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Abstract 
	
  
 Sponges are among the simplest multicellular organisms, consisting of groupings 

of cells with similar functions rather than true tissues. Nonetheless, sponges are 

ecologically significant in many marine environments, including coral reefs. They are 

sedentary organisms that feed by filtration from the water column, which contributes to 

the numerous roles they play on coral reefs, including upkeep of the reef, production of 

usable energy, and recycling of nutrients.  

 Like all multicellular organisms, sponges are made up of biologically significant 

macromolecules. These macromolecules provide the energy for the sponge, and their 

relative concentrations determine how sponges can store and access the energy necessary 

to perform required functions. These macromolecules include proteins, which are often 

structural, lipids, which function in long-term storage of energy, and carbohydrates, 

which allow easy access to energetically favorable breakdown pathways. Anything not 

contained in these categories is considered energetically inert, but may serve other 

purposes within the sponge, such as providing physical structure.  

 This study evaluated the distribution of these biochemical components within 

three distinct morphotypes of Caribbean sponges:  Aplysina fulva, Aplysina cauliformis 

thick morph, and Aplysina cauliformis thin morph. It was hypothesized that these 

morphotypes within the same genus would present differently in terms of biochemical 

components. The study also assessed the distribution of these biochemical components 
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within the morphotypes at differentially impacted sites from St. Thomas, US Virgin 

Islands, and the Bahamas. It was again hypothesized that sponges would vary in their 

biochemical constituents due to variability in water quality among these sites. 

 Results showed that the distribution of these biochemical components varied 

significantly, but not consistently, between both sites and morphotypes. Protein and 

carbohydrates were present at high concentrations at the most environmentally impacted 

site, while protein and lipid were present at high concentrations at the least impacted site, 

suggesting a relationship between assimilation of nutrients into macromolecules and 

water quality. Sites with an intermediate level of impact had an inverse relationship 

between percent carbohydrates and percent lipids in A. cauliformis and a proportional 

relationship in A. fulva, suggesting that these two components could be related in a site 

with limited resources.  
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Introduction 
	
  

Every multicellular organism is made up of a variety of macromolecules that 

enable it to complete its life cycle and functions by providing energy and structure. These 

compounds include various proteins, lipids, and carbohydrates, as well as inorganic 

material. Proteins are macromolecules formed from individual amino acids. There are 20 

different amino acids that can be combined in thousands of ways to make a diverse group 

of proteins that are thought to define the function of an organism. Carbohydrates are 

formed from monosaccharide precursors, and are involved in the energy yielding process 

of glycolysis, which is a primary energy-producing pathway in organisms that cannot 

carry out photosynthesis. Lipids are macromolecules that are hydrophobic, not consisting 

of a unified set of base units. They often function in energy storage and the formation of 

biological membranes (Nelson and Cox, 2008). Because these macromolecules are 

created and used for various purposes within an organism, it is surmised that differences 

in the relative proportion of these molecules could indicate differences in lifestyle or 

condition of the organism. In all organisms, there is likely a trade-off of resource usage 

between the different functions an organism must perform, including reproduction, 

growth, and general survival. These trade-offs determine how energy is stored (Ben-

David-Zaslow & Benayahu, 1999).  

Sponges, while very simple multicellular organisms, possess these same 

characteristic macromolecules. Depending upon the function the sponge is trying to carry 
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out, the energy requirements differ. For instance, growth typically has a very high 

demand for energy, which could play a role in determining what types and relative 

amounts of macromolecules are stored (Thomassen & Riisgård, 1995). McClintock & 

Pearce (1986) suggest that reproduction in marine invertebrates correlates with an 

increase in energy demands as well, as reproduction coincides with an increase in the 

biochemical components used for energy production. The energy requirements likely 

differ between stressed and un-stressed sponges, as trade-offs occur in order to produce 

secondary metabolites for defense in stressed sponges (Gochfeld et al., 2012). 

Quantifying differences in the relative proportions of these molecules in a sponge can 

help determine total energy content (Lawrence, 1973; Lawrence & Guille, 1982). For 

instance, on a per mass basis, lipids contain a higher energy content than carbohydrates. 

