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Abstract

Incorporating various sources of biological information is important for

biological discovery. For example, genes have a multi-view representation. They

can be represented by features such as sequence length and physical-chemical

properties. They can also be represented by pairwise similarities, gene expression

levels, and phylogenetics position. Hence, the types vary from numerical features

to categorical features. An efficient way of learning from observations with a

multi-view representation of mixed type of data is thus important.

We propose a large margin random forests classification approach based

on random forests proximity. Random forests accommodate mixed data types

naturally. Large margin classifiers are obtained from the random forests prox-

imity kernel or its derivative kernels. We test the approach on four biological

datasets. The performance is promising compared with other state of the art

methods including support vector machines (SVMs) and Random Forests classi-

fiers. It demonstrates high potential in the discovery of functional roles of genes

and proteins. We also examine the effects of mixed type of data on the algorithms

used.

ii



Acknowledgements

I would like to thank my advisors, Dr. Yixin Chen and Dr. Dawn E.

Wilkins, for guidance and patience throughout my graduate study at The Uni-

versity of Mississippi. I would also like to thank my committee member, Dr. H.

Conrad Cunningham for their assistance and advice.

I would like to thank my wife Xiaona Chu, and my daughter Yichen Liu for

their encouragement and supporting me to pursue a degree in Master of Science.

iii



Table of Contents

Abstract ii

Acknowledgements iii

1 Introduction 1

1.1 Relevant Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 An Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . 3

2 VC Theory, Support Vector Machines, and Random Forests 4

2.1 VC Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Large Margin Random Forests 12

4 Results and Discussions 16

4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Comparing RF, SVM, and Large Margin RF . . . . . . . . . . . . 18

4.3 Effects of Binary Encoding of Categorical Features . . . . . . . . 21

4.4 Comparing SVM and Random Forests Based Methods on Mixed

Type Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Conclusions 24

BIBLIOGRAPHY 25

VITA 32

iv



List of Tables

4.1 Datasets Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Average confusion matrix and accuracies (± standard deviations)

of different prediction methods on prospectr dataset. RFP denotes

large margin RF with proximity kernel. RF-RBF stands for large

margin RF with RBF kernel defined from proximity. . . . . . . . . 19

4.3 Average confusion matrix,accuracies (± standard deviation) and

relative classifier information (RCI) of RF, RFP on Golub dataset

with number coding. RFP denotes large margin RF with proximity

kernel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4 Average confusion matrix and accuracies (± standard deviation) of

RF, SVM, RFP, and RF-RBF on heart disease dataset with number

coding. RFP denotes large margin RF with proximity kernel. RF-

RBF stands for large margin RF with RBF kernel defined from

proximity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.5 Average confusion matrix and AUC of different prediction methods

on SPECT heart dataset with number coding. RFP denotes large

margin RF with proximity kernel. RF-RBF stands for large margin

RF with RBF kernel defined from proximity. . . . . . . . . . . . . 21

v



4.6 Confusion matrix and accuracies of different prediction methods on

heart disease dataset with binary expansion coding. RFP denotes

large margin RF with proximity kernel. RF-RBF stands for large

margin RF with RBF kernel defined from proximity. . . . . . . . . 22

vi



List of Figures

3.1 Random Forest Proximity Kernels. The terminal nodes of the RF

are coded as a binary vector where 1 represents the presence of a

sample in the leaf node, 0 otherwise. . . . . . . . . . . . . . . . . 13

3.2 Leaf node space representation in 2D. With two leaf nodes, each

sample is mapped to a corner of a square. . . . . . . . . . . . . . 14

4.1 Performance of Support Vector Machines on Heart Disease Data

with Different Number of Categorical Features. . . . . . . . . . . 23

4.2 Performance of Random Forests on Heart Disease Data with Dif-

ferent Number of Categorical Features. . . . . . . . . . . . . . . . 23

4.3 Performance of Random Forests Proximity kernel (RFP) on Heart

Disease Data with Different Number of Categorical Features. . . . 23

4.4 Performance of RF on radial basis function kernel (RF-RBF) on

Heart Disease Data with Different Number of Categorical Features. 23

vii



Chapter 1

Introduction

With the advancement in high-throughput technologies applied in biol-

ogy and biomedicine, the accumulation of biological data provides opportunities

and challenges to biological prediction [Bushel et al., 2007]. In many biologically

motivated prediction problems, such as gene structure and function prediction,

gene network prediction, and protein-protein interaction prediction [Bork et al.,

