
University of Mississippi
eGrove

Touche Ross Publications Deloitte Collection

1971

New techniques in computer program verification
William C. Mair

Follow this and additional works at: https://egrove.olemiss.edu/dl_tr

Part of the Accounting Commons, and the Taxation Commons

This Article is brought to you for free and open access by the Deloitte Collection at eGrove. It has been accepted for inclusion in Touche Ross
Publications by an authorized administrator of eGrove. For more information, please contact egrove@olemiss.edu.

Recommended Citation
Tempo, Vol. 18, no. 1 (1971/72, winter), p. 10-19

https://egrove.olemiss.edu?utm_source=egrove.olemiss.edu%2Fdl_tr%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/dl_tr?utm_source=egrove.olemiss.edu%2Fdl_tr%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/deloitte?utm_source=egrove.olemiss.edu%2Fdl_tr%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/dl_tr?utm_source=egrove.olemiss.edu%2Fdl_tr%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/625?utm_source=egrove.olemiss.edu%2Fdl_tr%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/643?utm_source=egrove.olemiss.edu%2Fdl_tr%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu

Hew Techniques

Anyone who has watched moonshots or other space-

exploration programs on television has undoubtedly

heard of Murphy's Law—at least as applied to the com

plex systems associated with space missions. In briefest

terms, Murphy's Law holds that a system which can

fail, will. ^ F

Probabilities of failure depend on degrees of com

plexity of the systems involved. This applies just as

logically to a business data-processing system as to

the systems that support a space mission. The big dif

ference, of course, is that the stakes are different. If an

astronaut encounters an unexpected situation after his

vehicle has left the earth, the consequences—and the

dangers—are immediately apparent. However, in a busi

ness data-processing system, major problems can exist

which are not apparent for a long time. This is where the

auditor comes in. The auditor must satisfy himself that

accounting principles are properly and uniformly ap

plied. This holds true whether accounting records are

kept on computers or with pencil and paper. The audi

tor's responsibility applies in either case. Accuracy can

not be assumed.

In a business data-processing system, many manage

ment people and auditors alike are lulled into com-

in Computer

plaisance by the automatic checking and verification

features built into computer hardware. Computers are

quite mechanically and functionally reliable. Therefore,

there is a tendency to assume that data produced by

computers are also automatically reliable. This is simply

not true.

A modern business data-processing system is a com

bination of elements, including equipment, administra

tive procedures, and processing programs. As has al

ready been mentioned, features are incorporated into

most computers that provide a high degree of equipment

reliability without further examination by an auditor.

Administrative procedures associated with computer

systems can normally be examined through the applica

tion of traditional audit techniques. The greatest chal

lenge to the auditor requiring new techniques lies in the

verification of the computer programs that process the

financial data.

The programs used within business data-processing

systems are often referred to as "software." This term

distinguishes the functional instructions for the execut

ing of computer operations, provided by programs, from

the equipment portion of a computer installation, re

ferred to as "hardware." In general terms, there are two

1 o

Program Verification

types of software: The first type consists of programs

provided by the manufacturer of the computer equip

ment or by specialized software suppliers. The second

type consists of application programs developed or ac

quired by the user » r his own business applications.

Programs directly associated with the functioning of

computer equipment, the first of the categories identi

fied above, are*considered beyond the scope of the

audit examination. The manufacturer's software—con

sisting of microprogramming routines, language proces

sors, utility routines, and operating systems—are far too

complex technically to fall within the capabilities of

audit personnel.

However, the reliability and performance of systems

and programs are very much within the responsibility

of the auditor. This, specifically, is the area where

Murphy's Law applies to the conduct of the audit. User

programs are the error-prone area of computer systems.

User programs are the area where anything which can

happen will. User programs, in the final analysis, fall

directly under the auditor's responsibility as stated in

the third standard of field work of the AICPA. The auditor

is clearly responsible for eliminating reasonable doubt

that material financial errors or improprieties can be

by William C. Mair

generated by or derived from "bugs" in application pro

grams used by the organization.

