University of Mississippi eGrove

NSF-CBMS Conference: L-functions and
Multiplicative Number Theory

2019 NSF-CBMS Conference: L-functions and Multiplicative Number Theory

May 20th, 4:00 PM - 5:00 PM

An effective Chebotarev density theorem for families of fields, with an application to class groups

Caroline Turnage-Butterbaugh *Carleton College,* cturnageb@carleton.edu

Follow this and additional works at: https://egrove.olemiss.edu/cbms2019 Part of the Number Theory Commons

Recommended Citation

Turnage-Butterbaugh, Caroline, "An effective Chebotarev density theorem for families of fields, with an application to class groups" (2019). *NSF-CBMS Conference: L-functions and Multiplicative Number Theory*. 22. https://egrove.olemiss.edu/cbms2019/2019/schedule/22

This Presentation is brought to you for free and open access by the Mathematics, Department of at eGrove. It has been accepted for inclusion in NSF-CBMS Conference: L-functions and Multiplicative Number Theory by an authorized administrator of eGrove. For more information, please contact egrove@olemiss.edu.

A CHEBOTAREV DENSITY THEOREM FOR FAMILIES OF FIELDS, WITH AN APPLICATION TO CLASS GROUPS

Caroline Turnage-Butterbaugh Carleton College

(Joint work with Lillian Pierce and Melanie Matchett Wood)

NSF-CBMS Conference L-functions and Multiplicative Number Theory University of Mississippi May 20, 2019

$$(a, b, c) := ax^2 + bxy + cy^2, \qquad a, b, c$$
 integers.

$$(a,b,c) := ax^2 + bxy + cy^2, \qquad a,b,c \text{ integers.}$$

Gauss

 classified the binary quadratic forms with a given discriminant D := b² - 4ac;

$$(a,b,c) := ax^2 + bxy + cy^2, \qquad a,b,c \text{ integers.}$$

Gauss

- classified the binary quadratic forms with a given discriminant D := b² - 4ac;
- formed the *class group*, the group of equivalence classes of binary quadratic forms of a given *D* with group action Gauss composition;

$$(a,b,c) := ax^2 + bxy + cy^2, \qquad a,b,c \text{ integers.}$$

Gauss

- classified the binary quadratic forms with a given discriminant D := b² - 4ac;
- formed the *class group*, the group of equivalence classes of binary quadratic forms of a given *D* with group action Gauss composition;
- showed that, for any given discriminant *D*, there exist *only finitely* many equivalence classes of binary quadratic forms.

QUADRATIC FORMS AND QUADRATIC NUMBER FIELDS

Let $K = \mathbb{Q}(\sqrt{D})$ be a quadratic number field. To each form

$$(a,b,c) := ax^2 + bxy + cy^2$$

with discriminant $D = b^2 - 4ac$, we may associate an ideal *I* of \mathcal{O}_K , where

$$I = \left\langle a, \frac{-b + \sqrt{D}}{2} \right\rangle$$

Binary quadratic forms
$$\longleftrightarrow$$
Nonzero ideals of $\mathcal{O}_{\mathbb{Q}[\sqrt{D}]}$ $(a, b, c) := ax^2 + bxy + cy^2$ $I = \left\langle a, \frac{-b + \sqrt{D}}{2} \right\rangle$

Binary quadratic forms	\longleftrightarrow	$\mathbb{Q}[\mathbb{V}D]$
$(a,b,c) := ax^2 + bxy + cy^2$		$I = \left\langle a, \frac{-b + \sqrt{D}}{2} \right\rangle^{-1}$

 $\begin{array}{ccc} \mbox{equivalent} & \longleftrightarrow & \mbox{equivalent} \\ \mbox{binary quadratic forms} & & \mbox{ideals} \end{array}$

 $\begin{array}{ccc} \mbox{composition of} & \longleftrightarrow & \mbox{multiplication of} \\ \mbox{equivalence classes of forms} & \mbox{equivalence classes of ideals} \end{array}$

Binary quadratic forms
$$\longleftrightarrow$$
Nonzero ideals of $\mathcal{O}_{\mathbb{Q}[\sqrt{D}]}$ $(a, b, c) := ax^2 + bxy + cy^2$ $I = \left\langle a, \frac{-b + \sqrt{D}}{2} \right\rangle$

 $\begin{array}{ccc} \mbox{equivalent} & \longleftrightarrow & \mbox{equivalent} \\ \mbox{binary quadratic forms} & & \mbox{ideals} \end{array}$

 $\begin{array}{ccc} \mbox{composition of} & \longleftrightarrow & \mbox{multiplication of} \\ \mbox{equivalence classes of forms} & \mbox{equivalence classes of ideals} \end{array}$

$$\operatorname{Cl}_K := \text{ the ideal class group of } K = \mathbb{Q}(\sqrt{D})$$

$$h(K) = |Cl_K| :=$$
 the class number of $K = \mathbb{Q}(\sqrt{D})$

Note: h(K) is finite via the correspondence.

The ideal class group of *K* is defined by

 $\operatorname{Cl}_K := J_K / P_K$

- $J_K :=$ the group of fractional ideals of K
- *P_K* := the subgroup of principal ideals of *K*.

The class number of *K* is defined by

 $h(K) = |\mathbf{Cl}_K|.$

The ideal class group of *K* is defined by

 $\operatorname{Cl}_K := J_K / P_K$

- $J_K :=$ the group of fractional ideals of K
- *P_K* := the subgroup of principal ideals of *K*.

The class number of *K* is defined by

 $h(K) = |\mathbf{Cl}_K|.$

 $h(K) = 1 \iff \operatorname{Cl}_K = \{\operatorname{id}\}$

The ideal class group of *K* is defined by

 $\operatorname{Cl}_K := J_K / P_K$

- $J_K :=$ the group of fractional ideals of K
- *P_K* := the subgroup of principal ideals of *K*.

The class number of *K* is defined by

 $h(K) = |\mathbf{Cl}_K|.$

 $h(K) = 1 \iff Cl_K = \{id\} \iff \mathcal{O}_K \text{ is a PID}$

The ideal class group of *K* is defined by

 $\operatorname{Cl}_K := J_K / P_K$

- $J_K :=$ the group of fractional ideals of K
- *P_K* := the subgroup of principal ideals of *K*.

The class number of *K* is defined by

 $h(K) = |\mathbf{Cl}_K|.$

 $h(K) = 1 \iff Cl_K = \{id\} \iff \mathcal{O}_K \text{ is a PID } \iff \mathcal{O}_K \text{ is a UFD}$

The ideal class group of *K* is defined by

 $\operatorname{Cl}_K := J_K / P_K$

- $J_K :=$ the group of fractional ideals of K
- *P_K* := the subgroup of principal ideals of *K*.

The class number of *K* is defined by

 $h(K) = |\mathbf{Cl}_K|.$

 $h(K) = 1 \iff Cl_K = \{id\} \iff \mathcal{O}_K \text{ is a PID } \iff \mathcal{O}_K \text{ is a UFD}$

Question: How big is $|Cl_K|$ in general?

Landau observed that if $[K : \mathbb{Q}] = n$, then

$$|\mathrm{Cl}_K| \ll_n D_K^{1/2+\varepsilon}$$

We may conclude that Cl_K is a finite abelian group.

Landau observed that if $[K : \mathbb{Q}] = n$, then

$$|\mathrm{Cl}_K| \ll_n D_K^{1/2+\varepsilon}$$

We may conclude that Cl_K is a finite abelian group.

For any integer $\ell > 1$, the ℓ -torsion subgroup of Cl_K is given by

$$\operatorname{Cl}_K[\ell] := \left\{ [\mathfrak{a}] \in \operatorname{Cl}_K : [\mathfrak{a}]^\ell = \operatorname{Id}
ight\}$$

Landau observed that if $[K : \mathbb{Q}] = n$, then

 $|\mathrm{Cl}_K| \ll_n D_K^{1/2+\varepsilon}$

We may conclude that Cl_K is a finite abelian group.

For any integer $\ell > 1$, the ℓ -torsion subgroup of Cl_K is given by

$$\operatorname{Cl}_K[\ell] := \left\{ [\mathfrak{a}] \in \operatorname{Cl}_K : [\mathfrak{a}]^\ell = \operatorname{Id}
ight\}$$

Natural Question: What is the size of $Cl_K[\ell]$ as *K* varies within a family of fields of fixed degree?

How BIG is $|Cl_K[\ell]|$?

Trivial Bound – For $[K : \mathbb{Q}] = n$, any integer $\ell \ge 1$, and $\varepsilon > 0$ $|Cl_K[\ell]| \le |Cl_K| \ll_{n,\varepsilon} D_K^{1/2+\varepsilon}$

How BIG IS $|Cl_K[\ell]|$?

Trivial Bound – For $[K : \mathbb{Q}] = n$, any integer $\ell \ge 1$, and $\varepsilon > 0$ $|Cl_K[\ell]| \le |Cl_K| \ll_{n,\varepsilon} D_K^{1/2+\varepsilon}$

Conjecture – For $[K : \mathbb{Q}] = n$, any integer $\ell \ge 1$, and $\varepsilon > 0$

 $|\mathrm{Cl}_K[\ell]| \ll_{n,\ell,\varepsilon} D_K^{\varepsilon}.$

How BIG is $|Cl_K[\ell]|$?

