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Abstract: The ability of transfer function models to forecast domestic water use is investigated. Five 
years monthly time series data on domestic water use, total rainfall and average temperature from 
Muscat was taken for this study. The transfer function models aim to describe the relationship between 
input and output systems using a ratio of the polynomials representing the Laplace Transforms of the 
output, input and the noise in the system. Total rainfall and average temperature were considered as the 
input series and the domestic water use as an out series. The input series were pre-whiten using Seasonal 
Autoregressive Integrated Moving Average (SARIMA) models which were identified by Sample 
Autocorrelation (SAC) and Partial Sample Autocorrelation (PSAC). Four preliminary transfer function 
models were postulated to describe the output series. The graphs of Sample Cross Correlation (SCC) of 
water use with rainfall and temperature were made. The final transfer function model was identified by 
investigating the Residual Sample Cross Correlation (RSSC) which had the form SARIMA(1,1,1)x(1,1,1). 
This model was then used to generate twelve months out of sample forecasts. The accuracy of forecast 
error was assessed by mean absolute deviation (MAD), mean square error (MSE) and mean absolute 
percent error (MAPE). All of these measures had reasonably small values which were 0.105, 0.013 and 
1.37% respectively. 
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1. Introduction 
 
Modeling and forecasting domestic water use had received a considerable attention in recent literature 
on the subject (Nazario, 1993; Khtri and Vairamoorthy, 2007; Agthe and Billings, 1980; Hutton, 2003). 
Most of the empirical investigations made rely on the multiple regression models by considering rainfall 
and temperature as covariates. The normal regression, however, assume that the covariates should be 
predetermined while both these covariates are random variables. This makes it very difficult to apply 
ordinary least squares estimation and inference methodology on the regression models. This study 
attempts to investigate the adequacy of transfer function modeling technique as a means of more 
appropriate representation of the observed dynamic response characteristics of water use changes over 
time. The derived model is developed for short term forecasting based on monthly water use data in 
urban areas of Muscat the capital of Oman in order to ensure the adequate and sustainable water 
management for the city that is growing very rapidly. These data were taken from (Al-Oaimri and Al-
Hadrami, 2013; Ministry of National Economy, 2006-2010) and the characteristics of the data are 
illustrated in figure 1-3 which shows monthly aggregate  municipal water use, average monthly 
temperature and rainfall  from 2007 to 2011. An annual growth in both average annual use and in 
seasonal variation as well as a large variation in summer water use from one year to the next is evident 
from the data. A regular pattern of seasonal variation which is temporarily interrupted by the occurrence 
of rainfall is evident over the summer. The nature of these interruptions is most clearly seen in Figure 3, 
which illustrates the effects of two isolated rain-falls in June 2007 and 2010. Each time that there is 
rainfall, the water use is reduced immediately, and then it gradually resumes its regular seasonal pattern. 
That is why the temperature and rainfall were taken as input to derive the proposed forecasting model. 
 

2. Transfer function models 
 

The concept of transfer function derives from the idea of variations in the independent or input variables 
transferring into variations in the dependent or output variable. Transfer function models are logical 
extension of univariate time’s series models which utilize only the past history of the series for modeling. 
Assuming that xt and wt are the properly transformed series so that they are both stationary. The output 
series wt  and the input xt are related through a general model (Maidment, Miaou and Crawford, 1985; 
Bruce & O’Connell, 1993) given as below. 
Wt=v (B)xt+ηt , where v(B) =vjBj                            (2.1)  
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  Where v(B) is referred as the transfer function and ηt  is the noise series of the system that is 
independent of the input series xt. The coefficient of the transfer function, vj are known as the impulse 
response weights. The transfer function is said to be stable if the sequence of these impulse response 
weights are absolutely summable . Thus in a stable system, a bounded input always produces a bounded 
output. The transfer function is causal if vj=0, for j<0. Thus in a causal model the system does not respond 
to input series until they have been actually applied to the system. Thus the present output is affected by 
the systems input only in term of its present and pass values. In practice a causal and stable model is 
considered. 
 
Figure 1:  Monthly water use distribution over five years from 2007-2011 
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Figure 2: Monthly average temperature over years from 2007-2011:  

121110987654321

38

36

34

32

30

28

26

24

22

20

months

A
V

R
A

G
E
(T

E
M

P
E
R

A
T
U

R
E
)

2007

2008

2009

2010

2011

Variable

AVRAGE(TEMPERATURE) from 2007-2011

 
 
Figure3: Monthly rainfall over a year’s 2007-2011: 
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The purpose of the transfer function modeling are to identify and to estimate the transfer function,(B), 
and the noise model for ηt based on the available information of the input series xt and the output series 
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wt. The major difficulty is that xt and wt are finite and the transfer function contain an infinite of 
coefficients. To alleviate this difficulty, v(B) can be expressed in a rational form: 

𝑣 𝐵 =
𝑤𝑠 𝐵 𝐵𝑏

𝛿𝑟(𝐵)
                            (2.2) 

Where, ws (B)=w0-w1 B-………..- wsBs and δr (B)=1- δ1B-……..- δrBr 
And b is delay parameter representing the actual time lag that elapses the impulse of the input variable 
produced an effect on the output variable. For a stable system the roots of δr(B)  are assumed to be 
outside of the unit circle. The general procedure to identify the transfer function model can be described 
as follows: 
A. Prewritten the input series 

𝛼t=
ɸ𝑥 (𝐵)

𝛳𝑥 (𝐵)
𝑋𝑡                             (2.3) 

Where αt is a white noise with mean zero and variance σ2
α. 