Storage of energy as lipids could indicate a requirement for a larger amount of energy. 

On the other hand, carbohydrates can be broken down quickly and efficiently in 

comparison to lipids and can be used to rapidly generate energy for the organism. 

Carbohydrates can therefore be considered a more temporary storage of energy 

(McClintock & Pearse, 1986). In addition to providing an energy source, protein serves a 

structural and connective function, suggesting that high levels of protein may not be 

directly related to a large energy requirement (Slattery & McClintock, 1995).  

 

Sponge physiology 

Sponges are composed of groups of cells rather than true tissues or organs, and do 

not possess any comprehensive organ systems (Thomassen & Riisgård, 1995). However, 

while they are physiologically relatively simple, they are one of the most diverse 
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invertebrate phyla worldwide, and occur in an enormous variety of morphologies (Wulff, 

2001). Typically, sponges feed by filtration. Filtration makes use of choanocytes, which 

are flagellated cells that channel water into and through the sponge (Thomassen & 

Riisgård, 1995). Filtered particles often consist of bacterial species, both autotrophic 

cyanobacteria and heterotrophic bacteria, and plankton, and are usually no larger than 5-

10 µm (Pile et al., 1996; Bell et al., 2015). While choanocytes can cause some movement 

of water within the sponge using their flagellae, sponges have very little control of what 

enters their bodies (Bell et al., 2015). They do retain some control over what remains in 

their body however, and can select based on nutritional quality or symbiont propensity 

(Werhl et al., 2007; Hanson et al., 2009). The diet of the sponge relies heavily on the 

constituents of the water column surrounding it, including the microbial community that 

varies with geography, weather and time (Pile et al., 1996). While filter feeding is the 

main source of nutrition, some of a sponge’s nutrients can come from photosynthetic 

symbionts. These symbionts can include photosynthetic dinoflagellates known as 

zooxanthellae or photosynthetic bacteria such as some forms of cyanobacteria (Bell et al., 

2015).   

 

Functional Roles of Sponges 

Sponges play a variety of roles in the coral reef ecosystem. For example, they act 

as both consumers and food in their respective food chains. They also stabilize coral reef 

structures, where they can assist in the regeneration of a damaged reef by “gluing” the 

reef together (Bell, 2008). A primary role of sponges is the functional connection they 

make between the benthic and pelagic regions by their filtration of the water column 
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(Bell, 2008; Bell et al., 2015). They play a role in nutrient recycling, especially for carbon, 

nitrogen, and silica in which they both break down the sources of these nutrients, such as 

inorganic nitrogen compounds and organic carbon matter, to release them into the 

environment and intake the nutrients, playing some role in their transformation into 

usable substances. In terms of nitrogen cycling, sponges act as a host for a huge diversity 

of microbial species that can perform nitrification, denitrification, and other associated 

processes (Bell, 2008; Hoffmann et al., 2009). The sponges can function as energy 

producers as well, in collaboration with the photosynthetic symbionts living inside them, 

contributing a significant portion to the productivity of coral reefs. In this primary 

production, they have a role in recycling carbon (Wulff, 2001; Bell, 2008).  

Sponges of the genus Aplysina are among the most abundant sponges found on 

Caribbean coral reefs. Among these are several branching species or morphotypes, which 

vary in physical appearance and in their production of secondary metabolites (Stockton, 

2016). However, their biochemical composition has yet to be quantified to determine 

whether they are also distinct from each other biochemically. This is considered likely 

given that sponges produce the largest diversity of secondary metabolites, or natural 

products, of any plant or animal phylum (Mehbub et al., 2014), and Aplysina species are 

well known for their diversity of secondary metabolites (Gochfeld et al., 2012; Puyana et 

al., 2015).  Since secondary metabolites are potentially energetically costly to produce, 

variability in the production of these defenses could result in tradeoffs between sources of 

energetic macromolecules within the sponge (Coley et al., 1985; Stowe et al., 2000).  