1998; Zhao et al., 2008; Myers and Troyanskaya, 2007; Lee et al., 2008; Pandey

et al., 2009], various data collection methods generate different types of data, e.g.,

DNA sequence, protein sequence, phylogenetics profile, microarray data, gene reg-

ulatory network, and protein-protein interaction networks. Some of the features

are discrete, for instance, sequences, while others are continuous, for example,

gene expression levels. This poses challenges in dealing with mixed type features

for classification or other analysis in order to provide insights on the underlying

biological problem. An algorithm handling mixed type of data for integrated bio-

logical prediction is therefore desirable. We proposed to combine random forests

and support vector machines to deal with this Liu et al. [2010].
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1.1 Relevant Work

Research on mixed type data is active in a closely related area, clustering.

Wang et al. [2007] proposed a heritable clustering method that can be used with

multiple types of data. Ng et al. [2007] used different metrics for categorical and for

numerical features in a feature vector. They then combined a supervised learning

approach (multivariate regression) for numerical variables with an unsupervised

learning algorithm (k-mode clustering) for categorical variables to cluster data.

There is an abundance of prior work in supervised learning with mixed type

data. Réme et al. [2008] proposed a statistical data reduction approach to convert

categorical features into numerical features. de Tayrac et al. [2009] applied a

multiple factor analysis approach to a problem of dynamic nature: supplementary

groups of categorical or numerical variables are often added on the fly.

Support vector machine (SVM) [Vapnik, 1998] and random forests (RF)

[Breiman, 2001] are two of the most popular classification techniques that have

also been explored for mixed type data. SVM typically requires normalized numer-

ical features to generate good performance. In many cases, categorical features

are directly converted into numerical values. A more stable approach is to en-

code a categorical value into a binary feature vector [Hsu et al., 2000; Agresti,

2002]. RF is an ensemble learning method using decision trees. One advantage

of decision tree based methods is that they can work with both categorical and

numerical features. Lee and Kim [2010] proposed to convert mixed type data to

purely numerical data based on the theory of learning Bayesian Network Clas-
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sifiers. Hamby and Hirst [2008] used random forests directly on mixed type of

features that encode glycosylation sites. Jiang et al. [2006] used mixed type of

features they selected in searching for disease mutations. In their study, random

forests delivered slightly better performance than that of SVM.

1.2 An Overview of the Thesis

As a large margin classifier, SVM in practice produces good performance

on numerical data, but cannot handle mixed type data directly. Random forests

can naturally handle mixed type data via decision tree learning, yet it is not a

large margin classifier. In this thesis, we investigate the effects of data types on the

performance of SVM and RF. We propose a method that combines large margin

learning with random forests to improve the generalization performance of RF on

mixed type data.

The remainder of the thesis is organized as follows. Chapter 2 presents a

brief review of SVM and RF. In Chapter 3, we introduce a positive definite kernel

based on RF proximity. This connects RF with large margin learning. Chapter 4

describes the extensive experimental studies performed and presents the results.

We conclude in Chapter 5.
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Chapter 2

VC Theory, Support Vector Machines, and

Random Forests

This chapter presents the basic concepts of the VC theory, SVMs, and

RFs. For gentle tutorials of VC theory, SVMs, and RFs, we refer interested

readers to Burges [1998], Müller et al. [2001], Breiman [1996], and Ho [1998].

More exhaustive treatments can be found in Vapnik [1995, 1998] and Breiman

[2001].

