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ABSTRACT

Although many general purpose workloads have been accelerated on Graphical Pro-

cessing Units (GPUs) over the last decade, other applications whose runtime behaviors are

dynamic and irregular such as ones based on trees and graphs have suffered from serious

workload imbalance problem caused by architectural differences between CPU and GPU

processors. In this thesis, we propose a work-stealing framework to overcome such problems.

Our proposed framework allows CPU and GPU threads to steal tasks from each other as

well as within the same device by leveraging fine-grained data sharing and thread communi-

cation feature available on modern CPU-GPU heterogeneous systems. The implementation

of BFS application on the top of our framework achieves a minimum of 8.5% performance

improvement over the one with coarse-grained task partitioning scheme. It also achieves 16%

performance improvement on average over its non-stealing counterpart.
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CHAPTER 1

INTRODUCTION

Graphical Processing Units (GPUs) have been used to accelerate general purpose applica-

tions in diverse domains. One problem that programmers face when working with GPUs

is workload partitioning between CPU and GPU. In order to balance the workloads, the

programmers should know the amount of work that can be done on each processor before

launching the kernel. Thanks to APUs that have SVM feature, we present a framework that

dynamically distributes the tasks to processors based on their availability. Our framework

aims to balance workloads between CPU and GPU to maximize the hardware utilization.

In this context, a balance means allowing GPU to work more when GPU-friendly tasks are

present, and CPU to work more when CPU-friendly tasks are present. As a demonstration

of the problem, Che et al. [7] observed that in irregular GPGPU graph applications the

number of active threads varies a lot over the application runtime. This is due to the change

in the amount of work (number of tasks) in each stage of the program. Which in turn leads

to the underutilization of GPU SIMD hardware resources. Our proposed framework is able

to detect when the SIMD is underutilized and hence allows CPU to finish the remaining

work in such situation.

Work-stealing is a well known technique for dynamic workload balancing. It aims

at dynamically balancing work across different processors. Although the work-stealing is

very well studied in multi-threaded environments, it has not been sufficiently studied in

CPU-GPU heterogeneous environments [8]. In traditional GPU-powered computing, effi-
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cient collaboration between CPU and GPU has been very challenging due to the need for

data transfer from one unit to the other. In addition, concurrent access of shared data

was impossible. Recent features in heterogeneous systems such as a unified Shared Virtual

Memory (SVM) and system wide atomics made it possible for CPU and GPU to collaborate

efficiently, easily and cheaply through shared data object. SVM allows seamless data sharing

between CPU and GPU. This grants both CPU and GPU fine-grained accesses and modifi-

cations of data within SVM without the need of copying data back and forth. It also allows

effective communication between CPU and GPU through atomic operations on shared data.

This enables CPU and GPU to work side by side without blocking each other.

One type of applications that can benefit from the proposed work-stealing framework

is a graph-traversal application. Due to the dynamic, irregular and imbalanced nature of their

behavior, static load balancing is not satisfactory. Different graphs have different properties

such as depth, density and vertex degree. All these properties affect the dynamic behavior

of workloads. Thus, this challenge makes work-stealing a good solution. This thesis makes

the following contributions.

• We leverage the recently introduced fine-grained data sharing and thread communica-

tion feature to implement a work-stealing and solve dynamic load imbalance problem

on CPU-GPU heterogeneous systems.

• We develop a work-stealing framework for GPGPU programmers to use for their ap-

plications.

• We study the impacts of work-stealing on the behavior of graph applications in depth,

using BFS as a case study.
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CHAPTER 2

BACKGROUND

This chapter presents an overview of the features in the current state-of-the-art heterogeneous

platforms that are important to create a work-stealing framework. We also discuss our target

benchmark application that we use to demonstrate the benefits of the proposed work-stealing

framework. Lastly, we briefly discuss the related works in the literature.