Trivial Bound – For $[K : \mathbb{Q}] = n$, any integer $\ell \ge 1$, and $\varepsilon > 0$ $|Cl_K[\ell]| \le |Cl_K| \ll_{n,\varepsilon} D_K^{1/2+\varepsilon}$

Conjecture – For $[K : \mathbb{Q}] = n$, any integer $\ell \ge 1$, and $\varepsilon > 0$

 $|\mathrm{Cl}_K[\ell]| \ll_{n,\ell,\varepsilon} D_K^{\varepsilon}.$

Recorded by

- Brumer-Silverman, '96
- Duke, '98
- Zhang, '05
- Ellenberg-Venkatesh, '07

How BIG is $|Cl_K[\ell]|$?

Trivial Bound – For $[K : \mathbb{Q}] = n$, any integer $\ell \ge 1$, and $\varepsilon > 0$ $|Cl_K[\ell]| \le |Cl_K| \ll_{n,\varepsilon} D_K^{1/2+\varepsilon}$

Conjecture – For $[K : \mathbb{Q}] = n$, any integer $\ell \ge 1$, and $\varepsilon > 0$

 $|\mathrm{Cl}_K[\ell]| \ll_{n,\ell,\varepsilon} D_K^{\varepsilon}.$

Recorded by

- Brumer-Silverman, '96
- Duke, '98
- Zhang, '05
- Ellenberg-Venkatesh, '07

Implied by

 Cohen-Lenstra-Martinet heuristics on the distribution of class groups and *l*-torsion subgroups within families

Conjecture – For $[K : \mathbb{Q}] = n$, any integer $\ell \ge 1$, and $\varepsilon > 0$ $|Cl_K[\ell]| \ll_{n,\ell,\varepsilon} D_K^{\varepsilon}.$

Conjecture – For $[K : \mathbb{Q}] = n$, any integer $\ell \ge 1$, and $\varepsilon > 0$ $|Cl_K[\ell]| \ll_{n,\ell,\varepsilon} D_K^{\varepsilon}.$

Theorem (Gauss)

For all quadratic fields *K*, we have $|Cl_K[2]| \ll_{\varepsilon} D_K^{\varepsilon}$.

Conjecture – For $[K : \mathbb{Q}] = n$, any integer $\ell \ge 1$, and $\varepsilon > 0$ $|Cl_K[\ell]| \ll_{n,\ell,\varepsilon} D_K^{\varepsilon}.$

Theorem (Gauss)

For all quadratic fields *K*, we have $|Cl_K[2]| \ll_{\varepsilon} D_K^{\varepsilon}$.

• This is the only case (for ℓ prime) in which the conjecture has been proved.

Conjecture – For $[K : \mathbb{Q}] = n$, any integer $\ell \ge 1$, and $\varepsilon > 0$ $|Cl_K[\ell]| \ll_{n,\ell,\varepsilon} D_K^{\varepsilon}.$

Theorem (Gauss)

For all quadratic fields *K*, we have $|Cl_K[2]| \ll_{\varepsilon} D_K^{\varepsilon}$.

- This is the only case (for ℓ prime) in which the conjecture has been proved.
- **Question:** Are there cases for which nontrivial bounds known?

Nontrivial bounds on $|\mathbf{Cl}_K[\ell]|$

Theorem (Ellenberg & Venkatesh, 2007)

Let K/\mathbb{Q} be a number field of degree 2 or 3. We have

 $|\mathrm{Cl}_K[3]| \ll_{n,\varepsilon} D_K^{\frac{1}{3}+\varepsilon}.$

Nontrivial bounds on $|\mathbf{Cl}_K[\ell]|$

Theorem (Ellenberg & Venkatesh, 2007)

Let K/\mathbb{Q} be a number field of degree 2 or 3. We have

 $|\mathrm{Cl}_K[3]| \ll_{n,\varepsilon} D_K^{\frac{1}{3}+\varepsilon}.$

Let K/\mathbb{Q} *be a non-D*₄ *number field of degree 4. We have*

 $|\mathrm{Cl}_K[3]| \ll_{\varepsilon} D_K^{\frac{1}{2} - \frac{1}{168} + \varepsilon}.$

Nontrivial bounds on $|\mathbf{Cl}_K[\ell]|$

Theorem (Ellenberg & Venkatesh, 2007)

Let K/\mathbb{Q} be a number field of degree 2 or 3. We have

 $|\mathrm{Cl}_K[3]| \ll_{n,\varepsilon} D_K^{\frac{1}{3}+\varepsilon}.$

Let K/\mathbb{Q} *be a non-D*₄ *number field of degree 4. We have*

 $|\mathrm{Cl}_K[3]| \ll_{\varepsilon} D_K^{\frac{1}{2} - \frac{1}{168} + \varepsilon}.$

Theorem (Bhargava, Shankar, Taniguchi, Thorne, Tsimerman & Zhao, 2017)

Let K/\mathbb{Q} *be a number field of degree* n > 2*. For some* $\delta_n > 0$ *we have*

$$|\mathrm{Cl}_K[2]| \ll_{n,\varepsilon} D_K^{\frac{1}{2}-\delta_n+\varepsilon}$$

Nontrivial bounds on $|Cl_K[\ell]| \dots$ under GRH

Theorem (Ellenberg & Venkatesh, 2007)

Let K/\mathbb{Q} be a number field of degree n and ℓ a positive integer. Assuming GRH, we have

$$|\mathrm{Cl}_{K}[\ell]| \ll_{n,\ell,\varepsilon} D_{K}^{\frac{1}{2} - \frac{1}{2\ell(n-1)} + \varepsilon}$$

Nontrivial bounds on $|Cl_K[\ell]| \dots$ under GRH

Theorem (Ellenberg & Venkatesh, 2007)

Let K/\mathbb{Q} be a number field of degree n and ℓ a positive integer. Assuming GRH, we have

$$|\mathrm{Cl}_{K}[\ell]| \ll_{n,\ell,\varepsilon} D_{K}^{\frac{1}{2} - \frac{1}{2\ell(n-1)} + \varepsilon}$$

• **Question:** What can we say unconditionally for all but a possible exceptional set of fields *K* within a family?

Theorem (Soundararajan, 2000)

Let ℓ be prime. For all but a possible zero-density exceptional family of imaginary quadratic fields K/\mathbb{Q} , we have

$$|\mathrm{Cl}_K[\ell]| \ll_{\ell,\varepsilon} D_K^{rac{1}{2} - rac{1}{2\ell} + \varepsilon}$$

Theorem (Soundararajan, 2000)

Let ℓ be prime. For all but a possible zero-density exceptional family of imaginary quadratic fields K/\mathbb{Q} , we have

$$|\mathrm{Cl}_K[\ell]| \ll_{\ell,\varepsilon} D_K^{\frac{1}{2} - \frac{1}{2\ell} + \varepsilon}$$

Theorem (Heath-Brown & Pierce, 2014)

Let $\ell \ge 5$ *be prime. For all but a possible zero-density exceptional family of imaginary quadratic fields K*/ \mathbb{Q} *, we have*

$$|\mathrm{Cl}_{K}[\ell]| \ll_{\ell,\varepsilon} D_{K}^{\frac{1}{2}-\frac{3}{2\ell+2}+\varepsilon}$$

Theorem (Ellenberg, Pierce, & Wood, 2016)

Let $\ell \ge 1$ *, and let* [K : Q] = 2, 3 *or* 5*. For all but a possible zero-density exceptional family of fields* K/\mathbb{Q} *, we have*

$$|\mathrm{Cl}_{K}[\ell]| \ll_{n,\ell,\varepsilon} D_{K}^{\frac{1}{2} - \frac{1}{2\ell(n-1)} + \varepsilon}.$$

If $[K : \mathbb{Q}] = 4$, then the same bound applies for K non- D_4 .

Theorem (Ellenberg, Pierce, & Wood, 2016)

Let $\ell \ge 1$ *, and let* [K : Q] = 2, 3 *or* 5*. For all but a possible zero-density exceptional family of fields* K/\mathbb{Q} *, we have*

$$|\operatorname{Cl}_{K}[\ell]| \ll_{n,\ell,\varepsilon} D_{K}^{\frac{1}{2}-\frac{1}{2\ell(n-1)}+\varepsilon}.$$

If $[K : \mathbb{Q}] = 4$ *, then the same bound applies for K non-D*₄*.*

• Note that the bound is as strong as on GRH.

Theorem (Ellenberg, Pierce, & Wood, 2016)

Let $\ell \ge 1$ *, and let* [K : Q] = 2, 3 *or* 5*. For all but a possible zero-density exceptional family of fields* K/\mathbb{Q} *, we have*

$$|\mathrm{Cl}_{K}[\ell]| \ll_{n,\ell,\varepsilon} D_{K}^{\frac{1}{2} - \frac{1}{2\ell(n-1)} + \varepsilon}.$$

If $[K : \mathbb{Q}] = 4$ *, then the same bound applies for K non-D*₄*.*

• Note that the bound is as strong as on GRH.

Pierce, T., and Wood, (2017 preprint) Under certain conditions (but never under GRH), we extend this result to different families in which $[K : \mathbb{Q}] \ge 2$.

