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ABSTRACT 
 

 In recent times, a variety of industries, applications and numerical methods including the 

meshless method have enjoyed a great deal of success by utilizing the graphical processing unit 

(GPU) as a parallel coprocessor. These benefits often include performance improvement over the 

previous implementations. Furthermore, applications running on graphics processors enjoy 

superior performance per dollar and performance per watt than implementations built exclusively 

on traditional central processing technologies. The GPU was originally designed for graphics 

acceleration but the modern GPU, known as the General Purpose Graphical Processing Unit 

(GPGPU) can be used for scientific and engineering calculations. The GPGPU consists of 

massively parallel array of integer and floating point processors. There are typically hundreds of 

processors per graphics card with dedicated high-speed memory. 

 This work describes an application written by the author, titled GaussianRBF to show the 

implementation and results of a novel meshless method that in-cooperates the collocation of the 

Gaussian radial basis function by utilizing the GPU as a parallel co-processor. Key phases of the 

proposed meshless method have been executed on the GPU using the NVIDIA CUDA software 

development kit. Especially, the matrix fill and solution phases have been carried out on the 

GPU, along with some post processing. This approach resulted in a decreased processing time 

compared to similar algorithm implemented on the CPU while maintaining the same accuracy. 

Along the way, some challenges were faced. They are also discussed in the following chapters.
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LIST OF SYMBOLS 
 

 In this text all acronyms are defined as they are introduced. Italicized text refers to 
physical/mathematical quantities, programming code, or emphasized terminology. Additional 
attributed are applied to physical and mathematical variables, as defined below. 

 

 Matrices are represented by bold-italic attributes with an over-bar, as in𝑴� . 

 Vectors: Structural vectors (column arrays) are indicated by bold-italic text. 

 Scalar variables are represented using italicized text. 

 

 When discussing equations the shorthand notation LHS and RHS are used to refer to the 
expressions to the left and right hand side of the equal sign respectively. 
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INTRODUCTION 
 

 The performance of Graphical Processing Units or GPU has been improved significantly 

in recent years. Compared with the CPU, the GPU is better suited for parallel processing and 

vector processing and has evolved to perform various types of computations. General-purpose 

computations on GPUs (GPGPU) have been examined for various applications.  

The purpose of this research is to develop a program that uses a novel proposed meshless 

method based on collocation with radial basis functions and increase speed up by implementing 

key phases on the graphical processing unit (GPU). In the past, the numerical solution of the 

electromagnetic (EM) wave equation has commonly been obtained by using the finite element 

methods (FEM) and finite difference methods (FDM). However, the lack for robust and efficient 

3D mesh generators makes the solution of 3D problems a difficult task. Furthermore, mesh-

based methods are also not well suited to the problems associated with extremely large 

deformation and problems associated with frequency remeshing. To avoid these drawbacks of 

the FEM, considerable effort has been devoted during recent years to the development of 

meshless methods. The novel proposed meshless method uses the Gaussian radial basis function 

(RBF) to expand the potential.  

In the development process, several software packages were tested for implementing 

stages within the overall meshless method sequence on the GPU. Extensive experimentation was 

carried out on both the GPU global matrix fill and the GPU matrix equation solution stages. 

Numerous techniques will be presented along with their motivation and background, in an 
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attempt to provide a comprehensive examination into the process of developing solution to the 

EM wave equation employing the graphics hardware. 
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1. GENERAL PUROPOSE GRAPHICAL PROCESSING UNITS 
 

Graphics processing units (GPUs) are primarily designed for one particular class of 

applications, rasterization and depth-buffering based interactive computer graphics. One could 

argue that this is no longer the case as certain features are being added to the processors that are 

not needed in graphics workloads, a consequence of GPUs transforming into a viable general-

purpose (data-parallel) computing resource known as GPGPU, general-purpose graphical 

processing unit.  

In the last decade, the performance of the Graphical Processing Units (GPU) has been 

dramatically increased by the development of novel technology. In the beginning, a graphics 

card was designed for purpose of display, so the main features of a graphics card were 2D 

Graphics such as the number of colors, the quality of display, and the support of high resolution. 

In the mid 1990s, enhanced Operating Systems (O/S) with user friendly Graphics User Interface 

(GUI) led to demanding multi-media environments in order to play video files, to support 3D 

graphics games, and to manage multiple displays. The demands of 3D graphics led to the 

creation of the GPU, which had better integration and faster speed. In 2000, the multi-core 

platform was incorporated in the design of GPU. Major vendors such as ATI, NVIDIA, and 3D 

Labs competed to develop real time 3D graphics capable GPUs and they used the multi-core 

technology for parallel processing. Now, floating point performance of the GPU is higher than 

performance of the CPU because the architecture of the GPU is dramatically changed via
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improvement of the chip design and manufacturing technology [1]. Thus people want to use this 

great capability for general purpose applications. 

 

GPU COMPUTING 
 

At the present time, the GPUs are the most economical and powerful computational 

hardware because they are inexpensive and user programmable, and they achieve high 

performance. The increased flexibility and high computing capabilities of GPUs have led to a 

new research field that explores the performance of GPUs for general purpose computation. The 

general purpose computation on the GPU (GPGPU) is getting the attention of many researchers 

and developers [2]. 

Graphics processing in the GPU is like an assembly line with each stage affecting 

successive stages and all stages working in parallel. This architecture is called graphics pipeline. 

The technology of the GPU has evolved into a more flexible programmable pipeline, and the 

graphics pipeline has been replaced by the user programmable vertex shader and pixel shader. 

 “ A programmer can now implement custom transformation, lighting, or texturing algorithms by 

writing programs called shaders”[3]. The pixel shader is more flexible than vertex shader to 

program the GPGPU applications. Recent GPUs have fully programmable unified processing 

units with support for single precision floating-point computation. Furthermore, the latest 

generation of GPUs, such as ATI’s RV770 and NVIDIA’s GT200, is expanding on its 

capabilities to support double precision floating point computation [4]-[5]. High speed, increased 

precision, and rapidly expanding programmability of GPUs have transformed GPUs to a 

powerful platform for general purpose computations. 
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Most modern PCs have programmable GPUs. Such GPUs typically give a floating point 

computational power that is more than one order of magnitude higher compared to the CPU in 

modern PC. In the coming decade, the computational power of GPUs is expected to grow 

considerably faster than the computational power of CPUs, because the GPU architecture is more 

scalable. 

While CPUs are instructional driven, GPUs are data-stream driven. This means that the 

GPU executes the same instruction sequence on large data sets. The instruction sequence to be 

executed is uploaded to the GPU, before the execution is triggered by a data-stream being 

assigned. The result of the computation can then be used for visualization, processed by a new 

instruction sequence, or read back to the CPU. The use of parallel processing has traditionally 

been hampered by the high cost of specialized hardware. With the current introduction of 

clusters and more recently, multi-core CPUs, the cost of hardware for parallel processing is 

drastically reduced. 

 The reason behind the discrepancy in floating-point capability between the CPU and the 

GPU is that the GPU is specialized for compute-intensive, highly parallel computation and 

therefore designed such that more transistors are devoted to data processing rather than data 

caching and flow control, as shown in Figure 1.1 [6] 
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Figure 1.1. GPU Devotes More Transistors to Data Processing 

 

 

 

More specifically, the GPU is especially well-suited to address problems that can be 

expressed as data-parallel computations. Meaning the same program is executed on many data 

elements in parallel with high arithmetic intensity. Because the same program is executed for 

each data element, there is a lower requirement for sophisticated flow control, and because it is 

executed on many data elements and has high arithmetic intensity, the memory access latency 

can be hidden with calculations instead of big data caches. 

