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ABSTRACT 

Geophysical methods provide a rapid, economical, non-invasive, and spatial coverage of 

the subsurface in terms of geophysical properties. On the other hand, geophysical methods can 

generate multiple geophysical anomalies. An anomaly on a seismic refraction or an electrical 

resistivity tomogram is an area that has different values compared to its surrounding. Geophysical 

anomalies in dams and levees can be due to the overall heterogeneity of the subsurface, structures 

such as principal spillways, artifacts of inversion software, or to a true compromised location, such 

as an air void due to internal erosion or seepage. Therefore, there is uncertainty involved with 

using geophysical methods where an anomaly does not necessarily represent a true compromised 

zone. Identification of true compromised zones requires an invasive geotechnical investigation, 

such as drilling.  

To identify anomalies that are associated with true compromised zones, multiple types of 

geophysical surveys are commonly conducted. Although the use of multiple geophysical methods 

and qualitative side-by-side interpretation can reduce this problem to some degree, a more 

quantitative analysis in identifying the type of compromised zones is required. Such analysis can 

be achieved with the application of cross-plot analysis. With the use of cross-plot analysis, it is 

possible to relate and map results from multiple geophysical surveys to more commonly used 

geotechnical terms such as porosity and moisture content. 

This research develops the use of cross-plot analysis using time-lapse seismic refraction 

tomography and electrical resistivity tomography for the assessment of earthen dams and levees. 
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The focus of this research is on the development of a method for quantifying the bounding seismic 

velocity and electrical resistivity values, which then divide the subsurface integrity conditions into 

different groups. A new approach of using preliminary and laboratory geophysical measurements 

to define cross-plot constraints is presented. This work will separately target different types of 

compromised zones, such as sand zones and dry compacted clay zones, by incorporating their 

unique seismic and electrical resistivity attributes into the cross-plot analysis.  A new approach of 

cross-plot analysis using external physical constraints derived from geophysical surveys and 

theoretical models at the Francis Levee Site is also presented. 

 

 

 

 

 

 

 

 

 



iv 
 

DEDICATION 

This work is dedicated to God Almighty my creator,  

my strong pillar, my source of knowledge and understanding. 

To my dearest wife Liya and to my son Naod, 

every good and perfect gift is from above and I’m always grateful to have you. 

To my mother Sara, to my father Teklu, to my siblings 

Bikila (big bro), Chuni, and Abiti totaw, 

thank you for the love, support, and encouragement. 

 

 

 

 

 

 

 

 



v 
 

LIST OF ABBREVIATIONS AND SYMBOLS 

a Tortuosity 

ARS Agricultural Research Service 

ASTM   American Society of Testing and Materials  

CCR   Capacitively-coupled resistivity 

CEC    Cation exchange capacity 

CMPCC    Common Midpoint Cross-Correlation analysis 

Ce   Conductivity due to the presence of clay fraction  

Cw   Conductivity of pore fluid  

E   Young modulus 

ERT   Electrical resistivity tomography 

F,  𝐹∗    Formation factor, formation factor of shaley sand 

FEMA  Federal Emergency Management Agency 

G   Shear modulus 

𝐺𝑑   Dry shear modulus  

𝐺𝑠    Saturated shear modulus 

HERU  Hydraulic Engineering Research Unit 



vi 
 

JARS     Joint analysis of refraction with surface-waves 

K   Bulk modulus 

Kg   Bulk modulus of saturating gas  

Kl     Bulk modulus of saturating liquid 

𝐾𝑑   Bulk modulus of dry rock 

𝐾𝑓     Bulk modulus of saturating fluid 

𝐾𝑜   Bulk modulus of soil mineral grain 

𝐾𝑠𝑎𝑡   Bulk modulus of saturated rock 

LCR       Inductance (L), capacitance (C), and resistance (R)  

LiDAR      Light Detection and Ranging 

m       Cementation factor 

MASW  Multichannel analysis of surface waves 

MC    Moisture content 

MGOS   Multiple Geode Operating System 

n       Saturation exponent 

NCLS   National Committee on Levee Safety 



vii 
 

Qv    Concentration of sodium exchange cations of the clay 

S, Sw     Degree of saturation  

SIRT     Simultaneous Iterative Reconstruction Technique 

SRS      Stanford Research Systems 

SRT   Seismic refraction tomography   

TDR   Time domain reflectometer 

USACE           United States Army Corps of Engineers 

USBR   United States Bureau of Reclamation 

USDA   United States Department of Agriculture  

USSD   United States Society on Dams 

vp      P-wave seismic velocity 

vs     S-wave seismic velocity 

ʋ    Poisson’s ratio 

ZAV    Zero-air-void 

λNa
e    Maximum equivalent ionic conductance of sodium exchange ions 

ρ    Soil mass density 



viii 
 

ρb     Bulk electrical resistivity 

ρdry   Dry density   

ρf    Mass density of the fluid phase 

ρg   Density of gas 

ρl   Density of saturating liquid 

ρo   Density of soil mineral grain  

ρs   Density of solid phase 

ρw      Electrical resistivity of the pore water, density of water 

ϕ    Effective porosity 

ψ    Axial modulus 

 

 

 

 

 



ix 
 

ACKNOWLEDGMENTS 

I would like to express my sincere gratitude to my research advisor Dr. Craig Hickey, 

interim director at the National Center for Physical Acoustics and Research Associate Professor 

of Physics and Geological Engineering, for his continuous encouragement and support over the 

years. His insight and guidance were invaluable in completing this research. My family and I are 

thankful to his wife, Rose Hickey, and two daughters Madison and Morgan, for their warm 

friendship and for becoming our adoptive family 8000 miles away from home! 

I would also like to express my sincere gratitude to my academic adviser and committee 

member Dr. Chung Song, Associate Professor of Civil Engineering, for his valuable contribution, 

support, and encouragement. He has devoted his valuable time and energy in helping me navigate 

my graduate studies. I would also like to thank Dr. Elizabeth Ervin, Associate Professor of Civil 

Engineering, and Dr. Yacoub Najjar, Chair and Professor of Civil Engineering, for their interest 

and valuable comments on my work.  

I would like to say thank you to everyone involved in this research especially to my fellow 

students past and present including Jared Case, Ted Watson, Blake Armstrong, Turner Arnold, and 

Gergő Arany, and NCPA employee J. D. Heffington for helping me during field data collection. 

Thank you for the thousands of hammer swings in the middle of the Mississippi Delta! I would 

also like to thank John Anderson for taking his valuable time and proofreading this manuscript.   

I am as ever, especially grateful to my family, especially to my dear wife Liya, for bearing 

with me through it all. Thank you for helping me with the lab measurements and edits.  To my son 



x 
 

Naod, who has been the light of our life for the last nineteen months, and has given me the extra 

motivation to get things done. To my mother Sara, father Teklu, and siblings Bikila, Lensa, and 

Amanuel, thank you for your continuous support and encouragement. 

This research was funded by the Department of Homeland Security sponsored Southeastern 

Region Research Initiative (SERRI) at the Department of Energy’s Oak Ridge National Laboratory 

(Project number. 90034), the United States Department of Agriculture (USDA) Award #58-6408-

1-608, and the National Science Foundation and Colorado School of Mines, Partnership for 

International Research and Education (PIRE) project Award #OISE-1243539/400512. 

Thank you! 

Leti Teklu Wodajo 

 

  

 

 

 

 

 



xi 
 

TABLE OF CONTENTS 

 

ABSTRACT  .................................................................................................................................. ii 

DEDICATION ............................................................................................................................... iv 

LIST OF ABBREVIATIONS AND SYMBOLS ........................................................................... v 

ACKNOWLEDGMENTS ............................................................................................................. ix 

LIST OF TABLES ........................................................................................................................ xv 

LIST OF FIGURES ..................................................................................................................... xvi 

CHAPTER 1   INTRODUCTION .................................................................................................. 1 

1.1 Motivation of Research .................................................................................................. 1 

1.2 Research Objectives ....................................................................................................... 3 

1.3 Work Scope .................................................................................................................... 3 

CHAPTER 2   LITERATURE REVIEW  ...................................................................................... 5 

2.1 Introduction .................................................................................................................... 5 

2.2 Seismic Refraction Surveys on Earthen Dams and Levees ............................................ 6 

2.3 Electrical Resistivity Surveys on Earthen Dam and Levees ........................................ 12 

2.4 Cross-Plot Analysis ...................................................................................................... 15 

2.5 Summary ...................................................................................................................... 16 

CHAPTER 3   GEOPHYSICAL MEASUREMENTS AT STILLWATER MODEL DAM  ...... 18 

3.1 Introduction .................................................................................................................. 18 

3.2 Introduction to the Stillwater Model Dam ................................................................... 18 

3.3 Seismic Refraction Survey, Equipment and Acquisition ............................................. 21 

3.4 Electrical Resistivity Survey, Equipment and Acquisition .......................................... 23 

3.5 Time-Lapse P-Wave Seismic Refraction Tomography and                                       

Electrical Resistivity Tomography Surveys ................................................................. 24 

3.6 Moisture Content Readings .......................................................................................... 28 

3.7 P-wave SRT Results During Cyclic Loading ............................................................... 29 

3.7.1 P-wave seismic refraction survey 1 (Dam not loaded) ......................................... 29 

3.7.2 P-wave seismic refraction survey 2 (Loaded for 18hrs.) ...................................... 31 



xii 
 

3.7.3 P-wave seismic refraction survey 3 (Loaded for 44hrs. and 20min.) ................... 32 

3.7.4 P-wave seismic refraction survey 4 (Unloaded) ................................................... 33 

3.7.5 P-wave Seismic Refraction Survey 5 (27min. after reloading) ............................ 34 

3.7.6 Comments on the p-wave seismic refraction surveys ........................................... 35 

3.8 ERT Results During Cyclic Loading ............................................................................ 37 

3.8.1 Electrical resistivity survey 1 (Dam not loaded)................................................... 37 

3.8.2 Electrical resistivity survey 2 (Loaded for 18hrs.)................................................ 38 

3.8.3 Electrical resistivity survey 3 (Loaded for 44hrs. and 20min.)............................. 38 

3.8.4 Electrical resistivity survey 4 (Unloaded)............................................................. 39 

3.8.5 Electrical resistivity survey 5 (27min. after reloading) ........................................ 40 

3.8.6 Comments on the electrical resistivity surveys ..................................................... 41 

3.9 Summary ...................................................................................................................... 42 

CHAPTER 4   CROSS-PLOT ANALYSIS ON THE STILLWATER MODEL DAM .............. 44 

4.1 Introduction .................................................................................................................. 44 

4.2 Introduction to Cross-plot Analysis ............................................................................. 44 

4.3 Cross-plot Analysis Targeting the Stillwater Loamy Sand Zone ................................. 46 

4.4 Cross-Plot Analysis Targeting the Loamy Sand Zone with Time-Lapse                   

Restriction on Resistivity ............................................................................................. 53 

4.5 Cross-Plot Analysis Targeting the Dry Compacted Clay Loam Zone ......................... 53 

4.6 Summary ...................................................................................................................... 56 

CHAPTER 5   ESTABLISHING CONSTRAINTS FOR CROSS-PLOT ANALYSIS               

USING PRELIMINARY AND LABORATORY GEOPHYSICAL 

MEASUREMENTS  ............................................................................................. 58 

5.1 Introduction .................................................................................................................. 58 

5.2 Preliminary P-wave Velocity and Electrical Resistivity Measurements                           

at Stillwater Dam .......................................................................................................... 58 

5.2.1 Cross plot analysis using preliminary measurements on the clay loam ................ 60 

5.2.2     Cross-plot analysis targeting the loamy sand zone using preliminary     

measurements on loamy sand ............................................................................... 61 



xiii 
 

5.2.3 Combined cross plot analysis using preliminary measurements on                       

the clay loam and loamy sand ............................................................................... 64 

5.2.4 Cross plot analysis using preliminary measurements on dry                          

compacted clay loam............................................................................................. 65 

5.3 Laboratory Seismic Velocity and Electrical Resistivity Measurements                        

on the Stillwater Dam Soils .......................................................................................... 68 

5.3.1 Electrical resistivity measurement ........................................................................ 71 

5.3.2 Seismic velocity measurement .............................................................................. 73 

5.3.3 Lab measurements on the Stillwater clay loam .................................................... 75 

5.3.4 Lab measurements on the Stillwater loamy sand .................................................. 78 

5.3.5 Comparison between Laboratory and Field Measurement of Seismic             

Velocity and Electrical Resistivity........................................................................ 81 

5.4 Seismic Velocity and Electrical Resistivity Laboratory Measurements                     

using Synthetic Soils .................................................................................................... 83 

5.4.1 Suitable soil types for earthen dam and levee constructions ................................ 84 

5.4.2 Laboratory measurements on synthetic soil samples ............................................ 86 

5.5  Summary ..................................................................................................................... 89 

CHAPTER 6   APPLICATION OF EXTERNAL PHYSICAL CONSTRAINTS USING 

GEOPHYSICAL SURVEYS AND THEORETICAL MODELS                         

AT FRANCIS LEVEE SITE  ............................................................................... 91 

6.1  Introduction ................................................................................................................. 91 

6.2  Introduction to Francis Levee Site .............................................................................. 91 

6.3  Study Area and Survey Parameters ............................................................................. 95 

6.4  Survey Result and Analysis ......................................................................................... 97 

6.4.1 Waterside (Line 1) ................................................................................................ 98 

6.4.3 Landside (Line 3) ................................................................................................ 101 

6.5  Cross-Plot Analysis ................................................................................................... 104 

6.6  Possible Seepage Path ............................................................................................... 107 

6.7  Summary ................................................................................................................... 108 

CHAPTER 7   CONCLUSIONS ................................................................................................ 109 

7.1  Summary .................................................................................................................... 109 



xiv 
 

7.2  Contributions .............................................................................................................. 110 

7.3 Recommendations for Further Research .................................................................... 114 

BIBLIOGRAPHY ....................................................................................................................... 116 

VITA ……… .............................................................................................................................. 125 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xv 
 

LIST OF TABLES 

Table 3.1: Seismic refraction and electrical resistivity survey periods                                         

and loading conditions for the model embankment dam. ........................................... 25 

Table 3.2: Summary of cyclic loading of the dam during survey period 1. ................................. 26 

Table 5.1: Preliminary seismic velocity and electrical resistivity values during construction. ... 59 

Table 5.2: Standard proctor tests, modified from Das (2009). .................................................... 69 

Table 5.3: Comparison between laboratory and field measured p-wave velocities. .................... 82 

Table 5.4: Comparison between laboratory and field measured electrical resistivity. ................ 83 

Table 5.5: Soil types (samples) for lab measurement. ................................................................. 87 

Table 6.1: Seismic refraction and electrical resistivity survey parameters used at                       

Francis Levee Site. ...................................................................................................... 96 

Table 6.2: Average p-wave velocity and electrical resistivity values for the six anomalies          

on the waterside, summary of values and consistency in the calculated porosity             

of the six anomalies. ................................................................................................. 101 

 

 

 

 

 

 

 

 

 

 

 

 



xvi 
 

LIST OF FIGURES 

Figure 3.1: Cross-section of model embankment dam. ............................................................... 19 

Figure 3.2: Picture of the model embankment dam. .................................................................... 19 

Figure 3.3: Sensor pack locations within the model embankment dam. ..................................... 21 

Figure 3.4: Schematic of model embankment dam and geophone layout. .................................. 21 

Figure 3.5: Equipment for seismic refraction survey. ................................................................. 22 

Figure 3.6: Schematic of seismic refraction survey field setup. .................................................. 22 

Figure 3.7: Equipment for electrical resistivity survey................................................................ 23 

Figure 3.8: Schematic of model embankment dam and electrode layout. ................................... 24 

Figure 3.9: Pictures taken during the cyclic loading and unloading of the dam. ......................... 26 

Figure 3.10: a) Example of an end shot gather for survey period 1, initial survey before     

loading the dam, b) measured apparent resistivity pseudosection for survey        

period 1 initial survey before loading the dam. .......................................................... 27 

Figure 3.11: Lateral variation in moisture content during survey period 1. ................................ 29 

Figure 3.12: P-wave velocity (m/s) and ray coverage tomogram when the reservoir                  

was empty (unloaded). ................................................................................................ 30 

Figure 3.13: P-wave velocity (m/s) and ray coverage tomogram when the dam was loaded        

for 18hrs. ..................................................................................................................... 32 

Figure 3.14: P-wave velocity (m/s) and ray coverage tomogram when the dam was loaded         

for 44hrs and 20min. ................................................................................................... 33 

Figure 3.15: P-wave velocity (m/s) and ray coverage tomogram when the dam was unloaded. 34 

Figure 3.16: P-wave velocity (m/s) and ray coverage tomogram 27min. after reloading. .......... 35 

Figure 3.17: Electrical resistivity tomogram (Ohm-m) when the reservoir was empty     

(unloaded). .................................................................................................................. 37 

Figure 3.18: Electrical resistivity tomogram (Ohm-m) when the dam was loaded for 18hrs. .... 38 

Figure 3.19: Electrical resistivity tomogram (Ohm-m) when the dam was loaded for 44hrs.     

and 20min.................................................................................................................... 39 



xvii 
 

Figure 3.20: Electrical resistivity tomogram (Ohm-m) when the dam was unloaded. ................ 40 

Figure 3.21: Electrical resistivity tomogram (Ohm-m) 27min. after reloading........................... 40 

Figure 4.1: Cross-plot analysis using seismic velocity and electrical resistivity values.............. 45 

Figure 4.2: Re-gridded p-wave velocity and electrical resistivity tomograms for November 

survey 1. ...................................................................................................................... 47 

Figure 4.3: Location of the loamy sand anomaly and a safe zone (SZ) for                          

November survey 1. .................................................................................................... 48 

Figure 4.4: Scatter plot for the compromised (loamy sand) and safe zones for November            

survey 1. ...................................................................................................................... 49 

Figure 4.5: Scatter plot for all the loading conditions for the November cyclic loading            

(targeting the loamy sand zone). ................................................................................. 50 

Figure 4.6: Boundary selection for cross-plot analysis (targeting the loamy sand zone). ........... 51 

Figure 4.7: Cross-plot map targeting the loamy sand zone for November survey 1. .................. 52 

Figure 4.8: Loamy sand zone cross-plotting results for cyclic loading of the dam. .................... 52 

Figure 4.9: Loamy sand zone cross-plotting results with restriction on resistivity. .................... 53 

Figure 4.10: Scatter plot for all the loading conditions for the November cyclic loading 

(targeting the dry compacted zone)............................................................................. 55 

Figure 4.11: Dry compacted clay loam zone cross-plotting results for cyclic loading of                 

the dam. ....................................................................................................................... 56 

Figure 5.1: a) Preliminary p-wave seismic refraction measurement and b) preliminary              

electrical resistivity measurement on the dry compacted clay loam zone. ................. 59 

Figure 5.2: Cross-plot analysis based on preliminary measurements on the clay loam             

used to look for similar safe zones. Scatter plots of the clay loam, loamy sand,                  

and dry compacted clay loam from field measurements (Chapter 4) are                   

replotted for reference. ................................................................................................ 60 

Figure 5.3: Cross-plot section based on the preliminary values of the clay loam. ...................... 61 

Figure 5.4: Cross-plot analysis targeting the loamy sand zone using preliminary p-wave             

and electrical resistivity values of the loamy sand zone as boundaries. ..................... 62 



xviii 
 

Figure 5.5: Cross-plot based on saturation adjusted preliminary values of the loamy sand. ....... 63 

Figure 5.6: Cross-plot analysis targeting the loamy sand zone using preliminary p-wave   

velocity and electrical resistivity values of the loamy sand and clay loam.  