TECHNIQUES FORfPROGRAM VERIFICATION

In meeting his responsibility to verify the accuracy of

data processed by cimputers, the auditor has a variety

of tools and techniques available. In general, these fall

into five categories: %

1. Auditing around the computer.

2. Program code checking.

3. Flowchart verification.

4. Test decks.

5. Parallel simulation.

Verification by Auditing Around the Computer. One

method that has been used extensively in the past is to

treat the computer as a "black box" and audit around it.

Results of computer processing may be manually veri

fied against source data entered into the computer.

This type of verification can be done either on a

sampling basis or through a comparison of balances.

External verification—either through sampling or com

parison of balances—is frequently effective. Further,

where such external verification can be used, it is

usually efficient.

11

However, this approach may be impractical, or simply

not available to the auditor because the audit trail is lost

in the course of computer processing. In increasing

numbers of cases, business data-processing systems

are so complex that the original identity of data is lost

for manual verification purposes.

In other situations, systems are so gigantic that

normal verification approaches using sampling tech

niques are simply not effective. A case in point occurred

with the discovery of a situation which has become a

classic example of computer-centered fraud. A pro

grammer for a large savings institution designed an inter

est-computation application program under which in

terest applied to depositor accounts was rounded to

the lower penny and all fractions were deposited to his

account. Routine sampling did not identify any excep

tions because the auditors were simply not looking for

fractions of pennies and never happened to test the

single account where the fractional cents were being

deposited.

The point is that, where very large or complex com

puter systems are involved, conventional sampling tech

niques will often fail to detect either fraud or unusual-

exception situations.

Program Code Checking. Another examination tech

nique for verifying the reliability of client computer ap

plications is to perform detailed analyses of program

code listings. Under this approach, a member of the

audit team reads and analyzes the detail application

coding written by the programmers. In the course of this

examination, the audit staff member must identify and

analyze any potential errors which can be generated

by the program. Obviously, this technique requires the

services of a person trained in the principles of auditing

and also extremely skilled in programming, with detailed

knowledge of the specific programming language and

hardware being used. Furthermore, the logic of most

computer programs is very difficult to understand in

the form of an instruction listing, and a reviewer is quite

apt to overlook obscure situations unless he knows

exactly what to look for. Therefore, this approach is

appropriate only in circumstances where a qualified

person is available, and where the auditor has a definite

idea of the types of situations or conditions he is looking

for. Because of these limitations, program code check

ing is of little value as an examination technique.

Program Flowchart Verification. Program verification

can also be done through examination of logic process

ing flowcharts. This approach seeks to verify reliability

of computer processing by reviewing the logic rather

than step-by-step coding lists. In effect, a processing

flowchart provides a graphic view of the processing that

takes place, instead of a listing of the source program

language. An advantage of verification through flow

charts is that it is easier to check the logic of the pro

gram than it is with a straight program language listing.

Most computers now accept software routines which

will generate processing flowcharts mechanically. This

approach also assures the auditor that the flowcharts he

examines will be current—reflecting processing as it is

currently being done on the computer This capability

can be important because manually drawn flowcharts

are seldom up to date in working computer installations.

As with the case of coding verification, a review of

flowcharts still requires a person expert in both auditing

and data processing. This technique, too, can be ap

plied effectively only if the auditor knows what problems

to look for.

Test Decks. The term "test decks" refers back to the

early days in business data processing, when it was

common to enter all system test data into decks of

punched cards which were entered into the computer to

"exercise" the system. Today, test decks of data can be

prepared on magnetic tape or discs, or generated by the

computer itself through the use of software. The idea,

however, has remained consistent. The ideal test data

should present the program under examination with

every possible combination of transactions, master-

record situations, values, or processing logic which

could be encountered in business data-processing oper

ations, and thereby produce output to verify that the pro

grams are functioning properly.

For many years, test decks have been widely used in

program verifications for audit engagements. One of the

advantages of the test deck approach is that such data

can usually be prepared by persons with less technical

background than those needed for program code check

ing or flowchart analysis. However, a person preparing

a test deck must still be highly familiar with the logic of

the system under examination and with the specific con

trols within the programs.

The major problem encountered with the use of test

decks lies in determining the variety of situations and

conditions to be actually included in the test data. It is

practically impossible for a test deck designer to antici

pate all circumstances which can develop in the proc

essing of a computer application. This is true even when

1 2

test-generator software is applied, though this special-

purpose software represents an improvement over

manual design of test decks.