B. Calculate the filtered output series. That is transform the output series wt using the above pre-
whitening model to generate the series βt ,where 

𝛽t=
ɸ𝑥 (𝐵)

𝛳𝑥 (𝐵)
𝑋𝑡                             (2.4) 

C. Calculate the cross-correlation function (CCF) between αt and βt ,to estimate vk: 

𝑣 𝑘=
𝜎 𝐵

𝜎 𝛼
𝜌 𝛼𝛽 (𝐾)                            (2.5) 

The signification of the CCF is tested by comparing with its standard deviation(n-K)1/2 
The values of b , r and s are identified by observing the form of the CCF). 
D. Preliminary estimation of the transfer function is obtained by nonlinear regression: 

𝑣 𝐵 =
𝑤 𝑠 𝐵 

𝛿 𝑟(𝐵)
𝐵𝑏                             (2.6)  

E. Compute noise series. Once preliminary estimate for the transfer function is obtained, noise series is 
computed as follows: 

𝜂 𝑡 = 𝑤𝑡 −
𝑤 𝑠 𝐵 

𝛿 𝑟(𝐵)
𝐵𝑏𝑋𝑡                             (2.7) 

F. Identify the noise model. Based on the sample ACF and PACF of residual the following structure is 
identified: 

𝜂 =
𝛳(𝐵)

ɸ(𝐵)
𝑎𝑡                            (2.8) 

G. Full model estimation. Nonlinear regression method is used to conduct estimation for the full model: 

wt=
𝜔 (𝐵)

𝛿 (𝐵)
𝑋𝑡−𝑏 +

𝛳 (𝐵)

ɸ (𝐵)
𝑎 𝑡                            (2.9) 

H. Compute residuals. If residuals the assumption of independent, normality, and constant variance, and 
also if all the parameters are significant, then the obtained model is the appropriate transfer function 
model. If this is not the case, then the processes start from step (1) over again, until a satisfactory model is 
developed. 
 
3. Analysis and Conclusion 
 
We considered the following functional form of the transfer function for analysis. 

zt=µ+
𝐶𝑤(𝐵)

𝛿(𝐵)
𝐵bzt

(x)+ 𝜂t                           (3-1) 

where zt represent the stationary yt that was log transform water use and zt
(x) represent the stationary xt  

which is the matrix with rainfall and temperature as columns. C is an unknown scale  parameter , 𝜂t 

represent the error component, b is the number of period the input series xt begins to affect the output 
series yt and equal the lag where we encounter the first spike in the sample cross correlation(SCC) , µ is 
the constant term, w(B)=(1-w1B-w2B2-………….-wsBs) is called the zt

(x) operator of order s and 𝛿(𝐵) =(1- 
𝛿1B-𝛿2B2-………-𝛿rBr) is called zt operator of order r. We initially identified four of transfer function 
models. The models and the estimates of the parameters along with p values of these models are given 
below 
Model 1:P= (12) Q= (12) = The model of natural log of water distribution has AR(12) and MA(12) 
 
Table 1: The parameter estimates and p values 

Parameter  Estimates p-value 

MU=µ             0.0074106 0.4184        

MA1,1= ϴ1,12 0.16380 0.7996 

AR1,1 = ɸ1,12 -0.14845        0.8184 
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C1 (temp)            0.0033910 0.4487 

C2(RF)         -0.0007461      0.2398 

 
Model 2:Q=(12)=the model of the natural log of water distribution that has MA(12) 
 
Table 2: The parameter estimates and p values 

Parameter  Estimation  p-value 

MU=µ             0.0070069      0.4289        

MA1,1= ϴ1,12 0.29640 0.0939       

C1(temp)               0.0034585      0.4324        

C2(RF)         -0.0006932      0.2483        

Model 3:Q=(1, 12) =the model of natural log of water distribution that has MA(1,12) 
 
Table 3: The parameter estimates and p values 

Parameter  Estimates w p-value 

MU=µ 0.0063 0.3778        

MA1,1= ϴ1 0.2512 0.1281        

MA1,2= ϴ1,12 0.2420 0.1439       

C1(temp) 0.0028 0.5606        

C2(RF) -0.0006632      0.2689        

 
Model 4:P=(1,12) Q=(1,12)=the model of the natural log of water distribution that has AR(1,12) and 
MA(1,12) 
 
Table 4: The parameter estimates and p values 

Parameter  Estimation  p-value 

MU=µ 0.0075506      0.1282 

MA1,1 =ϴ1 0.95198        <.0001 

MA1,2 = ϴ1,12 0.04802        0.7762 

AR1,1 =𝟇1 0.56200        0.0184 

AR1,2 =𝟇1,12 -0.11588        0.5685 

NUM1=C1 0.0038458      0.4366        

NUM2 =C2 -0.0009301      0.1626        

 
From the tables 1 to 4 it is very clear that first three models have all the estimates non- significant . But in 
model 4 the moving average one and autoregressive one at no-seasonal level are significant at 5% level. 
We therefore conclude that  model 4 is the best model for forecasting. The form of this model would be as 
below. 

yt=µ+C1Zt
(x1)+C2Zt

(x2)+
(1−𝛳1−𝛳1,12 )

(1−ϕ1−ϕ1,12)
𝑎𝑡+ƞt(3.2) 

This model was then used to make monthly water use forecasts for one year ahead and these out of 
sample forecasts were used to assess the model by mean absolute deviation (MAD), mean square error 
(MSE) and mean absolute percent error (MAPE). All of these measures had reasonably small values which 
were 0.105, 0.013 and 1.37% respectively. More over the graph of cross-correlation between water 
distribution and average temperature  showed a spike at lag (-1) that indicate the amount of water 
distribution consume in one month is affected by previous month of average temperature. While the 
graph of cross-correlation between water distribution and average rainfall showed that there is a spike at 
lag zero  that indicate the amount of water distribution consumed in the one month is affected by the 
rainfall on the same month. 
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