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ABSTRACT

The first topic of this dissertation is independent domination. Let G = (V,E)

be a simple graph. The independent domination number i(G) is the minimum car-

dinality among all maximal independent sets of G. A graph is called subcubic when-

ever the maximum degree is at most three. In this paper, we will show that a

connected subcubic graph G of order n having minimum degree at least two satisfies

i(G) ≤ 3(n + 1)/7, providing a sharp upper bound for subcubic connected graphs

with minimum degree at least two.

The second topic is independent bondage. The independent bondage number

of a nonempty graph G, denoted bi(G), is the minimum cardinality among all sets

of edges B ⊆ E for which i(G − B) > i(B). We will calculate bi for paths, cycles,

complete graphs, and complete t-partite graphs in terms of the order of the graph.

We will provide an upper bound for any graph in terms of the degree sum of two

adjacent vertices and give an upper bound for trees.
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CHAPTER 1

INTRODUCTION

The topic of this dissertation involves graphs and their properties. Informally,

a graph is the mathematical tool we employ to analyze or model objects when there

is some type of binary relationship between the objects in question. Graph theory is

a modern branch of combinatorics which has many different applications. In recent

decades, graph theory has been established as an important area of research in the

field of mathematics. It has applications in many other areas including: computer

science, logic, physics, biology, and engineering.

1.1 Definitions

A graph G = (V,E) is an ordered pair where V is a finite set of points called

vertices and E is a collection of two element subsets of V called edges. To avoid

absurdity we also require that V 6= ∅. If V (G) = {v1, v2, . . . , vn} and {vi, vj} ∈ E(G),

then we usually denote this by letting e = vivj = vjvi ∈ E(G) instead of the more

cumbersome notation e = {vi, vj} ∈ E(G) and in this case we say that vi and vj are

adjacent. Here, we say that e and vi (or vj) are incident. A graph is called simple

provided it contains no loops, vv ∈ E(G) for some v ∈ V (G), or repeated edges (i.e.

if uv ∈ E(G) then for any other edge xy with x = u, y = v then xy = uv). Our focus

is on simple undirected graph so let G be a simple undirected graph with vertex set

V (G) and edge set E(G). The order of G is given by |V (G)| = n(G) = n and the

size is defined as |E(G)| = m(G) = m where | ∗ | denotes the number of elements in
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the set (i.e. the cardinality). It is common in literature to use the notation |G| for

the order of a graph and ||G|| for the size so we may sometimes use either of these

notations.

The neighborhood of a vertex v ∈ V (G) is the set of vertices adjacent

to v, denoted NG(v) or just N(v) , and the closed neighborhood of v is given

by N [v] = N(v) ∪ {v}. Thus, N(v) = {u ∈ V (G) : uv ∈ E(G)} and N(v) is

sometimes referred to as the open neighborhood of v. The degree of a vertex

v ∈ V is defined as d(v) = |N(v)|. The minimum degree of a graph G is given

by δ(G) = min{d(v) : v ∈ V } and the maximum degree of a graph G is given by

∆(G) = max{d(v) : v ∈ V }. A graph is r-regular provided every vertex has degree

r or when δ(G) = ∆(G) = r. A 3-regular graph is usually referred to as cubic graph

and a subcubic graph is any graph satisfying ∆(G) ≤ 3. For vertices of degree k

we define Sk = {v ∈ V : d(v) = k} and we also let nk = |Sk|.

For any natural number n ∈ N we let [n] = {1, 2, . . . , n}. For any real number

x ∈ R we define the ceiling function as the smallest integer greater than or equal

to x or

⌈x⌉ = min{z ∈ Z : z ≥ x}

and similarly we define the floor function as the largest integer smaller than or

equal to x or

⌊x⌋ = max{z ∈ Z : z ≤ x}.

A graph is G is complete provided any two distinct vertices of G are adjacent.

A graph G is bipartite if V (G) can be partitioned into two subsets X and Y called

partite sets, such that every edge of G joins a vertex of X and a vertex of Y .

Similarly, A graph G is t-partite provided V (G) can be partitioned into t subsets
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such that if xy ∈ E(G) then x and y are in different partite sets. Additionally, when

every two vertices in different partite sets are joined by an edge then G is called a

complete t-partite. If |Vi| = ni for 1 ≤ i ≤ t, then the complete t-partite graph

can be denoted K(n1, n2, . . . , nt).

Let G = (V,E) and G′ = (V ′, E ′) be graphs. We say that G′ is a subgraph

of G, denoted G′ ⊆ G, whenever V ′ ⊆ V and E ′ ⊆ E. Thus,

G′ ⊆ G ⇐⇒ V ′ ⊆ V and E ′ ⊆ E.

We say that a subgraph H ⊆ G is a spanning subgraph if in addition V ′ = V .

Two graphs G and H are equal provided V (G) = V (H) and E(G) = E(H) and

in this case we write G = H . Two graphs G and H are isomorphic if there is a

bijection φ : V (G) → V (H) such that

uv ∈ E(G) ⇐⇒ φ(u)φ(v) ∈ E(H).

and in this case we write G ∼= H . If G and H are not isomorphic we say they are

non-isomorphic and denote this by G ≇ H . For a subset S ⊆ V (G), the subgraph

induced by S, denoted by G[S], has vertex set S and edge set E(G[S]) = {uv ∈

E(G) : u, v ∈ S}. This is sometimes denoted as 〈S〉G or just 〈S〉.

Let G be a graph and let e be an edge of G. Then H = G \ e = G − e

is the graph obtained from G by removing the edge e. Thus, H = G − e is the

spanning subgraph of G whose edge set is E(H) = E(G − e) = E(G) − e and if G

has order n and size m, then |H| = n and ||H|| = m − 1. For any subset F ⊆ E,

G− F = (V,E \ F ) and G+ F = (V,E ∪ F ).

Likewise, for v ∈ V (G), the graph H = G − v is the graph obtained from
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G by deleting v and removing all edges incident with v. Thus, |H| = n − 1 and

||H|| = m − |N(v)|. For a subset X ⊆ V (G) the graph G − X is obtained by

removing the vertices of X and removing all the edges incident with any vertex from

X . Thus, the graph G − X is a subgraph of G induced by V (G) \ X or simply

G[V (G) \X ].

Finally, by G′ = G − X + uv = G \ X + uv we mean that we obtain G′ by

removing the vertex set X ⊆ V (G) and all vertices incident with each vertex in X

then adding the edge uv provided that uv /∈ E(G). Note that we may add or subtract

any finite number of edges or vertices when constructing new graphs from old ones.

So we could have a finite sequence of operations such as G′ = G− (X + u) + e1 + e2

and so forth where X + u1 = X ∪ {u1}.

For a subset S ⊆ V (G) we define the complement of S by Sc = V (G) \S =

{x : x ∈ V and x /∈ S} and similarly when F ⊆ E(G). Both of these are purely set

theoretical concepts and we only mention this as a reminder in an effort to create a

self-contained manuscript. Thus, we use the minus symbol for two different types of

operations. Namely, for set minus and as an operation on graphs (i.e. Sc = S \ V

and G \X). However, this is not ambiguous since the context is usually clear.

A maximal connected subgraph of G is called a component and we define

ω(G) as the number of components in G. Let U ⊆ V (G) and I, J be a partition of

U . Then, we define e(I, J) to be the number of edges between I and J .

A path P is a graph having vertex set V = {v1, v2, . . . , vk} and having edge

set E = {v1v2, v2v3, . . . , vk−1vk} where all the vi are distinct. The vertices v1 and

vk are called the ends or end vertices. A path on n vertices, denoted Pn, has

length m = n− 1 where the length is assumed to be the number of edges between

the end vertices of Pn. Thus, for any path Pn, on n vertices, we have |Pn| = n and
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||Pn|| = n − 1. We say the vertices v1 and vk are linked, joined, or connected

in G. A cycle is a graph with vertex set V = {v1, v2, . . . , vk} and edge set E =

{v1v2, v2v3, . . . , vk−1vk, vkv1} where each vi is distinct. A cycle on n vertices, denoted

Cn, is a connected 2-regular graph satisfying m = n. When there is a path joining

two vertices u and v we may refer to this as a (u, v) - path where the ordered pair

notation indicates that property of joining and is, in fact, an equivalence relation

on the vertex set V (G) [5]. Additionally, we say there is a (u,X)-path in H ⊆ G

provided there is a (u, x)-path in H for some x ∈ X where u ∈ V (H) ⊆ V (G) and

X ⊆ V (H).

A graph is said to be connected if any two vertices are connected by a path.

A graph is k-connected if |V | > k and G − S is connected for every S ⊆ V with

|S| < k and the connectivity, denoted κ(G), is the greatest integer k for which

G is k-connected. A vertex v ∈ V (G) is a cut-vertex of a connected graph G

provided G − v is no longer connected. Similarly, a cut-edge is an edge whose

removal increases the number of connected components of the graph. A block of a

graph G is a maximal connected subgraph without a cut vertex. An endblock of G

is a block containing exactly one cut vertex of G and we define ωB(G) as the number

of endblocks of G. For vertices u, v ∈ V , we define the distance between u and v,

denoted d(u, v), to be the shortest path connecting them. The diameter of a graph

G is the greatest distance between any two vertices in G. The girth of G, denoted

g(G), is the length of the shortest cycle.

For u, v ∈ V (G) we say that u and v are non-adjacent provided uv /∈ E(G).

An independent set of vertices in G is a set of pairwise non-adjacent vertices. A

independent set of vertices S of G is a maximal independent set provided S∪{u} is

not independent for any u ∈ V \ S or equivalently if for any u ∈ V \ S there is some
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v ∈ S such that uv ∈ E(G). For e, e′ ∈ E(G) with e 6= e′ we say that e and e′ are

non-adjacent provided they are not incident with a common vertex. That is, there

is no v ∈ V (G) such that e = uv ∈ E(G) and e′ = u′v ∈ E(G). A matching in

G is a set of pairwise nonadjacent (or independent) edges and a perfect matching

M ⊆ E(G) is a matching such that every vertex of G is incident with an edge of M .

A dominating set of G is a set of vertices D ⊆ V such that every vertex not

in D is adjacent to a vertex in D. Formally, this can be stated as (∀y ∈ V \D)(∃x ∈

D)[xy ∈ E(G)]. There are several equivalent definitions of a dominating set and we

give one of these below.

(∀y ∈ V \D)(∃x ∈ D)[xy ∈ E(G)] ⇐⇒ N [D] = V.

An independent dominating set of G is a set that is both independent and

dominating. The domination number of a graph G is the minimum cardinality of

a dominating set of vertices of the graph G and is usually denoted γ(G). Similarly,

the independent domination number of a graph G is the minimum cardinality

of an independent dominating set and is usually denoted i(G). We will sometimes

refer to a minimum independent dominating set by use of the acronym MIDS. A set

of vertices D ⊆ V is a non-dominating set of G provided there is some vertex not

in D that is non-adjacent to every vertex in D (i.e. the negation of dominating).

Sometimes we may also say not dominating when a set fails to dominate G.

The bondage number of a nonempty graph G, denoted b(G), is the min-

imum cardinality among all sets of edges B ⊆ E(G) for which γ(G − B) > γ(G).

Stated differently, the bondage number of a graph G is the minimum number of edges

whose removal renders every minimum dominating set of G a non-dominating set in
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the resulting spanning subgraph G − B. The independent bondage number of

a nonempty graph G, denoted bi(G), is the minimum cardinality among all sets of

edges B ⊆ E for which i(G−B) > i(G). Here, when we say a graph is nonempty we

mean that E(G) 6= ∅ which implies that n ≥ 2. There is a large class of variants for

the concept of domination and for many of these concepts removing edges has been

explored. The bibliography contains a list of just some of these results [1]. Further

notation and terminology may be found in [15].

1.2 Motivation and Historical perspective

In this brief section, we give a historical overview of domination and bondage

of graphs. Both areas of research, independent domination and independent bondage,

are derived from the original ideas of domination and bondage of graphs. Domination

is a modern branch of graph theory and there is essentially no published research

before 1962.

1.2.1 Domination

The general topic of domination has been studied quite extensively over the

years and more recently, the topic of independent domination became a topic of

interest to some researchers in the field of graph theory. Independent domination

has been studied quite thoroughly and a nice survey of some of these results may be

found in [12].

Much of the early development of graph theory originated from questions

about games of chance or recreational mathematics problems and is similar to de-

velopment in early probability [21]. In 1848, Max Bezzel a German chess composer

proposed the problem of how to place eight queens on a chessboard so that every

square on the board was reachable in one move by one of the queens and every
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queen’s position was also reachable by another queen (protected) [27]. This prob-

lem, known as the eight queens puzzle, can be formulated in terms of a graph [3].

This idea developed into a problem now known as the N Queens problem in modern

combinatorics which takes place on an N ×Nchessboard. More generally, the (m,n)

queens graph is a graph with mn vertices where each vertex represents a square of

an m× n chessboard and the edges represent one legal move by the queen in accor-

dance with the standard rules of chess. Later, in 1862, de Jaenisch [19] proposed a

problem concerning how to place the minimum number queens on a chessboard in

such a way that each square of the chessboard can be attacked (reached in one legal

move) by one of the queens and no queen may attack another queen (not protected).

This problem is equivalent to finding a minimum independent dominating set for the

queens graph.

Although the study of independent domination began from a question about

the minimum number of non-attacking queens required to cover a standard chess-

board (8 x 8) and domination began in a similar manner as the minimum number of

queens required to cover a standard chessboard, in more modern times, the idea has

become a useful tool in such areas as radar design, scheduling problems, networks,

artificial intelligence [25], surveillance algorithms, and search algorithms (e.g. DNA,

Amino acid, hueristics [14]). Domination and other similar parameters often provide

certain information about the graph which might be used in variety of applications.

In general, the problem of finding the independent domination number of a

graph can be very difficult. Independent domination is an extremal graph theory

problem where the graph invariant called the independent domination number of a

graph G, denoted i(G), is compared to other graph invariants such as order n (number

of vertices), size m (number of edges), minimum degree δ(G), maximum degree ∆(G),
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and girth g(G) (length of the shortest cycle). The independent domination number

of a graph may be defined as the minimum cardinality of maximal independent set

of the graph G. Alternatively, it may be defined as the minimum cardinality of an

independent dominating set of G. Most of the results that have been published have

focused on establishing the best upper bound for i(G) in terms of the parameters

listed above. Several results have been published which determine a bound for i(G)

in terms of order and minimum or maximum degree where the degree is not fixed

but allowed to vary. Thus, the bound is a relationship between several parameters,

e. g. i(G) ≤ f(n,m, δ,∆, g), as in the results given below.

1.2.2 Bondage

The background of bondage is somewhat convoluted since two groups of re-

searchers published the same result about trees independently. Bauer et. al. pub-

lished a result on trees and in this paper referred to vertices as points, edges as

lines, and bondage as domination line stability. Later Fink et al [9] published the

same theorem for trees as well as results for bondage of paths, cycles, trees, complete

graphs, and complete r-partite graphs. See [1] and [9] for more details and [16] for

an earlier survey of results of bondage and reinforcement.

If we know that some vertex v is in every dominating set, then we can remove

all the edges incident with v and the bondage number is easily found. However, most

graphs do not satisfy this property and the challenge becomes how to show that a

certain edge set renders every dominating set a non-dominating set.

Considering the effect of the addition or removal of one or more edges from

a graph is sometimes referred to as an alteration of the original graph [16]. Fur-

thermore, a new problem is easily constructed by asking what happens to certain
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parameters such as the domination number when we add or remove an edge. This

will often provide additional information about a graph that might be helpful in

certain applications. The concept of bondage was introduced in 1990 Fink et. al.

in [9]. The motivation for their idea was as follows (see [9] and [16]). Consider a

communication network of existing communication links between a fixed set of sites.

The problem is to find the smallest set of sites at which to place transmitters so that

every site without a transmitter is connected directly to a site that does. This small-

est set is a minimum dominating set of the graph where each site represents a vertex

and the relationship for the edges is two vertices share an edge if and only if the

two sites are connected by a direct communication link. Now, we can introduce the

concept of bondage in this application by examining the vulnerability of the network

under a link failure. Suppose that a malicious entity (saboteur) does not know at

which sites the transmitters are located but does know that such a site corresponds

to a minimum dominating set of the associated graph. What is the fewest number

of links that must be severed so that an additional transmitter is now required for

the network to function properly.

In the following section, we will introduce the concept of bondage and then

extend this idea to independent bondage. In this way, we can formulate new questions

about independent bondage that mirror the development of the original bondage

concept. This provides a variety of interesting problems to examine. Independent

bondage is a new concept and to the best of our knowledge no previous work has

been done on this topic.
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CHAPTER 2

INDEPENDENT DOMINATION

The concept of independent domination has been studied quite thoroughly

and a nice survey of these results may be found in [12]. Lam et. al. [20] established

an upper bound for the independent domination number of cubic graphs.

Theorem 1. If G is a connected cubic graph of order n, where n ≥ 8, then

i(G) ≤
2n

5
.

In addition, Henning et al. [17] established a bound for cubic bipartite graphs

having girth at least six (2014).

Theorem 2. If G is a cubic bipartite graph of order n and of girth at least six, then

i(G) ≤
4n

11
.

More recently, Henning et al. [18] established a new bound for connected

cubic graphs containing no subgraph isomorphic to K2,3.

Theorem 3. If G is a connected cubic graph of order n > 10 and G does not contain

a subgraph isomorphic to K2,3 , then

i(G) ≤
3n

8
.
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b b b b b b b b

b b b b b b b b

Figure 2.1: The Extremal Graph G when δ(G) = 1

In this chapter of the dissertation, we will establish an upper bound for a

subclass of subcubic graphs. Namely, we shall investigate connected graphs that

are subcubic with the added condition that δ(G) ≥ 2. This assumption eliminates

pendant vertices since there is a graph with δ(G) = 1 having independent domination

number i(G) = n/2 (see Figure 2.1).

Theorem 4. If G is a connected subcubic graph of order n with δ(G) ≥ 2, then

i(G) ≤
3(n+ 1)

7
.

Note that our bound is necessary since i(K3,3) = 3 and for n = 6 we have

3(n + 1)/7 = 3. Additionally, the graph of Figure 2.2, G∗, has order n = 21 and

satisfies i(G∗) = 9 < 3(n + 1)/7. Clearly, the pattern in graph of Figure 2.2 repeats

giving an infinite family of graphs that satisfy the bound 3n/7. However, the graph

of Figure 2.2 has girth 4 and so we might ask whether adding a girth condition like

g ≥ 5 might allow one to find a new upper bound. To this end, the following open

conjecture for cubic graphs was proposed by Jacques Verstraete [26].

Conjecture 1. If G is a cubic graph of order n having girth at least six, then

i(G) ≤
n

3
.
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Figure 2.2: The Extremal Graph G∗

2.1 Proof of Theorem 4

2.1.1 Preliminaries

Before we can proceed, we must introduce several more results and some

terminology. Afterward, we will begin by proving a series of lemmas which will allow

a more efficient proof of our main theorem. Let G be a connected subcubic graph

satisfying δ ≥ 2. An edge e = uv ∈ E is called a critical edge of G provided any of

the following statements hold:

1. e does not lie on a cycle,

2. β(u, v) = min{d(u), d(v)} = 2,

3. i(G− e) < i(G).