Furthermore, it has been demonstrated that secondary metabolite production varies 

geographically (Sacristan-Soriano et al., 2011; Stockton, 2016), in which case, one could 
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hypothesize that the energetic components that make up the sponge could differ based on 

location. Sponges included in this study represent three branching morphotypes of 

Caribbean Aplysina:  the thick (“brown erect”) and thin (“violet creeping”) morphotypes 

of Aplysina cauliformis, along with Aplysina fulva (Zea et al., 2014). The locations from 

which the sponges were collected (a remote site in the Bahamas and several sites in St. 

Thomas, US Virgin Islands) have varying degrees of pollution and impacted water 

quality. Discovering whether the biochemical composition of these sponges differ in 

relation to water quality could elucidate the impacts that urbanization and coastal 

development have on marine sponges in the Caribbean. This study tested the following 

hypotheses:  (1) that different morphotypes of Aplysina have different biochemical 

constituents, and (2) that different locations (and associated differences in water quality) 

have an effect on the biochemical constituents of sponges.  
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Methods	
  

The sponges were collected by hand using SCUBA at approximately 5 m of depth from 

five different locations, one in the Exuma Cays, Bahamas and four near St. Thomas in the 

US Virgin Islands. The sponges were frozen, and approximately 1-2 cm pieces of frozen 

sponge were freeze-dried and pulverized. A total of 134 samples was analyzed, broken 

down into groups based upon morphotype and site. Morphotypes included Aplysina 

cauliformis thick (AC-TK), Aplysina cauliformis thin (AC-TN), and Aplysina fulva (AF) 

(Figure 1). Sites include the Bahamas (BAH) and St. Thomas (STT), which is further 

broken down into Flat Cay (FC), Brewer’s Reef (BR), Saba Island (SB), and Savana 

Island (SV) (Figure 2). Each group contained 10 replicates, except for AC-TK from Saba 

Island, which only contained four replicates. There were no AF samples from Savana 

Island. 

 

Protein Analysis 

Analysis of total protein concentration was based on the Bradford assay protocol 

(Bradford, 1976). Briefly, pulverized sponge tissue (10.0-10.4 mg) was extracted in 1 M 

NaOH for 18-24 hours. The protein extracts were reacted with Bio Rad Quick StartTM 

Bradford 1x Dye Reagent in a ratio of 0.2:1, and the concentrations were quantified by 

comparing absorbance values against a standard curve generated with the use of seven 

Bio Rad protein standards ranging from 0.125 to 2.000 mg/mL. Absorbances of each 
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sample were measured at a wavelength of 595 nm in an Eppendorf BioPhotometer. To 

calculate the protein concentration in the tissue of the sponge, the concentration of 

protein in the NaOH solution, measured in µg/mL, was multiplied by a conversion factor 

based on the volume of sponge extract (5 mL NaOH/original weight of sponge in mg). 

 

Lipid Analysis 

Total lipid analysis was based on the procedure of Freeman et al. (1957). For this analysis, 

50.0 – 50.4 mg of dried pulverized sponge was extracted with 2:1 chloroform:methanol 

for 15 minutes on a sonicator. The extract was filtered through 70 mm filter paper into a 

separatory funnel and separated over water. The filtrate was kept and underwent the same 

procedure a second time. After the second separation and subsequent removal of filtrate, 

the aqueous portion was mixed with 2:1 chloroform:methanol to remove any trace 

amount of lipids, and after separation, the hydrophobic extract was added to the filtrate. 

The extract was dried in a SpeedVac and weighed. The mass of lipids was calculated by 

subtracting the initial weight of the pre-weighed vial from its final weight, and this value 

was then divided by the initial sponge weight.  

 

Carbohydrate Analysis 

Carbohydrate analysis was based on the methods of Dubois et al. (1953). Between 10.0 – 

10.4 mg of pulverized sponge were extracted using 5 mL of 5% trichloroacetic acid for 3 

hours. 50 µL of the sponge extract were mixed with 150 µL of concentrated sulfuric acid 

and 30 µL of 5% phenol. The samples were run in triplicate in 96-well plates. The plates 

were placed in a 90˚C water bath for 5 minutes, then they were placed in a room 
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temperature water bath for 5 minutes. Absorbance was measured at a wavelength of 490 

nm on a BioTek Synergy HT Multi-Detection Microplate Reader, and the percentage of 

carbohydrates in the original sample was quantified against a standard curve developed 

using four glucose standards ranging from 0.01-0.225 mg/mL.  

