1)
+

k

i(i− 1) · (k − iR)
− 1

i(i− 1)

L

i(i− 1) · (L−R)
=

1

i(i− 1)
+

k

i(i− 1) · (k − iR)
− 1

i(i− 1)
· (k − iR)

(k − iR)

L

i(i− 1) · (L−R)
=

1

i(i− 1)
+

k

i(i− 1) · (k − iR)
− (k − iR)

i(i− 1) · (k − iR)

L

i(i− 1) · (L−R)
=

1

i(i− 1)
+

k − (k − iR)

i(i− 1) · (k − iR)

L

i(i− 1) · (L−R)
=

1

i(i− 1)
+

k − k + iR

i(i− 1) · (k − iR)

L

i(i− 1) · (L−R)
=

1

i(i− 1)
+

iR

i(i− 1) · (k − iR)

L

i(i− 1) · (L−R)
=

1

i(i− 1)
+

R

(i− 1) · (k − iR)

L

i(i− 1) · (L−R)
≈ ρ(i) + τ(i) (3.2)

for i = 2, . . . , k/R− 1, this equation is derived in Luby (2002).
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Figure 3.5 and figure 3.6 are plots of τ , figure 3.7 and figure 3.8 are plots of ρ, and figures

3.9 and figure 3.10 are plots of µ. Make note of the spikes at τ/k, a topic Luby discuses.

The final spike τ(k/R) ensures that all the input symbols unprocessed when L = R are all

covered. This is similar to simultaneously releasing R ln(R/δ) encoding symbols when R

input symbols remain unprocessed to cover them all at once as given in Luby (2002).

Figure 3.5. δ = 0.5, c = 0.2 and k = 100

Figure 3.6. δ = 0.05, c = 0.2 and k = 100
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Figure 3.7. δ = 0.5, c = 0.2 and k = 100

Figure 3.8. δ = 0.05, c = 0.2 and k = 100
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Figure 3.9. δ = 0.5, c = 0.2, and k = 100

Figure 3.10. δ = 0.05, c = 0.2 and k = 100
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The number of encoding symbols is placed to

K = kβ (3.3)

which means that k · (ρ(i) + τ(i)) is the expected number of encoding symbols of degree i.

Figure 3.11 is an actual experiment performed by David MacKay and included in his

textbook MacKay (2003). In practice, LT codes can be tuned so that a file of original

size K ≈ 10, 000 packets is recovered with an overhead of about 5%. Figure 3.11 shows

histograms of the actual number of packets required for a couple of settings of the parameters

c and δ.

Figure 3.12, displays the results of using equation (3.3) ,from Luby (2002), to estimate

the number of encoding symbols to be approximately K = 10, 104, for k = 10, 000, c = 0.01

and δ = 0.5. The estimated number of encoding symbols is near the actual number required

when compared to the top histogram in figure 3.11. The estimated number of encoding

symbols required to recover a file of size k = 10, 000 input packets is K = 10, 311 for

c = 0.03 and δ = 0.5,figure 3.13 and figure 3.11 middle histogram, and K = 11, 037 for

c = 0.1 and δ = 0.5,figure 3.14 and figure 3.11 bottom histogram.

3.4 Analysis of Robust Solition Distribution
This section gives some properties of the Robust Soliton distribution.

Theorem 12 (number of encoding symbols, from Luby (2002)) The number of en-

coding symbols is K = k +O(
√
k · ln2(k/δ)).