If every edge of G is a critical edge then G is called a critical graph or some-

times just critical. As an example consider K3,3. In this case, we can remove any edge

e = uv and then choose I = {u, v} so that i(K3,3 − e) = 2 and since i(K3,3) = 3 we

see that every edge is critical. Thus, K3,3 is a critical graph. Although many graphs

13



may have a critical edge, they will not all be critical graphs. We shall distinguish

between these two classes of graphs in the following manner. First, we will prove the

following useful result.

Fact 1. Suppose G is a connected subcubic graph having δ(G) ≥ 2. Then there is

a connected subcubic spanning critical subgraph G′ with δ(G′) ≥ 2 such that i(G) ≤

i(G′).

Proof. If G is a critical graph, then we let G′ = G and we are done. Otherwise, there

exists a non-critical edge e = uv so we let G′ = G − e. Thus, G′ is connected since

e is not a cut edge (negation of property 1) and since u, v ∈ S3 we have δ(G′) ≥ 2

(negation of property 2). Finally, from property 3 we must have i(G) ≤ i(G′). If

necessary, we can repeat the process to produce the desired graph G′.

Since any spanning critical subgraph satisfies the inequality from Fact 1 we

can restrict the argument and consider only critical graphs. That is, we will use the

fact that the critical graphs serve as an upper bound for the noncritical graphs and

if we show the bound holds for all critical graphs we have also shown the result holds

for every graph. In light of this observation, for the remainder of the proof we will

consider only critical graphs.

Remark 1. Henceforth, we will assume that all graphs are critical graphs.

Now, we introduce several more useful facts which are easily shown to be

true and which will be needed quite often in the remainder of our proof. First, we

define the following structure or subgraph which will occur often in the arguments

that follow. Let Y = {u1, u2, u3, u4, u5} be a set of vertices and GY = (W,EW ) be

a graph where W = Y ∪ {u, v, w} and EW = {u1u2, u1u4, u1u5, u2u3, u3u, u4v, u5w}.

14



b

b

b

b b
b

b

b

u1 u2 u3
u

v

w

u4

u5

Figure 2.3: The Y-Graph GY

The graph GY , given in Figure 2.3, will be called the Y-graph or sometimes just Y.

We have stated each fact below in most general term and so we should note that

even though some vertices are shown as degree two vertices they may be degree three

vertices in the larger graph since each will be a subgraph of a subcubic graphG having

minimum degree δ(G) ≥ 2. Thus, when d(u3) = 3 we let u, u′ ∈ N(u3). However,

note that in the second case below (when adding vw) we require that d(u2) = 2.

Remark 2. Additionally, for the remainder of the proof we declare that G′ = G

if the edge we need to add already exists in the original graph G and in this case

we point out that the surgery works exactly the same although we may need to show

connectivity in some cases. Otherwise, set G′ = G \R+ uv where uv /∈ E(G) and R

is the set of vertices we need to remove when we argue by induction on the number

of vertices (removal set).

Fact 2. Let G be a subcubic graph which satisfies δ(G) ≥ 2 and suppose that GY ⊆ G

where GY is given above. If G′ = G \ Y + uv where uv /∈ E(G) or G′ = G \ Y + uw
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where uw /∈ E(G), then i(G) ≤ i(G′) + 2. Furthermore, if d(u2) = 2 and G′ =

G \ Y + vw where vw /∈ E(G), then i(G) ≤ i(G′) + 2. Additionally, if G′ = G \ Y ,

then i(G) ≤ i(G′) + 2.

Proof. Suppose as stated above and consider when G′ = G\Y +uv and uv /∈ E(G). If

we remove the vertices in Y and add the edge uv, the resulting graph G′ = G\Y +uv

has a MIDS I ′. We need to use I ′ to construct I and we must add no more than

two vertices to I ′ when we do this. Furthermore, when we construct I from I ′ we

must ensure that the vertices we remove are dominated in G and that they are

not adjacent to each other since I must be an independent dominating set of G.

Now, we must show that i(G) ≤ i(G′) + 2. If u, v /∈ I ′, we let I = I ′ ∪ {u1, u3}

provided N(u3) ∩ I ′ = ∅ and I = I ′ ∪ {u1} when N(u3) ∩ I ′ 6= ∅. Observe that

N(u3) ∩ I ′ 6= ∅ exactly when d(u3) = 3 and u′ ∈ I ′ where u′ ∈ N(u3) \ {u, u2} since

u2 /∈ V (G′) and we have assumed that u /∈ I ′. Additionally, since u2 ∈ V (G)\V (G′),

N(u3)∩I
′ = (NG(u3)\{u2})∩I

′ and in this case we always use the notationN(u3)∩I
′.

Also, we use the notation u, v /∈ I ′ instead of {u, v} ∩ I ′ = ∅ for convenience and

point out these two statements are logically equivalent and we will always write

N(u3) instead of NG(u3). Now, consider when {u, v} ∩ I ′ 6= ∅. Then, either u ∈ I ′

or v ∈ I ′ but never both since uv ∈ E(G′) and I ′ is an independent set of G′. If

u ∈ I ′, we can let I = I ′ ∪ {u1, v} when (N(v) \ {u4}) ∩ I ′ = ∅ and I = I ′ ∪ {u1}

otherwise. If v ∈ I ′, let I = I ′ ∪ {u1, u} when (N(u) \ {u3}) ∩ I ′ = ∅. Now, assume

that (N(u) \ {u3}) ∩ I ′ 6= ∅. Then, let I = I ′ ∪ {u1, u3} when N(u3) ∩ I ′ = ∅ and

I = I ′∪{u1} otherwise. Therefore, we have shown that i(G) ≤ i(G′)+2 as required.

For the second case, consider when G′ = G \ Y + uw provided uw /∈ E(G) we

repeat the argument from above letting w replace v. Furthermore, when {u3, u4, u5}∩

S3 6= ∅ and u′ ∈ N(u3) \ {u, u2}, v
′ ∈ N(u4) \ {v, u1}, and w′ ∈ N(u5) \ {w, u1}
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this surgery works if we remove Y and add any one of {uv′, u′v, u′v′, uw′, u′w, u′w′}.

Finally, the surgery also works for d(u2) = 3 since we never need to choose u2 when

constructing I from I ′.

For third case, consider when G′ = G \ Y + vw with vw /∈ E(G). Here, we

require that d(u2) = 2 since the surgery fails when d(u2) = 3 and (N(u2)\{u1, u3})∩

I ′ 6= ∅, (N(w)\{u1})∩I ′ = ∅, with v, w′, z ∈ I ′, u, u′ /∈ I ′ where z ∈ N(u2)\{u1, u3}.

If v, w /∈ I ′, let I = I ′ ∪{u1, u3} when N(u3)∩ I ′ = ∅ and I = I ′ ∪{u1} otherwise. If

v ∈ I ′, let I = I ′∪{u2, u5} when (N(u5)\{u1})∩I ′ = ∅ and I = I ′∪{u2} otherwise.

If w ∈ I ′, let I = I ′ ∪ {u2, u4} when (N(u4) \ {u1}) ∩ I ′ = ∅ and I = I ′ ∪ {u2}

otherwise.

For the final case, when G′ = G \Y , let I = I ′∪{u1, u3} when N(u3)∩ I ′ = ∅

and I = I ′∪{u} otherwise. Thus, in each case we have shown that i(G) ≤ i(G′)+2.

For the next result, we will construct several graphs using a path of order five

as the base structure. Next, let Q3 be the graph shown in Figure 2.4 and let Q2,4

be the graph shown in Figure 2.5. Graphs of this type, i.e. like Q3 and Q2,4, are

sometimes called caterpillars. A caterpillar is a tree in which a path is incident to

b b b b b

bb b

x w y

u1 u2 u3 u4 u5

Figure 2.4: The Graph Q3
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every edge. Alternatively, a caterpillar is a tree such that removal all end vertices of

the tree leaves a path. The remaining path is called the spine of the caterpillar and

in our case is a P5. For the fact below, we let Q = {u1, u2, u3, u4, u5}. We can refer

to the following fact as our path or caterpillar lemma. The graphs Q3 and Q2,4 are

shown in Figure 2.4 and Figure 2.5 where the edges with dotted lines are the edges

we need to add when we make the induction argument in Fact 3.

Fact 3. Let G be a subcubic graph with δ(G) ≥ 2 and suppose that Q3 ⊆ G (

see Figure 2.4). If G′ = G \ Q + xw with u1, u2, u4 ∈ S2 or G′ = G \ Q + wy with

u2, u4, u5 ∈ S2, then i(G) ≤ i(G′)+2. Likewise, for any subcubic graph with δ(G) ≥ 2

containing Q2,4 (Figure 2.5), if G′ = G \Q+ uv, then i(G) ≤ i(G′) + 2.

Proof. Suppose G contains the subgraph Q3 and suppose that d(u1) = d(u2) =

d(u4) = 2 as above. If we remove Q and add xw the graph G′ = G \ Q + xw has a

MIDS I ′ which we use to construct I. If x, w /∈ I ′, we let I = I ′ ∪{u2, u4}. If x ∈ I ′,

we can let I = I ′∪{u3, u5} when N(u5)∩I
′ = ∅ and I = I ′∪{u3} otherwise. If w ∈ I ′,

we can let I = I ′∪{u1, u4}. Next, the argument for G′ = G\Q+yw is the same if we

replace x with y in the previous case and we assume that d(u2) = d(u4) = d(u5) = 2.

Finally, note that this surgery fails if d(u5) = 3 and similarly for the first case when

b b b b b
u1 u2 u3 u4 u5

b b

u v

b b

x y

Figure 2.5: The Graph Q2,4
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d(u1) = 3.

For the second graph, Q2,4, if we remove Q and add uv, the resulting graph

G′ = G \ Q + uv has a MIDS I ′. If u, v /∈ I ′, we let I = I ′ ∪ {u2, u4}. If u ∈ I ′, we

can let I = I ′∪ {u1, u4} when N(u1)∩ I ′ = ∅ and I = I ′ ∪{u4} otherwise. Similarly,

if v ∈ I ′, we can let I = I ′ ∪ {u2, u5} when N(u5) ∩ I ′ = ∅ and I = I ′ ∪ {u2}

otherwise.

Next, we let G be a graph and suppose that G[S2] contains one or more

independent edges. Let e = uv be such an edge and suppose that x ∈ N(u)\{v} and

y ∈ N(v) \ {u} with x, y ∈ S3. The next result is useful if we encounter one or more

independent edges adjacent to the vertex set S3 and at least one of those vertices is

not a cut vertex. Although we will not prove this in general, we might think of the

result as a restricted version of an independent edge lemma where the edges lie in

G[S2] (see Figure 2.6).

Fact 4. For any subcubic graph G containing e = uv as defined above, if G′ =

G \ {x, u, v} or G′ = G \ {u, v, y}, then i(G) ≤ i(G′) + 1. Furthermore, if u′ ∈ S3

and u′

1, u
′

2, u
′

3 ∈ N(u′), then G′ = G−N [u′] satisfies i(G) ≤ i(G′) + 1. Additionally,

if v′ ∈ S2 and v′′, v′′′ ∈ N(v′), then G′ = G−N [v′] satisfies i(G) ≤ i(G′) + 1.

b b

b b

S3

u v

x y

Figure 2.6: The independent edge lemma or Fact 4
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Proof. Suppose as stated and let G′ = G \ {x, u, v}. Then G′ has a MIDS I ′ so

we let I = I ′ ∪ {u}. If G′ = G \ {u, v, y}. Then, let I = I ′ ∪ {v}. Next, for the

second statement if u′ ∈ S3 with u′

1, u
′

2, u
′

3 ∈ N(u′) and G′ = G − N [u′], then we

can let I = I ′ ∪ {u′}. Finally, for the third case let v′ ∈ S2 with v′′, v′′′ ∈ N(v′) and

G′ = G − N [v′], then we can let I = I ′ ∪ {v′}. Thus, in each case we have shown

that i(G) ≤ i(G′) + 1.

Next, we let GS be the graph of Figure 2.7 where S = {u, v, u1, u2, v1, v2}.

Furthermore, we let S ′ = {u, v, u1, u2, v1} where u, v ∈ S3 with uv ∈ GS and u1, u2 ∈

N(u) and v1, v2 ∈ N(v). The graph GS contains a double-star. The dotted lines

show the edges to be added. The following fact allows us to eliminate the case of a

double star. As a note, we can allow v1, v2 ∈ S2∪S3 however when we add two edges

we will require that u1, u2 ∈ S2 since the surgery fails otherwise.

Fact 5. Let G be a subcubic graph with δ(G) ≥ 2 containing GS ⊆ G. If G′ =

G \ S ′ + v2v3, then i(G) ≤ i(G′) + 2 and if G′ = G \ S ′ + u3u4 and u1, u2 ∈ S2, then

i(G) ≤ i(G′)+2. If G′ = G \S ′+ v2v3+u3u4 and u1, u2 ∈ S2, then i(G) ≤ i(G′)+2.

Additionally, if G′ = G \ S ′, then i(G) ≤ i(G′) + 2.

b b

b b

b b

b

b

b

b

v1

v2

v3

v4

u1u3

u4 u2

u v

Figure 2.7: The Graph GS
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Proof. Suppose as stated above. For the first case, let G′ = G− S ′ + v2v3. Then, if

I ′∩{v2, v3} = ∅ or v2 ∈ I ′, let I = I ′∪{u, v1} when N(v1)∩I ′ = ∅ and N(v1)∩I ′ 6= ∅

let I = I ′ ∪ {u, v3} if N(v3) ∩ I ′ = ∅ and I = I ′ ∪ {u} otherwise. If v3 ∈ I, then

I = I ′ ∪ {u, v2} if N(v2) ∩ I ′ = ∅ and I = I ′ ∪ {u} otherwise.

For the second case, if G′ = G\S ′+u3u4 and u1, u2 ∈ S2, then if {u3, u4}∩I
′ =

∅ or when u3, u4 /∈ I ′, then let I = I ′ ∪ {u, v1} when N(v1)∩ I ′ = ∅ and I = I ′ ∪ {u}

otherwise. If u3 ∈ I ′, let I = I ′∪{u2, v} when v2 /∈ I ′ and if v2 ∈ I ′ let I = I ′∪{u2, v1}

when N(v1)∩I ′ = ∅ and I = I ′∪{u2} otherwise. If u4 ∈ I ′, let I = I ′∪{u1, v} when

v2 /∈ I ′ and if v2 ∈ I ′ let I = I ′ ∪ {u1, v1} when N(v1) ∩ I ′ = ∅ and I = I ′ ∪ {u1}

otherwise.

For the third case, if we remove S ′ and add both v2v3 and u3u4, the resulting

graph G′ = G \ S ′ + v2v3 + u3u4 has a MIDS I ′ and we can use this set to construct

I. There are three cases to consider since 0 ≤ |I ′ ∩ {u3, u4, v2, v3}| ≤ 2. For the

first case, suppose that |I ′ ∩ {u3, u4, v2, v3}| = 0. Then, u3, u4, v2, v3 /∈ I ′, and we

let I = I ′ ∪ {u, v1}. For the second case, suppose that |I ′ ∩ {u3, u4, v2, v3}| = 1.

Then, if u3 ∈ I ′, let I = I ′ ∪ {u2, v1}. If u4 ∈ I ′, let I = I ′ ∪ {u1, v1}. If v2 ∈ I ′,

let I = I ′ ∪ {u, v1}. If v3 ∈ I ′, let I = I ′ ∪ {u, v2} when N(v2) ∩ I ′ = ∅ and

I = I ′∪{u} otherwise. Finally suppose that |I ′∩{u3, u4, v2, v3}| = 2. If u3, v2 ∈ I ′, let

I = I ′∪{u2, v1}. If u3, v3 ∈ I ′, let I = I ′∪{v, u2}. If u4, v2 ∈ I ′, let I = I ′∪{u1, v1}.

If u4, v3 ∈ I ′, let I = I ′ ∪ {u1, v}.

For the final case, when G′ = G \ S ′, let I = I ′ ∪ {u, v1} when N(v1) ∩ I ′ = ∅

and I = I ′ ∪ {u} otherwise.

Next, consider any subcubic graph G of minimum degree δ(G) ≥ 2 which

contains a path of length two in G[S2] (i.e. P3 ⊆ G[S2] ⊆ G) where we label the path

as follows (show in Figure 2.8). Let the path have vertices {w1, w2, w3, w4, w5} where
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S3

w1

w2 w3 w4

w5

Figure 2.8: A path of length two lying in G[S2]

w2, w3, w4 ∈ S2 and having edges w1w2, w2w3, w3w4, w4w5 ∈ E(G) with w1, w5 ∈ S3.

If we require that w1 6= w5, then we can show that i(G) ≤ i(G′) + 1 where G′ =

G− {w2, w3, w4}+ w1w5 provided w1w5 /∈ E(G).

Fact 6. Let G be a subcubic graph with δ(G) ≥ 2 containing a path of length two

in G[S2] with vertices {w1, w2, w3, w4, w5} where w2, w3, w4 ∈ S2 and having edges

w1w2, w2w3, w3w4, w4w5 ∈ E(G) with w1, w5 ∈ S3. If G′ = G− {w2, w3, w4} + w1w5

provided w1w5 /∈ E(G), then i(G) ≤ i(G′) + 1.

Proof. Suppose as stated above. Then, there are three cases to consider. If w1, w5 /∈

I ′, then let I = I ′ + {w3}. If w1 ∈ I ′, let I = I ′ + {w4} and if w5 ∈ I ′, let

I = I ′ + {w2}.

2.1.2 Lemmas

Next, the following series of lemmas allow us to exclude certain structures

from consideration by means of the definition of a critical edge (or graph) along with

the application of Fact 1 above. The first lemma shows that a critical edge cannot

lie on a triangle having two or more degree three vertices. Once we restrict our focus
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to critical graphs, the only possibility for a critical graph having girth three is when

the triangle has only one degree three vertex.

Lemma 1. Suppose G is a connected subcubic critical graph which satisfies δ(G) ≥ 2.

If e = uv is a critical edge of G and u, v ∈ S3, then e must not lie on a triangle.

Proof. Suppose e = uv is a critical edge of G where u, v ∈ S3 and that e lies on

a triangle. We label the triangle as {u, v, w}. Furthermore, let x ∈ N(u) \ {v, w}

and y ∈ N(v) \ {u, w}. Next, we let H = G − e and then suppose that IH is

a MIDS of H . First, observe that e must satisfy part three of the definition of a

critical edge since u, v ∈ S3 and e lies on a triangle. If u ∈ IH but v /∈ IH , then

|I| ≤ |IH | for any IDS I of G which contradicts our definition of a critical edge.

Thus, we must have u, v ∈ IH . Next, if (N(x) \ {u}) ∩ IH 6= ∅, then there is some

z ∈ (N(x)\{u})∩IH which dominates x so then letting I = IH \{u} gives |I| < |IH |

which is a contradiction. If (N(x) \ {u}) ∩ IH = ∅, then we let I = (IH \ {u}) ∪ {x}

which again gives a contradiction.

