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Wind-Induced Ground Motion: Dynamic Model and
Nonuniform Structure for Ground
M. Mohammadi1 , C. J. Hickey1 , R. Raspet1 , and V. Naderyan1

1National Center for Physical Acoustics, University of Mississippi, Oxford, MS, USA

Abstract Wind-induced ground vibrations are a source of noise in seismic surveys. In a previous study,
a wind-ground coupling theory was developed to predict the power spectral density of ground motions
caused by wind perturbations on the ground surface. The prediction was developed using a superposition
of the point source response of an elastic isotropic homogeneous medium deforming quasi-statically with
the statistical description of the wind-induced pressure fluctuations on the ground. Model predictions and
field measurements were in agreement for the normal component of the displacement but underpredicted
the horizontal component. In this paper, two generalizations are investigated to see if they lead to
increased horizontal displacement predictions: (1) First, the dynamic point source response is calculated
and incorporated into the ground displacement calculation. Measured ground responses are used to
incorporate losses into the dynamic calculation. (2) The quasi-static response function for three different
types of nonuniform grounds are calculated and used in the seismic wind noise superposition. The
dynamic point source response and the three more realistic ground models result in larger horizontal
displacements for the point source at distances on the order of 1 m or greater from the source. However,
the superposition to predict the seismic wind noise is dominated by the displacements very close to the
point source where the prediction is unchanged. This research indicates that the modeling of the
wind-induced pressure source distribution must be improved to predict the observed equivalency of the
vertical and horizontal displacements.

1. Introduction
Wind noise is a source of seismic vibrations that obscure or mask seismic data. Understanding and predicting
this noise source is an important step in reducing its effects. Furthermore, predicting these effects can help
us to recognize or filter the desired data and avoid misunderstandings from the masked data. Wind noise
on buried or flush seismic sensors can be attributed to the ground vibrations generated by the turbulent
pressure and shear stress of the wind on the ground surface. In other words, wind is a distribution of vertical
and possibly horizontal surface loads that shake the ground and obscure the desirable seismic phenomena
that we want to observe. In this study, the main purpose is to understand the wind-ground coupling by
developing a prediction model for the ground motion due to wind.

Naderyan et al. (2016) developed a prediction of the ground displacements spectra from the measured
ground properties and predicted pressure and shear stress at the ground surface. The prediction was based
on Yu et al. (2011) theory for the prediction of the pressure fluctuation spectrum at the ground surface from
the wind velocity spectrum. The second factor necessary for predicting the ground deformation is a model
of the deformation of the ground due to point sources on the ground surface. Naderyan et al. (2016) modeled
the ground as a linearly elastic half-space bounded by an infinite plane on one side. The wind excitation over
the ground surface is a slowly moving fluctuation of pressure so the ground displacements were assumed
to occur quasi-statically. The deformation of the ground due to the point forces were determined from
Landau and Lifshitz (1986). The net ground deformations at a measurement point are due to a distribution
of sources for wind turbulence over the ground surface. The statistical distribution of sources due to the pres-
sure fluctuation is characterized by the longitudinal and transverse correlation functions of the turbulence
taken from Shields (2005).

Naderyan et al. (2016) acquired measurements under different wind speeds to compare with theoretical
results. The predicted and measured vertical ground displacements agreed very well. However, the horizon-
tal ground displacements were significantly underpredicted. It was postulated that the shear stress must be
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of the same order of magnitude as the normal pressure on the ground surface to explain the data. Subse-
quent to the Naderyan et al. (2016) publication, improvements to the calculation of the shear stress were
investigated. None of the improvements predicted shear stresses large enough to account for the horizon-
tal seismic wind noise data, but this study did lead to insight into the physical limitation on the magnitude
of shear stresses. The source of molecular viscosity is the transport of horizontal momentum by random
molecular motion (Reif, 1965). In the atmosphere, effective viscosity is caused by the transport of average
horizontal momentum by the vertical turbulent fluctuations (Panofsky & Dutton, 1984). Estimation of the
horizontal momentum density above the surface shows that the density is so low that no plausible mecha-
nism can provide the vertical velocity or displacement large enough to lead to shear stresses on the order of
the pressure fluctuations.