Proof. From Luby (2002)
k∑
i=1

ρ(i) = 1

τ(i) =


R
ik

For i = 1, . . . , k
R
− 1

R ln(R/δ)
k

For i = k
R

0 for i = k
R

+ 1, . . . , k
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Figure 3.11. Histograms of the actual number of packets N required in order to recover a file
of size K = 10, 000 packets. The parameters were as follows: top histogram: c = 0.01, δ = 0.5,
middle: c = 0.03, δ = 0.5, bottom: c = 0.1, δ = 0.5

Figure 3.12. c = 0.01
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Figure 3.13. c = 0.03

Figure 3.14. c = 0.1
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β =
k∑
i=1

ρ(i) + τ(i)

K = kβ

= k ·
( k∑

i=1

ρ(i) + τ(i)

)

= k ·
(

1 +

k/R−1∑
i=1

τ(i) + τ(k/R)

)

= k ·
(

1 +

k/R−1∑
i=1

R

ik
+
R ln(R/δ)

k

)

= k +

k/R−1∑
i=1

R

i
+R ln(R/δ)

≤ k +R ·H(k/R) +R · ln(R/δ)

Theorem 13 (average degree of an encoding symbol, from Luby (2002)) The av-

erage degree of an encoding symbol is D = O(ln(k/δ)).

Proof. From Luby (2002)

µ(i) =
(ρ(i) + τ(i))

β

H(k) =
k∑
i=1

i

i(i− 1)
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D = E[µ(i)]

=
∑
i

iµ(i)

=
∑
i

i
(ρ(i) + τ(i))

β

≤
∑
i

i(ρ(i) + τ(i))

= i

( k+1∑
i

1

i(i− 1)
+

k/R−1∑
i=1

R

ik
+R ln(R/δ)

)

=
k+1∑
i=2

1

(i− 1)
+

k/R−1∑
i=1

R

k
+R ln(R/δ)

≤ H(k) + 1 + ln(R/δ)

The following propositions are used in the proof of the theorem below that the LT process

succeeds with high probability.

Proposition 14 (robust uniform release probability, from Luby (2002)) For all L =

k − 1, . . . , R,

K · r(L) ≥ L

(L− θR)

for a suitable constant θ ≥ 0, excluding the contribution of τ(k/R).

Proof. This proof uses the contributions of τ(2), . . . , τ(k/R − 1) and the Ideal Soliton

distribution ρ(·). For L = k/2, . . . , k − 1 using Proposition 7 and Proposition 10, and the

number of encoding symbols ,K = kβ.

This is displayed once more to make the process clearer, Proposition 7(degree release prob-

ability formula)

• q(1, k) = 1
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• For i = 2, . . . , k, for all L = k − i+ 1, . . . , 1

q(i, L) =
i(i− 1) · L ·

∏i−3
j=0 k − (L+ 1)− j∏i−1
j=0 k − j

• For all other i and L,q(i, L) = 0

Definition 8

r(i, L) = ρ(i) · q(i, L)

r(L) =
∑
i

r(i, L)

This is displayed once more to make the process clearer, Proposition 10 (uniform release

probability)

r(L) =
1

k
, L = k, . . . , 1

r(i, L) =
L ·
∏i−3

j=0 k − (L+ 1)− j∏i−1
j=0 k − j

k · r(L) = k ·
k−L+1∑
i=1

r(i, L) = 1

This is displayed once more to make the process clearer, Proposition 14 Proof (robust uniform

release probability)

L = k/2, . . . , k − 1

K · r(L) ≥ K ·

((∑
i

1
i(i−1) · q(i, L)

)
+ τ(2) · q(2, L)

β

)

K · r(L) ≥ K ·

((∑
i

1
i(i−1) ·

i(i−1)·L·
∏i−3

j=0 k−(L+1)−j∏i−1
j=0 k−j

)
+ τ(2) · q(2, L)

β

)
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K · r(L) ≥ K ·

((∑
i

L·
∏i−3

j=0 k−(L+1)−j∏i−1
j=0 k−j

)
+ τ(2) · q(2, L)

β

)

K · r(L) ≥ K ·

((∑
i r(i, L)

)
+ τ(2) · q(2, L)

β

)

K · r(L) ≥ K ·

(
r(L) + τ(2) · q(2, L)

β

)

K · r(L) ≥ kβ ·

(
r(L) + τ(2) · q(2, L)

β

)

K · r(L) ≥ k · (r(L) + τ(2) · q(2, L))

