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ABSTRACT 

Models of resource exchange mutualisms utilize economic principles to explain how the 

costs and benefits of these interactions vary with environmental context. All of these models use 

a ratio of resource exchange (e.g., nitrogen: carbon) as the central variable, and it is unclear 

whether such exchange ratios predict outcomes of mutualisms in natural systems. Corrêa et al. 

(2008) hypothesized instead that the absolute flux of the most limiting nutrient, rather than the 

ratio of the two exchanged resources, best explains the benefits of resource exchange 

mutualisms. To distinguish between these two competing hypotheses, we measured resource 

transfers, and their ratios, between Pinus taeda seedlings and two ectomycorrhizal (EM) fungal 

species, Rhizopogon roseolus and Pisolithus arhizus. We evaluated how carbon availability to 

plants (manipulated with high and low light exposure) affected those resource fluxes and ratios 

over 3 time periods (10, 20 and 30 weeks) using mycocosms in environmental chambers. Our 

results suggest that higher light availability increases resource exchange between mycorrhizal 

mutualists, and that N:C resource exchange ratios are higher under low light, but that limiting 

soil nutrients have a stronger effect on plant growth than resource exchange ratios. These results 

suggest that the “exchange ratio hypothesis,” and the “total flux hypothesis” are both correct in 

their predictions, implying that when mycorrhizal plants have additional C to trade to their 

mycorrhizal fungi, it has the potential to promote an increase in nutrients to the plant in return, 

changing the price of exchange without detriment to either mutualist. 
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I INTRODUCTION 
Mutualisms are interspecific interactions ubiquitous to all ecosystems on our planet 

(Bronstein 2015). Mutualists benefit one another through trade of services or resources, such as 

in plant-pollinator mutualisms in which pollination services are exchanged for nectar resources. 

In mycorrhizae and rhizobia resource exchange mutualisms, soil microbes provide mineral 

nutrients to plants in exchange for photosynthates. Resource trade can be costly for organisms in 

a mutualism, but traded resources may not always be limiting to the species trading them away, 

with by-product benefits commonly exchanged in some major types of mutualisms (Connor 

1995). Moreover, the costs and benefits of traded resources may vary among environments 

(Johnson et al. 1997, Johnson et al. 2013), and this context dependency can have a variety of 

important consequences for the ecology and evolution of mutualisms (Hoeksema & Bruna 2015).

 Various models have utilized economic theory to predict the outcomes of resource-

exchange mutualisms (Schwartz and Hoeksema 1998, Hoeksema and Schwartz 2003, Kummel 

and Salant 2006, Akçay and Roughgarden 2007, Akçay 2015). Although each economic model 

differs in approach, the singular common variable is the ‘price of resource exchange’, defined as 

the ratio of units of one resource that are traded for one unit of another. These economic models 

generally assume that the resources being exchanged are costly to each species, and thus the 

benefits and outcomes of resource-exchange mutualisms are driven by the ratio of resources 

being exchanged between species, i.e., the exchange price. The comparative advantage model 

makes predictions for how variable environmental factors (e.g., light) should affect resource 

exchange and the outcomes of the mutualism (Schwartz and Hoeksema 1998, Hoeksema and 
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Schwartz 2003). Specifically, those models predict that an increase in availability to one species 

of the resource they are trading away will increase the price (i.e., exchange ratio) offered by that 

species, the overall volume of trade, and the growth benefits to both species. Grman et al. (2012) 

proposed a population dynamics model based on comparative advantage principles which 

predicts how light affects resource exchange and resource exchange ratios between arbuscular 

mycorrhizal (AM) plant and fungal mutualists, depending on nutrient availability. 

Alternatively, resource exchange prices may be fixed for particular species pairs, 

potentially varying among different species (Kummel and Salant, 2006) but not varying with 

environmental conditions or availability of traded resources  (Kiers et al. 2011). Despite the 

importance of resource exchange ratios in mutualism models, they have rarely been quantified in 

naturally occurring mutualisms. Those studies that measured resource fluxes have typically only 

provided a short-term snapshot of the relationship or lacked a distinction in the fates (whether to 

roots or microbial symbionts) of carbon allocated belowground, not accounting for both root and 

fungal respiration versus assimilation (Douds et al. 1988, Jones et al. 1991, Colpaert et al. 1996, 

Jones et al. 1998, Qu et al. 2004). As a result, exchange ratios have not been explicitly linked to 

environmental factors or host/symbiont performance.  

  In contrast to economic models, Corrêa et al. (2008, 2011, 2012) hypothesized that 

fitness benefits to plants of ectomycorrhizal (EM) mutualisms are not driven by the ratio of 

resources being exchanged, but rather by the absolute flux of whatever resource is most limiting 

to plant growth at a given point in time. Specifically, Corrêa et al (2012) suggested that carbon is 

only a limiting resource to plant growth when plants are severely light limited (less than 9% of 

full sun exposure) and that light intensity thus has little effect on plant growth responses to 

mycorrhizal fungi under most normal conditions. This hypothesis predicts that the absolute 
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fluxes of truly limiting resources (e.g., nitrogen or phosphorus for plants) exchanged between 

symbionts better predict outcomes of resource exchange mutualisms, rather than exchange ratios.  

Mycorrhizal mutualisms are ideal systems in which to test hypotheses about how 

resource fluxes are affected by their environmental availability, and how they influence 

outcomes of resource-exchange mutualisms. Mycorrhizae are mutualisms between plant roots 

and fungal hyphae in which plants photosynthetically fix carbon (C) compounds into simple 

sugars and trade them to their fungal symbionts for soil nutrients such as nitrogen (N) and 

phosphorus (P) (Smith and Read 2008). Mycorrhizal resource exchange is discrete, quantifiable, 

and occurs over relatively short time scales, which allows feasible nutrient-flux measurements. 

We measured the cumulative resource exchange between loblolly pine (Pinus taeda) and two 

ectomycorrhizal fungal symbiont species (Rhizopogon roseolus and Pisolithus arhizus) in order 

to determine how resource exchange (total fluxes and ratios) differed between fungal species and 

between high and low light availability, which we assumed influenced C availability to the plant. 

To do this, we utilized a modified mycocosm approach (Rygiewicz et al. 1994) that allowed us to 

measure cumulative amounts of exchanged resources over time, and to partition the fate of CO2 

allocated belowground. 

Our study aimed to address two key questions regarding P. taeda ectomycorrhizal 

mutualisms: (Q1) How does light availability affect resource exchange? (Q2) Do resource 

exchange ratios or absolute fluxes better predict pine seedling growth? For Question 1, the 

“exchange ratio hypothesis” from comparative advantage market models (Schwartz and 

Hoeksema 1998, Hoeksema and Schwartz 2003) predicts that N:C and P:C exchange ratios 

would be lower in a high light environment compared to a low light environment, due to pine 

seedlings in high light having an excess of C to offer their fungal symbionts, and that the price of 
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exchange should decrease with increased light. The “total flux hypothesis” from Corrêa et al. 