Motivated by this finding, an investigation of elastodynamic deformations of the ground (in lieu of the
quasi-static theory) and nonuniform ground models (in lieu of the homogeneous isotropic ground model)
was conducted to determine if the large observed horizontal displacements can be predicted from purely
pressure fluctuation excitations (Mohammadi, 2018). The investigation of the elastodynamic response is
motivated by the observation that the Rayleigh wave consists of both vertical and horizontal components
whose ratio depends on material properties and depth. Reflections of compressional and shear waves from
layers with different material properties leads to coupling between the waves and the conversion of pure P
waves into reflected P and SV waves. Three different ground models are investigated to see if the horizontal
component of the displacement due to a point force is enhanced by the inhomogeneity and, if so, whether
this leads to a larger horizontal displacement in the wind-ground coupling model.

Section 2 describes the calculation of the ground displacements from the predicted wind turbulence-induced
pressure fluctuation from Naderyan et al. (2016). Section 3.1 extends the calculation to include the dynamic
response of the elastic half-space. Section 3.2 compares the theory to field measurement from a controlled
source. The results of the measurement are then used in section 3.3 to incorporate viscoelasticity into the
prediction, and in section 3.4 the result is compared to the measured seismic wind noise. Section 4 inves-
tigates three different inhomogeneous ground models. Section 4.1 investigates the wind noise coupling for
a ground with continuously increasing rigidity. Section 4.2 studies the effect of a softer soil layer above a
harder soil half-space. Finally, the coupling is calculated for a cross-anisotropic ground. Section 5 presents
the conclusions of this study.

2. Wind-Ground Theory
Combining the theories discussed in the introduction leads to the following equations for the power spectra
of the vertical and horizontal components of the wind-induced ground surface displacements due to the
vertical pressure (Naderyan et al., 2016),

|Ur (k) |2 = ∫
∞

−∞ ∫
∞

−∞ ∫
∞

−∞ ∫
∞

−∞
ur(r)ur(r′)p2

z (k)R(x−x′)R(𝑦−𝑦′)dxdx′d𝑦d𝑦′, (1a)

|Uz (k) |2 = ∫
∞

−∞ ∫
∞

−∞ ∫
∞

−∞ ∫
∞

−∞
uz(r)uz(r′)p2

z (k)R(x−x′)R(𝑦−𝑦′)dxdx′d𝑦d𝑦′, (1b)

where Ur and Uz are horizontal and vertical displacements at the observation point of the pressure. k is
wind pressure wave number. ur and uz are predicted horizontal and vertical displacements of the ground
surface due to a unit vertical surface point force (per Newton); (x, y) and (x′

, y′ ) are coordinates of two
random points on the ground surface with respect to the observation point of the pressure; r and r′ are√

x2 + 𝑦2 and
√

x′2 + 𝑦′2, respectively; and p2
z (k) is the power spectral density (PSD) of wind pressure on the

ground at wave number k which is obtained from the prediction model by Yu et al. (2011). R(x−x′) and R(𝑦−𝑦′)
are wave number-dependent correlation functions of the wind in the downwind and crosswind directions,
respectively. The proposed correlation functions by Shields (2005) are

R(x−x′) = exp
(
−𝛼 k

2𝜋
||x − x′||

)
cos(k ||x − x′||), (2a)

R(𝑦−𝑦′) = exp
(
−𝛽 k

2𝜋
||𝑦 − 𝑦′||

)
. (2b)
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Figure 1. (a) Analytical surface displacements and (b) radial to vertical displacement ratio of an elastic half-space
subjected to 50 Hz vertical surface load.

Shields' measurements evaluated 𝛼 and 𝛽 as 3.2 and 7.0, respectively, over a range of wind velocities (from
4 to 8 m/s) and different atmospheric and environmental conditions.

3. Dynamic Model for the Ground
In the work of Naderyan et al. (2016), the wind excitation over the ground surface was assumed to be a
slowly moving fluctuation of pressure and shear stress. Assuming small accelerations, the ground displace-
ments were considered mainly quasi-static. However, at higher frequencies the motion of the ground may
deviate from the quasi-static assumption. This section investigates a new model using the same method for
predicting the wind pressure fluctuations and correlation functions as Naderyan's study but incorporates the
dynamic response for the ground. In the dynamic theory, the ground is modeled as an elastic or viscoelastic
homogeneous half-space excited by wind pressure fluctuations characterized as a distribution of harmonic
point forces acting on the surface.

The first analytical solution for the dynamic ground response subjected to a surface or an internal source
was obtained mathematically by Lamb (1904) for a semi-infinite isotropic elastic solid subjected to vertical
and horizontal concentrated surface forces. Lamb's theory predicts vertical and horizontal displacements
of the same order of magnitude in the far field. The solution involves an evaluation of Cauchy principal
integrals and of certain infinite integrals with oscillatory integrands. To evaluate the integrals, Barkan (1960)
and Ewing et al. (1957) used corresponding Taylor series to study the radial and vertical components of the
displacement. Since body waves play a significant role in the near-field response for this investigation, the
accurate solution requires the numerical evaluation of Cauchy principal integrals which is accessible with
current mathematical software.