Theorem (Ellenberg & Venkatesh, 2007) Suppose that there are M rational primes

 p_1, p_2, \ldots, p_M

that split completely in K, where $p_j \leq D_K^{\delta}$ and $\delta < \frac{1}{2\ell(n-1)}$. Then for any $\varepsilon > 0$, $|\operatorname{Cl}_K[\ell]| \ll_{n,\ell,\varepsilon} D_K^{\frac{1}{2}+\varepsilon} M^{-1}$.

Theorem (Ellenberg & Venkatesh, 2007)

Suppose that there are M rational primes

 p_1, p_2, \ldots, p_M

that split completely in K, where $p_j \leq D_K^{\delta}$ and $\delta < \frac{1}{2\ell(n-1)}$. Then for any $\varepsilon > 0$, $|\operatorname{Cl}_K[\ell]| \ll_{n,\ell,\varepsilon} D_K^{\frac{1}{2}+\varepsilon} M^{-1}$.

Theorem (Ellenberg & Venkatesh, 2007) Suppose that there are M rational primes p_1, p_2, \dots, p_M that split completely in K, where $p_j \leq D_K^{\delta}$ and $\delta < \frac{1}{2\ell(n-1)}$. Then for any $\varepsilon > 0$, $|Cl_K[\ell]| \ll_{n,\ell,\varepsilon} D_K^{\frac{1}{2}+\varepsilon} M^{-1}$.

Question: How might one go about finding small primes that split completely in *K*?

Theorem (Ellenberg & Venkatesh, 2007) Suppose that there are M rational primes p_1, p_2, \dots, p_M that split completely in K, where $p_j \leq D_K^{\delta}$ and $\delta < \frac{1}{2\ell(n-1)}$. Then for any $\varepsilon > 0$, $|Cl_K[\ell]| \ll_{n,\ell,\varepsilon} D_K^{\frac{1}{2}+\varepsilon} M^{-1}$.

Question: How might one go about finding small primes that split completely in *K*?

Answer: via a Chebotarev Density Theorem

 $n \left| \right\rangle \operatorname{Gal}(K/\mathbb{Q}) \cong G$

Theorem (Lagarias-Odlyzko*, 1975) If GRH holds for $\zeta_K(s)$, then

 $\left| \#\{p \le x \text{ that split completely in } K\} - \frac{\operatorname{Li}(x)}{|G|} \right|$ $\le \frac{C_0}{|G|} x^{1/2} \log(D_K x^{n_K})$

for every $x \ge 2$ and C_0 is effectively computable.

 $n \left| \right\rangle \operatorname{Gal}(K/\mathbb{Q}) \cong G$

Theorem (Lagarias-Odlyzko*, 1975) If GRH holds for $\zeta_K(s)$, then

 $\left| \#\{p \le x \text{ that split completely in } K\} - \frac{\operatorname{Li}(x)}{|G|} \right|$ $\le \frac{C_0}{|G|} x^{1/2} \log(D_K x^{n_K})$

for every $x \ge 2$ and C_0 is effectively computable.

*This is a special case of their theorem.

 $n \left| \right\rangle \operatorname{Gal}(K/\mathbb{Q}) \cong G$

Theorem (Lagarias-Odlyzko*, 1975) If GRH holds for $\zeta_K(s)$, then

 $\left| \# \{ p \le x \text{ that split completely in } K \} - \frac{\text{Li}(x)}{|G|} \right|$ $\le \frac{C_0}{|G|} x^{1/2} \log(D_K x^{n_K})$

for every $x \ge 2$ and C_0 is effectively computable.

*This is a special case of their theorem.

Theorem (Lagarias-Odlyzko*, 1975) If GRH holds for $\zeta_K(s)$, then

 $\left| \#\{p \le x \text{ that split completely in } K\} - \frac{\operatorname{Li}(x)}{|G|} \right|$ $\le \frac{C_0}{|G|} x^{1/2} \log(D_K x^{n_K})$

for every $x \ge 2$ and C_0 is effectively computable.

*This is a special case of their theorem.

• We may take
$$x = D_K^{\delta - \epsilon_0}$$
, with $\delta = \frac{1}{2\ell(n-1)}$.

 $n \left| \right\rangle \operatorname{Gal}(K/\mathbb{Q}) \cong G$

Theorem (Lagarias-Odlyzko*, 1975) If GRH holds for $\zeta_K(s)$, then

 $\left| \#\{p \le x \text{ that split completely in } K\} - \frac{\operatorname{Li}(x)}{|G|} \right|$ $\le \frac{C_0}{|G|} x^{1/2} \log(D_K x^{n_K})$

for every $x \ge 2$ and C_0 is effectively computable.

*This is a special case of their theorem.

• We may take $x = D_K^{\delta - \epsilon_0}$, with $\delta = \frac{1}{2\ell(n-1)}$.

 $n \left| \right\rangle \operatorname{Gal}(K/\mathbb{Q}) \cong G$

• Obtain at least $M \gg D_K^{1/(2\ell(n-1))-\varepsilon_0}$ sufficiently small primes that split completely in *K*.

Ellenberg-Venkatesh (2007) $|\operatorname{Cl}_{K}[\ell]| \ll_{\ell,n,\varepsilon} D_{K}^{\frac{1}{2}+\varepsilon} M^{-1}$

Goal: Remove GRH and obtain the same ℓ -torsion bound.

Goal: Remove GRH and obtain the same ℓ -torsion bound.

– We can do this at the cost of proving the result for all but a possible zero-density family of fields.

Theorem (Ellenberg & Venkatesh, 2007)

Suppose that there are M rational primes

 p_1, p_2, \ldots, p_M

that split completely in K, where $p_j \leq D_K^{\delta}$ and $\delta < \frac{1}{2\ell(n-1)}$. Then for any $\varepsilon > 0$,

 $|\mathrm{Cl}_K[\ell]| \ll_{n,\ell,\varepsilon} D_K^{\frac{1}{2}+\varepsilon} M^{-1}.$

Theorem (Ellenberg & Venkatesh, 2007)

Suppose that there are M rational primes

 p_1, p_2, \ldots, p_M

that split completely in K, where $p_j \leq D_K^{\delta}$ and $\delta < \frac{1}{2\ell(n-1)}$. Then for any $\varepsilon > 0$, $|Cl_K[\ell]| \ll_{n,\ell,\varepsilon} D_K^{\frac{1}{2}+\varepsilon} M^{-1}$.

We need an effective Chebotarev density theorem for a family of fields *K*

• that does not assume GRH, and

Theorem (Ellenberg & Venkatesh, 2007)

Suppose that there are M rational primes

 p_1, p_2, \ldots, p_M

that split completely in K, where $p_j \leq D_K^{\delta}$ and $\delta < \frac{1}{2\ell(n-1)}$. Then for any $\varepsilon > 0$, $|Cl_K[\ell]| \ll_{n,\ell,\varepsilon} D_K^{\frac{1}{2}+\varepsilon} M^{-1}$.

We need an effective Chebotarev density theorem for a family of fields *K*

- that does not assume GRH, and
- has a low threshold on *x*.

Theorem (Ellenberg & Venkatesh, 2007)

Suppose that there are M rational primes

 p_1, p_2, \ldots, p_M

that split completely in K, where $p_j \leq D_K^{\delta}$ and $\delta < \frac{1}{2\ell(n-1)}$. Then for any $\varepsilon > 0$, $|Cl_K[\ell]| \ll_{n,\ell,\varepsilon} D_K^{\frac{1}{2}+\varepsilon} M^{-1}$.

We need an effective Chebotarev density theorem for a family of fields *K*

- that does not assume GRH, and
- has a low threshold on *x*.

Let us first recall how to count primes.

COUNTING PRIMES

Motivating Question

Given a large number *x*, how many primes are there less than or equal to *x*?

COUNTING PRIMES

Motivating Question

Given a large number *x*, how many primes are there less than or equal to *x*?

That is, if we let

$$\pi(x) := \sum_{p \le x} 1,$$

COUNTING PRIMES

Motivating Question

Given a large number *x*, how many primes are there less than or equal to *x*?