(Corrêa et al. 2008, Corrêa et al. 2011, Corrêa et al. 2012) predicts that light availability would 

not affect N:C and P:C exchange ratios since plants are not typically C-limited across most 

ambient light levels, and absolute fluxes of N and P are controlled by  EM fungi without an 

affect of light. For Question 2, the “exchange ratio hypothesis” predicts that within each ambient 

light level environment, pine seedling growth would be positively correlated with P:C and/or 

N:C exchange ratios (i.e., the ratio of P or N received by the plant from the fungus, relative to the 

C transferred from the plant to the fungus).  In contrast, the “total flux hypothesis” predicts that 

N or P would be most limiting to plant growth, and that the absolute amount of N or P received 

from EM fungi would be a better predictor of plant growth than N:C or N:P ratios.  
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II METHODS 
Germination of seedlings 

 Pinus taeda (L.), loblolly pine is a coniferous tree species native to the southeastern 

United States. Ectomycorrhizal (EM) mutualisms are particularly important in facilitating pine 

seedling establishment in acidic, nutrient poor soils, which were utilized in this experiment 

(Brundrett 2009). Pinus taeda (P.taeda) seeds were obtained from two open-pollinated families 

selected for Leptographium pathogen resistance (Picullel et al. 2018, Singh et al. 2014). Pine 

seeds were sterilized in a 3% H2O2 solution for 24 hrs and then rinsed with running water for 2 

min. Seeds were cold stratified at 4 oC for 40 days in moist conditions and agitated daily to deter 

mold growth. To further prevent contamination after stratification, seeds were soaked in 10% 

bleach for 5 min, 70% alcohol for 1 min, and 10% bleach again for 1 min, followed by a sterile 

water rinse for an additional minute. Seeds were germinated in a Conviron Model ATC40 

environmental chamber in groups of four on 10-inch water agar plates tilted at 70°, and with the 

lower half covered in foil, in order to orient the direction of shoot and root growth. Seeds were 

germinated on a 16-hour photoperiod (400 µmol/m2/sec) with a consistent temperature of 18°C 

until seedlings were 2 to 3 inches in length, approximately 3 to 4 weeks. 

 

Ectomycorrhizal inoculation of seedlings 

Pine seedlings were dip-inoculated from spore slurries of fungal sporocarps from two 

target fungi (Pisolithus arhizus and Rhizopogon roseolus) collected from under P. taeda trees in 

Oxford, MS in 2016 and 2014 respectively. P. arhizus and R. roseolus (hereafter “Pisolithus” 
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and “Rhizopogon”) are common in pine forests of the southeastern USA, important for seeding 

establishment in the soil, and are early and thorough colonizers of pines, making them ideal for 

this seedling study. Identities of the fungal isolates used for inoculation, and of ectomycorrhizal 

root tips from harvested seedlings, were confirmed through Sanger DNA sequencing and 

comparison of sequences with public databases (as in Rua et al. 2015, Craig et al. 2016, 

Hoeksema et al. 2018, and Rasmussen et al. 2017). 

To make the spore slurries for inoculation, sporocarps were blended with DI water and 

spore concentrations were adjusted to ~107 spores/mL. Pine seedling root systems were dipped in 

the slurry and planted in cones (21 cm x 4.5 cm) filled with the same sterile soil substrate used in 

the timed experiment (described below) and allowed to develop for five months, exposed to full 

light (400 µmol/m2/sec) on a 16-hour photoperiod in an environmental chamber (Conviron 

ATC40) at a constant temperature of 25°C. Seedlings were watered to saturation on a weekly 

basis. After 5 months, 10 mL of background soil microbe slurry (created by filtering 6 L of 

deionized water through 1 L of fresh soil on a 44 micron sieve) and 10 mL of a 50% diluted 

MMN media without C source were added to each cone, after which mycorrhizal development 

was allowed to continue for another 4 weeks before transplanting into experimental mycocosms. 

 

Mycocosm assembly 

Mycocosms, modified by M. Booth from the original design of Rygiewicz et al. (1988), were 

constructed of two clear polycarbonate plates (23 cm tall by 38 cm wide) separated on the sides 

and bottom by three sections of PVC 2.5-cm thick, adhered with wing nut bolts and general-

purpose silicone sealant. The volume of the mycocosm was separated into halves by a PVC 

spacers (2.5 cm thick) routed to 90% openness, filled with a mix of fine and course sand 
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substrate and covered on both sides with a nylon mesh (44µm) to allow for the passage of fungal 

hyphae, but to block Pinus root growth between sections. Each mycocosm was sterilized in a 

10% bleach solution for 30 min, rinsed with DI water and stored in a room protected with a 

HEPA air filter to reduce the likelihood of contaminants from non-target fungi before being 

filled with a growth substrate.  The substrate was composed of a 1:20 soil: sand mixture, where 

the sand was a 1:1 mixture of commercial play sand to natural sand sourced from northern 

Mississippi, and the soil was a loamy field soil collected from beneath P. taeda trees in Oxford, 

MS. The resulting soil mixture was low in total carbon (0.088%), nitrogen (0.005%), and 

phosphorus (0.002%), and contained no detectable ergosterol.  The substrate was sieved to 1 mm 

to remove coarse particles and autoclaved at 121 oC for 1 hr., twice, with a 24-hr waiting period 

between sterilizations. Each half of all mycocosms was filled with approximately 800 mL of the 

substrate, then covered with 50 µm thick black plastic bag material to reduce algal growth and 

entrance of airborne fungal spores. One liter of fresh homogenized field soil was suspended in 6 

liters of DI water and filtered to 5 µm to create a microbial wash. 10 mL of microbial filtrate was 

added to each half of the mycocosms before planting.   

 

Experiment setup 

The experiment was a 2 x 2 x 3 factorial design: Two ectomycorrhizal fungal species, 

crossed with two light levels, crossed with three harvest times (Table 1). Each combination of 

fungal species, light level, and harvest time was replicated six (Rhizopogon) or eight (Pisolithus) 

times. Three trees died during the course of the experiment for a total of 81 treatment 

mycocosms (see Table 1). The two light levels tested were high light (400 µmol/m-2/s-1) and low 

light (135 µmol/m-2/s-1) on a 13-hr light cycle. Light treatments are below light saturation for 
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pine photosynthesis irradiance (PI) curves (Teskey et al. 1994) An additional 24 control 

mycocosms (four per light level x harvest time combination) containing seedlings with microbial 

wash, but without mycorrhizal inoculation, were also included, for a project total of 105 

mycocosms. Two environmental chambers were utilized in this experiment (both Conviron 

Models ATC40). Each chamber contained two shelves of growing space, one of which was set at 

the low light level and one at the high light level per chamber, creating 4 blocks (2 low-light, 2 

high-light), each of which contained at least 3 replicates of all combinations of EM fungal 

species and harvest times, randomized completely. Due to environmental chamber mechanical 

failure, the third harvest mycocosms were moved to a nearby grow room, 4 weeks before the 

final harvest, with light exposure levels matching those in the environmental chambers for both 

high and low light treatments. 

