
EXPLORATION INTO THE PERFORMANCE OF ASYMMETRIC D-ARY

HEAP-BASED ALGORITHMS FOR THE HSA ARCHITECTURE

A Thesis
presented in partial fulfillment of requirements

for the degree of Master’s of Science
in the Department of Computer and Information Science

The University of Mississippi

by

Stephen Blake Adams

May 2014

Copyright Stephen Blake Adams 2014
ALL RIGHTS RESERVED

ABSTRACT

Heterogeneous computing is a fairly recent trend in both hardware and software

design; based around identifying the opportunities presented by utilizing all available hard-

ware components in a computing system to perform a computationally intensive task in the

most efficient way possible. One incredibly interesting field of the heterogeneous computing

paradigm is general purpose computing on the graphic processing unit. General purpose

computing on the graphic processing unit consists of utilizing the hardware capabilities of

the graphic processing unit to perform computationally intensive tasks which exhibit many

opportunities for parallel execution. While many vector or matrix-based data structures

and algorithms showcase the performance benefits through this computing paradigm, many

graph/tree-based data structures and algorithms are understood to be unsuitable for the

nature of the GPGPU computing paradigm.

The d -heap, a tree-based data structure, has undergone many design changes to

take advantage of different trends in computer technology. The introduction of the memory

hierarchy and the popularity of varying levels of data caches presented the development

of the implicit d-heap which ensured that child nodes would not span across cache blocks.

Based upon the general structural design of the implicit d -heap, is the asymmetric d -heap,

introduced by Brian Vinter and Weifeng Liu. The asymmetric d -heap seeks a heterogeneous

solution to the common heap data structure that utilizes both the throughput oriented

processing cores of the graphic processing unit and the latency oriented processing cores of

the central processing unit. We explore both the limitations of current GPGPU computing

solutions and the possible performance benefit opportunities of a truly heterogeneous system

in understanding the nature of the ad -heap data structure which is designed specifically for

the tightly coupled THC(Truly Heterogeneous Computing) architectural concept promoted

ii

by the HSA(Heterogeneous Systems Architecture) Foundation. Using the batch k -selection

algorithm, the behavior behind the design of the ad -heap presents a great deal of interesting

information which can be utilized in the design of future heterogeneous solutions for existing

data structures and associated algorithms which would normally not benefit from current

GPGPU technology. Using both a loosely coupled discrete-GPU based experimental platform

and a more tightly-coupled accelerated processing unit-based platform; we explore many of

the limitations concerning the asymmetric d -heap design by understanding the performance

and behavior of the design on both platforms. We do so by presenting a more accurate

and practical implementation of the ad -Heap design for both experimental platforms and

addressing the performance metrics and limitations uncovered by the series of experiments.

By understanding these limitations and analyzing the different aspects of the general design;

we begin to understand many of the design decisions and other general details that have

to be considered when distributing the computational workload between both devices on a

HSA-based architecture.

iii

TABLE OF CONTENTS

ABSTRACT . ii

LIST OF FIGURES . vi

A BRIEF INTRODUCTION TO HETEROGENEOUS COMPUTING 1

1.1 The Computing Paradigm of Heterogeneous Computing 1

1.2 Recent Development Trends in Heterogeneous Computing 2

THE BASICS OF GENERAL PURPOSE PROGRAMMING WITH THE GPU . . . 5

2.1 Understanding the Hardware Characteristics of the CPU 5

2.2 Leveraging the Hardware Characteristics of the GPU for General Pur-

pose Programming . 7

2.3 Modern Parallel Programming Platforms for GPGPU Programming 9

2.4 Adapting a Serial Executing Application for GPU Hardware 12

2.5 Understanding the OpenCL Memory Model 15

2.6 Summmarizing the Basics of GPGPU Programming with OpenCL . 18

ADAPTING THE HEAP FOR HETEROGENEOUS COMPUTING 20

3.1 Addressing the Nature and Design of the Heap Data Structure . . . 21

3.2 Adapting the Heap Data Structure for Latest Trends in Technology . 25

3.3 The ad -Heap, Designed for Truly Heterogeneous Systems 26

ADDRESSING THE LIMITATIONS OF GPU COMPUTING WITH HSA ARCHITEC-

TURE . 31

4.1 Limitations of Current GPU Hardware/Software Solutions 31

iv

4.2 The Hardware and Software Design of the HSA Solution 33

4.3 Truly Heterogeneous Computing Solution and its Importance in Ben-

efiting Modern Algorithms . 35

EXPLORING THE AD-HEAP-BASED BATCH K-SELECTION BEHAVIOR 36

5.1 Characteristics of the Batch k -Selection Algorithm 36

5.2 Introducing the Physical Experimental Platforms 40

5.3 Basic CPU Implementation of Heap Operations 43

5.4 CPU Update-Key Operation Results 47

5.5 CPU Batch k -Selection Algorithm Results 49

5.6 Exploring the ad -Heap Execution Characteristics on the GPU 56

5.7 Exploring the Batch ad -Heap Execution Characteristics on the GPU 68

UNDERSTANDING AND COMPARING THE AD-HEAP-BASED BATCH K-SELECTION

BEHAVIOR . 75

6.1 Practicality of the ad -heap data structure 77

6.2 The ad -heap as a design initiative. 80

BIBLIOGRAPHY . 82

VITA . 85

v

LIST OF FIGURES

2.1 Simple Loosely Coupled GPGPU Platform Diagram 8

2.2 Relationship Of Work-Items/Work-Groups 11

2.3 OpenCL Memory Model . 17

3.1 Basic Heap Data Structure Graphical Representation 22

3.2 Heap Data Structure Indexing Scheme . 24

3.3 The Implicit d -ary heap . 25

3.4 ad -Heap Data Structure . 28

5.1 Batch k -Selection Algorithm . 37

5.2 Data Set Details and associated size . 38

5.3 Algorithm-Specific Statistics . 40

5.4 Experimental Platform Information . 41

5.5 8-Heap CPU Update Key Performance . 47

5.6 16-Heap CPU Update Key Performance . 47

5.7 32-Heap CPU Update Key Performance . 48

5.8 64-Heap CPU Update Key Performance . 48

5.9 Machine 1 k -Selection Algorithm Results . 49

5.10 Machine 2 k -Selection Algorithm Results . 50

5.11 Machine 1 k -Selection 8-Heap Multi-Threaded/Serial Comparison 51

5.12 Machine 2 k -Selection 8-Heap Multi-Threaded/Serial Comparison 51

vi

5.13 Machine 1 k -Selection 16-Heap Multi-Threaded/Serial Comparison 52

5.14 Machine 2 k -Selection 16-Heap Multi-Threaded/Serial Comparison 52

5.15 Machine 1 k -Selection 32-Heap Multi-Threaded/Serial Comparison 53

5.16 Machine 2 k -Selection 32-Heap Multi-Threaded/Serial Comparison 53

5.17 Machine 1 k -Selection 64-Heap Multi-Threaded/Serial Comparison 54

5.18 Machine 2 k -Selection 64-Heap Multi-Threaded/Serial Comparison 54

5.19 Comparing the execution time of different values of d using the multi-threaded
implementation on Machine 1 . 55

5.20 Comparing the execution time of different values of d using the multi-threaded
implementation on Machine 2 . 56

5.21 Total Update Execution Time ad -heap . 59

5.22 8-Heap ad -Heap Update-Key Operation Performance 60

5.23 16-Heap ad -Heap Update-Key Operation Performance 60

5.24 32-Heap ad -Heap Update-Key Operation Performance 60

5.25 64-Heap ad -Heap Update-Key Operation Performance 61

5.26 Total Kernel Execution Time Comparison Between Both Platforms 62

5.27 8-Heap ad -Heap Kernel Execution Times . 63

5.28 16-Heap ad -Heap Kernel Execution Times . 63

5.29 32-Heap ad -Heap Kernel Execution Times . 63

5.30 64-Heap ad -Heap Kernel Execution Times . 64

5.31 Total Memory Handling Time Comparison Between Both Platforms 65

5.32 8-Heap ad -Heap Memory Handling Times . 65

5.33 16-Heap ad -Heap Memory Handling Times 66

vii

5.34 32-Heap ad -Heap Memory Handling Times 66

5.35 64-Heap ad -Heap Memory Handling Times 66

5.36 Total Update-Key Operation Execution Time between both experimental plat-
forms . 70

5.37 Total Kernel Execution Time between both experimental platforms 71

5.38 Total Memory Handling Time between both experimental platforms 72

5.39 Total LCU-Workload Time between both experimental platforms 73

viii

CHAPTER 1

A BRIEF INTRODUCTION TO HETEROGENEOUS COMPUTING

By taking the very basic meaning of Heterogeneous(heter·o·ge·ne·ous), defined in

the Merriam-Webster dictionary as ”made up of parts that are different”, and Comput-

ing(com·put·ing) defined by the same source as ”to determine especially by mathematical

means”(Merriam-Webster Online (2009)); we can very easily understand the primary mo-

tivation behind the popular computing paradigm described by Heterogeneous Computing.

The typical computing platform is a fascinating myriad of hardware components working

closely together to produce a solution to a given problem. Even on such a minuscule level,

each individual logical gate has a different purpose, a different methodology behind their

execution mechanism. Given these differences, each logical gate within an integrated circuit

execute to produce a common synergistic solution. Synergy is very simply described as the

instance where the combined production of all parts working together is greater than the

sum weight of those same parts. Though an important trait in successful business manage-

ment environments, synergy is also extremely important on a fundamental level of computer

architecture. Synergy is a term that perfectly characterizes the purpose of heterogeneous

computing.

1.1 The Computing Paradigm of Heterogeneous Computing

The computing device is comprised of many electronic hardware components. A het-

erogeneous computing solution seeks to utilize all of these components in an efficient manner

which best meets the goal of the application or the programmer of the application. The pro-

grammer must seek a solution to his application which best utilizes these components in a

1

synergistic manner. Application performance goals may vary from platform to platform de-

pending on both the user-base and the hardware requirements. Some solutions may demand

the best execution performance for a specific algorithm or method while other solutions may

utilize an optimal scheduling heuristic to ensure that the overall hardware platform is fully

utilized and all tasks are receiving enough processing power to balance their computations

at an optimal level. With the recent popularity in mobile computing electronics, a primary

goal of many heterogeneous computing solutions have been to effectively perform at an opti-

mal level while efficiently throttling the overall power consumption of the device. Given the

limited power resources of modern mobile electronics, the ability to produce the application

results while maintaining a suitable power consumption level has been crucial in both soft-

ware and hardware design. Heterogeneous computing is both a software and hardware-based

paradigm with much ongoing research in both areas.

1.2 Recent Development Trends in Heterogeneous Computing

Recent research and development has resulted in a interesting concept titled as Het-

erogeneous System Architecture (HSA), a topic which will ultimately be discussed in a later

chapter. Many hardware manufacturers such as AMD, ARM, and Samsung have invested a

large amount of development effort in heterogeneous hardware platforms which locate both

the graphic accelerator compute units (i.e., GPUs) and the low latency central processing

cores (i.e., CPUs) on the same silicon die. The two groups of processing cores share either

the same system memory directly or the same last-level cache within the hardware design.

By situating both hardware components on the same silicon die, the PCI-E bus which is

used for communication between the devices is removed, thus removing a possible perfor-

mance bottleneck (memory transfers)(Daga et al. (2011)). AMD’s recent APU(Accelerated

Processing Unit) is based around this design concept(Branover et al. (2012))((AMD APU

Fusion), 2010). The more tightly coupled heterogeneous platform allows for performance

and power consumption benefits while only sacrificing the raw computational peak perfor-

2

mance of a discrete graphic processing unit(D’Alberto (2012)). Intel’s HD Graphics and Ivy

Bridge architecture was Intel’s architectural debut into this realm of heterogeneous comput-

ing(Damaraju et al. (2012)). AMD’s ”Kaveri” platform is the most recent development in

accomplishing the design concept described as a truly heterogeneous computing system by

AMD.

The hardware capabilities of mobile devices such as phones and tablets have accel-

erated in recent years. With this acceleration of technology, application demands have also

seen a large amount of growth and focus. Computer vision and augmented reality-based ap-

plications were once mainly a application area limited to powerful stationary computers with

large and powerful graphic processing units capable of handling the large load of perform-

ing the computational intensive feature detection and graphics rendering. With innovations

in both hardware design and heterogeneous computing technology, these applications have

been introduced to the realm of mobile electronics; allowing anything from ’smartphones’

to ’smartTVs’ to demonstrate exciting augmented reality and graphically-intensive appli-

cations. There has been a great deal of developmental research in implementing existing

efficient computer vision applications using newly introduced heterogeneous computing API

features in popular open source computer vision libraries such as OpenCV. OpenCV is an in-

teresting example of a popular development library which now includes several heterogeneous

computing aspects to better improve the performance of its computer vision features(Pulli

et al. (2012)). Computer vision application development frameworks such PTAM(or Par-

allel Tracking and Mapping) can utilize many of the GPGPU libraries within the OpenCV

computer vision library to accelerate the performance of their FAST corner feature detection

computation(Klein and Murray (2007)).

