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BINARY QUADRATIC FORMS

(a, b, c) := ax2 + bxy + cy2, a, b, c integers.

Gauss

• classified the binary quadratic forms with a given
discriminant D := b2 − 4ac;

• formed the class group, the group of equivalence classes of
binary quadratic forms of a given D with group action
Gauss composition;

• showed that, for any given discriminant D, there exist only
finitely many equivalence classes of binary quadratic forms.
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QUADRATIC FORMS AND QUADRATIC NUMBER FIELDS

Let K = Q(
√

D) be a quadratic number field. To each form

(a, b, c) := ax2 + bxy + cy2

with discriminant D = b2 − 4ac, we may associate an ideal I of
OK, where

I =

〈
a,
−b +

√
D

2

〉
.

2



Binary quadratic forms ←→ Nonzero ideals of OQ[
√

D]

(a, b, c) := ax2 + bxy + cy2 I =
〈

a, −b+
√

D
2

〉

equivalent ←→ equivalent
binary quadratic forms ideals

composition of ←→ multiplication of
equivalence classes of forms equivalence classes of ideals

ClK := the ideal class group of K = Q(
√

D)

h(K) = |ClK| := the class number of K = Q(
√

D)

Note: h(K) is finite via the correspondence.
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CLASS GROUP OF K, [K : Q] ≥ 2

The ideal class group of K is defined by

ClK := JK/PK

• JK := the group of fractional ideals of K
• PK := the subgroup of principal ideals of K.

The class number of K is defined by

h(K) = |ClK|.

h(K) = 1 ⇐⇒ ClK = {id} ⇐⇒ OK is a PID ⇐⇒ OK is a UFD

Question: How big is |ClK| in general?
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Landau observed that if [K : Q] = n, then

|ClK| �n D1/2+ε
K

We may conclude that ClK is a finite abelian group.

For any integer ` > 1, the `-torsion subgroup of ClK is
given by

ClK[`] :=
{

[a] ∈ ClK : [a]` = Id
}

Natural Question: What is the size of ClK[`] as K varies within
a family of fields of fixed degree?
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HOW BIG IS |ClK[`]|?

Trivial Bound – For [K : Q] = n, any integer ` ≥ 1, and
ε > 0

|ClK[`]| ≤ |ClK| �n,ε D1/2+ε
K

Conjecture – For [K : Q] = n, any integer ` ≥ 1, and ε > 0

|ClK[`]| �n,`,ε Dε
K.

Recorded by
• Brumer-Silverman, ’96
• Duke, ’98
• Zhang, ’05
• Ellenberg-Venkatesh, ’07

Implied by
• Cohen-Lenstra-Martinet

heuristics on the
distribution of class groups
and `-torsion subgroups
within families
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WHAT DO WE KNOW IS TRUE?

Conjecture – For [K : Q] = n, any integer ` ≥ 1, and ε > 0

|ClK[`]| �n,`,ε Dε
K.

Theorem (Gauss)

For all quadratic fields K, we have |ClK[2]| �ε Dε
K.

• This is the only case (for ` prime) in which the conjecture
has been proved.

• Question: Are there cases for which nontrivial bounds
known?
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NONTRIVIAL BOUNDS ON |ClK[`]|
Theorem (Ellenberg & Venkatesh, 2007)

Let K/Q be a number field of degree 2 or 3. We have

|ClK[3]| �n,ε D
1
3+ε

K .

Let K/Q be a non-D4 number field of degree 4. We have

|ClK[3]| �ε D
1
2−

1
168+ε

K .

Theorem (Bhargava, Shankar, Taniguchi, Thorne, Tsimerman &
Zhao, 2017)

Let K/Q be a number field of degree n > 2. For some δn > 0 we have

|ClK[2]| �n,ε D
1
2−δn+ε

K .
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NONTRIVIAL BOUNDS ON |ClK[`]| . . . UNDER GRH

Theorem (Ellenberg & Venkatesh, 2007)

Let K/Q be a number field of degree n and ` a positive integer.
Assuming GRH, we have

|ClK[`]| �n,`,ε D
1
2−

1
2`(n−1)+ε

K .

• Question: What can we say unconditionally for all but a
possible exceptional set of fields K within a family?
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NONTRIVIAL BOUNDS ON |ClK[`]| . . . IN FAMILIES

Theorem (Soundararajan, 2000)

Let ` be prime. For all but a possible zero-density exceptional family
of imaginary quadratic fields K/Q, we have

|ClK[`]| �`,ε D
1
2−

1
2`+ε

K .