 

Table 1.  Experimental design. Two fungal species (Rhizopogon roseolus and Pisolithus arhizus) 
were inoculated onto seedlings of P. taeda. Six or eight replicates were constructed for each 
combination of two fungal species, two light levels (high or low), and three harvest times (10, 
20, and 30 weeks). Three seedlings died by the end of the experiment and were not included, and 
treatment groups with a missing seedling are marked with *. An additional 24 mycocosms (four 
per light treatment per harvest time) of control seedlings with microbial wash, but without 
mycorrhizal inoculation, were also included, for a project total of 105 mycocosms.  

Pinus	taeda	
+Rhizopogon	

+microbial	wash

Pinus	taeda	
+Pisolithus	

+microbial	wash
Control	

+microbial	wash
Harvest	1	
(10	weeks) 6 8 6 High	light
Harvest	1	
(10	weeks) 6 8 6 Low	light
Harvest	2	
(20	weeks) 6 8 6 High	light
Harvest	2	
(20	weeks) 6 8 6 Low	light
Harvest	3	
(30	weeks) 5* 7* 6 High	light
Harvest	3	
(30	weeks) 5* 8 6 Low	light
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Seedling planting 

Mycorrhizal colonization of root tips was verified on each seedling before transplanting 

from cones into one side of each mycocosm. Five seedlings of each target fungi and non-

mycorrhizal controls were rinsed with DI water and frozen for analysis of initial ergosterol, C, P, 

and N content. Subsamples of soil substrate were collected for initial nutrient content. After 

planting, mycocosms were treated with a liquid nutrient addition of 10mL of a Hoagland’s No.2 

(Sigma-Aldrich, St. Louis MO, USA) solution to both sides of each mycocosm (for a total of 20 

mL per mycocosm) at the start of the experiment and after each harvest. Mycocosms were 

watered to saturation on a weekly basis. 

Overview of data collection and synthesis 

 The total C flux from the seedling to the EM fungal symbiont was estimated as the sum 

of C respired (as CO2) by the fungi, plus C accumulated in EM fungal biomass on the roots and 

in the soil (Fig. 1); accumulation in fungal biomass was estimated by measurements of ergosterol 

from the whole root system and homogenized soil from each half of the mycocosm. Ergosterol is 

an organic molecule found in fungal cell walls and indicative of living and recently dead fungal 

biomass (Grant and West 1986, Newell et al. 1987). Recent data suggest that ergosterol would 

not significantly degrade during the 30-week duration of our experiment (Wallander et al. 2013, 

Meachum et al. unpublished data). Total fungal biomass was calculated using ergosterol: 

biomass conversion factors (5.455 µg ergosterol/mg Rhizopogon roseolus fungi (dry weight); 

1.534 µg ergosterol/mg Pisolithus arhizus fungi (dry weight)). Fungal biomass assay analyses of 

ergosterol were carried out using modified versions of previously described methods (Ekblad and 

Nasholm 1996, Gessner and Schmitt 1996, Gessner and Newell 2002). We are assuming that 
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total C in fungal biomass is transferred from the seedling due to the rarity of ectomycorrhizal 

fungi accumulating C compounds out of the soil on their own (Zak et al. 2019). 

Cumulative respired C was estimated using instantaneous measurements just before each 

harvest with a LI-6400XT (LI-COR Bioscience, Lincoln, Nebraska, USA) infrared gas analyzer 

(IRGA), using a custom chamber placed over the mycocosms, and respiration rates were 

integrated over time.  The accumulated mass of N and P in plants was estimated from N and P 

analyses of dry plant biomass from the above and below ground plant parts. Total resource 

transfers were used to calculate N:C and P:C exchange ratios by dividing the total amount of N 

and P transferred to the seedling by the total amount of C transferred to the fungus. 

 

Fig. 1: Fates of resources. Description of fates of carbon (C), nitrogen (N), and phosphorus (P) 
transferred between tree and fungus. C transferred to the fungus will be incorporated into 
biomass or respired by the fungus; N and P transferred to the plant will be incorporated into 
shoot or root biomass. 
 
Respiration measurements 

 Efflux of CO2 from soil was estimated using a LI-6400XT (LI-COR Biosciences, Lincoln 

NE) infrared gas analyzer (IRGA) mounted to a custom polycarbonate box (Fig. 2). LI-COR Soil 

CO2 Flux System software was used with a “closed” method, wherein a ‘Δ’ value, or change in 

N	&	P	Shoot	

N	&	P	Root	

C	Fungal	Biomass	

C	Fungal	Respiration	
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CO2 concentration, is selected and target concentration of CO2 is set at ambient. The CO2 is 

scrubbed out of the chamber with soda lime until the measurements equal target minus Δ, at 

which point the chamber concentration of CO2 is allowed to rise due to flux from the soil. The 

software then begins to measure concentration of CO2 in the chamber over time until target plus 

Δ is reached, and the instantaneous flux rate of CO2 is estimated as the slope of the function of 

the concentration of CO2 over time where it intersects ambient concentration of CO2. To obtain 

replicate estimates, this measurement process was repeated three times (separated by 

approximately six minutes) per non-pine (fungus-only) side of each mycocosm. Ambient CO2 

levels were reassessed at the beginning of each set of three measurements and Δ was set at 5 

ppm. All CO2 measurements were taken during the same time period each day (between 11:00 

a.m. and 3:00 p.m.). 

To test for diurnal fluctuations in soil CO2 flux from mycocosms, a subset of mycocosms 

(three from each light x fungal species treatment combination) were measured at 5 time points 

(9:00 AM, 2:00 PM, 8:00 PM, 1:00 AM 5:00 AM) over a 24-hr period. This test was conducted 

once between the first and second harvest  (12-15 weeks after start of experiment) and then again 

between the second and third harvest (26-27 weeks after start of experiment). We found no 

consistent effect of time of day on CO2 flux rates (data not shown).  
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 Fig. 2. Custom gas chamber. Photo of custom polycarbonate box gas chamber used for CO2 flux 
measurements with the LI-6400XT system. The chamber is separated into two sections by an 
impermeable barrier and sits flush on the upper surface of the experimental mycocosms. One 
half of the chamber is used for CO2 measurements in the non-pine (fungus-only) side of the 
mycocosm, and the other is sealed off entirely with closed cell foam (CCF) at base. The sensor 
head is attached to the center of the measurement chamber wall and sealed with CCF, which is 
also mounted to the base of the chamber to create a seal between the measurement chamber and 
the upper edges of the experimental mycocosm. The interior corners of the measurement 
chamber were filled with curved fitted pieces of CCF to prevent pockets of trapped air in the 
corners, thus promoting thorough mixing during measurement cycles. 
 
