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Abstract: The study examined the effect of climate change on agricultural crop returns in Uganda using the 
Ricardian Panel Tobit technique and the World Bank Living Standards Measurement Survey (LSMS) data, 
climate data from Uganda National Meteorological Authority (UNMA) and global weather data. The findings 
showed that climate related risks account for over 67 percent of agricultural risks and less than 2 percent of 
the farming households practise irrigation. Farmers that practised irrigation earned higher agricultural 
returns nationally than their counterparts did. The findings show that the output elasticities with respect to 
temperature range from -2.02 percent to 0.543 percent. This implies that for the average temperature 
increase by 1 percent, maize farm returns decreased by 2.02 percent, banana by 1.7 percent, cassava by 1.50 
percent and beans by 1.01 percent. While 1 percent increases in rainfall, lowered banana returns by 0.02 
percent, beans by 0.08 percent, cassava by 0.035 percent, maize by 0.025 percent except for groundnuts’ 
returns increased by 0.115 percent. Apart from climate factors, non-climate factors such as capital, labour, 
farm size, fertilizers and soil quality are equally important inputs and significantly impact on agricultural 
farm returns. The study proposes that due to unrelenting adverse climate change effects in Uganda, adoption 
of multi-pronged approaches such as extensive irrigation, agro-insurance, diversification of agricultural 
activities, use of food cribs during bumper harvests would be the breath of life for Ugandan farmers. 
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1. Introduction 
 
Global climate has warmed since 1950s and anthropogenic influence is the most likely dominant cause (IPCC, 
2014; Angélil et al., 2017). Global surface temperature in 2016 shot up by 1.00C, making it the warmest year 
ever relative to 1951-80 base period (Hansen et al., 2019). With intermittent global warming, ice sheets, 
glaciers, snow cover and permafrost have significantly decreased in area and volume. In many regions, 
historical droughts and floods have been ever more severe since 1900. Tropical cyclones, hailstorms, 
thunderstorms, wave heights have soared since 1970s. As a result, the undulating climate change has affected 
water resources, food and agricultural systems globally (Hanjra  & Qureshi, 2010; Nielsen & Vigh, 2012; 
Teixeira et al., 2013). In Sub-Saharan Africa (SSA) where the majority of the population depends on climate-
sensitive agriculture (World Bank, 2010), the frequency of meteorological disasters have caused both 
prevalent economic and life losses in the region (Gasper et al., 2011; Thurlow et al., 2012) and derailed 
poverty alleviation efforts (Dell et al., 2009; Skoufias, 2012). Evidence also shows that exposure to high 
temperatures reduces work capacity and labour productivity (Zivin & Neidell, 2014; Dunne et al., 2013). The 
preceding impacts are likely to have unequal distribution globally, with developing countries at disadvantage, 
given their geographical position, limited resources, and low adaptive capacities (Peña-López, 2009).  
 