Theorem (Heath-Brown & Pierce, 2014)

Let ` ≥ 5 be prime. For all but a possible zero-density exceptional
family of imaginary quadratic fields K/Q, we have

|ClK[`]| �`,ε D
1
2−

3
2`+2+ε

K .
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NONTRIVIAL BOUNDS ON |ClK[`]| . . . IN FAMILIES

Theorem (Ellenberg, Pierce, & Wood, 2016)

Let ` ≥ 1, and let [K : Q] = 2, 3 or 5. For all but a possible
zero-density exceptional family of fields K/Q, we have

|ClK[`]| �n,`,ε D
1
2−

1
2`(n−1)+ε

K .

If [K : Q] = 4, then the same bound applies for K non-D4.

• Note that the bound is as strong as on GRH.

Pierce, T., and Wood, (2017 preprint)
Under certain conditions (but never under GRH), we ex-
tend this result to different families in which [K : Q] ≥ 2.
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STARTING POINT

Theorem (Ellenberg & Venkatesh, 2007)

Suppose that there are M rational primes

p1, p2, . . . , pM

that split completely in K, where pj ≤ Dδ
K and δ < 1

2`(n−1) . Then for
any ε > 0,

|ClK[`]| �n,`,ε D
1
2+ε

K M−1.

Question: How might one go about finding small primes that
split completely in K?

Answer: via a Chebotarev Density Theorem
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AN EFFECTIVE CHEBOTAREV DENSITY THEOREM

K

Q

Gal(K/Q) ∼= Gn

Theorem (Lagarias-Odlyzko*, 1975)

If GRH holds for ζK(s), then∣∣∣∣#{p ≤ x that split completely in K} − Li(x)

|G|

∣∣∣∣
≤ C0

|G|
x1/2 log(DKxnK)

for every x ≥ 2 and C0 is effectively computable.

*This is a special case of their theorem.
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• We may take x = Dδ−ε0
K , with δ =

1
2`(n− 1)

.

• Obtain at least M� D1/(2`(n−1))−ε0
K sufficiently small

primes that split completely in K.
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BOUNDING `-TORSION ASSUMING GRH

Ellenberg-Venkatesh (2007)

|ClK[`]| �`,n,ε D
1
2+ε

K M−1

Lagarias-Odlyzko (1975)
Conditional Effective Chebotarev Density Theorem

M � D1/(2`(n−1))−ε0
K

Ellenberg-Venkatesh (2007)

Assuming GRH, we have |ClK[`]| �`,n,ε D
1
2−

1
2`(n−1)+ε

K

Goal: Remove GRH and obtain the same `-torsion bound.

– We can do this at the cost of proving the result for all but a
possible zero-density family of fields.
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SAME STARTING POINT AS BEFORE

Theorem (Ellenberg & Venkatesh, 2007)

Suppose that there are M rational primes

p1, p2, . . . , pM

that split completely in K, where pj ≤ Dδ
K and δ < 1

2`(n−1) . Then for
any ε > 0,

|ClK[`]| �n,`,ε D
1
2+ε

K M−1.

We need an effective Chebotarev density theorem for a family
of fields K
• that does not assume GRH, and
• has a low threshold on x.

Let us first recall how to count primes.
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COUNTING PRIMES

Motivating Question

Given a large number x, how many primes are there less
than or equal to x?

That is, if we let

π(x) :=
∑
p≤ x

1,

how does π(x) behave as x→∞ ?
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Prime Number Theorem (Hadamard, de la Vallée Poussin 1896)

π(x) ∼ Li(x), x→∞

Count primes with a weight:

ψ(x) :=
∑
n≤x

Λ(n), Λ(n) =

{
log p, if n = p k, k ≥ 1,
0, else.

Heuristic:

ψ(x) =
∑
n≤x

Λ(n) ≈
∑
p≤x

log p ≈ π(x) log x

ψ(x) ∼ x ⇐⇒ π(x) ∼ x
log x

19
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PROVING ψ(x) ∼ x

Explicit Formula (truncated version)

We have
ψ(x) = x−

∑
|γ| ≤ x

xρ

ρ
+ O

(
log2 x

)
where the sum is over the nontrivial zeros of ζ(s).