 

Ash Content 

Between 15-30 mg of sponge was placed into small foil dishes that had been dried for 30 

minutes in a muffle furnace at 500˚C and then weighed on a microbalance. The samples 

were placed into the furnace for 4 hours at 500˚C and then reweighed. The ash content 

(i.e., inorganic components of the sponge) was determined by subtraction of the final 

weight from the initial weight of the sample and determination of the percent remaining.  

 

Statistical Analysis 

 For each of the biochemical components (protein, lipid, carbohydrate, ash), a 1-way 

analysis of variance (ANOVA) was performed to evaluate whether they differed among 

morphotypes at each site.  In addition, 1-way ANOVAs were performed on each 

biochemical component to determine whether there were differences among sites for each 

morphotype. A p-value of < 0.05 was considered to be significant. For ANOVAs that 

showed significant differences among groups, the post-hoc Fisher’s Protected Least 

Significant Difference (PLSD) test identified the significant differences between the sites 

or morphotypes.  
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Figure 1. Photographs of the three morphotypes of Aplysina used in this study.  a) 
Aplysina cauliformis thin morphotype; b) Aplysina cauliformis thick morphotype;  c) 
Aplysina fulva. (Photos by D. Gochfeld, from Stockton, 2016) 
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Figure 2. Map of sponge collection sites. A) number 1 represents St. Thomas, US 
Virgin Islands, and number 2 represents the Bahamas; B) sites within St. Thomas (1 = 
Brewer’s Reef, 2 = Flat Cay, 3 = Saba Island, and 4 = Savana Island (from Stockton, 
2016). 
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Results 

Comparison among Morphs 

As seen in Figure 3, sponges from Flat Cay differed significantly among 

morphotypes in terms of percent ash, percent lipid, and protein concentration (ANOVA, 

p = 0.0218, p = 0.0182, p <0.0001, respectively). The samples did not differ in percent 

carbohydrate between morphs (ANOVA, p > 0.05). Levels of lipid for AF were 

dramatically lower than those found in the AC-TK and AC-TN morphs.  

Sponges from Saba Island (Figure 4) did not differ significantly in percentage ash 

or percentage carbohydrates among morphs (ANOVA, p > 0.05). The morphs did differ 

significantly in percent lipids and protein concentration (ANOVA, p = 0.0002, p = 0.006, 

respectively). AF had very high levels of lipids as compared to AC-TK and AC-TN.  

The sponges from Brewer’s Reef differed significantly in terms of percent ash, 

percent lipid, and protein concentration (ANOVA, p = 0.0001, p = 0.0003, p = 0.0182, 

respectively), as can be seen in Figure 5. Percent ash was lower in AC-TN samples than 

in the other morphs, whereas percent lipid was higher and protein concentration was 

lower in AF than in the other two morphs. The samples from Brewer’s Reef did not differ 

significantly in percent carbohydrates (ANOVA, p > 0.05).  

As seen in Figure 6, sponges from Savana Island differed significantly in terms of 

percent ash and percent carbohydrate (ANOVA, p = 0.0071, p = 0.0285, respectively). 

They did not differ significantly among morphotypes in terms of percent lipid or protein 
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concentration (ANOVA, p > 0.05). The difference between AC-TK and AC-TN in 

percentage carbohydrates was dramatic. 