2.1 Fine-grained Data Sharing and Thread Communication on CPU-GPU Het-

erogeneous Platforms

In traditional GPU computing (i.e., OpenCL 1.x versions), explicit data transfer between

host and device is required due to their separate memory spaces. Also, concurrent modifi-

cation to data was not possible during kernel execution. In contrast, the fine-grained data

sharing feature introduced in recent GPU hardware and software (i.e., OpenCL 2.x) allows

for effective and smooth collaboration between CPU and GPU devices; Host CPU and de-

vice GPU can share the same virtual memory address space and work on pointer-based

data-structures without relaunching the kernel. Moreover, concurrent accesses to shared

data enables host and device to communicate easily and cheaply during kernel execution.

The fine-grained sharing and thread communication is supported by SVM, system-

wide atomics and fence operations introduced in recent OpenCL 2.x platforms. Figure 2.1

compares the difference between OpenCL 1.x and OpenCL 2.x memory models. In the

separate memory, in order for the host to read or write to data in a buffer that is in device
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memory, host needs to map the whole buffer into host address space and unmap it when the

read or the write is complete. In contrast, SVM allows seamless fine-grained data access and

modification. In a separate address space, data synchronization can not happen during kernel

execution, but in SVM, data can be synchronized during kernel execution using atomic and

fence operations. All of these make it possible for CPU and GPU to co-operate efficiently

and achieve best performance of both worlds.

2.1.1 Atomics and Memory Consistency

Memory consistency is guaranteed for SVM allocations [16]. System-wide atomic operations

are present to avoid data races during concurrent accesses. Data consistency and visibility

across different units depend on memory ordering and memory scope specified with the

atomic access or memory fence.

Memory ordering: Programmer can select from different memory orderings (re-

laxed, acquire, release, acquire release or sequentially consistent) to achieve the desired con-

sistency for the data accessed with an atomic operation. Atomic operations with sequential

consistency force their effects to be viewed in the same order by all units within the spec-

ified memory scope. By default sequential consistency applies to atomic operations, unless

another memory ordering is not explicitly specified by the programmer. This strict ordering

in some cases incurs a big overhead, as it imposes inflexibility on instruction scheduling.

In contrary, relaxed consistency does not force any ordering constraint, this is mainly used

with counters to be concurrently incremented. Acquire consistency is used for loads and

release is used for stores. Acquire and release are often used together to synchronize com-

munication through atomic variables; one unit updates a variable and uses release to make

it visible, other units need to use acquire in order to view the updated value. Aquire release

consistency does both at the same time, which is used in read-modify-write operations. The

acquire consistency is for getting the most recent value of the variable, after modifying the

value, the release is for making the new value visible for any unit that wants to acquire it

4



(a) Separate memory of CPU and GPU.

(b) Shared virtual memory.

Figure 2.1. Separate memory vs. Shared memory [16].
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later.

Memory scope defines which units can view the side effect of the atomic opera-

tion. To allow the visibility of side effects within work item, work group, device or across all

devices, memory scope work item, memory scope work group, memory scope device or mem-

ory scope all svm devices should be used respectively.

2.2 Irregular GPGPU Graph Applications

Figure 2.2. Number of tasks change over iterations

The irregularity and variation of graph structures make the utilization of GPGPU

for graph algorithms very challenging. Different graph properties such as number of nodes

and edges, graph density, vertex degree divergence and even the order at which the nodes

are traversed can affect the overall performance of the algorithm.

There are common problems among diverse graph algorithms that hurt their perfor-

mance on GPU [7]. One is load imbalance; work is unequally distributed among different

threads. For example, some vertices have higher degrees (i.e., number of adjacent nodes)

than others. This makes node exploration time variant and dependent on the node being

traversed. If one thread is assigned all the nodes with the highest degrees, and a second

thread is assigned all the ones with the lowest degrees, the second thread will complete its

work first and stay idle waiting for the first thread to finish. There is no way to know the

vertex degree prior to exploring it.
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Figure 2.3. Example of task imbalance in BFS.

Another common problem is that the amount of parallelism in one algorithm varies

dynamically across different iterations. The number of nodes to be traversed in each level of

a graph is unpredictable. Figure 2.2 shows the number of nodes traversed in every iteration

during BFS traversal. This makes it challenging to statically distribute work evenly between

and across devices.