K · r(L) ≥ kr(L) + kτ(2) · q(2, L)

By;

k · r(L) = k ·
k−L+1∑
i=1

r(i, L) = 1

Then

K · r(L) ≥ 1 + kτ(2) · q(2, L)

By;

τ(i) =
R

ik
for i = 1, . . . , k/R− 1

τ(2) =
R

2k

q(i, L) =
i(i− 1) · L ·

∏i−3
j=0 k − (L+ 1)− j∏i−1
j=0 k − j

q(2, L) =
2(2− 1) · L ·

∏2−3
j=0 k − (L+ 1)− j∏2−1

j=0 k − j
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q(2, L) =
2(1) · L ·

∏−1
j=0 k − (L+ 1)− j∏1
j=0 k − j

q(2, L) =
2 · L · (1)

(k − 0) · (k − 1)
=

2 · L
k · (k − 1)

Then

K · r(L) ≥ 1 + kτ(2) · q(2, L)

K · r(L) ≥ 1 + k
R

2k
· 2 · L
k · (k − 1)

K · r(L) ≥ 1 +
R · L

k · (k − 1)
≥ L

L−R/6

More generally, for L ≥ R,

K · r(L) ≥ 1 + k ·
k/L∑

d=k/2L

τ(d) · q(d, L)

Then, using Proposition 7 and Proposition 10

τ(d) =
R

dk

q(d, L) =
d(d− 1) · L ·

∏d−3
j=0 k − (L+ 1)− j∏d−1

j=0 k − j

k ·
k/L∑

d=k/2L

τ(d) · q(d, L) =

= k ·
k/L∑

d=k/2L

R

d · k
·
d(d− 1) · L ·

∏d−3
j=0 k − (L+ 1)− j∏d−1

j=0 k − j

=

k/L∑
d=k/2L

R ·
(d− 1) · L ·

∏d−3
j=0 k − (L+ 1)− j∏d−1
j=0 k − j
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=

k/L∑
d=k/2L

RL(d− 1) ·
∏d−3

j=0 k − (L+ 1)− j∏d−1
j=0 k − j

=

k/L∑
d=k/2L

RL(d− 1)

k(k − 1)

·
∏d−3

j=0 k − (L+ 1)− j∏d−3
j=0 k − j − 2

=

k/L∑
d=k/2L

RL(d− 1)

k(k − 1)

·
∏d−3

j=0 k − (L+ 1)− j∏d−3
j=0 k − (j + 2)

=

k/L∑
d=k/2L

RL(d− 1)

k(k − 1)
·
d−3∏
j=0

(
k − (L+ 1)− j
k − (j + 2)

)

=

k/L∑
d=k/2L

RL(d− 1)

k(k − 1)
·
d−3∏
j=0

(
k − (L+ 1)− j + (k − (j + 2))− (k − (j + 2))

k − (j + 2)

)

=

k/L∑
d=k/2L

RL(d− 1)

k(k − 1)
·
d−3∏
j=0

(
(k − (j + 2)) + k − (L+ 1)− j − (k − (j + 2))

k − (j + 2)

)

=

k/L∑
d=k/2L

RL(d− 1)

k(k − 1)
·
d−3∏
j=0

(
k − (j + 2)

k − (j + 2)
+
k − (L+ 1)− j − (k − (j + 2))

k − (j + 2)

)

=

k/L∑
d=k/2L

RL(d− 1)

k(k − 1)
·
d−3∏
j=0

(
k − (j + 2)

k − (j + 2)
+
k − L− 1− j − k + j + 2

k − (j + 2)

)

=

k/L∑
d=k/2L

RL(d− 1)

k(k − 1)
·
d−3∏
j=0

(
k − (j + 2)

k − (j + 2)
+
−L− 1 + 2

k − (j + 2)

)

=

k/L∑
d=k/2L

RL(d− 1)

k(k − 1)
·
d−3∏
j=0

(
k − (j + 2)

k − (j + 2)
+
−L+ 1

k − (j + 2)