ρ = β + iγ is a nontrivial zero of ζ(s):

ζ(s) =
∞∑

n=1

1
ns =

∏
p prime

(
1− 1

ps

)−1

, <(s) > 1

• Since |xρ| = xβ , if β < 1, then the contribution from the
nontrivial zeros is not too big.
• Key to proof of the Prime Number Theorem:

ζ(s) 6= 0 for <(s) = 1

20



PROVING ψ(x) ∼ x
Explicit Formula (truncated version)

We have
ψ(x) = x−

∑
|γ| ≤ x

xρ

ρ
+ O

(
log2 x

)
where the sum is over the nontrivial zeros of ζ(s).

ρ = β + iγ is a nontrivial zero of ζ(s):

ζ(s) =
∞∑

n=1

1
ns =

∏
p prime

(
1− 1

ps

)−1

, <(s) > 1

• Since |xρ| = xβ , if β < 1, then the contribution from the
nontrivial zeros is not too big.
• Key to proof of the Prime Number Theorem:

ζ(s) 6= 0 for <(s) = 1

20



PROVING ψ(x) ∼ x
Explicit Formula (truncated version)

We have
ψ(x) = x−

∑
|γ| ≤ x

xρ

ρ
+ O

(
log2 x

)
where the sum is over the nontrivial zeros of ζ(s).

ρ = β + iγ is a nontrivial zero of ζ(s):

ζ(s) =

∞∑
n=1

1
ns =

∏
p prime

(
1− 1

ps

)−1

, <(s) > 1

• Since |xρ| = xβ , if β < 1, then the contribution from the
nontrivial zeros is not too big.
• Key to proof of the Prime Number Theorem:

ζ(s) 6= 0 for <(s) = 1

20



PROVING ψ(x) ∼ x
Explicit Formula (truncated version)

We have
ψ(x) = x−

∑
|γ| ≤ x

xρ

ρ
+ O

(
log2 x

)
where the sum is over the nontrivial zeros of ζ(s).

ρ = β + iγ is a nontrivial zero of ζ(s):

ζ(s) =

∞∑
n=1

1
ns =

∏
p prime

(
1− 1

ps

)−1

, <(s) > 1

• Since |xρ| = xβ , if β < 1, then the contribution from the
nontrivial zeros is not too big.

• Key to proof of the Prime Number Theorem:

ζ(s) 6= 0 for <(s) = 1

20



PROVING ψ(x) ∼ x
Explicit Formula (truncated version)

We have
ψ(x) = x−

∑
|γ| ≤ x

xρ

ρ
+ O

(
log2 x

)
where the sum is over the nontrivial zeros of ζ(s).

ρ = β + iγ is a nontrivial zero of ζ(s):

ζ(s) =

∞∑
n=1

1
ns =

∏
p prime

(
1− 1

ps

)−1

, <(s) > 1

• Since |xρ| = xβ , if β < 1, then the contribution from the
nontrivial zeros is not too big.
• Key to proof of the Prime Number Theorem:

ζ(s) 6= 0 for <(s) = 1

20



COUNTING PRIMES IN ARITHMETIC PROGRESSIONS

Siegel-Walfisz Theorem (1935)

If n ≥ 2 and a is coprime to q then as x→∞,

π(x; a, q) :=
∑
p≤x

p≡ a (mod q)

1 =
1

ϕ(q)
Li(x) + ”error term”.

• The error term depends on the zero-free region of the
Dirichlet L-function:

L(s, χq) :=
∞∑

n=1

χq(n)

ns , <(s) > 1
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COUNTING PRIME IDEALS IN NUMBER FIELDS

kOk

QZ

Prime Ideal Theorem (Landau 1918)
As x→∞,

π(x; k) :=
∑
p⊂Ok

Nmk/Qp≤ x

1 = Li(x) + ”error term”.

The error term depends on the zero-free region of the Dedekind
zeta-function of k:

ζk(s) :=
∑

I⊂Ok

1
(Nmk/QI)s =

∏
p⊂Ok

(
1− 1

(Nmk/Qp)s

)−1

, <(s) > 1

Example 1: When k = Q, we have ζk(s) = ζ(s).
Example 2: When k = Q(

√q), one can show ζk(s) = ζ(s)L(s, χq).
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1
(Nmk/QI)s =

∏
p⊂Ok

(
1− 1

(Nmk/Qp)s

)−1

, <(s) > 1

Generalized Riemann Hypothesis: Nontrivial zeros of
ζK(s) have real part equal to 1/2.
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COUNTING PRIME IDEALS IN CONJUGACY CLASSES

Let L/k be a normal extension with Galois group G = Gal(L/k).