We aim to tackle these problems using a work-stealing mechanism. By allowing

threads to steal tasks from each other, it offers an automatic way to dynamically balance

the workloads. In this thesis we implement Breadth First Search (BFS) graph traversal on

the top of our work-stealing framework to demonstrate the benefits.

2.2.1 Breadth First Search Algorithm

BFS is a well-known algorithm for graph traversal. In this thesis we implement the frontier

based top-down version of BFS [5]. It starts by putting a source node on the frontier queue,

then it explores adjacent nodes of each node on the frontier queue, and pushes the unvisited

nodes to another frontier for the next iteration. After the iteration is done, it swaps the

next iteration frontier with the current frontier and repeats the process. It stops only when

no new nodes are pushed to the next iteration frontier, indicating that all the nodes are

explored. It is illustrated in Algorithm 1.

7



Algorithm 1 BFS

Input: G = (V,E), source s
Output: Distance from s to other vertices
Data: CF : current iteration frontier, NF : next iteration frontier

1: for each vertex v in V do
2: dist[v] =∞, color[v] = WHITE
3: end for
4: dist[s] = 0, color[s] = BLACK, iteration = 1, CF = φ,NF = φ
5: CF .enqueue(s)
6: while CF 6= φ do
7: for each u in CF do
8: for each vertex v adjacent to u do
9: if color[v] == WHITE then
10: color[v] = BLACK,
11: cost[v] = iteration, NF .enqueue(v)
12: end if
13: end for
14: end for
15: swap(CF,NF ), NF = φ, iteration = iteration+ 1
16: end while

Workload Imbalance in BFS: Figure 2.3 shows how the order the vertices are

processed can affect the overall performance. Let’s say we are at level 2, where node 2 and

node 3 need to be explored by two separate workers, W1 and W2 respectively. Both of the

nodes have an edge connecting to node 4. If W2 visits node 4 first before W1 visits it, W2

must push node 4 as well as 5 and 6 to the next iteration frontier. W1 checks node 4 and

finds it was already visited and hence do not push anything. In contrast, if W1 reaches node

4 first, it will bear the cost of pushing it, while the W1 will only push nodes 5 and 6. This

is an example of dynamic imbalance that happens due to graph structure, which can not be

identified before execution.

2.3 Related Work

There are several efforts to solve the workload imbalance issue on GPUs [4], [6], [10], [26].

Chen et al. [10] introduced a dynamic-load balancing on GPU systems. At the time they

published the paper, there did not exist any of the current features that enables fine-grained
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collaboration between CPU and GPU. They invented a scheme using command events to

mimic locks and synchronization communication. Their queue based solution treats host as

master and device as slave, where host enqueues heterogeneous tasks concurrently to sin-

gle or multiple devices. In contrast, our scheme allows for CPU and GPU to collaborate,

and workload gets automatically balanced through work-stealing, instead of having an in-

termediate manager to balance the tasks. Arafat et al. [4] implemented a framework for

work-stealing between different CPU-GPU clusters in a distributed system. Although the

concept is similar, task stealing happens on a coarse grained level. In order to execute a task

on GPU, a new kernel is launched and data need to be transfered from the host to device

memory.

Work-stealing between CPU and GPU in a fine-grained sharing environment has not

been sufficiently studied in the literature. Che et al. in [8] are the first to study a work-

stealing in a heterogeneous environment with betweenness centrality as a case study.
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CHAPTER 3

DESIGN AND IMPLEMENTATION

In the proposed framework where we aim to balance workloads between CPU and GPU, we

treat a whole workgroup (i.e., 64 threads) as a GPU worker and each CPU parallel thread

as a CPU worker. Work is divided into tasks and assigned to workers in chunks. When a

GPU worker pops a chunk of tasks, every thread within that work group is mapped to one

task in the chunk.

3.1 Structure of Work-stealing

We created a work-stealing structure where all workers are initially assigned an equal amount

of work. Assigning work happens through queues; every worker has its own queue. Every

worker has access to its queue as well as other workers’ queues in a non-blocking fashion.