)

k ·
k/L∑

d=k/2L

τ(d) · q(d, L) =

k/L∑
d=k/2L

RL(d− 1)

k(k − 1)
·
d−3∏
j=0

(
1− L− 1

k − j − 2

)
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For all v = k/2L, . . . , k/L,

d−3∏
j=0

(
1− L− 1

k − j − 2

)
≥
(

1− L

k(1− 1
L
− 2

k
)

) k
L
−3

≈ 1/e

Thus,

k ·
k/L∑

d=k/2L

τ(d) · q(d, L) '
R

8eL

Putting this together yields

K · r(L) ' 1 +
R

8eL
≥ L

L− θR

for θ = 1
16e

.

Proposition 15 (robust release at end probability) Using only the

contribution of τ(k/R)

K ·
2R∑
L=r

r(L) ≥ γ ·R · ln(R/δ)

for a suitable constant γ > 0.

Proof. Fix L between 2R and R. It is not hard to show that

K · τ(k/R)

β
· q(k/R,L) ≥ γ · ln(R/δ)

for an appropriate constant γ > 0.
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Chapter 4

Simulation

The computer simulation program used to generate the following graphs was developed

by Filler & Fridrich (2010) using MatLab. The graphs plotted in figure 4.1 and 4.2, display

the results of the values for c = 0.2, c = 0.4, c = 0.6, and c = 0.8 for all four plots δ = 0.05 and

k = 8000 input symbols. I executed the simulation program more than once to determine

if the program produce consistence results. The output plots displayed in figure 4.1 and

figure 4.2 are the results of varying the parameter c and the value of the other variables are

constant within this simulation. The graph demonstrates that by increasing the magnitude

from c = 0.2 to c = 0.8 improves the performance of the channel. The improved performance

can be seen in figure 4.1 by holding Pb ≈ 0.1 , for c = 0.8, e ≈ 0.085,and for c = 0.6

e ≈ 0.165,and for c = 0.4, e ≈ 0.21, and for c = 0.2,e ≈ 0.34.

The plots of figure 4.3 and figure 4.4 display the results of varying the value of δ and

holding the other variable constant. The values of the constant variables are c = 0.2 and

k = 8000 input symbols and the values for δ are 0.00005, 0.0005, 005, and 0.05. These figures

demonstrate that as the value of delta increases the performance of the channel decreases.

The performance of LT Codes become more efficient by reducing the bit erasure proba-

bility as the number of input symbols is increased. The variables c = 0.2 and δ = 0.005 are

held constant while k is increased from 2, 000 to 10, 000. This is demonstrated in figure 4.5,

figure 4.6, figure 4.7, figure 4.8, figure 4.9, figure 4.10, figure 4.11, figure 4.12,figure 4.13,

and figure 4.14.
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Figure 4.1. Varying the value of c first execution

Figure 4.2. Vary the value of c second execution
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Figure 4.3. Varying the value of δ first execution

Figure 4.4. Varying the value of δ second execution
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Figure 4.5. 2,000 input symbols, first execution

Figure 4.6. 2,000 input symbols, second execution
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Figure 4.7. 4,000 input symbols, first execution

Figure 4.8. 4,000 input symbols, second execution
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Figure 4.9. 6,000 input symbols, first execution

Figure 4.10. 6,000 input symbols, first execution
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Figure 4.11. 8,000 input symbols, first execution

Figure 4.12. 8,000 input symbols, second execution
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Figure 4.13. 10,000 input symbols, first execution

Figure 4.14. 10,000 input symbols, second execution
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Chapter 5

Conclusion

The LT Code equations analytical results are very similar to the randomly generated

computer simulations results. The insertion of the mathematical techniques used to develop

the equations may provide an insight in to their development.