Another drawback to the test-deck approach lies in

the fact that it is rarely used to test a complete business

data-processing system. Generally, a test deck is ap

plied to individual programs or small related groups of

programs. However, in modern business-data process

ing applications, a single system can frequently involve

100 or more separate computer programs or modules.

Although no theoretical limitation exists, test decks, in

practice, are seldom used to test systems of this mag

nitude on an integrated basis. Therefore, it is possible

for test-deck verification to be either incomplete or

inconclusive—even though detailed testing is done on

a major segment of a system. Further, it is frequently

necessary to create very extensive master files for the

test transactions to be processed against, adding ex

pense to this audit approach.

The biggest single shortcoming of the test-deck ap

proach is that it is limited to the testing of preconceived

situations. The design of a test deck usually follows the

design logic of the program being tested. Therefore, it

is likely that the same "bugs" or loopholes will exist

in the testing procedures that exist in the programs.

For example, a test deck was designed to verify the

exception-reporting provisions of an installment loan

application at a commercial bank. The test deck verified

that all edit features of the computer program were func

tioning as specified. However, a separate analysis un

covered the existence of a number of negative balances

for accounts in the installment loan file—one in the

amount of $30,000. In this case, since negative balances

are improbable for installment loans, no tests had been

built into the program to report such situations. The test-

deck approach lacked the broad perspective necessary

for an effective audit examination.

Parallel Simulation. This approach calls for the prepara

tion of separate programs, independent of those used

for day-to-day application processing, which accept the

same input as the application programs, use the same

files, and attempt to produce the same results. These

results are then matched with the results from the "l ive"

program verification through comparison. Although par

allel simulation can be done with any programming lan

guage, the auditor is best served by general-purpose

audit software which makes it possible to create the

parallel programs with minimum effort by nontechnical

people.

The situations and techniques to be cited in this ar

ticle have actually been performed in real audit situa

tions utilizing a general-purpose audit software system

known as "STRATA" (System by Touche Ross for Audit

Technical Assistance). Under this approach, a staff

auditor with only minimum knowledge of electronic data

processing can describe the records to be processed

and the functions to be performed in general terms

through the use of structured specification sheets. The

computer, with the STRATA software directing it, then

calls on functional routines which write their own appli

cation programs as the auditor's instructions are inter

preted.*

One approach for using STRATA is referred to as

"parallel simulation" because the auditor can create a

new system of programs which process data in parallel

with the regular system. The simulation designation

applies because the program created through the use

of the general-purpose audit software performs the same

processing functions as the regular-user programs but

through a different means. The computer processing is

not always as efficient using general-purpose software

as is necessary for regularly used applications; however,

it is much more efficient to prepare. After the same files

and transactions have been processed by both systems,

the results should be identical and directly comparable

with respect to the financially material areas selected

for parallel simulation. That is, the parallel-simulation

technique need not seek to reproduce the systems in full

detail. The auditor may select application areas on the

basis of materiality and processes data independently

to validate the results of those specific functions of the

client systems.

The important characteristic of parallel simulation as

an audit tool is that independent processing of relevant

data takes place. This processing need be done only to

a level which is sufficient to validate the financial results

of the system. The basic concept is the same as with

auditing around the computer. The end product is a

comparison of results. Where the scale and scope of a

system are beyond the capabilities of manually recom

puting the results, general-purpose audit software can

mechanize the process.

This approach serves to test for errors or exceptions

in the critical area of application programs. By parallel

ing the programs, audit simulation performs an inde

pendent verification of results by reproducing the

process under which the results are obtained.

* For further description of STRATA, see Tempo, Winter 1970'; and
The Journal of Accountancy, July 1971.

1 3

The remainder of this article will deal with the con

cepts and applications of independent audit software

as applied through the use of STRATA.

THE ROLE OF PARALLEL SIMULATION

Within the context of an independent audit engage

ment, parallel simulation can be used for either com

plete balance verification or for the limited testing of

the programs. The use to which parallel simulation is

applied depends largely on the nature and scope of

company operations. For example, in auditing payroll

for a large company, parallel simulation would be used

to test the reliability of processing and internal control

by recalculating the payroll for selected pay periods.