2.1 VC Theory

Consider a two-class classification problem of assigning class label y ∈

{+1,−1} to input feature vector x ∈ Rn. We are given a set of training sam-

ples {(x1, y1), · · · , (xℓ, yℓ)} ⊂ Rn × {+1,−1} that are drawn independently from

some unknown cumulative probability distribution P (x, y). The learning task is

formulated as finding a machine (a function f : Rn → {+1,−1}) that “best”

approximates the mapping generating the training set. In order to make learning

feasible, we need to specify a function space, H, from which a machine is chosen.

An ideal measure of generalization performance for a selected machine f

4



is expected risk (or the probability of misclassification) defined as

RP (x,y)(f) =
∫
Rn×{+1,−1}

I{f(x) ̸=y}(x, y)dP (x, y)

where IA(z) is an indicator function such that IA(z) = 1 for all z ∈ A, and

IA(z) = 0 for all z /∈ A. Unfortunately, this is more an elegant way of writing the

error probability than practical usefulness because P (x, y) is usually unknown.

However, there is a family of bounds on the expected risk, which demonstrates

fundamental principles of building machines with good generalization. Here we

present one result from the VC theory due to Vapnik and Chervonenkis [Vapnik

and Chervonenkis, 1971]: given a set of l training samples and function space H,

with probability 1 − η, for any f ∈ H, the expected risk is bounded from above

by

RP (x,y)(f) ≤ Remp(f) +

√
h(1 + ln 2ℓ

h
)− ln η

4

ℓ
(2.1)

for any distribution P (x, y) onRn×{+1,−1}. Here Remp(f) is called the empirical

risk (or training error), h is a non-negative integer called the Vapnik Chervonenkis

(VC) dimension. The VC dimension is a measure of the capacity of a {+1,−1}-

valued function space. Given a training set of size ℓ, (2.1) demonstrates a strategy

to control expected risk by controlling two quantities: the empirical risk and the

VC dimension. Next we will discuss an application of this idea: the SVM learning

strategy.
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2.2 Support Vector Machines

Let {(x1, y1), · · · , (xℓ, yℓ)} ⊂ Rn × {+1,−1} be a training set. The SVM

learning approach attempts to find a canonical hyperplane (A hyperplane

{x ∈ Rn : ⟨w,x⟩+ b = 0, w ∈ Rn, b ∈ R}

is called canonical for a given training set if and only if w and b satisfy

mini=1,···,ℓ |⟨w,xi⟩+ b| = 1)

{x ∈ Rn : ⟨w,x⟩+ b = 0, w ∈ Rn, b ∈ R}

that maximally separates two classes of training samples. Here ⟨·, ·⟩ is an inner

product in Rn. The corresponding decision function (or classifier) f : Rn →

{+1,−1} is then given by

f(x) = sgn (⟨w,x⟩+ b) .

Considering that the training set may not be linearly separable, the optimal

decision function is found by solving the following quadratic program:

minimize J(w, ξ) =
1

2
⟨w,w⟩+ C

ℓ∑
i=1

ξi (2.2)

subject to yi (⟨w,xi⟩+ b) ≥ 1− ξi,

ξi ≥ 0, i = 1, · · · , ℓ

where ξ = [ξ1, · · · , ξℓ]T are slack variables introduced to allow for the possibility

6



of misclassification of training samples, C > 0 is some constant.

How does minimizing (2.2) relate to our ultimate goal of optimizing the

generalization? To answer this question, we need to introduce a theorem about

the VC dimension of canonical hyperplanes [Vapnik, 1995], which is stated as

follows. For a given set of ℓ training samples, let R be the radius of the smallest

ball containing all ℓ training samples, and Λ ⊂ Rn ×R be the set of coefficients

of canonical hyperplanes defined on the training set. The VC dimension h of

the function space H = {f(x) = sgn (⟨w,x⟩+ b) : (w, b) ∈ Λ, ∥w∥ ≤ A,x ∈ Rn}

is bounded above by h ≤ min (R2A2, n) + 1. Thus minimizing the 1
2
⟨w,w⟩ term

in (2.2) amounts to minimizing the VC dimension of H, therefore the second

term of the bound (2.1). On the other hand,
∑ℓ

i=1 ξi is an upper bound on the

number of misclassifications on the training set (A training feature vector xi is

misclassified if and only if 1− ξi < 0 or equivalently ξi > 1. Let t be the number

of misclassifications on the training set. We have t ≤ ∑ℓ
i=1 ξi since ξi ≥ 0 for all

i and ξi > 1 for misclassifications), thus controls the empirical risk term in (2.1).