πC(x,L/k) := #

{
p ⊂ Ok : p unramified in L,

[
L/k
p

]
= C,Nmk/Qp ≤ x

}

L

k

Q

Gal(L/k) ∼= G

• p is a prime ideal in Ok which is
unramified in L.

•
[

L/k
p

]
is the Artin symbol, which

denotes the fixed, targeted
conjugacy class C within G.
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COUNTING PRIME IDEALS IN CONJUGACY CLASSES

Chebotarev Density Theorem
(1922)

πC(x; L/k) ∼ |C|
|G|

Li(x), x→∞

L

k

Q

Gal(L/k) ∼= G

24



COUNTING PRIME IDEALS IN CONJUGACY CLASSES

Effective Chebotarev Density Theorem
(Lagarias & Odlyzko 1975)

πC(x; L/k) =
|C|
|G|

Li(x) + ”error term”, x→∞

The error term depends on the zero-free region of the Dedekind
zeta-function of L.

ζL(s) := ζk(s)
∏
ρ∈Ĝ
ρ 6=ρ0

L(s, ρ,L/k)dim ρ

• Each L(s, ρ,L/k) is an Artin L-function.

• The product is over the nontrivial
irreducible representations of G.

L

k

Q

Gal(L/k) ∼= G
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EXAMPLE OF A DEDEKIND ZETA-FUNCTION ζL(s)

Let k = Q and G = Gal(L/Q) ∼= S3.

S3 has the following Galois representations:

• ρ0 – trivial representation, 1-dimensional

• ρ1 – sign representation, 1-dimensional

• ρ2 – standard representation, 2-dimensional

ζL(s) =

ζ(s) L(s, ρ1) L(s, ρ2)2

26
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AN EFFECTIVE CHEBOTAREV DENSITY THEOREM

Let L/k be a normal extension with Galois group G = Gal(L/k),
DL = |Disc L/Q|, and nL = [L : Q].

Theorem (Lagarias-Odlyzko, 1975)

For any fixed conjugacy class C ⊂ G,∣∣∣∣πC(x,L/k)− |C|
|G|

Li(x)

∣∣∣∣ ≤ |C||G|Li(xβ0) + c1x exp
(
−c2n1/2

L (log x)1/2
)

︸ ︷︷ ︸
Error term depends on zero-free region of ζL(s).

for x ≥ exp(10nL(log DL)2), where

• β0 is a real, simple exceptional zero of ζL(s);
• c1, c2 are effectively computable constants.
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A Conditional EFFECTIVE CHEBOTAREV DENSITY THEOREM

Let L/k be a normal extension with Galois group G = Gal(L/k),
DL = |Disc L/Q|, and nL = [L : Q].

Theorem (Lagarias-Odlyzko, 1975)

If the generalized Riemann hypothesis holds for the Dedekind
zeta-function ζL(s), then for any fixed conjugacy class C ⊂ G∣∣∣∣πC(x,L/k)− |C|

|G|
Li(x)

∣∣∣∣ ≤ C0
|C|
|G|

x1/2 log(DLxnL)︸ ︷︷ ︸
Error term relies on GRH for ζL(s).

for every x ≥ 2, where
• C0 is an effectively computable constant.
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COMPARING THE THEOREMS (LAGARIAS-ODLYZKO, 1975)

Theorem (Unconditional)

For any fixed conjugacy class C ⊂ G,∣∣∣∣πC(x,L/k)− |C|
|G|

Li(x)

∣∣∣∣ ≤ |C||G|Li(xβ0)+c1x exp
(
−c2n1/2

L (log x)1/2
)

for x ≥ exp(10nL(log DL)2.

Theorem (Conditional)

If GRH holds for ζL(s), then for any fixed conjugacy class C ⊂ G∣∣∣∣πC(x,L/k)− |C|
|G|

Li(x)

∣∣∣∣ ≤ C0
|C|
|G|

x1/2 log(DLxnL).

for every x ≥ 2.

Question: What do a lower threshold and no β0 term get you?
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|G|

Li(x)
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for every x ≥ 2.