The following section describes the dynamic model for the ground deformations. A field experiment is
designed and conducted to illustrate the difference between the theoretical dynamic model of the ground
and reality. The dynamic model is further improved by adding viscoelastic losses to the model. Finally,
the dynamic wind-ground predictions are obtained and improvements and conclusions are illustrated by
making a comparison with the measurements and with the previous quasi-static model.

3.1. Theory
The ground model is assumed to be an elastic isotropic solid occupying a half-space under the influence
of a harmonic vertical point force on the surface. Assuming a concentrated harmonic force normal to the
surface, Fzei𝜔t, and applying the boundary conditions, the resulting equations for the surface displacements
at a radius of r (Lamb, 1904) are

ur = −
Fz𝜅

2G
HD1(𝜅r)ei𝜔t +

iFzk2

𝜋G ∫
k

h

𝜉2(2𝜉2 − k2)𝛼𝛽
F(𝜉)𝑓 (𝜉)

D1(𝜉r)ei𝜔td𝜉, (3a)

Table 1
Load and Ground Parameters

Load amplitude Fz Load frequency 𝜔∕2𝜋 P wave velocity Vp S wave velocity Vs Density 𝜌 First Lamé Parameter Shear modulus G

50 N 50 Hz 300 m/s 170 m/s 2,000 kg/m3 64.4 MPa 57.8 MPa
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Figure 2. Percentage difference between radial to vertical displacement ratio of the complete solution and solution at
infinity versus (a) range and (b) normalized range with Rayleigh wave wavelength for an elastic half-space subjected to
20, 50, and 80 Hz vertical surface load.

uz = −
iFzk2

2𝜋G
PV∫

∞

k

𝜉𝛼

F(𝜉)
D0(𝜉r) −

iFzk2

2𝜋G ∫
k

h

𝜉(2𝜉2 − k2)2𝛼

F(𝜉)𝑓 (𝜉)
D0(𝜉r)ei𝜔td𝜉, (3b)

where Fz is the amplitude of the harmonic load, G is shear modulus, and 𝜅 is Rayleigh wave wavenumber.
The other symbols are defined as follows:

F(𝜉) = (2𝜉2 − k2)2 − 4𝜉2𝛼𝛽, (4)

𝛼2 = 𝜉2 − h2, 𝛽2 = 𝜉2 − k2, (5)

h = 𝜔

Vp
, k = 𝜔

Vs
, (6)

where Vp and Vs are the compressional (P wave) and shear wave (S wave) velocities in the ground. PV means
“the principal value of,” and D is defined as

Dn(𝜁 ) = −Yn(𝜁 ) − iJn(𝜁 ), (7)

where Jn and Yn are the nth order Bessel functions of first and second kinds, respectively. H is defined as

H = −
𝜅(2𝜅2 − k2 − 2𝛼𝜅𝛽𝜅)

F′(𝜅)
(8)

for the dynamic ground response subjected to a surface or an internal source. Here 𝛼𝜅 and 𝛽𝜅 are 𝛼 and 𝛽 at
𝜉 = 𝜅, and F′ is the derivative of F with respect to 𝜉. In equation (3a), the first term represents the Rayleigh
wave with the wave number 𝜅 and the second term represents an aggregation of waves with the wave number
range from h, P wave, to k, S wave. The second term decays faster than the first term with range because

Figure 3. Experiment setup with shaker and geophone array.
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Figure 4. Diagram showing relative locations of geophones and shaker.

the Bessel function has a factor of r in the integral; this means that at great distances from the source the
first term or the Rayleigh wave term dominates the displacement. This phenomenon is consistent with the
geometrical spreading of the waves; Rayleigh waves spread in a two-dimension space, while body waves
spread in a three-dimension space. The same form of equation can be obtained for the vertical component
through a complex solution breaking the principal integral to simpler terms.

Lamb developed expressions for the Rayleigh wave terms at long distance from the source:

ur = −
iFz𝜅

2G
H
√

2
𝜋𝜅r

ei(𝜔t−𝜅r− 𝜋

4 ), (9a)

uz =
Fz𝜅

2G
K
√

2
𝜋𝜅r

ei(𝜔t−𝜅r− 𝜋

4 ), (9b)

where

K = −
k2𝛼𝜅

F′(𝜅)
. (10)

From equation (9), for free Rayleigh waves at long distances from the source, the magnitude of the ratio of
horizontal to vertical displacement is H∕K, which is constant. However, this ratio near the source is differ-
ent and must be calculated considering the complete solution. Example calculations of the horizontal and
vertical surface displacements and the horizontal to vertical ratio are displayed for the complete solution
and the Rayleigh wave contributions for a ground in Figure 1. The source and soil properties used are listed
in Table 1.