That is, if we let

$$\pi(x) := \sum_{p \le x} 1,$$

how does $\pi(x)$ behave as $x \to \infty$?

$$\pi(x) \sim \operatorname{Li}(x), \qquad x \to \infty$$

$$\pi(x) \sim \operatorname{Li}(x), \qquad x \to \infty$$

Count primes with a weight:

$$\psi(x) := \sum_{n \le x} \Lambda(n),$$

$$\pi(x) \sim \operatorname{Li}(x), \qquad x \to \infty$$

Count primes with a weight:

$$\psi(x) := \sum_{n \le x} \Lambda(n), \qquad \qquad \Lambda(n) = \begin{cases} \log p, & \text{if } n = p^k, k \ge 1, \\ 0, & \text{else.} \end{cases}$$

$$\pi(x) \sim \operatorname{Li}(x), \qquad x \to \infty$$

Count primes with a weight:

$$\psi(x) := \sum_{n \le x} \Lambda(n), \qquad \qquad \Lambda(n) = \begin{cases} \log p, & \text{if } n = p^k, k \ge 1, \\ 0, & \text{else.} \end{cases}$$

$$\psi(x) = \sum_{n \le x} \Lambda(n)$$

$$\pi(x) \sim \operatorname{Li}(x), \qquad x \to \infty$$

Count primes with a weight:

$$\psi(x) := \sum_{n \le x} \Lambda(n), \qquad \qquad \Lambda(n) = \begin{cases} \log p, & \text{if } n = p^k, k \ge 1, \\ 0, & \text{else.} \end{cases}$$

$$\psi(x) = \sum_{n \le x} \Lambda(n) \approx \sum_{p \le x} \log p$$

$$\pi(x) \sim \operatorname{Li}(x), \qquad x \to \infty$$

Count primes with a weight:

$$\psi(x) := \sum_{n \le x} \Lambda(n), \qquad \qquad \Lambda(n) = \begin{cases} \log p, & \text{if } n = p^k, k \ge 1, \\ 0, & \text{else.} \end{cases}$$

$$\psi(x) = \sum_{n \le x} \Lambda(n) \approx \sum_{p \le x} \log p \approx \pi(x) \log x$$

$$\pi(x) \sim \operatorname{Li}(x), \qquad x \to \infty$$

Count primes with a weight:

$$\psi(x) := \sum_{n \le x} \Lambda(n), \qquad \qquad \Lambda(n) = \begin{cases} \log p, & \text{if } n = p^k, k \ge 1, \\ 0, & \text{else.} \end{cases}$$

$$\psi(x) = \sum_{n \le x} \Lambda(n) \approx \sum_{p \le x} \log p \approx \pi(x) \log x$$

$$\psi(x) \sim x \iff \pi(x) \sim \frac{x}{\log x}$$

Explicit Formula (truncated version)

We have

$$\psi(x) = x - \sum_{|\gamma| \le x} \frac{x^{\rho}}{\rho} + O\left(\log^2 x\right)$$

where the sum is over the nontrivial zeros of $\zeta(s)$.

Explicit Formula (truncated version)

We have

$$\psi(x) = x - \sum_{|\gamma| \le x} \frac{x^{\rho}}{\rho} + O\left(\log^2 x\right)$$

where the sum is over the nontrivial zeros of $\zeta(s)$.

 $\rho = \beta + i\gamma$ is a nontrivial zero of $\zeta(s)$:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}, \quad \Re(s) > 1$$

Explicit Formula (truncated version)

We have

$$\psi(x) = x - \sum_{|\gamma| \le x} \frac{x^{\rho}}{\rho} + O\left(\log^2 x\right)$$

where the sum is over the nontrivial zeros of $\zeta(s)$.

 $\rho = \beta + i\gamma$ is a nontrivial zero of $\zeta(s)$:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}, \quad \Re(s) > 1$$

Since |x^ρ| = x^β, if β < 1, then the contribution from the nontrivial zeros is not too big.

Explicit Formula (truncated version)

We have

$$\psi(x) = x - \sum_{|\gamma| \le x} \frac{x^{\rho}}{\rho} + O\left(\log^2 x\right)$$

where the sum is over the nontrivial zeros of $\zeta(s)$.

 $\rho = \beta + i\gamma$ is a nontrivial zero of $\zeta(s)$:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}, \quad \Re(s) > 1$$

- Since $|x^{\rho}| = x^{\beta}$, if $\beta < 1$, then the contribution from the nontrivial zeros is not too big.
- Key to proof of the Prime Number Theorem:

 $\zeta(s) \neq 0$ for $\Re(s) = 1$

COUNTING PRIMES IN ARITHMETIC PROGRESSIONS

Siegel-Walfisz Theorem (1935)

If $n \ge 2$ and *a* is coprime to *q* then as $x \to \infty$,

$$\pi(x; a, q) := \sum_{\substack{p \le x \\ p \equiv a \pmod{q}}} 1 = \frac{1}{\varphi(q)} \operatorname{Li}(x) + \text{"error term"}.$$

COUNTING PRIMES IN ARITHMETIC PROGRESSIONS

Siegel-Walfisz Theorem (1935)

If $n \ge 2$ and *a* is coprime to *q* then as $x \to \infty$,

$$\pi(x; a, q) := \sum_{\substack{p \le x \\ p \equiv a \pmod{q}}} 1 = \frac{1}{\varphi(q)} \operatorname{Li}(x) + \text{"error term"}.$$

• The error term depends on the zero-free region of the Dirichlet *L*-function:

$$L(s,\chi_q) := \sum_{n=1}^{\infty} \frac{\chi_q(n)}{n^s}, \quad \Re(s) > 1$$

COUNTING PRIME IDEALS IN NUMBER FIELDS

Prime Ideal Theorem (Landau 1918)
As
$$x \to \infty$$
,
 $\pi(x; k) := \sum_{\substack{\mathfrak{p} \subset \mathcal{O}_k \\ N\mathfrak{m}_{k/\mathbb{Q}}\mathfrak{p} \leq x}} 1 = \mathrm{Li}(x) + \text{"error term"}.$

The error term depends on the zero-free region of the Dedekind zeta-function of *k*:

The error term depends on the zero-free region of the Dedekind zeta-function of *k*:

$$\zeta_k(s) := \sum_{I \subset \mathcal{O}_k} \frac{1}{(\mathrm{Nm}_{k/\mathbb{Q}}I)^s} = \prod_{\mathfrak{p} \subset \mathcal{O}_k} \left(1 - \frac{1}{(\mathrm{Nm}_{k/\mathbb{Q}}\mathfrak{p})^s}\right)^{-1}, \quad \Re(s) > 1$$

The error term depends on the zero-free region of the Dedekind zeta-function of *k*:

$$\zeta_k(s) := \sum_{I \subset \mathcal{O}_k} \frac{1}{(\mathrm{Nm}_{k/\mathbb{Q}}I)^s} = \prod_{\mathfrak{p} \subset \mathcal{O}_k} \left(1 - \frac{1}{(\mathrm{Nm}_{k/\mathbb{Q}}\mathfrak{p})^s}\right)^{-1}, \quad \Re(s) > 1$$

Example 1: When $k = \mathbb{Q}$, we have $\zeta_k(s) = \zeta(s)$.

The error term depends on the zero-free region of the Dedekind zeta-function of *k*:

$$\zeta_k(s) := \sum_{I \subset \mathcal{O}_k} \frac{1}{(\mathrm{Nm}_{k/\mathbb{Q}}I)^s} = \prod_{\mathfrak{p} \subset \mathcal{O}_k} \left(1 - \frac{1}{(\mathrm{Nm}_{k/\mathbb{Q}}\mathfrak{p})^s}\right)^{-1}, \quad \Re(s) > 1$$

Example 1: When $k = \mathbb{Q}$, we have $\zeta_k(s) = \zeta(s)$. **Example 2**: When $k = \mathbb{Q}(\sqrt{q})$, one can show $\zeta_k(s) = \zeta(s)L(s, \chi_q)$.

The error term depends on the zero-free region of the Dedekind zeta-function of *k*:

$$\zeta_k(s) := \sum_{I \subset \mathcal{O}_k} \frac{1}{(\mathrm{Nm}_{k/\mathbb{Q}}I)^s} = \prod_{\mathfrak{p} \subset \mathcal{O}_k} \left(1 - \frac{1}{(\mathrm{Nm}_{k/\mathbb{Q}}\mathfrak{p})^s}\right)^{-1}, \quad \Re(s) > 1$$

Generalized Riemann Hypothesis: Nontrivial zeros of $\zeta_K(s)$ have real part equal to 1/2.

Let L/k be a normal extension with Galois group G = Gal(L/k).

Let L/k be a normal extension with Galois group G = Gal(L/k).

Let L/k be a normal extension with Galois group G = Gal(L/k).

$$\pi_{\mathcal{C}}(x,L/k) := \# \left\{ \mathfrak{p} \subset \mathcal{O}_k : \mathfrak{p} \text{ unramified in } L, \left[\frac{L/k}{\mathfrak{p}} \right] = \mathcal{C}, \operatorname{Nm}_{k/\mathbb{Q}} \mathfrak{p} \leq x \right\}$$

Let L/k be a normal extension with Galois group G = Gal(L/k).

$$\pi_{\mathcal{C}}(x,L/k) := \# \left\{ \mathfrak{p} \subset \mathcal{O}_k : \mathfrak{p} \text{ unramified in } L, \left[\frac{L/k}{\mathfrak{p}} \right] = \mathcal{C}, \operatorname{Nm}_{k/\mathbb{Q}} \mathfrak{p} \leq x \right\}$$

Let L/k be a normal extension with Galois group G = Gal(L/k).

$$\pi_{\mathcal{C}}(x,L/k) := \# \left\{ \mathfrak{p} \subset \mathcal{O}_k : \mathfrak{p} \text{ unramified in } L, \left[\frac{L/k}{\mathfrak{p}} \right] = \mathcal{C}, \operatorname{Nm}_{k/\mathbb{Q}} \mathfrak{p} \leq x \right\}$$

$$\left| \begin{array}{c} L \\ Gal(L/k) \cong G \end{array} \right|$$

k

- p is a prime ideal in O_k which is unramified in L.
- $\left[\frac{L/k}{\mathfrak{p}}\right]$ is the Artin symbol, which denotes the fixed, targeted conjugacy class \mathcal{C} within G.