Consideration of background values of saprobic C 

Despite very low organic matter and nutrients in the experimental soil, we expected small 

numbers of saprobic bacteria and fungi (introduced with the background microbial slurry) to 

contribute to soil respiration and (in the case of saprobic fungi) fungal biomass in the 

experimental mycocosms. One approach we considered to account for this saprobic activity was 

to assume it was the same in the non-mycorrhizal control mycocosms as in the treatment 

mycocosms. If so, C in ergosterol and respired CO2 in non-mycorrhizal controls would represent 

an estimate of background levels to be subtracted from experimental mycocosms. We attempted 

to estimate relative abundance of culturable saprobic bacteria and fungi in control versus 

experimental mycocosms by using dilution plate counts via a modified protocol as described in 

Vieira & Nahas (2005). Bacterial colonies were grown on trypticase soy agar (TSA) using 
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cycloheximide as an anti-fungal, and fungal colonies were grown on Martin Agar (MA) using 

Streptomycin as an anti-bacterial. Three samples of each treatment type at each harvest were 

counted in replicates of three, and colony-forming units were averaged across replicates. Results 

from those assays exhibited high variance among replicates and no significant differences 

between controls and experimental mycocosms (F2,75=1.329, p=0.271), although most saprobic 

microbes are likely not culturable and thus were not detected with this approach. Moreover, in 

preliminary calculations, subtracting control averages (from non-mycorrhizal controls) from 

experimental treatment values (from mycorrhizal experimental mycocosms) frequently resulted 

in values near or below zero, even when seedlings in experimental treatment mycocosms had 

abundant EM fungal colonization and mycelium, suggesting that saprobic activity was likely 

inhibited by mycorrhizal fungi in the experimental mycocosms, which is especially likely given 

the low N levels in our experimental soils (Orwin	et	al.	2011,	Averill	&	Hawkes	2016,	Fernandez	

&	 Kennedy	 2015,	 Sterkenburg	 et	 al.	 2018). Ultimately, for these reasons, we chose not to 

subtract control values of C in ergosterol and respired CO2 from the experimental values. 

 

Estimation of carbon in fungal respiration (C fungal respiration) 

 To estimate fungal CO2 efflux from the pine side of each treatment mycocosm, the CO2 

efflux rate (averaged across 3 replicate measurements) from the non-pine side (Fig. 3, CR1(fungi)) 

was divided by the total soil ergosterol content from the non-pine side for each mycocosm to 

estimate a CO2 efflux rate per unit ergosterol (Fig. 3, CB1(fungi)). This CO2 efflux rate per unit 

ergosterol was then multiplied by the sum of the soil and root ergosterol contents from the pine 

side of each mycocosm (Fig. 3, CB2(fungi)) to estimate treatment pine side CO2 efflux rate (Fig. 3, 

CR2(fungi)).  We assumed that respiration of fungi far from plant roots (the non-pine side of 
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mycocosm) and fungal respiration near plant roots (pine side of mycocosm) was homogenous. 

Total mycocosm CO2 efflux rate was calculated as the sum of the estimated pine side and 

measured non-pine side efflux rates.  

Fig. 3: Calculations for mycocosm fungal C and plant N/P (all values are in µmols): 
 
CR1(fungi)  = C in CO2 respired by non-pine side (averaged across replicate measurements) 
CB1(fungi)  = C in soil ergosterol content (fungal biomass) of non-pine side  
CB2(fungi)  = C in soil ergosterol content (fungal biomass) of non-pine side + (C in root ergosterol 

content of pine seedling – average C in root ergosterol (fungal biomass) content of 
pre experimental treatment seedlings) 

CR2(fungi)  = Calculated C in CO2 respired by the pine side  
                     ((CR1(fungi)  / CB1(fungi)) * CB2(fungi)) 
N(plant)      = Measured N in pine roots and shoots – average pre experimental treatment pine N  
P(plant)      = Measured P in pine roots and shoots – average pre experimental treatment pine P  
 

 Mycocosm CO2 efflux rates estimated at the three harvest times were fitted with 

exponential curves to estimate total CO2 efflux amounts during each of the three growth periods 

of the experiment One exponential curve was fit to estimate efflux from week 0 through week 

10, and another was fit to estimate flux from weeks 10 through 30; this was done for each 

treatment group of mycocosms separately.  To estimate the average amount of CO2 respired by a 

mycocosm within a treatment group, the area beneath the curve was calculated using Simpson’s 

N(plant)	

P(plant)	 CR1(fungi)	

CB1(fungi)	

CR2(fungi)	

CB2(fungi)	
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1/3 method for integration. We then used bootstrapping (with replacement) of individual 

estimates within each growth period to generate a series of estimates of C in respiration for each 

treatment group, which were randomly assigned to individual mycocosms. Although this random 

assignment likely added noise to the data, it allowed us to incorporate individual values of C 

efflux for each mycocosm into analyses, even though all values within a treatment group were 

used for curve fitting to estimate an overall average value. Mycocosm values for C respired were 

added to C in fungal biomass to calculate total C transfer from plant to fungus. Week 0 CO2 

efflux values were estimated by regressing harvest 3 root ergosterol values against colonized 

root-tip counts, for each fungal species separately and using the resulting linear equations ((√ 

Pisolithus root ergosterol) 2 = 0.0567+0.0004(# of Pisolithus tips), (√  Rhizopogon root 

ergosterol) 2 = 0.1499+0.0003(# of Rhizopogon tips)) to predict root ergosterol content from pre-

experimental seedling total root-tip counts, then multiplying ergosterol content by the average 

CO2 efflux rate per unit ergosterol at harvest 1 (for each fungal species separately). 

 

Estimation of carbon in fungal biomass (C fungal biomass)  

 Accumulation of C into fungal biomass was estimated using cumulative ergosterol 

content as in Hendricks et al. (2016) for ectomycorrhizal mycelia production. At each harvest, 

we assumed ergosterol values to represent total ergosterol having accumulated to that point, i.e., 

we assumed no ergosterol degradation during the course of the experiment, consistent with 

previous observations (Stahl and Parkin 1996, Wallander et al. 2013). C accumulated in 

ergosterol during the entire experiment was calculated as the sum of C in soil ergosterol from 

both the pine and non-pine sides at the final harvest, plus C in root ergosterol at the final harvest, 

after subtracting an average (for each fungal species separately) of pre-experimental treatment 
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seedling root ergosterol (Fig. 3, CB1 (fungi) + CB2 (fungi)). Root ergosterol values for harvests 1 and 

2 were estimated using EM colonized root tip counts and the same regression equations 

(described above) used to estimate root ergosterol from root tip colonization of pre experimental 

treatment seedlings. Cumulative ergosterol contents were converted to total biomass C using 

ergosterol:C conversion factors developed from analysis of sporocarp and mycelial culture tissue 

from each fungal species.  

 

Total carbon transferred to fungus (Cfungus) 

 Total amounts of C transferred from the seedling to each fungus at each light level, over a 

given time period, is equal to the sum of the amounts of C incorporated into fungal biomass and 

C respired (C fungal respiration + C fungal biomass).  