The displacement amplitudes do not decay monotonically in proportion to distance from the source, because
of the interference of wave contributions in the near field (Barkan, 1960). As the radial distance increases, the
amplitudes of the body waves decrease faster than the Rayleigh wave. Hence, the displacement amplitudes
converge to the amplitude of the Rayleigh wave at infinity.

Figure 2a displays the percent difference of the radial to vertical displacement ratio between the complete
solution and the solution at infinity for 20, 50, and 80 Hz sources versus range. At higher frequencies, the
difference decreases faster with range and the complete solution converges to the Rayleigh wave values at
shorter distances from the source. Normalizing the range based on the Rayleigh wave wavelength indicates
that all sources with different frequencies have the same behaviors as shown in Figure 2b. Defining far field
as a distance in which the difference between the complete solution and the solution at infinity is less than
5%, the boundary of the far field is 10 wavelengths from the source. Note that the ratio between the horizontal
and vertical displacements is much larger than the comparable ratio for a static load at moderate distances
from the source but is very small inside 0.4 Rayleigh wavelengths.

Figure 5. Predicted and measured surface displacements due to (a) 20, (b) 50, and (c) 80 Hz harmonic loads.
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Figure 6. Predicted and measured (a) radial and (b) vertical surface displacements due to 80 Hz harmonic load.

3.2. Experiment
A set of field measurements were designed and conducted using a mechanical shaker in order to compare
with the analytic model of the ground under the influence of a harmonic surface load. A vibrating shaker
and a radial line of geophones from the shaker were used as a surface load and observation points, respec-
tively, as shown in Figure 3. This experiment was conducted on a flat surface of an agricultural field near
Locke Station, MS. Standard seismic refraction measurements were performed to provide the ground char-
acterization at the site. These measurements provided P wave and S wave velocities of 220 and 120 m/s,
respectively. The density of the ground was measured in the laboratory on a controlled volume of the soil.
The weight of the soil sample was divided by its volume to calculate the density. The wet bulk density of the
ground was approximately 2,180 kg/m3.

The harmonic load was applied by a Vibration Test Systems VG-100-6 shaker placed level on the ground.
The dimensions of the shaker are H30 × W25 × D22 cm with a mass of 30 kg. A sine wave created by a
function generator and an amplifier acted as the shaker controller. A line of 24 geophones was planted at
25-cm spacing on the ground surface in a radial line from the shaker as shown in Figure 3. Figure 4 shows a
diagram of the relative location of the geophones with respect to the shaker. The geophones were RTC 4.5 Hz,
three-component, with 375-ohm windings. Each geophone box contains two perpendicular horizontal and
one vertical geophone element. Each geophone has three 7-cm steel spikes on the bottom for coupling to the
ground. Outputs from the geophones were connected to four 24-channel Geometrics Geode seismographs.
For data acquisition, Geometrics Multiple Geode Operating Software recorded data from the Geode channels
to a computer.

The measurements were acquired at different frequencies from 10 to 100 Hz. During each measurement,
the geophones recorded 1,000 samples per second for 15 s with the shaker running at a constant frequency.
The geophone outputs are converted to the ground displacements using the geophone transfer function. In
order to compare experimental and the predicted ground deformations, the amplitude of the force on the
surface is needed. The harmonic load amplitude at each frequency is determined by matching the measured
value of the geophone closest to the source to the theoretical predicted load. Since the calculated load ampli-
tudes from the vertical and horizontal displacements are different by 20% to 40%, their mean value is used
in predictions. A comparison between the measured and predicted amplitude of the displacements versus

Figure 7. (a) Radial and (b) vertical displacements and (c) radial to vertical displacement ratio due to static and 20 Hz vertical surface loads.

MOHAMMADI ET AL. 6
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Figure 8. Measured and predicted wind-induced ground displacements
using dynamic and static models. PSD = power spectral density.

the distance from the shaker is shown in Figure 5 for three different load
frequencies. There are general similarities in their trends (increasing and
decreasing versus range); however, they do not match. The difference
between the measured and predicted values increases with increasing dis-
tance from the source. In addition, the difference and change with range
increases with increasing frequency from 20 to 80 Hz. This means that the
measured amplitudes decay faster than the predicted values as a function
of range and the rate of attenuation increases as a function of frequency.
This can be expected since there are other sources of attenuation in real
soil in addition to the geometrical attenuation accounted for in the theory.