We have a second result for the case of girth 4 which eliminates certain edges

in the neighborhood of a vertex which is incident with a critical non-cut edge.

Lemma 2. Suppose G is a connected subcubic critical graph of order n ≥ 7 having

δ(G) ≥ 2. If e = uv is not a cut edge of G with u, v ∈ S3 and H = G− e, then there

is no perfect matching in G[NH({u, v})].

Proof. By Lemma 1, N(u) ∩ N(v) = ∅. Suppose there is a perfect matching

in G[NH({u, v})] which we denote by M and let Z = NH({u, v}) with z1, z2 ∈

N(u) \ {v} and z3, z4 ∈ N(v) \ {u} (see Figure 2.9). Additionally, let FZ =
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{z1z2, z1z3, z1z4, z2z3, z2z4, z3z4} whenever zi ∈ S3 we let z′i ∈ N(zi) \ (Z ∪ {u, v}).

First, note that e satisfies part three of the definition of a critical edge since it is

not a cut edge and β(u, v) = 3. Now, let H = G − e and suppose IH is a MIDS of

H . Next, since G is subcubic and every member of Z has neighbor in {u, v} then

E(G[Z]) 6= FZ which is only possible when G[Z] ∼= K4. Furthermore, by Lemma

1, z1z2 /∈ E(G) whenever z1 ∈ S3 or z2 ∈ S3 (or both). This is a also true for

z3z4 /∈ E(G) whenever z3 ∈ S3 or z4 ∈ S3. Also, we must not have zi = zj for any

i, j ∈ [4] when i 6= j since this gives either a triangle with more than one degree

three vertex or a multi-edge.

Case 1: M = {z1z2, z3z4}.

Suppose that z1z2, z3z4 ∈ E (see Figure 2.9). Since e is a not a cut edge there must

be a path in H joining some zi and some zj . Since n ≥ 7 this path must include an

additional vertex z′i ∈ N(zi) \ (Z ∪ {u, v}). But this would imply that G contains a

triangle with two or more degree three vertices and since G is a critical graph this

contradicts Lemma 1. Thus, Case 1 isn’t possible.

b b

b b

bb

b

eu v

z1
z2 z3

z4

b b

b b

b b

bz′1 z′1

u ve

z1

z2 z3

z4

Figure 2.9: The Graph of Lemma 2
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Case 2: M = {z1z3, z2z4} (or M = {z1z4, z2z3}).

Suppose z1z3, z2z4 ∈ E (see Figure 2.9). If G[Z] ∼= C4
∼= K2,2, then n = 6 and we

have assumed that n ≥ 7 so there must be an edge missing from the set of available

edges in E(G[Z]) ( FZ . Since z1z2, z3z4 /∈ E and z1z3, z2z4, z1u, z2u, z3v, z4v ∈ E

this leaves only three possibilities. Thus, either z1z4 /∈ E(G) or z2z3 /∈ E(G) or

z1z4, z2z3 /∈ E(G). Thus, we will assume that z1z4 /∈ E. This implies that M =

{z1z3, z2z4}. Since n ≥ 7 there is some z′i ∈ N(zi) \ (Z ∪{u, v}). Because e is critical

i(H) < i(G), we must have u, v ∈ IH and consequently Z ∩ IH = ∅. There are two

subcases to consider.

Case 2.1: Suppose for some i ∈ [4] that N(zi) ∩ IH − {u, v} 6= ∅ (or when some

z′i ∈ IH). Next, choose j such that zix, zjx ∈ E(G) where x ∈ {u, v}. Then,

let I = IH \ {x} ∪ {zj} when (N(zj) \ {x}) ∩ IH = ∅ and I = IH \ {x} when

(N(zj) \ {x}) ∩ IH 6= ∅. Hence, |I| ≤ |IH | a contradiction.

Case 2.2: Suppose for each i ∈ [4] that N(zi) ∩ IH − {u, v} = ∅. Then, since

z1z4 /∈ E, letting I = (IH \ {u, v}) ∪ {z1, z4} gives |I| ≤ |IH |. Again a contradiction.

Thus, in both cases there is no perfect matching in G[Z].

Lemma 3. Suppose G is a connected subcubic critical graph which satisfies δ(G) ≥ 2.

Suppose that X = {x1, x2, x3, x4} forms a 4-cycle where x1, x2 ∈ S3 and x3, x4 ∈ S2

with u1 ∈ N(x1) \ {x2, x4} and u2 ∈ N(x2) \ {x1, x3}. Now, suppose that B is an

endblock of G containing X such that |V (B)| ≥ 6. If u1 ∈ S3 and e = u1x1, then e

is not a critical edge of G and a similar result holds for u2x2 when u2 ∈ S3.

Proof. Suppose as stated above and see Figure 2.10 for the labeling of X . Further-

more, assume that G is a critical graph containing e = u1x1. Again, let H = G− e.

Since B is an endblock of G, it has at exactly one cut vertex. Since e = x1u1 is not
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a cut edge of G it must lie on a cycle and since β = 3 we must have i(H) < i(G).

We know that u1, x1 ∈ IH (see Lemma 1 or Lemma 2). Then, x3 ∈ IH since IH must

be an independent dominating set. Then, letting I = IH \ {x1} gives |I| < i(H).

This is a contradiction. Therefore, e = u1x1, as defined above, can only occur as a

non-critical edge. This arguments also works for e = u2x2.

Lemma 4. Suppose G is a connected subcubic critical graph which satisfies δ(G) ≥ 2.

Suppose that X = {x1, x2, x3, x4} forms a 4-cycle where x1, x2, x3 ∈ S3 and x4 ∈ S2

with u1 ∈ N(x1)\{x2, x4}, v1 ∈ N(x2)\{x1, x3}, z1 ∈ N(x3)\{x1, x2}. Now, suppose

that B is an endblock of G containing X. If e = v1x2 is not a cut edge and v1 ∈ S3,

then e is not a critical edge of G.

Proof. Suppose as stated above and see Figure 2.11) for the labeling of X . Further-

more, assume that G is a critical graph containing e = v1x2. Again, let H = G− e.

b

b

b b b

b

x1

x3

x2 u2

x4

u1

e

P

Figure 2.10: The endblock of Lemma 3
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Since e is not a cut edge and β = 3 we must have i(H) < i(G). We know that

v1, x2 ∈ IH (see Lemma 1 or Lemma 2). Then, x4 ∈ IH since IH must be an inde-

pendent dominating set. Then, letting I = IH \ {x1} gives |I| < i(H). This is a

contradiction. Therefore, e = v1x2, as given above, can only occur as a non-critical

edge.

Before we proceed, we need to show that the base step of our induction

argument is valid and we do so by using the following lemma. We require the

following result from [4] which originally appeared in a text by O. Ore. This result

will be used in the following lemma. The next result shows that any graph having

order at most 7 satisfies our bound and will be used as the base step for the induction

arguments to follow.

Theorem 5. (Ore 1962) If G is a connected graph with no isolated vertices, then

b

b

b b b

b

b

x1

x3

x2 v1
x4

u1

z1

e

Figure 2.11: The endblock of Lemma 4
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the complement of every minimal dominating set is also a dominating set.

Lemma 5. Let G be a connected subcubic graph with δ(G) ≥ 2 and having order

n ≤ 7. Then, G satisfies the bound

i(G) ≤
3(n+ 1)

7
.

Proof. We proceed by contradiction and for each case we let J = V \ I. When n = 3

the result is trivial. If 4 ≤ n ≤ 5, then we require |I| ≥ 3 for a contradiction so

suppose that I is an MIDS such that |I| ≥ 3. First, if n = 4 with |I| ≥ 3, then

|J | ≤ 1 with ∆(G) ≤ 3 and would be a smaller independent dominating set so this

can’t occur. If n = 5 with |I| ≥ 3, then |J | ≤ 2. Furthermore, J must contain

at least one edge since otherwise it would be a smaller independent dominating set

by Ore’s theorem above. Then, since δ(G) ≥ 2, counting edges leaving I we have

e(I, J) ≥ 3 ∗ 2 = 6. Similarly, since ∆(G) ≤ 3 and J contains an edge, we have

e(I, J) ≤ 6− 2 = 4 which is impossible.

Now suppose that 6 ≤ n ≤ 7. Here we require |I| ≥ 4 for a contradiction so

suppose that I is an MIDS such that |I| ≥ 4. If n = 6, with |I| ≥ 4, then |J | ≤ 2, so

e(I, J) ≥ 4 ∗ 2 = 8 and e(I, J) ≤ 6− 2 = 4 which is impossible. Finally, when n = 7,

with |I| ≥ 4, then |J | = 3 so e(I, J) ≥ 4 ∗ 2 = 8 and e(I, J) ≤ 6− 2 + 3 = 7 which is

again a contradiction. This completes the lemma and we can use this result as our

base step for the induction arguments below.

Before we begin the next result, we need to introduce some terminology. We

will be using induction in each result below and we will employ a few specialized terms

for convenience. The process of removing vertices and adding edges to maintain the
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degree condition and connectivity will become somewhat involved and we may refer

to this process as surgery. In the following lemma, we show that any graph with an

induced path in G[S2] of length at least two satisfies the bound of our main theorem.

Lemma 6. Let G be a connected subcubic critical graph with minimum degree δ(G) ≥

2 and let B be an endblock of G such that |V (B)| ≥ 6. If B contains an induced path

in G[S2] of length at least two, then

i(G) ≤
3(n+ 1)

7
.

Proof. We proceed by induction on |V | = n. We have just shown that the result

holds for every graph with n ≤ 7. Suppose that every graph with fewer than n

vertices satisfies our claim and consider a graph with n vertices that satisfies the

hypothesis.

Next, suppose that G[S2] contains a path of length at least three and label this

path P = w1 . . . w6 where w2, w3, w4, w5 ∈ S2. Next, let G
′ = G−{w3, w4, w5}+w2w6.

Then, if w2 ∈ I ′, we let I = I ′ ∪ {w5}. If w6 ∈ I ′, we let I = I ′ ∪ {w3} and if neither

occur let I = I ′ ∪ {w4}.

Now, suppose that G[S2] contains a path of length two and label this path

P = w1 . . . w5 where w2, w3, w4 ∈ S2. There are three cases to consider.

Case 1: w1 6= w5 and w1w5 /∈ E.

Here, we let H = G[{w2, w3, w4}]. Then, removing H and adding the edge w1w5

gives a new graph G′, with fewer vertices, that satisfies our hypothesis and so there

is an MIDS I ′ corresponding to G′. Then, if w1 ∈ I ′, we let I = I ′∪{w4}. If w5 ∈ I ′,

we let I = I ′ ∪ {w2} and if neither occur let I = I ′ ∪ {w3}. Thus, we have shown

that in each case we only need one additional vertex for I. Hence, by the Induction
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Hypothesis (IH), we have

i(G) = |I| = |I ′|+ 1 =
3(n− 3 + 1)

7
+ 1 =

3n+ 1

7
≤

3(n+ 1)

7

Case 2: w1 6= w5 and w1w5 ∈ E.

There are several subcases to be considered. First, if both w1, w5 ∈ S2, then G = C5

and we have already considered this case. Now, suppose that both w1, w5 ∈ S3

and again let H = G[{w2, w3, w4}]. Then, we can remove H to obtain the graph

G′ = G − H which satisfies the IH, so there is an MIDS I ′ for G′. Thus, we let

I = I ′ ∪{w3}. If w1 ∈ S2 and w5 ∈ S3 or w1 ∈ S3 and w5 ∈ S2, then |V (B)| ≤ 5 and

we assumed that |V (B)| ≥ 6.

Case 3: w1 = w5.

In this case, we have a four cycle with only one degree three vertex on the cycle (the

others being degree two) which is not possible in B since |V (B)| ≥ 6.

Although we checked the case above, whenever we let G′ = G − R where

|R| = nR we can always choose k vertices to dominate the vertices of R and create

I from I ′ since if

3(n− nR + 1)

7
+ k =

3n− 3nR + 3 + 7k

7
≤

3(n+ 1)

7
=

3n+ 3

7

then,
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−3nR + 7k

7
≤ 0

or equivalently

3nR

7
≥ k.

Thus, if we let k = ⌊3nR/7⌋ we can always satisfy the above relationship. Thus, we

don’t need to check each case but rather just use the relationship above.

Lemma 7. Let G be a connected subcubic critical graph of order n satisfying δ(G) ≥ 2

and let B be an end-block of G which satisfies g(B) ≥ 5. If u ∈ V (B) ∩ S3 is not a

cut vertex of G and satisfies |N(u) ∩ S2| ≥ 2, then

i(G) ≤
3(n+ 1)

7
.

Proof. We proceed by induction on |V | = n. By Lemma 5, we may assume that

n ≥ 8. Suppose that every graph with fewer than n vertices satisfies our claim

and consider a graph with n vertices that satisfies the hypothesis. Suppose that

u ∈ V (B)∩S3 is not a cut vertex of G where B is an end-block of G. Let u1, u2, u3 ∈

N(u).

Case 1: |N(u) ∩ S2| = 3.

Let u4 ∈ N(u2)\{u}, u5 ∈ N(u3)\{u}, and let u′

1 ∈ N(u1)\{u}. If |{u
′

1, u4, u5}∩S2| ≥

2, then let u4, u5 ∈ S2. Now, suppose that u6 ∈ N(u4) \ {u2} and u7 ∈ N(u5) \ {u3}.

Then, by Lemma 6, u6, u7 ∈ S3. Next, let Q = {u, u2, u3, u4, u5}. Then, since u is

not a cut vertex, G − Q is connected. Thus, at least one of G′

1 = G − Q + u1u6 or

G′

2 = G − Q + u1u7 is also connected and both graphs satisfy δ(G′

i) ≥ 2 since we
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added an edge. Finally, applying Fact 3 shows the result holds in this case. Now, we

may assume that |{u′

1, u4, u5} ∩ S2| ≤ 1. There are two subcases to consider.

Case 1.1: |{u′

1, u4, u5} ∩ S2| = 1.

Suppose that u4 ∈ S2. First, if u5 = u6, then let G′ = G − Y + u′

1u5 where

Y = N [u]∪ {u4}. Next, since u is not a cut vertex the graph G′ is connected. Then,

applying Fact 2 shows the result holds in this case. Next, if u5 6= u6, then we can let

G′ = G− Y . Since u is not a cut vertex, the graph G′ is connected. Then, applying

Fact 2 show that the result holds in this case. Finally, note that the same argument

works if u′

1 = u6 and u′

1 6= u6 by symmetry, so this completes Case 1.1.

Case 1.2: |{u′

1, u4, u5} ∩ S2| = 0.

Next, since we have assumed that g(B) ≥ 5, then u4 6= u5. Then, G′ = G − N [u]

is connected since u is not a cut vertex so we can apply Fact 4. This completes the

case.

Case 2: |N(u) ∩ S2| = 2.

Suppose that u2, u3 ∈ S2. By Case 1, we can show that |{u4, u5} ∩ S2| ≤ 1. There

are two cases to consider.

Case 2.1: |{u4, u5} ∩ S2| = 1.

Suppose that u4 ∈ S2 and u5 ∈ S3 and let u′

1, u
′′

1 ∈ N(u1) \ {u} where d(u′′

1) ≤ d(u′

1).

First, we can show the result for {u′

1, u
′′

1} ∩ S2 6= ∅. Next, let u′′′

1 ∈ N(u′′

1) \ {u1}.

Let G′ = G− {u, u1, u2, u3, u
′′

1} + u4u5 + u′

1u
′′′

1 . Then, since u is not a cut vertex G′

is connected. Finally, applying Fact 5 (The Double Star Lemma) shows the result

holds in this case.

Now, suppose that {u′

1, u
′′

1} ⊆ S3. First, if u5 6= u6, then let Y = {u, u1, u2, u3, u4}.

Then, at least one of G′

1 = G−Y +u5u6, G
′

2 = G−Y +u′

1u6, or G
′

3 = G−Y +u′′

1u6

is connected since u is not a cut vertex. Then, applying Fact 2 shows the result holds

32



in this case.

If u5 = u6, then let X = {u, u2, u3, u4, u5} and G′ = G − X + u1u
′

5 where

u′

5 ∈ N(u5) \ {u3}. If u1, u
′

5 /∈ I ′, let I = I ′ ∪ {u, u5}. If u
′

1 ∈ I ′, let I = I ′ ∪ {u2, u5}

and if u5 ∈ I ′, let I = I ′ ∪ {u, u4} Then, since G′ is connected the result holds.

Case 2.2: |{u4, u5} ∩ S2| = 0.

First, since we have assumed that g(B) ≥ 5, then u4 6= u5. By Case 1, we can

assume that {u′

1, u
′′

1} ⊆ S3. Suppose that {u′

1, u
′′

1} ⊆ S3. Next, at least one of

{u4, u5} is not a cut vertex, so we may assume that u4 is not a cut vertex. Next, let

u′

4, u
′′

4 ∈ N(u4) \ {u2} with d(u′′

4) ≤ d(u′

4). By Case 1, we have |{u′

4, u
′′

4} ∩ S3| ≤ 1.

Thus, d(u′

4) = 3. Now, set Y = N [u]∪{u4}. Then, at least one of G
′

1 = G−Y +u′′

4u
′

1,

G′

2 = G − Y + u′′

4u
′′

1, or G
′

3 = G − Y + u′′

4u5 is connected and each graphs satisfies

δ(G′

i) ≥ 2. Applying, Fact 2 completes the Lemma.

Now, we may assume that any vertex x ∈ V (B) ∩ S3 which is not cut vertex

satisfies |N(x) ∩ S2| ≤ 1. We will proceed with the main theorem in three stages.

The following lemma allows us to eliminate degree two vertices that are adjacent

to any vertex on the shortest cycle of the endblock that isn’t itself a cut vertex.

Additionally, we will address the cases of girth 3 and 4 in the main theorem.

Lemma 8. Let G be a connected subcubic critical graph of order n satisfying δ(G) ≥

2 and having girth at least 5. Let B be an end-block of G with |V (B)| ≥ 6 and

containing a shortest cycle X. If x ∈ V (X) ∩ S3 is not a cut vertex of G and x has

a degree two neighbor not lying on the cycle, then

i(G) ≤
3(n+ 1)

7
.
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Proof. We proceed by induction on the number of vertices. By Lemma 5, we may

assume that the bound holds for every graph with order n ≤ 7. Suppose that every

graph with fewer than n vertices satisfies our lemma and consider a graph with n

vertices that satisfies the hypothesis. Let X be a shortest cycle of an end-block B

and suppose that x = x1 ∈ V (X)∩S3 is not a cut vertex of G. For the remainder of

our proof we label the cycle X as follows. In the clockwise direction, we let vertices

have odd subscripts, that is x1, x3, x5, x7, and in the counter clockwise direction we

label with even subscripts. Although our labeling might exceed five, we never violate

the girth five condition. Let u1 ∈ N(x1)\X with u1 ∈ S2. Then, since x1 is not a cut

vertex and u1 ∈ S2, x2, x3 ∈ S3 by Lemma 7. Next, suppose that u2 ∈ N(u1) \ {x1}.

By Fact 4 and Lemma 6, u2 ∈ S3. There are two possibilities to consider. If u2 is not

a cut vertex of G, then N(u2) \ {u1} ⊆ S3. Then, G
′ = G−{x1, u1, u2} is connected.