Data-parallel processing maps data elements to parallel processing threads. Many 

applications that process large data sets can use a data-parallel programming model to speed up 

the computations. In 3D rendering, large sets of pixels and vertices are mapped to parallel 

threads. Similarly, image and media processing applications such as post-processing of rendered 

images, video encoding and decoding, image scaling, stereo vision, and pattern recognition can 

map image blocks and pixels to parallel processing threads. In fact, many algorithms outside the 
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field of image rendering and processing are accelerated by data-parallel processing, from general 

signal processing or physics simulation to computational finance or computational biology. [6] 

 

 GRAPHICS PIPELINE 
 

All commodity GPUs and the APIs-application programming interfaces-used to program 

them are organized in a so-called graphics pipeline. This concept was first introduced by Silicon 

Graphics Inc. (SGI) in 1992 with the first version of the OpenGL standard, even though at that 

time, not all features were implemented in hardware. As an abstraction of the actual 

implementation, the pipeline divides the computation (i.e the rendering of an image into several 

disjunct stages which are explained below. The pipeline is feed-forward, which naturally leads to 

task parallelism between the stages. Within each stage, data parallelism is trivially abundant, as 

all primitives are treated separately. From a hardware perspective, the pipeline concept removes 

the necessity of expensive control logic to counteract typical hazards induced by the parallelism 

such as read-after-write, write-after-read, and synchronization, deadlocks and other race 

conditions. To maximize throughput over latency, the pipeline is very deep, with thousands of 

primitives in flight at a time. In a CPU, any given operation may take on the order of 20 cycles 

between entering and leaving the processing pipeline (assuming a level-1 cache hit for data); on 

the GPU, in contrast, operations may take thousands of cycles to finish. In summary, the 

implementation of the graphics pipeline in hardware allows to dedicate a much larger percentage 

of the available transistors to actual computation rather than to control logic, at least compared to 

commodity CPU designs.  



8 
 

CPUs are dealing with memory bandwidth and latency limitations by using ever-larger 

hierarchies of caches. The working set sizes of graphics applications have grown approximately 

as fast as transistor density. Therefore, it is prohibitive to implement a large enough caching 

hierarchy on the GPU chip that delivers a reasonably high cache hit rate and maintains 

coherency. GPUs do have caches, but they are comparatively small and optimized for spatial 

locality, as this is the relevant case in texture filtering operations. More importantly, the memory 

subsystem is designed to maximize streaming bandwidth ( and hence, throughput) by latency 

tolerance, page-locality, minimization of read-write direction changes and even lossless 

compression.[3] 

Finally, another important aspect is that the market volume of interactive computer games 

amounts to billions of dollars per year, creating enough critical mass and market pressure to 

drive rapid hardware evolution, in terms of both absolute performance and broadening feature set 

(economies of scale). Figure 1.2 depicts a simplified graphics pipeline. 

 

 

Figure 1.2. Conceptual Illustration of Graphics Pipeline 
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GRAPHICS APIs 
 

 The hardware is not exposed directly to the programmer; in fact, most details of the 

hardware realization of the graphics pipeline are proprietary and largely secret. Instead, well-

defined APIs offer a set of data containers and functions to map operations and data to the 

hardware. These APIs are typically implemented by the vendors as a set of libraries and header 

files interacting with the low-level device driver. 

 DirectX (more specifically, Direct3D as a subset of DirectX) and OpenGL are the two 

dominant APIs to program graphics hardware. DirectX is restricted to Microsoft Windows ( and 

Microsoft’s gaming consoles such as the Xbox), while Open GL has been implemented for, e.g., 

Windows, Linux, MacOS and Solaris. Both APIs are defined by consortia in which hardware and 

software vendors collaborate closely. The DirectX specification is headed by Microsoft, whereas 

the open Khronos group leads the development of OpenGL, more specifically, the OpenGL ARB 

(architecture review board) as part of the Khronos consortium. The pipeline concept has been 

integral component of both APIs since their initial revisions, in 1995 and 1992 respectively. 

 As both APIs map to the same hardware, there is usually a one-to-one correspondence; 

typically, no (major) features exist that are only exposed through one of the APIs. The 

fundamental design difference between the two APIs is how new hardware features are exposed. 

The goal of DirectX is to specify a set of features that hardware must implement for a longer 

product cycle, typically three years. It is therefore convenient to identify a certain class of GPUs 

by the highest DirectX version it supports, one speaks for instance of DirectX 10 class hardware. 

As the hardware development cycles are usually shorter, OpenGL includes the concept of 
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extensions to expose new or experimental features faster. Not all extensions are supported on all 

hardware, and software developers have to check at runtime if a given extension is supported. 

Only after extensions are supported by a wide range of GPUs, then they are considered for 

inclusion in the OpenGL core and consequently, the OpenGL version numbers are incremented 

at a slower rate than for DirectX. 

 In the domain of computer games, DirectX is almost exclusively used, and with Linux 

increasing its market shares, is not even restricted to Microsoft Windows alone anymore. 

However, in academia and for “professional” applications, OpenGL is often favored.  

 

 PROGRAMMABLE GRAPHICS HARDWARE 
 

 The reason why GPUs are well suited for general-purpose computations lies in the 

architecture. GPUs are stream processors and are therefore designed to uniformly process large 

amounts of data. As a consequence of this, the memory on a graphics card is fast and the internal 

bandwidth is very high.  

Data processing on a CPU is traditionally based on an instruction driven model as 

illustrated in Figure 1.3. This model is called Single Instruction, Single Data (SISD) and 

corresponds to the von Neumann architecture. In this architecture, a single processor executes a 

single instruction stream to operate on data stored in the same memory as the instructions. The 

instructions needed in the execution of the program in turn refer to data, or to other instructions 

in the case of branching. The data needed for the execution of an instruction are loaded into the 

cache memory during the processing. 
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Figure 1.3. Instruction based processing 

 

The cache is a high-speed memory integrated on a chip (e.g., the CPU). If the data are not 

present in cache, they are loaded from the system memory over the relatively slow front-side 

bus. This makes instruction driven processing flexible but also inefficient when it comes to 

uniform operations on large blocks of data.GPUs are based on data-stream processing using a 

model called Single Instruction, Multiple Data (SIMD). In this model, the processor is first 

configured by the instructions that will be executed, and then the data stream is processed as 

illustrated in Figure 1.4. In other words, all data are processed by the same instructions until the 

processor is reconfigured. This model often leads to cache-friendly implementations on the GPU. 

The execution is parallelized by distributing the processing among several pipelines doing the 

same operations. 



12 
 

 

Figure 1.4. Data stream processing 

 

The computing paradigms for the CPU and the GPU are very different because the CPU 

is traditionally based on an instruction driven model, while the GPU is based on a stream 

processing model. As an example one may want to create a 𝑚 ×  𝑛 matrix C by adding two 

𝑚 ×  𝑛 matrices A and B. On the CPU, the addition of the two matrices is done by a double for-

loop, where we transverse all elements in the matrix and do the computations sequentially, e.g., 

// instruction stream 

for (i=0; i<m; i++) 

 for (j=0; j<n; j++) 

  C[i][j] = A[i][j] + B[i][j]; 

In the stream based computing model, we set up a data stream consisting of the two 

matrices A and B as input and matrix C as output. Then we create a computational kernel that 

takes one element from each data stream, adds them, and outputs the result. Finally the 

corresponding processing pipeline is “executed”. In pseudo-code, this reads: 
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// data stream 

setInputArrays (A, B); 

setOutputArrays (C); 

loadKernel (“matrix_sum_kernel”); 

execute (); 

where the computational kernel simply corresponds to: 

 return (A[i][j] + B[i][j]); 

As opposed to traditional instruction-driven algorithms, the nested for-loop and the call to the 

computational kernel never appear explicitly in the code. The for-loop is replaced by the 

mechanism that feeds the two input streams through the processing pipeline, and the 

computational kernel is called ‘automatically’ each time new elements from the two input 

streams arrives at one of the data-processing units. 

 On the GPU, our abstract processing pipeline is the graphics pipeline that renders 

graphics primitives to the screen. To add the matrices, we simply draw a rectangle with a 

resolution of 𝑚 ×  𝑛 pixels, and set the color of each pixel in the rectangle equal to the sum of 

the corresponding pixels in the two 𝑚 ×  𝑛 input textures A and B. The for-loop is then called 

implicitly when the geometry is rendered. 

 

SYSTEM ARCHITECTURE 
 

The overall system architecture of a PC can be illustrated as in Figure 1.5. The North 

Bridge and the South Bridge are the two main motherboard chips and together these are often 

referred to as the chipset. The North Bridge typically handles the communication between CPU, 
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memory, graphics card, and the South Bridge. The South Bridge handles communication with 

the “slower” peripherals, like the network card, the hard-disk controller, and more. In some 

systems these controllers are included in the South Bridge. The front-side bus (FSB) is the term 

used to describe the data bus that carries all information passing from the CPU to other devices 

within the system. 