Topics such as AMD’s ”Kaveri” technology and OpenCV’s additional GPGPU com-

puting libraries are excellent examples of both the exploration and interest presented by

software and hardware companies in heterogeneous computing(Bradski). From investigat-

ing the performance differences between discrete and integrated graphic processing units in

3

general purpose computations to exploring the potential performance benefits of incorpo-

rating OpenCV’s OpenCL libraries in the parallel tracking and mapping augmented reality

application; heterogeneous computing has presented a volatile and interesting research area

with many aspects to explore and many areas that I have yet to fully understand. In this

large area of potential research, general purpose programming for graphic processing units

present one of the largest areas of innovation involving heterogeneous computing.

4

CHAPTER 2

THE BASICS OF GENERAL PURPOSE PROGRAMMING WITH THE GPU

To best understand the concepts discussed and theorized in the overall research sur-

rounding this thesis requires only a very basic understanding of both computer architecture,

graphic processing unit design, and general purpose computing with graphic processing units

(a.k.a., GPGPU). General purpose computing, an incredibly broad area of programming, is

generally described as computational tasks without a specific or more-so simply a general

purpose. Whereas the typical programming tasks for a graphic processing unit can be de-

scribed as graphics rendering or the typical programming tasks for a sound processing unit

can described as processing and producing audio signals to and from the computer’s appli-

cations; general purpose computing tasks are often handled by the central processing unit of

the computer. As you can imagine, general purpose computation with the graphic processing

unit involves designating a subset of these general purpose tasks to be handled by the graphic

processing unit of the computer. Revisiting the principals described by heterogeneous com-

puting, all tasks within this subset of general purpose computational tasks must share some

characteristic or detail which allows them to be processed more efficiently on the graphic

processing units. To better understand how to distinguish between these programming tasks

requires a small understanding of the architectural designs of both the central processing

unit and the graphic processing unit(s).

2.1 Understanding the Hardware Characteristics of the CPU

The central processing unit can be considered as the primary component of the mod-

ern computer. Self-described by its name, as a processing unit, the central processing unit

5

governs all programming tasks and processes central to the overall computer. These tasks

include everything from basic arithmetic or logical calculations to the general input and out-

put operations that are typically encountered with your standard computer program. In a

sense, the central processing unit can be understood as the governing unit of all other hard-

ware components that the computing device is comprised of. The central processing unit

has undergone an extensive amount of changes over the last century with the introduction

of transistors, integrated circuits and eventually microprocessors and multi-core processors.

The popular Moore’s Law, named after Intel co-founder Gordon E. Moore, characterizes this

growth in CPU technology by accurately predicting that the number of transistors on inte-

grated circuits would double approximately every two years. As such, the central processing

unit is a very unique and exciting component of computer hardware that could warrant an

entire paper describing the evolution of its design in itself.

The central processing unit, given its role in the line-up of individual hardware com-

ponents is to effectively, efficiently, and accurately execute the computer program(or com-

puter programs). The central processing unit is built with extensive instruction pipelines

consisting of complicated integrated circuits and designed around an efficient memory hier-

archy which begins with the processing core’s registers and continuing through a series of

memory and instruction caches before reaching the system memory. All of these aspects

of the central processing unit’s design is simply to achieve one central goal; to effectively,

efficiently, and accurately execute the computer program. In general, the central processing

unit is optimized for sequential processing and low memory latency. Given the introduction

of multi-core central processing units, more opportunity for parallelism exists amongst the

physical cores of the central processing units, though this still does not amount to the level

of parallelism available in modern graphic processing units. Hence, we begin to draw the

metaphorical line between the programming tasks which are better suited for which hardware

component(Hennessy and Patterson (2003)).

6

2.2 Leveraging the Hardware Characteristics of the GPU for General Purpose

Programming

Differing from the central processing unit, the graphic processing unit is designed

with an entirely different purpose. The primary motivation behind graphic processing units

were, and still are, to efficiently render the graphical components desired by the computer

application and related software. To achieve this, the graphic processing unit must have

the ability to perform thousands of simultaneous calculations to produce the accurate image

frame according to the demands of the software (e.g., graphics pipeline). This design re-

quirement eventually lead to the large dedicated and discrete graphic processing units which

are evident on the modern computer hardware market today. The computer architectural

reflection of this requirement is a fairly large electronic circuit composed of thousands of

processing engines or cores. This design trait allows for a large level of data parallelism

and throughput while sacrificing the memory latency presented in modern central process-

ing units. The graphic processing unit does offer its own memory hierarchy with its own

associated memory spaces very similar to modern central processing unit design(Hennessy

and Patterson (2003)).

Figure 2.1 gives a very basic representation of a traditional loosely coupled hetero-

geneous computing platform consisting of a discrete GPU and multi-core CPU platform.

The graphic processing unit device hardware consists of many compute units, each com-

pute unit with its own large amount of SIMD processing engines. In the loosely coupled

discrete GPU-based heterogeneous platform, communication and memory transfer between

devices take place on the PCI-E bus. This connection scheme often presents a potential

bottleneck in computationally intensive applications that may require frequent large data

transfers between both devices.

General purpose computation on the graphic processing unit is to effectively leverage

the resources of the device to increase the performance on many computationally intensive

programs which offer many opportunities of high-level data parallelism. The graphic pro-

7

Figure 2.1. A simplified diagram of discrete GPU system and a very high level representation of the architectural components

of the GPU.

cessing unit is comprised of thousands of processing cores described as shader engines in

relationship to the device for graphic rendering tasks. Within the graphic processing unit,

these shader engines could be separated into different groups corresponding to their specific

task or purpose within the graphics pipeline in the production of the frame. These different

groups consist of the commonly known pixel and vertex shaders and the newer geometry

and tessellation shaders. The introduction of the ”Unified Shader Model” which introduced

a consistent set of instructions across all shader types essentially constructed the develop-

mental bridge into utilizing the graphic processing unit for general purpose programming

tasks.

8

The consistent instruction set introduced in the unified shader model eventually lead

to the development of general purpose compute programs known as kernels. To understand

the intricacies and mechanics of kernel programs requires a general understanding of both

the architectural philosophy of the graphic processing unit and the programming platform

or API used to construct the kernel program. To understand the nature of kernel programs

is to understand the nature of the graphic processing unit itself and more importantly the

shader engines(or stream processors) which the graphic processing unit uses to achieve the

high-level of throughput to produce better performance in computationally intensive parallel

applications. It is also helpful to remember that the graphic processing unit is merely

supplemental to the central processing unit, thus staying true to the very synergistic nature

of heterogeneous computing.

2.3 Modern Parallel Programming Platforms for GPGPU Programming

In the area of general purpose computing with graphic processing units, there exists

many programming platforms or APIs whose primary purpose is allowing the program-

mer to create applications which utilize the graphic processing technology for their own

general purpose programs. Two of the most popular programming platforms typically dis-

cussed in this area of research is OpenCL and CUDA. CUDA, the product of a collabo-

rated effort of NVIDIA and the University Of Toronto, is a C-based(and later extended

to C++/FORTRAN) proprietary programming platform and GPGPU SDK for NVIDIA

graphic processing units only(NVIDIA Corporation (2011)). OpenCL, developed by the

Khronos Group(originally developed by Apple Inc.), is a cross-platform heterogeneous par-

allel programming platform and framework. OpenCL is C-based but also offers C++ exten-

sions for programmers who prefer the C++ programming language variety. OpenCL is an

interesting programming platform in comparison to CUDA, distinctly because OpenCL does

not limit itself to only graphic processing units. OpenCL describes itself as both a cross-

platform heterogeneous programming platform, allowing kernel programs to be executed on

9

any OpenCL compatible parallel processing device which can also include multi-core micro-

processors or digital signal processors.

Between these two programming platforms, you may find that synonymous objects

and concepts are titled differently which can lead to a lot of general confusion. Information

provided by both hardware and software manufacturers also suffer from this confusion; where

hardware and software components may switch titles depending on the context of the sen-

tence that they are presented in. Examples of this synonymous terminology include stream

processors which are often described as shader engines, SIMD cores, or SIMD engines. The

SIMD acronym means ”Single Instruction Multiple Data” and characterizes the execution

model of the kernel program. SIMD originates from a characterization known as Flynn’s

taxonomy which consists of SISD(Single Instruction Single Data), SIMD, MISD(Multiple

Instruction Single Data), and MIMD(Multiple Instruction Multiple Data). In later revi-

sions, the above definitions have been extended to programs rather than just instructions.

For the nature of general purpose computing on graphic processing units, we only concern

ourselves with the SIMD model.

As we explore the programmability of the graphic processing unit and the program-

ming platforms which unlock this capability, we encounter synonymous terms such as work-

items(OpenCL) and threads(CUDA). Similar to the standard computer science definition of

a thread, the work-item or thread can be viewed as the smallest unit of computation which

essentially executes the sequence of instructions described in the kernel program. In addi-

tion to work-items and threads, we have work-groups or thread-blocks. As you can assume

from their given labels, work-groups and thread-blocks can be one/two/or three dimensional

structures comprised of work-items or threads, respectively. Continuing with the case of the

OpenCL programming platform, you begin to see a hierarchy of computation. This hierar-

chy begins with a overall grid consisting of work-groups of work-items. These work-items

are further grouped together to form corresponding wavefronts within the work-groups. The

wavefront consists of 64 work-items which are executed simultaneously.

10

Figure 2.2. Understanding the thread configuration and how it applies to your problem space and algorithm allows you to

understand how to best utilize the hardware.

Understanding these programming concepts allows the programmer to visualize the

parallelism of his application and how different aspects of his application can translate to a

kernel program. Understanding the underlying hardware concepts can help the programmer

understand the execution model which his program relies upon. Revisiting the hardware

components of the graphic processing unit described previously, these thousands of stream

processing cores are distributed to a group of compute units(also often called execution

units). Each compute unit has its own local (or scratchpad) memory while all compute

units share a common constant/global device memory area. Relating to this architectural

model, the previously mentioned work-groups are processed by the compute unit. All com-

pute units execute their work-groups simultaneously. Though a compute unit can process

several work-groups (depending on the hardware and memory limitations of the device), the

compute unit does so in a sequential manner. Each work-item has its own private memory

11

while every work-item in a given work-group share a memory area titled as local memory(or

scratchpad memory). Every work-item in the global space share the same central device

memory area appropriately named global memory. As you can imagine, given the purpose

and motivation behind the architectural design of the graphic processing unit, the memory

bandwidth between these memory spaces differ greatly and provide a primary focal point in

the implementation details of this research.

Above is a very basic description of the relationship between the software and hard-

ware components which are described by the OpenCL programming platform for graphic

processing units. As you can imagine, given the volatile and dynamic nature of the graphic

processing technology and ongoing development and innovation in this area, there are many

different real-world varieties of this technology ranging from the basic and heavily marketed

discrete graphic processing units to the interesting system-on-chip heterogeneous variety

which is currently rising in popularity amongst mobile devices. Given these varying repre-

sentations of the same fundamental hardware device, the discussed programming platform

aspects remain consistent between each of these representations.

2.4 Adapting a Serial Executing Application for GPU Hardware

From a software or program-level, the implementation or incorporation of OpenCL

within the application consists of separating the application into two essential parts. The

portion of the application that is primarily executed on the central processing unit is called

the ”host” code and serves as the primary program which sets up the OpenCL program-

ming environment, manages and creates the OpenCL data structures, launches the OpenCL

kernel(s), and operates on the return values of the kernel programs. The standard OpenCL

setup process consists of identifying the OpenCL platform on the computer and recognizing

the array of OpenCL compatible devices of this platform. This array of OpenCL compatible

devices can consist of both multi-core central processing units as well as graphic processing

12

units or any general purpose parallel processing unit. Once the OpenCL compatible device(s)

is chosen, the OpenCL context is created for the use of managing other OpenCL objects such

as command queues, OpenCL memory buffers, and also OpenCL kernel objects amongst this

OpenCL device or collection of OpenCL devices described by the OpenCL context. There

is a large amount of setup code involved in implementing OpenCL into the application but

much of it can simply be repeated from application to application in most cases. The large

amount of general setup code does allow for a large amount of control over the OpenCL

components of your application(Munshi et al. (2011)).