Applying Fact 4 show the result holds.

Now, we may assume that u2 is a cut vertex ofG. In this case, since u2 ∈ V (B)

it is the only such vertex in B. Then, x3 is not a cut vertex so we must have

|N(x3)∩S2| ≤ 1 (By Lemma 7). This might occur in three different ways so we must

consider either u3 ∈ S2 and x5 ∈ S3 or u3 ∈ S3 and x5 ∈ S2 or u3, u5 ∈ S3 where

u3 ∈ N(x3) \ {x1, x2} and x5 is the neighbor of x3 lying on the cycle.

Case 1: u3 ∈ S2 and x5 ∈ S3.

Then, let u4 ∈ N(u3)\{x3}. Since u4 is not a cut vertex and u3 ∈ S2, N(u4)\{u3} ⊆

S3 by Lemma 7. Then, G′ = G − {x3, u3, u4} is connected. Applying Fact 4 show

the result holds in this case.

Case 2: u3 ∈ S3 and x5 ∈ S2.

Next, x9 ∈ S3 by Lemma 6. By Fact 4, x7 ∈ S3. Let u7 ∈ N(x7) \X and u′

3, u
′′

3 ∈

N(u3) \X with d(u′′

3) ≤ d(u′

3). Since u2 is a cut vertex, u3 is not a cut vertex. Thus,

34



b

bb bb b
x1 x3 x5x4 x2

u1

Figure 2.12: The Cycle of Lemma 8

u′

3 ∈ S3 by Lemma 7. Let P = {x3, x5, x7}, P
′ = {x1, u1, u2}, and Y = N [x3]∪{u1}.

If G − P is connected, we can apply Fact 4. Suppose that ω(G − P ) = 2 with

components H and H ′ where u3, u7 ∈ V (H). Since u3 ∈ V (H), u′

3, u
′′

3 ∈ V (H).

Next, u2 ∈ V (B) is a cut vertex but only one of it’s neighbors is not in V (B). Then,

since x1 is not a cut vertex, there is a (u2, X)-path in G−Y and one of the neighbors

of u2 must be in V (H ′). Therefore, G′ = G− Y + u2u
′′

3 is connected. Applying Fact

2 show the result holds in this case.

Case 3: u3, x5 ∈ S3.

Let u5 ∈ N(x5) \X , R = N [x1], P = {x1, x3, x5}, Y = R∪{x5}, Y
′ = R∪{x4}, and

w ∈ N(x2) \X . Since u2 is a cut vertex, x2 is not a cut vertex so w ∈ S3 by Case 1

of this Lemma (i.e. repeat the argument we used to show u3 ∈ S3) and x4 ∈ S3 by

Case 2 of this Lemma (symmetry where we replace x5 with x4 and u3 with w). If

G−R is connected, we can apply Fact 4. Thus, we may assume that ω(G−R) = 2

with components H and H ′. There are three subcases.

Case 3.1: u2, u3, w ∈ V (H).

Then, G′ = G− Y + u2x7 is connected since u5 ∈ V (H ′ − {x5}) ⊆ V (H ′). Applying
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Fact 2 shows the result holds.

Case 3.2: u2, w ∈ V (H) and u3 ∈ V (H ′).

In this case, 2 ≤ ω(G − Y ) ≤ 3 and 1 ≤ ω(G − P ) ≤ 2 so there are two further

subcases to consider.

Case 3.2.1: ω(G− Y ) = 2.

Then, ω(G− P ) = 1. In this case, u2 and u5 lie in different components of G − P .

Therefore, G′ = G− Y + u2x7 is connected. Applying Fact 2 shows the result holds.

Case 3.2.2: ω(G− Y ) = 3.

Then, ω(G − P ) = 2. In this case, u2 and u5 lie in the same component of G − P .

Therefore, G′ = G−Y ′+u2x6 is connected. Applying Fact 2 shows the result holds.

Case 3.3: u3, w ∈ V (H) and u2 ∈ V (H ′).

Again, 2 ≤ ω(G− Y ) ≤ 3 and 1 ≤ ω(G− P ) ≤ 2 so there are two further subcases

to consider.

Case 3.3.1: ω(G− Y ) = 2.

Then, ω(G− P ) = 1. In this case, u2 and u5 lie in different components of G − P .

Therefore, G′ = G− Y + u2x7 is connected. Applying Fact 2 shows the result holds.

Case 3.3.2: ω(G− Y ) = 3.

Then, ω(G − P ) = 2. In this case, u2 and u5 lie in the same component of G − P .

Therefore, G′ = G−Y ′+u2x6 is connected. Applying Fact 2 shows the result holds.

This completes Lemma 8.

Using the previous lemma, we can show the following result effectively elimi-

nating degree two vertices from the cycle altogether provided g(G) ≥ 5.

Lemma 9. Let G be a connected subcubic critical graph of order n satisfying δ(G) ≥ 2
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and having girth at least 5. Let B be an end-block of G with |V (B)| ≥ 6 containing

a shortest cycle X. If x ∈ V (X)∩S3 is not a cut vertex of G and x has a degree two

neighbor lying on the cycle, then

i(G) ≤
3(n+ 1)

7
.

Proof. We proceed by induction on the number of vertices. By Lemma 5, we may

assume that n ≥ 8. Suppose that every graph with fewer than n vertices satisfies

our lemma and consider a graph with n vertices that satisfies the hypothesis. Let X

be a shortest cycle of the end-block B and suppose that x1 ∈ V (X)∩S3 is not a cut

vertex of G. Label X as in the previous Lemma (see Figure 2.13) and suppose that

u1 ∈ N(x1)\X where u1 ∈ S3 by Lemma 8. Since x1 is not a cut vertex and u1 ∈ S3,

either x2 ∈ S3 and x3 ∈ S2 or x2 ∈ S2 and x3 ∈ S3 (by Lemma 7). Suppose that

x2 ∈ S3 and x3 ∈ S2. Next, let u2, u3 ∈ N(u1) \ {x1} with d(u2) ≤ d(u3). We may

assume that u1 is not a cut vertex since otherwise we could move to x5 and repeat

the following argument. Then, since u1 is not a cut vertex, we must have u3 ∈ S3

(By Lemma 7). Thus, either u2 ∈ S2 or u2 ∈ S3.

b

bb bb b

b b

x1x2 x3x4 x5

w u1 u5

Figure 2.13: The Cycle of Lemma 9
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Case 1: u2 ∈ S2.

Let u′

2 ∈ N(u2) \ {u1}. There are two subcases.

Case 1.1: u′

2 is not a cut vertex.

Then, N(u′

2) \ {u2} ⊆ S3 by Lemma 7. Let u′′

2, u
′′′

2 ∈ N(u′

2) \ {u2}. Next, if G′ =

G − {u1, u2, u
′

2} is connected, we are done since we can apply Fact 4. Suppose

that ω(G′) = 2 with components H and H ′. In this case, either u′′

2, u3 ∈ V (H)

and u′′′

2 ∈ V (H ′) where V (X) ⊆ V (H ′) or u′′′

2 , u3 ∈ V (H) and u′′

2 ∈ V (H ′) where

V (X) ⊆ V (H ′). Suppose that u′′

2, u3 ∈ V (H) and u′′′

2 ∈ V (H ′). Then, let G′ =

G− {x3, x1, u1, u2, u
′

2} + u3x5. If u3, x5 /∈ I ′ or u3 ∈ I ′, let I = I ′ ∪ {x3, u2}. When

x5 ∈ I ′, let I = I ′ ∪ {u1, u
′

2} provided N(u′

2) ∩ I ′ = ∅ and I = I ′ ∪ {u1} otherwise.

This completes Case 1.1

Case 1.2: u′

2 is a cut vertex.

Then, u3 is not a cut vertex. Suppose that u′

3, u
′′

3 ∈ N(u3) \ {u1} with d(u′′

3) ≤ d(u′

3)

where u′

3 ∈ S3 by Lemma 7.

Case 1.2.1: u′′

3 ∈ S3.

Let Y = N [u1]∪{x3}. Then, at least one of G
′ = G−Y +x5u

′

3 or G
′ = G−Y +x5u

′′

3

is connected. Applying Fact 2 shows the result holds.

Case 1.2.2: u′′

3 ∈ S2.

Let u′′′

3 ∈ N(u′′

3) \ {u3}. Then, 1 ≤ ω(G − Y ) ≤ 2 and there are several cases.

If ω(G − Y ) = 1, then let G′ = G − Y + u′′

3x5 and apply Fact 2. Suppose that

ω(G− Y ) = 2 with components H and H ′. Now, suppose that u′′′

3 , u
′

2 ∈ V (H) and

u′

3 ∈ V (H ′) and there is a (u′

3, X)-path in G−Y . In this case, let G′ = G−Y +x5u
′′

3.

Then, G′ is connected so applying Fact 2 shows the result holds. Now, suppose

that u′

3, u
′

2 ∈ V (H) and u′′′

3 ∈ V (H ′) where there is a (u′′′

3 , X)-path in G − Y .

Let P ′ = {u3, u
′′

3, u
′′′

3 }. Since u′′′

3 is not a cut vertex and u′′

3 ∈ S2 we know that
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N(u′′′

3 ) \ {u′′

3} ⊆ S3. Thus, G′ = G − P ′ is connected and satisfies δ(G′) ≥ 2.

Applying Fact 4 shows the result holds. This completes Case 1.

Case 2: u2 ∈ S3.

Suppose that u2, u3 ∈ S3 with u′

2, u
′′

2 ∈ N(u2) \ {u1} and u′

3, u
′′

3 ∈ N(u3) \ {u1}.

Case 2.1: x5 is not a cut vertex.

By our assumptions, u1, x1, x3, x5 are not cut vertices. Since x5 is not a cut vertex

and x3 ∈ S2, x7 ∈ S3 by Lemma 7. Let P ′′ = {x1, x3, x5}. If G′ = G − P ′′ is

connected, apply Fact 4. Suppose ω(G− P ′′) = 2. Let G− P ′′ have components H

and H ′ with u1, u2, u3, u5 ∈ V (H) where u5 ∈ N(x5) \X and x2, x7 ∈ V (H ′). There

are two major subcases to consider.

Case 2.1.1: x2 is not a cut vertex.

Let w ∈ N(x2) \X and Y = N [x1] ∪ {x5}. Since x2 is not a cut vertex, w ∈ S3 by

Lemma 8. Since u1 and x2 are not a cut vertices, ω(G − Y ) = 2 with components

H1 = H − {u1} and H2 = H ′ − {x2} so G′ = G− Y + x4u5 is connected. Applying

Fact 2 shows the result holds in this case.

Case 2.1.2: x2 is a cut vertex.

By Lemma 7, u5, x7 ∈ S3 since x5 is not cut vertex and x3 ∈ S2. Let u′

5, u
′′

5 ∈

N(u5) \ {x5} with d(u′′

5) ≤ d(u′

5) = 3 and let u7 ∈ N(x7) \X . Since x7 is not a cut

vertex, u7 ∈ S3 by Lemma 8. There are two subcases.

Case 2.1.2.1: u′′

5 ∈ S3.

Let Y = N [x5] ∪ {x1}. Then, ω(G− Y ) = 2 with components F1 = H − {u5} and

F2 = H ′ − {x7} and since u5 ∈ V (H) we know that u′

5, u
′′

5 ∈ V (F1). Therefore,

G′ = G−Y +x9u1 is connected. Applying Fact 2 shows the result holds in this case.

Case 2.1.2.2: u′′

5 ∈ S2.

Let u′′′

5 ∈ N(u′′

5) \ {u5} and Y = N [x5]∪ u′′

5. Then, G
′ = G− Y + x9u

′′′

5 is connected.
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Applying Fact 2 shows the result holds in this case.

Case 2.2: x5 is a cut vertex.

Since x5 is a cut vertex, x2 is not a cut vertex. Let w ∈ N(x2) \X . Then, w ∈ S3

by Lemma 8.

Case 2.2.1: x4 ∈ S2.

Let Y = N [x1]∪{x4}. Then, at least one of G
′ = G−Y +u2x6 or G

′ = G−Y +u3x6

is connected. Applying Fact 2 shows the result holds.

Case 2.2.2: x4 ∈ S3.

Let w′, w′′ ∈ N(w) \X with d(w′′) ≤ d(w′). Also, let R = N [x1] and Y = R ∪ {w}.

Since x5 is a cut vertex, w is not a cut vertex so w′ ∈ S3 by Lemma 7. If ω(G−R) = 1,

we can apply Fact 4. Now, suppose that ω(G− R) = 2 with components F and F ′.

Since u1 and x2 are not cut vertices u2 and u3 are in different components of G−R

and w and x4 are in different components of G−R. Thus, we may assume (without

loss of generality) that u2, w ∈ V (F ) and u3, x4 ∈ V (F ′). Since w is not a cut vertex,

at least one of G′

1 = G − Y + w′′x5 or G′

2 = G − Y + w′′u2 is connected. Applying

Fact 2 shows the result holds. This completes Lemma 9.

Finally, we show that any neighbor of a vertex x which is not a cut vertex

and which lies on a shortest cycle must have degree three neighbors. At this stage,

we have a critical graph which is almost locally cubic.

Lemma 10. Let G be a connected subcubic critical graph of order n satisfying δ(G) ≥

2 and having girth at least 5. Let B be an end-block of G with |V (B)| ≥ 6 containing

a shortest cycle X. Suppose that x ∈ V (X) is not a cut vertex of G with N [x] ⊆ S3.

Let u ∈ N(x) \X and suppose that u is not a cut vertex of G. If N(u) ∩ S2 6= ∅,
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Figure 2.14: The Cycle of Lemma 10

i(G) ≤
3(n+ 1)

7
.

Proof. We proceed by induction on the number of vertices. By Lemma 5, we may

assume that the bound holds for every graph with order n ≤ 7. Suppose that every

graph with fewer than n vertices satisfies our lemma and consider a graph with n

vertices that satisfies the hypothesis. Let X be a shortest cycle of the end-block B

and suppose that x = x1 ∈ V (X) ∩ S3 is not a cut vertex of G.

From our previous work, we may now assume that for each x ∈ V (X) that

N [x] ⊆ S3 provided x is not a cut vertex. If x′ is a cut vertex and u′ ∈ N(x′) \X ,

then 2 ≤ d(u′) ≤ 3. Additionally, if x′ is not a cut vertex but u′ is a cut vertex, then

u′ ∈ S3 since otherwise x′ would also be a cut vertex. Thus, there can be at most

one degree two neighbor in U = N(X) \X . Thus, we may assume that X ∩ S2 = ∅

and |U ∩ S2| ≤ 1 provided |V (B)| ≥ 6.

Next, we can labelX as in Lemma 9 (see Figure 2.14). Let u = u1 ∈ N(x1)\X

and let u2, u3 ∈ N(u1) \ {x1} with d(u2) ≤ d(u3). Then, since u1 is not a cut vertex,
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u3 ∈ S3 by Lemma 7. Then, u2 ∈ S2 so let u′

2 ∈ N(u2) \ {u1}. Since u1 is not a

cut vertex, u′

2 ∈ S3 by Fact 4 so let u′′

2, u
′′′

2 ∈ N(u′

2) \ {u2}. Let P = N [u2] and

R = N [u1].

Case 1: u3 is not a cut vertex.

Let u′

3, u
′′

3 ∈ N(u3) \ {u1} with d(u′′

3) ≤ d(u′

3) where u′

3 ∈ S3 by Lemma 7. There are

two subcases.

Case 1.1: u′′

3 ∈ S2.

Let u′′′

3 ∈ N(u′′

3) \ {u3} where u′′′

3 ∈ S3 by Fact 4. Let Y = R ∪ {u′′

3}. Then, at least

one of G′

1 = G − Y + u′′′

3 x3 or G′

2 = G − Y + u′′′

3 u
′

2 is connected. Applying Fact 2

shows the result holds.

Case 1.2: u′′

3 ∈ S3.

Case 1.2.1: u′

2 is not a cut vertex.

If ω(G − P ) = 1, apply Fact 4. Suppose that ω(G − P ) = 2 with components H

and H ′. Since at most one of x2, x3 can be a cut vertex we can assume that x3

is not a cut vertex. Then u′′

2 and u′′′

2 are in different components of G − P . Let

Y = R ∪ {x3}. Then, ω(G− Y ) ≤ 2 since u3 is not a cut vertex. Therefore, at least

one of G′

1 = G− Y + u′

2x5, G
′

2 = G− Y + u′

3x5, or G
′

3 = G− Y + u′′

3x5 is connected.

Applying Fact 2 shows the result holds.

Case 1.2.2: u′

2 is a cut vertex.

Then, x2 and x3 are not cut vertices. If ω(G− R) = 1, then apply Fact 4. Suppose

that ω(G − R) = 2 with components F and F ′ and without loss of generality we

may assume that u′

2, u
′

3 ∈ V (F ) and u′′

3 ∈ V (F ′). Then, u′

3 and u′′

3 are in different

components of G−R. Let Y = R∪{x3} and Y ′ = R+{x2}. Then, either G1 = G−Y

or G2 = G − Y ′ has at most two components so assume that ω(G1) ≤ 2. Then, at
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least one of G1 + u′

3x5 or G1 + u′′

3x5 is connected. Applying Fact 2 shows the result

holds.

Case 2: u3 is a cut vertex.

Then, u′

2 is not a cut vertex. If ω(G−P ) = 1, apply Fact 4. Suppose that ω(G−P ) =

2 with components H and H ′. Then, u′′

2 and u′′′

2 are in different components of G−P

so we may assume that u′′

2, u3 ∈ V (H) and u′′′

2 ∈ V (H ′). Let Y = N [x1] ∪ {u2} and

w ∈ N(x2) \X , w′ ∈ N(x3) \X with w,w′ ∈ S3 by Lemma 9. Then, since x2 and x3

are not a cut vertices, ω(G− Y ) = 2. Therefore, at least one of G′

1 = G− Y + u′

2x5

or G′

2 = G − Y + u′

2w is connected. Applying Fact 2 shows the result holds. This

completes Lemma 10.

Using the lemmas just proven we can now assume that any vertex on the cycle

that isn’t a cut vertex has degree three neighbors. This will allow us to perform the

necessary induction surgery and eliminate many cases that use the same surgery

repeatedly.

Before we can begin the proof of Theorem 3, we need to introduce several

theorems involving the properties of blocks and the idea of the block decomposition

of a connected graph.

Since the graph of Theorem 3 is connected and has minimum degree two we

know it contains a cycle and that each cycle of G lies in some block of G. Thus,

we let B be an endblock of G provided G is 1-connected or if κ(G) ≥ 2 then we

can let B = G. In either case, we can consider the smallest cycle in B and when G

is 1-connected we can exploit the fact that the endblock contains at most one cut

vertex of G when we perform the required surgery.
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2.1.3 Proof of Main Result

We are ready to prove the main theorem. Using the lemmas above we can

now complete the proof of Theorem 4.

Theorem 4 If G is a connected subcubic graph of order n and minimum degree

δ(G) ≥ 2, then

i(G) ≤
3(n+ 1)

7
.