Preliminary electrical resistivity of the loamy sand is adjusted for saturation. .......... 65 

Figure 5.7: Cross-plot analysis targeting the dry compacted clay loam using preliminary                

p-wave and electrical resistivity values of the dry compacted clay loam as                    

boundaries. .................................................................................................................. 66 

Figure 5.8: Cross-plot analysis targeting the saturated dry compacted clay loam zone. ............. 68 

Figure 5.9: Acrylic mold with four electrodes. ............................................................................ 70 

Figure 5.10: Adjusted compaction effort compared to standard compaction effort. ................... 71 

Figure 5.11: Electrical resistivity lab measurement setup. .......................................................... 72 

Figure 5.12: Seismic velocity lab measurement setup. ................................................................ 74 

Figure 5.13: Proctor curve plot for Stillwater clay loam. ............................................................ 75 

Figure 5.14: a) P-wave velocity vs. moisture content, b) p-wave velocity vs. saturation,            

and c) p-wave velocity vs. porosity for Stillwater clay loam. The red line           

markers in each figure indicate the OMC. .................................................................. 77 

Figure 5.15: a) Electrical resistivity vs. moisture content, b) electrical resistivity vs.              

saturation, and c) electrical resistivity vs. porosity for Stillwater clay loam.            The 

red line markers in each figure indicate the OMC. ..................................................... 78 

Figure 5.16: Proctor curve plot for the Stillwater loamy sand..................................................... 79 

Figure 5.17: a) P-wave velocity vs. moisture content, b) p-wave velocity vs. saturation,          

and c) p-wave velocity vs. porosity for Stillwater loamy sand. The red line          

markers in each figure indicate the OMC. .................................................................. 80 

Figure 5.18: a) Electrical resistivity vs. moisture content, b) Electrical resistivity vs.          

saturation, and c) Electrical resistivity vs. porosity for Stillwater loamy sand.         

The red line markers in each figure indicate the OMC. .............................................. 81 

Figure 5.19: USDA soil texture triangle (https://www.nrcs.usda.gov). ...................................... 85 



xix 
 

Figure 5.20: Regions of recommended soil types for earthen dam construction 

(https://www.nrcs.usda.gov). ...................................................................................... 86 

Figure 5.21: P-wave velocity vs resistivity scatter plot for the ten soil samples. ........................ 88 

Figure 5.22: S-wave velocity vs resistivity scatter plot for the ten soil samples. ........................ 88 

Figure 6.1: a) Francis levee site (34° 5'9.48"N, 90°51'52.56"W) located 0.8 km west of        

Francis (Google Earth, 2015), b) aerial photography taken during mitigation              

of the levee (Google Earth, 2013). .............................................................................. 92 

Figure 6.2: a) Location of the three sand boils (Nimrod, 2011), and b) mitigation of sand          

boil with sand bags (Nimrod, 2011). .......................................................................... 92 

Figure 6.3: a) Ancient courses of the Mississippi River reconstructed from multiple aerial 

photographs (Fisk, 1944), b) relative location of the sand boils (red dots) and  

meander belt edges (broken white line) (Google Earth, 2015). .................................. 93 

Figure 6.4: Cross section A-A’ (Figure 6.2) shows a pinching-out of the silt and silty sand             

to the north of the site, yielding a direct sand to clay contact (Brackett, 2012). ........ 94 

Figure 6.5: Possible model for sand boil formation at Francis Levee Site. ................................. 94 

Figure 6.6: Locations of p-wave seismic refraction and electrical resistivity survey lines.        

The arrows on the lines indicate direction of surveys. ................................................ 95 

Figure 6.7: P-wave seismic refraction end shot gather at Francis Levee site                           

(Line 1, waterside, 0m – 47m). ................................................................................... 97 

Figure 6.8: Measured apparent resistivity pseudosection for Francis Levee site                    

survey line 3 (landside 0m – 167m). ........................................................................... 97 

Figure 6.9: Line 1 (waterside) electrical resistivity tomogram, a) 0m - 220m distance,                

b) 168m – 388m distance, and c) 336m – 446m distance. .......................................... 98 

Figure 6.10:  Line 1 (waterside) p-wave tomogram, a) 0m - 96m distance, b) 48m – 144m 

distance, c) 240m – 336m distance, and d) 336m – 432m. ......................................... 99 

Figure 6.11: Electrical resistivity tomograms for line 3 (landside). a) 0m - 170m distance,         

b) 112m – 222m distance, and c) 168m – 278m distance. ........................................ 102 



xx 
 

Figure 6.12: Line 3 (landside) p-wave velocity tomograms. a) 0m - 96m distance,                         

b) 48m – 144m distance, c) 96m – 192m distance, d) 144m – 240m distance,                 

and e) 192m – 288m distance. .................................................................................. 103 

Figure 6.13: An aerial image of survey line 3 (landside) with locations of SRT and ERT 

anomalies indicated along the survey line. ............................................................... 104 

Figure 6.14: a) Electrical resistivity tomograms for line 3 (landside) for 0m to170m                

distance, b) line 3 (landside) p-wave velocity tomograms for 96m to 192m            

distance,  c) cross-plot analysis using SA2 and EA3. ............................................... 105 

Figure 6.15: a) Electrical resistivity tomograms for line 3 (landside) for 168m to 278m            

distance, b) line 3 (landside) p-wave velocity tomograms for 168m to 278m   

distance, c) cross-plot analysis using SA3 and EA8. ................................................ 106 

Figure 6.16: Possible seepage path (blue line) going parallel to the northern edge the              

meander belt and passing through anomaly S5 on the waterside and anomaly 

SA3/EA8 on the landside. ......................................................................................... 107 

 

 



1 
 

 

 

 

 

CHAPTER 1 

INTRODUCTION 
 

1.1 Motivation of Research  
 

Earthen dams and levees are among the oldest manmade structures on Earth going as far 

back as 10,000 years (Bassell, 1904 and Cullen, 1962). These structures play a vital role in the 

day-to-day activities of nations. The purposes of dams include: recreational use, flood control, 

water supply, fish and wildlife, irrigation, and hydroelectric power generation (National Dam 

Inventory, 2009). Levees are used as flood control structures protecting urban areas from the 

overflowing of rivers and ocean waves. 

The large number of dams and miles of levees in the United States and their risk of failure 

is alarming considering their age and engineering design. Out of the 75,000 earthen dams in the 

US, 56,000 are privately owned and do not undergo periodic assessment (National Dam Inventory, 

2009). The US Army Corps of Engineers (USACE) controls 14,000 miles (22,530 kilometers) of 

levees. In addition to that, 8,000 miles (12,875 kilometers) of levees are under the responsibility 

of the US Bureau of Reclamation (USBR). A staggering 100,000 miles (160,934 kilometers) of 

levees are non-federal levees and under local government jurisdiction (National Committee on 

Levee Safety (NCLS), 2009).  

Numerous catastrophic dam and levee failures in the past have caused the loss of life, 

destruction of properties, and environmental damages (Biswas et. al., 1971, NCLS, 2009). The 
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2005 New Orleans levee system failure due to Hurricane Katrina encapsulates the staggering 

damage associated with levee failures. More than 1 million people were displaced with more than 

1 million residential structures damaged. More than 1,800 people lost their lives when close to 

80% of New Orleans flooded. The Federal Emergency Management Agency (FEMA) spent more 

than 75 billion US dollars in emergency relief. An additional 15 billion US dollars was spent by 

the USACE to mitigate and upgrade the levee system and floodwalls surrounding New Orleans 

(NCLS, 2009, Seed et. al., 2005).  

The safety of dams and levees is an international concern. In the Netherlands, 25% of the 

country is below mean sea level, and, without the protection of levees (also known as dikes or 

dykes), two-thirds of the country would be flooded daily (Van der Meer et. al., 2009, Ammerlaan, 

2007). The entire country is protected by levees, and a total of 1735 levee failures are recorded 

between 1134 and 2006 (Van Bears et. al., 2009). According to World Bank’s dam safety 

assessment in India, the lives of thousands of people living downstream of 25 high hazard dams 

are at imminent risk (Dam et al., 2011). According to International-Rivers (IR), there is no 

adequate information available on the integrity of many dams in the world (IR, 2009). 

Like all manmade structures, dams and levees require proper and regular maintenance. A 

thorough inspection of dams and levees should go beyond visual inspection and address internal 

features that are not visible from the surface. Geophysical methods, such as seismic refraction 

tomography (SRT) and electrical resistivity tomography (ERT), have been extensively used for 

dam and levee investigations. These methods are ideal because they are non-invasive and 

economical compared to standard geotechnical methods, such as drilling techniques. Geophysical 

methods provide continuous spatial information compared to single point information obtained 

from borehole investigations.  
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While these methods provide valuable information about the subsurface, there is still room 

for improvement deriving more usable and easily understandable information by integrating the 

results of both methods. The motivation behind this research is the integration of seismic refraction 

and electrical resistivity tomography results with the application of time-lapse surveying and cross-

plot analysis. By studying the different seismic and electrical attributes associated with seepage 

and piping, which is the second leading cause of dam and levee failure (Department of Ecology 

for the State of Washington, 2007), the strength of the two individual methods are combined to 

deduce more comprehensive information about the subsurface and present it in a manner decision 

makers can understand.  

1.2 Research Objectives 
 

The overall objective of this research is to advance the use of cross-plot analysis to combine 

time-lapse seismic refraction tomography and electrical resistivity surveys on dams and levees. 

More focus will be on the development of a method for determining the boundaries of seismic 

velocity and electrical resistivity values, which divide the subsurface conditions into different 

classes. These classifications will be based on the material integrity with the help of time-lapse 

surveys in the field and laboratory measurements. The current effort is to study loamy sand zones 

and dry compacted clay loam zones separately by studying their unique seismic and electrical 

resistivity attributes as they relate to seepage and piping.  

1.3 Work Scope 
 

This research is composed of seven chapters. The scope of each chapter is explained as 

follows. 
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Chapter 1 presents an introduction to the motivation of the research, the main research 

objective and the scope of the research.  

Chapter 2 presents a literature review showing previous work conducted on dams and 

levees with the use of seismic refraction surveys, electrical resistivity surveys, and cross-plot 

analysis.  

Chapter 3 presents an introduction to the Stillwater embankment model dam, results from 

conventional time-lapse seismic refraction tomography (SRT) and time-lapse electrical resistivity 

tomography (ERT) during the cyclic loading of the dam. A summary of the results and 

shortcomings of SRT and ERT surveys are included in the chapter. 

Chapter 4 is an introduction to cross-plot analysis and its application on the Stillwater 

embankment dam during cyclic loading. The cross-plot analysis is divided into two parts targeting 

the loamy sand zone and the dry compacted clay loam zone separately. The application of time-

lapse based restrictions on the cross-plot analysis is also presented. Observations on the 

shortcomings of cross-plot analysis are also included in the chapter. 

Chapter 5 presents the establishment of constraints to improve the application of cross-plot 

analysis by including preliminary a priori data with the application of seismic velocity and 

electrical resistivity measurement and laboratory information. 

Chapter 6 presents a real-world application of establishing cross-plot analysis constraints 

using external physical constraints derived from geophysical surveys and theoretical models. 

Chapter 7 presents overall conclusions and recommendations for future research. 
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CHAPTER 2 

LITERATURE REVIEW * 

2.1 Introduction 

In the United States there are approximately 100,000 miles of levees of which only 14,000 

miles are owned by the federal government. The remaining 86,000 miles are under the control of 

state and local government and private owners (Keith et al., 2012). Out of the 100,000 miles of 

levees, documentation is only available for 14% of the total. Conducting invasive investigations 

over such a large distance of levees is not feasible.  Therefore, there is a need for more expedient 

methods for the assessment of these structures using economical, non-invasive and less time-

consuming methods. Geophysical methods, such as seismic refraction and electrical resistivity, 

provide a rapid, more economical, and non-invasive option of sub-surface investigation. These 

methods and others have been used separately and/or in combination to identify existing internal 

problems with dams and levees (Dahlin et al., 1995, Hickey et al., 2009; Kim et al., 2007, Ivanov 

et al., 2006; Song et al., 2005, Kilty et al., 1986, Liechty, 2010, Lin et al., 2014, Hickey et al., 

2015, Wodajo, 2011).   

 

 

 A book chapter with an in-depth summary on geophysical methods on earthen dams was published. Hickey, C., 

Römkens, M., Ph.D., Wells, R., and Wodajo, L., (2015) “Geophysical Methods for the Assessment of Earthen 

Dams, Advances in Water Resources Engineering, Handbook of Environmental Engineering, Vol. 14, pp 297 – 

359, ISBN: (Print) 978-3-319- 11022-6, (Online) 978-3-319-11023-3.  
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2.2 Seismic Refraction Surveys on Earthen Dams and Levees  

 

Seismic refraction surveying is used to map the subsurface seismic velocity distribution 

from recorded data using mechanical vibrations. Data is obtained by generating seismic energy at 

the surface at a known location and time, and recording propagation of refracted energy using a 

spatial array of geophones planted on the surface (Brosten et al., 2005).  

 

Seismic refraction of soils is affected by elastic properties [shear modulus (G), bulk 

modulus (K), Young modulus (E), Poisson’s ratio (ʋ)], physical properties (porosity, permeability, 

density, degree of saturation, pressure, and temperature), and lithological properties (grain size, 

grain shape, grain size distribution) (Uyanik, 2011). Seismic refraction tomography is based on 

the propagation of seismic waves through the subsurface. These seismic waves propagate through 

the soil without causing any major deformation (with very small-strain). Seismic refraction 

methods are more dependent on soil stiffness, which is the resistance of the body to deform under 

applied force. In this case the applied force is caused by the propagating wave (Clayton, 2011).  

P-wave seismic refraction tomography is a method that maps the p-wave velocity 

distribution in the subsurface. P-wave, short for primary wave, is a type of body wave that 

propagates through a body by compressional and dilatational uniaxial strains in the direction of 

propagation. P-wave seismic velocity (vp) can be written in terms of elastic moduli and mass 

density (ρ) of the soil as 

vp = [
ψ

ρ
]

1
2

= [
K +

4
3 G

ρ
]

1
2

      ,                                             (2.1) 



7 
 

where ψ is axial modulus, K is bulk modulus, and G is shear modulus. For a fully saturated soil, 

the mass density of the soil (ρ) is given by, 

ρ = (1 − ϕ)ρs + ϕρf,                                                        (2.2) 

where ϕ is effective porosity, ρs is the mass density of the solid phase, and ρf is the mass density 

of the fluid phase.  

Saturation has an effect on the bulk modulus of porous materials. These effects can be 

formulated using Gassmann’s equations in the low frequency regime (Han and Batzle, 2004).  

Ksat = Kd + ∆Kd ,                                                                         (2.3) 

where 

∆Kd =
Ko(1 − Kd Ko⁄ )2

1 − ϕ − Kd Ko + ϕ ∗ Ko Kf⁄⁄
 ,                                              (2.4) 

and 

Gs = Gd ,                                                                                (2.5) 

𝐾𝑠𝑎𝑡 is the bulk modulus of the saturated rock, 𝐾𝑓 is the bulk modulus of the fluid, 𝐾𝑜 is the bulk 

modulus of the soil mineral grain, 𝐾𝑑 is the bulk modulus of the dry rock, 𝐺𝑠 is the saturated shear 

modulus, and 𝐺𝑑 is the dry shear modulus of the soil. In Gassmann’s formulations, water saturation 

does not affect the shear modulus of the porous medium.  

For a partially saturated soil mass, seismic propagation velocity is affected by the degree 

of saturation (S), the bulk modulus of the saturating liquid (Kl), and the bulk modulus of the gas 

(Kg). 
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1

Kf
=

S

Kl
+

1 − S

Kg
    ,                                                                   (2.6) 

Where Kf is the effective bulk modulus of the fluid. The mass density (ρ) of a partially saturated 

soil mass is calculated by,  

ρ = (1 − ϕ)ρo + ϕSρl + ϕ(1 − S)ρg ,                                    (2.7) 

where ρo is density of the soil mineral grain, ρl is the density of the saturating liquid, and ρg is 

density of the gas.  

Seismic velocities are related to the mechanical properties of soils through the elastic 

moduli as shown in the previous equations. Therefore, indirect investigation of the internal 

structures of dams and levees is possible by using seismic refraction surveys. Seismic refraction 

surveying is one of the most commonly used seismic methods for engineering investigations 

(USACE EM 1110-1-1802, 1995). 

Yuan et al., (2012) conducted geophysical studies in two provinces in China. The objective 

of the studies was to use 3D seismic refraction imaging to investigate problematic areas and other 

known structures through a dam. The method involved using a simulated material model and 

estimating the travel time between each source and receiver through the model. The difference 

between the estimated travel time and the signal travel time obtained from receivers in 3D space 

was minimized by modifying the property distribution through the model. A survey was conducted 

on the upstream side of a clay dam. The velocity image obtained from the survey indicated the 

different velocities through the different parts of the dam. Another survey was conducted on a dam 

with a known culvert and spillway. The 3D image obtained from this survey indicated the location 
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and size of the culvert. The authors concluded that this method can be used for detecting seepage 

pathways and other defective areas through a dam.  

Bedrosian et al., (2012) conducted geophysical investigations on the Martis Creek Dam 

located in Truckee Basin, California, with known potential of failure due to either seepage or an 

earthquake on nearby faults. Studies of the geologic structure of the area surrounding the dam were 

conducted focusing on the importance of a wider (regional-scale) understanding of the 

interpretation of smaller scale (engineering-scale) geophysical data. Multiple geophysical studies 

were conducted in the surrounding area of the dam including: seismic refraction and reflection, 

ERT imaging, airborne LiDAR, airborne magnetic field surveys, and magneto-telluric sounding. 

These studies indicated the presence of a thick package of sedimentary deposits interbedded with 

Plio-Pleistocene volcanic flows, both covered by glacial outwash. Seismic reflection, seismic 

tomography models, and magnetic field data were used to determine the distribution and 

chronology of the volcanic flows. It was determined that the interface between the sedimentary 

deposits and the overlaying glacial outwash has a major role in groundwater flow and observed 

seepage.  

Moustafa et al., (2012) investigated a dam site located in Al-Lith Basin, Saudi Arabia, to 

identify the source and pathway of groundwater seepage. Seismic refraction and resistivity 

imaging were implemented for this investigation. Seismic data was collected using 40Hz 

geophones with 5m spacing. Surveys were conducted in three lines: the first line along the 

cofferdam, and two more lines on the downstream side parallel to the first line.  Three shots were 

taken using a weight drop for each survey line. The first shot was at an offset of 10m from 

geophone 1, the second between geophone 24 and 25 and the last shot (reverse shot) was next to 

geophone 48. Seismic data was processed using time-term inversion and tomographic inversion. 
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The time-term inversion was used to obtain the initial velocity model assuming a vertically 

stratified subsurface without lateral change in velocity. The tomographic inversion was obtained 

using a ray-tracing technique and computing the travel time of the initial model. The model from 

the time-term inversion was modified until the difference between the computed travel time and 

field data was minimized. Results from the seismic tomographic inversion indicated the presence 

of four distinct velocity layers. Two main depressions filled with alluvium and fractured 

greenstones linked by narrow sharp uplifted walls were delineated using a refraction survey. These 

depressions act as buried channels crossing the dam site and causing seepage. Resistivity imaging 

conducted at the site indicated similar results.   