Aside from setting up the OpenCL environment within the application, the pro-

grammer must also seek to understand which areas of his application can benefit the most

from the graphic processing unit technology. This approach can begin with profiling and

characterizing which portions of the application are most computationally intensive. Once

these portions are discovered and profiled, the programmer must determine the parallelism

opportunities of these computationally intensive sequences. Essentially polarizing the com-

putationally intensive highly parallel portions of the program and the standard sequential

portions is the key to determine which areas of the application can benefit most from general

purpose programming on the graphic processing unit. Often an easy way to visualize this

strategy is to seek for portions of the program which perform a small amount of calcula-

tions over an extremely large data set. A common example of an algorithm which exhibit

these characteristics is the basic vector addition example which performs the addition of

two elements in two separate vectors while storing the result in another vector at the in-

dex which corresponds to the index of the two elements of the original vectors. Another

common example is matrix multiplication which performs the multiplication between two

matrices(fairly self-explanatory)(Matsumoto et al. (2012)). Both of these examples are often

cited as the beginner’s introduction to the realm of general purpose programming with the

graphic processing unit; the essential ”Hello World” of the heterogeneous computing world.

Adapting the application to utilize the OpenCL programming platform requires both

13

a great understanding of the algorithm’s problem domain and also the characteristics of the

OpenCL programming platform which will exploit the potential parallelism of the algorithm.

The kernel program, which can be viewed as a function itself, is a unique program based

in a somewhat limited version of the C99 C standard. Once the kernel program has been

created, the programmer acquires the responsibility of designating the problem domain that

kernel program shall execute within. This domain is characterized by two primary aspects,

the global work-items specification and the local work-items specification. These two details

can be expressed in three dimensions, depending on which representation maps best to the

algorithm that it is effectively attempting to optimize. In a naive explanation, if the prob-

lem domain consists of a single one-dimensional data set then the most optimal specification

would be one-dimensional; this includes problem domains that require a computation on a

large vector or array of data. Similarly, such as the matrix multiplication example discussed

earlier, if the problem domain consists of a two-dimensional data set, these specifications

can be expressed as two dimensional; and so forth with a three-dimensional data set. Ac-

knowledging these details allows the programmer to specify the amount of work-items and

the subsequent grouping of work-items in a identifiable model that the kernel program will

effectively execute on.

While this may seem overcomplicated to a beginner programmer in OpenCL, with

ongoing experience in utilizing the OpenCL programming platform in their programs, the

programmer begins to see the optimization possibilities and the resulting parallel execution

model more clearly in their subsequent applications. Returning to the concept of work-items

and work-groups, once the programmer has specified the dimensions and amount of work-

items in the global problem space and the dimensions and amount of work-items in the local

problem space(within each work-group), OpenCL processes this information and executes the

kernel program within this specified problem space. The behavior of the work-items within

this N-dimensional problem space must be understood by the programmer when translating

portions of his algorithms(or his entire algorithm) to a suitable kernel program. Work-items

14

within the global problem space share the same global memory space while work-items within

the same local work-group share the local memory space. Synchronization methods such as

work item barriers and memory fences are familiar instruments to most parallel programmers

and they are also required within the kernel program to protect the integrity of the model

and prevent any discrepancy between the OpenCL execution model and the kernel program

itself. Within the 64 work-item wave front, there is also an opportunity for thread-divergence

which can also affect the overall hardware utilization and present opportunities for less-than-

optimal performance.

2.5 Understanding the OpenCL Memory Model

Revisiting the OpenCL memory model, we acknowledge that there are four primary

memory spaces that the kernel programmer must be aware of when optimizing his algorithm

based upon OpenCL’s specifications. The first and foremost is the system memory or host

memory which is shared between the ”host” device and the OpenCL device. In discrete

graphic processing platforms, memory transfers between the host device’s system memory

and OpenCL device’s global memory is performed over a PCI-Express bus. This transfer pro-

tocol presents a performance bottleneck where the OpenCL kernel’s performance is limited

by the slower transfer bandwidth of the PCI-Express bus. There has been a large amount of

research and focus in hardware solutions to relieve this bottleneck. One common approach

is evident in a modern hardware component described as an APU or accelerated processing

unit. In an accelerated processing unit, the graphic processing unit and the central pro-

cessing unit are much more closely coupled on a single silicon die. While this removes the

memory transfer bottleneck and improves the power consumption of the device; there are

some performance limitations inherent to the graphic processing unit design when coupled

with the central processing unit on the same silicon die. These limitations can be described

as a lower number of dedicated transistors to the graphic processing unit resulting in a

lower number of stream processing SIMD cores and a lower number of general compute(or

15

execution) units(Munshi et al. (2011)).

The next memory area of interest within the OpenCL memory model is titled as

global memory. The name, rather self-explanatory, implies the definition of the memory

space; global/constant memory is the memory space shared by all work-groups within all

compute units on the OpenCL device. This memory area is not synchronized between work-

items or work-groups, so careful detail and focus must be exercised in the memory handling

of the kernel program when working within this memory space to prevent any discrepancy

between the global work-items which read and write from this memory space. Within each

work-group is a memory space titled as local(or scratchpad) memory which is synchronized

between all work-items within the work-group. Each work-item within the work-group shares

this memory space and acquires the same view of this memory space. Predictably, the

memory latency between the local memory space and global/constant memory space differs

greatly, therefore it is suggested to perform the majority of memory accesses in the local

memory space area and limiting the amount of memory access to the global memory space

to increase the overall performance and lower the overall memory latency.

Since all work-items within the work-group share this same local memory, there is also

a large amount of careful detail that must be exercised in programming the kernel program

to execute accurately and consistently within this local memory scope. Each work-item has

its own private memory which is used by that work-item for storing and processing informa-

tion specific to that work-item such as common variables within the kernel program. Data

within this private memory can not be accessed or viewed by other work-items. Generally,

designating the memory space that information must be stored in is done either within the

kernel function’s argument field by an associated prefix before each argument or within the

kernel program itself by the same prefix. OpenCL kernels may include auxiliary functions

but given the nature of the memory addressing scheme within the OpenCL memory model,

these functions cannot take arguments such as pointers to memory spaces; therefore these

functions can be easily understood or viewed as inline functions within the main kernel pro-

16

gram. Understanding the OpenCL memory model allows the programmer to understand

how to structure the memory accessing nature of his resulting kernel program.

Figure 2.3. The layout of the very basic graphical representation of the OpenCL memory model.

To summarize the entire OpenCL programming model in a very basic manner, we

begin with the OpenCL components present within the ”host” program which consists of

the basic setup OpenCL objects such as the OpenCL platform(s) comprised of OpenCL

17

devices. The OpenCL context consists of the management of the OpenCL objects such

as OpenCL memory buffers, OpenCL execution command queues, and OpenCL programs

which consist of OpenCL kernel objects, across the collection of OpenCL devices within

the OpenCL platform of interest. You begin to note a hierarchy present within this realm

of the OpenCL programming model. While this may seems like a very large and tedious

amount of boiler-plate code; this hierarchy allows for an high level of control and design

freedom to optimize the application for the performance benefits of high-level data and task

parallelism. Understanding this aspect of the OpenCL programming model and adapting it

your application involves understanding the relationship between your application and the

OpenCL device(s).

2.6 Summmarizing the Basics of GPGPU Programming with OpenCL

To further summarize the OpenCL programming model that we have discussed in

earlier pages. We explore the OpenCL execution model which closely mirrors the hardware

architecture details of the OpenCL device with concepts such work-items and work-groups

with each work-item processing the sequence of code within the kernel object. The work-

items are handled by the OpenCL device’s SIMD processing cores while the compute units

of the OpenCL device effectively handles each local work-group. Understanding the nature

of the OpenCL device specific to the platform executing your application helps you deter-

mine which OpenCL device is best suited for your algorithm and which execution model

is best suited for that OpenCL device. In addition to understanding the very basic nature

of the OpenCL execution model, the OpenCL memory model describes the resource man-

agement detail that must be considered to promote the best performance out of the kernel

program. Understanding the role and characteristic of each individual memory area allows

the programmer to effectively utilize the entire hardware in an incredibly efficient manner ex-

hibiting both high level parallel performance and efficient memory handling for low memory

18

latency. Understanding the hardware and software-related characteristics of each hardware

components allows the programmer to develop an optimal workload distribution scheduler to

determine which workload is best for which device; this approach has resulted in many inter-

esting research topics such as the dynamic scheduling of the breadth-first search algorithm

over real-world graph instances(Hong et al. (2011)).

It may seem that only specifying details of the OpenCL programming platform for

general purpose computing on the graphic processing unit may limit the understanding of the

concept to only the details of the OpenCL programming platform; given the fact that there

are many other programming platforms available. But the concepts discussed in the previous

pages involving the different characteristics of OpenCL programming are easily translated to

other existing GPGPU programming platforms as well. Given the design of modern graphic

processing units, each programming platform follows a similar programming model design

to exploit the performance benefits based upon the central architectural design. OpenCL is

the most widely used and available implementation of this programming paradigm due to

its open source and cross-platform nature which are the basic design goals by the Khronos

Group. For this thesis, OpenCL has been the platform of choice.

Understanding the very nature of heterogeneous computing and general purpose pro-

gramming on graphic processing units will provide insight behind the motivation of my

research and the implementation details described in my experiments. Understanding the

potential benefits of incorporating these concepts in modern algorithms to fully utilize mod-

ern technology designed around the concept of heterogeneous computing will allow you to

see the nature and behavior. Described in this chapter is only the very basic details of

general purpose computing with graphic processing units which are required for further un-

derstanding of this document and its associated research. Programming-specific details and

API characteristics were not discussed and can provide material for yet another paper; but

their details aren’t effectively useful for understanding this document.

19

CHAPTER 3

ADAPTING THE HEAP FOR HETEROGENEOUS COMPUTING

Algorithm(Al·go·rithm), is a term originating from the transliteration of the surname

of Arabian mathematician al-Khwarizmi, famous for his introduction of mathematical con-

cepts such as algebra to Western civilization. An algorithm is best described as the sequence

of steps to achieve a solution to a specific task or problem. In the realm of computer science,

an algorithm can be understood as the mechanics of the computer program which execute

to perform a certain task. Every computer science student is extremely familiar with the

concept of an algorithm; perhaps from a formal definition perspective or simply the inherent

nature of their approach to programming solutions. With further investigation of algorithms

within the area of computer science, we begin to see their most primitive components, the

data structures(Levitin (2002)).

Re-examining the phrase ”Computer and Information Science”, we note the inclusion

of the term ”Information”. A large component of the study of Computer Science involves

understanding the representation and handling of information, often referred to as data. The

purpose of the computing device as a mechanical device is to effectively process, represent,

and handle data for the purpose of accomplishing a solution at the discretion of both the

programmer and the user. To accomplish this goal, information or data must be repre-

sented in a manner which allows the device to easily perform the calculations and computa-

tions demanded by the algorithm. These resulting structures are appropriately called ”Data

Structures” and they exist in many different varieties with different purposes. Combining

the science behind these data structures and the mechanics of the algorithms that utilize

them presents an ever-changing area of focus, research, and analysis to develop algorithmic

solutions that use the computing device hardware more effectively.

20

Many of these information representation structures have a counterpart within the

area of mathematics. For example, many varieties of the graph structure are utilized in

computer science, these varieties can also be characterized in their mechanics and efficiency

by graph theory, a vast and interesting area of research and study within mathematics.

Often these complicated and intricate structures are representative of a much larger set of

information being processed by the computer program; this allows for a level of abstraction

of the problem domain being handled and processed by the computer program. Internally, or

within the programming language itself, exists a concrete representation that can be modified

or structured to implement a much more complicated data structure. An example of this

concrete data representation within the C programming language is the basic array.

3.1 Addressing the Nature and Design of the Heap Data Structure

Referring back to graph-based data structures, a great example of this structure type

is the tree-based data structure, the heap. Tree-based implies an acyclic graph hierarchical

representation of the information which begins with a ”root” node branching into subsequent

nodes with each subsequent node branching into more nodes. The heap is an unusual tree-

based data structure in comparison to other common tree-based data structures such as

Binary Search Trees, Red-Black Trees, and also B-Trees. Each heap implementation or

representation share a common property that distinguishes them as a heap; this property is

the ordering of the nodes which the Heap data structure consists of. The heap data structure

comes in two primary varieties, the Max Heap and the Min Heap. As the names imply, the

Max Heap is characterized by the root node having the maximum value or key of all nodes

within the Heap data structure; the Min Heap is the opposite. The ordering property of

the heap data structure reflects these varieties by ensuring that the keys of the children of a

specific node is either greater-than or less-than the keys of that specific parent node. With

this ordering specification exhibited throughout the entire heap data structure; the root value

21

becomes whichever node that has the maximum or minimum key or value(Levitin (2002)).