The queues are allocated in a buffer in the shared memory, as illustrated in Figure 3.1.

This buffer is divided by pointers, each of which points to the beginning of each queue.

Throughout an iteration, every worker starts by consuming the tasks in its queue. Once a

worker completes its tasks, it searches for other queues to see if they have any work left that

it can steal. If a worker finds a chunk of tasks available, it acquires this chunk and starts

working on it. A worker can return only when it has checked all other queues and made sure

there is no task left.

10



Figure 3.1. Illustration of tasks buffer.

3.2 Overall Flow

Figure 3.2 shows the overall flow of the proposed framework. The type of applications we are

interested in is the one whose work is executed in iterations (discussed further in Subsection

3.5.2). Executing tasks results in the creation of new tasks, and the program reaches the

final iteration when no more tasks are created. The main CPU thread is responsible for

management, synchronization, as well as task distribution on workers at the beginning of

every iteration. The main thread starts at step 1© by setting up the work, it then chunks

the work in step 2© and distributes it over different queues. At step 3© it launches both

GPU and CPU kernels, with the number of workers specified by the user. At this point, the

workers start executing the work. The main thread does not involve with work execution or

stealing. It waits at step 4© until all the workers finishes all the work in the queues. Once

the workers are done, they signal back to the main thread, which in turn checks if any new

tasks were created. The workers at this point would wait for a signal from the main thread

to announce either the beginning of another iteration or termination of the kernel. If new

tasks are created, the main thread will distribute the new tasks, and take care of any buffers

that need to be re-initialized. Otherwise, the main thread will skip to the step number 7©

11



Figure 3.2. Overall flow of the proposed work-stealing framework.

to tell workers to return, and then return the results.

3.3 Communication

Communication between the main thread and workers is done through a SVM array buffer

called doneFlags, where every worker has a corresponding element in the array and signals are

sent and received through it. Since sending and receiving signals happen concurrently, atomic

operations are used to ensure correctness for loading and storing buffer values. The values

of doneFlags are initialized with 0s. When a worker is done, it updates its corresponding

doneFlag value to 1. The main thread knows that all the workers are done when all the

12



doneFlags values are updated to 1. When the main thread wants to signal back to workers

to continue work, it resets the doneFlags to 0. And when it wants to announce termination,

it updates the doneFlags to 10.

GPU workgroup as a worker: In every workgroup there is only one thread (we

call it a master thread) that is responsible for communication with the main thread and

managing tasks from and into the queue.

3.4 Task Distribution

There is a single output queue where all workers push the new tasks to be executed in the

next iteration at the end of every iteration. This queue is allocated in SVM to be accessible to

all the workers. It is a lock-free queue, and tasks can only be pushed through its tail. During

synchronization between iterations, this queue becomes the input queue that the main thread

divides for workers to consume from. The main thread distributes the tasks by dividing that

queue into smaller sub-queues that act as workers’ queues. The queue is divided by indices

that point to the beginning of each worker’s queue. Before each iteration, the main queue

calculates the number of tasks to be assigned to every worker. It distributes task chunks

equally on the workers and assigns any remaining chunks to GPU workers first, while any

remaining number of tasks whose size is less than a chunk size is assigned to a CPU worker.

Task distribution happens by updating values of the indices named (queueStartingIndex ),

which denotes the location of each individual queue in the shared buffer, as well as updating

head and tail values for every queue. This technique saves the cost of copying data from the

big queue to individual queues. That is illustrated in Figure 3.1.

3.4.1 Workers, Queues and Operations

Workers’ individual queues are implemented as lock-free Double-Ended-Queue (DEQ) [13].

Each of those queues has a head and a tail to keep track of the tasks in the queue. Head and

tail variables reflects their offsets within the queue. The queue elements (i.e., tasks) can be
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(a) Case 1

(b) Case 2

Figure 3.3. Popping tasks different scenarios

accessed through both head and tail using atomic operations. In our implementation, there

are two main operations a worker can apply on a queue:

• Popping When a worker reserves tasks from its own queue, to process them.

• Stealing When a worker reserves tasks from another worker’s queue, to process them.