The goal is that this thesis helps to provide an improved understanding of the mathe-

matical foundation and the performance of LT Codes.
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Appendix 1

Binary Erasure Channel

The binary erasure channel (BEC) is displayed in figure A.1 is from Lathi (1998). In the

Figure A.1. Binary Erasure Channel

BEC e is the probability of a bit erasure to indicate the fact that nothing is known about

the bit that was deleted. The capacity of the BEC is

CBEC = 1− p

, figure A.2 plots e vs. CBEC . The conditional probabilities of the channel are:

P{ỹ = 0|x̃ = 0} = 1− p

P{ỹ = e|x̃ = 0} = p
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Figure A.2. Capacity

P{ỹ = 0|x̃ = 1} = 0

P{ỹ = 1|x̃ = 0} = 0

P{ỹ = e|x̃ = 1} = p

P{ỹ = 1|x̃ = 1} = 1− p
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Appendix 2

Balls and Bins

The classical process of randomly tossing balls into bins is taken from Cormen et al.

(2001). Let’s assume that the balls are identical and are numbered 1, 2, · · · , b and there are

b empty bins available. The tossing of one ball is independent of the tossing of any of the

other b − 1 balls. The probability that a ball lands in a particular bin is the same for all

the b bins and has probability 1/b. This is a Bernoulli experiment where a success is when

a ball lands in the chosen bin.

The objective is to determine how many balls must be tossed until every bin contains at

least one ball. Define a hit as the event that a ball lands in an empty bin. There must be

at least one ball in each of the b bins so there is a need to determine the number of n tosses

needed to obtain b hits.

The hits are used to partition the tosses into n stages. The ith stage contains all the

tosses after the (i− 1)st hit. The first toss is guaranteed to hit one of the empty bins so the

first stage is the first toss. During the ith stage each time a ball is tossed, there are i − 1

bins that contain balls and b − i + 1 empty bins. Each time a ball is tossed during the ith

stage, the probability of a success is (b− i+ 1)/b.

Let ni denote the number of tosses in the ith stage. Therefore, the number of tosses

required to obtain b hits is n =
∑b

i=1 ni. The random variable ni has a geometric distribution

with probability of success (b− i+ 1)/b. The expectation of the geometric random variable

with a success of p is from Ross (2010):

E[ni] =
∞∑
n=1

np(1− p)n−1

51

SuperHawk
Text Box



Let q = 1− p

E[ni] = p

∞∑
n=1

nqn−1

E[ni] = p
∞∑
n=1

d

dq
(qn)

E[ni] = p
d

dq

( ∞∑
n=1

qn
)

E[ni] = p
d

dq

(
q
∞∑
n=1

qn−1
)

E[ni] = p
d

dq

(
q

1− q

)

E[ni] = p

( d
dq

(q)(1− q)− q d
dq

(1− q)
(1− q)2

)

E[ni] = p

(
(1− q)− q(−1)

(1− q)2

)

E[ni] = p

(
1− q + q

(1− q)2

)
E[ni] = p

1

(1− q)2

E[ni] =
p

(1− (1− p))2

E[ni] =
p

(1− 1 + p))2

E[ni] =
p

p2

E[ni] =
1

p

E[ni] =
1

(b− i+ 1)/b
=

b

b− i+ 1
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Then,

E[n] = E

[ b∑
i=1

ni

]

E[n] =
b∑
i=1

E[ni]

E[n] =
b∑
i=1

b

b− i+ 1

Example let b = 5, then

5∑
i=1

5

5− i+ 1
= 5

(
1

5
+

1

4
+

1

3
+

1

2
+

1

1

)

E[n] = b
b∑
i=1

1

i

The function f(i) = 1
i

is a is a monotonically decreasing function that can be approximated

by: ∫ n+1

m

f(x)dx ≤
n∑

k=m

f(k) ≤
∫ n

m−1
f(x)dx

The lower bound:
n∑
k=1

1

k
≥
∫ n+1

1

dx

x

= ln (n+ 1)

The upper bound:
n∑
k=2

1

k
≤
∫ n

1

dx

x

= lnn

Then it takes E[n] = b ln(b) balls for each bin to contain at least one ball.
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