Kim et al., (2011) conducted a study on the Daeryong earth-fill dam located in Korea. The 

dam, constructed in 1957, has been repeatedly grouted at different locations in the past to stop 

seepage. Grout was injected into the dam through boreholes drilled from the crest of the dam. P-

wave refraction and surface wave surveys were conducted on the crest of the dam. The P-wave 

refraction survey was conducted using 4.5Hz geophones with 3m spacing and a 5Kg 

sledgehammer as the source. Three shots were taken at each source location. Surface wave data 

was also collected using the same geophone spacing and 3m shot intervals. The p-wave velocity 

tomogram was obtained from first-arrival times using the refraction data inversion algorithm 

known as the Simultaneous Iterative Reconstruction Technique (SIRT). The surface wave data 

was processed using the Common Midpoint Cross-Correlation analysis (CMPCC) method which 

was modified from the MASW technique. Investigation of porosity and water saturation was 

conducted by gridding both p- and apparent s-wave velocity data into a mesh and calculating the 

Vp/Vs ratio and apparent dynamic Poison’s ratios with the assumption of an isotropic media. Both 

p-wave and apparent s-wave velocity sections indicated the variation in depth of boundaries 
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between fill and core and also between core and bedrock. Seepage pathways through the clay core 

of the dam were indicated as areas of high apparent dynamic Poisson’s ratios (>0.44). Combining 

p-wave travel time tomography and dispersion inversion of Rayleigh waves was a simple and easy 

way of detecting potential seepage and high porosity zones within and under an earthen dam. 

Ivanov et al., (2007) made a comparison between conventional refraction-tomography 

methods and the joint analysis of refraction with surface-waves methods (JARS). Steps in the 

JARS method include first determining the s-wave velocity using MASW and then obtaining a 

pseudo-Vp model by rescaling the Vs estimates using assumptions about the Vp/Vs trend. Both 

the conventional refraction-tomography methods and the JARS method were tested on two levees 

located in Southern Texas and Southern New Mexico.  

The survey on the Southern Texas site was conducted using two 2D, two-component (2C) 

survey lines with a geophone spacing of 0.9 m with two receivers (10Hz vertical geophone and 

14Hz horizontal geophone) at each location. Two different sources, a 7.25Kg sledgehammer and 

a mechanical weight drop, were used with a source offset of 1.8m with off-end shots and additional 

shots extending out to a distance equivalent to the maximum depth of investigation. At the 

Southern New Mexico site, an array of 10Hz vertical geophones with a spacing of 0.6m were used. 

Similar sources to those used in the Southern Texas site are also used here, with a source spacing 

of 2.4m with shots extending beyond the 120 geophone spread to a distance equivalent to the 

maximum depth of investigation. The JARS method was able to image low velocity layers and 

zones that were not visible in the conventional method. The JARS method also revealed horizontal 

layering patterns and channel-like features consistent with geologic expectations.  
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2.3 Electrical Resistivity Surveys on Earthen Dam and Levees 

 

Electrical resistivity measures the conductivity (ability) or resistivity (inability) of a 

material to transport electricity. Electrical resistivity surveys measure the electrical resistivity 

distribution in the subsurface by injecting electric current and measuring electric potential 

differences with the use of multiple electrodes planted on the surface (Morgan, 2001). In the case 

of soils, electrical resistivity mainly depends on the mineralogy of the soil, which can be clay 

content, porosity, degree of saturation, water content, type of pore fluid, and permeability (Garcia-

Bengochea et. al., 1979, Abu-Hassanien et. al., 1996, Johansson et al., 1996). Although electrical 

resistivity of soils also depends on the particle shape, orientation, and alignment, it is not as 

strongly correlated with the stiffness of the soil as it is with moisture content, clay content, 

porosity, and salt-water salinity (Cosenza et al., 2006). 

For a fully saturated soil without clay, Archie (1942) formulated his first law between 

porosity (ϕ) and bulk resistivity (ρb) as,  

F =
ρb

ρw
= ϕ−m         ,                                                              (2.8) 

where F is the formation factor, ρw is the resistivity of the pore water, and m is the cementation 

factor (1.8 – 2 for sands). Equation 2.8 shows that for a fully saturated clean sand, porosity is 

inversely proportional to electrical resistivity. This is due to better electrical conduction of the 

clean sand as its water holding capacity increases. 

For partially saturated clean sand, Archie’s second law is given by, 

ρb = ρw ∙ a ∙ (ϕ−m ∙ Sw
−n)   ,                                                  (2.9)  
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where a is tortuosity (typically set to 1), Sw is the degree of saturation and n is the saturation 

exponent (2 for water). Equation 2.9 shows that, at constant porosity, electrical resistivity increases 

with increasing saturation. For constant saturation, there is only a small change in electrical 

resistivity with increasing porosity.  

For a more generalized application, Waxman-Smits model for electrical resistivity 

incorporates the effect of clay content. Archie’s first law is only applicable to soils where there is 

no clay. When clay is present, electric current is not transmitted only through the pore fluid but 

also along the surface of the clay mineral (Waxman and Smits, 1968). For a fully saturated soil 

sample, the Waxman-Smits formula, given by Eq. 2.10 – 2.13, incorporates the conductivity 

(inverse of resistivity) due to the presence of clay fraction (Ce), the conductivity of the pore fluid 

(Cw), and the formation factor of shaley sand (F∗), which is approximated by Archie’s first law.  

Co =
1

F∗
(Cw + Ce) ,                                                           (2.10) 

where the conductivity of the clay fraction is given by,  

Ce =
λNa

e

1000
∙ Qv  .                                                                   (2.11) 

The maximum equivalent ionic conductance of the sodium exchange ions (λNa
e ), measured 

in cm2 ∙ equiv−1 ∙ Ohm−1 , is experimentally determined. Waxman and Smits (1968) determined 

λNa
e  to be 39.6 cm2 ∙ equiv−1 ∙ Ohm−1 with confidence level of 90%. The concentration of sodium 

exchange cations of the clay (Qv) is given by, 

Qv =
CEC(1 − ϕ)ρo

ϕ
  ,                                                      (2.12) 
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and has units of (equiv ∙ liter−1). CEC is the cation exchange capacity determined from the types 

of clay minerals present in the soil sample. When multiple types of clay minerals are present in the 

clay fraction of the soil, effective CEC for the clay fraction is determined by,  

CECmixture = ∑
Massclay type

Total massclay

n

i=1

∙ CECclay type .                                 (2.13) 

Electrical resistivity measurements are sensitive to changes in saturation and are commonly 

used for the detection of seepage in earthen dams and levees. Aal et.al., (2004) showed that a wet 

or seepage affected area of a dam’s subsurface is associated with a low resistivity value. Loke et 

al., (1995) showed that application of 2D electrical resistivity inversions provide reliable models 

that can be used to represent the subsurface. Loperte et al., (2015) conducted electrical resistivity 

measurements to investigate possible water infiltration on a rock-filled dam affected by the 

presence of fractures. Areas of the dam affected by seepage were localized using electrical 

resistivity tomography. Loke (1999, 2004) showed that sensitivity of electrical resistivity 

measurements to changes in saturation could be used to determine depth of water table. 

For identifying seepage in earthen dams and levees, and for continuous monitoring (in 

space) of their subsurface, electrical resistivity methods have been extensively used and are the 

preferred methods (Butler et al, 1990; Abuzeid et al., 1994; Okko et al., 1994; Panthulu et al, 2001;  

Zhou et al., 2003; Kim et al., 2004; Lim et al., 2004; Song et al., 2005; Cho et al., 2007; Sjödahl 

et al, 2008; Case, 2012; Lin et al, 2013; Al-Fares, 2014, Chinedu et al., 2014; Lin et al., 2014). 

Although the preferred method compared to seismic refraction methods, it is less sensitive to 

changes in stiffness (Samouëlian et al., 2005). 
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2.4 Cross-Plot Analysis  
 

Cross-plot analysis has been extensively used in the oil industry for formation evaluations 

and lithological delineations since the 1960s (Fertl, 1981; Krief et al., 1990; Shahin et al., 2009; 

Liu et al., 2016; Anyiam et al., 2017; Holmes et al., 2017). Cross-plot analysis using multiple input 

parameters, such as electrical resistivity, nuclear, and acoustic logging, have been used in 

determining lithological reservoir characteristics. 

Hayashi et al., (2010) conducted a study focusing on the application of cross-plot analysis 

to levee assessment. For this application, Hayashi et al., (2010) used shear wave velocity and 

electrical resistivity as the quantifying parameters. Shear strength and permeability play a major 

role in determining the vulnerability of a levee to seepage and erosion. S-wave velocity is affected 

by the shear strength and is directly related to the shear modulus of the soil. Porosity of the soil 

relates to the shear modulus and can be estimated from the s-wave velocity. Soil electrical 

resistivity is affected by the grain size distribution and clay content. Permeability is also affected 

by grain size distribution, saturation, soil type, and porosity. Determining the resistivity of the soil 

therefore can provide more information about the permeability of the soil.  

This cross-plot method was applied to a levee located in the Shikoku area in Japan. The 

surface-wave data was collected using a land streamer with 24 geophones at 1m spacing. This data 

was processed using CMP cross-correlation analysis and MASW. Electrical resistivity of the levee 

was determined using the capacitively-coupled resistivity (CCR) method which uses capacitors as 

electrodes. Results from the study indicated that for a given s-wave velocity, higher resistivity was 

an indicator of sandy soil whereas lower resistivity was an indicator of clayey soil. For a given 

resistivity, higher s-wave velocity was an indicator of a high (tight) degree of compaction whereas 

a lower s-wave velocity was an indicator of a low (loose) degree of compaction. Therefore, low s-
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wave velocity and high resistivity is an indication of dangerous (loose, sandy) conditions whereas 

high S-wave velocity and low resistivity indicates a safe (tight, clayey) levee condition. 

Inazaki et al., (2011) used cross-plot analysis to combine individual s-wave velocity and 

electrical resistivity data collected at different sites and produced a map of permeability 

distribution and N-value. In order to produce these maps, prior geotechnical data such as N-value 

was required. For example, in order to relate s-wave velocity and N-value, SPT measurement to 

obtain the N-value and s-wave measurement to get the s-wave velocity need to be conducted. Since 

SPT is a point measurement, s-wave velocity values at the same locations are needed to have an 

accurate correlation between the two. A point s-wave velocity measurement can be done using 

suspension P-S velocity logging. When conducting seepage and piping vulnerability studies on 

water retaining structures such as dams and levees, conducting invasive surveys should be the last 

resort since drilling holes in these structures might add to the existing problems.    

Hayashi and Suzuki (2004), Inazaki (2007), and Imamura et al., (2007) have showed 

similar application of cross-plot analysis where degrees of compaction (loose or dense) are divided 

using correlations between s-wave velocity values and N-values, and soil types (fine or coarse) are 

divided using resistivity measurements and by comparing to borehole data.  

2.5 Summary  
 

Geophysical methods provide economical and non-invasive options of spatial sub-surface 

investigation. These methods and others have been used separately and/or in combination to 

identify existing internal problems with dams and levees.  

Both seismic refraction tomography (SRT) and electrical resistivity tomography (ERT) 

have been used separately or side-by-side to identify subsurface seepage through the body of dams 
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and levees. Using two or more geophysical methods helps reduce anomalies. The common method 

of interpretation using these methods is to process and interpret each method separately and 

compare results for similarities and differences. This is a qualitative approach usually done by 

searching for anomalies in tomograms showing significant changes in value and explaining what 

physical condition in the subsurface might cause these changes.  

A more complete and semi-qualitative approach of interpreting two or more geophysical 

methods is by using cross-plot analysis. For example, cross-plot analysis using seismic refraction 

and electrical resistivity is an approach where different soil types and conditions of dams and 

levees are classified based on their seismic velocity and electrical resistivity values. Instead of 

analyzing the results from each method separately, a four quadrant criteria based on seismic 

velocity and electrical resistivity boundaries is formulated. These boundaries create a four-

quadrant system of classification of the internal soil structure of dams and levees. Based on the 

measured seismic velocity and resistivity at a given location and where that point falls within the 

four quadrants (safe, probably safe, compromised, and probably compromised), the soil type and 

integrity of the dam or levee at that location is estimated.   
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CHAPTER 3 

3.   GEOPHYSICAL MEASUREMENTS AT STILLWATER MODEL DAM * 

3.1 Introduction 

In this chapter, application of time-lapse seismic refraction and electrical resistivity 

measurements on a quarter-scale model embankment dam will be presented. The model dam is 

constructed with two compromised zones within the dam. 

3.2 Introduction to the Stillwater Model Dam 
 

In order to implement time-lapse seismic refraction and electrical resistivity measurements, 

with the application of cross-plot analysis, to monitor changes in the internal structure of earthen 

dams caused by seepage and internal erosion, an experimental quarter-scale dam was constructed 

at the USDA-ARS Hydraulic Engineering Research Unit (HERU) located in Stillwater, Oklahoma.  

Construction of the model dam was completed in September, 2010, with a height of 1.22 

m (4 ft), a width of 2 m (6.5 ft), and a length of 8.5 m (28 ft). Figure 3.1 shows the cross-section 

of the dam. 

 

 

 

 A section of this chapter was published in a peer-reviewed journal. Rittgers, J. B., Revil, A., Mooney, M. A., 

Karaoulis, M., Wodajo, L., and Hickey, C. J., (2016), “Time-lapse Joint Inversion with Automatic Joint 

Constraints,” Geophysical Journal International, vol. 207(3), pp 1401-1419.  
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Figure 3.1: Cross-section of model embankment dam. 

Laboratory tests were conducted on the clay loam used to construct the dam to determine 

the optimum water content and the maximum dry density (Hanson et al., 2005). Optimum moisture 

content (OMC) for the clay loam is 13%, and the maximum dry density is 1906 Kg/m3. 

Compacting the dam at the optimum moisture content makes the dam impermeable and stiff and 

therefore less susceptible to seepage. The main part of the dam was constructed in 11 equal lifts 

and compacted at the optimum moisture content. Figure 3.2 shows a picture of the dam after 

construction was completed.  

 

Figure 3.2: Picture of the model embankment dam. 
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Two compromised zones, a dry compacted clay loam and a loamy sand zone, where placed 

within the dam as shown in Figure 3.1. These zones measuring 1.83 m (6 ft) x 0.3 m (1ft) run the 

entire width of the dam and are covered with only 0.9 m (3 ft) of compacted clay loam on the 

upstream face of the dam. These zones are placed within the dam to represent zones that are 

susceptible to seepage and piping. The dry compacted clay loam zone was constructed using the 

same material as the main dam but compacted at a lower moisture content of 10% (3% less than 

the optimum moisture content). Therefore, this zone has a higher porosity compared to the main 

dam body. The loamy sand zone is used to represent a highly permeable material within a dam. 

Loamy sand zones usually do not occur within dams, and this zone is meant to represent the 

occurrence of sand below the foundation of a dam. In the model, the loamy sand is placed within 

the body of the dam to simplify construction.  

During construction, in situ sensors were inserted at the center of the two compromised 

zones and at 0.6 m (2 ft) to the right of the loamy sand zone. Figure 3.3 shows the locations of 

these sensors within the model dam. These sensors are used to monitor changes in temperature and 

moisture associated with seasonal changes (seepage from rainfall) or seepage due to the loading 

and unloading of the dam. The sensor pack includes a thermocouple to measure changes in 

temperature and a time domain reflectometer (TDR) to measure changes in moisture content. The 

placement of the sensors allows measurements of temperature and moisture content both in lateral 

and vertical directions.   



21 
 

 

Figure 3.3: Sensor pack locations within the model embankment dam. 

 

3.3 Seismic Refraction Survey, Equipment and Acquisition  

Multiple p and s-wave seismic refraction surveys were conducted on the crest of the model 

embankment dam. Seismic records were collected using 10 Hz, 635 Ohm, GS32CT vertical (p-

wave) geophones and horizontal (s-wave) 10 Hz, 600 Ohm, GS20DM geophones. Forty-eight of 

each vertical and horizontal component geophones were used with a spacing of 0.34 m covering a 

length of 15.98 m. Figure 3.4 shows the schematic of the model embankment dam and layout of 

geophones.  

 

Figure 3.4: Schematic of model embankment dam and geophone layout. 
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A 5 lb sledge hammer with a trigger attached to the hammer handle was used as a seismic 

source. A 10 cm x 10 cm aluminum plate was used as a source plate for p-wave refraction surveys 

and an aluminum source plate with spikes at the bottom was used for s-wave refraction surveys. 

Figure 3.5 shows a picture of equipment used for seismic refraction surveys. 

 

Figure 3.5: Equipment for seismic refraction survey.  

A GeodeTM  and a field laptop with the Multiple Geode Operating System (MGOSTM) were 

used to collect the ground vibration induced by the sledge hammer and recorded using the 

geophones. Figure 3.6 shows a schematic of the seismic refraction survey field setup.  

 

Figure 3.6: Schematic of seismic refraction survey field setup. 
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For both the p- and s-wave refraction surveys, a geophone spacing of 0.34 m was used. 

Data was collected with a sample interval of 62.5 µsec and a record length of 1 sec. Data was 

collected with shots in-between every geophones and half geophone spacing off the first and last 

geophone. Multiple shots were recorded at each shot location. 

3.4 Electrical Resistivity Survey, Equipment and Acquisition 
 

 Electrical resistivity surveys were conducted on the crest of the model embankment dam 

using the SuperStingTM R8/IP resistivity meter. Figure 3.7 shows a picture of equipment used for 

electrical resistivity surveys. 

 

Figure 3.7: Equipment for electrical resistivity survey.  

Figure 3.8 shows Schematic of the model embankment dam and the layout of electrodes is 

shown in Figure 3.8. Fifty-six stainless steel electrodes with 0.18 m spacing were used to cover a 

length of 9.9 m. 
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 Figure 3.8: Schematic of model embankment dam and electrode layout. 

A dipole-dipole electrode configuration was used for the electrical resistivity surveys. The 

electrical resistivity resolution obtained from the dipole-dipole electrode configuration was better 

in identifying the two compromised zones compared to the Schlumberger and inverted 

Schlumberger electrode configuration (Case, 2012).  

Electrode configuration and survey parameters, such as number of stacking (number of 

cycle) and maximum error, were created and saved to a command file using AGI administrator 

software and loaded to SuperStingTM R8/IP resistivity meter.  A commercially available inversion 

software, EarthImager 2D, was used to process all the electrical resistivity data. 

3.5 Time-Lapse P-Wave Seismic Refraction Tomography and Electrical Resistivity 

Tomography Surveys  
 

Multiple seismic refraction and electrical resistivity surveys were conducted on the model 

embankment dam over a period of two years. These surveys were conducted at five different times 

over the two year period as shown in Table 3.1.  In this table, the loading condition refers to 

whether the model embankment dam was filled or drained. For survey period 1, which was 

conducted at the end of November 2010, time-lapse seismic refraction and electrical resistivity 

surveys were conducted while the dam went through a complete cyclic loading (unloaded-loaded-
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unloaded-reloaded). For survey periods 2, 3, and 4, consecutive surveys were conducted starting 

with the dam unloaded and keeping the dam loaded until the end of the survey period. On the fifth 

survey period, consecutive surveys were conducted during the failing of the dam through an 

internal erosion of the loamy sand zone.  

Table 3.1: Seismic refraction and electrical resistivity survey periods and loading conditions for 

the model embankment dam.  

 

Survey 

period 
Start date End date Reservoir loading condition 

1 Nov. 29, 2010 Dec. 02, 2010 Full loading and unloading cycle 

2 March 14, 2011 March 16, 2011 Unloaded - loaded 

3 May 23, 2011 May 27, 2011 Unloaded - loaded 

4 August 1, 2011 August 2, 2011 Unloaded - loaded 

5 April 16, 2012 April 19, 2012 Unloaded - loaded 

  

Results from the first survey period (Nov. 29 – Dec. 02, 2010) will be presented in the 

following sections. A total of five p-wave seismic refraction and five electrical resistivity surveys 

were conducted during survey period 1. Table 3.2 summarizes the surveys conducted during the 

cyclic loading and unloading of survey period 1. 
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Table 3.2: Summary of cyclic loading of the dam during survey period 1. 

P-wave seismic 

refraction 

survey  

Electrical 

resistivity 

survey 

Survey 

date 
Reservoir loading condition 

P1 R1 November 29, 2010 Not loaded 

P2 R2 November 30, 2010 Loaded for 18 hours 

P3 R3 December 1, 2010 Loaded for 44 hours & 20 min. 