However, in auditing depreciation of capital equipment,

all calculations involved in depreciation for the year

could be performed to affect a complete audit of this

account on an annual basis.

The basic determination of whether parallel simula

tion is applicable occurs when a computer system is

created to generate significant accounting information

regarding the firm's revenues or expenses, or to main

tain records covering a significant portion of its assets

or liabilities. If the auditor relies on the results of the

computer processing, either due to necessity or con

venience, he must acquire some evidence that his reli

ance is justified.

As a further condition, the complexity or scope of the

computer application should be beyond reach of con

ventional external balancing techniques. For example,

if the organization is using straight-line depreciation, it

would be relatively simple for the auditor to verify bal

ances using a desk calculator. However, if depreciation

is being calculated on a more complex basis, such as

sum-of-the-year's-digits or double-declining-balances,

annual balance verification through manual techniques

may be impractical. The auditor, then, is faced with a

choice between sampling or computer recalculation.

Recalculation on a computer is far more reliable.

The choice between using parallel simulation for bal

ance verification or for evaluation of internal control

depends also on the individual situation. For example,

the computer processing demands of a depreciation

account would be small enough to warrant a year-end

balance approach. However, it would generally be im

practical to rerun all of a company's payrolls for the

entire year. So, in the case of payroll, it is necessary to

establish the reliability of the systems of internal control.

Under parallel simulation, this is done by processing

batches of data on an interim basis. Where com

puterized systems are involved, internal control can be

consistently reliable because established computer pro

grams can be depended upon to perform the same func

tions the same way each time they are used under the

same circumstances. Each time they are modified, how

ever, their reliability must be redetermined.

Therefore, in audit engagements involving extensive

computerized accounting operations, parallel simula

tion can serve as a broad, general purpose audit tool

which fits conveniently into the working schedule of

both the auditor and the audited organization.

THE SYSTEM CONCEPT OF PARALLEL SIMULATION

The functional relationships between computer appli

cations and parallel simulation are represented in the

flow diagram in Figure 1. This flowchart dramatizes the

direct parallel nature of simulation through the use of

general-audit software. Like the "l ive" application, the

simulation software uses the actual computer master

file and actual transactions input to the system. There is

COMPARISON

an additional need, of course, that the auditor determine

that the transactions processed under simulation are

representative of the transactions which will be encoun

tered by the system for the period under audit. The

selection and screening of transactions will be dealt

with later in this article.

Under the technique outlined in Figure 1, the STRATA

simulation processes transactions against file data, cre

ating its own output files and comparing these with files

generated by the "l ive" programs. The STRATA appli

cation can include machine comparison between data

produced by the "l ive" system and that produced by the

STRATA application. In such a case, the report deliv

ered to the auditor includes only items representing

exceptions.

From an auditing standpoint, the obvious benefit of

this approach is that it is more complete and more

thorough. The auditor is not restricted to minimum sam

ple transactions as is necessary when manual methods

are employed. Rather, the computer can be used to

examine and test extensive files of data. Then, because

their results can be confirmed, the application programs

under which the company processes these transactions

are validated.

In terms of audit costs, parallel simulation through the

use of general-purpose audit software can usually be

accomplished for less expense than other applicable

audit techniques, particularly in light of the fact that re

sults may be more conclusive. Programming the parallel

simulation through the use of a system like STRATA

provides application software at a fraction of the cost

which would be involved through conventional program

ming languages. This is because much of the functional

"housekeeping" normally associated with the develop

ment of an EDP system is prefabricated within the

STRATA technique. This difference is important. The

auditor using STRATA does not write individual pro

grams. Rather, he prepares instructions to the com

puter, which build applications from the functional mod

ules within the STRATA system as processing takes

place. This ability to operate at a functional, rather than

a detail, level makes it possible for a staff auditor to

become proficient in the use of EDP audit techniques

after training in STRATA for just one week.

This is not to say that STRATA is "idiotproof." The

auditor must thoroughly understand the functions re

quired in computing a payroll, calculating depreciation,

or whatever else he wants to do. No method exists that

can anticipate the procedures an auditor may want to

employ. General-purpose audit software is not going to

replace any auditor, but it can free him from busy work

and allow him to be more effective.