Effective Chebotarev Density Theorem (Lagarias & Odlyzko 1975)

 $\operatorname{Gal}(L/k)\cong G$ k

Effective Chebotarev Density Theorem (Lagarias & Odlyzko 1975)

$$\pi_{\mathcal{C}}(x; L/k) = \frac{|\mathcal{C}|}{|G|} \operatorname{Li}(x) + \text{"error term"}, \quad x \to \infty$$

The error term depends on the zero-free region of the Dedekind zeta-function of *L*.

$$\begin{array}{c} L \\ \left| \right\rangle \operatorname{Gal}(L/k) \cong G \\ k \\ \left| \right\rangle \\ \mathbb{Q} \end{array}$$

Effective **Chebotarev Density Theorem** (Lagarias & Odlyzko 1975)

$$\pi_{\mathcal{C}}(x; L/k) = \frac{|\mathcal{C}|}{|G|} \operatorname{Li}(x) + \text{"error term"}, \quad x \to \infty$$

The error term depends on the zero-free region of the Dedekind zeta-function of *L*.

Effective **Chebotarev Density Theorem** (Lagarias & Odlyzko 1975)

$$\pi_{\mathcal{C}}(x; L/k) = \frac{|\mathcal{C}|}{|G|} \operatorname{Li}(x) + \text{"error term"}, \quad x \to \infty$$

The error term depends on the zero-free region of the Dedekind zeta-function of *L*.

$$\zeta_L(s) := \zeta_k(s) \prod_{\substack{\rho \in \hat{G} \\ \rho \neq \rho_0}} L(s, \rho, L/k)^{\dim \rho}$$

• Each $L(s, \rho, L/k)$ is an Artin *L*-function.

Effective **Chebotarev Density Theorem** (Lagarias & Odlyzko 1975)

$$\pi_{\mathcal{C}}(x; L/k) = \frac{|\mathcal{C}|}{|G|} \operatorname{Li}(x) + \text{"error term"}, \quad x \to \infty$$

The error term depends on the zero-free region of the Dedekind zeta-function of *L*.

$$\zeta_L(s) := \zeta_k(s) \prod_{\substack{\rho \in \hat{G} \\ \rho \neq \rho_0}} L(s, \rho, L/k)^{\dim \rho}$$

- Each $L(s, \rho, L/k)$ is an Artin *L*-function.
- The product is over the nontrivial irreducible representations of *G*.

Let $k = \mathbb{Q}$ and $G = \operatorname{Gal}(L/\mathbb{Q}) \cong S_3$.

$$\zeta_L(s) =$$

Let $k = \mathbb{Q}$ and $G = \operatorname{Gal}(L/\mathbb{Q}) \cong S_3$.

*S*³ has the following Galois representations:

$$\zeta_L(s) =$$

Let $k = \mathbb{Q}$ and $G = \operatorname{Gal}(L/\mathbb{Q}) \cong S_3$.

*S*³ has the following Galois representations:

• ρ_0 – trivial representation, 1-dimensional

$$\zeta_L(s)=\zeta(s)$$

Let $k = \mathbb{Q}$ and $G = \operatorname{Gal}(L/\mathbb{Q}) \cong S_3$.

*S*³ has the following Galois representations:

- ρ_0 trivial representation, 1-dimensional
- ρ_1 sign representation, 1-dimensional

$$\zeta_L(s) = \zeta(s) L(s, \rho_1)$$

Let
$$k = \mathbb{Q}$$
 and $G = \operatorname{Gal}(L/\mathbb{Q}) \cong S_3$.

*S*³ has the following Galois representations:

- ρ_0 trivial representation, 1-dimensional
- ρ_1 sign representation, 1-dimensional
- ρ_2 standard representation, 2-dimensional

$$\zeta_L(s) = \zeta(s) L(s, \rho_1) L(s, \rho_2)^2$$

AN EFFECTIVE CHEBOTAREV DENSITY THEOREM

Let L/k be a normal extension with Galois group G = Gal(L/k), $D_L = |\text{Disc } L/\mathbb{Q}|$, and $n_L = [L : \mathbb{Q}]$.

AN EFFECTIVE CHEBOTAREV DENSITY THEOREM

Let L/k be a normal extension with Galois group G = Gal(L/k), $D_L = |\text{Disc } L/\mathbb{Q}|$, and $n_L = [L : \mathbb{Q}]$.

Theorem (Lagarias-Odlyzko, 1975)

For any fixed conjugacy class $\mathcal{C} \subset G$,

$$\left|\pi_{\mathcal{C}}(x,L/k) - \frac{|\mathcal{C}|}{|G|}\operatorname{Li}(x)\right| \leq \underbrace{\frac{|\mathcal{C}|}{|G|}\operatorname{Li}(x^{\beta_0}) + c_1x\exp\left(-c_2n_L^{1/2}(\log x)^{1/2}\right)}_{\mathcal{C}}$$

Error term depends on zero-free region of $\zeta_L(s)$ *.*

for $x \ge \exp(10n_L(\log D_L)^2)$, where

- β_0 is a real, simple exceptional zero of $\zeta_L(s)$;
- *c*₁, *c*₂ *are effectively computable constants.*

A Conditional EFFECTIVE CHEBOTAREV DENSITY THEOREM

Let L/k be a normal extension with Galois group G = Gal(L/k), $D_L = |\text{Disc } L/\mathbb{Q}|$, and $n_L = [L : \mathbb{Q}]$.

A Conditional EFFECTIVE CHEBOTAREV DENSITY THEOREM

Let L/k be a normal extension with Galois group G = Gal(L/k), $D_L = |\text{Disc } L/\mathbb{Q}|$, and $n_L = [L : \mathbb{Q}]$.

Theorem (Lagarias-Odlyzko, 1975)

If the **generalized Riemann hypothesis** *holds for the Dedekind zeta-function* $\zeta_L(s)$ *, then for any fixed conjugacy class* $C \subset G$

$$\pi_{\mathcal{C}}(x, L/k) - \frac{|\mathcal{C}|}{|G|} \operatorname{Li}(x) \leq \underbrace{C_0 \frac{|\mathcal{C}|}{|G|} x^{1/2} \log(D_L x^{n_L})}_{\text{Error term relies on GRH for } \mathcal{L}(s)}$$

for every $x \ge 2$, where

• *C*⁰ *is an effectively computable constant.*

Theorem (Unconditional)

For any fixed conjugacy class $\mathcal{C} \subset G$,

$$\left|\pi_{\mathcal{C}}(x,L/k) - \frac{|\mathcal{C}|}{|G|}\operatorname{Li}(x)\right| \leq \frac{|\mathcal{C}|}{|G|}\operatorname{Li}(x^{\beta_0}) + c_1x \exp\left(-c_2n_L^{1/2}(\log x)^{1/2}\right)$$

for $x \ge \exp(10n_L(\log D_L)^2)$.

Theorem (Unconditional)

For any fixed conjugacy class $\mathcal{C} \subset G$,

$$\left|\pi_{\mathcal{C}}(x,L/k) - \frac{|\mathcal{C}|}{|G|}\operatorname{Li}(x)\right| \leq \frac{|\mathcal{C}|}{|G|}\operatorname{Li}(x^{\beta_0}) + c_1x \exp\left(-c_2n_L^{1/2}(\log x)^{1/2}\right)$$

for $x \ge \exp(10n_L(\log D_L)^2)$.

Theorem (Conditional)

If GRH holds for $\zeta_L(s),$ then for any fixed conjugacy class $\mathcal{C} \subset G$

$$\left|\pi_{\mathcal{C}}(x,L/k) - \frac{|\mathcal{C}|}{|G|}\operatorname{Li}(x)\right| \le C_0 \frac{|\mathcal{C}|}{|G|} x^{1/2} \log(D_L x^{n_L}).$$

Theorem (Unconditional)

For any fixed conjugacy class $\mathcal{C} \subset G$,

$$\left|\pi_{\mathcal{C}}(x,L/k) - \frac{|\mathcal{C}|}{|G|}\operatorname{Li}(x)\right| \leq \frac{|\mathcal{C}|}{|G|}\operatorname{Li}(x^{\beta_0}) + c_1x \exp\left(-c_2n_L^{1/2}(\log x)^{1/2}\right)$$

for $x \ge \exp(10n_L(\log D_L)^2)$.

Theorem (Conditional)

If GRH holds for $\zeta_L(s),$ then for any fixed conjugacy class $\mathcal{C} \subset G$

$$\left|\pi_{\mathcal{C}}(x,L/k) - \frac{|\mathcal{C}|}{|G|}\operatorname{Li}(x)\right| \le C_0 \frac{|\mathcal{C}|}{|G|} x^{1/2} \log(D_L x^{n_L}).$$

Theorem (Unconditional)

For any fixed conjugacy class $\mathcal{C} \subset G$,

$$\left|\pi_{\mathcal{C}}(x,L/k) - \frac{|\mathcal{C}|}{|G|}\operatorname{Li}(x)\right| \leq \frac{|\mathcal{C}|}{|G|}\operatorname{Li}(x^{\beta_0}) + c_1x\exp\left(-c_2n_L^{1/2}(\log x)^{1/2}\right)$$

for $x \ge \exp(10n_L(\log D_L)^2)$.