One reason we chose the DEQ is to enable “pop” from one end “steal” from the other

end of the queue. Task popping can only be done from the head while stealing can be done

from the tail. This means the tail can only be manipulated by the queue owner, while the

head can be manipulated by stealers as well as the owner. To reserve tasks, the head and tail

can only be accessed and modified through atomic operations. The worker who is trying to

reserve work (stealer/popper) needs to make sure that the work it is trying to reserve hasn’t

already been reserved by another worker during the process. In the upcoming subsection,

we will discuss how it is guaranteed with a lock free algorithm.

14



3.4.1.1 How popping and stealing work

Popping: When popping the tasks, the master thread in a WG does the following: It starts

by atomically reading the values of the head and tail. If the tail is at zero position, or head

and tail are at the same position, it means the queue is empty so it returns a failure. If the

head and tail are apart by a number that is not a multiple of chunk size, that means there

is a fraction of task chunk in the queue. Since stealing is only allowed by a whole chunk, it

is safe to reserve the chunk fraction by moving the tail backward by the number of tasks in

this fraction, while the tail value is updated with an atomic store. Since this is not a chunk

size, the worker should know how many tasks was it able to reserve. This is done through

the pointer nTasksToGrab, where its value gets updated with the number of tasks.

Otherwise, the worker attempts to reserve the work for its group by atomically moving

the tail’s position backward by a chunk size. After doing that, there are two possible cases

for the status of head and tail of the queue, illustrated in Figure 3.3.

Case 1: There is more than one available chunk of work in the queue. In this case,

the master thread will directly reserve the work for its group.

Case 2: There is only one chunk of work left in the queue. The master thread needs

to check whether a stealer has grabbed it during the process of moving the tail. It does that

by checking whether the tail position changed or not. If it was changed, then it means that

the work got stolen already. If it didn’t change, it means that the work is still available so

it goes to reserve it for its group. In either case, it needs to set back the head and the tail

back to the zero position.

Stealing: Stealing is similar to popping except that it happens from the head. When

a worker tries to steal work from another queue, it first reads the values of head and tail of

that queue. If the head and tail are at the same position or the tail’s value is less than the

head value, or the difference between the head and the tail is less than a chunk size, this

means there is no work to steal in this queue, so it returns a failure.

Otherwise, it attempts to move the head forward by an amount of chunk size. The
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attempt is done using atomic compare exchange to make sure the head value wasn’t updated

in the middle by the queue owner or any other worker. If the compare exchange succeeds, it

returns a success. Otherwise, the worker can return a failure, or it can keep retrying.

3.4.1.2 How task pushing works

When workers push new tasks to be consumed in the next iteration, they push it to the

output queue. In a GPU worker, rather than having all the threads push to the output queue

immediately, master thread handles pushing for its group. We use hierarchical queues similar

to the implementation in [18]. By having every thread in a workgroup count the number of

new nodes it needs to push, and performing prefix sum, leveraging the optimized workgroup

function work group scan exclusive add. After that, master thread reserves a corresponding

on the queue, and then every thread pushes the tasks it created to the designated location.

This helps to avoid contention on the output queue and hence serialize the accesses. During

the iteration, the threads in the work group push the tasks into a local array, then at the

end of the iteration, the master thread reserves space on the output queue, so that threads

in its group put the tasks on that queue.

3.5 Design Decisions

In this section, we discuss different design factors we took into consideration through the

design process of work-stealing.

3.5.1 Number of Workgroups and Workgroup Size

We launch the kernel with workgroup size of a wave-front (64 threads). Since all the threads

within a workgroup have to synchronize with the master thread, having more than one wave-

front in a group can lead to performance loss as it imposes less freedom in thread switching.

In Section 4.3, we vary the number of workgroups in our experiments and study their effects.
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(a) Tasks pushed to the next iteration queue.

(b) Tasks pushed to the same queue.