To account for the additional losses, a linear viscoelastic model is intro-
duced using complex moduli. In equation (11), the loss factor 𝜂 is defined
to be linearly dependent on the frequency for the elastic modulus of the
ground model. Using trial and error, the following elastic parameters are
chosen as a good fit to the experimental data:

𝜂 = 0.003𝑓 G = G0(1 + i𝜂) 𝜆 = 𝜆0(1 + i𝜂), (11)

where G0 and 𝜆0 are the original shear modulus and Lamé first parameter, respectively. The dynamic
solution, equation (3), is solved for the viscoelastic ground model with the complex parameters, and its
predictions are compared with the elastic model as well as the measured values for the displacement ampli-
tudes. In Figure 6, the agreement between the viscoelastic model and measurements is shown at 80 Hz,
particularly for the radial displacements. The viscoelastic ground model is significantly closer to the reality
than the ideal elastic model.

3.3. Static Versus Dynamic Model
The static surface displacement of the elastic homogeneous half-space model of the ground under the
influence of a vertical static point force on the surface is given by Landau and Lifshitz (1986),

ur =
(1 + 𝜈)(1 − 2𝜈)

2𝜋E
1
r

Fz, (12a)

uz =
(1 + 𝜈)(1 − 𝜈)

𝜋E
1
r

Fz. (12b)

As equation (12) shows, both components of the displacements are decaying functions of 1∕r. Figure 7 shows
the surface displacements and the radial to vertical ratio of the static and dynamic predictions with losses
and the measured values at 20 Hz. The static displacements decay monotonically with increasing range,
whereas the measurements and dynamic predictions display nonmonotonic decay. The radial to vertical
displacement ratio of the dynamic and static predictions are small and similar close to the source. The static
deformation ratio is only a function of Poisson's ratio and remains constant with range, whereas the dynamic
ratio has an oscillatory behavior like the measurements. The difference between the static and dynamic
predictions, especially the increasing displacement ratio of the dynamic prediction away from the source,
suggests that using the dynamic ground model may produce a better prediction of measured horizontal
displacements due to the wind.

3.4. Dynamic Wind-Ground Model
In the study by Naderyan et al. (2016) the closed form expressions for the static ground deformations
given by equation (12) were inserted into the wind-ground equation (equation (1)). Numerical integration
(over truncated ranges) was used to calculate the PSD. For the dynamic case, the displacements given by
equation (3) do not have a closed form solution that can be used in the numerical integration. However, the

Table 2
Simulation Parameters for Ground Model With Increasing Rigidity

Initial Young's modulus E0 Poisson's ratio Density
10 MPa 0.34 1,995 kg/m3

MOHAMMADI ET AL. 7
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Figure 9. (a) Radial and (b) vertical surface displacements of ground models with different rates of continuously
increasing rigidity due to a unit vertical surface load.

theoretical solution can be calculated at a finite number of points on a radial line from the source and an
interpolation function can be used to represent the dynamic response function. This function is applied in
the wind-ground equations, and the revised version of the integrals is numerically computed by Wolfram
Research Inc. (2018). Comparison of the predictions using the viscoelastic dynamic model, the quasi-static
model, and the measured values for the ground displacements are shown in Figure 8. The vertical compo-
nents of both predictions match very well and are in a good agreement with the experiment. Although the
horizontal displacements of the dynamic model are slightly larger than the static predictions, there is still
a significant discrepancy between the predicted and measured displacements. The previous study showed
that the predicted PSD of the vertical displacements due to the normal pressure was about 17 times greater
than the horizontal, whereas the experimental values were very close. In this study, applying the dynamic
model reduces the ratio to about 11, without changing the vertical component.

The ground deformations predicted by the static model, equation (12), or dynamic model, equation (3), are
fast-decaying functions of range approaching infinity at the center (r = 0) . The wind correlation func-
tion is also a rapidly decreasing function of distance. These two factors make the wind-ground integration
sensitive to the near field where the vertical displacements are significantly larger than the horizontal for
both static and dynamic responses so the integrated wind noise differences are smaller than the difference
observed in the point source response functions. In addition, the PSDs of the wind noise are proportional to
the displacement squared so that differences in magnitude are amplified relative to the displacements.