P4 R4 December 2, 2010 Unloaded 

P5 R5 December 2, 2010 27 min. after reloading 

 

The November 2010 surveys were conducted over a period of 5 days. For the first surveys 

(P1 and R1) and the fourth surveys (P4 and R4), the dam was empty. For the remaining surveys 

the model dam was loaded to a height of 0.98m (3.2ft), which was 0.36m (1.2ft) above the two 

compromised zones. Figure 3.9 shows pictures taken during the five surveys.  

 
 

Figure 3.9: Pictures taken during the cyclic loading and unloading of the dam. 
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Figure 3.10a shows a sample p-wave seismic refraction end shot gather for survey period 

1 when the dam was not loaded. The red line indicates the first arrival picks for the shot gather.  A 

sample of the measured apparent resistivity pseudosection for the same survey time is shown in 

Figure 3.10b. The pseudosection is not the true representation of resistivity distribution in the 

subsurface; it is converted to a true resistivity by an inversion process and used for analysis and 

interpretation. 

 

 

 

Figure 3.10: a) Example of an end shot gather for survey period 1, initial survey before loading 

the dam, b) measured apparent resistivity pseudosection for survey period 1 initial survey before 

loading the dam. 
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3.6 Moisture Content Readings  
 

Lateral variations in moisture content (TDR readings) during the cyclic loading of the 

model dam during survey period 1 is shown in Figure 3.11. These values are point measurements 

taken at different times during cyclic loading and unloading. Moisture content readings from TDR 

sensors are in terms of volumetric water content, which is the ratio of volume of water to volume 

of soil. Since moisture content is the measure of the quantity of water contained in the soil, dry 

soil should have a moisture content of 0. For a fully saturated soil, water will fill all the pores of 

the soil; therefore the moisture content should be equal to the porosity of the soil. Figure 3.11 

shows that the loamy sand zone remains drier compared to the dry compacted clay loam zone and 

the dam body (clay loam) throughout survey period 1. Although the dam body (clay loam) was 

compacted with higher moisture than the dry compacted clay loam, the high moisture reading in 

the dry compacted clay loam is caused by a heavy rainfall that occurred in early November. Due 

to under-compaction, the dry compacted clay loam has higher porosity than the dam body (clay 

loam), and rain water can easily infiltrate through it leading to higher moisture content. Even 

though more water infiltrates through the loamy sand due to high porosity, it is not retained for 

long due to the high permeability of the loamy sands.  
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Figure 3.11: Lateral variation in moisture content during survey period 1. 

3.7 P-wave SRT Results During Cyclic Loading 

All p-wave refraction surveys are processed using a commercially available software, 

RayfractTM. Results of the inversions (p-wave velocity and ray coverage tomograms) are plotted 

using the commercially available software, SurferTM. All p-wave velocity values are in meters per 

second (m/s). 

3.7.1 P-wave seismic refraction survey 1 (Dam not loaded) 

P-wave velocity tomogram and the corresponding ray coverage tomogram for the first 

survey when the dam is unloaded (reservoir empty) are shown in Figure 3.12. On this figure and 

all subsequent p-wave velocity and ray coverage tomograms, the location of the dry compacted 
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clay loam is shown with the box on the right and the location of the loamy sand is shown with the 

box on the left. The shape of the dam is also superimposed on all tomograms.   

The low velocity of the dam body compared to the surrounding native ground indicates the 

shape of the dam. The loamy sand is indicated with a low velocity and a corresponding low ray 

coverage. This is expected because of the high porosity of the loamy sand. An area of low ray 

coverage is observed at 5 m distance between the ground surface and 0.4 m depth. It is not clear if 

this an artifact or a problem anomaly associated with the abutment.  

 

Figure 3.12: P-wave velocity (m/s) and ray coverage tomogram when the reservoir was empty 

(unloaded). 
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3.7.2 P-wave seismic refraction survey 2 (Loaded for 18hrs.) 

P-wave velocity tomogram and the corresponding ray coverage tomogram when the dam 

has been loaded for 18 hours (reservoir filled) are shown in Figure 3.13. Significant change is 

observed in both the velocity and ray coverage tomograms. There is a decrease in p-wave velocity 

above the dry compacted clay loam and loamy sand zones. An increase in p-wave velocity is 

observed at the bottom of the loamy sand zone. One reason for the decrease in velocity just above 

the zones could be that water is infiltrating through the two zones and a gap is forming between 

the top surface of the two zones and the adjacent surface of the dam. Another possible reason for 

the change in the velocity distribution could be the change in stress distribution caused by the 

water load. The ray coverage tomogram shows low coverage at the top of the two compromised 

zones. This supports the assumption that a gap is forming between the top surface of the zones and 

the adjacent surface of the dam.   
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Figure 3.13: P-wave velocity (m/s) and ray coverage tomogram when the dam was loaded for 

18hrs. 

The low ray coverage area at 5 m distance and 0.4 m depth is more clearly visible when 

the dam is loaded. The same location has a low p-wave velocity. This could be an indication of 

seepage through the interface of the dam and the abutment.  

3.7.3 P-wave seismic refraction survey 3 (Loaded for 44hrs. and 20min.) 

P-wave velocity tomogram and the corresponding ray coverage tomogram when the dam 

has been loaded for 44 hours and 20 minutes is shown in Figure 3.14. Both the p-wave velocity 

and ray coverage tomogram show similar features as the previous survey. There is an area of low 

ray coverage on the right abutment. This could be an indication of seepage through the interface 

of the dam and the abutment.  
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The low ray coverage and low p-wave velocity area at 5 m distance and 0.4 m depth is 

more prominent. A small wet area at the left abutment is observed validating the assumption of a 

seepage path through the interface of the dam and the abutment. 

 

 

Figure 3.14: P-wave velocity (m/s) and ray coverage tomogram when the dam was loaded for 

44hrs and 20min. 

3.7.4 P-wave seismic refraction survey 4 (Unloaded) 

P-wave velocity tomogram and the corresponding ray coverage tomogram of the model 

embankment dam after overnight unloading is shown in Figure 3.15. There is a decrease in area of 

low velocity above the dry compacted clay loam compared to the previous survey. The low 

velocity and low ray coverage area on the right abutment is more prominent.  
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Figure 3.15: P-wave velocity (m/s) and ray coverage tomogram when the dam was unloaded. 

3.7.5 P-wave Seismic Refraction Survey 5 (27min. after reloading) 

P-wave velocity tomogram and the corresponding ray coverage tomogram 27 minutes after 

reloading the dam are shown in Figure 3.16. There is no significant difference in both the p-wave 

velocity and the ray coverage tomogram. The survey was conducted only 27 minutes after the 

reloading of the dam was completed which might not be sufficient time to notice any major 

difference.  
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Figure 3.16: P-wave velocity (m/s) and ray coverage tomogram 27min. after reloading. 

3.7.6 Comments on the p-wave seismic refraction surveys  

Seismic refraction tomography on earthen dams and levees is more effective when there is 

a significant change in stiffness.  This can be seen in the Stillwater model dam results where the 

general shape of the dam is identified from the native ground. This is because the native ground 

has been in situ longer and is stiffer than the dam body. The dam body is constructed from 

excavated clay loam and compacted in multiple layers. Therefore, the contrast in the stiffness of 

the dam body and native ground shows up as a velocity boundary indicating the shape of the dam. 

Another example is that the SRT results show some indication of the two compromised zones 

when the model dam was loaded. As the loading time increases and piping progresses, porosity 
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increases and the pores are not fully saturated; stiffness decreases, and those locations show up as 

low velocity zones in the tomograms.  

Although the general shape of the dam and indication of the two compromised zones was 

observed for the model dam experiment, there is a consistent problem of the anomalies showing 

up at shallower depths than expected. The lateral placement of these anomalies is at the correct 

location compared to the actual location of the targets (the two compromised zones), but the 

vertical location of the same anomalies is at shallower depth than the actual targets. 

The results from seismic refraction surveys show that the method lacks the resolution to 

correctly indicate the vertical location of the different zones. Similar problems have been observed 

on actual dams where principal spillways appear shallower than expected (Wodajo, 2011). 

Therefore, conducting seismic refraction tomography at locations where information on the 

geometry of the subsurface is not available might lead to incorrect interpretations, especially in 

identifying the actual depth of the targets.    

When conducting seismic refraction tomography on actual dams and levees, efforts should 

be made to incorporate depth information in the processing stage of the data. For example, when 

conducting a survey on an earthen dam, the depth of the principal spillway pipe from as built 

drawings can be used to adjust the tomogram or as prior information during data processing. 

Another example is, when conducting seismic refraction surveys on levees where there are no 

principle spillways going through the levee, depth correction can be made if ground water 

elevation can be obtained from well information or other sources in the area.  
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3.8 ERT Results During Cyclic Loading  
 

Electrical resistivity surveys were conducted alongside seismic refraction surveys. All 

electrical resistivity values are given in Ohm-meter (Ohm-m). Similar to the p-wave velocity 

tomograms, the location of the loamy sand zone is shown with a box on the right and the location 

of the clay loam zone is shown with a box on the left.   

3.8.1 Electrical resistivity survey 1 (Dam not loaded) 

Electrical resistivity tomogram for the first survey when the dam is unloaded (empty) is 

shown in Figure 3.17. The resistivity of the dam close to the surface is higher than the resistivity 

at the bottom of the dam. Location of the loamy sand zone is indicated with a high resistivity. In 

addition to the natural high resistivity of sandy soils, this is expected because the loamy sand is 

drier than the dry compacted clay loam zone and dam body (clay loam) as shown in the TDR 

sensors plot. Although the compromised dry compacted clay loam is wetter than the dam body 

(clay loam), it is not clearly indicated in the electrical resistivity tomogram. 

 

Figure 3.17: Electrical resistivity tomogram (Ohm-m) when the reservoir was empty (unloaded). 
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3.8.2 Electrical resistivity survey 2 (Loaded for 18hrs.) 

Electrical resistivity tomogram when dam has been loaded for 18 hours is shown in Figure 

3.18. The tomogram shows that the resistivity in the loamy sand zone is decreasing which is an 

indication that water is seeping into the zone. TDR sensor in the loamy sand shows an increase in 

moisture content which supports the decrease in resistivity. There is a decrease in resistivity at the 

bottom of the dry compacted clay loam which is also associated with an increase in moisture 

content due to seepage. TDR sensor reading also shows an increase in moisture content within the 

dry compacted clay loam.   

 

Figure 3.18: Electrical resistivity tomogram (Ohm-m) when the dam was loaded for 18hrs. 

3.8.3 Electrical resistivity survey 3 (Loaded for 44hrs. and 20min.) 

Electrical resistivity tomogram when the dam has been loaded for 44 hours and 20 minutes 

is shown in Figure 3.19. There is no significant change in the electrical resistivity tomogram 

compared to the previous survey. Moisture content readings for the two zones and the dam body 

remain almost constant between 18 hours of loading and 44 hours of loading. This could explain 

why there is no significant change in the tomograms. 
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Figure 3.19: Electrical resistivity tomogram (Ohm-m) when the dam was loaded for 44hrs. and 

20min. 

3.8.4 Electrical resistivity survey 4 (Unloaded) 

Electrical resistivity tomogram of the model embankment dam after unloading it overnight 

is shown in Figure 3.20. TDR sensor readings indicate a slight decrease in moisture content in both 

zones and the dam body due to unloading.  The dry compacted clay can now be identified with a 

low resistivity zone. The previous high resistivity of the loamy sand zone has dropped to the 

resistivity of the dam body which makes it difficult to identify the zone. Two low resistivity zones 

are shown on both abutments which could be an indication of water seepage through the interface 

of the abutment and the dam body. Even though the dam is empty at the time of this survey, it is 

not believed that enough time has passed for the water that seeped through the dam when the dam 

was loaded to dissipate.  
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Figure 3.20: Electrical resistivity tomogram (Ohm-m) when the dam was unloaded. 

3.8.5 Electrical resistivity survey 5 (27min. after reloading) 

Electrical resistivity tomogram 27 minutes after reloading the dam is shown in Figure 3.21. 

There is an increase in the moisture content of the two zones and the dam due to the reloading of 

the dam. The resistivity tomogram better indicates the increase in moisture content in the loamy 

sand than in the dry compacted clay. At only 27 minutes after loading it is believed that more 

seepage is taking place between the interface of the loamy sand zone and the dam than through the 

interface of the dry compacted clay loam and the dam. This is because the interface between the 

loamy sand and the dam is more permeable due to the difference in material and compaction effort.   

 

Figure 3.21: Electrical resistivity tomogram (Ohm-m) 27min. after reloading. 
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3.8.6 Comments on the electrical resistivity surveys  

Electrical resistivity of soils is not as strongly correlated with the stiffness of the soil as it 

is with moisture content, clay content, porosity, and salt water salinity (Cosenza et al., 2006). The 

sensitivity of electrical resistivity to mineralogy can be seen on the Stillwater model dam survey 

before loading; where the loamy sand zone is clearly identified from the surrounding clay as a high 

resistivity anomaly. Stillwater results also show that electrical resistivity is more sensitive to 

moisture content. As moisture content increases with loading time, the initial high resistivity of 

the loamy sand starts to decrease.  

The fact that electrical resistivity is more dependent on moisture content than stiffness is 

evident by observing the dry compacted clay loam zone. Before the model dam was loaded, even 

though the dry compacted clay loam has lower stiffness than the surrounding dam body, it is not 

identified in the electrical resistivity tomogram. Once the model dam is loaded and adequate time 

has passed for the water to reach the dry compacted clay loam, a low resistivity anomaly appears 

in the resistivity tomogram indicating the dry compacted clay loam zone.    

Another example of the weak correlation between electrical resistivity and soil stiffness 

can be observed when considering the shape of the model embankment dam. Compared to seismic 

refraction tomography, electrical resistivity offers less information on the general shape of the 

dam. Unless there is seepage (moisture content or piping) or change in mineralogy between 

different interfaces of the subsurface, it is difficult to identify different geometries within the 

subsurface using electrical resistivity surveys.  
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Even though electrical resistivity is lacking in identifying the shape of the dam, the lateral 

and vertical placement of the two compromised zones in the resistivity tomograms are more 

accurate compared to that of the velocity tomograms.   

3.9 Summary 
 

Time-lapse seismic refraction tomography and electrical resistivity tomography were 

conducted on a model embankment dam during a full loading and unloading cycle. The model 

dam was constructed with two compromised zones; dry compacted clay loam zone and loamy sand 

zone.  

The p-wave refraction survey conducted a short time after loading shows substantial 

changes that might be associated with stress redistribution within the embankment. After a longer 

period of loading time, the effects of seepage are evident in the tomograms but they are not 

collocated with the actual location of the compromised zones. These anomalies, with a slight 

decrease in p-wave velocity, are present at shallower depths than expected.  

Water seepage reduces the high resistivity of the loamy sand in the tomograms to the 

baseline resistivity of the dam. The resistivity of the dry compacted clay loam also decreases with 

cyclic loading. This evidence helps validate the time-lapse ERT method for detecting seepage 

inside a dam. Since electrical resistivity is more sensitive to small changes in moisture content, 

conducting electrical resistivity surveys right after the completion of construction can be used to 

check if the dam was compacted with uniform moisture content.   

Both seismic refraction tomography and electrical resistivity surveying provide valuable 

information for earthen embankment dam and levee investigation. Seismic refraction methods 

perform better when there is a good contrast in the stiffness of the different parts of the subsurface 
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including compromised and safe zones. Seismic refraction methods provide valuable information 

in identifying different boundaries in the subsurface, but it is difficult to identify different soil 

types and the vertical depth accuracy is poor. Electrical resistivity surveys on the other hand are 

more sensitive to changes in mineralogy and water content but not as sensitive to changes in 

stiffness.  

A more comprehensive information assessment of the integrity of earthen embankment 

dams and levees could be obtained by combining the strengths of seismic refraction tomography 

and electrical resistivity surveys. One approach of obtaining this is by finding common traits that 

affect both the seismic and electrical properties of soils. Cross-plot analysis based on seismic and 

electrical attributes to seepage and piping can be used as a starting point for this approach.  
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CHAPTER 4 

4. CROSS-PLOT ANALYSIS ON THE STILLWATER MODEL DAM 

 

4.1 Introduction 

In the previous chapter, time-lapse p-wave seismic refraction and electrical resistivity 

measurements were conducted on the Stillwater model dam. Although these methods provide 

valuable information on the integrity assessment of dams and levees, a more complete assessment 

requires combining the strength of individual methods. 

In this chapter, a new application of cross-plot analysis using the time-lapse p-wave seismic 

refraction and electrical resistivity measurements on the Stillwater model dam will be presented.  

4.2 Introduction to Cross-plot Analysis  
 

Cross-plot analysis using seismic refraction and electrical resistivity results is an approach 

where different soil types and conditions of dams and levees are classified based on their seismic 

velocity and electrical resistivity values (Hayashi et al., 2010). Instead of analyzing the results 

from each method separately, a four quadrant criteria based on the ranges of seismic velocity and 

electrical resistivity are used. Based on the measured seismic velocity and resistivity at a given 

location and where that point falls within the four quadrants, the soil type and integrity of the dam 

or levee at that location is estimated.   

An illustration of a cross-plot criteria based on seismic and electrical attributes for seepage 

and piping is shown in Figure 4.1. In the quadrant labeled 1, with low p-wave velocity and high 
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resistivity, the dam is classified to be in poor condition. This is because low p-wave velocity is 

associated with poor compaction (low stiffness) and high porosity, whereas high resistivity is 

associated with low clay content or a high porosity unsaturated sand. Therefore, the combination 

of these factors would classify a dam as being in a poor condition. Criteria for a good dam 

condition is shown in quadrant 4 with high p-wave velocity and low resistivity. A combination of 

well compacted soil with low porosity (high p-wave velocity) and high clay content (low 

resistivity) is considered a good dam condition. Although low resistivity can also be associated 

with high porosity brine saturated sand, this is not a likely condition in dams and levees.  

 

Figure 4.1: Cross-plot analysis using seismic velocity and electrical resistivity values. 

Although the cross-plot analysis using the criteria shown in Figure 4.1 can be used as a 

general guide, it requires some modification based on the type of the compromised zone (poorly 

compacted clay zone or sand zone). For example, after long loading time and rainwater infiltration, 

it is difficult to find a dry compacted clay zone with high electrical resistivity. This is because 
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clays have surface conductance that significantly lowers their electrical resistivity value (Abu-

Hassanien et. al., 1996) and the additional saturation from wetting further drops their electrical 

resistivity. Therefore, referring to Figure 4.1, the electrical resistivity of a saturated dry compacted 

clay zone will not fall in quadrant 1 and could even drop lower than the electrical resistivity of a 

well-compacted saturated clay in quadrant 4. Therefore, based on Figure 4.1, a dam in poor 

condition with a saturated dry compacted clay zone with low electrical resistivity and low p-wave 

velocity falls in quadrant 3 and not in quadrant 1.  On the other hand, the cross-plot criteria shown 

in Figure 4.1 can be directly applied for targeting sand zones. Even though the resistivity of the 

sand zone can also drop over time with saturation, it will not drop lower that the resistivity of a 

saturated clay zone.   

4.3 Cross-plot Analysis Targeting the Stillwater Loamy Sand Zone  
 

To test the concept of cross-plot analysis, the Stillwater dam p-wave velocity and electrical 

resistivity tomograms are re-gridded so that each plot has the same number of grid points (nodes). 

Figure 4.2 shows the re-gridded p-wave velocity and electrical resistivity tomograms for the 

November survey 1 (unloaded dam).  



47 
 

 

Figure 4.2: Re-gridded p-wave velocity and electrical resistivity tomograms for November 

survey 1. 