The heap data structure is a complete tree structure exhibiting the smallest possible

height for a Tree-based structure based upon the number of nodes within the heap. As

nodes are inserted into the heap, the Tree-representation essentially grows from left to right

on the fringe level of leaf nodes until a new level within Tree structure is required. The

mechanics of the insert operations are different from typical tree insert operations to ensure

that the integrity of the heap ordering property is retained. The heap structure provides

an efficient way to extract the maximum or minimum values amongst a collection of values

or keys in constant time. While the root node’s value or key is the maximum or minimum

order statistic of all keys or values within the tree, the Heap isn’t completely sorted in any

definite manner given the lack of relationship between all keys or values on any given level

within the heap tree.

Figure 3.1. As with most data structures and information representations, it is much easier to understand with a visual reference.

In its most simplistic form, the Binary Heap, the heap consists of nodes where each

node, aside from the nodes on the last full level, have two children nodes. The nodes within

the last full level of the heap, following the description stated earlier in this chapter, can

have as little as no children depending on the population of the last fringe level of the

22

heap data structure. This is the most basic implementation of the heap data structure. A

representation that would exhibit a smaller number of children yet retain the connectivity

of the graph structure would result in a sorted degenerate tree. The heap structure can

be further extended to include cases where the heap nodes are allowed a greater number

of children. This is known as the d -heap or d -ary Heap where d denotes the maximum

number of children each node is allowed. d -heaps are very common within many graph-

based algorithms in computer science.

The basic operations of the heap data structure are similar to the basic operations

surrounding most common data structures. There is the Insert-Node operation, Update-Key

operation, and Delete-Min/Max operations and associated observer operations for extracting

information from the heap structure such as the value of the heap’s root node. The Insert-

Node operation is fairly straightforward, simply inserting a new node and associated key-

value into the heap structure. The Update-Key operation essentially changes the key value

of a given node within the heap structure. The Delete-Min/Max operation removes the

root node from the heap and oftentimes returns this value to the calling function for further

use. The mechanics of these operations become a unique focal point, since any operation

that modifies the structure of the heap structure or the values of the nodes within the heap

structure might require additional work to ensure that the heap ordering property remains

intact. This additional work can be described by two different methods known as bottom-up

reconstruction or top-down reconstruction.

In the case of inserting a new node or updating the value of a node to a new value

which is greater than(or less than in the case of a Min Heap) the original’s parent node’s

value, the bottom-up reconstruction is utilized. In the bottom-up reconstruction, the new

node or node of interest is propagated up the structure of the heap until the heap ordering

property is satisfied. Similarly, the top-down reconstruction method is used when the new

node or value is propagated down the structure of the heap until the heap ordering property

is satisfied. When a new node is inserted into a heap structure, the node is placed as the

23

last possible child node within the heap given the heap’s structure constraints. This node is

then propagated up through the heap through a series of comparison and swaps with node

and its subsequent parent(s). When the root node of the heap is deleted, the last node in

the heap replaces the root and comparison and swaps between the node of interest and its

maximum child node are performed until the ordering property is satisfied. When a node’s

key is updated or changed to a new value, either approach can be taken; depending on the

relationship between the node and its parent or associated children node. Understanding

the mechanics of these operations allows for an understanding of how to optimize the these

operations in heterogeneous solutions discussed in the previous chapters.

Figure 3.2. The array indexing scheme demonstrated on a binary heap structure.

The concrete representation of the Heap structure is often implemented as an array

where each element within the array corresponds to a node within the heap structure. This

representation presents an efficient indexing methodology of accessing heap node details

such as the parent of a specific node or the corresponding children of a specific node. These

constant-time indexing operations provide an efficient method of execution for performing

the basic operations that are natural to the heap data structure.

24

3.2 Adapting the Heap Data Structure for Latest Trends in Technology

The heap is an incredible tool in implementing many efficient and common computer

science algorithms such as finding the kth order statistic from a collection of values(an algo-

rithm we’ll be inspecting further), the essential Heap Sort, and many graph-based algorithms.

Research is continuously driven by the possibility of further optimizing both algorithms and

data structures to effectively take advantage of modern technology and modern program-

ming platforms to improve their general performance. One interesting modification in the

concrete representation of the Heap structure, for better performance on symmetric multi-

core processors, is the introduction of the implicit d -heap.

Figure 3.3. The Implicit d-ary heap.

The implicit d -heap was an intellectual response to the growing popularity of the

memory hierarchy and the use of data caches on modern processors in the late 20th century.

As the performance of the modern processor continued to improve with higher clock fre-

quencies, the memory latency between the processing core and the physical system memory

became a performance bottleneck]. The introduction of a memory hierarchy brought about

an interest in adapting different algorithms and associated data structures to take advantage

25

of the benefits of the cache performance. Ladner and LaMarca proposed the implicit d -heap

structural design to better align the components of the heap structure with the processing

hardware’s cache blocks(LaMarca and Ladner (1996)). In this newer design, siblings of a

node would not span over cache blocks. They achieved this design goal by adding an offset

of (d -1), where d is the maximum number of child nodes, to the head of the Heap’s array

representation. This additional offset required minor changes to the array addressing scheme

as well.

Similar to the rise in popularity of the associated memory hierarchy, many researchers

and developers are investigating the performance optimization opportunities presented by

translating portions of their existing algorithms to high throughput-oriented devices such

as the graphic processing unit. Revisiting the concepts covered in the previous chapters on

heterogeneous computing with the graphic processing unit; many algorithms have exhibited a

large performance increase in utilizing the high-throughput oriented hardware of the graphic

processing unit. Unfortunately, many highly divergent graph-based algorithms and data

structures have had a complicated time adjusting to this current trend and remains a heavily

researched topic. For example, the heap structure which had undergone a structural change

for better performance on modern symmetric multi-core processors, became the focal point

of Weifeng Liu and Brian Vinter(Liu and Vinter (2014)).

3.3 The ad-Heap, Designed for Truly Heterogeneous Systems

Weifeng Liu and Brian Vinter investigated the associated operations of the traditional

d -heap data structure looking for opportunities to exploit any potential parallelism. They

discovered that the only opportunity for parallelism within these operations was the Top-

Down Heap reconstruction sequence which required the maximum child of the specific node

of interest to be found on each level. In this case, the opportunity for parallelism was to

find the maximum child from a large group of children. The main issue of this discovery

26

was that the level of data parallelism of this process is limited by the number of children

or the value of d. Therefore in cases that the value of d is quite small, the opportunity to

see any improvement from the graphic processing unit was also very small. In this case,

the performance of the utilizing the graphic processing unit would be even worse than the

typical mult-core implementation since the hardware of the graphic processing unit was not

being fully utilized.

Modern hardware manufacturers, recognizing the potential for more powerful and

power efficient platforms, began to research and develop solutions which would eliminate

much of the overhead and bandwidth issues that typically bottle-necked the traditional

loosely coupled heterogeneous platforms. This technology, a product of the HSA Founda-

tion, is described as a truly heterogeneous platform that would allow the host device and the

graphic processing unit to work more closely together within a unified memory space elim-

inating much of the memory cost and address mapping encountered in traditional loosely

coupled heterogeneous platforms. On a hardware level, the central processing unit and

graphic processing unit would be connected by either a shared data cache or the system

memory; but located on the same silicon die thus reducing the slow memory bandwidth of

the PCI-E bus. Given these essential design changes, the application load could distributed

more easily by both the programmer and the operating system to which device would be able

to provide the best performance. Additionally, this technology would combine the central

processing unit and graphic processing unit in a closely manner to reduce the context differ-

ential typically encountered with traditional heterogeneous platforms and their associated

kernel launching and execution protocol.

Though hardware platforms such as AMD’s APU or accelerated processing unit and

Intel’s merged CPU and GPU have somewhat implemented much of these features on a

hardware level by locating both hardware components on the same silicon die; the associ-

ated heterogeneous programming platforms have yet to completely implement the necessary

synchronization and communication features to remove the context switching overhead. This

27

is the essence of heterogeneous computing and Weifeng Liu and Brian Vinter theorized and

implemented what they described as the ad -heap or the asymmetric d -heap based around

this trend of modern technology. The asymmetric d -heap, as the name implies, is an im-

plicit d -heap structured for performance on asymmetric multi-core processors. An asymmet-

ric multi-core processor is synonymous to a heterogeneous computing platform; essentially

combining two types of processing cores into one computational unit.

These compute units are separated into two categories, the throughput-oriented

unit(such as the typical graphic processing compute unit) and the latency-oriented unit(such

as the typical central processing unit’s processing core). The design motivation behind the

asymmetric d -heap was to effectively separate the execution mechanism of the d -heap to al-

low the portions that presented opportunity for parallelism to be executed on the throughput-

oriented cores and the portions that required sequential execution to be executed on the

latency-oriented cores. This is very similar to adapting most algorithms to loosely coupled

heterogeneous platforms; but given the nature of the d -heap structure and the relatively

small amount of opportunity for parallelism, this provided an opportunity to explore the

possible benefits of more closely coupled heterogeneous platforms.

Figure 3.4. The ad-Heap array structure proposed by Weifeng Liu and Brian Vinter(Liu and Vinter (2014)).

To accomplish this, the original d -heap structure was only modified in a modest sense.

The original empty head of the implicit d -heap became a storage container for information

28

that would be later used by the latency-oriented cores. If an operation performed on the

ad -Heap structure required the heap to be reconstructed from the top down; the graphic

processing unit handled the downward propagation of the value. On each level of the heap,

the children of the node of interest would be analyzed in parallel to determine the maximum

child. Once the maximum child was found, it would be compared to the current node of

interest. In a traditional execution of this operation, if the maximum child was greater than

the node of interest then the two nodes would effectively be swapped and the node of interest

would continue to propagate down the heap. In the case where this computation is performed

on the graphic processing unit, a space of memory is allocated in the local memory of the

device which is described as the implicit bridge. When a swap is needed between two nodes,

the index of the node and the new value are stored as an index-value pair on this implicit

bridge rather than the assignment being directly handled within the device code.

This index-value pair placement and implicit bridge construction is to avoid the asso-

ciated bandwidth and thread divergency penalty incurred by allowing only one thread within

the device’s wavefront to perform the assignment to global memory. Once the value has been

propagated down the heap to its proper location, the workload of the throughput-oriented

cores are finished and the wavefront offloads the implicit bridge to global memory in the

location of the implicit d -heap’s empty head section where the latency-oriented cores can

perform the proper assignments based on the information provided in the implicit bridge.

The implicit bridge is composed of a node counter which keeps an associated count of the

index-value pairs on the implicit bridge.

To perform this effectively, a complicated level of synchronization and communica-

tion must be implemented to ensure that both the throughput-oriented compute units and

latency-oriented compute units are able to communicate their results and workload with

as little overhead as possible. Unfortunately this programming model is only theoretically

presented by the HSA Foundation and presented in a theoretical sense in the associated

ad -Heap paper by Weifeng Liu and Brian Vinter. Despite this, and the current lack of

29

truly heterogeneous HSA platforms available, Weifeng Liu and Brian Vinter simulated the

modern technology with their proposed design by counting the number find-maxchild and

compare-and-swap operations in the d-heap on the CPU and executing the same amount of

work with their ad -heap implementation on the CPU and the GPU. In their performance

statistics of this simulation, they also included the approximate cost of the synchronization

between the throughput-oriented and latency-oriented processing cores. They found a sig-

nificant improvement in this design over similar experimental platforms that executed the

operations either strictly on the standalone CPU, loosely coupled CPU and GPU platform.

30

CHAPTER 4

ADDRESSING THE LIMITATIONS OF GPU COMPUTING WITH HSA

ARCHITECTURE

Weifeng Liu and Brian Vinter addressed some of the common issues surrounding

general programming on the graphic processing unit in their unique design of the ad -heap

structure. The design philosophy promoted the use of the theoretical AMP(Asymmetric

Multi-core Processors) technology to generate the performance benefits of general purpose

programming on the graphic processing unit while negating the possible issues which would

normally limit these performance benefits(Vuduc et al. (2010)). Normally these limitations

can be categorized as either an under-utilization of the hardware or memory/computational

thread-related execution which does not translate well to modern graphic processing unit

technology(Owens et al. (2005)).