Sponges from the Bahamas, pictured in Figure 7, did not differ significantly 

among morphotypes in percent ash, percent carbohydrate, or protein concentration 

(ANOVA, p > 0.05). The samples did differ significantly in terms of percent lipid 

(ANOVA, p < 0.0001), with the thin morphotype having significantly more lipid that the 

other morphs. 
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Figure 3. Proximate biochemical composition of Aplysina morphotypes from Flat 
Cay, St. Thomas, including A. cauliformis thick (AC-TK), A. cauliformis thin (AC-
TN), and A. fulva (AF). Histograms represent mean + 1 SE for a) percent ash, b) 
percent carbohydrates c) percent lipids, and d) concentration of protein (µg/mg). 
Different letters above each bar indicate significant differences found with Fisher’s 
PLSD. 
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Figure 4. Proximate biochemical composition of Aplysina morphotypes from Saba 
Island, St. Thomas, including A. cauliformis thick (AC-TK), A. cauliformis thin (AC-
TN), and A. fulva (AF). Histograms represent mean + 1 SE for a) percent ash, b) 
percent carbohydrates c) percent lipids, and d) concentration of protein (µg/mg). 
Different letters above each bar indicate significant differences found with Fisher’s 
PLSD. 
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Figure 5. Proximate biochemical composition of Aplysina morphotypes from 
Brewer’s Reef, St. Thomas, including A. cauliformis thick (AC-TK), A. cauliformis 
thin (AC-TN), and A. fulva (AF). Histograms represent mean + 1 SE for a) percent 
ash, b) percent carbohydrates c) percent lipids, and d) concentration of protein 
(µg/mg). Different letters above each bar indicate significant differences found with 
Fisher’s PLSD.  
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Figure 6. Proximate biochemical composition of Aplysina morphotypes from Savana 
Island, St. Thomas, including A. cauliformis thick (AC-TK), A. cauliformis thin (AC-
TN), and A. fulva (AF). Histograms represent mean + 1 SE for a) percent ash, b) 
percent carbohydrates c) percent lipids, and d) concentration of protein (µg/mg). 
Different letters above each bar indicate significant differences found with Fisher’s 
PLSD. 
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Figure 7. Proximate biochemical composition of Aplysina morphotypes from the 
Bahamas, including A. cauliformis thick (AC-TK), A. cauliformis thin (AC-TN), and 
A. fulva (AF). Histograms represent mean + 1 SE for a) percent ash, b) percent 
carbohydrates c) percent lipids, and d) concentration of protein (µg/mg). Different 
letters above each bar indicate significant differences found with Fisher’s PLSD.  
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Comparison among Sites 

As shown in Figure 8, A. fulva differed significantly in percent ash, percent 

carbohydrates, and percent lipids (ANOVA, p = 0.0295, p = 0.0066, p < 0.0001, 

respectively) among the study sites. Sponges did not differ significantly in protein 

concentration (ANOVA, p > 0.05). Sponges from Brewer’s Reef and Saba Island had 

significantly higher carbohydrate and lipid levels than sponges from Flat Cay and the 

Bahamas. 

Among sites, the thick morphotype of A. cauliformis did not differ significantly in 

percent ash (ANOVA, p > 0.05), but did differ significantly in carbohydrate, lipid, and 

protein (ANOVA, p = 0.0152, p = 0.0002, p = 0.0011, respectively), as shown in Figure 9.   

Most notably, sponges from Brewer’s Reef had significantly higher levels of 

carbohydrates. 

The thin morphotype of A. cauliformis differed significantly in percent ash, 

percent carbohydrate, percent lipid, and protein concentration among sites (ANOVA, p = 

0.0062, p = 0.0149, p <0.0001, p = 0.0356, respectively), as seen in Figure 10. Sponges 

from Saba Island had very low levels of lipids. Sponges from Flat Cay and the Bahamas 