 

 

Figure 1.5. The overall system architecture of a typical PC 

 

In a computer system (as of 2006) the communication between the CPU and the GPU is 

through a graphics connector called the PCI Express, which has a theoretical bandwidth of 4 

GB/s simultaneously in each direction. 

The internal memory bandwidth of the GPU is typically one order of magnitude higher 

compared to the CPU memory interface. For instance, the CPU memory interface is 6.4 GB/s 
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with a 800 MHz FSB, whereas on a NVIDIA GeForce 7800 GTX 512 GPU, the bandwidth is 55 

GB/s. Algorithms that run on the GPU can take advantage of this higher bandwidth to achieve 

performance improvements, and this is one of the main reasons why GPUs are well suited for 

general-purpose computations.  

 

 

GPU FLOATING-POINT PERFORMANCE 
 

Modern GPUs have high number of pipelines performing the same type of operations, 

e.g., the new ATI chip with code name R600 is expected to have 64 pipelines. A higher number 

of pipelines gives the GPU a higher degree of parallelism. The GPU is designed to process 4-

component floating-point vectors. Arithmetic operations that can be performed simultaneously 

for all four components are therefore implemented efficiently in a GPU. 

Implementations that take advantage of the GPU architecture can give very high floating-

point performance. Figure 1.6 is based on data from GPU-Bench [7], and illustrates the 

performance of CPUs versus GPUs in recent years. The performance gap between CPUs and 

GPUs is expected to grow, making GPUs even more attractive as a computational resource in the 

future. 
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Figure 1.6. Floating-point performance of commodity Intel CPUs versus commodity ATI and 
NVIDIA GPUs 

 

GPGPU FOR SOLVING PARTIAL DIFFERENTIAL EQUATIONS 
 

 As early as 2001, even in the earliest stages of GPGPU, methods were already being 

developed to solve popular differential equations such as the Navier-Stokes fluid dynamics 

equations [8] and the heat equation [9]. To facilitate this, these applications typically involved 

replicating the input data as a texture- a technique still employed by models today. Also, these 

techniques required ways to emulate common linear algebra functions.  

More specifically to electromagnetics and partial differential equations, in 2005 Inman 

and Elsherbeni [10] used the GU to perform finite difference time domain computations. In 2006 

Baron et. al. [11] used the GPU to simulate the propagation of wireless signals within an indoor 

environment. Woolsey et al [12] in 2007 increased the performance of a finite element method 

electromagnetics simulation using GPU. Zainud-Deen et.al. [13] used AMD’s Brook+ GPGPU 
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model to solve Maxwell’s equations using a GPU based finite difference frequency-domain 

method.
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2. OVERVIEW OF CUDA TECHNOLOGY 
 

In November 2006, NVIDIA unveiled the industry’s first DirectX 10 GPU, the GeForce 

8800 GTX. The GeForce 8800 GTX was also the first GPU to be built with NVIDIA’s CUDA 

Architecture. This architecture included several new components designed strictly for GPU 

computing and aimed to alleviate many of the limitations that prevented previous graphics 

processors from being legitimately useful for general-purpose computation. Unlike previous 

generations that partitioned computing resources into vertex and pixel shader, the CUDA 

Architecture included a unified shader pipeline, allowing each and every arithmetic logic unit 

(ALU) on the chip to be marshaled by a program intending to perform general-purpose 

computations [14]. These ALUs were built to comply with IEEE requirements for single-

precision floating-point arithmetic and were designed to use an instruction set tailored for 

general computation rather than specifically for graphics. The execution units on the GPU were 

allowed arbitrary read and write access to memory as well as to software-managed cache known 

as shared memory. All of these features of the CUDA Architecture were added in order to create 

a GPU that would excel at computation in addition to performing well at traditional graphics 

tasks. At the time of launch, NVIDIA spelled out the acronym as Compute Unified Device 

Architecture but has since transitioned to using it as a fixed term as explained earlier.
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 THE GEFORCE 8 ARCHITECTURE 
 

The GeForce 8800 GTX (chip name G80) is the first CUDA-capable GPU at the time of 

launch. The GeForce 8 also is the first GPU complaint with the DirectX 10 specification. Figure 

2.1 shows a functional block diagram of the GeForce 8800 GTX (chip name G80).  

The design is built around a scalable processor array (SPA) of stream processor “cores” 

(ALUs also called thread processors, abbreviated SP), organized as streaming multiprocessors 

(SM) or cooperative thread arrays (CTA) of eight SPs each, which in turn are grouped in pairs 

into independent processing units called texture processor clusters (TPC) [15]. The GeForce 

8800 GTX comprises 16 multiprocessors for a total of 128 thread processors. By varying the 

number of SMs per chip, different price-performance regimes can be targeted.  
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Figure 2.1. NVIDIA GeForce 8800 GTX block diagram. Image courtesy Owens et al[16] 

 

At the highest level, the SPA performs all computations, and shader programs from the 

programmable stages are mapped to it using dynamic load balancing in hardware. The memory 

system is also designed in a scalable way, with external, off-chip DRAM control and 

composition processors (ROP – raster operation processors) performing color and depth frame 

buffer operations like antialiasing and blending directly on memory streams to maximize 

performance. A powerful interconnection network (realized via a crossbar switch) carries 



21 
 

computed pixel values from the SPA to the ROPs, and also routes (texture) memory requests to 

the SPA, using on-chip level-2 caches. As in previous designs, these caches are optimized for 

streaming throughput and strongly localized data reuse. 

All fixed-function hardware is grouped around the SPA. The data flow for a typical 

rendering task and thus, the mapping of the graphics pipeline to this processor, is as follows: The 

input assembler collects per vertex operations and a dedicated unit distributes them to the 

multiprocessors in the SPA, which executes vertex and geometry shader programs. Results are 

written into on-chip buffers, and passed to the Setup-Raster-ZCull unit, in short the rasterizer, 

which continues to be realized as fixed-function hardware for performance reasons. Rastered 

fragments are routed through the SPA analogously, before being sent over the interconnection 

network to the ROPs and to off-chip memory. The SPA accepts and processes work for multiple 

logical streams simultaneously, to allow for dynamic load balancing. A dedicated unit called 

computes work distribution dispatches blocks of work accordingly. Three different clock 

domains control the chip, the reference design of G80-based graphics boards prescribes the 

following values: Most fixed-function and scheduling hardware uses the core clock of 575 MHz, 

the SPA runs at 1350 MHz, and the GDDR3 memory is clocked at an effective 1.8 GHz (900 

MHz double data rate). The chip is fabricated in a 90nm process and comprises almost 700 

million transistors, a significant increase compared to 220 million for the GeForce 6800 Ultra, 

which is only two generations older. 

The streaming multiprocessor is at the core a unified graphics and compute processor. 

Each SM comprises eight streaming processor cores (ALUs), two special function units, a 

multithreaded instruction fetch and issue unit, disjunct data and instruction level-1 caches, a 

read-only constant cache and 16kB shared “scratchpad” memory allowing arbitrary read and 
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write operations. Each ALU comprises scalar floating point multiply-add as well as integer and 

logic operations, whereas the special function units provide transcendental (trigonometric, square 

root, logarithm and exponentiation) functions as well as four additional scalar multipliers used 

for attribute interpolation. 

To dynamically balance the shifting vertex, geometry, pixel and compute thread 

workloads, each multiprocessor is hardware multithreaded, and able to manage and execute up to 

768 concurrent threads with zero scheduling overhead. The total number of threads concurrently 

executing on a GeForce 8800 GTX is thus 12288. Each SM thread has its own execution state 

and can execute its own independent code path. However, for performance reasons, the chip 

designers implemented a single instruction multiple thread (SIMT) execution model, creating, 

managing and executing threads in groups of 32 called warps [17]. Every instruction issue item, 

the scheduler selects a warp that is ready to execute and issues the next instruction to the active 

threads of the warp. Instructions are issued to all threads in the same warp simultaneously (the 

warp executes a common instruction at a time), so there is only one instruction unit per 

multiprocessor. Full efficiency is released when all 32 threads of a warp agree on their execution 

path, as it is commonly known in other SIMD architectures. If threads of a warp diverge at a 

data- dependent conditional branch, the warp serially executes each branch path taken, disabling 

threads that are not on that path, and when all paths complete, the threads converge back to the 

same execution path. Branch divergence occurs only within a warp; different warps execute 

independently regardless of whether they are executing common or disjointed code paths.  