For an adequate positive constant C, minimizing (2.2) can indeed decrease the

upper bound on the expected risk.

Applying the Karush-Kuhn-Tucker complementarity conditions, one can

show that a w, which minimizes (2.2), can be written as w =
∑ℓ

i=1 yiαixi. This

is called the dual representation of w. An xj with nonzero αj is called a support

vector. Let S be the index set of support vectors, then the optimal decision

7



function becomes

f(x) = sgn

(∑
i∈S

yiαi ⟨x,xi⟩+ b

)
(2.3)

where the coefficients αi can be found by solving the dual problem of (2.2):

maximize W (α) =
ℓ∑

i=1

αi −
1

2

ℓ∑
i,j=1

αiαjyiyj ⟨xi,xj⟩ (2.4)

subject to C ≥ αi ≥ 0, i = 1, · · · , ℓ, and
ℓ∑

i=1

αiyi = 0.

The decision boundary given by (2.3) is a hyperplane in Rn. More complex

decision surfaces can be generated by employing a nonlinear mapping Φ : Rn → F

to map the data into a new feature space F (usually has dimension higher than n),

and finding the maximal separating hyperplane in F. Note that in (2.4) xi never

appears isolated but always in the form of inner product ⟨xi,xj⟩. This implies

that there is no need to evaluate the nonlinear mapping Φ as long as we know

the inner product in F for any given x, z ∈ Rn. So for computational purposes,

instead of defining Φ : Rn → F explicitly, a function K : Rn × Rn → R is

introduced to directly define an inner product in F. Such a function K is also

called the Mercer kernel [Cristianini and Shawe-Taylor, 2000; Vapnik, 1995, 1998].

Substituting K(xi,xj) for ⟨xi,xj⟩ in (2.4) produces a new optimization problem

maximize W (α) =
ℓ∑

i=1

αi −
1

2

ℓ∑
i,j=1

αiαjyiyjK(xi,xj)

subject to C ≥ αi ≥ 0, i = 1, · · · , ℓ, (2.5)

ℓ∑
i=1

αiyi = 0.

8



Solving (2.5) for α gives a decision function of the form

f(x) = sgn

(∑
i∈S

yiαiK(x,xi) + b

)
, (2.6)

whose decision boundary is a hyperplane in F, and translates to nonlinear bound-

aries in the original space. Several techniques of solving quadratic programming

problems arising in SVM algorithms are described in Joachims [1999]; Kaufman

[1999]; Platt [1999]. Details of calculating b can be found in Chang and Lin [2001].

2.3 Random Forests

Random forests is an ensemble learning method using decision trees. Deci-

sion tree learning creates a tree model that predicts target values. It is performed

by recursively splitting data into subsets using one of the variables. Gini impurity

[Breiman et al., 1984] and information gain [Quinlan, 1993] are two commonly

used data splitting criteria. The decision tree learning algorithm requires little

data pre-processing. It can handle mixed type data. The resulting tree classifier

is equivalent to a set of decision rules, which is easy to interpret. However, a

decision tree is prone to overfitting, especially when data is noisy.

The introduction of an ensemble of decision trees aims at combining deci-

sions from diverse decision tree learners to obtain a better predictive performance

than that of individual decision trees. It has more representative power than

individual decision trees, but is more prone to overfitting.

Two approaches were proposed to overcome this limitation: bootstrap ag-

9



gregating and random feature subset selection. Breiman [1996] introduced boot-

strap aggregating (Bagging), training each model (tree) in the ensemble (for-

est) using a randomly selected subset of the training set. Given a training set

L = {(x1, y1), · · · , (xℓ, yℓ)} ⊂ Rn × {+1,−1} , the bootstrap aggregating process

generates t sets L1, · · · , Lt each being a bootstrap from L. A classifier is then

built for each bootstrap. All t classifiers vote for the final prediction. Bootstrap

aggregating improves the accuracy and helps to reduce variance among models

and avoid overfitting. Ho [1998] proposed to combine multiple trees constructed

from a random subset of features. It maintains highest accuracy on training data

and improves the generalization performance.