4. Nonuniform Ground Model
This section generalizes the analysis of Naderyan et al. (2016) to include influences of the inhomogeneity and
anisotropy of the ground on the wind-ground predictions. The goals are twofold: to evaluate the sensitivity
of wind-ground measurements to layering in ground properties and to investigate if the difference between
the predicted and measured horizontal displacement of the ground due to wind can be attributed to such
nonuniformities.

In natural grounds, the stiffness usually increases with depth due to the increasing overburden pressure.
Therefore, an elastic half-space model in which the rigidity increases as some function of depth can be a

Figure 10. Predicted (a) horizontal and (b) vertical wind-induced displacements for ground models with different rates
of continuously increasing rigidity. PSD = power spectral density.

MOHAMMADI ET AL. 8
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Table 3
Layered Ground Model Parameters

Young's modulus
Soft soil Hard soil Poisson's ratio Density
50 MPa 100 MPa 0.34 1,995 kg/m3

better approximation for the ground. Kassir (1970), Booker et al. (1985), and Oner (1990) considered an
idealized elastic half-space in which the shear modulus or Young's modulus has a power law dependence
on depth but the Poisson's ratio remains constant. In other cases, it is assumed that the ground consists of a
limited number of distinct finite elastic layers of infinite lateral extent. The elastic properties (i.e., Poisson's
ratio and shear modulus) are constant within each elastic layer but are different for any two connected layers.
Yue and Wang (1988), Ernian (1989), and Pan et al. (2007) idealized the ground as a series of elastic layers
over an elastic isotropic half-space. The effects of deposition and overburden can make the ground both
inhomogeneous and anisotropic. From the practical engineering point of view, anisotropy of the ground
is often modeled as a cross-anisotropic (transversely isotropic) half-space. Gerrard (1982) and Wang et al.
(2006) developed an analytical ground model, associated with different loading scenarios, involving the
stresses and displacements of a transversely isotropic half-space.

In this study, two inhomogeneous models are considered: a half-space with linearly increasing Young's
modulus with depth (Booker et al., 1985; Kassir, 1970; Oner, 1990) and a single elastic layer over an elas-
tic homogeneous half-space (Ernian, 1989; Pan et al., 2007; Yue & Wang, 1988). An anisotropic half-space
with different elastic moduli in the vertical and radial directions (transversely isotropic) is also investigated
(Gerrard, 1982; Wang et al., 2006). The surface displacements of these models as a function of radial dis-
tance from the source are required for input in the wind-ground integral equation. Since there is no closed
form response function for these nonuniform models, a finite element approach is developed in COMSOL
Multiphysics® to calculate the surface displacements due to a vertical surface load. The response functions
(at discrete distances from the source) are interpolated between the computed data points for use in the
wind-ground model. A comparison between the uniform and nonuniform predictions provides insight into
the generalizations of the ground model on the wind-induced seismic behavior of the ground surface.

4.1. Continuously Increasing Rigidity
A common generalization for the ground is an increasing rigidity with depth. The first model considers a
ground with a linearly increasing Young's modulus,

E = E0(1 + nz), (13)

where E is Young's modulus, E0 is the Young's modulus at the surface, z is the depth, and n determines
the increase rate. The Poisson's ratio for the ground remains constant (Table 2). As the value of n increases
the wave speeds increase faster with increasing depth solely due to the stiffness since we assume the den-
sity is constant. The surface deformations computed for a unit surface load is presented in Figure 9. The
homogeneous model has a Young's modulus of the E0 and represented by the n = 0 line. The displacements
from both inhomogeneous and homogeneous models are close and convergent near the source. However,

Figure 11. (a) Radial and (b) vertical surface displacements of a soft top layered ground of different thicknesses due to
a unit vertical surface load.
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Figure 12. Predicted (a) horizontal and (b) vertical wind-induced displacements of a soft top layered ground of
different thicknesses. PSD = power spectral density.

the surface displacements are smaller for the inhomogeneous model away from the source. The displace-
ments decrease faster with increasing distance from the source as the rate of Young's modulus increases
(larger n). An interpolating function is fitted on the computed data points from COMSOL. The generated
response function is applied in the wind-ground equations, and the results are numerically calculated. The
predicted wind-driven surface deformations for the homogeneous and inhomogeneous grounds are shown
in Figure 10. At high frequency, all models predict similar wind-induced deformations. This suggests that
at high frequency the resultant deformations are associated with disturbances closer to the measurement
point. The differences at low frequencies increases and extends to higher frequencies as the rate of change
of the Young's modulus (n) increases. Therefore, the influence of a gradually changing rigidity with depth
is manifested in a changing slope of the PSD of wind coupling results. Since the slope changing occurs in
the same fashion for both horizontal and vertical components, this ground structure does not increase the
horizontal to vertical ratio to improve the agreement of the prediction with the wind-ground measurements.