 

Nitrogen and phosphorus transferred to plant (N plant and P plant) 

 Ectomycorrhizal colonization of pine seedling root tips was approximately 100% across 

the experiment, so we assumed in our calculations that all N and P acquired by seedlings was 

transferred by EM fungi as all nutrient acquisition is through root tips. Calculations of 

cumulative N or P transferred from fungus to plant for each seedling was determined by the 

amounts of nutrient in the shoot and root system of a given pine seedling after subtracting 

average N and P contents from pre-experimental treatment seedlings (Fig. 2, N plant and P plant). 

Total nutrient transfer values were used with total amounts of C transfer to determine resource 

exchange ratios. The total amounts of C were divided by the total amount of N and P, 

respectively, to determine resource exchange ratios in µmols (N:C and P:C).  
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Data analysis 

 To test effects of light and fungal species on absolute amounts and ratios of transferred 

resources (Question 1), data on C, N and P fluxes, and N:C and P:C exchange prices were 

analyzed in separate univariate analyses using linear mixed effects models using the lmerTest 

package in R version 3.5.2, with growth periods (1,2, and 3), light levels (high and low), EM 

fungal species, and their interactions as fixed main effects (repeated-measures modeling was not 

required, since separate replicates were destructively harvested at each sampling point). Because 

the light treatment was applied to whole growth chamber shelves, and to account for variation 

among P. taeda genetic families, we included “shelf” and “family,” respectively, as random 

effects. Highly non-significant 3-way interactions were removed from models. In the case of 

significant effects of harvest, light treatment, EM fungal species, or their interactions, means 

were separated using Tukey HSD adjustment of pairwise p- values using the emmeans package. 

To test for effects of resource transfer on plant mass (Question 2), similar univariate 

mixed models were used, additionally containing covariates representing effects of total resource 

transfer and exchange ratios (C, P, N, N:C, N:P) and interactions with categorical predictors. 

Models with and without all combinations of these covariates were compared using Akalike’s 

Information Criterion corrected for small sample sizes or AICc using the AICc() function in the 

MuMIn package. Models were fitted using both REML (restricted maximum likelihood) and ML 

(maximum likelihood) approaches, and AICc scores for each set of models revealed the same top 

model selection. Normality of residuals was confirmed using inspection of histograms for all 

models. Results of all analyses were used to distinguish among alternative hypotheses for 

Questions 1 and 2.  
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III RESULTS 

How does light availability affect resource exchange? 

 Total N:C ratios were significantly affected by an interaction between light and EM 

fungal species (Light x Fungus Interaction: F1,70=4.8261, p=0.0313) (Fig. 4). N:C ratios were 

significantly higher in the low light treatment for seedlings inoculated with Rhizopogon 

(p=0.0387) compared to the high light treatment, but did not significantly differ between light 

treatments for seedlings inoculated with Pisolithus (p=0.6205). Affects of EM fungal species 

also changed over time (Harvest x Fungus interaction: F2,70 = 8.1580, p=0.0006)(Fig. 5).  N:C 

ratios were more than doubled for seedlings inoculated with Pisolithus over seedlings inoculated 

with Rhizopogon at the first harvest (p<0.0001), but reduced to values equal to seedlings 

inoculated with Rhizopogon through the second and third harvest (p=0.8626 and p=0.6521 

respectively). 

 The P:C ratio of transfer between seedlings and fungi was not affected by light treatment 

(Appendix, Table 5), nor fungi (Appendix, Table 5); only a main effect of harvest was detected 

whereby P:C ratios decreased throughout the experiment (main effect of Harvest: F2,70= 3.0551, 

p=0.05345) (Fig. 6a).  
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Fig.	 4 Relationship between EM fungal species, light treatment, and N:C ratio (mean µmol, +/-
SE). Asterisk denotes significant differences between high and low light treatment means within 
an EM fungal species 

Fig. 5 Relationship between EM fungal species (black bars = Pisolithus, grey bars = Rhizopogon), and 
harvest (10, 20, 30 weeks) on N:C ratio (mean µmol, +/- SE). 
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Fig. 6 P:C	ratio,	N	and	P	transfer	by	harvesta) P:C exchange ratios across harvests (10, 20, 30 
weeks)  mean µmol, +/- SE. b) Total N transferred from fungi to seedling across harvests (10, 20, 
30 weeks) mean µmol, +/- SE. c) Total P transferred from fungi to seedling across harvests (10, 
20, 30 weeks) mean µmol, +/- SE. Letters signify significant pairwise differences between 
harvest means according to Tukey HSD post-hoc tests 

The change in the amount of C transferred over time in relation to light levels depended 

on EM fungal species (Light x Harvest x Fungus interaction: F2,68=50.922, p<0.0001) (Fig. 7). 

Cumulative C transferred to Pisolithus increased throughout the experiment, but this increase 

was only significant in the low light treatment. The pairwise effect of light treatment was not 

significant at week 10 or week 20, but by week 30, seedlings in the low light treatment had a 

nearly significant increase in total fungal C compared to the high light seedlings (p=0.0608). 

Seedlings inoculated with Rhizopogon showed no change in total fungal C transfers to fungi for 

low light throughout the experiment. Cumulative C transferred to Rhizopogon was substantially 

larger than to Pisolithus throughout the experiment, and occurred mostly during the 1st and 3rd 

growth periods. Cumulative C transfers more than tripled during the 3rd growth period, and was 

higher under high light (p<0.0001). 
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Fig.7 Relationship between EM fungal species (black bars = Pisolithus, grey bars = 
Rhizopogon), light treatment (orange framed = high light, blue framed = low light) and harvest 
(10, 20, 30 weeks) on total C transfer (from seedlings to EM fungi mean µmol, +/- SE). Asterisk 
denotes significant pairwise difference in total C transfers between high and low light for 
Rhizopogon at the 3rd harvest. 

Total N transferred from EM fungi to the seedling was significantly affected by an 

interaction between light and EM fungal species (Light x Fungus Interaction: F1,70=4.8490, 

p=0.03096) (Fig. 8). Total N transfer was more than double in the high light treatment compared 

to the low light treatment for seedlings inoculated with Rhizopogon (p=0.0334), but did not 

differ between light treatments for seedlings inoculated with Pisolithus (p=0.6803). Total N 

transfer increased over time, irrespective of EM fungi, exhibiting a significant increase by the 30 

week harvest (main effect of Harvest: F2,70= 23.7357, p<0.0001) (Fig. 6b). 

Total P transfer from both fungi to seedlings was significantly higher in the high light 

treatment (main effect of Light: F1,70=5.4842, p=0.02204) (Fig. 9), significantly higher for 

seedlings inoculated with Rhizopogon (main effect of Fungus: F1,70= 6.9719, p=0.01019, 

(Pisolithus, marginal mean=1.91, SE=0.929)(Rhizopogon, marginal mean = 3.50, SE=0.967), 
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and increased significantly by the 30 week harvest (main effect of Harvest: F2,70=12.3550, 

p<0.0001) (Fig. 6c).  