had high levels of lipids and low levels of carbohydrates.  
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Figure 8. Proximate biochemical composition of Aplysina fulva at Flat Cay (FC), 
Brewer’s Reef (BR), and Saba Island (SB), St. Thomas, and the Bahamas (BAH). 
Histograms represent mean + 1 SE for a) percent ash, b) percent carbohydrates c) 
percent lipids, and d) concentration of protein (µg/mg). Different letters above each 
bar indicate significant differences found with Fisher’s PLSD.  
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Figure 9. Proximate biochemical composition of the Aplysina cauliformis thick 
morphotype at various sites, including Flat Cay (FC), Brewer’s Reef (BR), Saba Island 
(SB), and Savana Island (SV), St. Thomas, and the Bahamas (BAH). Histograms 
represent mean + 1 SE for a) percent ash, b) percent carbohydrates c) percent lipids, 
and d) concentration of protein (µg/mg). Different letters above each bar indicate 
significant differences found with Fisher’s PLSD.  
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Figure 10. Proximate biochemical composition of the Aplysina cauliformis thin 
morphotype at various sites, including Flat Cay (FC), Brewer’s Reef (BR), Saba Island 
(SB), and Savana Island (SV), St. Thomas, and the Bahamas (BAH). Histograms 
represent mean + 1 SE for a) percent ash, b) percent carbohydrates c) percent lipids, 
and d) concentration of protein (µg/mg). Different letters above each bar indicate 
significant differences found with Fisher’s PLSD.  
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Discussion 

Variation in Biochemical Compounds among Aplysina Morphotypes 

There were significant differences in biochemical constituents among all three 

morphotypes; however, differences among the morphotypes varied among sites as well. 

The thick morphotype of A. cauliformis was at some sites greater than the thin 

morphotype in lipids and carbohydrates and at other sites less, suggesting there are not 

necessarily definable differences in storage of energy between the morphs. There are 

more identifiable differences in the structural components of the two morphs. The thick 

morph is considered more rigid and is harder to break physically (Gochfeld, personal 

communication), which would suggest a higher concentration of protein, the primary 

structural macromolecule.  However, the thin morphotype of A. cauliformis had 

consistently greater protein concentrations than the thick morphotype, which is contrary 

to the degree of rigidity of the two morphs. The thick morphotype has greater percent ash 

than the thin morph, which could potentially contribute to structure or rigidity, supporting 

the physical observation of rigidity for the thick morphotype.  

While there are few consistently definable differences between A. fulva and the 

morphotypes of A. cauliformis, A. fulva does trend towards lower protein concentration 

than A. cauliformis. The morphologies are visibly different, as shown in Figure 1, and A. 

fulva tends to be the most flexible morph (Gochfeld, personal communication), which 

could be a reflection of this difference in protein content. A. cauliformis and A. fulva have 
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been shown to both use chitin as their primary structural protein, so differences in 

structure are likely related to the concentration and not the type of protein (Erlich et al., 

2010).  

	
  
Variability of Biochemical Composition among Sites  

The samples under analysis were collected from areas in the Bahamas and St. 

Thomas in the US Virgin Islands that differ greatly in the amount of anthropogenic 

impacts and potential stressors to which the sponges were exposed. Level of impact for 

the different sites was determined by distance from human population centers and from 

shore, as well as through evidence of sedimentation and other negative indicators of 

water quality, such as concentration of chlorophyll a, nitrogen, and phosphorous found in 

the water (Ennis et al., 2016). By this estimation, Brewer’s Reef would be the most 

impacted of the sample sites, followed by Flat Cay and Saba Island with a medium level 

of impact, while Savana Island and the Bahamas would be the two most pristine sites. 

Both the Bahamas and the Virgin Islands rely heavily on tourism and have undergone 

drastic urbanization and coastal development in recent years (Buchan, 2000; Ennis et al., 

2016), although the site from which sponges were collected in the Bahamas is at least 25 

miles from the nearest population center and therefore is relatively pristine (Gochfeld et 

al. 2012). The impacts of run-off and sedimentation have been studied in relation to their 

effects on water quality and coral reef health (Ennis et al., 2016), but a comprehensive 

study on the effects of pollution and decreasing water quality on the energetics of 

sponges has not been undertaken (Bell et al., 2015). There is evidence that water quality 

has diminished near population centers in the Bahamas, as opposed to further away from 

potential pollutants (Buchan, 2000). The effects of development have been characterized 
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more fully near the island of St. Thomas. The effects of this have mostly been qualified in 

terms of the health of corals and coral reef ecosystems, but increased runoff and 

sedimentation has noticeably decreased water quality, which in turn can negatively 

impact the corals and potentially the sponges (Ennis et al., 2016). Decreased water 

quality can expose coral reefs to an influx of nutrients that promote the growth of algal 

species that can overtake corals, and sedimentation can introduce disease into the 

population by carrying pathogens into the vicinity of the sponges, as well as decreasing 

light available for photosynthetic production by coral symbionts (Bell et al., 2015; Ennis 

et al., 2016). Some of these same effects may apply to sponges that inhabit affected areas. 