As with previous generation GPUs, hardware multithreading with zero-overhead 

scheduling is exploited to hide the latency of off-chip memory accesses, which can easily reach 
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more than 1000 clock cycles. This approach again maximizes throughput over latency, in 

particular for memory-bound workloads. 

We describe the memory hierarchy from the bottom up: The constant memory is shared 

between multiprocessors, implemented in the form of a register file with 8192 entries with a 

typical latency of 2-4 clock cycles. Constant memory is cached, but the cache is not coherent to 

save logic and thus, constant memory is read-only as the name implies. The shared memory per 

multi-processor is implemented in 16 DRAM banks, reaching a similarly low latency as long as 

certain restrictions are met for the location each thread within a warp accesses, see the 

programming[18]. Multiprocessors can only communicate data via off-chip DRAM. The bus 

width is 384 pins, arranged in six independent partitions for a maximum theoretical bandwidth of 

86.4 GB/s, more than a factor of two faster compared to the launch model of the previous 

generation. This bandwidth is however only achievable if requests from several threads can be 

coalesced into a single, greater memory transaction, to exploit DRAM burst reads and writes. 

The hardware performs this coalescing only if strict rules for data size and warp-relative 

addresses are adhered to. 

Until recently, floating point representation on the GPU was limited to single-precision. 

The NVIDIA GeForce 200 series was released in June 2008 [19]. These devices incorporate a 

double-precision floating point unit within each multiprocessor. They also allow more freedom 

in memory access patterns for achieving high bandwidth, in which multiple values are obtained 

from a single memory access utilizing the GPU’s large memory bus width.  
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 CUDA C PROGRAMMING MODEL 
 

 The key idea of the CUDA programming model is to expose the scalable processor array 

and the on- and off-chip memory spaces directly to the programmer, ignoring all fixed function 

components. This approach is legitimate from a transistor-efficiency point of view as the SPA 

constitutes the bulk of the chip’s processing power.  

 CUDA C compromises both an extension of standard C as well as a supporting runtime 

API. Instead of writing compute kernels in a shader language like OpenGL Shading Language 

(GLSL), the programmer uses CUDA C. A set of additional keywords exists to explicitly specify 

the location with the memory hierarchy in which variables used in the kernel code are stored; for 

instance, the __constant__ qualifier marks a variable to be stored in fast, read-only constant 

memory. For the actual kernel code, essentially all arithmetic and flow control instructions of 

standard C are supported. It is not possible to perform operations like dynamically allocating 

device memory on the GPU from within a kernel function, and other actions typically in the 

operating system’s responsibility. 

 Each kernel instance corresponds to exactly one device thread. The programmer 

organizes the parallel execution by specifying a so-called grid of thread blocks which 

corresponds to the underlying hardware architecture: Each thread block is mapped to a 

multiprocessor, and all thread blocks are executed independently. The thread blocks thus 

constitute virtualized multiprocessors. Consequently, communication between thread blocks 

within the granularity of the kernel launch is not possible( except for slow atomic integer 
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operations directly on memory which we omit here for the sake of brevity) but there is always an 

implicit barrier between kernel invocations: This means that all memory transactions performed 

by one kernel are guaranteed to have completed when the next kernel launches, and 

programmers can thus synchronize data between kernels via global memory (there is no 

guarantee that the contents of the constant and shared memory spaces are preserved between 

kernels so at the end of each kernel function, the result must be stored in global memory 

anyway). Programmers must not make any explicit or implicit assumption on the order of 

execution of the thread blocks, or even on the order of threads within each block, which are 

contiguously split into warps as explained previously. The threads within each block may 

however communicate via the 16kB shared memory on the multiprocessor, using a lightweight 

barrier function to synchronize the warps of the block.  

 Restrictions apply to the maximum number of threads per block (currently 512) and the 

dimensions of the grid. As several thread blocks are resident on one multiprocessor at the same 

time (it supports up to 768 concurrently active threads, or 24 warps), shared memory and the 

registers are split disjunctly, and thus, not all configurations of partitioning the computation into 

thread blocks may work. Running very register-heavy kernels in large blocks may result in only 

one block being active per multiprocessor. In this case, there are potentially not enough threads 

active concurrently, and memory latency cannot be adequately hidden. The size of the thread 

blocks should always be a multiple of the warp size ( currently 32), and the programs should be 

written in such a way that the threads within a warp follow the same execution path, as 

otherwise, the warp is serialized and both sides of branches are executed for all threads in the 

warp. The threads within each thread block should also exhibit memory access patterns that 

allow the coalescing of requests into larger memory transactions. 
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 In order to parameterize code with the dimensions of the grid and the number of threads 

per block, and to be able to compute memory addresses of offsets in input- and output arrays, the 

current configuration is available via special keywords that are mapped to reserved input 

registers for each thread. In other words, each thread can look up its block number, the number 

of threads per block and its offset within the block. This also allows to mask certain threads from 

execution. 

 The so-called “launch configuration”, the partioning of the problem into a grid of thread 

blocks is realized via a minimal extension of the C language on the host side. The kernel is called 

just like any other procedure, passing input and output arguments as pointers to device memory 

and using a special notation to pass the configuration. 

 The CUDA runtime API provides all necessary routines to allocate memory on the device 

to copy data to and from the device, and to query device parameters such as the number of 

multiprocessors, the limits of the launch configuration, the available memory etc. 

 The tool chain includes nvcc, the CUDA complier driver. Nvcc can be configured to 

output a binary object file that can be linked into larger applications, or raw PTX assembly, or 

standard C code that can be complied with any other complier by linking to the appropriate 

CUDA libraries. In our implementations, we decided to separate the CUDA kernel code from the 

rest of the application in small compilation units that contain only the kernel and some wrapper 

code to launch it. These files are compiled with nvcc into object files that are added to the entire 

application during linking. Since the initial version, NVIDIA has continuously added features to 

cuda both in terms of hardware and software. Backward and forward compatibility is realized by 

assigning each new GPU model a so-called compute capability that can be queried using the run-
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time API. See the compute capabilities of different devices in Appendix A. The programming 

guide [20] documents improvements in software like the exposure of overlapping computation 

with PCIe transfers, a feature called streams. 

 

DEDICATED HIGH PERFORMANCE COMPUTING 
 

Tesla is NVIDIA’s product line targeting the high performance computing domain, not to 

be confused with the internal code name for the architecture underlying the G80 chip and its two 

successors. All hardware in this brand is based on consumer-level products, with a few but 

important modifications: These GPUs do not have display connectors; and the on-board memory 

is significantly increased up to 4GB per GPU for the latest models to enable calculations on 

much larger datasets. These products are subject to much more rigorous testing than the GPUs 

intended for the mass market, and to increase reliability and stability, their memory clock is 

reduced. 

 NVIDIA provides three different solutions, all based on the same chip: The GPU 

computing processor is a single GPU in the same PCIe form factor as a regular graphics card. 

The personal supercomputer, a multi-GPU workstation and finally, the GPU computing server, a 

1U rack-mounted frame housing four GPUs. It uses a proprietary connector that combines two 

GPUs into one PCIe slot, and separate power and cooling and is designed to enable dense 

commodity-based GPU-accelerated clusters. Despite being offered in separate frames, GPUs 

continue to be co-processors in the traditional sense, and a standard CPU is always needed to 

control them. 
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 To be technically correct, Tesla is NVIDIA’s third brand of GPUs, the second one which 

has been available before is Quadro, used in production and engineering, for instance in CAD 

workstations. The GPUs also undergo much more rigorous testing than their consumer-level 

counterparts, and the corresponding display driver is certified to work with established software 

in the field. 