RF combines the idea of bagging and random selection of a subset of fea-

tures. First, the training data are bootstrap sampled. Each boostrap is then used

to build a tree. In the tree learning process, a small number (m) of input features

are randomly selected out of the entire features in each node split. The prediction

of the RF is the majority vote of the trees in the forest.

Breiman [2001] interpreted that the generalization error bound are con-

trolled by strength of individual classifiers and dependence between individual

classifiers. Strong individual classifiers at the same time independent classifiers

gives better prediction performance.

In RF, the choice of m influences the performance. On one hand, a small m

tends to produce independent trees, which is desirable in avoiding overfitting. But

it may also destroy the dependency structure of the whole set of input features

that is useful for the prediction. On the other hand, a large m tends to preserve

10



feature dependency. But it may result in trees that are highly dependent, hence

overfitting. In practice, the optimal value of m in random forests is tuned with a

small number of trees.

In next chapter, we try to make a connection between RF and large margin

classifier.

11



Chapter 3

Large Margin Random Forests

Statnikov et al. [2008] compared the performance of SVM and Random

Forests on a collection of microarray datasets. In their experiments, where the

data are numerical, SVM outperforms random forests, sometimes even signifi-

cantly. In this chapter, we attempt to combine the ability of RFs to handle mixed

type data with the high performance of SVMs. In particular, a positive definite

kernel is first derived from a RF. Large margin learning is then performed using

the kernel.

We start with the concept of RF proximity. Given two sample points and a

decision tree, the decision tree places the two sample points in either the same leaf

node or two different leaf nodes. In the former, we view the proximity between

two samples as high, and the latter as low. For a RF, the proximity of two samples

is summed through all the trees, and normalized by the total number of trees to

get the final proximity measure.

Given a set of observations, their proximities defined by a RF can be or-

ganized at a matrix, P , where

Pij = prox(xi,xj) .

12



Though not obvious, the proximity matrix P is positive semi-definite. A

proof is sketched in Figure 3.1. Because each sample is placed to one and only one

leaf node of each decision tree, we define a binary feature vector to capture this

structure. For sample xi, the corresponding binary vector that encodes the leaf

nodes assignment is defined as Xi = [X1, . . . , Xp]
T where p is the total number of

leaf nodes in a RF,

Xj =


1 if xi falls on the j-th leaf node,

0 otherwise.

Figure 3.1: Random Forest Proximity Kernels. The terminal nodes of the RF are
coded as a binary vector where 1 represents the presence of a sample in the leaf node, 0
otherwise.

We call the space of Xi’s a leaf node space. In this space, each sample

is mapped to a vertex of a hypercube. Figure 3.2 shows a two terminal nodes

example. It is straightforward to derive that the proximity of two observations xi

13



Figure 3.2: Leaf node space representation in 2D. With two leaf nodes, each sample is
mapped to a corner of a square.
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and xj is defined in the leaf node space as

prox(xi,xj) =
1

T
XT

i Xj (3.1)

where T is the number of trees in the RF. Therefore the proximity measure is a

kernel. P is positive semi-definite.

In the original feature space, a RF is clearly a nonlinear classifier. In the

leaf nodes space, however, a RF is a linear classifier. This is illustrated as follows.

Let K be the number of classes. We assign a label to each leaf node. A leaf node

has label k, k ∈ {1, . . . , K}, if the leaf node assigns a sample to class k. For each

class k, we encode the labels of all leaf node by a vector wk ∈ {0, 1}p where 1’s

indicate the leaf nodes with label k and 0’s otherwise. Therefore, we can define a

14



linear discriminant function for each class as

fk(X) = wTX .