Returning to the list of five techniques for company

program verification listed early in this article, we find

that parallel simulation, through the use of software

like STRATA, is generally accomplished in less staff

time and at far lower expense than is incurred using test

decks, flowchart certification, or program code check

ing. As pointed out earlier, verification by auditing

around the computer is usually the method that is lowest

in cost when it can be appropriately applied. However,

where mechanized program checking is necessary, ex

perience on hundreds of audit engagements has indi

cated that parallel simulation using techniques like those

discussed here produces the most reliable results at the

lowest costs

DESIGNING A PARALLEL-SIMULATION APPLICATION

Preparation of a parallel-simulation appl icat ion

through the use of software like STRATA is a six-step

process:

Step 1. The auditor defines his problem. This is usu

ally documented in an informal memo incorporated in

the audit work papers. The auditor describes, in simple

terms, which functions of the company system are

essential to the accurate reporting of financial informa

tion.

As a rule of thumb, there are two types of function

which warrant verification. One is a direct processing

function, such as the calculation of payroll withholding

rates, depreciation calculations, and so on. The other

type is the control function. Examples include reporting

of overdrawn checking accounts with a bank, control

totals on the values of files, edit reports on unacceptable

input records, and so on.

The auditor examines the record layouts for the sys

tems and, usually through conversation, gains a knowl

edge of the data processed, the controls applied, and

the accounting records created by the system. This

need not be a detailed examination by the auditor. For

example, an auditor can use simulation effectively if he

knows no more about the company system than that it

processes payrolls, maintains property and depreciation

records, accounts for receivables within a retail store,

etc. Based on the auditor's background and experience,

a basic application description is often enough to tell

him what he should expect from a system and to define

the problems for purposes of simulation development.

Beyond this, the auditor learns enough about the system

so that he will be able to evaluate results of simulation

1 5

and, particularly, the exceptions reported.

In general, the better acquainted an auditor is with the

system, the more accurately he will be able to define

the calculations and controls that should be created in

the parallel simulation. Conversely, the less an auditor

knows about the system, the more time he will have to

spend checking out reported differences which may not

represent actual exceptions at all. Depending on the

nature of the application and the complexity of the sys

tem, the auditor must strike a balance between the time

spent in studying the system prior to the simulation de

sign and the time which will be necessary for examining

and validating results delivered.

This step is usually the most time-consuming phase

of the entire examination, at least in the first year it is

attempted. Many alternatives are available to the auditor

and careful selection of the most effective approach is

usually well worth the time involved.

Step 2. The auditor specifies the logic to be followed

in the parallel simulation application. This is normally

done with flowcharts which sequence the functional

operations to be performed within the simulation appli

cation. Under a system like STRATA, flowcharting is

handled quickly. Most highly complex applications can

be flowcharted in a maximum of two hours. Flowcharts

for simulation applications of less complex systems

might be completed in as little as fifteen minutes. This

process is illustrated in Figure 2, which contains a logic

flowchart for a relatively simple parallel simulation pro

gram to be executed under STRATA.

Step 3. Instructions are coded using STRATA speci

fication sheets. Specification sheets are unique to the

functions performed within the STRATA software. This

minimizes the writing necessary by the auditor. The

auditor simply enters abbreviated descriptions of the

files to be processed and the functions to be performed.

For the purposes of illustration, Figure 3 contains a

specification sheet for the data field-selection function

of STRATA and Figure 4 contains a specification sheet

for the "calculate-stratify" function.

Detailed description of the execution of these forms

is beyond the scope of this article. However, the sig

nificance of this coding technique can be summarized

by indicating that experience has proved that parallel

simulation programs can usually be coded under

STRATA in less than 10 percent of the time required to

prepare a comparable COBOL program for a parallel

simulation application.

Step 4. The parallel simulation application is "de

bugged." "Debugging" is an EDP term which recog

nizes that most computer applications or programs have

some flaws in coding or logic when they are originally

written. These may arise during the transcription of the

specifications to machine-readable punch cards, or

TDUCHE ROSS

LOGIC FLOWCHART-RECORD SELECTION CRITERIA
SAMPLE COMPANY RECEIVABLES AGING SIMULATION . t i o n D a . e J ^ I / Z l

SPECIFICATIOM SHEET SEQUENCE NUMBER AND OPERATION/OPTION USED

CS14 N n , CS16 „ m CS18 w n , CS20

Use Standard IBM Flowcharting Template Symbols.