Proof. We proceed by induction on the number of vertices. By Lemma 5, the bound

holds when n ≤ 7. Suppose that every graph with fewer than n vertices satisfies

the bound and consider a graph with n vertices that satisfies the hypothesis. Before

proceeding, recall that we only need to show that the result holds for critical graphs

since non-critical graphs satisfy i(G) ≤ i(G′) where G′ was constructed in Fact 1.

To finish the proof, we can choose an endblock B with the maximum number

of vertices. Then, since δ(G) ≥ 2 and the cycles are contained in the blocks of G,

we can choose the shortest cycle in B and proceed with cases. When |V (B)| ≥ 6

we can apply the Lemmas above (8,9, & 10) and this will be Case A below but for

|V (B)| ≤ 5 we must address several different cases (Case B below). We can further

subdivide the two cases by considering the girth of G (i.e. g(B) = 3, 4, ...). Addi-

tionally, recall that when κ(G) ≥ 2 we let B = G. Also, observe by Lemma 1 we

can eliminate the case of g(B) = 3 when the triangle has more than one degree three

vertex because we only need to consider critical graphs.

Case A: |V (B)| ≥ 6.

Let B be an endblock of G which satisfies |V (B)| ≥ 6 and let X be a shortest cycle in

B. Since |V (B)| ≥ 6 we may assume that g(B) ≥ 4. We can proceed with increasing
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girth in each of the cases below.

Case 1: g(B) = 4.

Let X = {x1, x2, x3, x4} form a cycle where the index increases in the clockwise

direction so that x1x2x3x4x1 is a 4-cycle. For each of the subcases below, we consider

the number of degree three vertices on the cycle in increasing order (i.e. |X∩S3| ≥ 2).

Case 1.1: |X ∩ S3| = 2.

There are two further subcases that must be considered.

Case 1.1.1: x1, x2 ∈ S3 and x3, x4,∈ S2.

Let u1 ∈ N(x1) \ {x2, x4} and u2 ∈ N(x2) \ {x1, x3}. Since B is an endblock x1 and

x2 cannot be cut vertices. This is true because if x1 were a cut vertex there would be

no path P in G−X joining u1 and u2 (shown in Figure 2.10). Thus, x2 would also be

a cut vertex and since B is an endblock it has exactly one cut vertex. So, x1 and x2

are not cut vertices. Therefore, by Lemma 7, x1 satisfies |N(x1) ∩ S2| ≤ 1 and since

x4 ∈ N(x1) ∩ S2 we must have u1 ∈ S3. Similarly, x2 satisfies |N(x2) ∩ S2| ≤ 1 and

since x3 ∈ N(x2)∩ S2 we know that u2 ∈ S3. By Lemma 3, e1 = x1u1 and e2 = x2u2

are non-critical edges and we have assumed that G is a critical graph. Therefore,

this case can’t occur.

Now, that we have completed Case 1.1.1, we may assume that |X ∩ S3| ≥ 2

and x1, x3 ∈ S3. Therefore, we can show the following result and apply it in each

of the subcases below (for the remainder of Case 1). Suppose that |X ∩ S3| ≥ 2

with x1, x3 ∈ S3 and u1 ∈ S2 where u′

1 ∈ N(u1) \ X . If u′

1 is not a cut vertex and

u′

1 = u3 ∈ S3, then e = u′

1x3 is not a critical edge of G. Suppose as stated and

let H = G − e. Then, let IH be an MIDS of H . Suppose that e is a critical edge

of G. Next, since u1 is not a cut vertex, e is not a cut edge and β(x1, u
′

1) = 3, so

i(H) < i(G). Then, as in Lemmas 1-4, x1, u
′

1 ∈ IH . Therefore, I = IH \ {x3} ∪ {x1},
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which gives a contradiction. Hence, u′

1 6= u3.

Case 1.1.2: x1, x3 ∈ S3 and x2, x4,∈ S2.

Let u1 ∈ N(x1) \ {x2, x4} and u3 ∈ N(x3) \ {x2, x4}. Since B is an endblock and

satisfies |V (B)| ≥ 6, u1 6= u3. Next, using the same argument as in Case 1.1.1, since

B is an endblock x1 and x3 cannot be cut vertices. Then, by Lemma 7, we know

that u1, u3 ∈ S3. Suppose that u1u3 /∈ E. If u1 is not a cut vertex, then by Lemma 7

|N(u1)∩S2| ≤ 1 so we may assume that d(u′′

1) ≤ d(u′

1) = 3 where u′

1, u
′′

1 ∈ N(u1)\{x1}

(shown in Figure 2.15). Next, if u′′

1u3 /∈ E, then G′ = G−(X+u1)+u′′

1u3 is connected

and satisfies δ(G′) ≥ 2. By induction, G′ has a MIDS I ′ so we can use I ′ to construct

I. Therefore, we must show that i(G) ≤ i(G′) + 2 since we removed 5 vertices. If

u′′

1, u3 /∈ I ′ or u′′

1 ∈ I ′, let I = I ′ ∪ {x1, x3}. If u3 ∈ I ′, let I = I ′ ∪ {x1, u
′′

1} when

N(u′′

1) ∩ I ′ = ∅ and I = I ′ ∪ {x1} otherwise. Hence, i(G) ≤ i(G′) + 2 as required.

If u′′

1u3 ∈ E, then let G′ = G − (X + u1) and I = I ′ ∪ {x1, x3} when u3 /∈ I ′ and

I = I ′ ∪ {x1} when u3 ∈ I ′.

If u1 is a cut vertex, then u3 is not a cut vertex so let d(u′′

3) ≤ d(u′

3) = 3 where

u′

3, u
′′

3 ∈ N(u3) \ {x3}. Then, let G
′ = G− (X + u3) + u′′

3u1 and repeat the argument

from above (i.e. exchanging the roles of u1 and x1 with u3 and x3).

Now, consider when u1u3 ∈ E. Since B is an endblock, u1 and u2 are not cut

vertices so |{u1, u3} ∩ S3| ≥ 1. If u1, u3 ∈ S3, then let u′

1 ∈ N(u1) \ {x1} and u′

3 ∈

N(u3)\{x3}. If u
′

1, u
′

3 ∈ S3, we can let G′ = G−(X+u1+u3) and let I = I ′∪{x1, x3}.

If u′

1, u
′

3 ∈ S2 or u′

1 ∈ S2 and u′

3 ∈ S3, let G
′ = G− (X + u1 + u3 + u′

1) + u′′

1u
′

3 where

u′′

1 ∈ N(u′

1) \ {u1}. Then, if u′′

1, u
′

3 /∈ I ′, we can let I = I ′ ∪ {u1, x3}. If u′′

1 ∈ I ′, we

can let I = I ′ ∪ {u3, x1} and if u′

3 ∈ I ′, we can let I = I ′ ∪ {x1, x3, u
′

1}.

Now, suppose that u1u3 ∈ E where u3 ∈ S2 and u1 ∈ S3. Again, we let

u′

1 ∈ N(u1) \ {x1}. If u′

1 ∈ S3, let G′ = G − (X + u1 + u3). Then, |V (B)| = 6
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Figure 2.15: u1 is not a cut vertex and ω(G− (X + u3)) = 2

and so we let I = I ′ ∪ {x1, x3}. If u′

1 ∈ S2, let u′′

1 ∈ N(u′

1) \ {u1}. If u′′

1 ∈ S3, let

G′ = G− (X +u1+u3+u′

1) and I = I ′∪{u1, x3}. If u
′′

1 ∈ S2, let u
′′′

1 ∈ N(u′′

1) \ {u
′

1}.

Then, u′′′

1 ∈ S3 by Lemma 6, so we can let G′ = G − (X + u1 + u3 + u′

1 + u′′

1) and

I = I ′ ∪ {u′

1, x1, x3}. This completes Case 1.1.

Case 1.2: |X ∩ S3| = 3.

Suppose that x1, x2, x3 ∈ S3 and x4,∈ S2. As before, let U = N(X) \ X and

ui ∈ N(xi) \ X so that u1 ∈ N(x1) \ {x2, x4}, u2 ∈ N(x2) \ {x1, x3}, and u3 ∈

N(x3) \ {x2, x4}. By Lemma 2, we know that u1u2, u2u3 /∈ E(G). There are several

subcases to consider: x1 is a cut vertex, x2 is a cut vertex, and x3 is a cut vertex.

However, the case x1 is a cut vertex and x3 is a cut vertex are the same (symmetry).

Additionally, we need to consider when u1 is cut vertex but x1 is not a cut vertex.

In this case, the argument is the same as when x1 is a cut vertex. Next, if u2 is a cut

vertex but x2 is not a cut vertex, this would imply that u2 ∈ S3 but then the graph

would not be critical (see Lemma 4) so this case isn’t possible.

Observe that when x3 is a cut vertex, then u1 ∈ V (B) but u3 /∈ V (B).

Therefore, u1 6= u3 and a similar result holds when x1 is a cut vertex. When x2 is
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Figure 2.16: x3 is a cut vertex and G− (X + u2) has two components H and H ′

a cut vertex, x1 and x3 are not cut vertices with u1, u3 ∈ S3 by Lemma 7. Then

u1 6= u3 because B is an endblock and u1, u3 ∈ V (B) are not cut vertices. Thus,

u1 6= u3 for Cases 1.2.1-1.2.3. We can also assume that u1u3 /∈ E(G) when x3 is a

cut vertex (or x1 is cut) since u1 ∈ V (B) but u3 /∈ V (B).

Case 1.2.1: Suppose that x3 is a cut vertex, u1 6= u3, and u1u3 /∈ E(G). Since B

is an endblock and x3 is a cut vertex, x1 is not a cut vertex so u1 ∈ S3 by Lemma

7. Since x2 is not a cut vertex and G is a critical graph, u2 ∈ S2 by Lemma 4. Let

u′

2 ∈ N(u2) \ {x2}. Next, since x2 is not a cut vertex, there is a (u1, u
′

2)-path P

in G − (X + u2) (see Figure 2.16). Then, G − (X + u2) + u′

2u3 is connected and

δ(G′) ≥ 2. Next, we need to show that i(G) ≤ i(G′) + 2.

Surgery A G′ = G− (X + u2) + u′

2u3.

If u′

2, u3 /∈ I ′, we let I = I ′ ∪ {x2, x4}. If u3 ∈ I ′, let I = I ′ ∪ {u2, x4}. If u
′

2 ∈ I ′, let
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Figure 2.17: Surgery B where x2 is a cut vertex

I = I ′ ∪ {x1, x3} provided u1 /∈ I ′ and I = I ′ ∪ {x3} when u1 ∈ I ′. Finally, observe

that this surgery also works when u3 is a cut vertex but x3 is not a cut vertex. We

will call this Surgery A since we need it again below.

Case 1.2.2: Suppose that x1 is a cut vertex. Then, by symmetry, we can repeat

the argument in Case 1.2.1.

Case 1.2.3: Suppose that x2 is a cut vertex (see Figure 2.17) and u1 6= u3. Then,

x1 is not a cut vertex so it must satisfy |N(x1) ∩ S2| ≤ 1 (again Lemma 7). Since

x4 ∈ N(x1)∩S2, then u1 ∈ S3 . Similarly, x3 is not a cut vertex so u3 ∈ S3 by Lemma

7. Additionally, since B is an endblock and x2 is a cut vertex, u1 is not a cut vertex

and satisfies |N(u1)∩ S2| ≤ 1 again by applying lemma 7. Let u′

1, u
′′

1 ∈ N(u1) \ {x1}

with d(u′′

1) ≤ d(u′

1) = 3. Suppose that u1u3 /∈ E(G). Then, ω(G− (X + u1)) = 2 so

G′ = G− (X + u1) + u′′

1u2 is connected and satisfies δ(G′) ≥ 2. We call this Surgery

B.
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Surgery B G′ = G− (X + u1) + u′′

1u2.

Then, if u′′

1, u2 /∈ I ′, let I = I ′∪{x1, x3} when u3 /∈ I ′ and I = I ′∪{x1} when u3 ∈ I ′.

If u′′

1 ∈ I ′, then let I = I ′ ∪ {x2, x4}. If u2 ∈ I ′, then let I = I ′ ∪ {u′′

1, x4} when

N(u′′

1) ∩ I ′ = ∅. If N(u′′

1) ∩ I ′ 6= ∅, let I = I ′ ∪ {x1, x3} if u3 /∈ I ′ and I = I ′ ∪ {x1}

when u3 ∈ I ′. Finally, observe that the surgery works for d(u′′

1) = 2 and d(u′′

1) = 3.

Now, suppose that u1u3 ∈ E(G). If u2 ∈ S2, then we can let G′ = G −

(X + u2) + u′

2u3 and use Surgery A of Case 1.2.1. Suppose that u2 ∈ S3 and let

u′

2, u
′′

2 ∈ N(u2) \ {x2}. Then, G′ = G − (X + u2) + u1u
′′

2 + u3u
′

2 is connected and

satisfies the minimum degree condition but we must show that i(G) ≤ i(G′)+2 since

we removed 5 vertices. First, if u1, u3, u
′

2, u
′′

2 /∈ I ′, then let I = I ′ ∪ {x2, x4}. Next,

if u1 ∈ I ′ but u3, u
′

2, u
′′

2 /∈ I ′, let I = I ′ ∪ {x3, u2}. If u3 ∈ I ′ but u1, u
′

2, u
′′

2 /∈ I ′,

let I = I ′ ∪ {x1, u2}. If u′

2 ∈ I ′ but u1, u3, u
′′

2 /∈ I ′ or u′′

2 ∈ I ′ but u1, u3, u
′

2 /∈ I ′ let

I = I ′ ∪ {x1, x3}. If u1, u
′

2 ∈ I ′, then let I = I ′ ∪ {u′′

2, x3} and if u3, u
′′

2 ∈ I ′, then let

I = I ′ ∪ {u′

2, x3}. If u
′

2, u
′′

2 ∈ I ′, then I = I ′ ∪ {x1, x3}. This completes Case 1.2.3.

Case 1.2.4: No cut vertex in X ∪ U . Now, suppose that u1 6= u3. Then, from

above we know that u1, u3 ∈ S3 by Lemma 7 and u2 ∈ S2 by Lemma 4. Let

u′

2 ∈ N(u2) \ {x2}. Then, we can let G′ = G− (X + u2) + u′

2u3 and use Surgery A

above. Next, if u1 = u3 ∈ S3, then let G′ = G− (X + u1 + u2) + u1u
′

2. If u1, u
′

2 /∈ I ′,

let I = I ′ ∪ {x2, x4}. If u1 ∈ I ′, let I = I ′ ∪ {u2, x4}. If u
′

2 ∈ I ′, let I = I ′ ∪ {x1, x3}.

This completes Case 1.2.

Case 1.3: |X ∩ S3| = 4.

Suppose that xi ∈ S3 and let ui ∈ N(xi) \ X for 1 ≤ i ≤ 4. Additionally, let

u′

i ∈ N(ui) \ {xi} and when ui ∈ S3 let u′′

i ∈ N(ui) \ {xi}. By Lemma 2, we know

that u1u2, u2u3, u3u4, u4u1 /∈ E(G). Since g(B) > 3, ui 6= ui+1 for 1 ≤ i ≤ 4. Next,

X can have only one cut vertex. Then, if x1 is a cut vertex, x3 is not a cut vertex
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so u1 6= u3. Similarly, when x3 is a cut vertex, x1 is not a cut vertex so u1 6=3. By

the same argument, u2 6= u4 whenever x2 isn’t a cut vertex (or x4). If X has no cut

vertex but U has a cut vertex, then since U has at most one cut vertex u1 6= u3 and

u2 6= u4 (by the same argument). If u1 = u3 ∈ S2, let G′ = G − (X + u1) + u2u4.

If u2, u4 /∈ I ′, let I = I ′ ∪ {x1, x3}. If u2 ∈ I ′, let I = I ′ ∪ {u1, x4}. If u4 ∈ I ′, let

I = I ′ ∪ {u1, x2}.

There are two cases to consider. Either X has a cut vertex or X has no

cut vertex but U has a cut vertex. Additionally, we can suppose (without loss of

generality) that x3 is the cut vertex of G lying on the cycle whenever there is a

cut vertex on the cycle (use symmetry). Before we complete the proof, we need the

following claim.

Claim 1. If xi is not a cut vertex, then ui ∈ S3.

Proof. Suppose that xi is not a cut vertex and ui ∈ S2. Let u′

i ∈ N(ui) \X and let

i = 1.

Case C.1: u′

1 ∈ S2.

Let u′′

1 ∈ N(u′

1) \ {u1}. Then, u′′

1 ∈ S3 by Lemma 6. Then, G′ = G− {x1, u1, u
′

1} is

connected. Applying Fact 4 shows the result holds in this case.

Case C.2: u′

1 ∈ S3.

Again, since x1 is not a cut vertex, neither is u1 but we must consider whether or

not u′

1 is a cut vertex.

Case C.2.1: u′

1 is not a cut vertex.

Then N(u′

1) \ {u1} ⊆ S3 by Lemma 7. Then, G′ = G − {x1, u1, u
′

1} is connected.

Applying Fact 4 shows the result holds.

Case C.2.2: u′

1 is a cut vertex.

51



First, since u′

1 is a cut vertex, we know that u′

1 6= u2, u4. Also, we have shown above

that u′

1 6= u3 (see the discussion between Case 1.1.1 and Case 1.1.2). Then u′

1 is

the only cut vertex of B, so ω(G − u′

1) = 2. Therefore, ω(G − (X + u1)) = 2 with

components H and H ′. Next, since we can’t use Lemmas 7-10 we cannot assume

U \ {u1} ⊆ S3. Thus, we must add two edges in order to reduce the number of cases.

Then at least one of the following is connected: G′ = G − (X + u1) + u′

1u3 + u2u4,

G′ = G − (X + u1) + u′

1u4 + u2u3, or G′ = G − (X + u1) + u′

1u2 + u3u4. We use

Surgery C.2 when u2, u4 ∈ H ′ and u′

1, u3 ∈ H and use Surgery C.1 otherwise. The

graph G′ is always connected and δ(G′) ≥ 2 in each case.

Surgery C.1 G′ = G− (X + u1) + u′

1u3 + u2u4.

Next, if u′

1 ∈ I ′ and u2, u3, u4 /∈ I ′, let I = I ′∪{x1, x3}. If u2 ∈ I ′ and u′

1, u3, u4 /∈ I ′,

let I = I ′ ∪ {u1, x4}. If u3 ∈ I ′ and u′

1, u2, u4 /∈ I ′, let I = I ′ ∪ {x1, u
′

1} when

N(u′

1) ∩ I ′ 6= ∅ and I = I ′ ∪ {x1} otherwise. If u4 ∈ I ′ and u′

1, u2, u3 /∈ I ′, let

I = I ′∪{u1, x2}. If u2, u3 ∈ I ′, let I = I ′∪{u1, x4} and u3, u4 ∈ I ′, let I = I ′∪{u1, x2}.

If u′

1, u4 ∈ I ′, let I = I ′ ∪ {x2, u3} when N(u3) ∩ I ′ 6= ∅ and I = I ′ ∪ {x2} otherwise.

If u′

1, u2 ∈ I ′, let I = I ′ ∪ {x4, u3} when N(u3) ∩ I ′ 6= ∅ and I = I ′ ∪ {x4} otherwise.