It is not difficult to see that for any observation x, fk(X) is the number of votes

that x receives for class k. The prediction of a RF is identical to the class that

has the maximal discriminant value.

The weight vectors wk’s obtained by a RF is by no means optimal. This

suggests that one may construct an “optimal” classifier in the leaf nodes space.

One natural approach is large margin learning using the proximity kernel. RF

proximity kernel defines an inner product in the leaf node space. In this thesis,

we call a RF proximity kernel RFP. Other kernels can be constructed based on

RFP. In this thesis, we consider RFP and radial basis function (RBF) kernel (RF-

RBF) for leaf nodes representation of data and formulate RF as a large margin

learning problem to optimize the weights wk’s.

15



Chapter 4

Results and Discussions

In this chapter, we first describe the four datasets used. We then present

the experiments performed and the results obtained.

Table 4.1: Datasets Used

Datasets num. of num. of num. of num. of Classes are
samples classes categorical numerical highly

features features unbalanced?a

Prospectr 3586 2 2 51 no
class size (1793, 1793)

Heart Disease 303 2 8 5 no
class size (164,139)

SPECT Heart 267 2 22 0 yes
class size (212,55)
Golub 72 3 1 7129 yes

class size (38,9,25)

aIf number of samples in one class is less than 50% of the class with the highest number of
samples, we considered it as highly unbalanced.

4.1 Datasets

A summary of the datasets used is shown in Table 4.1. The first dataset is

prospectr [Adie et al., 2005] dataset. There are many human hereditary diseases

found so far to be caused by mutations in a single gene [O’Connor and Crystal,

16



2006] or in several genes [Gibson, 2009]. Many of them are important to human

well being. Thus it is crucial to identify genes involved these diseases. The higher

the correct number of genes identified, the better chance it will help to find ways

to cure the diseases. Adie et al. [2005] collected and tested a number of gene-

based features that differ between disease related genes and non-disease related

genes by using alternate decision tree. These features are integrated from different

biological domains and were used further for candidate disease gene prioritization

in Adie et al. [2005]. Here we only use it in a classification scenario and evaluate

methods with classification performance measure. The goal is to predict disease

or health from the various selected features. We use the training (OMIM training

set) and test set (HGMD test set) as described in Adie et al. [2005]. There are

3586 samples each with 61 features. Most of them are numerical features. We

further removed features with missing data, resulting in 53 features.

Another dataset is Golub dataset [Golub et al., 1999]. There are 72 samples

with expression of 7129 probe sets. We add one feature “gender” from clinical

data that has least amount of missing information. This forms a vector of length

7130 for each sample. The aim of using this dataset is to predict leukemia (Acute

Lymphoblastic Leukemia and Acute Myeloid Leukemia) from this integrated data.

The next two datasets are chosen mainly for evaluation of these methods

on different type of data. The third dataset is Heart disease dataset [Detrano

et al., 1989]. The purpose is to predict whether a patient presents heart disease or

not from features obtained from experiments. It contains a mixture of categorical

and numerical features. Eight of thirteen features are categorical. The remaining

17



features are numerical. To compare the effect of mixed feature type, we use

different combinations of categorical and numerical features.

The last dataset we tested is SPECT heart dataset [Kurgan et al., 2001].

This dataset describes diagnosing of cardiac Single Proton Emission Computed

Tomography (SPECT) images. We need to determine whether a patient is normal

or abnormal from these images. From these images, 44 continuous features were

created for each patient. The features were further processed to obtain final 22

binary features. The number of samples in each class is not balanced.

We test these datasets with RF, SVM, and large margin RF with RFP, RF-

RBF kernels. For the heart dataset, different data types are chosen and tested on

these algorithms. We randomly split each dataset for twenty repeats. In each split,

one set is used for training, the other set is used as the test set. The performance

measures are based on an average of all the twenty runs. Details are given below.

4.2 Comparing RF, SVM, and Large Margin RF

The classification results on the prospectr dataset are given in Table 4.2.