Fig. 2

TDUCHE ROSS UCHE ROSS | - \ A T A

gg^> D A / A FIELD SELECTION
FIXED SECTION

• u a
10 11 12 13

a a
23 2d

35 36 37 38 39

22 23 24 25 26 27

| F , s

SELECTION

Vol

1 I ,

1 I
27

1 , ,

i 0 i 5 I

0
5

i 1
31

i 1

DATA FIELD DEFINITION

1 8
1, 4

1, 2

1 i 6 i

2

2

2

JL
i X j

£ j
LL_I

LCLI

PLACES IN
NUMERIC

FIELDS

DATA FIELD NAME (3)
1LPHA-NUMERIC

,BA LA N
T.RAJLS.

1T1R1AN.S

M ,0 N

(3) Constants . .

i k
1 J I

3.JJ.

0 , 2 ,

JLJ_

Fig. 3

through carelessness or lack of thought during prepa

ration of the logic or specifications. So, all applications

should be put through a trial run on the computer to

identify such bugs. From this computer test run, the

auditor may analyze and correct any mistakes before

any large amounts of time are wasted in running full

applications.

Debugging is facilitated under the STRATA system

through use of a feature which makes it possible to take

a segment of a live file and treat it as a complete file for

test purposes, without requiring generation of separate

test files.

During the debugging run on the computer, STRATA

also documents itself—diagnosing and identifying er

rors or questionable items in the specifications. For

each specification sheet completed by the auditor, the

computer prints out an easily readable narrative de

scription of the processing performed and the files

involved. Where errors in the data descriptions are iden

tified during the test run, messages are also generated

by the computer.

When all careless mistakes have been eliminated, the

STRATA system designs its application, establishing

processing sequences and printing out complete system

flowcharts to document the functions to be performed

and the reports to be delivered. Computer time to gen

erate machine instructions and test time runs between

five and fifteen minutes. Successive test runs after

corrections have been made take a similar amount of

time.

Step 5. The parallel-simulation application is proc

essed. One of the unique elements of the STRATA ap

proach is that the auditor is in complete control of the

processing himself. An auditor who has been through a

one-week STRATA school is capable of sitting at the

console and operating the computer during the parallel-

simulation run, since approximately one-third of the

course is on basic EDP and computer operations. This is

not to say that he is an expert computer-operations man.

But he does know enough to handle his own validation

work independently of EDP personnel. The value of this

capability to an audit should need no elaboration.

TOUCHE ROSS

CALCULATE-STRATIFY c i S i l i O

LINE
.NO.

5 J

,1 1 ,0 ,

I I L L J J

, 1 , 2 , 0 ,

| 1 , 2 . 5 ,

| 1 , 3 . , 0 ,

L L l x i j

I M , O

, 1 , 4 , 5 ,

11 . 5 , 0 |

1 , 5 , 5 -

, 1 , 6 , 0 ,

L L ^ A A J

, 1 , 7 , 0 ,

ILLIAI
H , 8 , 0 |

, 1 , 8 , 5 ,

1 1 , 9 . 0 ,

1 . 9 , 5 1

FIELD
A

8 10

iT ,Q ,1 i

IW.S 4 ,

L U L I Z J

L W J L 4 J

L _ ^

I I I ,

OPERATION
11)

I I 13

I A , N , L I

M J L L L J

A D J D J

N J L L ^ I

I 1 1

: i i i

^Z
,

"
B

14 16

iW,0,5

L V L O J I

, ,
L W J 3 ^

LJ^_

,
, i

,
, ,
L ^ ^

L_ i_

,

.,. .-,- , , . . • ^ " W , , 1 DEC
ALPHANUMERIC |

17 24 25

, ! i , i i

, , , ; ,
,' ,3 ,01 10 i

i7 i i , , , ; , , I ,

i , i i i i i , i I I

CONDITIONAL OPERATIONS (1)

LE - A ess ,hon o, Equol ,o B

E • A equal lo B

GE - A grealer ,hon or equal ,0 B

MATHEMATICAL OPERATIONS^)

ADD t t B <

SUB A - B - C

M U L A X B - C

DIV A - B - . C

OTHER OPERATIONS (2)

ANL Analyse Field B(5)

MOV B - A , Moves Alpha-
Numeric f ie ld B o,
Conslant lo f ield A.