Africa contributes the least amounts of greenhouse gases; making it the least responsible for climate change, 
but it experiences the worst effects of climate change (Sy, 2016). Uganda is one of the agriculture-dependent 
economies in SSA where climate change manifestations have been real. The reviewed literatures of IPCC 
(2013; 2014), Caffrey et al. (2013) and Guloba (2014) affirm that climate change has taken place in Uganda, 
hence this study did not need to spend time on fishing expedition with no major fish to catch. Over the past 
three decades spanning from 1981 to 2010, the country experienced substantial increase in temperature 
ranging from 0.5oC to 1.2oC (Caffrey et al., 2013). In addition, GoU (2015) documents that for the period 
ranging from 2010 to 2014, Uganda’s GDP on average decreased by 3.5 percent due to natural disasters such 
as floods, landslides, drought, famine, severe storms and earthquakes. The natural disasters destroyed 
hectares of crops, causing huge economic losses to the economy amounting to USD 1.2 Billion between 2010 
and 2011. In farming communities, men go far away to look for pastures, while women walk longer distances 
in search of water and firewood, limiting the time for agricultural production. Due to adverse weather related 
factors, Uganda’s GDP contracted by 0.2 percent in the first quarter of the Financial Year 2016/2017.  
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This was majorly due to a contraction of the agricultural sector, which was consistent with the relatively 
feeble growth in household incomes (BoU, 2018). The continued occurrence of climate change effects 
severely undermines the growth prospects of the country and consequently deters the realization of the 
country’s Vision 2040. The solution to manage and mitigate climate change effects lies in understanding its 
effect. However, there is limited empirical analysis on the hurtful upshots of climate change on agricultural 
crop returns. The only known study by Matovu (2013) used cross-sectional Ricardian analysis approach. The 
use of cross sectional data is limited given that climate change coefficients vary over time, also there are 
distortions emanating from the correlations between climatic variables, and farmer’s adaptation strategies 
(Thomson, 2010). Numerous studies on the climate change- agriculture nexus in the region have ignored a 
subtle and prevalent fact of “nothingness” or “missingness” of agricultural output in their analysis, caused by 
climate related risks such as drought, floods. This study employs a modified version of panel called pane Tobit 
analysis to address this omission. The paucity of analytical work on climate change impact affects the cost-
benefit analysis interventions to mitigate effects. It is against this background that the study sets out to 
examine the effect of both rainfall and temperature on crop returns in Uganda.  
 
2. Literature Review  
 
The longing to analyse the effect of climate change on agricultural returns led to the advent of the Ricardian 
theory as credence. The motivation for the development of the Ricardian analysis according to Mendelsohn et 
al. (1994) based on the bias that tends to overestimate the damage of climate change embedded in the 
traditional production function method initially used in the studies of Adams et al. (1988), Adams et al. 
(1998) and Rosenzweig & Parry (1994). The traditional production function estimated impact of climate 
change by altering few input levels such as precipitation, temperature and carbon oxide levels. It omitted a 
variety of adaptations customarily used by farmers to mitigate the effects of climate change. Similarly,  
Easterling et al. (1993) ignored adaptations such as application of fertilizers, use of irrigation, introduction of 
new crops in the region, use of new technology, shifts in land use from farming to livestock, or from planting 
rice to fruit farming. Mendelsohn et al. (1994) use an illustration in Figure 1 to explain the bias using values of 
various activities and temperature.  
 
Figure 1: Bias in the Production Function Adapted from Mendelsohn et al. (1994) 

 
The functions shown in the figure illustrate how the values of wheat, maize, and livestock respond to 
temperature increases. For example, the “wheat production function” shows how the value of wheat responds 
to temperature increases from point A to peak B and finally decreases as temperatures shoot up. Mendelsohn 
et al. (1994) cite the source of the bias as the failure to allow for economic substitution as temperatures rise. 
For instance, for temperature above C, adaptive and profit- maximizing farmers would replace wheat with 
maize. With temperature increases, the wheat production function estimates output to fall to point F, yet in 
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reality farmers no longer produce wheat, and however, it would be profitable to produce amount D of maize 
at the same temperature. With increased temperature, land is no longer optimal for maize growing. Lastly, at 
point E, agricultural model predicts that neither farming nor livestock is worth undertaking. The most 
prudent activity would be to convert land to housing estate as per Figure 1, however, given the expensive 
nature of developing the housing estate; it is neither affordable nor optimal scheme for Uganda’s case. The 
most appropriate strategy would be adoption of adaptation strategies such as irrigation in case temperatures 
increase persistently overtime. Mendelsohn et al. (1994) infer that the traditional function overestimates the 
damages of climate change because it does not take into account the myriad options of substitution, 
adaptation, and new options of replacing the old-no-longer –advantageous activities as climate varies. To 
address the bias Mendelsohn et al. (1994) recommend a new approach called the Ricardian that permits 
options of adaptation like use of fertilizers, switching the use of land such that farmers lessen the severity of 
damage of climate change. Figure 1 illustrates the value of the net yield per acre of land measured along the 
vertical axis.  
 