4.1 Limitations of Current GPU Hardware/Software Solutions

Modern discrete graphic processing units typically perform active data transfers

across the PCI-E bus to the system memory which is accessed by the central processing

unit. In applications where there is frequent communication and data transfer between the

central processing unit throughout the course of the application’s execution; there is an

associated penalty which corresponds to both the memory bandwidth and the memory pag-

ing/handling overhead which can limit the performance of the application. Similarly, there is

an estimated associated overhead from the context-switch associated with each kernel launch

in an application that may require a large number of kernel launches. Therefore, in an ap-

plication whose execution is more closely coupled between the central processing unit and

31

graphic processing unit, the associated overhead of the memory handling and kernel launches

can dramatically decrease the overall performance thus rendering the graphic processing unit

solution to be ineffective compared to a strict-central processing unit solution.

Algorithms which require a large amount of irregular memory access patterns are

typically unable to reap the performance benefits of highly parallel hardware devices such as

the graphic processing unit. The GPU hardware is designed and optimized for highly parallel

tasks and computation. When individual computational threads issue memory requests in

a manner which is not uniform to the group of parallel threads as a whole, the underlying

memory subsystem of the graphic processing unit is unable to effectively process the requests

in a low-latency efficient manner as the central processing unit typically would. Generally,

programmers must adapt their existing algorithms to properly utilize the graphic processing

unit’s memory subsystem to fully benefit from the computational power of the hardware.

Thread divergence can often affect the performance of modern graphic processing

units. If the application’s amount of parallel work decreases over the course of the kernel

execution, the amount of utilized SIMD threads will also decrease resulting in an under-

utilization and inefficient use of the graphic processing unit technology. Oftentimes, this is

encountered when thread-id based conditional blocks within the kernel code result in the

threads either diverging in their overall work pattern or a large amount of threads becoming

idle within much of the kernel program’s execution. The resulting low hardware utilization

reflects the performance of the kernel program and the overall performance of the application.

When translating sections of the application for execution on the graphics rendering

device, the programmer typically investigates the large loop-based computation. Loop-based

computations which exhibit iteration-based data dependencies often do not translate well

to the parallel nature of the graphic processing unit. In similar nature, algorithms which

depend on the manipulation of shared data between each iteration of the loop can promote

in-deterministic results from multiple threads attempting to modify or access the shared

data in a parallel fashion. To resolve this issue on modern graphic processing units, the use

32

of synchronization methods and/or atomic operations provide a solution but often hinders

the parallel nature of the program’s execution and reduces the overall performance.

4.2 The Hardware and Software Design of the HSA Solution

As discussed previously, the ad -heap is a very interesting case where the current

limitations of the hardware and software solutions of general purpose programming on the

graphic processing unit would otherwise prevent any benefits from translating the data struc-

ture and its operations from a traditional multi-core central processing unit implementation.

Despite these limitations, by adapting the structure design and general execution concept

of its operations, the ad -heap should inherit an increased performance on systems which

follow the True Heterogeneous Computing philosophy. Many hardware manufacturers such

as ARM Holdings, AMD, and Qualcomm have combined their development and research

efforts with academic research groups at institutions such as Northeastern, University of Illi-

nois, and the University of Mississippi to form the non-profit consortium known as the HSA

Foundation. The HSA(Heterogeneous System Architecture) foundation seeks to advance the

topic of truly heterogeneous computational systems as innovative technology solutions to the

modern heterogeneous computing paradigm((HSA Foundation) (2013)).

The design of the HSA architecture addresses many of the limitations of current

discrete graphic processing unit heterogeneous solutions. By tightly-coupling the central

processing unit and graphic processing unit, the PCI-E memory transfer penalty is effec-

tively eliminated. Most modern APU or accelerated processing units resolve this potential

bottleneck by allowing the graphic processing unit and central processing unit to share the

same system memory while residing on the same silicon die. The HSA solution seeks to

allow the central processing unit and graphics accelerator unit to share the same last-level

cache of the primary memory hierarchy of the system rather than the system memory which

further reducing the bandwidth penalty((AMD Developer Central) (2013)).

Further addressing the limitations of modern GPGPU heterogeneous platforms’ mem-

33

ory handling scheme; the HSA software design incorporates the use of a unified virtual mem-

ory space. In current modern GPGPU heterogeneous solutions, there is a large amount of

memory setup and transfer handling overhead. Aside from the underlying behavior of pinned

memory within the OpenCL programming platform and its associated memory-handling

commands, the programmer must be able to adequately structure and manage his memory

and its associated transferring schemes. With a unified virtual memory space, the address-

ing scheme between CPU and GPU devices becomes more natural to the programmer. This

allows pointers to be freely passed between both devices but also more physical addressable

memory can be paged to and from the disk.

Applications which typically execute over increasingly large data sets may not be

applicable to current graphic processing units and their limited physical memory capacity.

The unified physical and virtual memory requirement of HSA-based hardware and software

solutions will resolve this issue. By removing the typical off-chip memory access traffic

of modern heterogeneous GPGPU solutions, the truly heterogeneous solution proposed by

the HSA Foundation will allow fine-grained memory handling between the CPU and GPU

devices requiring both devices to access the same coherent block of memory.

By allowing the programmer’s application process to directly dispatch the computa-

tional work of the graphic processing unit to a per-application queue eliminates the typical

overhead penalty of depending on the operation system’s kernel services to dispatch the

workload. HSA allows for per-application command queues which can handle computational

dispatch requests while in User Mode rather than relying on the underlying hardware device

driver to handle the overall workload queuing scheme. There are also complications regard-

ing current GPGPU solutions related to situations where a process may essentially hog the

graphic processing unit’s hardware for an extended period of time disallowing other processes

to utilize the hardware for their computation. This issue is addressed by preemptive GPU

context switching in truly heterogeneous computing solutions.

34

4.3 Truly Heterogeneous Computing Solution and its Importance in Benefiting

Modern Algorithms

As I will explore in future chapters with the basic ad -heap design philosophy, many

existing algorithms and data structures may effectively benefit from a more tightly-coupled

heterogeneous platform with the features presented by the HSA Foundation for a truly het-

erogeneous computing system. Issues which ultimately plague algorithms and operations

which require frequent kernel launch and memory transfers when translated to graphic pro-

cessing units will be alleviated with these new hardware and software solutions to ensure

that only the performance benefits remain. Following the goal of heterogeneous computing

to obtain a synergistic solution through optimally using all hardware components to the

best of their abilities, HSA Foundation seeks to remove much of the limitations inherited by

modern GPU technology to allow this goal to be both more easily obtained but also more

natural to the application programmer((AMD Developer Central) (2013)).

35

CHAPTER 5

EXPLORING THE AD-HEAP-BASED BATCH K-SELECTION BEHAVIOR

Weifeng Liu and Brian Vinter’s ad -heap data structure design is incredibly interesting

because it presents a perfect case study for a data structure whose operations would typically

not produce any performance benefit from being translated to the graphic processing unit.

The only parallel portion of the top-down reconstruction of the heap is to find the maximum

child on each level of children. Given this, fully utilizing or saturating the SIMD processing

cores of the graphic processing unit is limited to the branch size(or d) of the heap being

processed. In a truly heterogeneous platform, the heap data structure can be re-designed to

effectively take advantage of the different processing components of the profile over the course

of its operation. Therefore, the ad -heap structure is particularly interesting for exploring the

potential benefits that a truly heterogeneous system could present for data structures and

algorithms which require a much closely coupling and interaction between both the central

processing unit and graphic processing unit.

5.1 Characteristics of the Batch k-Selection Algorithm

Following a similar example as presented in the ad -heap conference paper; I im-

plemented the heap-based batch k -Selection algorithm. The batch k -Selection algorithm

consists of processing a list set of sub-lists by constructing and assigning a heap for each

sub-list within the set. The heaps that are constructed for the each sub-list are the size of

k and constructed by inserting the first k elements within each sub-list into the Heap data

structure. Once the heap is constructed from the first k items in the sub-list, each subse-

quent item within the sub-list is compared to the current root of the heap structure. If the

36

subsequent item’s value is less than the current root node of the heap, than the root node

of the heap is updated with that value and the next subsequent sub-list item is examined.

Once all sub-lists have been processed, the root node of each heap is the kth order statistic

of that corresponding sublist.

Figure 5.1. The Batch k -Selection algorithm finds the kth order statistic in each sub-list of the sub.

The batch k -Selection algorithm presented an interesting algorithm to examine the

Heap data structure’s performance. The mechanics of the algorithm ensures that only two

basic operations of the Heap data structure is performed, but these operations are performed

in high volume. The implementation of the fairly large data set for computational purposes

was an array of unsigned integers segmented by the size of each sub-list. Given an array

of size 2n unsigned integers, this array would be further segmented into m sub-lists of size

2n−m.

The versatility of this segmentation method allows the data set to be partitioned into

different test cases by presenting test cases where the sub-list size is fairly small yet the

number of sub-lists are much larger to test cases where the sub-list size is fairly large but

37

the number of sub-lists are much smaller without changing the overall data-set size. For my

implementation, I set the global data set size to 228 and the smallest sub-set size consisting

of 211 unsigned integers. The test cases ranged from 217 sub-lists of size 211 to 27 of size 221.

To keep the computational work fairly consistent through each case, I allow the heap size

k to be 0.1l where l is the length of sub-list in that case. This methodology is the same as

the experimental methodology presented in Weifeng Liu and Brian Vinter’s ad -heap confer-

ence paper to test their simulation. The resulting data set information is shown in Figure 5.2.

Figure 5.2. Total data set size and the corresponding test cases and data size.

As described earlier, the batch k -selection algorithm is an extremely interesting al-

gorithm to explore in relevance to the heap data structure given the large volume of similar

operations performed when processing each sub-list. Given a sub-list of size l and k = 0.1l,

you are guaranteed to perform k Insert-Node operations to construct the heap to process

the sub-list and for each Insert-Node operation, the heap would be reconstructed from the

bottom-up to restore the ordering property. The true volume of work is found in the numer-

38

ous Update-Key operations performed when fully processing the sub-list. Given a sub-list

of size l and a heap of size k, you have an l-k elements remaining to be processed. This

introduces an upper bound of l-k on Update-Key operations to fully process the sub-list

with each operation performing a top-down reconstruction of the heap to restore the heap

ordering property.

While processing the sub-list, the Update-Key operation would only be called to

update the root node in cases where the current element in the sub-list being processed

is smaller than the current root node of the heap. Therefore, it can be speculated that

the upper bound previously mentioned would be extremely generous as the rate of Update-

Key operations would essentially slow down significantly as the root of the heap structure

progressively got smaller. The theoretical ad -heap top-down reconstruction computation

would be performed with every Update-Key operation that replaces the root node with a

smaller value; therefore understanding how many times the Update-Key operation is per-

formed would promote a better understanding of the overall work of the ad-heap structure

within the k -selection algorithm. Using the implicit d -heap implementation of the batch

k -selection algorithm which recursively performs the heap reconstructions, I seek to find a

consistent pattern behind these operations in each of the individual test cases of the data

set by counting the number of skips(when the new value in the sub-list is greater than the

root) and updates(where the new value is less).

Regardless of the size of the sub-list being processed, the percentage of Update-Key

operations performed on the remaining elements of the sub-list remain the same. Only 25-

26% of the elements within the l-k remainder of the sub-list will require an Update-Key

operation while 75-74% will effectively be skipped. Despite this small percentage, as the

sub-list size grows considerably, the number of Update-Key operations also grows consid-

erably as well. In cases where the sub-list size is as large as 1048576 elements, this can

amount to as many as 245,000 Update-Key operations. The above execution statistics were

the average statistics of all sub-lists of the same size processed sequentially on a symmetric

39

multi-core central processor. This information is shown in Table 5.1.

Figure 5.3. As the sub-list is being processed, the number of updates diminish.

Understanding the characteristics of the Batch k -Selection algorithm, we can already

identify some common issues which would result in a problematic scenario with the current

limitations of discrete graphic processing unit-based heterogeneous platforms.With nearly

500,000 Update-Key operations performed per sub-list resulting in nearly 500,000 iterations

of the same memory transfer process and the combined overhead of 500,000 kernel launches,

the algorithm would suffer some obvious issues on any modern GPGPU platform. To inves-

tigate this further, I implemented two CPU-based variations of the algorithms to be used

for comparison metrics.