COD Enters any two digit Alpho-

STRATA code Held of the
WORK record.,41

END OF PASS OPERATION
EOP Enter EOP ,o stop ol

process,ng in thot STRATA

FIELD C
RESULT

26 28

|
|T,0 ,1 i

L W I 3 ^ 5 J

IT iQ 2 i

iW,3 ,5 i

1 , , i

1 , , 1
, , i

I I , I

, i i

l , , i

L ^ x J

GO TO

29 32

i i , !

!

iCS ,1 ,8

. , , , ,
, , i i 1

, i i

: 1 I 1

1 1 1 1

GO TO OPTIONS(l)

record ,o ne-l STRATA

Stratify.)

READ re,ec, current WORK
record from any

by gell ing the next record.

and CSna in "Go T o "

"Go T o " w i l l cause o

Fig. 4

1 7

The time required for actual processing is directly

dependent on the quantity of data to be examined, the

size and speed of the equipment being used, and the

number of functions being performed. In cases where

comparison has been made to fairly complex COBOL

programs performing the same operations, STRATA has

operated at speeds comparable to the COBOL pro

grams. Typical applications may require anywhere from

one-half hour to several hours.

As indicated previously in Figure 1, the typical

STRATA parallel-simulation run delivers a computer

printout of exceptions identified according to the audi

tor's specifications.

Step 6. The auditor resolves exceptions reported dur

ing processing. The reports delivered following the run

ning of the STRATA application should contain all data

necessary for the auditor to evaluate and resolve appar

ent exceptions. For example, the program may have

calculated depreciation on an expense basis while the

auditor's simulation may compute the total allowance

balance. In such instances, there may be round-off dif

ferences which are not significant—and which indicate

that there are no problems in the program. The simula

tion processing may also report items that are not true

exceptions, but rather are reflections of specific types

of special handling situations which are processed

properly in accordance with the overall application, but

which were not considered by the auditor when the sim

ulation program was designed.

An example of this type of situation occurred when

employees requested a company to withhold pay in

amount in excess of legal minimums. The auditor's pro

gram tested for the normal deduction percentages with

out being aware of the exception cases. Such exceptions

must be resolved, but clearly do not affect internal con

trol reliability.

On another occasion, a STRATA simulation of a man

ufacturer's payroll program revealed that paychecks

had actually been prepared for a number of employees

whose identification codes indicated they had been

laid-off. Resolution of this exception showed that the

program, in fact, did not have a test of employee status

before paychecks were generated by the computer.

LIMITATIONS AND PRECAUTIONS

Some of the same general problems and drawbacks

described earlier in connection with the use of test

decks also must be observed in parallel simulation

through the use of general-purpose audit software.

Specifically:

1. Special care must be taken to be sure that the data

used in the simulation are representative of the total

activity in the affected application area for the organiza

tion, for the period under examination. If the full year is

being reprocessed the problem cannot exist. It can

occur, however, when the programs are tested using

selected transaction periods.

2. The test data used in parallel simulation must in

clude any unusual types of transactions which may be

significant and which may be encountered infrequently

in the routine course of the firm's business. This too will

not be a problem when an entire year is reprocessed.

3. A large corporation may conceivably have busi

ness applications which exceed the capacity of STRATA

or other general-purpose audit software. This would be

true particularly in multi-application systems using

massive table-storage capabilities with a large-scale

computer system. For example, a large manufacturing

company uses a massive table stored in the main mem

ory of the computer to look up applicable health-

insurance deduction rates as part of its payroll system.

This table contains hundreds of separate medical cov

erage plans, each with its own rate breakdowns for

family size and other factors. Examination has shown

that this table exceeds the capacity of STRATA to dupli

cate the processing, although it can simulate the proc

essing by using an alernative approach.

SOLVING SPECIAL PROBLEMS

In overcoming the first two of the problems listed

above—the need for representative data and for data

which include unusual transactions—the auditor may

use an approach that combines the test-deck and

parallel-simulation techniques. The sample actual com

pany transactions normally processed under parallel

simulation may be augmented by additional test-deck

data designed to include both representative routine

transactions that might not occur in the selected sam

pling, plus unusual transactions of significance that

might not be included. Where such test decks are de

veloped, they may be balanced with routine "l ive" trans

actions in order to give the auditor a more realistic basis

for appraising client exposure to the possibility of un

usual transactions that may not be processed according

to specifications.