The green lines represent the best-use value function. Mendelsohn et al. (1994) term the approach Ricardian 
because of the focus on the land values1. The Ricardian analysis employs regression method to analyse the 
effects of various climate, economic, and other factors on farm values (Adams et al., 1998; Sanghi, et al., 
1998). According to Mendelsohn et al. (2010), the model is easy to estimate, yields geographically precise 
values and captures adaptation. Further, it satisfies the key properties of economic models such as 
parsimony, tractability, empirical consistence and predictive precision as explained by Friedman & 
FRIEDMAN (1953) and Jasso (2004). Empirical evidence shows that temperature is a major factor affecting 
the growth of crops, for instance Tian et al. (2014), reveal that rises in winter warming, increase wheat yield 
in China. Increase of all-day, daytime and night time mean temperature by 1.5oC reduced the length of pre-
anthesis period averagely by 12.7, 8.3 and 10.7 percent respectively, and increased grain yield by 16.3, 18.1, 
and 19.6 percent respectively. While Hou et al. (2012) found that increasing temperature by 1.6oC, increased 
wheat production. In contrast, Fang et al. (2013) in their experiment with warming of 2oC and irrigation of 
100mm, find that warming decreases yield, but increasing irrigation by 200mm, increases wheat yield. This 
clearly emphasizes the importance of irrigation. Asseng  et al. (2011) carry out an investigation in Australia to 
assess the effect of temperature on wheat yield. They find that each additional day of temperature above 34oC 
in any region of Australia on average; reduces grain yields by 5 percent. Inferably, one argues that rising 
temperatures lower soil moisture content, subsequently decrease output.  
 
In Nigeria, Ayinde et al. (2010) using time series data from 1987 to 200, found that agricultural values were 
independent of temperature but highly dependent on rainfall variations. They recommend that government 
intervention with appropriate policies can mitigate climate change effects. However, without SSA 
governments increasing agriculture budgetary allocations to 10 percent as resolved in the Maputo 
declaration (Union, 2003), the adverse effects of climate change may exacerbate. Benin (2015) reveals that 
Niger and Malawi met the budgetary allocation to agriculture sector. Maganga & Malakini (2015) use a 
quintile Ricardian Analysis to estimate the economic impact of climate change on agriculture in Malawi. They 
use the cross-sectional data on climate, soil, hydrological and household level data with a sample size of 8,832 
households. Their findings show that climate had effect on net farm revenue, non-linear relationship between 
temperature and revenue existed, so is precipitation and revenue. The empirical results show that an increase 
of warming by 2.5oc magnifies the losses up to US$0.018 billion. Reducing rainfall by 7 percent lowers net 
revenue by approximately 8.13 percent per hectare. However, the use of cross-sectional data in the analysis 
of the effect of climate change on agricultural production disregards the premise that cross sectional climate 
coefficients change overtime (Thomson, 2010). Fezzi & Bateman (2012) use panel Ricardian analysis in the 
United Kingdom to analyse the non-linear effects of climate change on agricultural production. The results 
show a significant non-linear interaction effect, with high levels of rainfall acting as a moderating factor for 
increased temperatures.  

                                                           
1Mendelsohn et al. (1994) based on David Ricardo who developed the theory of the rent of land in the book 
titled Principles of Political Economy and Taxation in 1817. He said rent tends to increase as population 
grows. Premised on a fact that with diminishing returns to land, the magnitude costs of cultivation rise and 
with its rent. 
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When they compared the results of other competing models that used aggregated data across regions, the 
results showed a strong bias afflicting climatic coefficients based on aggregated data and hence the desire for 
use of econometric Ricardian panel data approach. Further, higher temperatures positively increase 
agricultural production or land values amidst sufficient precipitation that thwart the risk of drought. 
Empirical results show that developing countries are hit hardest by adverse effects of climate change 
compared to the rest of the globe. Exenberger et al. (2014) use a panel of about 127 countries for the time 
spanning from 1961 to 2002. The findings show that climate change had no significant impact on agricultural 
production across a spectrum of high-income countries, however a significant harmful effect on both middle 
and low-income countries. The negative consequences of rising temperature and frequent reductions in 
rainfall lower agricultural output in developing countries. The adverse effects were strongest in SSA due to 
over reliance on rain-fed agriculture with minimal adaptation strategies. The results show that moderate 
moisture increases are conducive for food production unlike excess moistures. They use total livestock units 
as one of the regressors.  
 