Fig. 8 Relationship between EM fungal species, light treatment, and total N transfer (from fungi 
to seedling mean µmol, +/- SE). Asterisk denotes significant differences between high and low 
light treatment means within an EM fungal species. 

 

Fig. 9 Relationship between light treatment, and total P transfer (from fungi to seedling (mean 
µmol,  +/- SE)). Asterisk denotes significant differences between high and low light treatment 
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Do resource exchange ratios or absolute fluxes better predict pine seedling growth?  

Resource exchange ratios did not affect final biomass of P. taeda seedlings. Rather, total 

fluxes of N and P from EM fungi were the best predictors of final seedling biomass. These 

effects of total N and P flux were dependent on each other, and on EM fungal species (Light x 

Harvest Fungus interaction: F1,66=9.2990, p=0.0033). Overall, Rhizopogon inoculated seedlings 

had a larger final plant mass (Fig. 10) Biomass of seedlings inoculated with Rhizopogon was 

positively related to total P transferred to plants, regardless of total N transferred (Fig. 10a), 

whereas seedlings inoculated with Pisolithus showed a reduction in the positive relationship 

between total P and final plant mass as total N in plants increased (Fig. 10b). Positive plant 

growth occurred during the first two growth periods, but was slightly negative on average during 

the 3rd growth period, after accounting for all model effects (main	 effect of Harvest: 

F2,66=18.6409, p<0.0001) (Fig. 11).  
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Fig. 10 Relationship between total N, total P, and final plant mass by EM fungal species. a) 
Rhizopogon relationship between total P transfer from fungi to seedling (µmol), total N transfer 
from fungi to seedling (µmol), and final plant mass (g). Slopes of lines are reported at the mean 
reported level of N and +/- 1 SD. b) Pisolithus relationship between total P transfer from fungi to 
seedling (µmol), total N transfer from fungi to seedling (µmol), and final plant mass (g).	Slopes 
of lines are reported at the mean reported level of N and +/- 1 SD 
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IV DISCUSSION 

We asked how light availability affects resource exchange and in turn how resource 

exchange affects plant growth in an attempt to test the assumptions of two alternative hypotheses 

on the outcomes of resource exchange mutualisms. Our data suggest that overall higher light 

availability increases resource exchange between mycorrhizal mutualists (Fig. 7, 8, and 9), and 

that N:C exchange ratios are lower in high light for Rhizopogon, i.e., C transferred from seedling 

increased with increased light availability, therefore reducing the N:C exchange ratios (Fig. 4), 

but that fluxes of limiting soil nutrients (N and P) have a stronger effect on seedling growth than 

resource exchange ratios (Fig. 10). These results suggest that the “exchange ratio hypothesis” 

and the “total flux hypothesis” are both correct in their predictions, and reconciliation of these 

ideas is needed. 

 

How does light availability affect resource exchange? 

Resource fluxes (of C, N, and P) to and from the pine seedlings increased with increased 

light available to the Rhizopogon inoculated seedlings (Fig. 7, 8, and 9). This result supports the 

predictions of the Grman et al. (2012) model, which suggested no effect of light on exchange 

ratios when nutrient levels are very low, but predicted differences in total nutrient fluxes between 

high and low light treatments. However, that model only accounted for P availability (and not N 

availability), and it is difficult to determine how our nutrient and light conditions correspond to 
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the parameter space explored in that model.  Moreover, N:C resource exchange ratios were also 

affected by light in our experiment, being higher in a low light environment (Fig. 4). This result 

suggests that seedlings are somewhat C-limited under low light and are willing to pay a higher 

price of C (relative to N) when more C is available, as predicted by economic models of resource 

exchange, but this prediction is dependent on identity of fungal inoculum (Schwartz and 

Hoeksema 1998, Hoeksema and Schwartz 2003, Kummel and Salant 2006, Akçay and 

Roughgarden 2007, Akçay 2015).  

Previous analyses of the effects of light on mycorrhizal resource exchange are rare. 

However, multiple studies have found that there is a shift in EM (Pena and Polle 2014) and AM 

(Knegt et al. 2016) mycorrhizal communities with reduced light  (Johnson et al. 1997, Shi et al. 

2014), which potentially implies shifts in nutrient flux. Arguably analogous to light manipulation 

treatments, elevated CO2 studies have commonly found an increase in C allocation to 

mycorrhizal fungal biomass with increased C availability (Treseder 2004, Näshalom et al. 2013). 

Those results imply that plant trade with mycorrhizal symbionts is C limited, and is consistent 

with our results on C transferred to fungi, specifically by seedlings inoculated with Rhizopogon 

in third harvest (Fig. 7). 

Our results imply that light is limiting to resource exchange (Fig. 4, 7, 8, and 9), at least 

for Rhizopogon, and therefore must be limiting to the mutualism as a whole, as light was not 

limiting to the host plant growth on its own (Appendix, Table 1). We suggest that because EM 

fungi are C limited, they may be indirectly light limited through the host plant. It is widely 

agreed that EM fungi acquire a majority, if not all, of their C from host plants and therefore rely 

on a plants access to C for their own biomass production (Zak et al. 2019). Kiers et al. (2011) 

found that arbuscular mycorrhizal fungi can discriminate among hosts with varying C supply and 



	 27	

allocate more nutrient transfer to those root tips with higher C supply, which could correspond to 

plant hosts with a higher light availability.  

Both EM fungi tested (Rhizopogon and Pisolithus) are considered high biomass 

exploration types (Agerer 2001, Agerer 2006), but showed a distinct difference in resource 

exchange responses to light treatments (Fig 4, 7 and 8). It is therefore unclear how our results 

may have been altered if we had an additional low biomass type of EM fungi included in the 

study, and if these results are applicable to high biomass exploration biomass types in general. 

Some have suggested that high biomass types may require more C for long distance growth 

(Goldbold et al. 1997). However, higher biomass exploration types may provide more efficient 

nutrient uptake and long-distance transport (Koide et al. 2014), and there is also evidence for a 

higher C demand from low exploration biomass types (Bidartondo et al. 2001). Our results imply 

that traits other than exploration type may be important for driving variation in nutrient fluxes 

between different EM fungi.  

Do resource exchange ratios or absolute fluxes better predict pine seedling growth?  

 Absolute fluxes of limiting nutrients (N and P), rather than resource exchange ratios, 

were found to better predict seedling growth, consistent with the “total flux hypothesis” (Fig. 