 

Once the tomograms are re-gridded, the anomaly associated with the loamy sand zone is 

selected. This selection is made by closely observing the p-wave and electrical resistivity 

tomogram and identifying the anomaly in each tomograms associated with the loamy sand zone. 

Anomalies associated with the compromised zones can be identified with good accuracy because 

the locations of the compromised zones are known beforehand. However, in real field studies this 

is not the case. The top plot of Figure 4.3 shows the loamy sand zone anomaly from the p-wave 

tomogram and the bottom part shows the loamy sand zone anomaly from the electrical resistivity 

tomogram. The location of the anomaly from the p-wave tomogram does not fall inside the box 

labeled loamy sand due to the vertical accuracy problem associated with p-wave refraction 

surveys. The size of the window used to select the anomaly on both tomograms is the same. The 

safe zone (SF) in Figure 4.3 is a zone within the model embankment dam that is considered safe. 

The location of the safe zone is the same for both the p-wave and electrical resistivity tomograms 

and does not change for all loading conditions. 
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Figure 4.3: Location of the loamy sand anomaly and a safe zone (SZ) for November survey 1. 

After the compromised and safe zones are selected, a scatter plot is produced as shown in 

Figure 4.4. The red markers in Figure 4.4 are associated with the loamy sand anomaly windows 

and the blue markers are associated with the safe zones. A clear separation between the loamy 

sand and the safe zone is indicated in the scatter plot. This is expected because loamy sand typically 

has higher electrical resistivity and lower p-wave velocity compared to clay loam. The next step is 

to generate the scatter plots for all the loading conditions on one figure to study dependence on the 

time the survey is completed.  
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Figure 4.4: Scatter plot for the compromised (loamy sand) and safe zones for November survey 

1. 

The scatter plots for all the loading conditions from the November cyclic loading surveys 

are shown in Figure 4.5. The scatter plot shows there is a clear separation between the 

compromised (loamy sand) zone and the safe zone. The percent change in resistivity and velocity 

from the safe to the loamy sand zone is about 150% and 46%, respectively. The compromised 

(loamy sand) zone shows a decrease in resistivity with longer loading time whereas there is no 

significant change in velocity after the first loading. Both resistivity and velocity of the safe zone 

show no significant change for different loading conditions which could be due to the short 

experiment time for water to infiltrate to the safe zone. 

The most important decision in the cross-plot analysis is selecting the bounding values of 

electrical resistivity and seismic velocity that divide the four quadrants of the scatter plot. Case 1 

shown by the red line in Figure 4.5 is a narrow (targeted) selection of boundary values and can be 

used if there is prior information that most of the dam is in a safe condition. Case 2 shown by the 

green line in Figure 4.5 on the other hand is a conservative (high factor of safety) selection and 

assumes most of the dam could be in a compromised condition. Therefore, based on the boundaries 

selected, the cross-plot analysis could have low or high factors of safety.    
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Figure 4.5: Scatter plot for all the loading conditions for the November cyclic loading (targeting 

the loamy sand zone).  

 

Figure 4.6 shows the electrical resistivity and p-wave velocity values used for the 

November cyclic loading cross-plot analysis focusing on the loamy sand zone. Considering prior 

information that the loamy sand zone is a localized problem compared to the overall size of the 

dam, values of 28 Ohm-m for electrical resistivity and 240 m/s for p-wave velocity are used. These 

values are picked from observation of the scatter plot and in order to have a tight boundary focusing 

on the loamy sand zone. 
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Figure 4.6: Boundary selection for cross-plot analysis (targeting the loamy sand zone). 

Once the boundary values are selected, the next step is to use the re-gridded electrical 

resistivity and p-wave velocity tomograms and build cross-plot maps of the entire dam. For each 

and every pair of identical grid points on both tomograms, the electrical resistivity and p-wave 

velocity values are checked in which quadrant they fall on the scatter plot. Therefore, depending 

on the quadrant in which the velocity-resistivity pair is located, it is color coded to produce the 

cross-plot map of the entire dam. 

The cross-plot map targeting the loamy sand zone for the November survey 1, when the 

dam was not loaded, is shown in Figure 4.7.  The top part of the figure shows the 2D cross-section 

map. The bottom part, which is the plan view, is produced using the 2D cross-section map and 

plotting the worst condition in the vertical direction. The plan view is important because it provides 

the lateral location of compromised zones and therefore avoids the depth uncertainty associated 

with seismic refraction surveys.  
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Figure 4.7: Cross-plot map targeting the loamy sand zone for November survey 1. 

Plan view from the cross-plot analysis of the November cyclic loading surveys is shown in 

Figure 4.8. For the first three surveys (not loaded, loaded for 18 hrs. & loaded for 44 hrs.), the 

location of the loamy sand zone is identified as a compromised location whereas the rest of the 

dam is indicated as safe or probably safe. For the last two surveys (unloaded and loaded for 27 

mins.), most parts of the dam are indicated as highly compromised. This is due to high electrical 

resistivity values at the near surface for the whole length of the dam (Figures 3.19 and 3.20). The 

high resistivity could be due to the unloading of the dam and water leaving the body of the dam 

and leaving behind air filled void spaces. Considering the plan view of last two surveys, it is 

difficult to identify the location of the compromised (loamy sand) zone. 

 

Figure 4.8: Loamy sand zone cross-plotting results for cyclic loading of the dam. 
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4.4 Cross-Plot Analysis Targeting the Loamy Sand Zone with Time-Lapse Restriction 

on Resistivity 

 

Cross-plot analysis can be refined by utilizing the time-lapse aspect of the November cyclic 

loading surveys. One of the observations made from the scatter-plot, Figure 4.6, is that the 

resistivity value of the compromised (loamy sand) zone decreases as the loading time increases. 

This is due to the introduction of water associated with seepage into the loamy sand zone which 

reduces resistivity. Therefore, by adding the restriction that resistivity should decrease with 

loading time and keeping the resistivity and velocity boundaries the same, the compromised 

(loamy sand) zone can be better targeted. Figure 4.9 shows the plan view result obtained by 

applying the temporal restriction on resistivity. The result shows that the loamy sand zone is clearly 

identified as a highly compromised zone for all loading conditions.  

 

Figure 4.9: Loamy sand zone cross-plotting results with restriction on resistivity.  

4.5 Cross-Plot Analysis Targeting the Dry Compacted Clay Loam Zone  
 

Cross-plot analysis targeting the dry compacted clay loam zone was also performed for the 

November cyclic loading surveys. While the overall process remains the same for the cross-plot 

analysis targeting the loamy sand zone, different criteria are used to define the four quadrants of 

the scatter plot. Clays are naturally conductive; therefore, low resistivity is expected when 
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targeting clays. Dry compacted clay loams have low bulk modulus which leads to low seismic 

velocity values. Therefore, dry compacted clay loam is expected to have low resistivity due to the 

intrinsic conductivity of clays and low p-wave velocity due to the under compaction.  

When dry compacted clay loam and clay loam compacted at OMC are exposed to 

additional wetting over the same amount of time, the electrical resistivity of the dry compacted 

clay loam drops lower than the electrical resistivity of the clay loam compacted at OMC. This is 

because more water can easily get into the dry compacted clay loam. Over longer loading time, p-

wave velocity of the dry compacted clay loam is also expected to decrease due an increase in 

saturated density. Figure 4.10 shows the scatter plot used for targeting the Stillwater dry compacted 

clay loam. The scatter plot classification takes into consideration that the dry compacted clay zone 

will be saturated due to rainfall and cyclic loading of the dam. 

Low p-wave velocity and low resistivity, represented by the quadrant labeled 3 in Figure 

4.10, represents a compromised dry compacted clay loam zone that has been affected by wetting. 

The quadrant labeled 2 with high p-wave velocity and higher resistivity represents a safe clay loam 

zone compacted at OMC. 

The scatter plot shown in Figure 4.10 shows a good separation in p-wave velocity between 

the dry compacted clay loam and the safe zone (dam body). The percent change in p-wave velocity 

from the safe clay loam to dry compacted clay loam is 46%. Based on the scatter plot, a p-wave 

velocity of 211 m/s is used in order to have a tight constraint on the dry compacted clay loam zone.  

There is no significant separation in electrical resistivity between the dry compacted clay 

loam zone and safe clay loam compacted at OMC. The percent change in electrical resistivity from 

the safe clay loam to the dry compacted clay loam is 25%. Short loading time could be the reason 

for the overlap in electrical resistivity between the dry compacted clay loam and the clay loam 
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compacted at OMC. For trying the cross-plot analysis, an electrical resistivity value of 15 Ohm-

m, the highest resistivity measured in the dry compacted clay loam, is picked as the electrical 

resistivity boundary. Visual inspection of Figure 4.10 shows that this boundary classifies parts of 

the safe zones into the probably safe quadrant. Therefore, in order to pick better boundaries, longer 

loading times should be allowed for the electrical resistivity of the dry compacted clay loam to 

drop below that of the clay loam compacted at OMC. 

  

Figure 4.10: Scatter plot for all the loading conditions for the November cyclic loading 

(targeting the dry compacted zone).  

 

The plan view results from the cross-plot analysis targeting the dry compacted clay loam 

zone is shown in Figure 4.11. The result shows no clear distinction of the dry compacted clay zone. 

Additional measurement after extended loading time could be required for an improved 

identification of the dry compacted clay zone. 
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Figure 4.11: Dry compacted clay loam zone cross-plotting results for cyclic loading of the dam. 

4.6 Summary  

Cross-plot analysis can be used to combine the strengths of seismic refraction and electrical 

resistivity surveys and provide a simplified visualization for the integrity assessment of dams and 

levees. One of the advantages of implementing cross-plot analysis is that the end result, the cross-

plot 2D map or plan view, is presented in non-technical terms, such as “safe” and “compromised” 

with no numerical values to interpret. This will enable non-technical personnel to read the result 

and have an understanding of the integrity of the dam or levee.   

Although the end product is easy to read and understand, a clear understanding of the 

individual seismic refraction and electrical resistivity constraints used to conduct the cross-plot 

analysis is required. Most importantly, cross-plot analysis is based on identifying how different 

compromised zones (targets) manifest in both seismic refraction and electrical resistivity 

tomograms, and what common seismic/electrical attributes of the compromised zones can be 

utilized.  

Cross-plot analysis results from the Stillwater embankment dam showed that dry 

compacted clay loam is not clearly isolated from the clay loam compacted at OMC. Measurements 

after a much longer loading time could be required for the electrical resistivity of the dry 

compacted clay loam to drop much further. The compromised loamy sand zone is correctly 
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identified using cross-plot analysis with the added restriction that electrical resistivity should 

decrease with loading time. Therefore, time-lapse measurements are required and provide valuable 

information especially for identifying loamy sand zones using cross-plot analysis.  

Cross-plot analysis does not resolve problems that are inherent to the seismic refraction 

and electrical resistivity surveys. For example, depth accuracy problems of seismic refraction 

surveys are transferred to the cross-plot 2D cross-section maps. Anomalies associated with 

compromised zones do not always appear at the same exact location on both the seismic refraction 

and electrical resistivity tomograms. Therefore, if proper adjustment is not made addressing 

accuracy issues, cross-plot analysis could provide misleading information because grid points of 

an anomaly on one tomogram are not paired to the right grids on the other tomogram.  

One of the difficulties associated with seismic refraction and electrical resistivity cross-

plot analysis is determining the seismic velocity and electrical resistivity values that divide the 

four quadrants of the scatter plot. In the case of the Stillwater embankment dam, the location of 

the two compromised zones were known, which allowed identifying the associated anomalies on 

the tomograms. On surveys conducted on real dams and levees, this prior information is not always 

available; therefore, it is difficult to distinguish between anomalies in the tomograms associated 

with actual compromised zones from other anomalies. There is a need for more research on how 

these boundary values can be determined.   
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CHAPTER 5 

5.  ESTABLISHING CONSTRAINTS FOR CROSS-PLOT ANALYSIS USING 

PRELIMINARY AND LABORATORY GEOPHYSICAL MEASUREMENTS * 

5.1 Introduction 

The previous chapter discussed how the proper application of seismic refraction and 

electrical resistivity cross-plot analysis depends on the proper selection of seismic velocity and 

electrical resistivity boundaries.  

In this chapter, a new approach of establishing cross-plot boundaries using preliminary 

data and laboratory measurements will be presented. For this purpose, preliminary and laboratory 

geophysical measurements on the Stillwater dam are used. In addition to that, a study to check if 

seismic velocity and electrical resistivity laboratory measurements can differentiate between three 

groups of soil types on the USDA soil texture triangle will be presented. The three groups of soils 

are classified based on regions of recommended and not recommended soil types for earthen dam 

construction.   

5.2 Preliminary P-wave Velocity and Electrical Resistivity Measurements at Stillwater 

Dam 
 

After the placement of the two zones at the Stillwater model dam was completed, 

preliminary p-wave seismic surveys using 3C geophones and Wenner array electrical resistivity 

surveys using four electrodes were conducted at the same time on the two zones and the dam body. 

 A paper on a section of this chapter is in preparation. Wodajo, L.T., and Hickey, C.J., “Establishing Constraints 

for Cross-plot Analysis using Preliminary Geophysical Measurements: A Study at Stillwater model dam.” Journal 

of Environmental and Engineering Geophysics.  
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The preliminary measurement setups on the dry compacted clay loam zone are shown in 

Figure 5.1. 

 

Figure 5.1: a) Preliminary p-wave seismic refraction measurement and b) preliminary electrical 

resistivity measurement on the dry compacted clay loam zone.  

Results from the preliminary measurements are summarized in Table 5.1. Compared to the 

dam body compacted at OMC of 13%, the loamy sand zone and the dry compacted clay loam zone 

have a 15.5% and 4.2% decrease respectively in p-wave velocity. The loamy sand zone and dry 

compacted clay loam zone have a 344% and 111% increase respectively in electrical resistivity. 

Table 5.1: Preliminary seismic velocity and electrical resistivity values during construction. 

 

For simplification, the main part of Stillwater dam excluding the two compromised zones 

will be referred to as clay loam. This part is made from clay loam soil compacted at optimum 

moisture content and therefore represents the safe part of the dam. The dry compacted zone will 

be referred to as dry compacted clay loam.  

 

Loamy 

sand 

Dry compacted clay 

loam 

Dam body (clay 

loam) 

P-wave velocity (m/s) 223 253 264 

Electrical resistivity (Ohm-m) 80 38 18 
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5.2.1 Cross plot analysis using preliminary measurements on the clay loam 

From preliminary measurements on the clay loam, a pair of seismic and electrical 

resistivity values within the safe part of the dam is obtained. As shown in Figure 5.2, these values 

can be used as cross-plot analysis boundaries to establish safe zones within the dam.  In order to 

obtain p-wave velocity and electrical resistivity in the safe zone, a more compacted zone (higher 

confining stress) with higher moisture content is required. Such conditions could be possible due 

to the addition of overburden pressure from completion of the dam and overtime wetting of the 

dam from reservoir and rainwater infiltration. Therefore, p-wave velocity and electrical resistivity 

pairs that fall in the safe quadrant can be considered as safe with a high level of confidence. Cross-

plot analysis with such conservative constraint (high degree of safety) creates difficulty in 

differentiating true compromised zones from false alarms. Some parts of the clay loam from the 

Stillwater field measurements (tomograms) are predicted as probably compromised. This might 

be a problem of using only one preliminary data point and could be improved by using an average 

of multiple preliminary surveys at different locations on the clay loam.  

 

Figure 5.2: Cross-plot analysis based on preliminary measurements on the clay loam used to 

look for similar safe zones. Scatter plots of the clay loam, loamy sand, and dry compacted clay 

loam from field measurements (Chapter 4) are replotted for reference. 
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An example of using the preliminary values of the clay loam (dam body) is shown in Figure 

5.3 for the second loading of the dam. As expected, the majority of the dam is classified as 

compromised due to the very conservative constraints (high factor of safety). 

 

Figure 5.3: Cross-plot section based on the preliminary values of the clay loam. 

5.2.2    Cross-plot analysis targeting the loamy sand zone using preliminary measurements on    

loamy sand  

Cross-plot analysis using p-wave velocity and electrical resistivity values from preliminary 

measurements on the loamy sand zone is shown in Figure 5.4. For reference, the scatter plot and 

cross-plot boundary targeting the loamy sand zone used in Chapter 4 is also shown in Figure 5.4. 

Based on the preliminary values of the loamy sand, the scatter plot is divided into probably safe 

and compromised quadrants. The preliminary electrical resistivity of the loamy sand zone (80 

Ohm-m) is higher compared to the cyclic loading field measurement data. The preliminary 

measurements were conducted in September immediately after the zones were placed but before 

the dam construction was completed.  The field measurements, on the other hand, were conducted 

in November after the whole dam was constructed. Lower resistivity in the November field 

measurement is expected due to saturation caused by rainwater infiltrating into the loamy sand 

zone. Preliminary p-wave velocity of the loamy sand zone (223m/s) falls within the range of the 

not loaded field measurement as expected but the electrical resistivity is higher. 
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Figure 5.4: Cross-plot analysis targeting the loamy sand zone using preliminary p-wave and 

electrical resistivity values of the loamy sand zone as boundaries.  

Since the preliminary measurement on the loamy sand zone represents the worst case, any 

velocity and resistivity pair that falls in the compromised zone is most likely compromised with a 

high degree of certainty. In order to have higher resistivity and lower p-wave velocity, the loamy 

sand has to be drier and under compacted (looser). Such conditions might occur if the loamy sand 

was eroded during wet periods due to internal erosion and measurements were performed in drier 

seasons where water saturation decreases. In actual dams, where water is impounded most of the 

time, the electrical resistivity is expected to decrease as loading time increases. A similar result is 

shown in the Stillwater data in Figure 5.4. Therefore, as shown in Figure 5.4, using the loamy sand 

preliminary electrical resistivity values for the cross-plot analysis, the loamy sand zones would 

classify as probably safe instead of compromised. 

Since the preliminary electrical resistivity of the loamy sand (80 Ohm-m) is expected to 

decrease with increased loading time, laboratory measurements can be used to determine a 

representative resistivity of a saturated loamy sand.  
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From laboratory electrical resistivity measurements on the Stillwater loamy sand at OMC, 

bulk electrical resistivity (𝜌𝑏) of 62 Ohm-m, saturation (Sw) of 68%, and porosity (ϕ) of 31.5% 

are obtained. Using these values and Archie’s second law for a partially saturated sand (Eq. 2.9), 

engineers can approximate the electrical resistivity of the saturating water (𝜌𝑤). Using a tortuosity 

(a) of 1, a cementation factor (m) of 2, and saturation exponent (n) of 2, the electrical resistivity of 

the saturating water (𝜌𝑤) is 2.84 Ohm-m. This value is between the highest value of resistivity for 

salt water and lowest value of resistivity for fresh water (Samouëlian et al., 2005). To estimate 

how much the electrical resistivity of the loamy soil drops when fully saturated (Sw = 1), Archie’s 

first law (Eq. 2.8) is used while keeping porosity (ϕ) constant at 32%. Keeping the same 

cementation factor (m) of 2 and using 2.84 ohm-m for the electrical resistivity of the saturating 

water (𝜌𝑤), the electrical resistivity of the loamy sand at full saturation is approximately 28.7 Ohm-

m. Reducing the electrical resistivity boundary of the loamy sand, from the preliminary 80 Ohm-

m to the saturation-adjusted value of 28.7 Ohm-m, will move the saturated loamy sand zones to 

the compromised quadrant. 

An example of using the saturation adjusted preliminary values of the loamy sand is shown 

in Figure 5.5 for the second loading of the dam. The majority of the dam is classified as probably 

safe due to the low factor of safety of the boundaries.  