Figure 3.4. Types of dynamic task creation.
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3.5.2 Types of Dynamic Task Creation

The graph applications we target require the creation of new tasks during the kernel run,

which means, threads are creating more tasks to be executed. There are two types of tasks

as illustrated in Figure 3.4:

• Tasks that need to be executed in separate iterations: New tasks created by tasks in

this iteration will be executed in the next iteration after all the current tasks are done

(example: BFS nodes to be explored in the next level).

• Tasks that can be immediately executed.

The first type is of our interest in this thesis. The tasks should be pushed to a

global queue that is managed by CPU. After all the work in the current work queue is done,

CPU starts distributing the work on different workers, making that global queue as the new

work queue and the old work queue to be the new global queue. This allows for global

synchronization without the need for stopping and relaunching the kernel. We leave the

second type for future work. In both cases, pushing is handled by the master thread. The

master thread is responsible for computing prefix sum and passing back the location where

data needs to be pushed.
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CHAPTER 4

EXPERIMENT RESULTS

4.1 Experiments Setup

Environment

All the experiments are performed on real hardware using AMD Kaveri A10-7850K APU. It

has four CPU cores running at the frequency of 3.7GHz and 8 GPU Compute Units running

at 720 MHz. The test system runs Ubuntu 15.04 64-bit Operating System with main memory

of 16 GB. The code is written and compiled using AMD SDK 3.0. we run each benchmark

program 100 times after 10 warm-up runs.

Input Graphs

As input graphs for BFS traversal, we use real world maps from 9th DIMACS implementation

challenge [15] in addition to seven input graphs listed in Table 4.1.

4.2 Analysis

We started out our experiments by investigating whether or not stealing happens at all.

We tracked the number of tasks that are executed by the owners that they were originally

assigned, and the number of tasks that are stolen from both CPU and GPU sides. Figure

4.1 illustrates those numbers for BFS traversal of CAL input graph using one CPU worker

and 8 GPU workers. As expected, a non-trivial amount of stealing happened throughout the
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Graph Name #Nodes #Edges

NYR 264,346 733,846
BAY 321,270 800,172
COL 432,893 1,048,570
FLA 1,070,376 2,712,798
NW 1,207,945 2,840,208
NE 1,524,453 3,897,636

CAL 1,890,815 4,657,742

Table 4.1. A list of different maps used as input.

Figure 4.1. The number of tasks consumed as stolen or originally assigned throughout the
BFS traversal of CAL.

computation; 24% of the tasks were consumed by stealing. That demonstrates the imbalance

in workload as well as the existing opportunity to balance these loads. We also noticed that

the percentage of stealing from CPU side is 70% while steals from GPU side accounts for

only 30% of the total tasks stolen. This implies that a CPU worker is faster than a GPU

worker in this particular application.

4.3 Performance Evaluation

We test our framework with different setups to see their effect on the performance.
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Figure 4.2. Performance of GPU-only version with and without stealing normalized to CPU
performance.

4.3.1 GPU-only (Stealing vs. No stealing)

In order to understand the effect of work-stealing within GPU, we first run BFS with a

GPU-only version. In this version all the tasks are assigned to GPU workers only, and

a CPU worker is only allowed to process a number tasks that is less than a chunk size

every iteration. We run it two times, one with stealing enabled between GPU workers, and

the other without stealing. Figure 4.2 shows the normalized performance of the GPU only

versions when stealing within GPU is allowed (XG S ), and when it is not allowed (XG NS ),

where X is the number of GPU workers. The performance is normalized to CPU-only version

performance. Overall, the use of 8G only underutilized the GPU and hence it shows the

lowest performance among all cases. We observe that in the smallest two input graphs,

stealing degrades the performance, specially in case of using 32G. However, even without

stealing, GPU performance is 0.3x of the CPU-only performance. This is expected because

the opportunity for stealing is very low in those graphs, since the number of available tasks
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every iteration is barely equal, less than or slightly more than number tasks needed to

occupy all the workers (see Figure 4.3.) When stealing is enabled, workers don’t know when

all the queues are empty unless they check all the queues. When this overhead cost is not

compensated by the balance resulted from stealing, performance gets hurt. In bigger sized

graphs, stealing yields negligible improvement in 8G and 16G cases, while it yields trivial

degradation in 32G. This is also expected for this type of application with low arithmetic

intensity, as discussed in Section 4.2. The divergence in performance between GPU workers

is not as significant as the divergence in performance between CPU and GPU workers. Hence

the amount of stealing between GPU workers is not remarkable. Another evidence of the

divergence between CPU and GPU in performance is that the GPU-only version outperforms

the CPU-implementation only when the input graph is as big as CAL.