Theorem (Conditional)

If GRH holds for $\zeta_L(s),$ then for any fixed conjugacy class $\mathcal{C} \subset G$

$$\left|\pi_{\mathcal{C}}(x,L/k) - \frac{|\mathcal{C}|}{|G|}\operatorname{Li}(x)\right| \le C_0 \frac{|\mathcal{C}|}{|G|} x^{1/2} \log(D_L x^{n_L}).$$

Theorem (Unconditional)

For any fixed conjugacy class $\mathcal{C} \subset G$,

$$\left|\pi_{\mathcal{C}}(x,L/k) - \frac{|\mathcal{C}|}{|G|}\operatorname{Li}(x)\right| \leq \frac{|\mathcal{C}|}{|G|}\operatorname{Li}(x^{\beta_0}) + c_1 x \exp\left(-c_2 n_L^{1/2} (\log x)^{1/2}\right)$$

for $x \ge \exp(10n_L(\log D_L)^2 \ge D_L^{10n_L})$.

Theorem (Conditional)

If GRH holds for $\zeta_L(s)$, then for any fixed conjugacy class $\mathcal{C} \subset G$

$$\left|\pi_{\mathcal{C}}(x,L/k) - \frac{|\mathcal{C}|}{|G|}\operatorname{Li}(x)\right| \le C_0 \frac{|\mathcal{C}|}{|G|} x^{1/2} \log(D_L x^{n_L}).$$

Theorem (Unconditional)

For any fixed conjugacy class $\mathcal{C} \subset G$,

$$\left|\pi_{\mathcal{C}}(x,L/k) - \frac{|\mathcal{C}|}{|G|}\operatorname{Li}(x)\right| \leq \frac{|\mathcal{C}|}{|G|}\operatorname{Li}(x^{\beta_0}) + c_1 x \exp\left(-c_2 n_L^{1/2} (\log x)^{1/2}\right)$$

for $x \ge \exp(10n_L(\log D_L)^2 \ge D_L^{10n_L})$.

Theorem (Conditional)

If GRH holds for $\zeta_L(s),$ then for any fixed conjugacy class $\mathcal{C} \subset G$

$$\left|\pi_{\mathcal{C}}(x,L/k) - \frac{|\mathcal{C}|}{|G|}\operatorname{Li}(x)\right| \le C_0 \frac{|\mathcal{C}|}{|G|} x^{1/2} \log(D_L x^{n_L}).$$

for every $x \ge 2$.

Want: An *unconditional* effective CDT with a low threshold on x, no β_0 term, and an acceptable error term.

Let $\mathcal{F}(X)$ *be a family of fields, where* $K \in \mathcal{F}(X)$ *have*

• fixed degree n over \mathbb{Q}

- fixed degree n over \mathbb{Q}
- fixed Galois Group $G = \operatorname{Gal}(\widetilde{K}/\mathbb{Q})$

- fixed degree n over \mathbb{Q}
- *fixed Galois Group* $G = \text{Gal}(\widetilde{K}/\mathbb{Q})$
- $D_K \leq X$

- fixed degree n over \mathbb{Q}
- *fixed Galois Group* $G = \text{Gal}(\widetilde{K}/\mathbb{Q})$
- $D_K \leq X$
- a possible ramification restriction on tamely ramified primes;

Let $\mathcal{F}(X)$ *be a family of fields, where* $K \in \mathcal{F}(X)$ *have*

- fixed degree n over \mathbb{Q}
- *fixed Galois Group* $G = \text{Gal}(\widetilde{K}/\mathbb{Q})$
- $D_K \leq X$

• a possible ramification restriction on tamely ramified primes; Suppose it is known that $|\mathcal{F}(X)| \gg X^a$ for some a > 0.

Let $\mathcal{F}(X)$ *be a family of fields, where* $K \in \mathcal{F}(X)$ *have*

- fixed degree n over \mathbb{Q}
- *fixed Galois Group* $G = \text{Gal}(\widetilde{K}/\mathbb{Q})$
- $D_K \leq X$

• a possible ramification restriction on tamely ramified primes; Suppose it is known that $|\mathcal{F}(X)| \gg X^a$ for some a > 0. Then for at most $O(X^b)$ exceptions, with b < a, for fixed $A \ge 2$, we have

$$\left|\pi_{\mathcal{C}}(x,\widetilde{K}/\mathbb{Q}) - \frac{|\mathcal{C}|}{|G|}\operatorname{Li}(x)\right| \le \frac{|\mathcal{C}|}{|G|} \frac{x}{(\log x)^A}$$

Let $\mathcal{F}(X)$ *be a family of fields, where* $K \in \mathcal{F}(X)$ *have*

- fixed degree n over \mathbb{Q}
- *fixed Galois Group* $G = \text{Gal}(\widetilde{K}/\mathbb{Q})$
- $D_K \leq X$

• a possible ramification restriction on tamely ramified primes; Suppose it is known that $|\mathcal{F}(X)| \gg X^a$ for some a > 0. Then for at most $O(X^b)$ exceptions, with b < a, for fixed $A \ge 2$, we have

$$\left| \pi_{\mathcal{C}}(x, \widetilde{K}/\mathbb{Q}) - \frac{|\mathcal{C}|}{|G|} \operatorname{Li}(x) \right| \leq \frac{|\mathcal{C}|}{|G|} \frac{x}{(\log x)^A}$$

where $x \ge \kappa_1 \exp\{\kappa_2(\log \log D_{\widetilde{K}}^{\kappa_3})^2\}$, and the κ_i depend on $n, |G|, D_{\widetilde{K}}, a, b, and A$.

Let $\mathcal{F}(X)$ *be a family of fields, where* $K \in \mathcal{F}(X)$ *have*

- fixed degree n over \mathbb{Q}
- *fixed Galois Group* $G = \text{Gal}(\widetilde{K}/\mathbb{Q})$
- $D_K \leq X$

• a possible ramification restriction on tamely ramified primes; Suppose it is known that $|\mathcal{F}(X)| \gg X^a$ for some a > 0. Then for at most $O(X^b)$ exceptions, with b < a, for fixed $A \ge 2$, we have

$$\left|\pi_{\mathcal{C}}(x,\widetilde{K}/\mathbb{Q}) - \frac{|\mathcal{C}|}{|G|}\operatorname{Li}(x)\right| \leq \frac{|\mathcal{C}|}{|G|} \frac{x}{(\log x)^A}$$

where $x \ge \kappa_1 \exp\{\kappa_2(\log \log D_{\widetilde{K}}^{\kappa_3})^2\}$, and the κ_i depend on $n, |G|, D_{\widetilde{K}}, a, b, and A$.

• No β_0 term.

Let $\mathcal{F}(X)$ *be a family of fields, where* $K \in \mathcal{F}(X)$ *have*

- fixed degree n over \mathbb{Q}
- *fixed Galois Group* $G = \text{Gal}(\widetilde{K}/\mathbb{Q})$
- $D_K \leq X$

• a possible ramification restriction on tamely ramified primes; Suppose it is known that $|\mathcal{F}(X)| \gg X^a$ for some a > 0. Then for at most $O(X^b)$ exceptions, with b < a, for fixed $A \ge 2$, we have

$$\left|\pi_{\mathcal{C}}(x,\widetilde{K}/\mathbb{Q}) - \frac{|\mathcal{C}|}{|G|}\operatorname{Li}(x)\right| \leq \frac{|\mathcal{C}|}{|G|} \frac{x}{(\log x)^A}$$

where $x \ge \kappa_1 \exp\{\kappa_2(\log \log D_{\widetilde{K}}^{\kappa_3})^2\}$, and the κ_i depend on $n, |G|, D_{\widetilde{K}}, a, b, and A$.

• No β_0 term. Can take $x = D^{\eta}_{\widetilde{K}}$ for η small.

Let $\mathcal{F}(X)$ *be a family of fields, where* $K \in \mathcal{F}(X)$ *have*

- fixed degree n over \mathbb{Q}
- *fixed Galois Group* $G = \text{Gal}(\widetilde{K}/\mathbb{Q})$
- $D_K \leq X$

• a possible ramification restriction on tamely ramified primes; Suppose it is known that $|\mathcal{F}(X)| \gg X^a$ for some a > 0. Then for at most $O(X^b)$ exceptions, with b < a, for fixed $A \ge 2$, we have

$$\left|\pi_{\mathcal{C}}(x,\widetilde{K}/\mathbb{Q}) - \frac{|\mathcal{C}|}{|G|}\operatorname{Li}(x)\right| \leq \frac{|\mathcal{C}|}{|G|} \frac{x}{(\log x)^A}$$

where $x \ge \kappa_1 \exp\{\kappa_2 (\log \log D_{\widetilde{K}}^{\kappa_3})^2\}$, and the κ_i depend on $n, |G|, D_{\widetilde{K}}, a, b, and A$.

• No β_0 term. Can take $x = D_{\widetilde{K}}^{\eta}$ for η small. We prove *most* Dedekind zeta-functions in the family satisfy a certain zero-free region.