10), although the effects of N and P transfer on plant growth were interdependent (Table 1 in 

Appendix), and differed between the two EM fungal species. Seedlings inoculated with 

Rhizopogon were growth limited by P transferred from fungi at all levels of N transferred from 

fungi (Fig. 10a), whereas seedlings inoculated with Pisolithus had a stronger limitation of P on 

plant growth when N transferred was low and became less limiting as N increased, suggesting 

that an increase in N correlates with an increase in P (Fig. 10b). The latter results for Pisolithus 
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inoculated seedlings are supported by a previous study in an AM system, which found that when 

overall nutrient availability is low, P uptake is limited by N uptake (Johnson 2009). Presumably, 

this interdependence is due to N being an essential limiting nutrient for photosynthesis, thus 

limiting C transfer to fungi, which thus limits P uptake and transfer (Johnson et al. 2010). It is 

additionally possible that because we only measured N and P in plant tissue, that the truly most 

limiting nutrient may be co-limited with N and or P (ref). 

 

Changes in resource exchange over time 

Although not a primary question in this study, we observed that nutrient fluxes changed 

over time in different ways for seedlings inoculated with the two different EM fungal species. 

Pisolithus inoculated seedlings had sharply decreasing N:C ratios after the first harvest (Fig. 5), 

while both N (Fig. 8a) and C (Fig. 6) total nutrient fluxes increased with harvest period, 

apparently because C transfer to Pisolithus was increasing over time at a faster rate than were 

nitrogen transfers to the plant. This pattern may have occurred due to the overall low N 

availability in the soil, leading the seedling to invest increasingly more C in fungal growth in the 

attempt to gain more soil nutrients (Treseder and Allen 2002, Hobbie 2006, Corrêa et al. 2008, 

Hasselquist et al. 2016). In contrast, Rhizopogon inoculated seedlings had stable N:C ratios 

throughout the experiment (Fig. 5), even though both N (Fig. 6b) and in particular, C (Fig. 7) 

increased throughout the experiment, suggesting a consistent price of trade of resources between 

mutualists (Kiers et al.  2011). Overall plant mass decreased slightly during the third growth 

period (Fig. 11), likely from increased needle mortality due to C allocation to fungal symbionts 

in response to very low availability of limiting soil nutrients.  
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Methodological considerations 

 Several aspects of the methods and assumptions used here to evaluate resource exchange 

are worth noting for their potential effect on our conclusions. For example, our “high” and “low” 

light treatments of 400 and 150 µmol/m2/sec likely represented approximately 20% and 7.5% of 

full sunlight at mid-day (Bresinsky et al. 2013), respectively. However, our light treatments were 

similar to those used in other studies in environmental chamber systems (Corrêa et al 2012), and 

to test our hypotheses, we wanted to use low enough light levels so that light limitation would be 

a possibility. In addition, our light intensity was consistent during the 13-hour “daylight” cycle, 

unlike in a natural system in which irradiation would increase during morning hours and decline 

during afternoon hours. Both the specific light intensities chosen, and their patterns during a 24-

hour period, could affect the results of experiments testing how light may affect resource 

exchange in mycorrhizal symbiosis. 

Nutrient fluxes in pairings of seedlings with a single EM fungal symbiont species, as 

utilized here, may not be indicative of how those same fungi would interact with plant hosts 

when in competition with each other or other fungi. For example, economic models predict that 

when plants can choose among multiple symbiont species they will shift resources to those 

symbionts offering a better price of exchange (Kummel and Salant 2006). It is also possible that 

when in competition with other fungal species, a particular EM fungus may invest resources in 

competitive interactions, passing along less to the host plant, as predicted by virulence models of 

symbiont superinfection (Nowak and May 1994). However, measuring resource exchange 

between individually paired plants and mycorrhizal fungal species is a first step in understanding 

discrete resource exchange between mutualists. 

  The soil substrate used here was, by design, more nutrient poor than would be found in 
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many natural pine-EM systems, with low nutrient and organic matter content, and then we 

supplemented the system with inputs of mineral nutrients periodically. We used this approach in 

order to limit the activity of saprobic fungi, while allowing for low background levels of other 

soil microbes, such as mycorrhiza helper bacteria (Garbaye 1994) to improve realism of the 

system. It is possible that supplying more nutrients in an organic form would change resource 

exchange fluxes for any particular combination of plants and EM fungi, since EM fungal species 

vary in their abilities to use mineral versus organic forms of nutrients (Koide et al. 2014). Also, 

future studies would ideally directly account for abundance and respiration of saprobic 

organisms, e.g., by supplying organic matter derived only from a C4 plant that could allow 

detection of a unique 13C signature from saprobic respiration compared to respiration from a C3 

plant or its mycorrhizal symbionts (Bol et al. 2003). In addition, the mycocosm system used here 

would likely be inappropriate for testing nutrient fluxes between plants and short-distance, low-

biomass exploration types of EM fungi, such as Lactarius and Amanita, due to our method 

requiring that fungi grow into the non-plant side of the chamber to measure C in respiration.  

 

Future Directions and Conclusions 

 Future mycocosm studies of resource exchange fluxes in ectomycorrhizal systems could 

benefit from evaluating a larger variety of EM fungal mutualists in order to compare groups of 

EM fungal species differing in their exploration morphotypes, successional status, propensity to 

form common mycorrhizal networks (CMNs), and other traits. Such data could help to clarify 

interpretation of results from field experiments manipulating the presence and absence of EM 

CMNs, which tend to also change the community composition of the EM fungi, favoring early-

stage EM fungi in non-CMN treatments (Hoeksema 2015), and making it difficult to know 
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whether changes in plant performance are due to CMNs per se or to changes in EM fungal 

functional traits.  

 Evaluating central assumptions and predictions of economic and other models, in 

addition to evaluating key effects of contextual variables, are crucial to fully understanding 

resource exchange mutualisms. Our study suggests that light availability is important for nutrient 

fluxes and N:C exchange ratios between EM mutualists, but limiting nutrient fluxes, not light 

and exchange ratios, are most not important in predicting plant growth. These results suggest that 

the predictions of the “exchange ratio hypothesis” and the “total flux hypothesis” are not 

necessarily in conflict with each other, and imply that when mycorrhizal plants have additional C 

to trade to their mycorrhizal fungi, it has the potential to promote an increase in nutrients to the 

plant in return, changing the price of exchange without detriment to either mutualist. 
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Table	1.	Analysis	of	Variance	(anova)	for	nutrient	and	environmental	effects	on	plant	
growth	using	the	model(NP<-lmer(plantmass~Harvest+Light+Fungi+total.P+	
total.N+Light:Fungi+Light:total.P+Fungi:total.P+Light:total.N+total.P:total.N+	
total.N:Fungi:total.P+(1|Shelf)+(1|Tree),data=fulldata))	
TypeIIIAnalysisofVarianceTablewithSatterthwaite'smethod	
	 SumSq	 MeanSq	 NumDF	 DenDF	 Fvalue	 Pr(>F)	
Harvest	 0.052788	 0.026394	 2	 66.393	 18.6409	 3.757e-

07***	
Light	 0.001347	 0.001347	 1	 10.928	 0.9514	 0.350462	
Fungi	 0.088557	 0.088557	 1	 66.276	 62.5442	 3.762e-

11***	
total.P	 0.014325	 0.014325	 1	 66.045	 10.1175	 0.002238**	
total.N	 0.057442	 0.057442	 1	 66.479	 40.5691	 2.055e-