Want: An unconditional effective CDT with a low threshold on
x, no β0 term, and an acceptable error term.
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Skeleton of Theorem (Pierce, T., Wood)

Let F(X) be a family of fields, where K ∈ F(X) have

• fixed degree n over Q
• fixed Galois Group G = Gal(K̃/Q)

• DK ≤ X
• a possible ramification restriction on tamely ramified primes;

Suppose it is known that |F(X)| � Xa for some a > 0. Then for at
most O(Xb) exceptions, with b < a, for fixed A ≥ 2, we have∣∣∣∣πC(x, K̃/Q)− |C|

|G|
Li(x)

∣∣∣∣ ≤ |C||G| x
(log x)A

where x ≥ κ1 exp{κ2(log log Dκ3

K̃
)2}, and the κi depend on

n, |G|,DK̃, a, b, and A.

• No β0 term. Can take x = Dη

K̃
for η small.

We prove most Dedekind zeta-functions in the family satisfy a
certain zero-free region.
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APPLICATION TO BOUNDING `-TORSION

Skeleton of Corollary (Pierce, T., Wood)

Let F(X) be a family of fields for which the previous Chebotarev
Density Theorem holds. For the nonexceptional fields K ∈ F(X), we
have

|ClK[`]| �n,`,ε D
1
2−

1
2`(n−1)+ε

K .

Question:
To which families does our Chebotarev Density Theorem
apply?

29
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[K : Q] Gal(K̃/Q) restriction on size of size of
tamely ramified primes exceptional family total family

n ≥ 2 Cn totally ramified � Xε, ε > 0 ∼ cX1/(n−1)

3 S3 transposition � X1/3 ∼ cX
Ellenberg-Venkatesh Bhargava

4 S4 transposition � X1/2+ε, ε > 0 ∼ cX
Klüners Bhargava

4 A4 K4 subgroup � X0.27 � X1/2

p ≥ 5 Dp reflection � X1/(p−1) � X2/(p−1)

order 2p

30
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CONDITIONAL ON THE STRONG ARTIN CONJECTURE

[K : Q] Gal(K̃/Q) restriction on size of size of
tamely ramified primes exceptional family total family

5 S5 transposition � X199/200 � X
Bhargava

n ≥ 6 Sn transposition � X∆ if there � X1/2+1/n

exists� D∆ degree Bhargava, Shankur

n fields such that Wang

DK = D.

n ≥ 5 An none � Xε, ε > 0 � Xβn−ε

βn = 1−2/n!
4n−4
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OVERVIEW OF ARGUMENT

Ellenberg-Venkatesh

|ClK[`]| �`,n,ε D
1
2+ε

K M−1

Effective Chebotarev Density Theorem
assuming non-GRH zero-free region

Show assumed zero-free region is obeyed
by ”most” number fields in an appropriate family

Control the propagation of ”bad” fields within the family

Without assuming GRH, conclude

|ClK[`]| �`,n,ε D
1
2−

1
2`(n−1)+ε

K for non-exceptional K.
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THE ZERO-FREE REGION

L = K̃

K

Q

Gal(K̃/Q) ∼= G

n

ζK̃(s) = ζ(s)
∏
ρ∈Ĝ

ρ 6=ρ0 irreducible

L(s, ρ, K̃/Q)dim ρ

Known zero-free region for ζ(s):

σ > 1− c
log2/3(|t|+ 2) log log1/3(|t|+ 3)

.

Assumed zero-free region for ζK̃(s)/ζ(s):

[1− δ, 1]× [−(log DK̃)2/δ, (log DK̃)2/δ].
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ζK̃(s) = ζ(s)
∏
ρ∈Ĝ

ρ6=ρ0 irreducible

L(s, ρ, K̃/Q)dim ρ



PROVING THE CHEBOTAREV DENSITY THEOREM

Idea of the proof

• We return to the method of Lagarias-Odlyzko.

• We insert our assumed zero-free region for ζL(s)/ζ(s) at a
key point.