4.3.2 Threshold for Allowing GPU

As we observed in Section 4.3.1 when the number of tasks available is low, allowing GPU

to steal hurts the performance. In this experiment we put a threshold for allowing GPU

workers to consume tasks in an iteration. When the number of tasks in the iteration is at

least enough for each worker to have one task chunk in its queue, GPU is enabled. The

threshold is calculated by the equation:

threshold = NumberOfWorkers ∗ chunkSize

Figure 4.3 shows the number of tasks per iteration for all seven input graphs. It also

has guides for the threshold at which GPU will be enabled. The red guide is for 1C 8G while

the yellow is for 1C 16G, the green is for 2C 16G and the blue is for 2C 32G. The difference

in runtime before and after adding a threshold for different configurations is shown in Figure

4.4. In 1C 8G we used one CPU worker and eight GPU workers, while in 2C 16G we used

two CPU workers and 16 GPU workers. 1C 8G Thr and 2C 16G Thr are similar to 1C 8G
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(a) NYR (b) BAY

(c) COL (d) FLA

(e) NE (f) NW

(g) CAL

Figure 4.3. Number of tasks per iteration for different inputs and threshold guides (red for
1C 8G, yellow for 1C 16G, green for 2C 16G and blue for 2C 32G).

and 2C 16G respectively, the only difference is that GPU workers get tasks only when the

number of tasks is bigger than the threshold calculated by the equation.

The figure shows that putting a threshold results in a large performance gain in graphs

with small inputs (NYR and BAY). This large impact is because the number of iterations

that has tasks less than the threshold represent more than 50% of the total number of

iterations. In addition, the total number of tasks in those iterations is non-negligible. On

the other hand, applying the threshold in medium sized graphs (COL and FLA) results in
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Figure 4.4. Execution time of different number of workers with and without thresholds.

a slight performance improvement, due to the low ratio between the number of iterations

where the tasks were less than the threshold and the iterations where the number of tasks

were higher than the threshold. For larger sized graph where the iterations that has tasks

less than the threshold are very few, applying the threshold results in similar performance

to the one without it.

4.3.3 CPU-GPU (Stealing vs. No stealing)

In this experiment, we compare the performance of CPU-GPU work-stealing against no

stealing. Performance is normalized to CPU-only version performance. We eliminate the

performance numbers for 32G with NYR and BAY as their frontier size is always smaller

than the threshold in this case, and hence GPU is never used. Overall, using two CPU

workers and 16 GPU workers yields the best performance with stealing among other stealing

configurations and without stealing among other configurations. This might change when

we experiment on bigger sized graphs. Another observation is that, stealing always results

in either a better performance or similar performance in the worst case. The only case where

performance is degraded is in NYR graph is when using 1 CPU worker and 16 GPU workers

(degraded by 3%). As can be seen in Figure 4.3a, the number of iterations where GPU is

24



Figure 4.5. Performance of different number of workers with and without stealing normalized
to CPU performance

enabled in NYR is very low, also the opportunity for stealing is lower as the number of tasks

in those iterations are barely enough for assigning one chunk per worker.

One observation from this graph is that for the non-stealing cases, the performance

increases as the number of workers increases until it flats out. For the smallest sized graphs

(NYR and BAY) performance doubles up by using 16 GPU workers instead of 8, it improves

to 1.5x again by using 2 CPU workers instead of only one. This big improvement can be

explained as increasing the number of workers results in better utilization of the resources.