08***	
Light:Fungi	 0.002828	 0.002828	 1	 65.892	 1.9975	 0.162268	
Light:total.P	 0.006868	 0.006868	 1	 65.859	 4.8502	 0.031148*	
Fungi:total.P	 0.003687	 0.003687	 1	 66.233	 2.6037	 0.111372	
Light:total.N	 0.002780	 0.002780	 1	 65.785	 1.9632	 0.165868	
total.P:total.N	 0.013398	 0.013398	 1	 66.740	 9.4625	 0.003039**	
Fungi:total.P:total.N	 0.013167	 0.013167	 1	 66.255	 9.2990	 0.003294**	
	
Table	2.	Analysis	of	Variance	(anova)	for	nutrient	and	environmental	effects	on	N:C	
resource	exchange	ratios	using	the	model	(lightNC<-lmer(N.C~Harvest+Light+	Fungi+	
Harvest:Light+	Light:Fungi+	Harvest:Light:Fungi+	Harvest:Fungi	+	(1|Shelf)+	(1|Tree),	
data=fulldata))	
TypeIIIAnalysisofVarianceTablewithSatterthwaite'smethod	
	 SumSq	 MeanSq	 NumDF	 DenDF	 Fvalue	 Pr(>F)	
Harvest	 2.3092e-06	 1.1546e-06	 2	 70.004	 7.3433	 0.0012732**	
Light	 3.4352e-07	 3.4352e-07	 1	 70.061	 2.1848	 0.1438628	
Fungi	 1.4321e-06	 1.4321e-06	 1	 70.631	 9.1079	 0.0035379**	
Harvest:Light	 4.6086e-07	 2.3043e-07	 2	 70.117	 1.4655	 0.2379427	
Light:Fungi	 7.5882e-07	 7.5882e-07	 1	 70.036	 4.8261	 0.0313427*	
Harvest:Fungi	 2.5654e-06	 1.2827e-06	 2	 70.101	 8.1580	 0.0006528***	
	
Table	3.	Analysis	of	Variance	(anova)	for	nutrient	and	environmental	effects	on	
Ntransferred	to	the	fungi	using	the	model	(lightN<-lmer(total.N~Harvest+	Light+	Fungi+	
Harvest:Light+	Light:Fungi+	Harvest:Fungi	+	(1|Shelf)+	(1|Tree),	data=fulldata))	
TypeIIIAnalysisofVarianceTablewithSatterthwaite'smethod	
	 SumSq	 MeanSq	 NumDF	 DenDF	 Fvalue	 Pr(>F)	
Harvest	 154567	 77283	 2	 70.003	 23.7357	 1.351e-08***	
Light	 8401	 8401	 1	 70.043	 2.5802	 0.11271	
Fungi	 702	 702	 1	 70.477	 0.2156	 0.64386	
Harvest:Light	 245	 122	 2	 70.084	 0.0376	 0.96313	
Light:Fungi	 15788	 15788	 1	 70.025	 4.8490	 0.03096*	
Harvest:Fungi	 500	 250	 2	 70.072	 0.0768	 0.92611	
Table	4.	Analysis	of	Variance	(anova)	for	nutrient	and	environmental	effects	on	C	transfer	
from	seedling	to	fungi	using	the	model	(lightC<lmer(total.C~Harvest+	Light+	Fungi+	
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Harvest:Light+	Light:Fungi+	Harvest:Fungi	+	Harvest:Light:Fungi+	(1|Shelf)+	(1|Tree)	,	
data=fulldata)	
TypeIIIAnalysisofVarianceTablewithSatterthwaite'smethod	
	 SumSq	 MeanSq	 NumDF	 DenDF	 Fvalue	 Pr(>F)	
Harvest	 1.9864e+12	 9.9322e+11	 2	 67.730	 75.834	 <2.2e-

16***	
Light	 4.4357e+11	 4.4357e+11	 1	 1.996	 33.867	 0.02841*	
Fungi	 2.6965e+12	 2.6965e+12	 1	 67.016	 205.882	 <2.2e-

16***	
Harvest:Light	 1.0926e+12	 5.4631e+11	 2	 68.175	 41.711	 1.477e-

12***	
Light:Fungi	 8.5117e+11	 8.5117e+11	 1	 67.093	 64.988	 1.848e-

11***	
Harvest:Fungi	 6.1522e+11	 3.0761e+11	 2	 68.519	 23.486	 1.706e-

08***	
Harvest:Light:Fungi	 1.3339e+12	 6.6694e+11	 2	 68.225	 50.922	 2.939e-

14***	
	
Table	5.	Analysis	of	Variance	(anova)	for	nutrient	and	environmental	effects	on	P:C	resource	
exchange	ratios	using	the	model	(lightPC<-lmer(P.C~Harvest+	Light+	Fungi+	Harvest:Light	
+Light:Fungi	+	Harvest:Fungi	+	(1|Shelf)	+(1|Tree)	,data=fulldata))	
TypeIIIAnalysisofVarianceTablewithSatterthwaite'smethod	
	 SumSq	 MeanSq	 NumDF	 DenDF	 Fvalue	 Pr(>F)	
Harvest	 2.7693e-09	 1.3847e-09	 2	 70.019	 3.0551	 0.05345.	
Light	 1.0317e-09	 1.0317e-09	 1	 70.271	 2.2763	 0.13585	
Fungi	 7.1477e-10	 7.1477e-10	 1	 70.180	 1.5770	 0.21335	
Harvest:Light	 6.5490e-10	 3.2745e-10	 2	 70.450	 0.7225	 0.48911	
Light:Fungi	 6.3547e-10	 6.3547e-10	 1	 70.163	 1.4021	 0.24037	
Harvest:Fungi	 1.3543e-09	 6.7717e-10	 2	 70.432	 1.4941	 0.23148	
	
Table	6.	Analysis	of	Variance	(anova)	for	nutrient	and	environmental	effects	on	P	
transferred	to	fungi	using	the	model	(lightP<-lmer(total.P~Harvest+	Light+	Fungi+	
Harvest:Light+Light:Fungi+	Harvest:Fungi	+	(1|Shelf)	+(1|Tree)	,data	=fulldata)	
TypeIIIAnalysisofVarianceTablewithSatterthwaite'smethod	
	 SumSq	 MeanSq	 NumDF	 DenDF	 Fvalue	 Pr(>F)	
Harvest	 170.675	 85.337	 2	 70.003	 12.3550	 2.538e-05***	
Light	 37.880	 37.880	 1	 70.041	 5.4842	 0.02204*	
Fungi	 48.156	 48.156	 1	 70.452	 6.9719	 0.01019*	
Harvest:Light	 15.940	 7.970	 2	 70.079	 1.1539	 0.32134	
Light:Fungi	 16.996	 16.996	 1	 70.024	 2.4607	 0.12123	
Harvest:Fungi	 20.091	 10.045	 2	 70.068	 1.4544	 0.24051	
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