Surgery C.2 G′ = G− (X+u1)+u′

1u4+u2u3 or G
′ = G− (X+u1)+u′

1u2+u3u4.

First, note that both surgery are the same by symmetry so we will show the first

case when G′ = G− (X + u1) + u′

1u4 + u2u3. Next, if u
′

1 ∈ I ′ and u2, u3, u4 /∈ I ′, let

I = I ′ ∪ {x2, x4}. If u2 ∈ I ′ and u′

1, u3, u4 /∈ I ′, let I = I ′ ∪ {x1, x3}. If u3 ∈ I ′ and

u′

1, u2, u4 /∈ I ′, let I = I ′ ∪{x1, u2} when N(u2)∩ I ′ 6= ∅ and I = I ′ ∪{x1} otherwise.

If u4 ∈ I ′ and u′

1, u2, u3 /∈ I ′, let I = I ′ ∪ {u1, x2}. If u2, u4 ∈ I ′, let I = I ′ ∪ {u1, x3}

and u3, u4 ∈ I ′, let I = I ′∪{u1, x2}. If u
′

1, u3 ∈ I ′, let I = I ′∪{x2, x4}. If u
′

1, u2 ∈ I ′,

let I = I ′ ∪ {x4, u3} when N(u3) ∩ I ′ 6= ∅ and I = I ′ ∪ {x4} otherwise.
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Figure 2.18: ω(G− (X + u1)) = 3

Now, we may assume that ui ∈ S3 whenever xi is not a cut vertex. Thus, for Cases

1.3.1 and 1.3.2 we may assume that u1, u2, u4 ∈ S3 whenever x3 is a cut vertex or u3

is a cut vertex.

Case 1.3.1: X has a cut vertex.

Suppose (without loss of generality) that x3 is the cut vertex. Then, as stated above,

u1, u2, u4 ∈ S3. Thus, N(X) \ {u3} ⊆ S3. Next, let u′

1, u
′′

1 ∈ N(u1) \ {x1} with

d(u′′

1) ≤ d(u′

1) = 3. Then, u′

1 ∈ S3 by Lemma 7.

Case 1.3.1.1: u′′

1 ∈ S2.

Let u′′′

1 ∈ N(u′′

1) \ {u1}. Next, let v1, v2 ∈ N(u′′′

1 ) \ {u′′

1} and since u′′′

1 is not a

cut vertex, v1, v2 ∈ S3 (by Lemma 7). If ω(G − P ) = 1, apply Fact 4. Suppose

that ω(G − P ) = 2 with components H and H ′. Then v1 and v2 are in different

components of G−P . Therefore, G = G′− (X+u1)+u′′

1u3 is connected and satisfies

δ(G′) ≥ 2 but we need to show that i(G) ≤ i(G′) + 2. If u′′

1, u3 /∈ I ′ or u′′

1 ∈ I ′, let
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I = I ′ ∪ {x1, x3}. If u3 ∈ I ′, let I = I ′ ∪ {x1, u
′′

1} when u′′′

1 /∈ I ′ and I = I ′ ∪ {x1}

otherwise.

Case 1.3.1.2: u′′

1 ∈ S3.

Then, if we let G′ = G−(X+u1)+u2u4+u′′

1u3, the graph remains connected because

x3 is not a cut vertex. Then, applying Surgery C below shows the result holds.

Surgery C: G′ = G− (X + u1) + u′′

1u3 + u2u4 =⇒ i(G) ≤ i(G′) + 2

If {u′′

1, u2, u3, u4}∩I
′ = ∅, then let I = I ′∪{x1, x3}. Now, suppose that |{u

′′

1, u2, u3, u4}∩

I ′| = 1. If u′′

1 ∈ I ′, let I = I ′ ∪ {x1, x3}. Next, suppose u2 ∈ I ′. Then if u′

1 /∈ I ′,

let I = I ′ ∪ {x4, u1}. If u′

1 ∈ I ′, let I = I ′ ∪ {x4, u
′′

1} provided N(u′′

1) ∩ I ′ = ∅ and

I = I ′ ∪ {x4} otherwise. If u3 ∈ I ′, let I = I ′ ∪ {x1, u
′′

1} provided N(u′′

1)∩ I ′ = ∅ and

I = I ′ ∪{x1} otherwise. Now, suppose u4 ∈ I ′. Then if u′

1 /∈ I ′, let I = I ′ ∪ {x2, u1}.

If u′

1 ∈ I ′, let I = I ′ ∪ {x2, u
′′

1} provided N(u′′

1)∩ I ′ = ∅ and I = I ′ ∪ {x2} otherwise.

Finally, suppose that |{u′′

1, u2, u3, u4}∩I ′| = 2. If u′′

1, u2 ∈ I ′, let I = I ′∪{x4, u3} pro-

vided N(u3)∩ I ′ = ∅ and I = I ′ ∪ {x4} otherwise. If u′′

1, u4 ∈ I ′, let I = I ′ ∪ {x2, u3}

provided N(u3) ∩ I ′ = ∅ and I = I ′ ∪ {x2} otherwise. Suppose that u2, u3 ∈ I ′. If

u′

1 /∈ I ′, let I = I ′ ∪ {x4, u1}. If u
′′

1 ∈ I ′ and N(u′′

1) ∩ I ′ = ∅, let I = I ′ ∪ {x4, u
′′

1}. If

u′′

1 ∈ I ′ and N(u′′

1) ∩ I ′ 6= ∅, let I = I ′ ∪ {x4}. Suppose that u3, u4 ∈ I ′. If u′

1 /∈ I ′,

let I = I ′ ∪ {x2, u1}. If u′′

1 ∈ I ′ and N(u′′

1) ∩ I ′ = ∅, let I = I ′ ∪ {x2, u
′′

1}. If u′′

1 ∈ I ′

and N(u′′

1) ∩ I ′ 6= ∅, let I = I ′ ∪ {x2}.

Case 1.3.2: X has no cut vertex but U has a cut vertex.

Let u′

i, u
′′

i ∈ N(ui) \ {xi} with d(u′′

i ) ≤ d(u′

i) where u′

i ∈ S3 by Lemma 7 and

1 ≤ i ≤ 4. Then, ω(G−X) ≤ 2. Since U has at most one cut vertex we may assume

that u1 is not the cut vertex. If ω(G−X) = 1, then let G′ = G− (X + u1) + u′′

1u3

and use the surgery of Case 1.3.1.1. If ω(G − X) = 2 with u′′

1 and u3 in different

components of G−X , then let G′ = G− (X+u1)+u′′

1u3 and use the surgery of Case
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1.3.1.1. If ω(G−X) = 2 with u′′

1 and u3 in the same component of G−X , then let

G′

1 = G− (X + u1) + u′

1u2 + u′′

1u4, and use surgery D (below).

Surgery D G′

i = G− (X + ui) + u′

iui+1 + u′′

i ui+3 =⇒ i(G) ≤ i(G′

i) + 2

Let i = 1. If {u′

1, u
′′

1, u2, u4} ∩ I ′ = ∅, then let I = I ′ ∪ {x1, x3} when u3 /∈ I ′ and

I = I ′ ∪ {x1} otherwise. Next, suppose that |{u′

1, u
′′

1, u2, u4} ∩ I ′| = 1. If u′

1 ∈ I ′

or u′′

1 ∈ I ′, let I = I ′ ∪ {x2, x4}. If u2 ∈ I ′, let I = I ′ ∪ {u1, x4}. If u4 ∈ I ′, let

I = I ′ ∪ {u1, x2}. Now, suppose that |{u′

1, u
′′

1, u2, u4} ∩ I ′| = 2. If u′

1, u
′′

1 ∈ I ′, let

I = I ′ ∪ {x2, x4}. If u′

1, u4 ∈ I ′, let I = I ′ ∪ {x2, u
′′

1} when N(u′′

1) ∩ I ′ 6= ∅ and

I = I ′ ∪ {x2} otherwise. If u′′

1, u2 ∈ I ′, let I = I ′ ∪ {x4, u
′

1} when N(u′

1) ∩ I ′ 6= ∅

and I = I ′ ∪ {x4} otherwise. If u2, u4 ∈ I ′, let I = I ′ ∪ {u1, x3} when u3 /∈ I ′ and

I = I ′ ∪ {u1} otherwise.

Case 2: g(B) = 5.

Let X = {x1, x2, x3, x4, x5} form a 5-cycle with x1x2x3x4x5x1 and |X ∩ S3| = 5 by

Lemma 9. Let U = N(X) \ X where ui ∈ N(xi) \ X . Additionally, note that

ui 6= ui+1, ui 6= ui+2 and uiui+1 /∈ E(G) for all i ∈ [5] since g(B) = 5.

Case 2.1: X has no cut vertex.

Then, G−X satisfies ω(G−X) ≤ 2 and |U ∩S3| = 5. If ω(G−X) = 1, then let G′ =

G−X+u2u4. Then, if u2, u4 /∈ I ′, let I = I ′∪{x2, x4}. If u2 ∈ I ′, let I = I ′∪{x1, x4}

if u1 /∈ I ′ and I = I ′ ∪ {x4} otherwise. If u4 ∈ I ′, let I = I ′ ∪ {x2, x5} if u5 /∈ I ′ and

I = I ′∪{x2} otherwise. If ω(G−X) = 2, then ui, uj, uk ∈ V (H) and ur, us ∈ V (H ′)

where H and H ′ are the two components of G−X and i, j, k, r, s ∈ [5]. Here, if we

remove X , we need to add an edge which joins a vertex in {ui, uj, uk} ⊆ V (H) to a

vertex in {ur, us} ⊆ V (H ′) to maintain connectivity. Thus, if G′ = G − X + uiur,

then we can show that whenever {i, r} ∈ {{1, 3}, {1, 4}, {2, 4}, {2, 5}, {3, 5}} = A

that G′ is connected, δ(G′) ≥ 2, and i(G) ≤ i(G′) + 2. Thus, when i = 1 and r = 3
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with u1 ∈ V (H) and u3 ∈ V (H ′) we let G′ = G − X + u1u3. Then, if u1, u3 /∈ I ′,

let I = I ′ ∪ {x1, x3}. If u1 ∈ I ′, let I = I ′ ∪ {x3, x5} if u5 /∈ I ′ and I = I ′ ∪ {x3}

otherwise. If u3 ∈ I ′, let I = I ′∪{x1, x4} if u4 /∈ I ′ and I = I ′∪{x1} otherwise. The

same argument works for all the other members of A by shifting the index. Since

G − X has only two components the graph G′ = G − X + uiur for {i, r} ∈ A is

always connected and satisfies δ(G′) ≥ 2.

Case 2.2: X has a cut vertex.

Now, suppose that x1 is the cut vertex. Then, G − X satisfies 2 ≤ ω(G −X) ≤ 3.

Next, ui ∈ S3 for i ≥ 2 by Lemma 8. Next, let u′

i, u
′′

i ∈ N(ui)\{xi}. Then, for i ≥ 2,

u′

i, u
′′

i ∈ S3 by Lemma 10.

Next, if ω(G−X) = 2, then suppose thatG−X has two components H andH ′

with u1 ∈ V (H) and ui ∈ V (H ′) for i ≥ 2. In this case, we can let G′ = G−X+u1u3

and use the surgery of Case 2.1. Now, suppose that ω(G − X) = 3 and let H , H ′,

and H ′′ be the three components of G − X where u1 ∈ V (H ′′). Then, one of the

following must occur. Either u2, u5 ∈ V (H) and u3, u4 ∈ V (H ′) or u2, u3 ∈ V (H)

and u4, u5 ∈ V (H ′) or u2, u4 ∈ V (H) and u3, u5 ∈ V (H ′). If u2, u5 ∈ V (H) and

u3, u4 ∈ V (H ′) or u2, u3 ∈ V (H) and u4, u5 ∈ V (H ′), then G′ = G−X +u2u4+u1u5

is connected. Then, we can apply Surgery E (below).

Surgery E: G′ = G−X + u2u4 + u1u5 =⇒ i(G) ≤ i(G′) + 2

If |{u1, u2, u4, u5}∩I
′| = 0, let I = I ′∪{x2, x4}. Suppose that |{u1, u2, u4, u5}∩I

′| = 1.

If u1 ∈ I ′ or u4 ∈ I ′, let I = I ′∪{x2, x5} and if u2 ∈ I ′ or u5 ∈ I ′, let I = I ′∪{x1, x4}.

Suppose that |{u1, u2, u4, u5} ∩ I ′| = 2. If u1, u2 ∈ I ′, let I = I ′ ∪ {x4, u5} provided

N(u5)∩I
′ = ∅ and I = I ′∪{x4} otherwise. If u4, u5 ∈ I ′, let I = I ′∪{x2, u1} provided

N(u1) ∩ I ′ = ∅ and I = I ′ ∪ {x2} otherwise. If u1, u4 ∈ I ′, let I = I ′ ∪ {x2, x5} and

if u2, u5 ∈ I ′, let I = I ′ ∪ {x1, x4}.
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Now, suppose that u2, u4 ∈ V (H) and u3, u5 ∈ V (H ′). Let u′

3, u
′′

3 ∈ N(u3) \

{x3} and Y ′ = {u3, u4, x3, x4, x5}. Then, G′ = G − Y ′ + x2u
′

3 is connected. Now,

we must show that i(g) ≤ i(G′) + 2. Then, if x2, u
′

3 /∈ I ′, let I = I ′ ∪ {u3, x4} when

u′′

3 /∈ I ′ and I = I ′ ∪ {x4} otherwise. Now, suppose that x2 ∈ I ′. If u′′

3 /∈ I ′ , let

I = I ′ ∪ {u3, x4}. If u′′

3 ∈ I ′ we can let I = I ′ ∪ {u′

3, x4} when N(u′

3) ∩ I ′ = ∅ and

I = I ′ ∪ {x4} otherwise. If u′

3 ∈ I ′, let I = I ′ ∪ {x2, x4} when N(x2) ∩ I ′ = ∅ and

I = I ′ ∪ {x4} otherwise.

Case 3: g(B) ≥ 6.

Let U = N(X) \ X where ui ∈ N(xi) \ X and u′

i, u
′′

i ∈ N(ui) \ {xi}. Then, from

our previous arguments, we know that ui, u
′

i, u
′′

i ∈ S3. Suppose that g(B) ≥ k ≥ 6

and let X be the shortest cycle of B with X = {xi : i ≤ k} and xixi+1 ∈ E(B) for

i ∈ [k]. Also note that ui 6= ui+1, ui 6= ui+2, ui 6= ui+3 and uiui+1, uiui+2 /∈ E(G)

since g(B) ≥ 6. Additionally, since B can have at most one cut vertex, we may

assume that xi and ui are not cut vertices for 1 ≤ i ≤ 5 (we can always relabel the

index to guarantee this condition). Next, let R = N [x3].

Case 3.1: ω(G− R) = 1.

Then, apply Fact 4.

Case 3.2: ω(G− R) = 2.

Let G − R have components H and H ′ with Y = R ∪ x1 and Y ′ = R ∪ x5. Then,

we may assume (without loss of generality) that u2, u
′

3 ∈ V (H) and u′′

3, u4 ∈ V (H ′)

where there is either a (u′′

3, X)-path or a (u4, X)-path in G − R. If ω(G − Y ) = 1,

apply Fact 2. Suppose that ω(G − Y ) = 2. If u1 is not in the same component of

G − Y as u′′

3 and u4, then G′ = G − Y + u′′

3u1 is connected. If u1 is in the same

component of G − Y as u′′

3 and u4, then at least one of G′ = G − Y ′ + u′′

3u5 or

G′ = G− Y ′ + u′′

3x6 is connected. Applying Fact 2 to shows the result holds in both
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cases.

Case 3.3: ω(G− R) = 3.

Let G−R have components H , H ′, and H ′′ where x1, x5 ∈ V (H ′′). We may assume

(again without loss of generality) that u2, u
′

3 ∈ V (H) and u′′

3, u4 ∈ V (H ′). Next,

let R′ = N [x4]. Then, since u4 ∈ V (H ′), we know that u′

4, u
′′

4 ∈ V (H ′). Hence

ω(G− R′) = 1. Applying Fact 4 shows the result holds. This completes Case A.

Case B: |V (B)| ≤ 5.

First, define the endblock B1 to have the minimum number of vertices. Then, 3 ≤

|V (B1)| ≤ 5 and we know that G has at least two endblocks since B has a cut vertex.

Then, 3 ≤ g(B) ≤ 5 for every endblock of G since |V (B)| ≤ 5. Additionally, note

that even though an endblock of order |V (B)| = 4 might contain a path of length two

we cannot use Lemma 6 for this case because Lemma 6 requires |V (B)| ≥ 6. This

condition was necessary because the surgery G′ = G − V (B1) might fail in certain

cases (when there is a cut vertex and when we try to add edges).

Case 1: |V (B1)| = g(B1) = 3.

Let V (B1) = {v1, v2, v3} where v3 ∈ S3 is a cut vertex and d(v1) = d(v2) = 2 (By

Lemma 1). Suppose that v3v4 ∈ E(G) and v4 ∈ S3. Then, let G
′ = G− V (B1) and

I = I ′ ∪ {v2}. Now, suppose that v4 ∈ S2 and v3v4, v4v5 ∈ E(G) where v5 ∈ S3.

Then, let G′ = G− (V (B1)∪{v4}) and I = I ′ ∪{v3}. Next, suppose that v4, v5 ∈ S2

and v3v4, v4v5, v5v6 ∈ E(G) where v6 ∈ S3. Then, let G
′ = G−(V (B1)∪{v4, v5}) and

I = I ′∪{v4, v2}. Finally, suppose that v4, v5, v6 ∈ S2 and v3v4, v4v5, v5v6, v6v7 ∈ E(G)

where v7 ∈ S3. Then, let G
′ = G−{v4, v5, v6}+v3v7 and apply Fact 6. This completes

Case 1.

Case 2: |V (B1)| = 4 and g(B) = 4 for each endblock B.

Let V (B1) = {v1, v2, v3, v4} where v4 ∈ S3 is a cut vertex. By Lemma 1, we know

58



that v1v3 /∈ E(G) and this holds for each of the cases below so we may assume

that V (B1) \ {v4} ⊆ S2. Next, let v4v5 ∈ E(G). Then, v4 is a cut vertex of G so

ωB(G) ≥ 2 (i.e. there are at least two endblocks). There are two major cases to

consider. Either v5 ∈ S2 or v5 ∈ S3. Whenever v5 ∈ S2 we just remove the endblock

and any neighboring degree two vertices just as in Case 1. However, if v5 ∈ S3 we

must consider several cases.

Case 2.1: v5 ∈ S2.

Suppose that v5 ∈ S2 and v4v5, v5v6 ∈ E(G) where v6 ∈ S3. Then, let G′ =

G − (V (B1) ∪ {v5}) and I = I ′ ∪ {v2, v4}. Next, suppose that v5, v6 ∈ S2 and

v4v5, v5v6, v6v7 ∈ E(G) where v7 ∈ S3. Then, let G′ = G − (V (B1) ∪ {v5, v6}) and

I = I ′∪{v2, v5}. Finally, suppose that v5, v6, v7 ∈ S2 and v4v5, v5v6, v6v7, v7v8 ∈ E(G)

where v8 ∈ S3. Then, let G
′ = G−{v5, v6, v7}+v4v8 and apply Fact 6. This completes

Case 2.1.