5.2 Introducing the Physical Experimental Platforms

Two available experimental platforms were utilized for both the performance compar-

ison of the standard CPU d -heap implementation of the batch k -selection algorithm and also

40

GPU ad -heap implementation to understand the execution characteristics of each method

in comparison to one another. Each experimental platform offers its own unique hardware-

based characteristic which provided some interesting information behind each platform’s

individual execution model. The details of the two experimental platforms are provided in

Table 5.3.

Figure 5.4. Physical Experimental Platform Specifications

41

Machine 1 provides the basic discrete GPGPU experimental platform with the excep-

tionally powerful AMD HD-7970 discrete graphic processing unit while Machine 2 offers the

latest in HSA-influenced hardware design while lacking the functional programming plat-

form when provides many of the other HSA-influenced features such as the unified virtual

memory space and addressing scheme and the pre-emptive context switching and user-mode

dispatch command queues. Both machines feature powerful multi-core central processing

units and enough global memory available on their respective devices to effectively store the

entire large list set of sub-lists if needed.

Baseline statistics were provided by the serial execution of the batch k -selection al-

gorithm where each sub-list within the list set was executed in a sequential manner. The

sequential execution simply performed the Insert-Key operation for the first k elements

within each sub-list while calling the Update-Key operation for every subsequent element

where the subsequent value is less than the current root node’s key value. The Update-Key

operation would replace the current root node’s key value with the subsequent element of

lesser value and recursively call the top-down reconstruction function which sequentially

searched for the maximum child amongst each level of the top-down propagation process.

In addition to the test cases shown above, for each heap size, different d values were used

which would effectively increase the computational load of both finding maximum child and

traversing the height of the overall heap. When d is much smaller, less children must be

examined to extract the maximum child but the height of the heap is much larger.

42

5.3 Basic CPU Implementation of Heap Operations

The HEAP BUILD function is the central control function which effectively con-

structs the heap data structure and processes the sublist against the heap.

The HEAP BUILD operation can be distinguished by two parts. The first part is the

initial construction of the d/ad -heap data structure which requires the use of the Insert-Node

43

operation to insert the first k nodes into the allocated heap data structure. Once the heap

has been fully constructed, the remaining sub-list is processed by calling the Update-Key

operation sequentially while exhausting the sub-list until the kth smallest value is extracted.

The Update Key operation takes the heap data structure, the index of the node being

updated, and the new key value which the node is being updated to and performs whichever

heap property reconstruction process that is necessary given the respective relationship be-

tween the new key value and the original parent and children in relationship to that node.

If the node being updated is not the root node then there is an equal opportunity for both

the bottom-up and top-down reconstruction process. If the node is the root node, then we

can assume that if the heap ordering property is not satisfied by the updated node’s new key

value then the node will propagate down the tree until the ordering property is restored. In

the case of the batch k -selection algorithm, the root node is the only node being updated

and each update will require the top-down propagation of the new key value.

As previously mentioned, the computational complexity of the Update Key operation

is heavily dependent on the value of d. If the d value is small, than the sequential selection

of the maximum child at each level during the downward propagation is small, yet there

are more levels of the heap to effectively traverse in the duration of the propagation. The

opposite is true for when the d value is large, but when the d value is large there is more

opportunity for data parallelism. Much like the bottom up reconstruction process, the

propagation process is called in a recursive manner until either the new node value has

reached a suitable location within the heap or the new node has either approach the root(in

the case of the bottom-up reconstruction) or approached the last level of the heap(in the

case of the top-down reconstruction). Unlike the top-down reconstruction, in the bottom-

up reconstruction there is no opportunity for parallel optimization since the process only

consists of serial compare-and-swap operations to compare and swap the current node with

its parent node if the current node is greater than the parent node.

44

In the above described algorithms, much of the detailed arithmetic to ensure proper

array indexing is abstracted away.

The methods described as GET NEXT CHILD INDEX, GET FIRST CHILD INDEX,

and GET PARENT INDEX are simple equations based upon program execution-specific

45

details that are used to properly access the concrete representation of the heap data structure.

There are two fundamental CPU solutions to the batch k -selection algorithm using

the central processing unit as the primary execution device. The first solution features the

sequential processing of each sub-list in every possible test case. The second solution features

a concurrent processing of groups of sub-lists by utilizing the POSIX Multi-threading API.

Given a number of POSIX threads, the list set of sub-lists is divided by this number into

smaller groups of sub-lists. Each sub-list in the group is processed in a sequential manner

with each group processed by a separate POSIX thread concurrently. This is a larger scale

data parallel solution to the batch k -selection algorithm but since the ISA is the same for each

processing core of the multi-core processor, this does not qualify as uniquely heterogeneous.

Aside from testing each of cases presented in Table 5.1, the value of d ranges from 8 to 64.

The multi-threaded POSIX solution uses the same number of POSIX threads as there are

physical cores on the processor. Therefore, Machine 1 dispatches eight POSIX threads and

Machine 2 dispatches only four POSIX threads.

Before showcasing the results batch k-selection algorithm, I decided to test the total

execution time for the Update-Key operation on the CPU using the recursive algorithm

described in Algorithm 3. Each possible heap size was tested with each corresponding d-

value ranging from 8 to 64. The test heap was generated by simply inserting nodes whose

value reflected the current count of nodes inserted into the heap incremented by one. In

the case where the heap size is 204, the root node(i.e., the maximum value within the heap)

would be 204. This ensures that there is only non-zero distinct values within the heap;

therefore the Update-Key would simply replace the root node to 0 ensuring that the new

node of 0 would be propagated completely down the tree to the last level since it would be

the smallest value within the heap. This testing mechanism ensures that the entire heap

is traversed during the top-down reconstruction consistently across all test-cases, providing

consistent results.

46

5.4 CPU Update-Key Operation Results

Figure 5.5. 8-Heap CPU Update Key Performance

Figure 5.6. 16-Heap CPU Update Key Performance

47

Figure 5.7. 32-Heap CPU Update Key Performance

Figure 5.8. 64-Heap CPU Update Key Performance

Without delving too deep into the individual statistics of each possible test case. You

can see that the Update-Key operation is almost instantaneous for every possible test case

of heap sizes and each possible of d. The d -heap CPU implementation of the Update-Key

operation is extremely fast for performing the operation on one single heap. It isn’t until the

complete execution of the k -selection algorithm that the performance trend can be accurately

observed.

48

5.5 CPU Batch k-Selection Algorithm Results

Next we test the serial CPU implementation of d -heap using all possible test cases

and d values ranging from 8 to 64.

Figure 5.9. Machine 1 k -selection algorithm serially executed over all possible test cases.

49

Figure 5.10. Machine 2 k -selection algorithm serially executed over all possible test cases.

The above graphs show that the larger values of d have a predictably slower execution

time regardless of heap size. Even more-so, the performance gap between the 64-heap and

the 32-heap is as large as over 50 % slower. This visual and empirical trend can be observed

in the execution of both experimental platforms.

Next, I effectively tested and compared the multi-threaded batch k-selection algorithm

CPU implementation and compared the execution wall-clock time to the serial execution.

As noted before, the multi-threaded implementation utilizes the POSIX thread API by

dispatching as many POSIX threads as there are physical cores on the device. The list

set of sub-list is then segmented into groups of sub-lists based on the number of POSIX

threads. Therefore four POSIX threads will relate to four sub-list groups and so forth. Each

POSIX thread will process its group of sublists serially but all groups will be processing

concurrently. Machine 1 dispatched 8 POSIX threads while Machine 2 dispatched 4 POSIX

threads(Butenhof (1997)).

50

Figure 5.11. Machine 1 multi-threaded versus serially executed k -selection algorithm on the 8-heap.

Figure 5.12. Machine 2 multi-threaded versus serially executed k -selection algorithm on the 8-heap.

51

Figure 5.13. Machine 1 multi-threaded versus serially executed k -selection algorithm on the 16-heap.

Figure 5.14. Machine 2 multi-threaded versus serially executed k -selection algorithm on the 16-heap.

52

Figure 5.15. Machine 1 multi-threaded versus serially executed k -selection algorithm on the 32-heap.

Figure 5.16. Machine 2 multi-threaded versus serially executed k -selection algorithm on the 32-heap.

53

Figure 5.17. Machine 1 multi-threaded versus serially executed k -selection algorithm on the 64-heap.

Figure 5.18. Machine 2 multi-threaded versus serially executed k -selection algorithm on the 64-heap.

Given the above figures, we can easily observe that the multi-threaded implementation

outperforms the serial execution easily. Given the overall parallel nature of the k -selection

algorithm which requires multiple heaps to be processed where no single heap is dependent

54

on the results of another heap, this high-level task parallelism approach to the multi-threaded

implementation is very beneficial.

Figure 5.19. Comparing the execution time of different values of d using the multi-threaded implementation on Machine 1.

55

Figure 5.20. Comparing the execution time of different values of d using the multi-threaded implementation on Machine 2.

Comparing the execution time of each value of d over all test cases showcases the

exact same trend that could be observed in the serial CPU experiments. For larger values of

d, the performance of the algorithm ultimately suffers. Once again, this is predictable as the

CPU computation serially performs the FIND-MAXCHILD computation regardless of the

high-level task parallelism of groups of sub-lists being processed concurrently. Given these

distinct observations regarding the limitations of the CPU implementations, we identified

the opportunities for potential benefit of the GPGPU implementation of the ad -heap.

5.6 Exploring the ad-Heap Execution Characteristics on the GPU

Traditionally, the d -heap data structure did not reap same performance benefits that

many other data structures enjoyed with the introduction of GPGPU computing. The d -

heap displayed a very low level of data-parallelism in its operation. The ad -heap, designed for

more tightly coupled asymmetric multi-processing systems, was designed to take advantage

of both processing core designs within the asymmetric multi-core system by exploiting the

very little potential for data-parallelism in the FIND-MAXCHILD operation and the serial

56

computation of the COMPARE-AND-SWAP operations during the top-down reconstruction.

The ad -heap Update-Key operation focuses on utilizing the head section of the implicit

d -heap structure. The implicit bridge array is allocated in local memory for the given

work-group. The implicit bridge structure, as shown in Chapter 3, stores the index-value

pairs which the CPU will use for re-assignment. One thread is responsible for storing this

information on the implicit bridge. On each iteration, as the new value is propagated down

the heap structure, with a wavefront size of n and the value of d as the maximum count of

child nodes; the child nodes are loaded into an allocated local memory area of size d in d/n

wavefront transactions. A simple commutative max reduction scheme is performed to find

the maximum child value in parallel. Once the maximum child is found, d threads find its

corresponding index within the heap data structure. If the maximum value is greater than

the new value, than the index-value pair is stored on the bridge. This process continues

until the new value is relocated to a location within the heap that satisfies the heap ordering

property or if all levels of the heap have been traversed.

57

58

Once the propagation process is finished, the new value (which has resided in the

private data memory space of the thread throughout this process) is added as the last index-

value pair on the implicit bridge. The implicit bridge is offloaded to the heap data structure

which resides in the global memory space. Once the heap data structure has been read back

to the Host CPU device, the CPU performs the necessary re-assignments from the implicit

bridge information. To avoid any unnecessary memory transactions from global memory

which would result in an increased memory bandwidth, the majority of the work is done

within the local memory space. Memory transactions from global memory generally han-

dled in a regular accessing pattern, such as reading the corresponding children nodes from

the heap data structure and writing the implicit bridge information back to the heap data

structure.

Figure 5.21. Comparing the total update execution time between both experimental platforms for all values of d

59

Figure 5.22. 8-Heap ad-Heap Update-Key Operation Performance

Figure 5.23. 16-Heap ad-Heap Update-Key Operation Performance

Figure 5.24. 32-Heap ad-Heap Update-Key Operation Performance

60

Figure 5.25. 64-Heap ad-Heap Update-Key Operation Performance

As can be observed in Tables 5.8 - 5.11, Machine 2 (the APU experimental platforms)

performs the Update-Key operation much quicker than Machine 1 (the discrete GPU plat-

form). Both platforms generally do not perform the Update-Key operation very efficiently

in comparison to the CPU recursive implementation. Machine 2’s performance begins to de-

grade as the heap size becomes increasingly large. As we explore the different characteristics

of the execution of the ad -heap Update-Key operation we begin to see the limitations of this

implementation.

First, we observe the kernel execution time between the two experimental platforms.

The wall-clock performance metric is captured by two methods; the traditional Linux get-

timeofday() API and OpenCL’s own event profiling API.