As can be seen, stealing also improves the performance in those two graphs, but bigger sized

graphs shows a different behavior in terms of improvement. In bigger sized graphs, stealing

with less number of workers can perform better than or at least similar to more number of

workers but without stealing. On average, stealing achieves performance improvement of

50%, 10%, 16% and 11% with 1C 8G, 1C 16G, 2C 16G and 2C 32G respectively.
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Figure 4.6. Performance of different number of workers with CPU-GPU stealing vs. CPU-
only stealing normalized to CPU performance.

4.3.4 CPU-side Stealing Only

Another approach to eliminate the overhead encountered when GPU workers attempt to

steal, is to disable GPU side stealing and allow only CPU side stealing. This is based on the

observation that tasks stolen by CPU side are much more than tasks from CPU side. This

might hold true for BFS application, but not necessarily for other graph based applications.

Figure 4.6 shows normalized performance of CPU side enabled stealing as well as CPU and

GPU enabled stealing while varying number of workers. Performance is normalized to CPU-

only version performance. All configurations has threshold for enabling GPU as described

in Section 4.3.2. We eliminate the performance numbers for 32G with NYR and BAY for

the same reason mentioned in subsection 4.3.3. In NYR, BAY and COL, GPU-stealing

consistently hurts the performance. In the other four graphs, it shows a mixed performance

behavior that varies between slightly better, similar and slightly worse.
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Figure 4.7. Execution time of fine-grained work-stealing and coarse-grained partitioning.

4.3.5 Work-stealing vs. Coarse-grained Task Partitioning

We compare the execution time of BFS on the top of our frame-work against the coarse-

grained task partitioning version. In this version implemented in CHAI benchmark [12]

partitioning happens at the beginning of every iteration, where either CPU or GPU is selected

to perform the traversal. The decision is based on a predefined threshold, if the number of

tasks is lower than that threshold, CPU is selected, otherwise, GPU is selected. Our version

shows performance improvement of 49% and 8.5% in NYR and BAY graphs respectively.

See Figure 4.7. This is because the coarse-grained method only aims at solving the variation

in parallelism issue, but it does not address the imbalance within each iteration.

4.3.6 Memory Ordering

As we described earlier in the background, by default, sequential consistency applies to

atomic operations unless the memory order is explicitly specified by the programmer. Se-

quential consistency might incur an overhead, as it leaves less freedom for instruction re-

ordering. In order to investigate the impact of memory ordering on our work-stealing perfor-

mance, we specify the appropriate memory ordering for each atomic operation accordingly.

For shared data that is concurrently accessed, we use acquire for atomic loads, release for

27



Figure 4.8. Execution time of appropriate and sequentially consistent memory orders.

stores and acquire release ordering for compare exchange operations. This maintains syn-

chronization but without imposing strict memory ordering on those atomic operation. We

run the traversal of all seven graphs with BFS on our framework, once with the appropriate

memory ordering and once with sequential consistency for all atomic operations. Results of

this experiment show execution time difference in NYR and BAY graphs by 8% and 5.5%

respectively. For the other five graphs, the experiment shows a difference that falls within the

margin of errors. Our explanation is that NYR and BAY have a higher number of iterations

than the other five graphs by at least 5x. When the number of iterations increases, the total

number of stealing attempts increases for the overall execution. This, in turn, increases the

number of atomic operations, and that is why having a more strict memory order can affect

the performance in those two graphs. (See Figure 4.8.)
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CHAPTER 5

CONCLUSION

We have demonstrated the design of work-stealing in a CPU-GPU heterogeneous environ-

ment to achieve dynamic load balancing for irregular applications. We motivated the need for

a work-stealing scheme by showing irregularity as a common characteristic of graph based

applications. We have shown the feasibility of work-stealing on the current fine-grained

sharing enabled heterogeneous CPU-GPU systems and the impossibility of such scheme

on traditional discrete CPU-GPU systems. We used BFS as a case study to demonstrate

the benefits and effects of work-stealing. We compared our scheme’s performance against

traditional coarse-grained task partitioning. Our scheme achieves on the minimum 8.5%

performance improvement over the traditional task partitioning scheme. We anticipate that

our proposed scheme can achieve beneficial results on other irregular algorithms as well. We

leave that as a future work.
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