The parameter C for SVM were selected from 0.8, 1, 2, and 10. The parameter

γ (Figure 3.1) for SVM RBF kernel and RF-RBF kernel were chosen from 1, 200,

500, 800 divided by the dimension of data. These two parameters were selected by

5-fold cross validation on the training set. Parameter m for Random Forests was

chosen according to the highest accuracy by running a small number of trees with

different choice of m’s ranging from 1 to the dimension of the data. All classifiers
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were implemented in R (2.10-1) [R Development Core Team, 2009] with packages

randomForest (4.5-34), e1071 (1.5-23) and custom auxiliary functions. Each row

of confusion matrix in the Tables represents the true classes.

Table 4.2: Average confusion matrix and accuracies (± standard deviations) of dif-
ferent prediction methods on prospectr dataset. RFP denotes large margin RF with
proximity kernel. RF-RBF stands for large margin RF with RBF kernel defined from
proximity.

SVM RF RFP RF-RBF
AUC 0.75 0.76 0.78 0.78

Accuracy (%) 68.60±0.85 68.85±0.92 69.07±0.73 69.22±0.73
Health Sick Health Sick Health Sick Health Sick

Health 0.71 0.29 0.73 0.27 0.71 0.29 0.71 0.29
Sick 0.34 0.66 0.34 0.66 0.33 0.67 0.32 0.68

The prospectr data were normalized before application of SVM training.

We use the built in function scale in R package e1071 for this purpose. Without

normalization, the performance of SVM on this dataset was only 50% in accuracy

(data not shown).

On average, RF-RBF kernel gives the highest accuracy, followed by RFP

kernel. Comparing to SVM and RF, RF-RBF and RFP give more balanced per

class prediction. The results are given in Table 4.2.

The Golub data has multiple classes, we calculate relative classifier infor-

mation (RCI) [Sindhwani et al., 2001] in addition to accuracy. RFP is significantly

better than RF from Table 4.3 with P value 0.02.

Table 4.4 shows the results on heart disease dataset. For the SVM classifier,

the categorical features were converted to consecutive integer values. RF and RF-

RBF achieved the best performance on this dataset.
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Table 4.3: Average confusion matrix,accuracies (± standard deviation) and relative
classifier information (RCI) of RF, RFP on Golub dataset with number coding. RFP
denotes large margin RF with proximity kernel.

RF RFP
RCI 0.62±0.08 0.67±0.15

Accuracy (%) 89.86±2.85 90.86±5.21
Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

Class 1 0.99 0.00 0.01 0.97 0.01 0.02
Class 2 0.56 0.29 0.15 0.35 0.46 0.19
Class 3 0.04 0.00 0.96 0.03 0.00 0.97

Table 4.4: Average confusion matrix and accuracies (± standard deviation) of RF,
SVM, RFP, and RF-RBF on heart disease dataset with number coding. RFP denotes
large margin RF with proximity kernel. RF-RBF stands for large margin RF with RBF
kernel defined from proximity.

SVM RF RFP RF-RBF
AUC 0.89 0.87 0.87 0.89

Accuracy (%) 80.01±2.03 80.68±2.42 78.94±3.51 80.61±2.86
Health Sick Health Sick Health Sick Health Sick

Health 0.80 0.20 0.80 0.20 0.78 0.22 0.80 0.20
Sick 0.21 0.79 0.18 0.82 0.20 0.80 0.18 0.82

The SPECT heart dataset is unbalanced. We use the Area Under Receiver

Operating Characteristic Curve (AUC) as well as the confusion matrix as perfor-

mance metrics. For AUC, a value closer to 1 indicates better performance. The

results are given in Table 4.5. RF has the highest AUC, while its average accu-

racy is not the highest. The variance of AUC is large across all the methods. The

average accuracies of RFP and RF-RBF are also more balanced.

The above results demonstrate the competitive performance of large mar-

gin RF against RF and SVM. Large margin RF hence presents another choice

when selecting suitable algorithms for integrated biological prediction.
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Table 4.5: Average confusion matrix and AUC of different prediction methods on
SPECT heart dataset with number coding. RFP denotes large margin RF with proximity
kernel. RF-RBF stands for large margin RF with RBF kernel defined from proximity.