Case 2.2: v5 ∈ S3.

Recall, that there are at least two endblocks. There are two possibilities. Either

every endblock has order 4 or every endblock satisfies 4 ≤ |V (B)| ≤ 5.

Case 2.2.1: There is an endblock B2 6= B1 such that |V (B2)| = 4.

Let V (B1) = {v1, v2, v3, v4} where v4 is a cut vertex and V (B2) = {u1, u2, u3, u4}

where u4 is a cut vertex. Next, let v1, v2, v3, u1, u2, u3 ∈ S2 and suppose that

v4v5, u4u5 ∈ E(G). We may assume that both u5, v5 ∈ S3 since otherwise we just re-

peat the argument of Case 2.1. Then, let G′ = G−(V (B2)∪{v1, v2, v3})+v4u5. Then,

if v4, u5 /∈ I ′ or v4 ∈ I ′, let I = I ′ ∪ {v2, u2, u4}. If u5 ∈ I ′, let I = I ′ ∪ {u2, v1, v3}.

Now, we may assume that there is only one endblock of order 4 (i.e. B1) and all the

other endblocks have order 5. However, every endblock satisfies g(B) = 4.

Case 2.2.2: For every endblock B2 6= B1, |V (B2)| = 5.
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Figure 2.19: G has at least two endblocks B1 and B2

Let V (B2) = {w1, w2, w3, w4, w5} where w5 ∈ S3 is the cut vertex. Suppose that

w5w6 ∈ E(G). Next, because g(B) = 4 for every endblock of G, we must have

w1w2, w1w3, w1w5, w2w4, w3w4, w4w5 ∈ E(B2) and w1w4, w2w3 /∈ E(B2) (see Fig-

ure 2.19).

Now, suppose that w5w6 ∈ E(G) and w6 ∈ S3. Then, let G′ = G − V (B2)

and I = I ′ ∪ {w1, w4}. We postpone the case w5w6, w6w7 ∈ E(G) with w6 ∈ S2

and w7 ∈ S3 until last (because w7 might be a cut vertex). Now, suppose that

w5w6, w6w7, w7w8 ∈ E(G) with w6, w7 ∈ S2 and w8 ∈ S3. Then let G′ = G−(V (B2)∪

{w6, w7}) and I = I ′ ∪ {w1, w4, w6}. Next, suppose that w5w6, w6w7, w7w8, w8w9 ∈

E(G) with w6, w7, w8 ∈ S2 and w9 ∈ S3. Then, let G′ = G − {w6, w7, w8} + w5w9

and apply Fact 6.

Next, v5 might be a cut vertex and w7 might be a cut vertex so we must

consider two separate cases. Now, suppose that w5w6, w6w7 ∈ E(G) with w7 ∈ S3

(Figure 2.19). Next, let w8, w9 ∈ N(w7) \ {w6} and l = ωB(G)− 2. Then, we label

the endblocks as follows. For each endblock B ∼= B2 we label the endblock Bi
2 and

let wi
k ∈ (V (Bi

2) ∪ {wi
6, w

i
7, w

i
8, w

i
9}) ↔ wk ∈ (V (B2) ∪ {w6, w7, w8, w9}) and wi

kw
i
j ∈

E(Bi
2) ∪ {wi

5w
i
6, w

i
6w

i
7, w

i
7w

i
8, w

i
7w

i
9} ↔ wkwj ∈ E(B2) ∪ {w5w6, w6w7, w7w8, w7w9}

where k, j ≤ 9 and i ≤ l. Then, we can let U = {v5, w7} ∪ {wi
7 : i ≤ l}.

Case 2.2.2.1: For any u ∈ U, ω(G− u) = 2.
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Let v6, v7 ∈ N(v5) \ {v4}. If v6, v7 ∈ S3, let G′ = G − (V (B1) ∪ {v5}) and I =

I ′ ∪ {v2, v4}. Since ω(G− v5) = 2, G′ is connected.

Now, suppose that v6 ∈ S2 and v7 ∈ S3. First, suppose that v′′6 , v7 ∈ S3 and

v6, v
′

6, v7 ∈ S2. Then, let G = G′ − (V (B1) ∪ {v5, v6, v
′

6}) and I = I ′ ∪ {v2, v4, v6}.

Now, suppose that v′6 ∈ S3 and let v′7, v
′′

7 ∈ N(v7) \ {v5}. Since ω(G − v5) = 2

there must be a (v6, v7)-path in G − v5. Therefore, ω(G − v7) ≤ 2. Let G − v7

have components H and H ′. Next, we may assume (without loss of generality) that

v′6, v
′

7 ∈ H and v′′7 ∈ H ′. Thus, ω(G− (V (B1) ∪ {v5, v6, v7}) = 2 with v′6, v
′

7 ∈ H and

v′′7 ∈ H ′. There are three further subcases to consider. Either v′7, v
′′

7 ∈ S3, v
′

7, v
′′

7 ∈ S2,

or |{v′7, v
′′

7} ∩ S2| = 1. Next, we need the following claim.

Claim 2. If v′7 ∈ S3, e = v7v
′

7, and there is a (v6, v
′

7)-path in G− v5, then e is not a

critical edge of G. A similar result holds for v′′7 .

Proof. We only need to show one case. Suppose that v′7 ∈ S3, e = v7v
′

7, and there is

a (v6, v
′

7)-path in G− v5. Now, by contradiction, suppose that e is a critical edge of

G. Let H = G− e and IH be a MIDS of H . Then, since β = 3 and e lies on a cycle,

i(H) < i(G). If v7 ∈ IH but v′7 /∈ IH , then |I| ≤ i(H) which is a contradiction. Thus,

we know that v7, v
′

7 ∈ IH . Next, let Z = N(v′′7 ) \ {v7}. There are two cases. First,

suppose that Z ∩ IH 6= ∅. If v4 ∈ IH , let I = IH \ {v7}. If v4 /∈ IH , then v1, v3 ∈ IH .

Thus, let I = IH \ {v1, v3, v7} ∪ {v2, v4}. In each case, we get a contradiction.

Now, suppose that Z ∩ IH = ∅. If v4 ∈ IH , let I = IH \ {v7} ∪ {v′′7}. If

v4 /∈ IH , then v1, v3 ∈ IH . Then, let I = IH \ {v1, v3, v7} ∪ {v2, v4, v
′′

7}. Again, we get

a contradiction in each case.

Now, by our claim, we may assume that |{v′7, v
′′

7} ∩ S2| ≥ 1. Next, we may

assume (without loss of generality) d(v′′7) ≤ d(v′7) where v′′7 ∈ S2, 2 ≤ d(v′7) ≤ 3,
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and where v′6 and v′′7 are in the same component of G − v7 (since ω(G − v7) = 2).

Then, let G = G′ − (V (B1) ∪ {v5, v6, v7, v
′′

7}) + v′7v
′′′

7 where v′′′7 ∈ N(v′′7) \ {v7}. If

v′7, v
′′′

7 /∈ I ′ or v′7 ∈ I ′, let I = I ′ ∪ {v2, v5, v
′′

7}. If v′′′7 ∈ I ′, let I = I ′ ∪ {v2, v5, v
′

7}

when N(v′7) ∩ I ′ = ∅ and I = I ′ ∪ {v2, v5} otherwise.

Suppose that v6, v7 ∈ S2. Let v′6 ∈ N(v6) \ {v5} and v′7 ∈ N(v7) \ {v5}. If

v′6, v
′

7 ∈ S2, then N({v′6, v
′

7}) \ {v6, v7} ⊆ S3) by Fact 6. Let v′′6 ∈ N(v′6) \ {v6} and

v′′7 ∈ N(v′7)\{v7}. In this case, we can let G = G′−(V (B1)∪{v5, v6, v
′

6, v7, v
′

7})+v4v
′′

6

and apply Fact 3. Now, suppose that v′′6 , v
′

7 ∈ S3 and v6, v
′

6, v7 ∈ S2. Then, let

G = G′ − (V (B1) ∪ {v5, v6, v
′

6, v7}) and I = I ′ ∪ {v2, v5, v
′

6} when v′′6 /∈ I ′ and

I = I ′ ∪ {v2, v5} otherwise. Finally, suppose that v6, v7 ∈ S2 and v′6, v
′

7 ∈ S3. Then,

let G = G′ − (V (B1) ∪ {v5, v6}) and I = I ′ ∪ {v2, v5}. This completes Case 2.2.2.1.

Case 2.2.2.2: For any u ∈ U, ω(G− u) = 3.

For this case, we can choose a longest path P (in G) joining two different vertices of

U . Since there can be at most one B1 at the end of P , there are two subcases that

must be considered. Either some vertex in U is adjacent to B1 (v4v5 ∈ E(G) and

v5 ∈ U) or every endblock is isomorphic to B2.

First, suppose that for some B, B ∼= B1. Then all the other endblocks are

isomorphic to B2. For simplicity, let us assume that v5 = w7 ∈ S3. That is, B1 and

B2 lie at the same end of P and all the other endblocks are isomorphic to Bi
2 for some

i ≤ l. Then, we must have wi
7 = wj

7 ∈ S3 for some i, j ∈ [l]. Thus, we may assume

that i = 1 and j = 2. Next, let y ∈ N(w7)\{v4, w6} and y′ ∈ N(w1
7)\{w

1
6, w

2
6}. Then,

if yy′′ ∈ E(G), let G′ = G− (V (B1)∪V (B2)∪V (B1
2)∪V (B2

2))∪{w6, w
1
6, w

2
6, w7, w

1
7}.

If y′ ∈ I ′ or y, y′ /∈ I ′, let I = I ′ ∪ {v2, w1, w4, w7, w
1
1, w

1
4, w

1
6, w

2
1, w

2
4, w

2
6}. If y ∈ I ′,

let I = I ′ ∪ {v2, v4, w1, w4, w6, w
1
1, w

1
4, w

1
7, w

2
1, w

2
4}. Now, suppose that yy′ /∈ E(G).
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Then, let G′ = G − (V (B1) ∪ V (B2) ∪ V (B1
2) ∪ V (B2

2) ∪ {w6, w
1
6, w

2
6, w7, w

1
7}) + yy′

and repeat the surgery above.

Now, suppose that every endblock is isomorphic to B2. Then, label as above

but replace B1 with B3
2 + w6 where w7 = w3

7. If yy
′ ∈ E(G), let G′ = G− (V (B2) ∪

V (B1
2) ∪ V (B2

2) ∪ V (B3
2)) ∪ {w6, w

1
6, w

2
6, w

3
6, w7, w

1
7}. If y, y′ /∈ I ′ or y′ ∈ I ′, let

I = I ′ ∪ {w1, w4, w7, w
1
1, w

1
4, w

1
6, w

2
1, w

2
4, w

2
6, w

3
1, w

3
4}. If y ∈ I ′, we can let I = I ′ ∪

{w1, w4, w6, w
1
1, w

1
4, w

1
7, w

2
1, w

2
4, w

3
1, w

3
4, w

3
6}. If yy′ /∈ E(G), let G′ = G − (V (B2) ∪

V (B1
2) ∪ V (B2

2) ∪ V (B3
2) ∪ {w6, w

1
6, w

2
6, w

3
6, w7, w

1
7}) + yy′ and repeat the surgery

above. This completes Case 2.

Case 3: |V (B1)| = g(B1) = 5.

We proceed as we did in Case 1 by removing the endblock B1 and the neighboring

degree two vertices for each of the cases below. Let V (B1) = {v1, v2, v3, v4, v5}. Since

B1 is an endblock and n ≥ 8, we may assume that v5 ∈ S3, v1, v2, v3, v4 ∈ S2,

v1v2, v2v3, v3v4, v4v5 ∈ E(B1), and v1v3, v1v4, v2v4 /∈ E(B1). Suppose that v5v6 ∈

E(G) and v6 ∈ S3. Then, let G′ = G − V (B1) and I = I ′ ∪ {v1, v4}. Now, suppose

that v6 ∈ S2 and v5v6, v6v7 ∈ E(G) where v7 ∈ S3. Then, let G
′ = G−(V (B1)∪{v6})

and I = I ′ ∪ {v2, v5}. Next, suppose that v6, v7 ∈ S2 and v5v6, v6v7, v7v8 ∈ E(G)

where v8 ∈ S3. Then, let G′ = G − (V (B1) ∪ {v6, v7}) and I = I ′ ∪ {v1, v4, v6}.

Finally, suppose that v6, v7, v8 ∈ S2 and v5v6, v6v7, v7v8, v8v9 ∈ E(G) where v9 ∈ S3.

Then, let G′ = G− {v6, v7, v8}+ v5v9 and apply Fact 6. This completes Theorem 4.
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CHAPTER 3

INDEPENDENT BONDAGE

3.1 Overview

The second topic focuses on a new idea called the independent bondage num-

ber which is a variation of the bondage number of a graph. In the following section,

we will introduce the concept of bondage and then extend this idea to independent

bondage. In this way, we can formulate new questions about independent bondage

that mirror the development of the original bondage concept. This provides a variety

of interesting problems to examine. Independent bondage is a relatively new concept

and not much work has been done on this topic.

3.2 Bondage

The concept of bondage is somewhat convoluted since two groups of re-

searchers published the same result about bondage in trees independently. Bauer

et al. [1] published a result on trees and in this paper referred to vertices as points,

edges as lines, and bondage as domination line stability. Later Fink et al. [9] pub-

lished the same theorem for trees as well as results for bondage of paths, cycles, trees,

complete graphs, and complete r-partite graphs. See [1] and [9] for more details and

[16] for an earlier survey of results of bondage and reinforcement.

Recall the following definitions. The bondage number of a nonempty graph

G, denoted b(G), is the minimum cardinality among all sets of edges B ⊆ E(G) for
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which γ(G − B) > γ(G). Stated differently, the bondage number of a graph G is

the minimum number of edges whose removal renders every minimum dominating

set of G a non-dominating set in the resulting spanning subgraph G − B. The

independent bondage number of a nonempty graph G, denoted bi(G), is the

minimum cardinality among all sets of edges B ⊆ E for which i(G− B) > i(G).

If we know that some vertex v is in every dominating set, then we can remove

all the edges incident with v and the bondage number is easily found. However, most

graphs do not satisfy this property and the challenge becomes how to show that a

certain edge set renders every dominating set a non-dominating set.

The first published result on bondage is due to Bauer et al. [1] and also

independently by Fink et al. [9].

Theorem 6. If T is a tree with at least two vertices, then

b(G) ≤ 2.

The following fact is due to Fink et. al [9]. However, the result is not true

for every minimum independent dominating set of a graph.

Observation 1. If v ∈ V (G) is adjacent to more than one end-vertex, then v must

be in every minimum dominating set of G.

As mentioned above, Fink et al. [9] published the first results (other than

for a tree) on bondage which included paths, cycles, trees, complete graphs, and

complete k-partite graphs.

Theorem 7. The bondage number of the complete graph Kn (n ≥ 2) is

b(Kn) = ⌈n/2⌉.
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Theorem 8. The bondage number of a cycle Cn is

b(Cn) =











3 if n ≡ 1 (mod 3),

2 otherwise.

Theorem 9. The bondage number of a path Pn (n ≥ 2) is given by

b(Pn) =











2 if n ≡ 1 (mod 3),

1 otherwise.

The following result provides an upper bound for the bondage number in

terms of the degree of a graph and can be used to give a relationship between the

bondage number and the minimum and maximum degree of a graph [1], [9].

Theorem 10. If G is a nonempty graph, then

b(G) ≤ min{d(u) + d(v)− 1 : uv ∈ E(G)}.

As a corollary to this result, if we choose an edge incident with a minimum

degree vertex we have the following.

Corollary 1. If G is a nonempty connected graph, then

b(G) ≤ ∆(G) + δ(G)− 1.

Fink et. al also gave a result for multi-partite graphs.

Theorem 11. The bondage number of a t-partite graph G = K(n1, n2, . . . , nt) where

n1 ≤ n2 ≤ . . . ≤ nk is given by
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b(G) =























⌈m/2⌉ if nm = 1 and nm+1 ≥ 2, for some m, 1 ≤ m ≤ t,

2t− 1 if n1 = n2 = · · · = nt = 2,
∑t−1

i=1 ni otherwise.

3.3 Independent Bondage

Before we present our results, we would like to point out that unlike bondage

it is possible for the independent domination number to decrease after removing

an edge. Consider the complete bipartite graph Kr,r on n = 2r vertices. Then,

i(Kr,r) = n/2 = r but remove any edge and i(Kr,r−e) = 2. This is not the case with

domination since the removal of edges never decreases the domination number. Of

course the independent domination number can increase as well. Consider the case

when G is a star K1,r. Here, i(G) = 1 but for any edge e, we have i(G − e) = 2.

In fact, since removal of each edge isolates a vertex that is not in the MIDS of the

original graph, i increases each time we remove one or more edges.

The following result is in terms of degree and provides many useful relation-

ships. In particular, it gives a bound for the independent bondage number in terms

of the minimum and maximum degree of a graph.

Theorem 12. If G is a nonempty graph and uv ∈ E(G), then

bi(G) ≤ min{d(u) + d(v)− 1− |N(u) ∩N(v)| : uv ∈ E(G)}.

Proof. For any two adjacent vertices u and v, let Eu = {ux : x ∈ N(u)}, Ev =

{vy : y ∈ N(v)} and ESu
= {ux : x ∈ N(u)\N [v]}. Consider a spanning subgraph

G′ = G−ESu
−Ev, which is obtained by removing edges of ESu

∪Ev from G, where
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V (G′) = V (G). We claim that i(G′) > i(G). Suppose not. Then, i(G′) ≤ i(G). Let

I ′ and I be minimum independent dominating sets of G′ and G respectively. By the

structure of the spanning subgraph G′, v ∈ I ′ because v is an isolated vertex in G′.

Next, there is at least one common vertex between I ′ and [N(u)∩N(v)] ∪ {u} = Z,

that is, I ′ ∩ Z 6= ∅. Thus, I ′ − {v} is a MIDS of G and then |I ′ − {v}| < |I ′|,

which contradicts with i(G′) ≤ i(G). Thus, we have found a spanning subgraph

G′ = G − ESu
− Ev obtained by removing s edges from G such that i(G′) > i(G),

where s = |ESu
∪ Ev| = d(u) + d(u) − |N(u) ∩ N(v)| − 1 and this holds for any

edge uv ∈ E(G). Therefore, by the definition of the independent bondage number,

bi(G) ≤ s = d(u)+d(u)−|N(u)∩N(v)|−1 for any edge uv ∈ E(G). This completes

the proof.

Using the Theorem 12, we can establish several useful results. For the follow-

ing result, we need only choose a vertex of maximum degree.

Corollary 2. If G is a nonempty graph and uv ∈ E(G), then

bi(G) ≤ 2∆(G)− |N(u) ∩N(v)| − 1.

If N(u) ∩N(v) = ∅ we get the following result.

Corollary 3. If G is a nonempty graph and uv ∈ E(G), then

bi(G) ≤ d(u) + d(v)− 1.

By the above Corollary, if we choose a vertex of minimum degree, the result

follows immediately.
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Corollary 4. If G is a nonempty graph, then

bi(G) ≤ ∆(G) + δ(G)− 1.