4.2. Layered Ground
A model of an elastic layer over a homogeneous half-space subjected to a vertical static surface load is created
in COMSOL having the soil properties representing a “soft soil” over a “hard soil” as listed in Table 3. The
surface deformations for the ground having a soft soil layer over a hard soil half-space is shown in Figure 11.
Three different layer thicknesses are considered to demonstrate the dependence on layer thickness. The
limiting cases of a homogeneous soft soil and a homogeneous hard soil are also presented as reference.
Both the vertical and radial displacements of the homogeneous half-spaces (hard and soft) decrease with
distance from the source. They are parallel with a fixed difference in displacement (blue and purple lines in
Figure 11). For the layered models, the displacements converge to the soft homogeneous half-space in the
near field and gradually merge to the displacements of the hard homogeneous half-space in the far field.
This change occurs at closer distances to the source for the models with a thinner layer. The layered grounds
behave similar to a homogeneous ground made of the top layer material in the near field and similar to a
homogeneous ground made of the bottom layer material in the far field.

The associated wind-driven deformations of the ground models are shown in Figure 12. The displacement
PSDs approach the homogeneous model with top layer properties at high frequencies. As the frequency
decreases, the layered models deviate from the homogeneous ground model with top layer properties toward

Figure 13. Predicted (a) displacements and (b) wind-induced displacements of homogeneous and layered ground
models. PSD = power spectral density.
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Table 4
Transversely Isotropic Model Parameters

Er Ez 𝜈r 𝜈zr Grz Density
20 MPa 100 MPa 0.34 0.34 28 MPa 1,995 kg/m3

the homogeneous model with the bottom layer properties. The deviation occurs at higher frequencies with
decreasing the top layer thickness. This is consistent with the deformation versus range from the source.
The wind-induced deformation of a layered ground behaves like a homogeneous ground with the upper
layer properties at high frequencies. However, the sensitivity to the deeper layer properties increases with
decreasing frequency and the sensitivity increases faster for thicker upper layers. This observation agrees
with the general behavior of Rayleigh waves where the longer wavelengths penetrate deeper and are sensitive
to deeper properties of the ground, whereas shorter wavelengths represent shallow properties.

The horizontal and vertical components of displacements and wind-driven displacements are compared in
Figure 13. Based on the analytic solution for the homogeneous models, the radial to vertical displacement
ratio is only a function of Poisson's ratio and is constant versus range and frequency. For the layered ground,
the vertical and radial components change in the same fashion. Therefore, the current layering method
(different Young's modulus) has no effect on the ratio of radial to vertical deformation and it remains
constant versus range and frequency.

4.3. Anisotropic ground
A cross-anisotropic or transversely isotropic ground model is a half-space in which material properties have
the same values in all directions parallel to the surface but different values perpendicular to the surface. This
material is defined by five independent elastic constants. Equation (14) describes the elasticity matrix for a
transversely isotopic material,

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
Er

− 𝜈r
Er

− 𝜈zr
Ez

0 0 0
− 𝜈r

Er

1
Er

− 𝜈zr
Ez

0 0 0
− 𝜈rz

Er
− 𝜈rz

Er

1
Ez

0 0 0
0 0 0 1

Grz
0 0

0 0 0 0 1
Grz

0

0 0 0 0 0 2(𝜈r+1)
Er

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (14)

where Er and Ez are the Young's moduli in the plane of isotropy (horizontal) and in the normal direction,
respectively. 𝜈r and 𝜈zr are Poisson's ratios characterizing the lateral strain response in the plane of isotropy
to a stress acting parallel or normal to it, respectively. Grz is the shear modulus in the normal direction to
the surface (isotropic plane). Table 4 lists the elastic constants for a transversely isotropic ground model. For
this case the Young's modulus in the vertical direction is greater than the Young's modulus in the horizontal
directions indicating that the ground normal to the surface is stiffer than in the horizontal directions.

The vertical and radial surface displacements computed along a radial line from a unit vertical source is
shown in Figure 14. The isotropic model uses a Young's modulus equal to Er and a Poisson's ratio equal to 𝜈r .

Figure 14. (a) Radial and (b) vertical surface displacements of isotropic and anisotropic ground models due to a unit
vertical surface load.
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Figure 15. Predicted (a) horizontal and (b) vertical wind-induced displacements of isotropic and anisotropic ground
models. PSD = power spectral density.