• We work delicately to provide both an acceptable effective
error term, and a sufficiently small threshold for x
depending on DL.
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Theorem (Pierce, T., Wood)

Let 0 < δ ≤ 1/4 be a fixed positive constant. For any normal
extension of number fields L/Q with [L : Q] = nL such that DL is
sufficiently large and ζL(s) obeys the assumed zero-free region, we
have that for any A ≥ 2 and any conjugacy class C ⊂ G = Gal(L/Q)∣∣∣∣πC(x,L/Q)− |C|

|G|
Li(x)

∣∣∣∣ ≤ |C|
|G|

x
(log x)A︸ ︷︷ ︸

error term depends
on assumed zero-free region

for all

x ≥ c1 exp
{

c2(log log(Dc3
L )3/2 log log log(Dc4

L ))1/2
}

︸ ︷︷ ︸
≥(log DL)small power

,

where all the constants can be written explicitly.
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BOUNDING `-TORSION WITHOUT ASSUMING GRH

Ellenberg-Venkatesh
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KEY TOOL - ZEROS OF AUTOMORPHIC L-FUNCTIONS

Let π be a cuspidal automorphic representation on GLm(Q).

Consider the corresponding automorphic L-function L(s, π).

Let s = β + iγ denote a zero of L(s, π).

Define

N(π;α,T) := # of zeros of L(s, π) such that β > α and |γ| ≤ T.

Kowalski and Michel have given a bound for N(π;α,T) that
holds on average for an appropriately defined family of
cuspidal automorphic representations.
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Theorem (Kowalski & Michel, 2002)

Let S(q), q ≥ 1 be a family of cuspidal automorphic representations
satisfying a prescribed set of conditions. Let α ≥ 3/4 and T ≥ 2.
Then there exists c0 > 0, depending on the family, such that∑

π∈S(q)

N(π;α,T)� TBqc0
1−α

2α−1

for all q ≥ 1 and some B ≥ 0 that depends on the family. The implied
constant only depends on the choice of c0.

Applied to L(s, π) for π ∈ S(q) =⇒ a zero-free region of the
desired shape that holds
for all but a possible
zero-density sub-family
of L-functions
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We wish to apply Kowalski-Michel to
ζK̃(s)
ζ(s)

as K varies

over F(X).

A couple of issues:

1. We are working with Artin L-functions, which in general
are not known to be automorphic.

2. Kowalski & Michel’s result applies to family of cuspidal
automorphic representations. We would like to apply it to
a family of isobaric automorphic representations.
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ζK̃(s)
ζ(s)

=
∏
ρ∈Ĝ

ρ 6=ρ0 irreducible

L(s, ρ, K̃/Q)dj , dj = deg(ρj).

Issue # 1 – We are working with Artin L-functions, which
in general are not known to be automorphic.

Assuming the strong Artin conjecture, we have that each
L(s, ρ, K̃/Q) is automorphic, i.e. we can write

L(s, ρ, K̃/Q) = L(s, π)

for each L(s, ρ, K̃/Q) in our product.
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ζK̃(s)
ζ(s)

=
∏
ρ∈Ĝ

ρ 6=ρ0 irreducible

L(s, ρ, K̃/Q)dj , dj = deg(ρj).

Issue # 2 – Kowalski & Michel applies to families of cus-
pidal automorphic representations, but we are working
with families of isobaric automorphic representations.

• We decompose each Dedekind zeta function into a product
of cuspidal automorphic L-functions.

• We apply the Kowalski-Michel result to the sub-family
generated by each factor.
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A NEW OBSTACLE:

In generalizing Kowalski-Michel, we uncover a technical
barrier:

– a priori, each sub-family could lead to many bad fields for
which our Chebotarev Density Theorem does not apply.

Must define our families of fields to avoid this situation –
where potential ”bad” elements in each sub-family prop-
agate to create a “large” family of “bad” Dedekind zeta-
functions ζK̃(s).
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BOUNDING `-TORSION WITHOUT ASSUMING GRH

Ellenberg-Venkatesh
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Show that within an appropriate family of
fields K, most ζK̃(s) obey the zero-free region

Control the propagation of ”bad” fields within the family

Without assuming GRH, conclude
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CONTROLLING PROPAGATION OF BAD FIELDS

Sketch of new idea

• We transform the problem to counting how often K̃1 and
K̃2 both contain a particular subfield F. This relies on work
of Klüners and Nicolae (2016).

• To handle this counting problem, we make ramification
type restrictions and derive a precise relationship between
the DF, DK, DK̃.

– Here, we must handle the issue for each type of G
individually.

• Then we quantify how many K can have a particular
discriminant.
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Thanks for y’all’s attention!
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