If we choose a vertex of minimum degree and apply the corollary above we

get the following upper bound for any path of order n in terms of minimum and

maximum degree.

Corollary 5. The independent bondage number of a path Pn (n ≥ 2) satisfies

bi(Pn) ≤ 2.

Similarly we have an upper bound for a cycle of order n.

Corollary 6. The independent bondage number of a cycle Cn (n ≥ 3) satisfies

bi(Cn) ≤ 3.

Additionally, since i(Pn) = i(Cn) = ⌈n/3⌉, we must remove more than one

edge from every independent dominating set in order to increase the independent

domination number of a cycle and so have the following.

Corollary 7. The independent bondage number of a cycle Cn (n ≥ 3) satisfies

2 ≤ bi(Cn) ≤ 3.

Now, we are ready to find the exact value of bi for a cycle.

Theorem 13. The independent bondage number of a cycle Cn of order n ≥ 3 is
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given by

bi(Cn) =











3 if n ≡ 1 (mod 3),

2 otherwise.

Proof. Since i(Cn) = i(Pn) = ⌈n
3
⌉ for n ≥ 3, we must remove at least two edges

from Cn to increase the independent domination number. Hence, bi(Cn) ≥ 2. If n ≡

1(mod 3), the removal of two edges from Cn leaves a graph H consisting of two paths

P and Q. If P has order n1 and Q has order n2, then either n1 ≡ n2 ≡ 2 ( mod 3), or,

without loss of generality, n1 ≡ 0 (mod 3) and n2 ≡ 1 (mod 3). In the former case,

i(H) = i(P ) + i(Q) = ⌈n1

3
⌉+ ⌈n2

3
⌉ = n1+1

3
+ n2+1

3
= n+2

3
= ⌈n

3
⌉ = i(Cn). In the latter

case, i(H) = n1

3
+ n2+2

3
= n+2

3
= ⌈n

3
⌉ = i(Cn). In either case, when n ≡ 1 (mod 3),

we have bi(Cn) ≥ 3. To obtain the upper bounds that, by trichotomy, will yield the

desired equalities of our theorem’s statement, we must consider two cases as follows.

Case 1. Suppose that n ≡ 0, 2 (mod 3). The graph H obtained by removing two

adjacent edges from Cn consists of an isolated vertex and a path of order n − 1.

Thus, i(H) = 1 + i(Pn−1) = 1 + ⌈n−1
3
⌉ = 1 + ⌈n

3
⌉ = 1 + i(Cn) and so bi(Cn) ≥ 2

in this case. Combining this with the upper bound obtained earlier, we have shown

that bi(Cn) = 2 whenever n ≡ 0, 2 (mod 3).

Case 2. Suppose that n ≡ 1 (mod 3). The graph H resulting from the deletion of

three consecutive edges of Cn consists of two isolated vertices and a path of order

n − 2. Thus, i(H) = 2 + ⌈n−2
3
⌉ = 2 + ⌈n−1

3
⌉ = 2 + (⌈n

3
− 1) = 1 + i(Cn). So that

bi(Cn) ≤ 3 in this case. With the earlier inequality we conclude that bi(Cn) = 3

whenever n ≡ 1 (mod 3).

The exact value of bi for a path follows from above.

Corollary 8. The independent bondage number of a path Pn (n ≥ 2) is given by
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bi(Pn) =











2 if n ≡ 1 (mod 3),

1 otherwise.

For the complete graph we need to remove n/2 independent edges (a perfect

matching) when n is even to increase the independent domination number and (n−

1)/2 edges plus one additional edge (from the last vertex having degree n− 1) when

n is odd (a maximum matching). This is required because any graph with at least

one vertex of degree n − 1 has independent domination number i(G) = 1. This

observation leads to the following result.

Theorem 14. The independent bondage number of the complete graph Kn having

order n is given by

bi(Kn) = ⌈n/2⌉.

Proof. If H is a spanning subgraph of Kn that is obtained by removing fewer than

⌈n
2
⌉ edges (possibly none) from Kn, then H contains a vertex of degree n− 1. Hence

i(H) = 1. Thus, bi(Kn) ≥ ⌈n
2
⌉.

If n is even, the removal of n/2 independent edges fromKn reduces the degree

of each vertex to n − 2 and therefore yields a graph H with domination number

i(H) = 2, but i(Kn) = 1.

If n is odd, the removal of (n−1)/2 independent edges fromKn leaves a graph

having exactly one vertex of degree n− 1. If we remove one edge incident with this

vertex, we obtain a graph H with i(H) = 2.

In both cases (n is even or n is odd), the graph H is obtained by the removal

of ⌈n
2
⌉ edges from Kn. Thus, bi(Kn) = ⌈n

2
⌉.

Let T be a tree. A vertex v ∈ V (T ) is a leaf or end-vertex provided dT (v) = 1
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and the edge adjacent with v is called a leaf edge. A vertex which is adjacent to a

leaf is called a support vertex and we let Sp = {v : N(v)∩ S1 6= ∅} and recall that

S1 = {v : d(v) = 1}.

Theorem 15. If T is a nontrivial tree, then

bi(T ) ≤ 2.

Proof. If |V (T )| = 2 then bi(T ) = 1. Assume |V (T )| ≥ 3 and let x0x1 · · ·xk be a

longest path in T . Let e1 = x0x1. Then, dT (x0) = dT (xk) = 1 and k ≥ 2.

Case 1. dT (x1) = 2. Then N(x0) ∩ N(x1) = ∅. Then, choosing x0x1 and applying

Theorem 12 gives bi(T ) ≤ d(x0) + d(x1)− |N(x0) ∩N(x0)| − 1 = 1 + 2− 0− 1 = 2.

This completes Case 1.

Now, we may assume that Sp ∩ S2 = ∅.

Case 2. dT (x1) > 2. Then we consider the following two cases.

Case 2.1. dT (x2) = 1. Then, since dT (x1) > 2 and x0x1x2 is a longest path,

every longest path has length 2. Thus, T is a star. If we let B = x0x1, then

i(T − B) = 2 > i(T ) = 1. Thus, bi(T ) = 1 ≤ 2.

Case 2.2. dT (x2) = 2. Let e2 = x1x2 and e3 = x2x3. Now, consider the spanning

subgraph T ′ obtained by removing e2 and e3 from T . Let I and I ′ be MIDS of T

and T ′ respectively. By the structure of the spanning subgraph T ′, x2 ∈ I ′ because

dT ′(x2) = 0.

First, we claim that i(T ′) > i(T ) or equivalently that |I ′| > |I|. Suppose not.

Then |I ′| ≤ |I|. Next, we can show that x1 6∈ I ′. If not, then I ′ − {x0} is a MIDS

of T . But this implies that |I| = |I ′ − {x0}| < |I ′| which is a contradiction. Thus,
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x1 /∈ I ′ and N(x1) ⊂ I ′. Next, [I ′ \ (N(x1) ∪ {x2})] ∪ {x1} must be an independent

dominating set of T . Then, |I| ≤ |[I ′\(N(x1)∪{x2})]∪{x1}| < |I ′| which contradicts

the assumption |I ′| ≤ |I|. Thus, i(T ′) > i(T ) and B = {e1, e2}. Therefore, bi(T ) ≤ 2.

Case 2.3. dT (x2) ≥ 3.

Case 2.3.1. x2 ∈ Sp. Then there is a leaf, denoted x′

2, such that e2 = x2x
′

2 ∈ E(T ).

Next, consider a spanning subgraph T ′ which is obtained by removing e1 and e2 from

T . Let I and I ′ be MIDS of T and T ′ respectively. By the structure of the spanning

subgraph T ′, x0, x
′

2 ∈ I ′ because they are isolated vertices in T ′.

Again, we claim that i(T ′) > i(T ) or equivalently that |I ′| > |I|. Suppose not.

Then |I ′| ≤ |I|. Next, we can show that x1 6∈ I ′. If not, then I ′ − {x0} is a MIDS

T . But this implies that |I| = |I ′ − {x0}| < |I ′| which is a contradiction. Similarly,

x2 6∈ I ′. Then N(x1) ⊂ I ′ because x1 /∈ I ′. Next, the subset [I ′ − N(x1)] ∪ {x1}

must be an independent dominating set of T . Then, |I| ≤ |[I ′ − N(x1)] ∪ {x1}| <

|I ′| − 1 < |I ′| which contradicts the assumption |I ′| ≤ |I|. Thus, i(T ′) > i(T ) and

B = {e1, e2}. Therefore, bi(T ) ≤ 2.

Case 2.3.2. x2 /∈ Sp. Let A = N(x2)\{x1, x3} = {v2, v3, . . . vr} where r = d(x2)−2.

Then, A∩ Sp 6= ∅ since otherwise there would be a longer path in T contrary to our

choice of P . Then, |A ∩ Sp| ≥ r ≥ 1. Next, consider vi for 2 ≤ i ≤ r. If dT (vi) = 2,

we can use Theorem 12 to show that bi(T ) ≤ 2 so we may assume that dT (vi) ≥ 3

and there are at least two leaves v′i and v′′i adjacent to vi for each i (2 ≤ i ≤ r).

Let e′2 = v2v
′

2 and consider a spanning subgraph T ′ which is obtained by removing

e1 and e′2 from T . Again, let I and I ′ be MIDS of T and T ′. As in the previous

cases, we claim that i(T ′) > i(T ) or equivalently that |I ′| > |I|. Suppose not. Then

|I ′| ≤ |I|. From the previous two cases, we know that x0, v
′

2 ∈ I ′ and x1, v2 /∈ I ′.

Now, let Zi = N(vi) \ {x2} for 2 ≤ i ≤ r. Then Z1 = N(x1) \ {x2} ⊆ I ′ and
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Z2 ⊆ I ′ (see the previous case). Additionally, we have already shown that |Zi| ≥ 2

for 2 ≤ i ≤ r and since d(x1) ≥ 3 we know that |Z1| ≥ 2. Then, either x2 /∈ I ′ or

x2 ∈ I ′. If x2 /∈ I ′, then we can let I = [I ′ \ (Z1 ∪ Z2)] ∪ {x1, v2}. Again, I is an

independent dominating set and |I ′| > |I| which is a contradiction. Now, suppose

that x2 ∈ I ′. Then, there are two further cases. If [N(x3) \ {x2}] ∩ I ′ 6= ∅, then we

can let I = [I ′ \ (
⋃r

i=1 Zi ∪ {x2})]∪ {x1} ∪A. Then, I is an independent dominating

set and |I ′| > |I| which is a contradiction. If [N(x3) \ {x2}]∩ I ′ = ∅, then we can let

I = [I ′ \ (
⋃r

i=1 Zi ∪ {x2})] ∪ {x1, x3} ∪A. Then, I is an independent dominating set

and |I ′| > |I| which is a contradiction. This completes Theorem 15.

Next, we need the following result involving equivalent definitions of domi-

nating sets of a graph.

Observation 2. The following are equivalent definitions of a dominating set X ⊆ V

of any graph G.

(∀y ∈ V \X)(∃x ∈ X)[xy ∈ E(G)] ⇐⇒ N [X ] = V

Proof. Suppose that N [X ] 6= V . Then, there is some y ∈ V such that y /∈ N [X ].

Hence, there is some y ∈ V \X such that for every x ∈ X we have xy /∈ E. In each

step, we have equivalent statements. Finally, since the statement is equivalent to it’s

contrapositive we are done.

Lemma 11. Let G be a complete t-partite graph where V =
⋃t

i=1Ai and suppose

that |A1| = min{|Ai| : 1 ≤ i ≤ t}. Then E ′ ⊆ E(G) is a subset with the minimum

size required to render A1 a non-dominating set in G′ = G− E ′ if and only if there

is some v ∈ V \ A1 such that E ′ = E[v, A1] = {vu : u ∈ A1}.
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Proof. Suppose that E ′ ⊆ E(G) is an edge set having the minimum number of edges

required to render A1 non-dominating in G′. Then, there is some v ∈ V \A1 such that

v /∈ NG′ [A1] so E ′ ⊇ E[v, A1]. Since E ′ is the minimum set of edges for which this

can occur we must have E ′ = E[v, A1]. Now suppose that there is some v ∈ V \ A1

such that E ′ = E[v, A1]. Then, v /∈ NG′ [A1] so A1 is not dominating in G′.

Lemma 12. Let G be a complete t-partite graph where V =
⋃t

i=1Ai and suppose

that |Ai| = |Aj | = n1 where Ai and Aj are MIDS. Then E ′ ⊆ E(G) is a subset with

the minimum size required to render Ai and Aj non-dominating sets in G′ = G−E ′

if and only if E ′ = E[vi, Aj ] ∪ E[vj , Ai] for some vi ∈ Ai and vj ∈ Aj.

Proof. ( =⇒ ) Since Ai is not dominating in G′ by Lemma 11 there is some v ∈ V \Ai

such that E ′

i = E[v, Ai]. Similarly, there is some u ∈ V \Aj such that E ′

j = E[u,Aj].

Let E ′ = E ′

i ∪ E ′

j . If v ∈ Ai and u ∈ Aj , then |E ′

i ∩ E ′

j | = 1. Since |E ′| is minimum

size required to render Ai and Aj non-dominating in G′ we must have |E ′| = 2n1−1.

If v /∈ Ai or u /∈ Aj , then |E ′

i ∩ E ′

j| = 0 and |E ′| = |E ′

i|+ |E ′

j| = 2n1 − 1.

( ⇐= ) For the other direction if E ′ = E[vi, Aj ]∪E[vj , Ai] where vi ∈ Ai and vj ∈ Aj ,

then NG′ [Ai] = V \ {vj} 6= V and NG′ [Aj] = V \ {vi} 6= V . Thus, Ai and Aj are not

dominating in G′.

We need to define the following function for the next theorem.

f(k) =











kn1 −
k
2

if k even,

kn1 −
(k−1)

2
if k odd.

Theorem 16. Let G = K(n1, n2, . . . nt) be a complete t-partite graph where V =

⋃t

i=1Ai and |Ai| = ni with n1 ≤ n2 ≤ . . . ≤ nt. Let k be the largest number such that
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n1 = n2 = · · · = nk and nk+1 > nk if k 6= t. Then, the independent bondage number

of G is given by

bi(G) = f(k).

Proof. Let G be complete t-partite graph where V =
⋃t

i=1Ai and |Ai| = ni with

n1 ≤ n2 ≤ . . . ≤ nt. Let k be the largest number such that n1 = n2 = · · · = nk and

nk+1 > nk if k 6= t.

Case 1. k = 1. First, we know that A1 is the only MIDS. By Lemma 11, |E ′| ≥ n1.

Thus b1(G) = n1.

Case 2. k ≥ 2. There are two cases to consider. Either k is even or k is odd.

Case 2.1. k is even.

We can pair the partitions as follows. Let (A1, A2), (A3, A4), . . . , (Ak−1, Ak). Next,

let Bi = E[vi, Ai+1]∪E[vi+1, Ai] for vi ∈ Ai and vi+1 ∈ Ai+1 where i ≥ 1, 3, 5, . . . k−1.

If we only remove the edges between the pairs (A1, A2), (A3, A4), . . . , (Ak−1, Ak), we

have removed 2n1 − 1 edges from each pair where there are a total of r = k
2
pairs.

Then, letting E ′ =
⋃r

i=1Bi gives

|E ′| = r(2n1 − 1) =
1

2
k(2n1 − 1) = kn1 −

k

2
.

Then, by Lemma 12, each pair satisfies NG′ [Ai] 6= V and NG′ [Ai+1] 6= V . By the

structure of G′ = G − E ′, any vertex set A 6= Ai with |A| ≤ n1 (1 ≤ i ≤ k) cannot

form an IDS. Hence, bi(G) ≤ f(k).

Now, we need to show that bi(G) ≥ f(k). If any edge set E ′ satisfies

|E ′| ≤ f(k) − 1, then there are Ai and Ai+1 for i ≥ 1, 3, 5, . . . k − 1 such that

|E ′ ∩ E[Ai, Ai+1]| ≤ 2n1 − 2. By Lemma 12, either N [Ai] = V or N [Ai+1] = V .
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Thus, bi(G) ≥ f(k).

Case 2.2. k is odd.

In this case, we have an extra dominating set Ak that we must ”render” non-

dominating in G′ so we pair the partitions as follows. Let (A1, A2), (A3, A4), . . . ,

(Ak−2, Ak−1) and then we still have another dominating set Ak. The argument for

each pair of partitions is the same as in the previous case. But for Ak we still need

to remove another n1 edges and in this case there are only ((k − 1)/2) pairs. Thus,

we obtain

(k − 1)

2
× (2n1 − 1) + n1 = kn1 −

(k − 1)

2
.

Now, we can repeat the argument of Case 1 for the k−1 pairs and apply Lemma 11 to

Ak (for both directions) to get the needed inequalities bi(G) ≤ f(k) and bi(G) ≥ f(k).

Which implies bi(G) = f(k) when k is odd. Therefore, in both cases (k even and k

odd), we have shown that bi(G) = f(k).
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CHAPTER 4

CONCLUSION

4.1 Future Research

4.1.1 Independent Domination

In the process of proving Theorem 4, we observed that requiring that our

graph have girth at least six would eliminate troublesome counterexamples and allow

us to possibly improve the upper bound. Recently, Michael Henning et. al. [17]

improved the bound of Lam et. al. [20] by considering a cubic bipartite graph. In

the same paper, Henning communicates a conjecture for cubic bipartite graphs of

girth at least six proposed by Verstraete. The best possible bound for a cubic graph

of girth six has been conjectured by Jacques Verstraete [26] where the girth condition

which eliminates several problematic counterexamples all of which have smaller girth.

Furthermore, Duckworth and Wormald [7] have shown that any random cubic graph

almost surely satisfies i(G) ≤ 0.2794n. If it is possible to show that Verstraete’s

conjecture holds then it is likely to be very difficult [17].

Conjecture 2. (Verstraete) If G is a cubic graph of order n having girth at least

six, then

i(G) ≤
n

3
.

Theorem 17. (Henning et al.) If G is a cubic bipartite graph of order n and of
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girth at least six, then

i(G) ≤
4n

11
.

In light of these facts, we propose the same question of subcubic graphs having

girth at least six with the added condition of minimum degree at least two but

including all graphs and not just restricting our interest to bipartite graphs.

Problem 1. If G is a connected subcubic graph of order n with δ(G) ≥ 2 and having

girth at least 6, then

i(G) ≤
4n

11
.

We might also ask the same question about graph that are k-regular when k ≥ 4.

That is, can we find a bound f(n, k) such that the following holds.

Problem 2. If G is a k-regular connected graph of order n where k ≥ 4,

i(G) ≤ f(n, k).

4.1.2 Independent Bondage

As we discussed earlier, we can explore many of the same graphs that were

examined with the bondage number and formulate similar questions about the in-

dependent bondage number. We have obtained results for the independent bondage

number of paths, cycles, the complete graph, complete bipartite graphs, mutli-partite

graphs, and trees. Additionally, we might explore relationships involving minimum

degree or maximum degree as well as diameter. Some other graphs of interest are

cubic or subcubic graphs, claw-free graphs, or planar graphs.
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