Both displacement components of the anisotropic model are greater than the isotropic model with the radial
components having a larger difference. This is consistent with the wind-induced deformation predictions
in Figure 15 where the radial component increase is bigger than the vertical component. Since anisotropy
manifests in a magnitude shift of the PSD, it would not be possible to separate the effect of anisotropy from
changes in elasticity. The predicted horizontal to vertical displacement ratio increases relative to the isotropic
model. Although the ground model in the vertical direction is 5 times stiffer than that in the radial direc-
tion, the predicted horizontal wind-induced deformation is about 7% of the vertical deformation. This is an
improvement over the homogeneous model but is not sufficient to agree with the measurements.

5. Conclusion
In the previous wind-ground coupling study, the ground was assumed to respond as an elastic isotropic
homogeneous medium deforming quasi-statically due to the surface pressure caused by the wind. This work
generalizes the ground model to include the dynamic response of the ground and the inhomogeneity and
anisotropy of the ground.

The dynamic response of the ground as an elastic homogeneous half-space under the influence of a har-
monic vertical surface load was obtained through analytical solution. A set of field measurements were
conducted in order to measure the ground displacement under a harmonic load and to compare with the pre-
dictions. Although the results indicate general similarities in their trends, the measured amplitudes decay
faster than the predicted values as a function of range and the rate of attenuation increases as a function
of frequency. A linear viscoelastic model was introduced to account for losses. The closer prediction of vis-
coelastic model to the measurements demonstrates the effect of ground attenuations. In comparison to the
static response of the ground surface, which has a constant and low radial to vertical deformation ratio, the
dynamic response shows an oscillatory and increasing ratio with distance from the source. The dynamic pre-
diction for wind-induced ground motion was introduced by replacing the static response with the dynamic
response of the ground. Again, the vertical component of both the static and dynamic predictions are in a
good agreement with the experiment. Although the horizontal displacements of the dynamic model show
a slight increase compared to the static predictions, there is still a significant discrepancy between the
predicted and measured displacements.

The response function for three different types of nonuniform grounds due to a vertical surface load was
developed using Finite Elements (FE) modeling in COMSOL. The nonuniform models include inhomoge-
neous grounds with increasing rigidity with depth, layered grounds with an elastic layer over a half-space,
and cross-anisotropic grounds. For the inhomogeneous grounds with different rates of increasing rigidity,
the response functions are convergent near the source. However, they deviate based on the rigidity rate so
that the response function decays faster with range as the rate increases. The wind-ground displacements
predicted using the inhomogeneous models showed that the deformations of models are convergent at high
frequencies. At low frequencies, the differences increase and extend to higher frequencies as the rate of
change of rigidity increases. For layered grounds, the response function represents the elastic properties of
the upper layer very close to the source and deviates toward representing the lower layer properties with
increasing the distance. The deviation occurs faster and closer to the source for the grounds with thinner
top layers. The associated wind-ground predictions represent the upper layer elastic properties at higher
frequencies and deviate to represent the lower layer at very low frequencies. The different thicknesses of
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the top layer manifest in the rate of the deviation or the slope of the PSD lines which is higher for thinner
top layers. The horizontal and vertical wind-induced displacements for the inhomogeneous ground models
change in the same fashion compared to the homogeneous ones so that these kind of inhomogeneities do
not improve the prediction of the horizontal component.

A transversely isotropic ground model with stiffer properties in the normal direction to the surface was built
in COMSOL, and the surface response was applied to the wind-ground predictions. The final results show
a small improvement of the horizontal to vertical displacement ratio relative to the uniform ground model.

This study showed that it is possible to have improved predictions for the horizontal component of
wind-induced ground motion, even assuming no direct shear stress from the wind. However, the improve-
ments are not enough to explain the difference between predictions and measurements. The calculations of
this paper strongly indicate that the large horizontal displacements measured by Naderyan et al. (2016) are
not due to either the dynamic response of the ground or the inhomogeneous nature of the ground.

This investigation also showed that the slope of the PSD of the wind-driven vertical deformations is sensitive
to the ground structure and represents ground properties at different depths based on the frequency range of
measurements. As future work, the sensitivity of wind-induced deformations to the ground structure can be
investigated as a diagnostic method for ground inhomogeneities given the naturally occurring wind noise.

The remaining hypothesis in Naderyan et al. (2016) to be investigated is the assumption that the pressure
field can be modeled as a stationary harmonic source characterized by the correlation functions measured
by Shields (2005).
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