True classes SVM RF RFP RF-RBF
AUC 0.70 0.80 0.74 0.73

Accuracy (%) 81.50±2.77 80.87±2.45 80.82±2.26 80.41±2.93
Health Sick Health Sick Health Sick Health Sick

Health 0.63 0.37 0.56 0.44 0.58 0.42 0.62 0.38
Sick 0.17 0.83 0.15 0.85 0.16 0.84 0.18 0.82

4.3 Effects of Binary Encoding of Categorical Features

In the previous experiment on heart dataset, the categorical features were

converted to consecutive integers. Another popular encoding method in the lit-

erature is to convert each value of a categorical variable to a binary string. For

example, for a variable with four possible values A, T , C, and G, the binary

encoding method converts the four values into 0001, 0010, 0100, and 1000. The

results are shown in Table 4.6. As we can see that the performance of SVM

decreases significantly compared with Table 4.4. For the other approaches, the

performance remains roughly the same. This suggests that SVM is sensitive to

the encoding method when handling categorical features. On the contrary, RF

and large margin RF are not sensitive to the encoding method.
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Table 4.6: Confusion matrix and accuracies of different prediction methods on heart
disease dataset with binary expansion coding. RFP denotes large margin RF with prox-
imity kernel. RF-RBF stands for large margin RF with RBF kernel defined from prox-
imity.

True classes SVM RF RFP RF-RBF
AUC 0.89 0.87 0.86 0.89

Accuracy (%) 77.83±6.17 80.71±2.19 78.47±2.02 80.79±2.11
Health Sick Health Sick Health Sick Health Sick

Health 0.79 0.21 0.82 0.18 0.81 0.19 0.83 0.17
Sick 0.24 0.76 0.20 0.80 0.24 0.76 0.22 0.78

4.4 Comparing SVM and Random Forests Based Methods

on Mixed Type Data

To further compare SVM and RF based methods on mixed type data, we

performed a series of experiments on the heart disease dataset, in which we control

the ratio of categorical and numerical features in the dataset. Specifically, all the

numerical features were included. A fixed number of categorical features were

selected randomly from the eight categorical features. The number of categorical

features included varies from 1 to 8.

For each case, the experiment was repeated twenty times. The results are

shown as box plots in Figures 4.1-4.4. On each box, the central red line is the

median, the edges of the box are the 25th and 75th percentiles, the whiskers span

the remaining data that are not considered outliers, and outliers are marked with

‘+’.

The performance of all four methods increases as the number of features

selected increases. The increases of median accuracy from one categorical feature
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Figure 4.1: Performance of Support Vec-
tor Machines on Heart Disease Data with
Different Number of Categorical Features.
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Figure 4.2: Performance of Random
Forests on Heart Disease Data with Differ-
ent Number of Categorical Features.
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Figure 4.3: Performance of Random
Forests Proximity kernel (RFP) on Heart
Disease Data with Different Number of Cat-
egorical Features.
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Figure 4.4: Performance of RF on radial
basis function kernel (RF-RBF) on Heart
Disease Data with Different Number of Cat-
egorical Features.
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to eight categorical features are 0.1091, 0.1246, 0.1083, and 0.1113 for SVM, RF,

RFP, and RF-RBF, respectively. This suggests that RF based approaches can

better utilize the information provided by the categorical features than SVM.
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Chapter 5

Conclusions

We propose a learning method that combines RFs with large margin learn-

ing for biological prediction tasks. We observed that on mixed type data, the

performance of a RF based approach is not sensitive to the different encoding of

the categorical variable, which is in stark contrast to SVMs. We also tested the

performance variation of SVM and RF-based methods when the proportion of

categorical features changes. Our results show that the performance of both SVM

and RF improves as the number of categorical features increases. However, the

amount of improvement of RF-based approaches tends to be higher. The proposed

large margin RF demonstrates competitive performance in comparison with RFs

and SVMs. In terms of the confusion matrix, RFP and RF-RBF generate more

balanced per class accuracy.
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