There is evidence that increases in sedimentation can damage the filtering capability of 

sponges, as well as physically damage the external surface of the sponge (Bannister et al., 

2012; Bell et al., 2015). While the specific effects of sedimentation on sponge health and 

reproduction have not been fully elucidated, it has been suggested that increased 

sediment is associated with a decrease in sponge diversity (Bell et al., 2015). 

When looking at percentage carbohydrates in A. fulva, the sites with the lowest 

percentage are Flat Cay and the Bahamas. This same pattern is reflected in both the A. 

cauliformis thick and thin morphotypes. These sites differ in their distance from coastal 

development, suggesting that run-off impact is not the sole cause of decreased 

carbohydrate production. Since carbohydrate production provides a rapid turnover of 

energy, this suggests that these sponges are either not producing a large amount of easily 

usable energy, or they are using those stores quickly (McClintock & Pearse, 1986). To 

differentiate between these two possibilities, the percentage of lipids is also considered. A 

high percentage of lipids would support the low energy production theory, as the 
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organism would not be expending large amounts of energy, explaining the low 

requirement for transitory energy sources. Echinoderms, for example, have been found to 

possess similar reserves of lipid in times of high and low productivity (Lawrence & 

Guille, 1982). A low percentage of lipids would suggest the opposite; the organism 

probably has a high energy demand (e.g., for growth or reproduction) and has converted 

most of its lipid stores to more readily usable carbohydrates. Lipid concentration has been 

connected to reproductive state and nutrient production or intake in gorgonians, and 

likely plays similar roles in sponges (Shirur et al., 2014).   

Site-specific patterns of lipid and carbohydrate levels are similar in A. fulva, 

suggesting that the stressors present at the sites of collection affect all forms of energy 

storage and are not selective. Protein concentration presents an opposite pattern to lipids 

and carbohydrates, with lower concentrations of protein in sponges that have higher lipid 

and carbohydrate. As mentioned before, protein is often structural (Lawrence & Guille, 

1982). Potentially, more energy may be used to produce structural components when 

there is less nutrient storage, but not when high levels of carbohydrate and lipid are being 

stored. An increased or decreased protein concentration could be a reflection of the 

physical stress to which the sponges are exposed. Sponges that are exposed to force from 

waves and water motion, which varies based upon location, could have a higher need for 

structural proteins, while those in relatively calm waters could have comparatively low 

levels of protein.  

The thick morph of Aplysina cauliformis has low levels of carbohydrates across 

all sites, barring Brewer’s Reef, which is significantly different than the rest. Brewer’s 

Reef is considered the most impacted site due to proximity to the shoreline, as shown in 
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Figure 2, as well as a higher concentration of nitrogen present in the water (Ennis et al., 

2016). The higher levels of carbohydrates at this site could be a response to nutrient 

enrichment or the presence of other sources of pollution in the water. Across all 

morphotypes, sponges collected from Brewer’s Reef had high levels of all biochemical 

components in comparison to the other four collections sites, suggesting that differences 

in the levels of these components may be strongly related to collection site. These high 

levels of biochemical components suggest that impact is not necessarily detrimental to 

the growth and energetics of a sponge; in fact, it might be just the opposite. There has 

been some evidence of increased prevalence of A. caulformis and A. fulva at highly 

impacted sites in Panama (Easson et al., 2015), which could also be the case at  Brewer’s 

Reef. While high prevalence does not necessarily relate to healthy sponges, sponges with 

these higher levels of macromolecules could be more viable and exist in higher 

abundance, even in impacted areas.  