However, including total livestock units as a regressor, assumes livestock as climate change neutral, yet 
temperature increases and excessive rainfall have significant impact on livestock. Similarly, Bezabih et al. 
(2014) use the number of oxen as one of independent variables in the study carried out in Ethiopia, but 
Skonhoft (2008) treats livestock as capital goods. Kurukulasuriya & Ajwad (2007) estimate the Ricardian 
model and treat the dependent variable as composite of agricultural returns from both livestock and crops in 
the study carried out in Sri Lanka. This methodology too creates difficulty in discerning which is more 
vulnerable to climate change between livestock and crop husbandry. In conclusion, this section reviewed 
literatures on the impacts of climate change on agricultural returns using the econometric Ricardian analysis. 
Further, classical economics identifies labour and physical capital as major sources of growth or output. 
Strangely, most studies exclude these traditional and vital sources of growth in their analyses. All studies 
reviewed show that agricultural production is nonzero, yet agricultural risks such as storms, droughts and 
floods cause total destruction with no harvest. This study considers this fact and uses panel Tobit model. The 
study attempts to address these existing gaps spotted during literature reviews.  
 
3. Methodology  
 
The most appealing technique to measure the effect of climate change on agriculture is the Ricardian 
technique due to its knack to use extensive country-level farm data. Studies of Mendelsohn et al. (1994), 
Massetti & Mendelsohn (2011) and, Fezzi & Bateman (2012) provide a motivation to use the Ricardian 
approach instead of the traditional production function or agronomic models. Other methods underestimate 
positive effects and overestimate the negative effects of climate change due to their failure to account for 
adaptation choices such as use of irrigation and switching of crops, options often adopted by farmers amidst 
climate pressures. Several studies to  empirically examine the impact of climate change on agriculture using 
Ricardian approach have varied quite heterogeneously in terms of; (i) data, cross-sectional versus panel data, 
and country-level versus household–level; (ii) methods; Computable General Equilibrium (CGE) versus 
partial equilibrium; and (iii) focus; regional versus country- specific (Skoufias, 2012). Further, modified 
applications include individual farm data and various functional forms that are more versatile and flexible 
(Salvo et al., 2014).  
 
A proper scrutiny of these studies shows that the Ricardian method is a profoundly common estimation 
procedure used in microeconomic studies. Mendelsohn et al. (1994) originally proposed it because of its 
prominence over the traditional production function approach. It has continuously gained a wide scope of 
application because it is easy to estimate, gives geographically precise values and permits use of adaptation 
strategies like irrigation. Therefore, the paper employs the Ricardian method to assess the effect of climate 
change on agricultural returns. The original Ricardian model used cross-sectional data to analyse the impact 
of climate, change on land values (Mendelsohn et al., 1994). Multitudes of studies that have applied the 
Ricardian method using cross-sectional data have yielded the results that are not stable over time (Deschenes 
& Greenstone, 2006). They instead propose use of panel data models since coefficients are constant over time. 
This discovery enables researchers to analyse climate change without having to consider a time span of 30 
years since climate coefficients are constant overtime. Salvo et al. (2014) also supplement that a panel data 
approach removes year effects and produces more stable estimates of climatic coefficients.  
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However, basing on their methodology used in their study, there is a likely possibility that agricultural output 
in SSA was underestimated since most households are subsistence based yet their estimations were market 
based. Kabubo-Mariara et al. (2016) analyse the climate change impact on food production in Kenya using the 
Ricardian panel approach. The choice of econometric panel Ricardian model amongst other competing 
models is due to the following reasons. First, climate coefficients change often over time (Thomson, 2010). 
Second, it is possible to have biased estimates if the dependent variable is the farms’ net revenue measured in 
unrepresentative year. Third, panel data eliminates the distortions caused by the correlation between 
climatic variables and farmer’s strategies treated explicitly in the model such as irrigation (Salvo et al., 2014).  
Fourth, the model apart from climate variables such as temperature and rainfall, includes other factors such 
as  capital, labour, adaptation choices, namely use of irrigation and application of fertilizers. As a result, 
several studies have used panel data (Lang, 2007; Massetti & Mendelsohn, 2011; Fezzi & Bateman, 2012). 
Therefore, given the eminence of panel over the cross-sectional data models, the study adopted panel data to 
analyse the impact of climate change on agriculture. Secondly, availability of panel data in Uganda aids the 
undertaking of the study. Uganda’s agriculture being largely dependent on climatic variables such as rainfall 
and temperature, it also relies on other factors such as physical inputs like capital, land, labour among others. 
As a result, the overall agricultural values are dependent on these factors.  
 