In dealing with the third situation described above—

systems with lookup tables residing in the main memory

which are so large that audit software cannot be accom

modated—simulation applications can be subdivided or

changed so that client data normally housed in main

1 8

memory can be introduced in more digestible segments

through an auditor-created file having the information in

the table.

OTHER APPLICATIONS FOR AUDIT SOFTWARE

To keep the topic of parallel simulation in perspective,

it should be pointed out that this is just one of several

potentially important uses for general-purpose audit

software within a public accounting firm. Others include:

1. Balance examination. Software applications can

be prepared which perform tests of reasonableness or

produce listings of selected records for balance verifi

cation. A good example of the use of this technique

within an audit engagement is in the preparation of con

firmations.

2. File and record adjustments. STRATA has also

been used for both diagnosis and adjustment of com

puter-maintained files. For example, one computer user

had failed to police the correction of errors reported in

an edit run of data-processing system. The situation

had worsened to a point where file capacity for error

listings had been exhausted. A STRATA application was

developed to identify offsetting error entries, and entries

that could be removed based on other criteria (such as

age). The STRATA application then developed the nec

essary machine-readable input transactions to the com

puter system to adjust the error file.

3. Sample selection. The concept of sampling within

an audit engagement changes with the availability of

general-purpose audit software. In many applications,

for example, it is possible to perform 100 percent exam

inations of records where this would have been impossi

ble under conventional examination techniques. Where

files are so huge or activity rates are so high that full

examination is not feasible, general-purpose audit soft

ware is used regularly to implement advanced statistical

sampling procedures.

4. Financial modeling. The auditor can assist his

clients with a "what if" approach to their financial ap

plications by simulating an application, but with an alter

native method of processing, thus forecasting the impli

cations of the potential decision. For example, different

depreciation approaches or financial assumptions can

be tested within a computerized information system to

evaluate how changing techniques or conditions might

affect the company's taxes or financial reporting.

5. Management services. Where the consulting arm

of a public accounting firm undertakes computer-related

engagements, an application system like STRATA can

be used as a tool for the economical preparation of one

time programs. For example, one group of consultants

was asked by a large retailer to assist with a study of

the costs related to the granting of credit. The consult

ants gathered a large variety of statistics from each of

a number of selling locations. Then, using STRATA, the

statistics were edited for consistency. Finally, when

ample data had been accumulated, the software was

used to analyze, distribute, and summarize the data so

as to produce meaningful cost information.

In this example, no computer file was involved. Rather,

the data were keypunched under the direction of con

sultants and the software was used to produce a one

time application far more efficiently and economically

than could have been done with conventional program

ming languages.

6. Management information systems. Where a com

pany has extensive application files created by com

puter systems, general-purpose audit software can be

used to analyze existing files and to organize files as a

basis for developing management reporting systems.

In addition, where one-time analyses and reports are

needed, general-purpose audit software is frequently

the least expensive way to create them.

CONCLUSION

The point of this presentation has been to indicate

that general-purpose audit software is an existing, in-

place tool ready to assist the auditor in meeting his

obligations under the third standard of field work where

extensive computerized systems are in use.

Experience has established that testing of computer

systems and programs can be done effectively and

inexpensively through parallel simulation. Under this

approach, live data are processed under applications

developed through the use of general-purpose audit

software to test, compare, and identify exceptions gen

erated by the company's data-processing applications.

General-purpose audit software has proved itself as a

more reliable and less expensive method for auditing

EDP applications than any other available in situations

where systems are too complex for simple verification

by auditing around the computer.

New application areas for general-purpose audit soft

ware are emerging continually as auditors and com

panies gain experience with its use. In conclusion, then,

general-purpose audit software represents a proven tool

for the public accountant, and additional uses are

emerging continuously.

19

	University of Mississippi
	eGrove
	1971

	New techniques in computer program verification
	William C. Mair
	Recommended Citation

	tmp.1544028489.pdf.BLOU9