However, samples from Flat Cay, Saba Island, and the Bahamas do not represent 

this same continuity over biochemical components. In the thin morph of A. cauliformis 

especially, the levels of carbohydrates and lipids are the inverse of each other. Potentially, 

since these sites have an undefined level of impact, as they are offshore but still might be 

exposed to sedimentation or other sources of reduced water quality due to water 

circulation patterns, they may have more variable effects on sponge biochemical 

composition. However, these observations point to a likely relationship between levels of 

carbohydrate and lipid, as is discussed earlier.  

Savana Island, the site with the least probable impact in St. Thomas, as evidenced 

by Figure 2, also presents with high concentrations of the biochemical components across 
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both the thick and thin morphotypes of A. cauliformis. This is in direct contrast to the 

findings from Brewer’s Reef. However, this is supported by the work by Ennis et al. 

(2016) demonstrating the detrimental effect of pollution on the entire coral reef 

ecosystem. A pristine site should allow normal and abundant growth of sponges, although 

Aplysina fulva was not found at this site, suggesting that sponges have different 

environmental requirements.  Savana Island is farther offshore and likely exposed to 

higher wave action than the other St. Thomas sites, which may limit which species can 

occur there. The levels of protein, lipid, and ash in both the thick and thin morphotypes of 

A. cauliformis found at Savana Island are comparable to those found in Brewer’s Reef. 

 

Comparison to Other Sponges  

As a whole, levels of lipid and carbohydrate reported in both A. cauliformis 

morphs and in A. fulva in this study were higher than those found in Chondrilla nucula, a 

Caribbean sponge collected at the same site in the Bahamas, which had lipid levels below 

5% of the sponge and carbohydrate levels below 1% of the sponge (Lee, 2012), as 

compared to around 5-8% lipids and carbohydrates found in this study. Levels of ash 

were lower in A. cauliformis and A. fulva  in comparison to C. nucula, which had levels 

of ash ranging from 20 to 45% (Lee, 2012) in comparison to values in this study of under 

25%. These differences in ash could result from sand contained within the body of C. 

nucula (Gochfeld & Slattery, personal communication). These differences in lipids and 

carbohydrates could be due to both species differences, including differential symbiont 

populations, production of defense molecules, or energy usage, or environmental 

differences. Gochfeld et al. (2012) found similar levels of protein in the thin morph of A. 
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cauliformis from the Bahamas as in this study, and found no significant effect of 

experimental nutrient enrichment. In contrast, Easson et al. (2014) found a decline in 

protein concentration at higher nutrient concentrations for A. cauliformis. These two 

studies with contrasting results suggest that, at least with respect to protein concentration, 

biochemical components may be highly variable in Aplysina sponges in relation to 

environmental nutrient concentrations. Clearly, responses of other biochemical 

components to other water quality impacts need to be assessed in sponges. 
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Conclusion 
	
  

In conclusion, the study showed that biochemical components can vary based 

upon both the sponge morphotype and the site from which the sponge was collected.  The 

variance in morphology is significant, but inconsistent, as the samples do not vary 

consistently based upon the morphotype. There are some differences found in protein 

concentration between all three morphotypes that could relate to the structural makeup of 

the sponges. There are more consistent differences between the biochemical components 

within sponges collected at the different sites. The site with the highest level of impact, 

Brewer’s Reef, has high levels of protein and carbohydrate when compared to the other 

sites. Similarly, Savana Island, a St. Thomas site with a very low amount of impact, has 

high levels of protein and lipid. This suggests that these sponges thrive best in sites of 

low or high impact, with intermediate impact sites appearing not as lucrative 

energetically for the sponges. To fully understand this phenomenon, more conclusive 

data on the impact levels and sources at all five sites need to be obtained, including run-

off volumes, water quality including levels of nitrogen, phosphorous, and chlorophyll a, 

and turbidity. The exact affect of these particular stressors on sponge health could be 

tested to determine variability between morphotypes. This information would provide a 

better determination of pollution effects on the bioenergetics of the sponges. In general, 

however, while there are differences in the production of bioenergetic constituents in 

certain morphotypes at certain sites, these three types of Aplysina do not appear to be 
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consistently strongly or differentially affected by potential stressors at the levels found at 

the study sites in St. Thomas or the Bahamas.
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