 

Figure 5.5: Cross-plot based on saturation adjusted preliminary values of the loamy sand. 
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5.2.3 Combined cross plot analysis using preliminary measurements on the clay loam and 

loamy sand 

Using preliminary p-wave velocity and electrical resistivity of both the loamy sand 

(compromised zone) and clay loam (safe zone), cross-plot analysis targeting the loamy sand zone 

is shown in Figure 5.6. For the loamy sand, instead of the preliminary 80 Ohm-m electrical 

resistivity, the saturation adjusted value of 28.7 Ohm-m is used.  

 In order for cross-plot analysis targeting the loamy sand zone to work, both p-wave 

velocity and electrical resistivity should separate the loamy sand zone and the clay loam into 

different quadrants. Therefore, both p-wave velocity and electrical resistivity boundary values can 

be chosen anywhere in the yellow shaded zone in Figure 5.6. As the intersection point of the 

velocity and resistivity boundaries moves towards point A (safe zone), the constraint becomes a 

high factor of safety. On the other hand, as the constraint moves closer to point B, the constraint 

becomes a low factor of safety. Therefore, the choice in the boundaries can ultimately be loosely 

related to a factor of safety.  
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Figure 5.6: Cross-plot analysis targeting the loamy sand zone using preliminary p-wave velocity 

and electrical resistivity values of the loamy sand and clay loam. Preliminary electrical resistivity 

of the loamy sand is adjusted for saturation. 

For the loamy sand, the preliminary p-wave velocity (223 m/s) is outside the shaded region 

while the saturation adjusted electrical resistivity (25.4 Ohm-m) is within the shaded region. 

Preliminary p-wave velocity (254 m/s) and electrical resistivity (18 Ohm-m) of the clay loam fall 

outside the shaded region but are close to point A. The average of the preliminary p-wave velocity 

of the loamy sand and clay loam, which is 243.5 m/s, falls within the shaded region.  Therefore, 

one possible option is to use the average p-wave velocity and saturation adjusted electrical 

resistivity values as boundaries for targeting the loamy sand zone.  

5.2.4 Cross plot analysis using preliminary measurements on dry compacted clay loam 

Cross-plot analysis targeting the dry compacted clay loam using preliminary measurements 

on the dry compacted clay loam is shown in Figure 5.7. Compared to the clay loam, the dry 
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compacted clay loam has a higher electrical resistivity due to the lower water content and lower p-

wave velocity due to lower bulk and shear modulus.  

 

Figure 5.7: Cross-plot analysis targeting the dry compacted clay loam using preliminary p-wave 

and electrical resistivity values of the dry compacted clay loam as boundaries.  

Since the preliminary measurements are conducted immediately after construction, the 

zones are not affected by additional wetting from rainwater infiltration. This leads to a low factor 

of safety constraint. Therefore, p-wave and electrical resistivity pairs that fall in the compromised 

quadrant are compromised with high degree of certainty.   

Over longer loading times, p-wave velocity of the dry compacted clay loam is expected to 

decrease due to an increase in saturated density. Electrical resistivity is also expected to drop with 

increased saturation. Therefore, using the preliminary measurements of the dry compacted clay 

loam as the cross-plot analysis boundaries does not place the field measured dry compacted clay 

loam into the compromised quadrant. Laboratory measurements and the Waxman-Smits model 

(Eqs. 2.10 – 2.13) could be used to estimate the drop in electrical resistivity due to saturation. In 
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order to determine the cation exchange capacity (CEC) of the clay minerals for the Waxman-Smits 

model, an X-ray diffraction test on a sample of the clay loam is required.  

A modified cross-plot analysis for targeting saturated dry compacted clay loam is shown 

in Figure 5.8. In the figure, after longer loading time, the preliminary measurement value on the 

dry compacted clay loam (blue circle) will move closer to point B. Similarly, after longer loading 

time, the preliminary measurement value on the clay loam (red circle) will move closer to point 

A. The close proximity of the preliminary value on the clay loam (red circle) to point A is an 

indication that the fluctuation due to saturation in the clay loam is small. This is associated with 

the proper compaction of the clay loam at optimum moisture content. In order for cross-plot 

analysis to work, point B in Figure 5.8 should be lower than point A. This creates a separation in 

resistivity between the compromised and safe quadrant. Since electrical resistivity drops much 

faster in the dry compacted clay loam than the clay loam compacted at OMC, point B could drop 

below point A if measurement is taken after a much longer loading time. This will provide a better 

boundary selection in resistivity for the cross-plot analysis. An important observation is that p-

wave velocity clearly separates the dry compacted clay loam from the clay loam compacted at 

OMC.  



68 
 

 

Figure 5.8: Cross-plot analysis targeting the saturated dry compacted clay loam zone. 

5.3 Laboratory Seismic Velocity and Electrical Resistivity Measurements on the 

Stillwater Dam Soils  
 

In this section, p-wave velocity and electrical resistivity measurements on the Stillwater 

dam soils are presented. These measurements were conducted to provide additional information to 

interpret field data. The lab measurements were conducted on the Stillwater clay loam and loamy 

sand. According to the sieve results, the clay loam consists of 30% sand, 43% silt, and 27% clay 

by mass. For the loamy sand, the material was divided into 84% sand, 9% silt, and 7% clay by 

mass. 

A modified version of the standard proctor test described by the American Society of 

Testing and Materials (ASTM) D-698 was used to determine the maximum dry density and the 

corresponding optimum moisture content for each soil type. Table 5.2 shows the compaction effort 

used for the standard proctor test. The standard Proctor compaction method was chosen for sample 

preparation because it is used to define compaction specifications for dam constructions. After 
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compaction, about 50 gm of soil sample was oven dried at a temperature of 100-110 oC for 16 to 

24 hours until the weight stabilized. The mass of the soil after oven drying was used to determine 

the actual moisture content after compaction using the gravimetric method (Black, 1965). 

Table 5.2: Standard proctor tests, modified from Das (2009). 

Proctor  

test 

Mold 
hammer 

weight  

(Kg) 

hammer 

drop 

height  

(mm) 

# of  

layers 

blows  

per 

layer 
Volume  

(cm3) 

Height  

(mm) 

Diameter  

(mm) 

Standard 943 116.43 101.6 2.49 304.8 3 25 

Note: all measurements conducted using soil passing U.S. No. 4 sieve.  

 

For a given compaction effort, it is postulated that at low moisture content the friction 

between the soil grains is high and insufficient water is available to lubricate the particles to allow 

them to be rearranged into a dense soil. On the other hand, at very high moisture content, energy 

has little effect on the compaction because the water is incompressible and supports the 

compaction force without the soil being densified (Drnevich et al., 2007). Compacting soil above 

optimum moisture content leads to lower stiffness and permeability (Nicholson, 2015). For a given 

soil type and compaction effort, the maximum dry density defines the optimum moisture content. 

At higher compaction efforts, maximum dry density is attained at lower optimum moisture content. 

For this study, a modification of the proctor test mold, shown in Figure 5.9, and the arrangement 

used by Kaliniski et al., (1993) was used. 
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Figure 5.9: Acrylic mold with four electrodes. 

The height of the acrylic mold is 116.43 mm with an inside diameter of 94 mm for a total 

volume of 808 cm3. This is a 14% reduction in volume compared to the standard proctor test mold. 

Therefore, the proctor test compaction effort needs to be adjusted for the acrylic mold in order to 

compensate for the reduction in cross-sectional area. In order to determine the new compaction 

effort (blows per layer), soil from the Stillwater embankment dam was compacted inside a proctor 

mold (with no acrylic mold) with the standard 25 blows per layer and the standard compaction 

curve was plotted. Next, a battery of the same soil was compacted inside the acrylic mold, and the 

number of blows per layer was adjusted until the results matched the standard compaction curve 

with no acrylic mold. Figure 5.10 shows how the standard compaction curve without an acrylic 

mold is well aligned with an adjusted compaction effort of 19 blows per layer with an acrylic mold.  

The adjusted 19 blows per layer was considered equivalent to the standard compaction energy for 

tests conducted in this study.   



71 
 

 

Figure 5.10: Adjusted compaction effort compared to standard compaction effort. 

5.3.1 Electrical resistivity measurement 

Electrical resistivity measurements have been widely used to characterize geotechnical and 

hydrogeological parameters (Abu-Has sanein et al., 1996, Bryson, 2005, Bryson et al., 2009, 

Kalinski et al., 1993, McCarter, 1984, Samouëlian et al., 2005). Electrical resistivity measurements 

require the use of current and potential electrodes. Fowels (1980) measured the electrical resistivity 

of soils compacted inside the Miller soil box. Current is passed through the soil through two metal 

ends and the potential difference is measured between two pins inserted along the length of the 

box. Soil samples compacted into a circular mold have also been widely used to measure electrical 

resistivity of soils in the lab (Rhoades et al., 1977, Kalinski et al., 1993, Borsic et al., 2005, 

Sreedeep et al., 2005).  

Kalinski et al., (1993) used a circular eight-electrode resistivity cell arrangement as an 

alternative to the Miller soil box. The eight electrodes are equally spaced around the circumference 

of a nonconductive cell. Using this arrangement, the measurement is taken with a set of four 

adjacent electrodes with the outer two electrodes as current electrodes and the inner two electrodes 
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as potential electrodes. Eight separate measurements are taken on one soil sample and the average 

of the eight measurements is taken as the final resistivity of the soil sample. 

 The nonconductive acrylic cylinder mold shown in Figure 5.9 includes four stainless steel 

ring electrodes (Hickey, 2012). The acrylic mold is designed to fit inside the standard proctor test 

mold. The outer two rings are used to inject current while the inner two rings measure the potential 

difference. By using four ring electrodes that continuously cover the circumference of the soil 

sample, this arrangement reduces the eight measurements and averaging required in the Kalinski 

et al., (1993) to just one measurement. Figure 5.11 shows the electrical resistivity lab measurement 

setup. 

 

Figure 5.11: Electrical resistivity lab measurement setup. 

Calibration for electrical resistivity measurement was conducted using an Agilent E4980A 

LCR meter with the acrylic mold to measure the resistance (Ω) of the sample. This measured 

resistance was then be converted to true resistivity using equations derived from calibration curves. 

Different concentrations of sodium chloride (NaCl) solutions can be used to establish a calibration 

curve. The measured resistance of the solution using the acrylic mold was plotted with the 
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corresponding true resistivity of the solution obtained with the use of a handheld conductivity 

meter.  

5.3.2 Seismic velocity measurement 

In addition to the electrical resistivity measurement, seismic velocity measurements were 

also conducted on the same soil sample in the acrylic mold. Seismic velocity measurements were 

made with the use of bender elements (Lee et al., 2005). Bender elements have been widely used 

for laboratory measurements of shear wave velocities, which are used for determining the shear 

modulus of soils (Dyvik et al., 1985, Jovicic, et al., 1996, Pennington et al., 2001, Leong et al., 

2009, Chan et al., 2010, Fioravante et al., 2001, Mattsson et al., 2005).  

Signal transmitter and receiver bender elements are comprised of two piezoelectric 

transducers separated by a metal shim (Chan, 2012). Bender elements can generate both P and S 

waves depending on the phase of voltage supplied to the transmitter. By introducing a voltage that 

is out of phase to the individual bender elements, shear waves are created due to the bending 

motion parallel to the surface of the soil sample. Applying an in-phase voltage will produce p-

waves which propagate normal to the surface of the soil sample (Deniz, 2008). Both the transmitted 

and received signals can be viewed and recorded on an oscilloscope in order to pick the first arrival 

time. Seismic velocity through the soil is then determined by dividing the distance between the 

transmitter and the receiver with the travel time of the signal. 

In this study, the transmitter and receiver bender elements are attached to the opposite ends 

of the soil sample while inside the acrylic mold. Figure 5.12 shows the seismic velocity lab 

measurement setup. A good contact between the bender elements and the soil sample is required 

in order to have good signal transmission.  
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Figure 5.12: Seismic velocity lab measurement setup. 

A Stanford Research Systems (SRS) source preamplifier with a maximum allowable gain 

of 50 and an input source amplitude of 0.1V was used to amplify the source signal. A SRS receiver 

preamplifier was used to amplify and frequency filter the received signal. A National Instruments 

(NI) data acquisition box was connected to a laptop with a LabVIEW program. The LabVIEW 

program was used to control the acquisition and calculation of the seismic velocities. A half cycle 

of a 3 kHz sine wave with an amplitude of 0.1V was used as the input source impulse. The 

propagation velocity through the soil was calculated by dividing the distance between the bender 

elements [height of the standard proctor mold (116.43mm)] by the difference between the 

reference time of the source pulse and the first arrival of the received signal. The program acquires 

multiple measurements before displaying one velocity reading and similar velocity readings can 

be taken successively. The final velocity value of the soil sample was taken as the average of these 

readings.  
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5.3.3 Lab measurements on the Stillwater clay loam 

The Proctor curve plot for the Stillwater clay loam is shown in Figure 5.13. The soil has an 

OMC of 13% and a maximum dry density of 1906 Kg/m3. The main body of the Stillwater dam is 

compacted at the OMC. The dry compacted zone is compacted at 10% moisture content and has a 

dry density of 1812 kg/m3. The zero-air-void (ZAV) line represents an ideal condition of 100% 

saturation where all the air in the soil is expelled during compaction.  

 

Figure 5.13: Proctor curve plot for Stillwater clay loam. 

It should be noted that a proctor compaction is a complicated process, where both the 

saturation and porosity change for each data point on the proctor curve. Using the dry density 

(ρdry) and moisture content (MC) for each data point in the proctor curve, saturation (S) is 

calculated using, 

S =
MC ∙  ρo .  ρdry

ρw (ρo  −  ρdry)
 ∙ 100% ,                                                (5.1) 
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where the soil mineral density (ρ𝑜) is taken as 2650 Kg/m3 and the density of water (ρw) is 1000 

Kg/m3. Porosity (ϕ) is calculated using,  

𝜙 = (1 −
𝜌𝑑𝑟𝑦

𝜌𝑜
) ∙ 100%  .                                                          5.2 

P-wave velocity measurement results for the clay loam are shown in Figure 5.14. P-wave 

velocity is monotonic with a maximum near OMC. At the OMC of 13%, p-wave velocity is 955 

m/s, and is 855 m/s at 10% moisture content (Figure 5.14a). A study conducted by Lu et al. (2009) 

showed that saturation levels have an effect on the speed and attenuation of seismic waves. At low 

saturation, a decrease in p-wave velocity was observed with an increase in saturation. A p-wave 

velocity versus saturation plot, Figure 5.14(b), shows a decrease in velocity after the OMC. Figure 

5.14(c) shows that porosity reaches a minimum near the OMC as the soil grains can easily 

rearrange and become compact due to water lubrication. With the addition of more water above 

the OMC, the saturating fluid carries the compaction load and the soil begins to flow causing an 

increase in porosity as is typically expected. 
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Figure 5.14: a) P-wave velocity vs. moisture content, b) p-wave velocity vs. saturation, and c) p-

wave velocity vs. porosity for Stillwater clay loam. The red line markers in each figure indicate 

the OMC. 

Electrical resistivity laboratory measurement results for the Stillwater clay loam shown in 

Figure 5.15 is monotonic with a minimum near OMC . Electrical resistivity at the OMC of 13% is 

9.8 Ohm-m and 13 Ohm-m at 10% moisture content (Figure 5.15a). In Figure 5.15c, electrical 

resistivity decreases rapidly when approaching OMC and then slightly increases above OMC. 

Below OMC, electrical resistivity decreases with decreasing porosity, which is unexpected. 

However, the saturation is also changing, and the change in electrical resistivity is dominated by 

the change in saturation. Above OMC, the saturation is constant (Figure 5.15b), and an increase in 

porosity results in electrical resistivity that increases slightly. The increase in electrical resistivity 
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with increase in porosity at constant saturation is again not what is expected. Compaction above 

optimum moisture is most likely changing the connectivity of the pores. 

 

Figure 5.15: a) Electrical resistivity vs. moisture content, b) electrical resistivity vs. saturation, 

and c) electrical resistivity vs. porosity for Stillwater clay loam. The red line markers in each 

figure indicate the OMC. 

5.3.4 Lab measurements on the Stillwater loamy sand  

The Proctor curve plot for the Stillwater loamy sand is shown in Figure 5.16. The soil has 

an OMC of 11.75% and a maximum dry density of 1826 Kg/m3.  
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Figure 5.16: Proctor curve plot for the Stillwater loamy sand.  

P-wave velocity results for the loamy sand are shown in Figure 5.17. P-wave velocity at 

the OMC of 11.75% is 426 m/s. In contrast to the clay loam, the loamy sand has a minimum p-

wave velocity near the OMC (Figure 5.17a). Above the OMC, p-wave velocity increases with 

increasing moisture content and saturation (Figure 5.17b), which is different than the clay loam. 

Addition of water to loamy sand increases capillary suction, which in turn pulls the soil particles 

together increasing the shear strength and seismic velocity of the loamy sand (Lu et al., 2009). 
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Figure 5.17: a) P-wave velocity vs. moisture content, b) p-wave velocity vs. saturation, and c) p-

wave velocity vs. porosity for Stillwater loamy sand. The red line markers in each figure indicate 

the OMC. 

Electrical resistivity results for the loamy sand is shown in Figure 5.18. Electrical resistivity 

at the OMC of 11.75% is 62 Ohm-m. Figure 5.18c shows a sharp decrease in resistivity below 

OMC which could be due to the sharp increase in saturation. The slow decrease in electrical 

resistivity above the OMC could be associated with the slow increase in saturation (Figure 5.18b). 
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Figure 5.18: a) Electrical resistivity vs. moisture content, b) Electrical resistivity vs. saturation, 

and c) Electrical resistivity vs. porosity for Stillwater loamy sand. The red line markers in each 

figure indicate the OMC. 

5.3.5 Comparison between Laboratory and Field Measurement of Seismic Velocity and 

Electrical Resistivity 

Comparison between lab measured and field measured p-wave velocities is shown in Table 

5.3. For the field measurements, average values for each of the three zones (loamy sand zone, clay 

loam, and dry compacted clay loam) are calculated from p-wave velocity tomograms from the 

November cyclic loading surveys. For the lab measurements, p-wave velocity and electrical 

resistivity values at OMC of 11.75% for loamy sand and 13% for clay loam are taken. For the dry 

compacted clay loam, values at 10% moisture content are taken.  
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Table 5.3: Comparison between laboratory and field measured p-wave velocities. 

Soil type 

Field 

measured  

p-wave 

velocity (m/s) 

Lab 

measured  

p-wave 

velocity 

(m/s) 

% change from field  

to lab measurements 

Loamy sand 200 426 113 

Clay loam 281 955 240 

Dry compacted clay loam  195 855 338 

 

Laboratory measured p-wave velocities for the loamy sand, clay loam, and dry compacted 

clay loam are significantly higher than values obtained from the field measurements (tomograms). 

This could be due to the difference in the state of stress between the in situ (field) and lab 

measurements. P-wave seismic velocity increases with increasing effective confining pressure 

(Christensen et al., 1985, Prasad et al., 1997, Lokajicek et al, 2015). While the field soil is confined 

by overburden pressure, the lab soil is confined by the acrylic mold. The effective pressure, which 

is the difference between confining pressure and pore pressure, could be higher in the lab soil 

leading to higher p-wave velocity. 

Another possible reason for the significant difference in p-wave velocity is the difference 

in frequency of the seismic waves. In the field measurements, a sledgehammer is used to generate 

a seismic wave of less than 100 Hz. For the lab measurements, a half cycle pulse of 3 kHz is used. 

Due to the high frequency of the source wave, the soil does not have enough time to relax and 

effectively becomes more stiff leading to a higher p-wave velocity. 