Application to bounding ℓ -torsion

Skeleton of Corollary (Pierce, T., Wood)

Let $\mathcal{F}(X)$ be a family of fields for which the previous Chebotarev Density Theorem holds. For the nonexceptional fields $K \in \mathcal{F}(X)$, we have

$$|\mathrm{Cl}_{K}[\ell]| \ll_{n,\ell,\varepsilon} D_{K}^{\frac{1}{2} - \frac{1}{2\ell(n-1)} + \varepsilon}$$

Application to bounding ℓ -torsion

Skeleton of Corollary (Pierce, T., Wood)

Let $\mathcal{F}(X)$ be a family of fields for which the previous Chebotarev Density Theorem holds. For the nonexceptional fields $K \in \mathcal{F}(X)$, we have

$$|\mathbf{Cl}_K[\ell]| \ll_{n,\ell,\varepsilon} D_K^{\frac{1}{2} - \frac{1}{2\ell(n-1)} + \varepsilon}.$$

Question: To which families does our Chebotarev Density Theorem apply?

$[K:\mathbb{Q}]$	$\operatorname{Gal}(\widetilde{K}/\mathbb{Q})$	restriction on	size of	size of
		tamely ramified primes	exceptional family	total family

$[K:\mathbb{Q}]$	$\operatorname{Gal}(\widetilde{K}/\mathbb{Q})$	restriction on tamely ramified primes	size of exceptional family	size of total family
$n \ge 2$	C_n	totally ramified	$\ll X^{\varepsilon}, \varepsilon > 0$	$\sim c X^{1/(n-1)}$

$[K:\mathbb{Q}]$	$\operatorname{Gal}(\widetilde{K}/\mathbb{Q})$	restriction on tamely ramified primes	size of exceptional family	size of total family
$n \ge 2$	C_n	totally ramified	$\ll X^{arepsilon}, arepsilon > 0$	$\sim c X^{1/(n-1)}$
3	S_3	transposition	$\ll X^{1/3}$ Ellenberg-Venkatesh	$\sim \mathcal{C} X$ Bhargava

$[K:\mathbb{Q}]$	$\operatorname{Gal}(\widetilde{K}/\mathbb{Q})$	restriction on tamely ramified primes	size of exceptional family	size of total family
$n \ge 2$	C_n	totally ramified	$\ll X^{\varepsilon}, \varepsilon > 0$	$\sim c X^{1/(n-1)}$
3	S_3	transposition	$\ll X^{1/3}$ Ellenberg-Venkatesh	$\sim \mathcal{C} X$ Bhargava
4	S_4	transposition	$\ll X^{1/2+arepsilon},arepsilon>0$	$\sim \mathcal{C} X$ Bhargava

$\operatorname{Gal}(\widetilde{K}/\mathbb{Q})$	restriction on tamely ramified primes	size of exceptional family	size of total family
C_n	totally ramified	$\ll X^{arepsilon}, arepsilon > 0$	$\sim c X^{1/(n-1)}$
S_3	transposition	$\ll X^{1/3}$ Ellenberg-Venkatesh	$\sim \mathcal{C} X$ Bhargava
S_4	transposition	$\ll X^{1/2+\varepsilon}, \varepsilon > 0$ Klüners	$\sim \mathcal{C} X$ Bhargava
A_4	K4 subgroup	≪ X ^{0.27}	$\gg X^{1/2}$
	C_n S_3 S_4	tamely ramified primes C _n totally ramified S ₃ transposition S ₄ transposition	tamely ramified primesexceptional family C_n totally ramified $\ll X^{\varepsilon}, \varepsilon > 0$ S_3 transposition $\ll X^{1/3}$ Ellenberg-Venkatesh S_4 transposition $\ll X^{1/2+\varepsilon}, \varepsilon > 0$ Klüners

$[K:\mathbb{Q}]$	$\operatorname{Gal}(\widetilde{K}/\mathbb{Q})$	restriction on tamely ramified primes	size of exceptional family	size of total family
$n \ge 2$	C_n	totally ramified	$\ll X^{\varepsilon}, \varepsilon > 0$	$\sim c X^{1/(n-1)}$
3	S_3	transposition	$\ll X^{1/3}$ Ellenberg-Venkatesh	$\sim \mathcal{C} X$ Bhargava
4	S_4	transposition	$\ll X^{1/2+arepsilon},arepsilon>0$	$\sim \mathcal{C} X$ Bhargava
4	A_4	K4 subgroup	≪ X ^{0.27}	$\gg X^{1/2}$
$p \ge 5$	D _p order 2p	reflection	$\ll X^{1/(p-1)}$	$\gg X^{2/(p-1)}$

	$[K:\mathbb{Q}] \operatorname{Gal}(\widetilde{K}/\mathbb{Q})$	restriction on tamely ramified primes	size of exceptional family	size of total family
--	--	--	-------------------------------	-------------------------

$[K:\mathbb{Q}]$	$\operatorname{Gal}(\widetilde{K}/\mathbb{Q})$	restriction on tamely ramified primes	size of exceptional family	size of total family
5	S ₅	transposition	$\ll X^{199/200}$	$\gg X$ Bhargava

$[K:\mathbb{Q}]$	$\operatorname{Gal}(\widetilde{K}/\mathbb{Q})$	restriction on tamely ramified primes	size of exceptional family	size of total family
5	S_5	transposition	$\ll X^{199/200}$	$\gg X$ Bhargava
$n \ge 6$	S _n	transposition	$\ll X^{\Delta}$ if there exists $\ll D^{\Delta}$ degree <i>n</i> fields such that $D_K = D.$	$\gg X^{1/2+1/n}$ Bhargava, Shankur Wang

$[K:\mathbb{Q}]$	$\operatorname{Gal}(\widetilde{K}/\mathbb{Q})$	restriction on tamely ramified primes	size of exceptional family	size of total family
5	S_5	transposition	$\ll X^{199/200}$	$\gg X$ Bhargava
$n \ge 6$	S _n	transposition	$\ll X^{\Delta}$ if there exists $\ll D^{\Delta}$ degree <i>n</i> fields such that $D_K = D.$	$\gg X^{1/2+1/n}$ Bhargava, Shankur Wang
$n \ge 5$	A_n	none	$\ll X^{\varepsilon}, \varepsilon > 0$	$ \gg X^{\beta_n - \varepsilon} \\ \beta_n = \frac{1 - 2/n!}{4n - 4} $

Ellenberg-Venkatesh $|\operatorname{Cl}_K[\ell]| \ll_{\ell,n,\varepsilon} D_K^{rac{1}{2}+\varepsilon} M^{-1}$

THE ZERO-FREE REGION

$$L = \widetilde{K}$$

$$\left| \right\rangle$$

$$K$$

$$n \right| \qquad Gal(\widetilde{K}/\mathbb{Q}) \cong G$$

$$\mathbb{Q}$$

$$\begin{aligned} \zeta_{\widetilde{K}}(s) &= \zeta(s) \, \prod_{\substack{\rho \in \hat{G} \\ \rho \neq \rho_0 \text{ irreducible}}} L(s,\rho,\widetilde{K}/\mathbb{Q})^{\dim\rho} \end{aligned}$$

THE ZERO-FREE REGION

$$\zeta_{\widetilde{K}}(s) = \zeta(s) \prod_{\substack{\rho \in \widehat{G} \\ \rho \neq \rho_0 \text{ irreducible}}} L(s, \rho, \widetilde{K}/\mathbb{Q})^{\dim \rho}$$

Known zero-free region for $\zeta(s)$:

$$\sigma > 1 - \frac{c}{\log^{2/3}(|t|+2)\log\log^{1/3}(|t|+3)}.$$

THE ZERO-FREE REGION

$$\begin{aligned} \zeta_{\widetilde{K}}(s) &= \zeta(s) \prod_{\substack{\rho \in \hat{G} \\ \rho \neq \rho_0 \text{ irreducible}}} L(s,\rho,\widetilde{K}/\mathbb{Q})^{\dim \rho} \end{aligned}$$

Known zero-free region for $\zeta(s)$:

$$\sigma > 1 - \frac{c}{\log^{2/3}(|t|+2)\log\log^{1/3}(|t|+3)}.$$

Assumed zero-free region for $\zeta_{\widetilde{K}}(s)/\zeta(s)$:

$$[1-\delta,1] \times [-(\log D_{\widetilde{K}})^{2/\delta}, (\log D_{\widetilde{K}})^{2/\delta}].$$

PROVING THE CHEBOTAREV DENSITY THEOREM

Idea of the proof

• We return to the method of Lagarias-Odlyzko.

PROVING THE CHEBOTAREV DENSITY THEOREM

Idea of the proof

- We return to the method of Lagarias-Odlyzko.
- We insert our *assumed* zero-free region for ζ_L(s)/ζ(s) at a key point.

PROVING THE CHEBOTAREV DENSITY THEOREM

Idea of the proof

- We return to the method of Lagarias-Odlyzko.
- We insert our *assumed* zero-free region for ζ_L(s)/ζ(s) at a key point.
- We work delicately to provide both an acceptable effective error term, and a sufficiently small threshold for *x* depending on *D*_{*L*}.

Theorem (Pierce, T., Wood)

Let $0 < \delta \le 1/4$ be a fixed positive constant. For any normal extension of number fields L/\mathbb{Q} with $[L : \mathbb{Q}] = n_L$ such that D_L is sufficiently large and $\zeta_L(s)$ obeys the assumed zero-free region, we have that for any $A \ge 2$ and any conjugacy class $C \subset G = \text{Gal}(L/\mathbb{Q})$

$$\left| \pi_{\mathcal{C}}(x, L/\mathbb{Q}) - \frac{|\mathcal{C}|}{|G|} \operatorname{Li}(x) \right| \leq \underbrace{\frac{|\mathcal{C}|}{|G|} \frac{x}{(\log x)^{A}}}_{error \ term \ depends}$$

for all

$$x \ge \underbrace{c_1 \exp\left\{c_2 (\log \log(D_L^{c_3})^{3/2} \log \log \log(D_L^{c_4}))^{1/2}\right\}}_{\ge (\log D_L)^{small power}},$$

where all the constants can be written explicitly.