61

Figure 5.26. Comparing the total kernel execution time between both experimental platforms for all values of d

We see that the wall-clock execution time of the kernel program is relatively com-

parable between both platforms. While Machine 1’s kernel execution time is fairly steady

throughout all test cases, there is a fairly drastic performance loss for Machine 2 for increas-

ing sizes of the heap starting at a heap size of 6553.

62

Figure 5.27. 8-Heap ad-Heap Kernel Execution Times

Figure 5.28. 16-Heap ad-Heap Kernel Execution Times

Figure 5.29. 32-Heap ad-Heap Kernel Execution Times

63

Figure 5.30. 64-Heap ad-Heap Kernel Execution Times

With fairly comparable kernel execution times, we investigate another general compo-

nent of the traditional OpenCL execution process; the memory handling aspect. With each

Update-Key operation, the kernel takes a OpenCL memory object as an argument which

stores the heap data structure being processed. This information is either written as a buffer

object to the device and effectively read back(as is the case with Machine 1) or the buffer

is mapped/unmapped to device memory(as is the case with Machine 2). Machine 1, being

a discrete GPU based experimental platform handles all data transfers along the PCI-E bus

while Machine 2, being an accelerated processing unit bypasses this transfer protocol by

sharing the same system memory with the CPU.

64

Figure 5.31. Comparing the total memory handling time between both experimental platforms for all values of d

Figure 5.32. 8-Heap ad-Heap Memory Handling Times

65

Figure 5.33. 16-Heap ad-Heap Memory Handling Times

Figure 5.34. 32-Heap ad-Heap Memory Handling Times

Figure 5.35. 64-Heap ad-Heap Memory Handling Times

66

The absence of the PCI-E showcases obvious benefits on Machine 2’s execution of the

Update-Key operation. Despite both experimental platforms generally having comparable

kernel execution times, the amount of time spent reading and writing the memory buffer

objects on Machine 1 ultimately results in the decreased performance in comparison to

Machine 2. In all cases on both platforms, the CPU portion of the ad -heap Update-Key is

consistently instantaneous and does not affect the overall Update-Key performance.

Only when the heap size is at its greatest of all possible test cases, does the memory

handling aspect of the Update-Key operation on both experimental platforms begin to share

similar performance. A few distinct conclusions can be asserted from the above information

that has resulted from the above experiments. The ad -heap implementation performance on

one single heap does not compare to the basic d -heap implementation on both the serial CPU

and multi-threaded CPU implementations. Though, there is an opportunity for parallelism

when finding the maximum child nodes, this opportunity does not present enough parallelism

to effectively saturate the compute units of the graphic processing unit.

When performing the Update-Key operation, the kernel function only requires enough

work-items to perform the parallel reduction scheme on the branch of children and offload

the implicit bridge to global memory. Therefore, in all cases, only (2*height of the heap)+1

work-items are required. In a device with multiple compute units and hundreds to thousands

of SIMD processing cores, this number of work-items completely under-utilizes the graphic

processing unit’s hardware.

Therefore, we can conclude that given a algorithm or application which utilizes only

one single heap or a relatively small number of heap data structures; the ad -heap structure

is not necessarily useful. The CPU recursive implementation of the d -heap will always

outperform the ad -heap in this case, but this isn’t strange or unusual. The ad -heap is

better suited for cases where the algorithm or application exhibits a large amount of task-

parallelism, where a large number of heaps need to be processed concurrently. The batch

k -selection algorithm is a perfect example of such an algorithm.

67

5.7 Exploring the Batch ad-Heap Execution Characteristics on the GPU

We modify the implementation of the ad -heap based Update-Key operation such that

multiple heaps can be offloaded to the device and processed in parallel. In this case, we

allow each heap to handled by a separate work-group where each work-group consists of

(2*height of the heap)+1 work-items. Instead of a single heap data structure array passed to

kernel function, a much larger array consisting of the batch of heaps is passed to the kernel

function. The work-group ID is used to effectively index into this batch heap array. Along

with the batch array of heap data structures, two additional arrays are also passed to the

kernel function. These additional arrays correspond the new values(which are used in the

update) and their corresponding index values(this is always zero since we’re always replacing

the root). These two additional arrays also correspond the batch size where a batch of n

heaps will have two ”new value” and ”index of node to be updated” arrays of size n. Given

a heap size of m, the batch heap array will be of size m*n.

This implementation is much different because it features both the data parallelism

of finding the maximum child during the top-down reconstruction, which is absent from the

CPU d -heap implementation, and it also features the higher level task-parallelism of concur-

rently processing the heap data structures. While, the multi-threaded CPU implementation

is capable of processing groups of heaps concurrently; it is effectively limited by the number

of physical cores on the CPU device. The GPU is limited by the number of compute units,

but features a much larger number of compute units than the CPU has physical processing

cores. The batch value corresponds to the number of sublists in the test case being processed.

In implementing the batch k -selection algorithm with the batch ad -heap kernel, there were

a few precautions that had to be taken to ensure that the algorithm performed accurately.

Each sub-list is processed at a different rate. For the Update-Key kernel to be

launched, the ”new value” array must have a valid new value for each sub-list being pro-

68

cessed. When a sub-list has been exhausted, it simply submits its current root as the new

value in the ”new value” array. The algorithm execution continues until all sub-lists have

been exhausted, therefore the number of kernel launches or Update-Key operations is equal

to whichever sub-list requires the most updates. This marching execution pattern ensures

that only valid Update-Key kernel launches are called which enforces a minimum number

of kernel launches equal to the number of which sublist requires the most Update-Key op-

erations. By issuing more work-groups and more work-items, there is much more hardware

utilization in the batch ad -heap implementation than the previous implementation which

handled only one heap at a time. This implementation also provided insight on different

hardware/software characteristics of each experimental platform.

Figure 17 shows some very interesting results for the Update-Key operation between

both platforms. Machine 2 has significantly worse performance than Machine 1 for smaller

heap sizes and a larger batch of heaps. Machine 1 has much better performance for test

cases where there are 131072, 65536, and 32768 heaps in a batch. At the case of 16384 heaps

of size 1638, both platforms perform roughly the same. From the test cases where there is

8192 heaps of size 3276, Machine 2 proceeds to showcase better performance.

69

Figure 5.36. Comparing the total Update-Key operation execution times between both experimental platforms for all values of

d

The observable trend of both platforms display the very characteristics of their hard-

ware design. When given a large amount of work-groups, the computational power of Ma-

chine 2(the ”Kaveri” accelerated processing unit) is more limited in comparison to Machine

1(the discrete GPU). Machine 2 features only eight compute units while Machine 1 features

32 compute units. Each compute unit concurrently processes the workload of one work-

group. The Batch Update-Key ad -Heap issues as many work-groups as there are heaps in

the current batch. Therefore, issuing p work-groups on a device of q compute units, would

ensure that each compute unit is processing p/q work-groups sequentially.

Therefore Machine 2 lacks the sheer computational power to outperform Machine 1.

This doesn’t explain how Machine 2 begins to outperform Machine 1 after the number of

heaps begins to decrease since both Machines’ device hardware is being fully utilized and the

compute units are fully saturated in all possible test cases. Therefore, we explore the kernel

70

execution time for both platforms to really understanding the computational performance

between both platforms.

Figure 5.37. Comparing the kernel execution times between both experimental platforms for all values of d

Now we begin to see that the computational power of the discrete graphic processing

unit outperforms the APU-based platform for almost all possible test cases. Kernel execution

performance becomes similar in the last three test cases where we have a much smaller

number of work-groups being issued(512,256,128). Therefore, we can conclude that the

performance of the APU platform is effectively limited by its number of compute units in

comparison to the Discrete-GPU based platform.

71

Figure 5.38. Comparing the memory handling times between both experimental platforms for all values of d

The point of divergence between both platforms, where Machine 2 begins outper-

forming Machine 1 can be attributed to the total memory handling time for both platforms.

For each Update-Key operation in each test case, both platforms are handling writing and

reading around the same amount of information; a batch array of heaps roughly the size of

0.1*228 and two arrays whose size is the batch number. Therefore, the memory handling time

is relatively the same across all test cases. Machine 2 features a significantly better memory

handling time in comparison to Machine 1 similar to the Single Heap implementation.

Therefore, despite the computational performance difference between the two plat-

forms; once the work-group size becomes smaller, the unified memory space of Machine 2

essentially presents the difference in performance between the two platforms.

72

Figure 5.39. Comparing the LCU-Workload times between both experimental platforms for all values of d

Comparing the workload of the central processing unit to perform the re-assignment

in all test cases show a similar trend to the one that can be observed in the total kernel

execution graph.

In the batch ad -heap Update-Key operation, the POSIX thread API is used once

again. In this case, there are as many POSIX threads dispatched as there are heaps in the

batch. Each POSIX thread has a set of responsibilities in the execution the Update-Key

operation. Each POSIX thread is responsible for building the ad -heap for its corresponding

sub-list that it is processing and also loading the subsequent new values off the sub-list

and performing the re-assignment for the heap data structure based on the implicit bridge

information for that heap after the Update-Key kernel finishes. Only one POSIX thread

is responsible for launching the kernel, but must wait until all other POSIX threads have

finished their satisfying their responsibilities of populating the batch heap array and the two

73

corresponding ”new value” and ”index of nodes to be updated” arrays.

We have outlined many of the characteristics of the two experimental hardware plat-

forms with both implementations of the ad -heap based batch k -selection algorithm. Both

platforms have their hardware-specific trade-offs in terms of memory bandwidth and total

computational performance. Though, neither experimental platforms perfectly model the

HSA truly heterogeneous computing system which the ad -Heap data structure is designed

to effectively execute upon. We are able to effectively simulate in a more practical manner,

the batch k -Selection algorithm based upon the ad -Heap data structure enough to analyze

the different aspects of the design of data structure itself and which problems are inherent to

the data structure’s general design and which problems we can resolve with current advanc-

ing technology such as the HSA-based Truly Heterogeneous Computing System. Therefore,

the experimental cases do offer interesting insight into the execution behavior and other

components of the ad -Heap structure and its corresponding operations.

74

CHAPTER 6

UNDERSTANDING AND COMPARING THE AD-HEAP-BASED BATCH

K-SELECTION BEHAVIOR

The ad -heap data structure’s general structural design and the design of the me-

chanics of its operations presents a very interesting case study for adapting familiar data

structures and algorithms to take advantage of the modern technology concept described

a truly heterogeneous computing system(THC). The ad -heap structure is completely de-

pendent on the tightly coupled arrangement of both devices(the latency-oriented central

processing unit and the throughput-oriented graphic processing unit). By implementing the

ad -heap data structure on both of the previous experimental platforms, we are able to ef-

fectively see these active dependencies and how they may or may not limit the abilities and

performance benefits of the ad -heap data structure.

The ad -heap data structure is reliant in its implementation on cases where the value

of d is increasingly large, the larger value of d, the more opportunity for data-level paral-

lelism in the top-down reconstruction process. Similarly, the value of d is limited by the

implementation of the ad -heap structure. The most effective implementation of the ad -heap

features both the lower data-level parallel opportunity implied by the value of d as well as

the task-level parallel opportunity of multiple heaps being processed, concurrently. In this

case, the value of d is limited by the maximum work-group size, given that each work-group

processes a separate heap. The work-group size is also dependent on the size of the implicit

bridge where each work-item in the work-group must offload the implicit bridge to global

memory in parallel. The implicit bridge size is fairly dependent on the height of heap data

structure which is dependent on both the total number of nodes within the heap and the

value of d.

75

We begin to see the multitude of factors that must be considered in understanding

the ad -heap data structure. In the results presented in Chapter 5, we see that given a single

Update-Key operation, the implicit d -heap implementation on the central processing unit is

extremely fast in top-down reconstruction computation for all values of d when measured

in milliseconds. The true performance difference isn’t apparent until thousands of Update-

Key operations are effectively issued. The ad -heap as shown in the previous experiments

will not be able to outperform the CPU implementation for reasonable values of d(generally

8,16,32,64) as a single heap-based implementation. It relies on a combination of both the

task-level parallel opportunity of multiple heaps being processed concurrently and the lower

level data-parallel opportunity of a large value of d.

This requirement is reflected in the multi-threaded POSIX API-based CPU implemen-

tation of the implicit d -heap. This implementation utilizes the multi-core central processing

unit to concurrently process a group of implicit d-heaps. The performance benefit of this ap-

proach is easily observed over the sequential CPU implementation, this showcases the desire

to follow a task-level parallel approach when the opportunity is available. The graphic pro-

cessing unit further expands upon this with its greater number of compute units. Whereas

a modern central processing unit typically has between 4-8 physical cores(as shown in our

experimental platforms), the graphic processing unit has between 8-32 compute units(also

as shown in our experimental platforms). In the multi-threaded CPU implementation, each

processing core essentially handled a group of implicit d -heaps, the group of d -heaps are

processed serially. Given c processors and a total group of h heaps, you would have each

processor serially processing h/c heaps. This is also true for the graphic processing unit but

with a much larger value of c and thus a smaller resulting group size.