Comparison between lab measured and field measured electrical resistivity is shown in 

Table 5.4. The variations in the field and laboratory measured electrical resistivity values could be 

associated with multiple soil property differences in field and lab measurements. Differences in 

degrees of saturation, temperature, porosity, connectivity of pores, and pore size distribution could 
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cause variations in electrical resistivity (Samouëlian et al., 2005). Although the laboratory and 

field compaction are made with the same compaction effort, maintaining similar porosity, 

connectivity of pores, and pore size distribution is difficult.  

Using models such as Archie’s laws and Waxman-Smits models, saturation and porosity 

values calculated from laboratory electrical resistivity measurements can be used to calculate the 

changes in electrical resistivity associated with longer wetting time. An example of such an 

application was shown in the cross-plot analysis targeting the loamy sand using preliminary 

measurements.   

Table 5.4: Comparison between laboratory and field measured electrical resistivity. 

Soil type 

Field measured  

ele. resistivity 

(Ohm-m) 

Lab 

measured  

ele. resistivity 

(Ohm-m) 

% change from field  

to lab measurements 

Loamy sand 42 62 48 

Clay loam 17 9.8 -42 

Dry compacted clay loam  13 13 0 

 

Therefore, in order to utilize laboratory measurements for determining cross-plot 

boundaries, further study is required to represent field conditions in the lab. This is especially 

important in p-wave velocity measurements. In addition to field compaction effort and moisture 

content, important factors, such as level of confining stress, seismic wave frequency, and 

temperature, should be well represented in the lab.    

5.4 Seismic Velocity and Electrical Resistivity Laboratory Measurements using 

Synthetic Soils 
 

In this section, results from seismic velocity and electrical resistivity laboratory 

measurements on different soil types based on the USDA soil texture triangle are presented. The 
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objective of the study is to examine if seismic velocity and electrical resistivity laboratory 

measurements can differentiate between three groups of soil types on the USDA soil texture 

triangle. The three groups of soils are based on regions of recommended and not recommended 

soil types for earthen dam construction.   

5.4.1 Suitable soil types for earthen dam and levee constructions  

When constructing dams and levees, the proximity and accessibility of material are the 

controlling factors in the decision of the soil type. Except for a few soil types, almost any soil can 

be used for the construction of levees and earthen dams. The US Army Corps of Engineers manual 

on the design and construction of levees states that any type of soil except very wet, fine-grained 

or highly organic soil can be used for the construction of levees (USACE EM 1110-2-1913, 2000). 

The general design and construction considerations for earth and rock-fill dams (USACE EM 

1110-2-2300, 2004) states that soils with a wide grain size distribution (well graded) are preferable 

as long as they are insoluble and inorganic. It also states that rock flours and clays with liquid 

limits above 80 should not be used for earth-fill dams.  

According to the United States Society on Dams (USSD) (2011), broadly (well) graded 

soil types that are not entirely fine grained or entirely coarse-grained are recommended for earthen 

dams. In the United States, well-graded soils with a minimum 20% and a maximum of 71% passing 

the No. 200 sieve (0.074mm sieve opening) are used for embankment dams.   

Hanson et al., (2005) studied internal erosion and impact of erosion resistance by 

constructing two model embankment dams. The two model dams were constructed using two 

different soil types. Dam 1 was constructed with sandy loam (64% sand, 7% clay, and 29% silt) 

while Dam 2 was constructed using loam (25% sand, 26% clay, and 49% silt). The study showed 

that Dam 2 was more erosion resistant than Dam 1.  
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In general, using soil types with too much sand or too much fine is not suitable for earthen 

dam and levee construction. Soils with a wide range of grain size are less susceptible to piping, 

erosion, and seepage (USACE EM 1110-2-2300).  

Seismic velocity and electrical resistivity laboratory measurements were conducted on 

different soil types based on the USDA soil texture triangle shown in Figure 5.19. This 

classification is based on three soil particle sizes (sand, clay, and silt). For a given soil mass, the 

soil texture classification is based on the weight of a given particle mass of the overall soil mass. 

These percentages by mass are measured using soil samples dried slightly above 100 oC (Moyes, 

2014).   

 

Figure 5.19: USDA soil texture triangle (https://www.nrcs.usda.gov). 

Based on the United States Society on Dams (USSD), a well-graded dam with a minimum 

of 20% and a maximum of 71% soil passing the No. 200 sieve is recommended. The No. 200 sieve 

divides sands from silts and clays. Therefore, a minimum of 20% silt and clay means a maximum 

of 80% sand, and a maximum of 71% silt and clay means a minimum of 29% sand is recommended 

for earthen dams. Figure 5.20 shows the region of recommended soil types for earthen dam 
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construction on the USDA soil texture triangle. The figure shows there are multiple soil types both 

within and outside the recommended range.  

 

Figure 5.20: Regions of recommended soil types for earthen dam construction 

(https://www.nrcs.usda.gov). 

5.4.2 Laboratory measurements on synthetic soil samples 

To evaluate if laboratory seismic velocity and electrical resistivity measurements can 

differentiate between the three regions in Figure 5.20, measurements were conducted in the lab 

using different soil types. The different soil types (samples) used for the lab measurements are 

shown in Table 5.5. The soil type classification is based on the USDA soil texture triangle. 

Synthetic soil samples were prepared in the laboratory using sand, silt, and clay minerals (kaolinite 

and bentonite).  The clay fraction in all the soil samples was 90% kaolinite and 10% bentonite by 

mass of clay. These values are chosen to match the kaolinite and bentonite percentage fraction in 

the Stillwater clay loam. It should be noted that the objective of this study is not to differentiate 

between the ten soil samples in Table 5.5, but the three color-coded regions in Figure 5.20. 



87 
 

Table 5.5: Soil types (samples) for lab measurement. 

Sample Soil type Sand (%) Silt (%) Clay (%) Remark 

1 Sandy clay loam 60 10 30 

Too much sand 
2 Sandy clay 50 10 40 

3 Sandy loam 75 10 15 

4 Loamy sand 85 10 5 

5 Loam 30 45 25 Recommended 

soil type 6 Clay loam 35 30 35 

7 Clay 20 10 70 

Too much fine 
8 Silty clay loam 10 55 35 

9 Silty clay 10 45 45 

10 Silty loam 10 75 15 

 

The p-wave velocity and electrical resistivity scatter plot with the ten soil samples is shown 

in Figure 5.21. The samples are color-coded to match the three groups in Figure 5.20. For each 

soil type, seismic velocity and electrical resistivity values at optimum moisture content are 

measured in the laboratory.  Except for one data point with high resistivity, all three groups are 

between electrical resistivity of 10 – 25 Ohm-m. P-wave velocity has a wider range of 420 – 680 

m/s. There is no clear differentiation between the three zones on the p-wave velocity versus 

electrical resistivity scatter plot. 
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Figure 5.21: P-wave velocity vs resistivity scatter plot for the ten soil samples. 

 

An s-wave velocity and electrical resistivity scatter plot is shown in Figure 5.22. S-wave 

velocity ranges from 200 m/s to 340 m/s with no clear distinction between the three soil groups. 

 
 

Figure 5.22: S-wave velocity vs resistivity scatter plot for the ten soil samples. 
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Overall, laboratory seismic velocity and electrical resistivity measurements using synthetic 

soil samples cannot clearly differentiate soil types recommended for dam construction based on 

the USDA soil classification.  

5.5  Summary 
 

Cross-plot analysis using preliminary measurements on clay loam leads to a conservative 

constraint (high degree of safety) where most of the dam is classified as probably compromised. 

Preliminary field measurement on the loamy sand does not account for wetting associated with 

longer loading time. In order to target saturated loamy sand, a reduction in the electrical resistivity 

of the loamy sand from the preliminary value should be determined with the help of laboratory 

measurements. By combining saturation adjusted preliminary measurements on the loamy sand 

and preliminary measurements on the clay loam, cross-plot boundaries based on a factor of safety 

and on how tightly the saturated loamy zone is targeted can be chosen. 

The preliminary electrical resistivity value of the dry compacted clay loam is high and does 

not place the field measured dry compacted clay into the compromised quadrant. This is because 

the field measurements were conducted after the dry compacted clay loan was affected by wetting. 

Therefore, the drop in the preliminary electrical resistivity associated with wetting should be 

determined for the dry compacted clay.  

Laboratory measured p-wave velocities for the loamy sand, clay loam, and dry compacted 

clay loam, are significantly higher than values obtained from the field measurements (tomograms). 

This could be due to differences in confining stress and seismic wave frequency between the 

laboratory and field measurements. Differences in electrical resistivity between laboratory and 

field measured values is smaller compared to differences in p-wave velocity. The variations in 
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electrical resistivity could be associated with differences in degree of saturation, temperature, 

porosity, connectivity of pores, and pore size distribution. 

For better application of cross-plot analysis, an improved identification of compromised 

zones in their actual (field) geotechnical state is important. Preliminary and laboratory 

measurements fail to capture the field stress state of both compromised and safe zones. In addition 

to that, differences in the frequencies of field and laboratory seismic waves can lead to differences 

in p-wave velocity results. For cross-plot analysis on actual dams and levees, where preliminary 

measurement is not usually available, geophysical field measurements and theoretical models 

could be used. 

Using synthetic soil samples, seismic velocity and electrical resistivity laboratory 

measurements were conducted on three groups of soil types based on their suitability for dam 

construction. Results from scatter plot analysis showed that laboratory seismic and electrical 

resistivity measurements could not clearly separate between the three groups of soils. This could 

be due to the general overlap of geophysical values in soils. When using synthetic soil samples to 

represent actual soil samples, effects of rarely considered factors, such as iron oxide, clay 

mineralogy, and organic content, on the geotechnical and geophysical properties should be 

examined. 
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CHAPTER 6 

6.  APPLICATION OF EXTERNAL PHYSICAL CONSTRAINTS USING 

GEOPHYSICAL SURVEYS AND THEORETICAL MODELS AT FRANCIS LEVEE 

SITE * 

 

6.1  Introduction 
 

In Chapter 5, one important observation derived from the preliminary and laboratory 

geophysical measurements on the Stillwater dam was that these measurements fail to capture the 

confining field stress condition. Therefore, theoretical models that correctly represent the field 

state of possible compromised zones could be used to identify similar locations within the dam or 

levee. 

In Chapter 6, a new method of establishing cross-plot analysis constraints using external 

physical constraints derived from geophysical surveys and theoretical models is presented. The 

method is applied to identify locations of preferential flow paths through the subsurface of the 

Francis levee site that might have led to the formations of the three sand boils. 

6.2 Introduction to Francis Levee Site  

The 2011 flood report by the Mississippi Levee Board identified as many as twelve areas 

associated with seepage within the state of Mississippi (Nimrod, 2011). The Francis Levee site is 

one of the locations affected by the flood.  

 

 A book section on this study is currently under peer-review. Wodajo, L.T., Hickey, C.J., Brackett, T.C., 

“Application of Seismic Refraction and Electrical Resistivity Cross-plot Analysis: A Case Study at Francis Levee 

Site”, Levee and Dams: Advances in Geophysical Monitoring and Characterization, Springer.  
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Figure 6.1: a) Francis levee site (34° 5'9.48"N, 90°51'52.56"W) located 0.8 km west of Francis 

(Google Earth, 2015), b) aerial photography taken during mitigation of the levee (Google Earth, 

2013).  

During the 2011 flood event, three main sand boils were observed and mitigated by the 

construction of sandbag berms (Nimrod, 2011). After the first sand boil (green dot on Figure 6.2)   

was mitigated, two more sand boils (red dots on Figure 6.2) surfaced approximately 90 m landward 

in the field. After the initial mitigation, the US Army Corps of Engineers (USACE) extended the 

berm of the levee and constructed 16 relief wells.  

 

Figure 6.2: a) Location of the three sand boils (Nimrod, 2011), and b) mitigation of sand boil 

with sand bags (Nimrod, 2011).  
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The Francis Levee site is located in the Mississippi River flood plain, which is composed 

of Holocene and Pleistocene-aged meander deposits formed by the migration of the Mississippi 

River across its floodplain. The fluvial depositional environments include point bars, channel-fill 

deposits, natural levees and back swamp deposits (Saucier, 1994). Saucier (1994) notes that the 

convex portion of meander bends typically host point bar deposits near the channel with 

overbank/back swamp deposits occurring further away. As the distance from the meander 

increases, it is expected that deposits will decrease in grain size (Brackett, 2012). The three sand 

boil formations at the Francis Levee Site fall within an old channel or an oxbow as shown in Figure 

6.3. The different colors in Figure 6.3a) indicate the stage of the river at the time. The broken blue 

lines indicate meander belt around the Francis Levee site.  

 

Figure 6.3: a) Ancient courses of the Mississippi River reconstructed from multiple aerial 

photographs (Fisk, 1944), b) relative location of the sand boils (red dots) and meander belt edges 

(broken white line) (Google Earth, 2015). 

Cross section A-A’ in Figure 6.2 indicates that the levee is underlain by a clay-rich 

overburden averaging 3m thick (Figure 6.4). Below the clay overburden, the sediment coarsens 

into silt, and eventually a thick sand unit, which is assigned to the permeable substratum (Brackett, 

2012). A similar cross section is observed on the waterside of the levee with a sand layer 



94 
 

connecting the waterside to the landside. With adequate water pressure, water can flow from the 

waterside to the landside through the permeable sand substratum.  

 

Figure 6.4: Cross section A-A’ (Figure 6.2) shows a pinching-out of the silt and silty sand to the 

north of the site, yielding a direct sand to clay contact (Brackett, 2012). 

A possible model for the sand boil formations is preferential flow through the coarser 

grained sands that filled an old oxbow (Figure 6.5). This coarse-grained high permeability sand 

layer acts as a flow channel for sub-surface seepage connecting the waterside to the landside. High 

water level on the waterside due to flood events generates enough hydraulic head to initiate 

seepage. This seepage then appears on the surface as a sand boil where the upper confining clay 

layer is the weakest.   

 

Figure 6.5: Possible model for sand boil formation at Francis Levee Site. 
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The objective of this field study is to implement a method of cross-plot analysis using two 

geophysical methods, seismic refraction tomography (SRT) and electrical resistivity tomography 

(ERT), in order to identify locations of preferential flow paths through the subsurface of the Francis 

levee that might have led to the formations of the three sand boils. A method of using theoretical 

models, Archie’s first law, and effective fluid velocity model to determine the seismic velocity 

and electrical resistivity bounds of the cross-plot is presented.  

6.3  Study Area and Survey Parameters  
 

Three locations were selected to conduct both seismic and electrical resistivity 

measurements. Survey line 1 is on the waterside of the levee, survey line 2 is on the berm of the 

levee, and survey line 3 is on the landside of the levee between the first sand boil and the two sets 

of sand boils. Each survey line is 478 m long and starts at the northern end and progresses 

southward parallel to the levee. Figure 6.6 shows the location of the three survey lines and the sand 

boils.  

 

Figure 6.6: Locations of p-wave seismic refraction and electrical resistivity survey lines. The 

arrows on the lines indicate direction of surveys. 
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For the p-wave seismic refraction surveys, the whole length of each survey line is covered 

using a 24-geophone roll-along. Shot records were collected at 1 m offset from the first and last 

geophones and in between all geophones. For electrical resistivity surveys, the whole length of 

each survey line is covered using a 56-electrode roll along. Additional survey parameters are 

summarized in Table 6.1. 

Table 6.1: Seismic refraction and electrical resistivity survey parameters used at Francis Levee 

Site. 

Seismic refraction 

Number of geophones 48 10Hz vertical component  

Geophone spacing 2 m 

sample interval 0.125 msec 

record length 2 sec 

Electrical Resistivity  

Number of electrodes 112   

electrode spacing 1 m 

Survey configuration Dipole-dipole   

 

RayfractTM software (Intelligent Resources, 2018) is used for the inversion of all seismic 

refraction data. SurferTM  imaging software (Golden Software, 2018) is used to build the 

tomograms after processing. EarthImager2DTM inversion software (Advanced Geosciences, 2018) 

is used for the inversion and imaging of all the electrical resistivity data.  

A sample of p-wave seismic refraction end shot gather on survey line 1 (waterside 0m – 

47m) is shown in Figure 6.7. The red line indicates the first arrival picks for the shot gather. A 

sample of the measured apparent resistivity pseudosection for survey line 3 (landside 0m – 167m) 

is shown in Figure 6.8.  
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Figure 6.7: P-wave seismic refraction end shot gather at Francis Levee site (Line 1, waterside, 

0m – 47m). 

 

Figure 6.8: Measured apparent resistivity pseudosection for Francis Levee site survey line 3 

(landside 0m – 167m). 

6.4  Survey Result and Analysis   
 

After the completion of all the seismic refraction and electrical resistivity surveys, seismic 

velocity and electrical resistivity tomograms are produced. Electrical resistivity survey on the berm 

(Line 2) was not usable due to poor data quality. A layer of sand was placed on the berm during 

the rehabilitation of the dam. Sand has high electrical resistivity, which leads to high contact 

resistivity at the electrodes hindering the transmission of electric current into the ground. 

Therefore, cross-plot analysis was only conducted for surveys on the waterside (line 1) and on the 

landside (line 3). 
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6.4.1 Waterside (Line 1) 

The electrical resistivity tomograms for line 1 (waterside) are shown in Figure 6.9.  

Available borehole information is shown on the tomograms to aid with interpretation. Based on 

borehole data, all eleven high resistivity anomalies (E1-E11) indicated by the broken line circles 

on Figure 6.9 are located in the sand zone. Ground water level (GWL) is at 4.7 m depth indicating 

that the sand zone is saturated.  

A possible seepage zone has high permeability. The permeability of soil depends on 

porosity and grain size distribution. High permeability corresponds to high porosity, which leads 

to low p-wave velocity. High permeability also implies coarse soil or low clay content which leads 

to high resistivity.  

 

Figure 6.9: Line 1 (waterside) electrical resistivity tomogram, a) 0m - 220m distance, b) 168m – 

388m distance, and c) 336m – 446m distance.  

 

Therefore, in order to reduce the number of anomalies in the ERT tomograms, the next step 

is to identify locations of low-velocity anomalies in the seismic refraction tomograms that are 
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collocated with high resistivity anomalies. The p-wave seismic velocity tomograms for line 1 

(waterside) are shown in Figure 6.10. Six seismic anomalies (S1 – S6) with low p-wave velocities, 

all located in the sand zone, are identified having low p-wave velocity compared to their 

background.  

 

Figure 6.10:  Line 1 (waterside) p-wave tomogram, a) 0m - 96m distance, b) 48m – 144m 

distance, c) 240m – 336m distance, and d) 336m – 432m. 

6.4.2 Identification of True Compromised Zones Using Theoretical Models  

In order to identify true compromised zones out of the six possibilities shown in Figure 

6.10, an effective fluid velocity model (Eq. 6.1a) and (Eq. 6.1b), is used to model the seismic 

velocity of the sand zone and to calculate porosity (ϕ velocity) from p-wave velocity tomograms.  

                Ksat = (Vp
2)[(1 − ϕvelocity)ρo + (ϕvelocity)ρw]                                                          6.1(𝑎) 
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Ksat =
(Ks ∙ Kw)

(1 − ϕ𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦)Kw + (ϕ𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦)Ks

                                                                  6.1(𝑏) 

where Ksat is the saturated bulk modulus of the soil, Ks is the sand grain bulk modulus (36.6 GPa), 

Kw is the bulk modulus of water (2.20 GPa), Vp is p-wave velocity (m/s), ρw is density of water 

(1000 Kg/m3), ρs is the sand grain density (2650 Kg/m3), and  ϕ𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦  is porosity calculated from 

p-wave velocity. Since average p-wave velocity (Vp) can be obtained from the tomograms in Figure 

6.10, porosity (ϕ𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦) for each of the six seismic anomalies can be calculated by equating Eqs. 

6.1a and 6.1b. 