 

 CUBLAS and CUFFT 
 

The CUDA toolkit includes optimized implementations of the Basic Linear Algebra 

Subprograms (BLAS) collection and Fast Fourier Transforms (FFTs) on CUDA-capable GPUs, 

which require only minor changes to existing codes to benefit from GPU acceleration. The 

release marks an important step forward towards employing the GPU by the average user 

unwilling to learn CUDA C and get accustomed to the unfamiliar programming model.



29 
 

 

3. MATHEMATICAL BACKGROUND 
 

In building a modern and advanced engineering system, engineers must undertake a very 

sophisticated process in modeling, simulation, visualization, analysis, designing, prototyping, 

testing, fabrication, and construction. The process is illustrated in the flow chart shown in Figure 

3.1 The process is often iterative in nature; that is some of the procedures are repeated based on 

the assessment of the results obtained at the current stage to achieve optimal performance.
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Figure 3.1. Processes that lead to building a complicated engineering system [21]

Modeling 
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OVERVIEW OF MESHLESS IN ELECTROMAGNETICS 
 

During the past thirty years, the numerical solution of partial differential equations (PDEs) 

has commonly been obtained by using the finite element methods (FEM) and finite difference 

methods (FDM). However, the lack for robust and efficient 3D mesh generators makes the 

solution of 3D problems a difficult task. Furthermore, mesh-based methods are also not well 

suited to the problems associated with extremely large deformation and problems associated with 

frequency remeshing. To avoid these drawbacks of the FEM, considerable effort has been 

devoted during recent years to the development of the so-called meshless method, and about 10 

different meshless methods have been developed, such as the Smooth Particle Hydrodynamics 

(SPH) [22] the Element-free Galerkin(EFG) method [23],the Reproducing Kernel Particle (RKP) 

method [24], the Finite Point (FP) method [25] the hp clouds method [26], Meshless Local 

Petrov-Galerkin (MLPG) [27]-[29]Local Boundary Integral Equation (LBIE) [30]-[32] and 

several others. 

The application of meshless methods to computational electromagnetic started in the early 

90’s, just after Nayroles published his paper on the Diffuse Element method. However, at 

present, the range of application is still very modest as compared with that found in the field of 

Computational Mechanics. In this section the most relevant publications on the subject are 

covered briefly. The application of meshless methods to model computational electromagnetic 

was first introduced by Yve Marechal in 1992, when he applied the Diffuse Element method to 

model two-dimensional static problems [33]. More recently, the Diffuse Element method has 

been used in electromagnetic device optimization [34]-[35]. 
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In 1998, the Moving Least Square Reproduction Kernel Particle Method (MLSRKPM) was 

applied to model two-dimensional static electromagnetic problems[36]. This technique is a 

modified version of the Element-Free Galerkin where the Moving Least Square (MLS) 

approximation is replaced by the MLSRKPM approximation. The Element-Free Galerkin 

method has been applied to model small gaps between conductors [38], static and quasi-static 

problems [39] and to model the detection of cracks by pulsed eddy current in Non-Destructive 

Testing [40]. 

The Point Collocation Fast Moving Least Square Reproducing Kernel method was 

introduced and applied to model two dimensional electromagnetic problems [37]. Different 

meshless methods have been proposed to model a two dimensional power transformer. In [41] 

the Wavelet-Element Free Galerkin method combined with single layer of Finite Element mesh 

along the boundary containing essential boundary conditions. In [42] the Meshless Local Petrov-

Galerkin based on the MLS approximation modified by the jump function was used. Lagrange 

Multipliers were employed to enforce the essential boundary conditions. In [43] a hybrid 

Wavelet and Radial basis function was investigated. The radial basis functions approximation 

method is used along the external boundaries to enforce the essential boundary conditions in a 

straightforward manner.  

A coupled Meshless Local Petrov-Galerkin and FEM was investigated in [44] to model a two 

dimensional electrostatics problem. Meshless Radial Basis Functions have also been applied 

Computational Electromagnetics (CEM). In [45] the authors apply the Hermite-collocation 

method using Wendland’s RBF to model elliptical waveguides. The use of meshless techniques 

to model curved boundaries offers great advantages over mesh based methods, since the 

boundaries can be accurately represented. The results shown in [46] presented reasonable 
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accuracy when compared with the analytical solutions. The Meshless Local Petrov-Galerkin 

(MLPG) with Radial basis functions was applied to model 2-D magnetostatic problems in [47]. 

In this work a Heaviside step function was used as the test function in the RBF-MLPG 

formulation. The procedure reduces considerably the computational cost required in the 

numerical integration and the results presented good agreement with the Finite Element method. 

Later, Viana examined the Local Radial Point Interpolation Method to model 2-D eddy current  

problems [48] The method yielded good agreement compared to the analytical solution. In [47] 

and [48] Viana used the Local Multiquadric approach and the local weak form technique. The 

procedure results in a truly mesh-free method, alleviating the need for a background mesh and 

constraint techniques to impose the essential boundary condition. 

Very recently the use of the SPH to model time-domain Maxwell equations was proposed in 

[49]. This procedure uses the SPH approximation function to represent the fields, E and H, in the 

finite difference time domain scheme. The nodes, or particles, as they are normally referred to in 

the SPH, are arranged in a uniform grid, similar to the Yee grid [50]. The absorbing boundary 

conditions, traditionally used in the Finite Difference Time Domain (FDTD), are easily 

implemented in the SPH procedure. The application of the SPH to model time domain 

electromagnetic problems may open a new range of possibilities in Computational 

Electromagnetics Modeling. 

 

RADIAL BASIS FUNCTION 
 

 Radial basis functions (RBF) were first applied to solve partial differential equations in 

1991 by Kansa, when a technique based on the direct Collocation method and the Multiquadric 
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RBF was used to model fluid dynamics [51] [52] The direct Collocation procedure used by 

Kansa is relatively simple to implement, however it results in an asymmetric system of equations 

due to the mix of governing equations and boundary conditions. Moreover, the use of 

Multiquadric RBF results in global approximation, which leads to a system of equations that is 

characterized by a dense stiffness matrix. Both globally and compactly supported radial basis 

functions have been used to solve PDEs and results have shown that the global RBF yielded 

better accuracy. 

 The radial basis functions (RBFs) have been successfully developed for multivariate 

interpolation. [53] compared the results of 29 scattered data interpolation methods, and showed 

that Hardy’s multiquadric (MQ) [54] and Duchon’s thin plate spline (TPS), two of special class 

of RBFs, methods were ranked the best accuracy. Wu [55] proved existence and characterization 

theorems for Hermite-Birthoff interpolation of scattered multidimensional data by radial basis 

function. Recently, Kansa[51] [52] introduced the concept of solving PDEs using RBFs with 

collocation for hyperbolic, parabolic, and elliptic types.  

Using radial basis functions (RBFs) as a meshless collocation method to solve partial 

differential equations (PDEs) possesses some advantages. It is a truly mesh-free method, and is 

space dimension independent. In the context of scattered data interpolation it is known that some 

radial basis functions have spectral convergence orders (e.g. (reciprocal) multiquadratics, 

Gaussians). This should also be evident in some form when using collocation. However radial 

basis functions are generally globally supported and poorly conditioned. There are currently 

several ways to overcome these disadvantages of using RBFs for solving PDEs such as domain 

decomposition [56], preconditioning, and fine tuning of the shape parameter of Multiquadrics 

[57]. 
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NOVEL MESHLESS METHOD 
 

Although the theoretical contents of meshless methods have been fully demonstrated by 

researchers in related fields, it is felt that there is still a need to give a detailed description of the 

novel method to improve understanding of this new computational technique and its 

implementation on the GPU. RBFs are known to have very good interpolation qualities, so this 

has led to their significant utilization in inverse methods. However, RBFs have not been widely 

used in partial differential equation (PDE) techniques; employing RBFs in a meshless algorithm 

is a primary focus of this novel method. Most commonly used RBFs are infinitely smooth; this is 

convenient for many applications.  

The novel meshless method is a non symmetric method for solving elliptic PDEs with 

RBFs. The solution leads to a matrix equation Mc f=  considering a domain sRΩ⊂ . The 

method uses only the boundary conditions and nodes inside the domain to assemble the 

nonsymmetric matrix. Symmetric matrix is more complicated to assemble. It requires smoother 

basis functions than the non symmetric method. The novel meshless method may not work well 

with non-linear problems. One should be able to use the novel meshless method especially well 

for (high-dimensional) PDE problems with smooth solutions on possibly irregular domains. 