Therefore, the graphic processing unit is theoretically better suited for this oppor-

tunity of parallel optimization. The ad -heap seeks to maximize this opportunity while still

incorporating the multi-threaded low-latency abilities of the central processing unit to per-

form the serially executed assignments which the central processing unit is able to do so very

76

quickly. Also, as stated above, the central processing unit is able to perform the top-down

reconstruction when the Update-Key operation is performed only once. So in addition to

the task-level parallel benefits of the graphic processing unit; the graphic processing must

be able perform the top-down reconstruction operation much quicker than the central pro-

cessing unit. The ad -heap seeks to achieve this by minimizing any expensive or irregular

memory accesses such as possible thread divergent accesses to the global memory space for

assignment and limiting the reduction computation to be performed in the much closer local

memory area; allowing the central processing unit to perform the necessary assignments off

of the implicit bridge.

6.1 Practicality of the ad-heap data structure

As research and development continues to progress to seek heterogeneous solutions to

effectively utilize all hardware components of the computing system in an efficient manner;

interest will continue in exploring existing data structures and algorithms which normally

would not benefit from the current loosely coupled GPGPU computing platforms. By ex-

ploring the ad -heap, we also explore the process of thought that goes into designing and

adapting for this modern trend in computing technology. We identify the dependencies

inherent to approaching such a solution and the different aspects of the structure and the

mechanics of the associated operations which should be considered. By effectively simulating

the practicality of the structure on two physical platforms, we are able to observe the effects

of existing hardware on the effectiveness of the algorithm and the shortcomings which must

be resolved to achieve the performance benefits described by the theoretical design of the

data structure. By exploring each possible test case presented in Chapter 5, we are able to

see the general effects of each data set size on the behavior of the ad -heap data structure.

In comparison to the CPU-based implicit d -heap implementation of the k -selection

algorithm, the performance of the simulated ad -heap structure on the loosely coupled graphic

77

processing unit suffered from several obvious issues inherent to the experimental platform

it was executed upon. In the case of Machine 1, given the reliance on the PCI-E bus, the

majority of the Update-Key operation was generally spent in handling the memory trans-

action between the Host central processing unit and Device graphic processing unit. This

performance bottleneck essentially provided the performance edge for the APU-based exper-

imental platform in the test cases where the number of heaps being concurrently executed

became increasingly smaller. As discussed in Chapter 4, in HSA Foundation’s theoretical

truly heterogeneous computing system, the typical problematic scenario presented by the

extensive memory handling penalty essentially becomes a non-factor. From a hardware per-

spective, both devices would share the same physical memory in the last-level cache of the

memory hierarchy, similar to the APU-based experimental platform where the effect of the

memory handling was reduced significantly. From a software perspective, the unified virtual

memory space would allow for a more natural interface of control over the memory manage-

ment aspect of the heterogeneous solution. The current programming platform provided by

OpenCL does not offer this unified virtual memory-based interaction.

Another observed shortcoming of the ad -heap in the previous experiments is the na-

ture of the structure in the batch k -selection algorithm. The k -selection algorithm requires

thousands of Update-Key operations to be performed for the algorithm to effectively produce

the kth smallest element in each sub-list. Each Update-Key operation results in a associated

launched kernel for the ad -heap structure. This is intentionally avoided in most current

GPGPU computing solutions since the time to prepare the device for the kernel workload

becomes incredibly penalizing if thousands of kernel launches are needed. As described in

Chapter 5, the development of the tightly coupled truly heterogeneous HSA solution seeks

to minimize the associated penalties of this interaction. By allowing the two hardware

components to work more closely together, you present more opportunity to effectively dis-

tribute the workload of your application to whichever device can handle the workload more

effectively.

78

The ad -heap data structure presents a uniquely interesting case study of the inspi-

rations behind HSA Truly Heterogeneous Computing System. Much of the ad -heap design

features are extremely dependent on the theoretical features of the HSA-based architecture.

The ad -heap data structure, requires a asymmetric multi-core platform which allows each

platform of processing cores to be able to share the workload in the more efficient manner

possible. By eliminating the associated penalties suffered by this data structure on both the

loosely-coupled discrete GPU-based implementation and the APU-based platform, the focal

point of the design is drawn to the workload distribution. Each aspect of the operations of

the structure must be distributed to whichever hardware component is best utilized for that

workload. In this case, the top-down propagation of the Update-Key operation is offloaded

to the throughput-oriented device since the parallel reduction scheme can find the maximum

child theoretically faster than the sequential execution of the CPU while the assignment

workload is offloaded to the central processing unit.

Theoretically, this is a reasonable approach, especially in the case of batch k -selection

algorithm where task-level parallel opportunity also presents an interesting opportunity to

fully saturate the compute units of the device. But as shown in experiment results, both the

combination of the task-level parallelism and data-level parallelism does not showcase the

performance benefits that you would expect from either experimental platform’s throughput-

oriented device. As observed, once the number of heaps becomes fairly large as in the first

test cases in the previous experiments, the compute unit’s serial execution queue of work-

groups becomes increasingly large. Similarly, the multi-threaded CPU implementation, the

serial execution queue of heaps becomes even-more so large. Whereas the multi-threaded

CPU can only process 4-8 heaps concurrently, the GPU can process from 8(the APU-based

device) to 32(the discrete GPU) heaps in parallel. Therefore, the performance benefit be-

comes dependent on the graphic processing unit’s ability to quickly process each heap. This

measurement becomes heavily dependent on the data-level parallelism available in the heap’s

structure.

79

We explored the effect of this data-level parallelism in our first experiments of the ad -

heap data structure which essentially measured the performance metrics of the Update-Key

operation on only one heap. By observing strictly kernel execution time, we can see that de-

spite the parallel reduction scheme to find the maximum child, for values of d(8,16,32,64) as

used in the original ad -heap, the data-level parallel opportunity is not necessarily enough to

utilize the graphic processing unit’s hardware to exhibit performance benefit over the recur-

sive CPU implementation. Though, the graphic processing unit can issue enough work-items

to find the maximum child in parallel, the CPU can sequentially perform the computation

quick enough that the performance difference between each value of d can only be observed

over thousands of instances of the Update-Key operation. While this doesn’t necessarily dis-

count the capabilities of the ad -heap data structure, it does place an emphasis on requiring

a much larger value of d to possibly see a fundamental improvement.

6.2 The ad-heap as a design initiative.

In conclusion, even though the ad -heap may have been an overly optimistic design

in its general premise, it does present an interesting exploration into the possible opportu-

nities for optimizing existing algorithms and data structures based around the truly het-

erogeneous computing systems as proposed by the HSA Foundation. It is fairly difficult

to gauge the actual abilities of the theoretical ad -heap data structure when the theoretical

hardware/software platform which it is based around is currently unavailable; it is however

easy to gauge the current technology limitations in relation to this design. By exploring

an implementation that more closely simulates and resembled the original ad -heap design

on current experimental platform which differ in hardware characteristics, we can observe

many of the hardware and software obstacles to overcome to ensure that this design premise

is translatable to other existing data structures and algorithms. The ad -heap as a design

initiative presents a interesting perspective.

The initiative of heterogeneous computing revolves around the ability to fully utilize

80

all hardware components in the computing system to produce a synergistic solution. The

initiative of the HSA Foundation is to minimize all possible hardware and software bottle-

necks and obstacles that may hinder this relationship between all hardware components from

both the programmer’s perspective and also the hardware manufacturer’s perspective. The

ad -heap design presents a design initiative to seek out opportunities in every new or old

existing algorithm or data structure to utilize this computing paradigm in its truest sense

possible; a truly heterogeneous computing system. Because of these relatable concepts, the

ad -heap presents a very interesting case to explore and understand.

81

BIBLIOGRAPHY

82

BIBLIOGRAPHY

(AMD APU Fusion) (2010).

(AMD Developer Central) (2013).

Bradski, G. (), Dr. Dobb’s Journal of Software Tools.

Branover, A., D. Foley, and M. Steinman (2012), Amd fusion apu: Llano, Micro, IEEE,
32(2), 28–37, doi:10.1109/MM.2012.2.

Butenhof, D. R. (1997), Programming with POSIX Threads, Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA.

Daga, M., A. Aji, and W. Feng (2011), On the efficacy of a fused cpu+ gpu processor (or
apu) for parallel computing, in Application Accelerators in High-Performance Computing
(SAAHPC), 2011 Symposium on, p. 141149, IEEE.

D’Alberto, P. (2012), A heterogeneous accelerated matrix multiplication: Opencl + apu +
gpu+ fast matrix multiply, CoRR, abs/1205.2927.

Damaraju, S., et al. (2012), A 22nm ia multi-cpu and gpu system-on-chip, in Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE International, pp.
56–57, doi:10.1109/ISSCC.2012.6176876.

Hennessy, J. L., and D. A. Patterson (2003), Computer Architecture: A Quantitative Ap-
proach, 3 ed., Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Hong, S., T. Oguntebi, and K. Olukotun (2011), Efficient parallel graph exploration on
multi-core cpu and gpu, in Parallel Architectures and Compilation Techniques (PACT),
2011 International Conference on, pp. 78–88, doi:10.1109/PACT.2011.14.

(HSA Foundation) (2013).

Klein, G., and D. Murray (2007), Parallel tracking and mapping for small AR workspaces,
in Proc. Sixth IEEE and ACM International Symposium on Mixed and Augmented Reality
(ISMAR’07), Nara, Japan.

LaMarca, A., and R. Ladner (1996), The influence of caches on the performance of heaps,
J. Exp. Algorithmics, 1, doi:10.1145/235141.235145.

Levitin, A. V. (2002), Introduction to the Design and Analysis of Algorithms, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

83

Liu, W., and B. Vinter (2014), Ad-heap: An efficient heap data structure for asymmetric mul-
ticore processors, in Proceedings of Workshop on General Purpose Processing Using GPUs,
GPGPU-7, pp. 54:54–54:63, ACM, New York, NY, USA, doi:10.1145/2576779.2576786.

Matsumoto, K., N. Nakasato, and S. G. Sedukhin (2012), Performance tuning of matrix mul-
tiplication in opencl on different gpus and cpus, in Proceedings of the 2012 SC Companion:
High Performance Computing, Networking Storage and Analysis, SCC ’12, pp. 396–405,
IEEE Computer Society, Washington, DC, USA, doi:10.1109/SC.Companion.2012.59.

Merriam-Webster Online (2009), Merriam-Webster Online Dictionary.

Munshi, A., B. Gaster, T. G. Mattson, J. Fung, and D. Ginsburg (2011), OpenCL Program-
ming Guide, 1 ed., Addison-Wesley Professional.

NVIDIA Corporation (2011), NVIDIA CUDA C Programming Guide.

Owens, J. D., S. Sengupta, and D. Horn (2005), Assessment of graphic processing units
(gpus) for department of defense (dod) digital signal processing (dsp) applications, Tech.
rep.

Pulli, K., A. Baksheev, K. Kornyakov, and V. Eruhimov (2012), Realtime computer vision
with opencv, Queue, 10(4), 40:40–40:56, doi:10.1145/2181796.2206309.

Vuduc, R., A. Chandramowlishwaran, J. Choi, M. Guney, and A. Shringarpure (2010), On
the limits of gpu acceleration, in Proceedings of the 2Nd USENIX Conference on Hot
Topics in Parallelism, HotPar’10, pp. 13–13, USENIX Association, Berkeley, CA, USA.

84

VITA

STEPHEN BLAKE ADAMS

647 CR 2788 • Baldwyn, MS 38824 • (662)213-2571 • sbadams662@gmail.com

EDUCATION
M.S., Engineering Science, University of Mississippi, May 2014

Thesis: Exploration into the Performance of Asymmetric D-Ary Heap-Based
Algorithms for the HSA Architecture

B.S., Computer and Information Science, University of Mississippi, May 2012

A.A., Northeast Mississippi Community College, May 2012

HONORS and FELLOWSHIPS
Upsilon Pi Epsilon Computer Science Honor Society, 2012
Department of Computer and Information Science, University of Mississippi
Gamma Beta Phi Honor Society, 2010
University Of Mississppi
Pi Mu Epsilon Mathematics Honor Society, 2012
University Of Mississppi

85