Archie’s first law for a fully saturated clean sand, 

𝜌o = 𝜌w ∙ ϕ𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑖𝑡𝑦
−𝑚 ,                                                                  (6.2)                          

is used to model the electrical resistivity of a fully saturated clean sand and to calculate porosity 

(ϕ resistivity) where 𝜌o is the bulk resistivity, 𝜌w is the resistivity of the pore fluid, ϕ𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑖𝑡𝑦 is 

porosity calculated from electrical resistivity, and cementation factor (m) is taken as 1.8 for sand. 

From the seismic refraction tomogram (Figure 6.10) and electrical resistivity tomograms 

(Figure 6.9), the sand zone (excluding the anomalies) has an average p-wave velocity of 1750 m/s 

and an average electrical resistivity of 415 Ohm-m. Porosity of the sand zone is determined by 

using Eq. 6.1 and the average p-wave velocity of the sand zone. The average resistivity of the sand 

zone is then used to determine the resistivity of the pore fluid (𝜌w) using Eq. 6.2. Resistivity of the 

pore fluid (𝜌w) is assumed to remain constant and porosity (ϕ𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑖𝑡𝑦) for each of the six seismic 

anomalies can be calculated using Eq. 6.2. Once the porosities of the six anomalies are calculated 

using the two models, their consistency is compared as shown in Table 6.2. Seismic anomaly 5 

(S5), located 18 m to 27 m below the surface, has both calculated porosities within an acceptable 
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range (< 0.5) and is the most consistent between the two models (Table 6.2). Therefore, seismic 

anomaly 5 (S5) is considered an area most probably associated with a seepage path.  

Table 6.2: Average p-wave velocity and electrical resistivity values for the six anomalies on the 

waterside, summary of values and consistency in the calculated porosity of the six anomalies. 

Anomalies 

(Figure 

6.10) 

Velocity 

(m/s) 

Resistivity 

(Ohm-m) 

ϕ
velocity 

(Effective 

fluid velocity 

model) 

ϕ
resistivity 

(Archie’s first 

law model) 

∆ϕ = ϕ
res

 – ϕ
vel

 

S1 1656 160 0.35 0.49 0.14 

S2 1597 133 0.40 0.54 0.14 

S3 1597 63 0.40 0.82 0.42 

S4 1646 15 0.35 1.82 1.47 

S5 1639 218 0.36 0.41 0.05 

S6 1430 29 0.71 1.26 0.55 

 

6.4.3 Landside (Line 3) 

The electrical resistivity tomograms for line 3 (landside) are shown in Figure 6.11.  The 

survey for Figure 6.11a was conducted in May whereas the survey for Figure 6.11b and 6.11c were 

conducted in December. Surveys conducted during wet season have lower electrical resistivity 

compared to surveys conducted in dry season. In Figure 6.11, the broken line boxes indicate 

locations of electrical resistivity anomalies (EA1 – EA8) with high resistivity all located in the 

sand zone. The red and blue lines at the top of the figures indicate areas of overlap. The small red 
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boxes at the top of the tomograms indicate the relative locations of the three sand boils. GWL 

represents ground water level from well readings. 

Anomaly EA2 in Figure 6.11b is not present in Figure 6.11a, which could be an effect of 

seasonal change. Even though the surveys for Figure 6.11b and 6.11c are conducted at the same 

time, they do not indicate anomaly EA7 in a similar fashion. In general, since anomaly EA3 and 

EA4 are collocated, ERT survey on line 3 (landside) indicates seven distinct anomalies where all 

the high resistivity anomalies are located in the sand zone.  

 

Figure 6.11: Electrical resistivity tomograms for line 3 (landside). a) 0m - 170m distance, b) 

112m – 222m distance, and c) 168m – 278m distance.  

 

The p-wave velocity tomogram for landside, Figure 6.12, indicates three distinct seismic 

anomalies (SA1, SA2, and SA3) having low p-wave velocity compared to their background and 

all located in the sand zone. The broken circles indicate locations of the seismic anomalies, all 
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located in the sand zone. The small red boxes at the top of the tomograms indicate the relative 

locations of the three sand boils.  

 

Figure 6.12: Line 3 (landside) p-wave velocity tomograms. a) 0m - 96m distance, b) 48m – 

144m distance, c) 96m – 192m distance, d) 144m – 240m distance, and e) 192m – 288m 

distance.  

The location of all the electrical resistivity anomalies (Figure 6.11) and all seismic velocity 

anomalies (Figure 6.12) are obtained from the tomograms and indicated across line 3 (landside) as 

shown in Figure 6.13. Seismic anomalies 2 and 3 have a corresponding anomaly in the ERT 

tomograms. Seismic anomaly 2 (SA2) is collocated with ERT anomaly 3 (EA3) and seismic 

anomaly 3 (SA3) is collocated with ERT anomaly 8 (EA8). Since seismic anomaly 1 (SA1) has 

no corresponding high resistivity anomaly, it can be omitted. 
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Figure 6.13: An aerial image of survey line 3 (landside) with locations of SRT and ERT 

anomalies indicated along the survey line. 

 

6.5  Cross-Plot Analysis  
 

In order to identify which of the remaining two pairs of collocated anomalies, ([SA2 and 

EA3] and [SA3 and EA8]), is associated with the formation of the sand boils, a cross-plot analysis 

based on the seismic velocity and electrical resistivity of anomaly number 5 (S5) on the waterside 

is performed. Cross-plot analysis using the seismic velocity (1639 m/s) and electrical resistivity 

(218 Ohm-m) values of anomaly number 5 (S5) (Table 6.2) on the waterside can be used to identify 

similar anomalous locations on the landside (line 3). This is a variant of standard cross-plot 

analysis where prior information is used as the boundary of the cross-plot analysis. 
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  The cross-plot analysis of seismic anomaly 2 (SA2) and electrical anomaly 3 (EA3) is 

shown in Figure 6.14. The blue boxes on both the ERT (Figure 6.14a) and SRT (Figure 6.14b) 

indicate a background area selected covering both anomalies (SA2 and EA3). The size (area) of 

the blue boxes are the same on both ERT and SRT tomograms. Each grid point in the ERT 

tomogram has a corresponding grid point in the SRT tomogram. All electrical resistivity and p-

wave velocity pairs within the blue boxes (background) are cross-plotted on a resistivity versus p-

wave velocity plot and shown with blue dots (Figure 6.14c). Similarly, the cross-plot for the SA2 

(black points) and EA3 (purple points) are shown in Figure 6.14c.   The cross-plot boundary values 

of 1639 m/s and 218 Ohm-m are shown with the red lines on the cross-plot Figure 6.14c. Analysis 

of the cross-plot indicates that neither SA2 nor EA3 fall in the compromised quadrant. 

 

Figure 6.14: a) Electrical resistivity tomograms for line 3 (landside) for 0m to170m distance, b) 

line 3 (landside) p-wave velocity tomograms for 96m to 192m distance,  c) cross-plot analysis 

using SA2 and EA3.  
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Similarly, the cross-plot analysis for SA3 and EA8 is shown in Figure 6.15c. A smaller 

area shown with a white box on both tomograms is picked by focusing on the high resistivity area 

within SA3 (black box). The cross-plot of this smaller area is shown by the light blue dots on the 

cross-plot (Figure 6.15c). The cross-plot analysis shows that the majority of SA3/EA8 falls within 

the compromised quadrant. This is an indication that the combination of SA3 and EA8 have similar 

features to anomaly number 5 (S5) on the waterside (Figure 6.10d) and could be associated with 

the formation of the three sand boils.  

 

Figure 6.15: a) Electrical resistivity tomograms for line 3 (landside) for 168m to 278m distance, 

b) line 3 (landside) p-wave velocity tomograms for 168m to 278m distance, c) cross-plot analysis 

using SA3 and EA8.  
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6.6  Possible Seepage Path  
 

In order to identify a possible seepage path, the location of the sand boils, the six anomalies 

on the waterside, and the three anomalies on the landside are plotted on an aerial image of Francis 

Levee Site as shown in Figure 6.16. A possible seepage line parallel to the northern edge the 

meander belt is drawn passing through anomaly S5 on the waterside and anomaly SA3/EA8 on 

the landside. The projection of this possible seepage path passes through the three sand boils. Flow 

path parallel to the meander is expected because the soil deposit inside the meander has low 

compaction and high permeability compared to the native ground. Water can flow through the 

highly permeable sand and gravely sand and cause sand boil formations at locations where the 

overburden clay layer is thin. The anomaly on the landside is located 18m to 27m below the surface 

whereas on the waterside the anomaly is between 15m to 21m below the surface. 

 

Figure 6.16: Possible seepage path (blue line) going parallel to the northern edge the meander 

belt and passing through anomaly S5 on the waterside and anomaly SA3/EA8 on the landside. 
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6.7  Summary   
 

Results from seismic refraction and electrical resistivity surveys conducted at Francis 

Levee Site indicated seven distinct anomalies that might be associated with seepage. For both 

surveys on the waterside and landside, applying the restriction that velocity of a seepage zone 

should be lower than the background velocity reduces the number of anomalies in the ERT 

tomograms.  

The location (depth from the surface) of the anomalies, associated with the proposed 

seepage paths, support the idea that the preferential flow occurs within the sand layer in the old 

oxbow. The location of the sand boils is along the proposed trajectory but most likely outcrops 

where the overlying impermeable clay layer is thin or the weakest. The predicted subsurface 

pathway is reasonable because it follows the contour of the meander and it passes through the 

location of the sand boils.  

The study showed that theoretical models, along with available geotechnical data, could be 

used to determine cross-plot analysis bounds. These bounds are based on field measured seismic 

and electrical resistivity values of anomalies that are identified in the individual geophysical 

methods.  

 

 

 

 

 



109 
 

 

 

CHAPTER 7 

7. CONCLUSIONS  
 

7.1  Summary 
 

Geophysical investigations such as seismic refraction tomography and electrical resistivity 

tomography can play an important role in the assessment of earthen dams and levees. Conducting 

integrity assessment of earthen dams and levees usually involves proceeding straight from visual 

inspection to invasive geotechnical drilling. However, geophysical methods can be used as 

subsurface inspection tools to guide engineers to locations that have a higher probability of being 

compromised. The advantages of geophysical surveys are high spatial subsurface sampling (both 

2D and 3D), non-invasive acquisition allowing for repetitive measurements to monitor changes 

over time, and less expense than traditional boring programs. The impediments of incorporating 

geophysical information are that the data is represented in terms of geophysical parameters not 

commonly used by engineers and that the natural heterogeneity of dams and levees can produce 

geophysical anomalies; as such, not all geophysical anomalies are indicative of compromised 

zones.  

The goal of this research was to advance geophysical measurement use for the preliminary 

investigation of dams and levees to guide the more invasive geotechnical investigations. This work 

focuses on ranking geophysical anomalies with respect to their likelihood of representing certain 

types of compromised zones within dams and levees.  One approach for establishing a better 

correlation between geophysical anomalies and compromised zones is to utilize data from two 
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geophysical methods. Cross-plot analysis is being developed to merge seismic velocity and 

electrical resistivity for identifying compromised zones.  Through cross-plot analysis, the 

subsurface conditions are divided into different integrity classes based upon geophysical values.   

This work advances the use of cross-plot analysis by better understanding the dividing boundaries 

of the integrity classes and developing additional external constraints.  

In conclusion, geophysical surveys are valuable subsurface inspection tools that should be 

adopted for the integrity investigation of earthen dams and levees. However, these methods are 

not a replacement for geotechnical surveys and drilling is required for the confirmation of true 

compromised zones.  

7.2  Contributions 
 

The use of cross-plot analysis for identifying two types of compromised zones within a 

dam was examined using a field experiment.  A quarter-size model embankment dam was 

constructed at Stillwater, OK, with two compromised zones placed within the dam. The two 

compromised zones were a dry compacted clay loam compacted at 10% moisture content, and a 

loamy sand zone. The remaining “safe” parts of the dam were constructed from clay loam 

compacted at OMC. This was the first time that such a study was conducted over a period of two 

years to monitor changes in geophysical properties associated with reservoir loading conditions, 

seasonal changes, internal erosion, and seepage.  

Based on conventional cross-plot analysis, compromised zones are generally associated 

with low p-wave velocity and high electrical resistivity. Results from this study showed that this 

generalization does not work for all cases. When a dry compacted clay loam becomes saturated, 

its electrical resistivity can drop below that of the dam body (i.e. the safe part). Therefore, in order 



111 
 

to identify dry compacted clay loam when it is saturated, a cross-plot analysis with a compromised 

quadrant of low p-wave and low electrical resistivity should be used.  Using the Stillwater field 

data, the loamy sand zone was detected using conventional cross-plot analysis and boundaries 

selected from field data.   

Different approaches for defining the cross-plot boundaries were investigated.  The 

selection of the cross-plot bounds for the Stillwater experiment were based on prior information 

on the location of the zones and visual inspection of the scatter plots of known safe and 

compromised locations.  However, even in this well-controlled experiment, proper adjustments 

were required to address depth accuracy issues in the seismic refraction tomography.  This shows 

that cross-plot analysis does not remedy problems that are inherent to seismic refraction and 

electrical resistivity surveys. If proper adjustment is not made to address depth accuracy issues of 

seismic refraction tomography, cross-plot analysis could provide misleading information due to 

mismatching locations of anomalies on seismic refraction and electrical resistivity tomograms.  

Lateral resolution of both seismic refraction and electrical resistivity surveys are better with 

the new approach of using a lateral plan view derived from cross-plot analysis maps. With the 

adaptation of this method, cross-plot analysis results can be easily georeferenced and presented on 

aerial maps to guide engineers on where to place boring locations along miles of levees. 

Cross-plot boundaries were also defined using p-wave velocity and electrical resistivity 

measurements during construction. On real dams and levees, this information could be obtained 

by conducting geophysical measurements and confirming compromised locations by drilling select 

anomalies.  The “safe” criteria could be established by estimating the average behavior of the dam 

in locations absent of anomalies. Cross-plot boundaries using measurements on clay loam (dam 

body) leads to a conservative constraint (high degree of safety). The predicted state of the dam will 
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have more anomalies and differentiating true anomalies from false alarms would require further 

investigation. Cross-plot boundaries based on compromised zones leads to a low factor of safety. 

The predicted condition of the dam will have fewer anomalies but with the possibility of missing 

compromised zones.  Cross-plot boundaries selected between these two cases are analogous to 

selecting an intermediate factor of safety and should be adopted when using preliminary 

geophysical values.  

Compromised zones will change as a function of time, and measurement at a particular 

time may not account for the wetting condition during a survey. Therefore, time-lapse 

measurement and laboratory measurements are required to establish the relationship between 

geophysical properties and wetting condition. Relationships between geophysical properties and 

wetting condition can be obtained by conducting laboratory measurements on soil samples at 

different moisture contents. 

An attempt was made to establish cross-plot boundaries based solely on laboratory 

experiments. A new laboratory apparatus for measuring the seismic velocity and electrical 

resistivity during a proctor compaction was designed and constructed.  Results from the laboratory 

measurements on the Stillwater loamy sand and clay loam showed that p-wave velocities were 

significantly higher than values obtained from the field measurements.  This discrepancy must be 

resolved before these values can be used for cross-plot boundaries.  However, laboratory 

measurements showed a significant change in p-wave velocity and electrical resistivity during the 

proctor compaction process.  This could be a future approach for studying geophysical properties 

of dams and levees. These types of studies would be valuable for establishing relationships 

between geophysical and engineering parameters. 
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Based on the time-lapse seismic refraction and electrical resistivity measurements that were 

conducted on the model embankment dam, a new approach of adding an external constraint further 

enhanced the location of the loamy sand. In this case, an additional restriction that electrical 

resistivity should decrease with increased loading time was used.   Additionally, results from this 

time lapse study showed that compromised zones such as dry compacted clay loam and loamy 

sand can be identified using geophysical anomalies for surveys conducted during certain time 

periods. This suggests that the timing of geophysical surveying can be important for enhancing the 

sensitivity of the measurements to certain compromised zones. For example, the preferred time to 

identify dry compacted clay loam is when the dam has been loaded for an extended amount of 

time. When the dam is not loaded, since the dry compacted clay and the dam body have the same 

mineralogy and only a 3% moisture content difference, electrical resistivity lacks the resolution to 

differentiate them. When the dam is loaded for an extended time, water seeps more easily into the 

dry compacted clay loam reducing its electrical resistivity. On the other hand, the best time to 

identify the loamy sand is when the dam is unloaded or at dry season, when there is an overall 

moisture decrease in the dam. Identifying loamy sand when it is wet becomes difficult because 

water infiltrates into the loamy sand and reduces its electrical resistivity close to the base line 

resistivity of the dam. These observations show that conducting time-lapse geophysical 

measurements is very important in reducing the chance of missing anomalies associated with 

compromised zones.  

Geophysical surveys were conducted at the Francis Levee site to assist in understanding 

the formation of sand boils at this location.  As expected, the geophysical data had numerous 

anomalies that could be associated with possible seepage paths.  The number of anomalies was 

reduced by using collocation of anomalies from seismic and electrical surveys.  To further reduce 
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the number of anomalies, a new approach based upon external physical constraints calculated from 

field geophysical data and theoretical models was developed. In this case, the constraint is based 

upon the predicted porosity using the seismic and electrical data. The anomaly with the most 

consistent porosity was considered to be characteristic of a compromised zone (in practice, a 

drilling investigation would be required to confirm the anomaly is associated with a compromised 

zone).  The geophysical data of this anomaly is then used to develop cross-plot boundaries to 

classify other anomalies with a low factor of safety. An application of this method at the Francis 

Levee site showed promising results in identifying paths that led to the formation of the sand boils.  

7.3 Recommendations for Further Research 
 

An attempt to use laboratory measured p-wave velocity and electrical resistivity 

measurements to establish cross-plot analysis boundaries was not successful. Similarly, laboratory 

measurements on synthetic soil samples failed to differentiate between different soil groups based 

on suitability for dam construction. Laboratory measured p-wave velocities were significantly 

higher than values obtained from the field measurements. Two possible reasons are the differences 

in seismic wave frequency between laboratory and field measurements and the variations in 

confining stress on laboratory compacted soil samples and field soil. Laboratory electrical 

resistivity measurements are relatively better than p-wave velocity values when compared to field 

measured values. More research on how to determine laboratory geophysical properties under field 

representative stress conditions is needed. One method of approaching this is to incorporate well-

established geotechnical measurements of confining stress, such as a tri-axial test, during seismic 

velocity and electrical resistivity laboratory measurements. Study of methods of converting 

seismic velocity results from high frequency laboratory measurements to more field representative 

low frequency measurements is also required. This might require conducting laboratory 
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measurements at different frequencies on the same soil sample and studying variations in measured 

velocities. Understanding these variations could be used to deduce p-wave velocity values for low 

frequency field measurements from high frequency laboratory measurements.  

Cross-plot analysis targeting the dry compacted clay loam zone did not clearly differentiate 

the zone from the clay loam compacted at OMC. Although the two zones were separated in p-

wave velocity, electrical resistivity lacked the resolution to differentiate the two zones. This could 

be due to similarity in the mineralogy of the two zones. Extended loading time might be required 

for the electrical resistivity of the dry compacted clay loam to drop much further than the resistivity 

of the dam body. Therefore, for identifying under compacted clay zones, study on the application 

of cross-plot analysis over a much longer loading time is required. Measurements on a loaded dam 

over a year could be required to provide good insight to changes in geophysical properties 

associated with extended loading time and seasonal changes.  

Time-lapse measurements on the Stillwater model embankment dam showed that a p-wave 

seismic refraction survey has a consistent problem of showing known features shallower than 

expected. Improving the depth accuracy of seismic refraction methods by incorporating known 

depth information in the data processing stage is also required. Improvement of existing processing 

software is required to allow users to input depth and geometry of known features in dams and 

levees. Examples of input data for real dams and levees include location and size of principal 

spillways (for dams), geometry from design (as-built) drawings, ground water elevation from well 

data, and borehole information. 
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