BOUNDING ℓ -torsion without assuming GRH

BOUNDING ℓ -torsion without assuming GRH

Key Tool - Zeros of Automorphic L-functions

Let π be a cuspidal automorphic representation on $GL_m(\mathbb{Q})$.

Consider the corresponding automorphic *L*-function $L(s, \pi)$.

Key Tool - Zeros of Automorphic L-functions

Let π be a cuspidal automorphic representation on $GL_m(\mathbb{Q})$.

Consider the corresponding automorphic *L*-function $L(s, \pi)$.

Let $s = \beta + i\gamma$ denote a zero of $L(s, \pi)$.

Key Tool - Zeros of Automorphic L-functions

Let π be a cuspidal automorphic representation on $GL_m(\mathbb{Q})$.

Consider the corresponding automorphic *L*-function $L(s, \pi)$.

Let $s = \beta + i\gamma$ denote a zero of $L(s, \pi)$.

Define

 $N(\pi; \alpha, T) := \# \text{ of zeros of } L(s, \pi) \text{ such that } \beta > \alpha \text{ and } |\gamma| \leq T.$

KEY TOOL - ZEROS OF AUTOMORPHIC L-FUNCTIONS

Let π be a cuspidal automorphic representation on $GL_m(\mathbb{Q})$.

Consider the corresponding automorphic *L*-function $L(s, \pi)$.

Let $s = \beta + i\gamma$ denote a zero of $L(s, \pi)$.

Define

 $N(\pi; \alpha, T) := \# \text{ of zeros of } L(s, \pi) \text{ such that } \beta > \alpha \text{ and } |\gamma| \leq T.$

Kowalski and Michel have given a bound for $N(\pi; \alpha, T)$ that holds on average for an appropriately defined family of cuspidal automorphic representations.

Theorem (Kowalski & Michel, 2002)

Let S(q), $q \ge 1$ be a family of cuspidal automorphic representations satisfying a prescribed set of conditions. Let $\alpha \ge 3/4$ and $T \ge 2$. Then there exists $c_0 > 0$, depending on the family, such that

$$\sum_{\pi \in S(q)} N(\pi; \alpha, T) \ll T^B q^{c_0 \frac{1-\alpha}{2\alpha-1}}$$

for all $q \ge 1$ and some $B \ge 0$ that depends on the family. The implied constant only depends on the choice of c_0 .

Theorem (Kowalski & Michel, 2002)

Let S(q), $q \ge 1$ be a family of cuspidal automorphic representations satisfying a prescribed set of conditions. Let $\alpha \ge 3/4$ and $T \ge 2$. Then there exists $c_0 > 0$, depending on the family, such that

$$\sum_{\pi \in S(q)} N(\pi; \alpha, T) \ll T^B q^{c_0 \frac{1-\alpha}{2\alpha-1}}$$

for all $q \ge 1$ and some $B \ge 0$ that depends on the family. The implied constant only depends on the choice of c_0 .

Applied to
$$L(s, \pi)$$
 for $\pi \in S(q) \implies$ a zero-free region of the desired shape that holds for all but a possible zero-density sub-family of *L*-functions

We wish to apply Kowalski-Michel to $\frac{\zeta_{\tilde{K}}(s)}{\zeta(s)}$ as *K* varies over $\mathcal{F}(X)$.

A couple of issues:

We wish to apply Kowalski-Michel to $\frac{\zeta_{\tilde{K}}(s)}{\zeta(s)}$ as *K* varies over $\mathcal{F}(X)$.

A couple of issues:

1. We are working with Artin *L*-functions, which in general are not known to be automorphic.

We wish to apply Kowalski-Michel to $\frac{\zeta_{\tilde{K}}(s)}{\zeta(s)}$ as *K* varies over $\mathcal{F}(X)$.

A couple of issues:

- 1. We are working with Artin *L*-functions, which in general are not known to be automorphic.
- 2. Kowalski & Michel's result applies to family of cuspidal automorphic representations. We would like to apply it to a family of *isobaric* automorphic representations.

$$\frac{\zeta_{\widetilde{K}}(s)}{\zeta(s)} = \prod_{\substack{\rho \in \widehat{G} \\ \rho \neq \rho_0 \text{ irreducible}}} L(s, \rho, \widetilde{K}/\mathbb{Q})^{d_j}, \quad d_j = \deg(\rho_j).$$

Issue #1 – We are working with Artin *L*-functions, which in general are not known to be automorphic.

$$\frac{\zeta_{\widetilde{K}}(s)}{\zeta(s)} = \prod_{\substack{\rho \in \hat{G} \\ \rho \neq \rho_0 \text{ irreducible}}} L(s, \rho, \widetilde{K}/\mathbb{Q})^{d_j}, \quad d_j = \deg(\rho_j).$$

Issue #1 – We are working with Artin *L*-functions, which in general are not known to be automorphic.

Assuming the strong Artin conjecture, we have that each $L(s, \rho, \widetilde{K}/\mathbb{Q})$ is automorphic, i.e. we can write

 $L(s,\rho,\widetilde{K}/\mathbb{Q})=L(s,\pi)$

for each $L(s, \rho, \widetilde{K}/\mathbb{Q})$ in our product.

$$\frac{\zeta_{\widetilde{K}}(s)}{\zeta(s)} = \prod_{\substack{\rho \in \widehat{G} \\ \rho \neq \rho_0 \text{ irreducible}}} L(s, \rho, \widetilde{K}/\mathbb{Q})^{d_j}, \quad d_j = \deg(\rho_j).$$

Issue # 2 – Kowalski & Michel applies to families of cuspidal automorphic representations, but we are working with families of isobaric automorphic representations.

$$\frac{\zeta_{\widetilde{K}}(s)}{\zeta(s)} = \prod_{\substack{\rho \in \widehat{G} \\ \rho \neq \rho_0 \text{ irreducible}}} L(s, \rho, \widetilde{K}/\mathbb{Q})^{d_j}, \quad d_j = \deg(\rho_j).$$

Issue # 2 – Kowalski & Michel applies to families of cuspidal automorphic representations, but we are working with families of isobaric automorphic representations.

• We decompose each Dedekind zeta function into a product of cuspidal automorphic *L*-functions.

$$\frac{\zeta_{\widetilde{K}}(s)}{\zeta(s)} = \prod_{\substack{\rho \in \widehat{G} \\ \rho \neq \rho_0 \text{ irreducible}}} L(s, \rho, \widetilde{K}/\mathbb{Q})^{d_j}, \quad d_j = \deg(\rho_j).$$

Issue # 2 – Kowalski & Michel applies to families of cuspidal automorphic representations, but we are working with families of isobaric automorphic representations.

- We decompose each Dedekind zeta function into a product of cuspidal automorphic *L*-functions.
- We apply the Kowalski-Michel result to the sub-family generated by each factor.

A NEW OBSTACLE:

In generalizing Kowalski-Michel, we uncover a technical barrier:

– a priori, each sub-family could lead to many bad fields for which our Chebotarev Density Theorem does not apply.

A NEW OBSTACLE:

In generalizing Kowalski-Michel, we uncover a technical barrier:

– a priori, each sub-family could lead to many bad fields for which our Chebotarev Density Theorem does not apply.

Must define our families of fields to avoid this situation – where potential "bad" elements in each sub-family propagate to create a "large" family of "bad" Dedekind zeta-functions $\zeta_{\widetilde{K}}(s)$.

BOUNDING ℓ -torsion without assuming GRH

Sketch of new idea

We transform the problem to counting how often *K*₁ and *K*₂ both contain a particular subfield *F*. This relies on work of Klüners and Nicolae (2016).

Sketch of new idea

- We transform the problem to counting how often \widetilde{K}_1 and \widetilde{K}_2 both contain a particular subfield *F*. This relies on work of Klüners and Nicolae (2016).
- To handle this counting problem, we make ramification type restrictions and derive a precise relationship between the D_F , D_K , $D_{\tilde{K}}$.

Sketch of new idea

- We transform the problem to counting how often \widetilde{K}_1 and \widetilde{K}_2 both contain a particular subfield *F*. This relies on work of Klüners and Nicolae (2016).
- To handle this counting problem, we make ramification type restrictions and derive a precise relationship between the *D_F*, *D_K*, *D_{K̃}*.

– Here, we must handle the issue for each type of *G* individually.

Sketch of new idea

- We transform the problem to counting how often \widetilde{K}_1 and \widetilde{K}_2 both contain a particular subfield *F*. This relies on work of Klüners and Nicolae (2016).
- To handle this counting problem, we make ramification type restrictions and derive a precise relationship between the D_F, D_K, D_{K̃}.

– Here, we must handle the issue for each type of *G* individually.

• Then we quantify how many *K* can have a particular discriminant.

BOUNDING ℓ -torsion without assuming GRH

Thanks for y'all's attention!