Often, the most accurate results were achieved with the multiquadric and Gaussian RBFs. 

 Let use the novel meshless method to solve an example problem. In this example, 

consider a square region as shown in Figure 3.2. The permittivity in the region is one. The 

problem is then modeled using the wave equation.  
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where ( , )jB x y is the Gaussian basis function and ju is an unknown weight coefficient 
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Putting equation (2) into (3), we obtain 
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It can be observed that the RBFs are equal to 1.0 at their central location ( ,jx  jy ), and that the 

function get larger in value as one moves away from the central location. The parameter, jc  is 

called the shape function, and it relates to how quickly the function decreases as one moves away 

from their central location. The shape function =
∆ 2

0.13
( )jc

x
 where ∆x  is spacing distance among 

nodes in the x direction. Ideally, ∆x  should be as small as possible. As ∆x  approaches zero, jc

approaches infinity; therefore the basis function would decay infinitely quick. 

The boundary conditions are such that 



38 
 

 

π

π

 =  
 
 =  
 

=
=

( ,0.0) sin     for 0.0 < x < 1.0
1.0

( ,1.0) sin     for 0.0 < x < 1.0
1.0

(0.0, ) 0.0             for 0.0 < y < 1.0  
(1.0, ) 0.0             for 0.0 < y < 1.0    

m xu x

n xu x

u y
u y

 (5) 

  

Substituting (4) into (1), we get 
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How do we find N values for ju ? Since we have N unknowns, we need N equations. Where do 

we get these equations? We get them by enforcing equations 5 and 6 at N different points. For 

the boundary nodes (shown in red on figure 3.3), equation 5 is enforced and for the internal 

nodes (shown in blue on figure 3.3), equation 6 is enforced. In this example, we used uniform 

displacement of nodes in the x and y direction. This is not always the case. In other meshless 

method algorithms, the nodes can be randomly displaced. 
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Figure 3.3. Enforcing equations 5 and 6 at different points on the problem domain 

 

We obtain a matrix equation Mu f= where the coefficient matrix M is nonsymmetrical and 

dense. The solution to the matrix equation was obtained using a direct solver and iterative solver 

as discussed in the next section. The analytical solution to the problem is  
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where m and n are integers. We chose m=1 and n=1 for this example.
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4. CUDA IMPLEMENTATION 
 

In this work, a CUDA program known as GaussianRBF is written which aims to solve the 

electromagnetic wave equation in the example problem discussed above. 

The problem was first solved using a serial computer program written in C programming 

language. This program serves as the code base for the new GaussianRBF CUDA 

implementation to solve PDE using the meshless method on the GPU. This chapter describes the 

program and the challenges of converting the existing serial code into parallel CUDA code, and 

ends with a discussion on performance. 

 

C REFERENCE PROGRAM 
 

 The original GaussianRBF program used in this research was developed in Matlab. It was 

ported to C to provide a fair performance comparison with the CUDA version, as well as to 

develop and test components that were common to both versions. 

 The matrix fill is carried out serially using two for loops. The first loop is carried out 

node-by-node. It handles boundary conditions, modifying the global matrix and forcing vector as 

required. The second loops through each basis function and computes the elemental matrix 

entries.
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 The matrix equation solver is built from the routines from the Intel Math kernel Library 

(MKL) which provides among others, BLAS and LAPACK routines optimized for Intel 

processors and accessible from both C and Fortran [58]. The library is available for download 

from Intel and is somewhat easy to integrate within the Microsoft Visual Studio IDE. The library 

can use optimized routines for multicore environments, which would produce a better 

representation of the performance of a modern CPU; however, this would add an extra degree of 

complexity, and was not included in this project. 

 The reference program was also used to test the convergence of the iterative solver. 

Occasionally both the GPU and CPU double-precision solvers would not reach the selected 

convergence threshold. By producing double precision solver using MKL routines, experiments 

were performed using the reference program in anticipation of double-precision support in 

graphics hardware. This version was then used in the development of the GPU based solver 

when double-precision hardware became available. They also provide performance references in 

terms of both accuracy and processing time. 

 

CODE PARALLLELIZATION 
 

 At a minimum, a CUDA kernel must be written in C. This is because the CUDA toolkit 

source code compiler, nvcc, is a modified C language compiler. Therefore, the base code was 

written in C and after testing for correct output, the C code was parallelized and rewritten into 

CUDA kernel. Due to the simplicity of the algorithm, the parallel portion of it has been easily 

extracted and placed into a CUDA kernel. 
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THE GAUSSIANRBF CUDA KERNELS 
 

 One of the most important factors in achieving high performance with CUDA is the block 

shape (figure 4.1) and the memory access scheme. Ideally, the kernel should take advantage of 

shared memory whenever possible. After each thread writes to shared memory, it calls  

 

 

Figure 4.1. Different block shapes 

 

_synchthreads(), which makes sure all threads in a block have reached the same point before 

continuing. This slows the process down and should not be used unless necessary. At this point 

the threads go about their processing, reading data from shared memory instead of global 
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memory as shown in Figure 4.2. The key benefit of this technique is that each thread is involved 

in a minimal amount of global memory transactions, which take 400 to 600 clock cycles a piece 

as mentioned earlier. The remaining transactions involve shared memory. For comparison, each 

shared memory transaction takes only 4 clock cycles plus slight delays due to memory-bank 

conflicts if they arise. However, due to limitations on the amount of shared memory available, it 

is critical to choose a block shape which covers a decently large subset of the domain, yet small 

enough so as not to exceed the amount of shared memory available in the event of extremely 

large data sets. 

 

         Figure 4.2. Shared memory 
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 Additionally, the kernel should use coalesced reads and writes whenever possible. This is 

facilitated first by using cudaMalloc and cudaMemcpy CUDA API calls. The code is broken 

into three steps. First, read input values. Second, initialize the input arrays in memory. Third, 

perform an algorithm on the input arrays to solve the partial differential equation. These same 

steps are used in the CUDA implementation. The first and second steps must be performed on 

the host. Therefore the kernel consists only of the algorithm in step three. Pseudo code for this 

algorithm is described in Figure 4.3. 

 

 

 

 

                           

Figure 4.3. Description of GaussianRBF kernel algorithm 

 

 In order to increase the performance of the GaussianRBF program, key phases were 

implemented on the GPU. Using this approach, serial tasks remain on the host while the GPU is 

used as a coprocessor for tasks that can be performed in a data-parallel fashion. The first task 

selected to run on the GPU was the matrix fill. Although the matrix fill itself is not a major factor 

in the performance of this program, building the matrix on the GPU avoids the need to transfer it 

from the host to the device. The program solves the wave equation, using a direct solver included 

in the CULA (set of GPU-accelerated linear algebra) routines [59]. Due to lack of any GPU 

1. Compute the thread id 
2. Read from memory data 

required for computation 
3. Compute a new value 

pertaining to this thread id 
4. Write the new value to 

memory. 
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iterative solver for dense matrix as at the time of writing, an iterative matrix solver was built to 

run on the GPU. 

The matrix fill used throughout this research was designed specifically with a highly 

dense matrix in mind. In Figure 4.4, first we declare two two-dimensional variables, blocks and 

threads. As our naming convention makes obvious, the variable blocks represents the number of 

parallel blocks we will lunch in our grid. The variable threads represent the number of threads 

we will lunch per block. Because we are generating an n × n matrix, we use two-dimensional 

indexing so that each thread will have a unique (x,y) index that we can easily put into 

correspondence with a matrix element in the global matrix. We have chosen each block to be  

square, 16 by 16 in order to contain 256 threads. The grid would, therefore be, a tiling of these 

blocks with dimensions covering the dimensions of the global matrix. Each thread would 

compute its entry based on the interaction of a particular basis function at a location.  Figure 4.5 

shows how this block and thread configuration would  be like for a 256 × 256 matrix. 

 

 

 

 

 

 

 



47 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.4. Dense Matrix Fill Code 

 

 

void gpuGaussian_matrixFill( int n, double* matrix, double2* node_h, double alpha,  int* boundary, 
double k ) 

{ 

 dim3 block, thread; 

 thread.x = 16; 

 block.x = ceil( (double)n / (double)thread.x );    // calcs # of blocks in the x-dimension 

 thread.y = 16; 

 block.y = ceil( (double)n / (double)thread.y );    // calcs # of blocks in the y-dimension 

 

 kernel_fillMatrix<<< block, thread >>>( n, matrix, node_h,alpha,  boundary, k); 

 

 cudaThreadSynchronize(); 

 cudaError_t errorStatus = cudaGetLastError(); 

 if( errorStatus != cudaSuccess ) 

 { 

  printf( "Matrix fill: %s \n", cudaGetErrorString( errorStatus ) ); 

 } 

} 
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Figure 4.5  A 2D Hierarchy of Blocks and Threads used in the Dense Matrix Fill  

 

If you have done any multithreaded CPU programming, you may be wondering why we 

would launch so many threads. For example, if we choose to fill a matrix of 6400 × 6400, this 

method will create more than 4 million threads. Although we routinely create and schedule this 

many threads on a GPU, one would not dream of creating this many threads on a CPU. Because 

CPU thread management and scheduling must be done in software, it simply cannot scale to the 

number of threads that a GPU can. Because we can simply create a thread for each matrix 

element we want to process, parallel programming on a GPU can be far simpler than on a CPU. 

 After declaring the variables that hold the dimensions of our lunch we simply launch the 

kernel that will compute the matrix elements. 

kernel_fillMatrix<<< block, thread >>>( n, matrix, node_h,alpha,  boundary, k); 

When applying the GaussianRBF, the vector field under investigation is approximated by 

a set of radial basis functions with unknown weights. At each node in the testing procedure, the 
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testing functions are applied at the position of each basis function.  This results in a system of n 

equations for the n unknowns generated by the basis function expansion. As explained in the 

novel meshless method in the previous section, the elemental matrices are computed in the 

matrix fill routine. At this point of the program, boundary conditions must also be considered.  

The matrix sum is the last kernel called in the GaussianRBF application. The matrix sum 

kernel sums the product of the matrix solution and the RBF. The algorithm used emulates the dot 

product. Each thread multiplies a pair of corresponding entries, and then every thread moves on 

to its next pair. Because the result needs to be the sum of these pairwise products, each thread 

keeps a running sum of the pairs it has added. The threads increment their indices by the total 

number of threads to ensure we don’t miss any elements and don’t multiply a pair twice. 

 

PERFORMANCE 
 

The deterministic GaussianRBF formulation reduces to a matrix equation consisting of a 

non-symmetric matrix, a forcing vector, and an unknown vector corresponding to a particular 

basis function coefficient. The primary means to increase performance is through the application 

of GPU matrix equation solvers. Two solvers were developed for the GPU. The first is a direct 

solver which utilizes the GPU Accelerated Linear Algebra Libraries known as CULAtools. The 

second method required an iterative solver which led to implementation of the preconditioned 

BiCG method. Significant issues arose regarding the slow or failed convergence of this method 

in single precision for some cases. Because of these issues, double precision techniques were 

pursued. Only the most recent generation of graphics hardware contains native double precision 
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processors (one for each multiprocessor). With this technology in mind, double precision solver 

was developed and tested. 

 First, we look at a comparison of execution times between the C implementation of the 

matrix fill, matrix solution and summation and the parallelized, CUDA implementation using the 

direct solver. In all the performance demonstrations, the speedup was calculated as the ratio of 

the CPU time to the GPU time. The execution testbed used an Intel Core i7 960 @3.20Hz (8 

CPUs) CPU for the C program and Nvidia GeForce GTX 460 GPU for the CUDA execution. 

The smallest number of nodes is 36 and the largest is 6400. Even for relatively small number of 

nodes, the CUDA implementation of the matrix fill outperforms the C implementation. (Figure 

4.6-4.11) 
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Figure 4.6. Execution time for matrix fill using Intel i7 CPU and NVIDIA GeForce GTX 460 
GPU. 
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Figure 4.7. Speedup for matrix fill using Intel i7 CPU and NVIDIA GeForce GTX 460 GPU 

 

From  figure 4.8, it is obvious that summation implemented on the GPU is faster than that 

of the CPU. The reason is that, the summation implemented on the GPU was done using the 

method of reduction. Reduction is the process of taking an input array and performing some 

computations that produce a smaller array of results. On the GPU, there are hundreds of threads 

available to do work, so the reduction was done in parallel and as such it took time proportional 
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to the logarithm of the length of the array instead of time proportional to the length of the array 

in the case of the CPU. 
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Figure 4.8. Execution time for summation using Intel i7 CPU and NVIDIA GeForce GTX 460 
GPU. 
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Figure 4.9. Speedup for summation using Intel i7 CPU and NVIDIA GeForce GTX 460 GPU 

 

The result obtained from the matrix solution is a good example of how to utilize GPU. In 

figure 4.10, it can be observed that with the number of nodes less than 500, the CPU seems to be 

faster than the GPU but the GPU outperforms the CPU as the number of nodes increase past 500. 

It turns out that a massively parallel machine like a GPU tends to waste its resources and 

therefore performs less when the number of data set is so small compared to the intensity of the 

computation. The GPU provides more benefit when the reduction in computation time on the 

GPU over the CPU exceeds the cost of the data transfer. Solving system of linear equations 
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ranges from O(n2) to O(n3) complexity. For a very small number of nodes (in this case less than 

500), the computational complexity is not large enough to offset the cost of data transfer. But 

clearly as the number of nodes become larger, the computational complexity offset the cost of 

the data transfer.  
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Figure 4.10. Execution time for matrix solution using Intel i7 CPU and NVIDIA GeForce GTX 
460 GPU. 

 

The speedup for the matrix solution using Intel i7 CPU and NVIDIA GeForce GTX 460 GPU is 
shown in Figure 4.11. The GPU is about 60 times faster than the CPU. 
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Figure 4.11. Speedup for matrix solution using Intel i7 CPU and NVIDIA GeForce GTX 460 
GPU 
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Figure 4.12. Overall Execution time using Intel i7 CPU and NVIDIA GeForce GTX 460 GPU 
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Figure 4.13 Overall Speedup factor using Intel i7 CPU and NVIDIA GeForce GTX 460 GPU 

  

 

Although the speedup results obtained using Intel i7 CPU and NVIDIA GeForce GTX 

460 GPU were good, they seemed to be an outlier. This anomaly may be due to software update, 

or a process running on the CPU background such that it made the CPU significantly slower 

compared to the GPU. To remedy this problem, the execution testbed was then changed to Intel 

i3 CPU @ 2.10 GHz (4 CPUs) for the C program and NVIDIA GeForce GT 525M for the 
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CUDA program.  The results shows that the GPU execution was faster than the CPU. As the 

number of nodes increased, the time it took to compute on the CPU increased significantly 

(Figure 4.14 and 4.19).  
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Figure 4.14. Execution time for matrix fill using Intel i3 CPU and NVIDIA GeForce GT 525M 
GPU. 
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Figure 4.15. Speedup curve for matrix fill using Intel i3 CPU and NVIDIA GeForce GT 525M 
GPU. 
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Figure 4.16. Execution time for summation of using Intel i3 CPU and NVIDIA GeForce GT 
525M GPU. 
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Figure 4.17. Speedup for summation using Intel i3 CPU and NVIDIA GeForce GT 525M GPU. 
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Figure 4.18. Execution time for matrix solution using Intel i3 CPU and NVIDIA GeForce GT 
525M GPU. 
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Figure 4.19 Speedup factor for matrix solution using Intel i3 CPU and NVIDIA GeForce GT 
525M GPU. 
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Figure 4.20 Overall Execution time using Intel i3 CPU and NVIDIA GeForce GT 525M 
GPU. 

 

 
As discussed earlier, the example problem was solved using the GPUs indicated and 

various forms of the CPU reference program. For all results, the reference programs were run on 

Intel Core i3 CPU @ 2.10 GHz.  Results were collected and the values returned by each program 

configuration were averaged over all trials.  

First the matrix fill will be examined, followed by the summation, The measured speedup 

which is defined in this research as the CPU time divided by GPU time is plotted for both GPUs 

relative to the double precision i3 CPU and i7 CPU solvers as indicated. 
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Figure 4.21 Processing Time for Matrix Fill 
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Figure 4.22 Processing Time for Summation 

 

The computational result is in agreement with the analytical results for the example 

problem solved, as shown in figure 4.23. The RMSE error was calculated as follows 
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In the error computation, 100 nodes were used. All the nodes were specifically chosen 

from within the interior of the domain. Because the meshless algorithm implemented results in a 

non symmetric matrix, it will be inconsistent to compare solution derived from boundary nodes 

to solution obtained from the interior nodes. 
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RMSE Analysis of CPU and GPU using Direct Solver
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Figure 4.23. RMSE Analysis on the CPU and GPU  

 

Second, a conjugate gradient method was pursued for use as the GaussianRBF matrix 

equation solver. The conjugate gradient uses the value of the residual to compute a search vector 

that is used to update the unknown. Each residual, therefore each search vector, is orthogonal to 

the previous values. Theoretically, this means that the method will converge to the exact solution 

when the number of iterations equals the number of unknowns [59]. The conjugate gradient 

method is well suited to solving positive definite Hermetian systems. The Biconjugate method 
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(BiCG) on the other hand, can be applied to general matrix equations, but it lacks the 

convergence properties of the former method. The BiCG replaces the orthogonal sequence above 

with two sequences, one using the original matrix and one using its transpose, that are orthogonal 

to each other [60]. A significant effect of this modification is that each iteration does not 

necessarily reduce the residual and convergence becomes erratic. When using the BiCG method 

exclusively for real symmetric global matrices, the method simplifies to the same structure of the 

conjugate gradient method with the only difference being the use of different inner product, as 

defined by the equations below. These inner products only differ by a single conjugate operation, 

so that they are identical for real symmetric matrices. 

  Conjugate gradient: *

1

,
n

i i
i

f g f g
=

=∑       (9) 

                         Biconjugate gradient: 
1

, .
n

i i
i

f g f g f g
=

= =∑      (10) 

 The number of iterations required for convergence can be reduced by preconditioning, 

which involves multiplying the matrix by the inverse of a new matrix (the preconditioner) in 

order to reduce its condition number. This new matrix should approximate the original. In an 

extreme case, if the original matrix is used as the preconditioner the equation will be solved in a 

single iteration, but this would require inverting the global matrix, negating the need for an 

iterative solver in the first place [59]. A Jacobi or diagonal preconditioner is a matrix containing 

the main diagonal of the original array. Its inverse simply contains the reciprocals of the main 

diagonal entries in their original locations. Pseudocode for the preconditioned BiCG method for 

real symmetric matrices can be seen in [60] with the version used described in Figure 4.21  

( where double brackets represent the Euclidean norm and   is the convergence threshold) 
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Figure 4.24. Pseudo code of the Jacobi Preconditioned BiCG Method 

 

𝑆𝑜𝑙𝑣𝑖𝑛𝑔 𝑨�𝒙 = 𝒃 

𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒆 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔: 

𝑙𝑒𝑡 𝒙𝒐 = 0 

𝑙𝑒𝑡 𝑴𝒊𝒊 =
𝟏
𝑨𝒊𝒊

 

𝒓𝒐 = 𝒃 − 𝑨�𝒙𝒐 = 𝒃 

𝒛𝒐 = 𝑴�𝒓𝒐 

𝒑𝒐 = 𝒛𝒐 

𝑝𝑜 = 𝑟𝑜. 𝑧𝑜  

𝑰𝒕𝒆𝒓𝒂𝒕𝒆 𝒇𝒓𝒐𝒎 𝒌 = 𝟏 𝒕𝒐 𝒎𝒂𝒙𝑰𝒕𝒆𝒓: 

𝒒𝒌 = 𝑨�𝒑𝒌−𝟏 

𝜶𝒌 =
𝒑𝒌−𝟏

𝒒𝒌.𝒑𝒌−𝟏
 

𝒙𝒌 = 𝒙𝒌−𝟏 + 𝜶𝒌𝒑𝒌−𝟏 

𝒓𝒌 = 𝒓𝒌−𝟏 − 𝜶𝒌𝒒𝒌 

𝒛𝒌 = 𝑴�𝒓𝒌 

𝑝𝑘 = 𝑟𝑘 . 𝑧𝑘 

𝜷𝒌 =
𝒑𝒌
𝒑𝒌−𝟏

 

𝒑𝒌 = 𝒛𝒌 + 𝜷𝒌𝒑𝒌−𝟏 

𝑩𝒓𝒆𝒂𝒌 𝑳𝒐𝒐𝒑 𝒊𝒇: ‖𝒓𝒌‖‖𝒃‖
< 𝜖  
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 A double precision BiCG solver was implemented on the CPU reference program as well 

as the GPU. Using this solver requires less iteration to converge than the single precision solvers, 

but each iteration requires significantly more computational time. The factors that limits a 

particular routine depends on both the algorithm and hardware. The results  in figures 4.24-4.27  

shows the number of nodes (900) which reached the convergence threshold after 100 × number 

of nodes on both the CPU and GPU  
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Figure 4.25. Execution time for summation using BiCG solver 
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Figure 4.26. Speedup for summation  using BiCG solver 
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Figure 4.27. Execution time for matrix solution using BiCG solver 
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Figure 4.28. Speedup for matrix solution using BiCG solver 
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RMSE Analysis for CPU and GPU using BiCG Solver
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Figure 4.29 RMSE Analysis for CPU and GPU using the Iterative Solver 

 

 In the future, more simulation will be conducted on GTX 480 and Quadro 2000 GPU to 

justify the anomaly speedup obtained from the GTX 460. 

 

 

 



76 
 

LIMITATIONS 
 

 While the GaussianRBF CUDA kernel can handle relatively large data sets and provides 

data coherence to the developer, it does have some limitations. CUDA has limitations on the 

dimension of a grid. The maximum grid size for all existing Compute Capabilities is 65535 in 

the X and Y dimensions. The maximum Z dimension is always 1. Therefore, an extremely large 

input volume with row or plane axes greater than 65535 will cause the kernel to fail to run.
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5. CONCLUSION 
 

We have presented an application capable of utilizing the NVIDIA CUDA architecture to 

solve a simple problem using a novel meshless method. A performance increase was 

accomplished by implementing a matrix fill, direct solver, Biconjugate gradient solver, and 

summation of matrix solution and RBFs on the GPU using the NVIDIA CUDA interface. 

The project culminated in a program that solves the wave equation for a two dimensional 

structure using the GaussianRBF. The program outputs the solution to the wave equation of the 

rectangular structure. By examining a problem for which the analytical results could be easily 

calculated, proper operation of the program was confirmed. In the performance tests, the 

computational results were confirmed to be in agreement with analytical results. 

While this program marks the endpoint of this research, it is expandable to serve as a 

foundation for future work. Based on the framework of this project, options could be explored 

including advanced solvers, modifying or using different method that is better conditioned to 

solve the PDE. With the recent manufacturer investments and growing popularity of these 

techniques in the developer community, this work should be viable for years to come. 
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1.   Open Visual C++ and Select File > New > Project 

  2.   Select Win32 under Project types and Win32 Console Application under Visual Studio 

installed templates. 

 

 
 
3.   Enter in the name of your project and select OK 

4.   When the wizard pops up select Next, then check Empty project and select Finish. 
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5.   Right click on your project and select Custom Build Rules. 

6.   If there is a CUDA Build Rules listed then go to step 10, otherwise continue to step 7. 

7.   Select New Rule File… 

  8.   In the Display Name box put CUDA Build Rules, for File Name put the name of the file 

(usually cuda.rules), and then for Directory browse to the CUDA rules file on the machine. 

 9.   Once that is complete select Add Build Rule… and press OK. 

10.  Check the CUDA Build Rules listed under Available Rule Files and select OK. 

11.  Now you should be able to add your header, resources, and source files in their   

respective folders. 

 

Note: It may be easier to locate the Template.sln file on your machine under the sample 

NVIDIA projects and use that as a starting point to write your program. This project is already 

configured and all you would have to do is add your files. 
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