The estimation model specification appears as: 

                   ,                                                                                                          (1) 

The relationship specified in equation 1 is the original Ricardian reduced form of Mendelsohn et al. (1994) 
with land values as the dependent variable. Where     is the land value for household  , planting crop j, Z is the 

vector of input variables. C represents a set of exogenous environmental factors such as temperature, 
precipitation and a set of geographic factors such as soil characteristics.    -error term assumes a normal 

distribution with zero mean and constant variance. The assumption is that climate, socio-economic and soil 
factors influence the land values (Y). Empirically, authors have variously defined the dependent variable,    . 

In some studies of Lippert et al. (2009), Mendelsohn et al. (2010), Massetti & Mendelsohn (2011) and Fezzi & 
Bateman (2012) express it as land price, while others like Kurukulasuriya & Mendelsohn (2008),Wang et al. 
(2008) and Salvo et al. (2014) express it as net farm revenue. Lastly, Schlenker & Roberts (2008) and  
Rowhani et al. (2011) use agricultural output. Indeed, the economic theory gives little guidance on the nature 
of the functional form (Fezzi & Bateman, 2012) and as such, several studies that have used it, based on the 
nature of research questions and data availability. Fezzi & Bateman (2012) affirm that modellers have 
transformed equation (1) into empirically tractable model assuming a linear or semi-log specification with a 
quadratic or linear formulation for the climatic variables and a linear functional form for all other 
determinants.  
 
Fezzi & Bateman (2012) further recommend the use of smoothing function but, Salvo et al. (2014) caution 
that the use of modelling data without imposing a specific functional form is limited to continuous variables. 
Due to unavailability of data, control variables are frequently expressed using dummy/categorical variables 
for which it is not possible to use smoothing function. Model (1) was re-defined in terms of panel data model 
and the variables that are changing overtime were indexed with subscript t while following Deschenes & 
Greenstoe (2006) specicification  as; 

          
 
                                                                                                      (2) 

Where Y, is agricultural farm values of crop   at time t.     is a vector comprising of the factors that influence 
output production,      is climate variable.    is a set of fixed effects,     is the vector  coefficient of non-climate 
factors. The coefficient vector      represents the effect of climate change on the agricultural production. The 
effect of climate change in this model is a linear function of the parts of the    vector.     is the error term. The 
unique nature of the agricultural sector largely makes it susceptible to a variety of negative shocks such as 
pests, disease epidemics, drought, floods, and hailstorms among others. These shocks adversely lower 
agricultural production levels to nothingness. The nature of agricultural shocks causes agricultural returns 
(dependent variable) to assume dual possible values, nothingness (zeros) and positive values. Nothingness is 
the lower limit one can have. White (2007) says, “Nothing is absolutely the limit of nothingness”. Tobin 
(1958) using a specific example observed that households reported zero expenditures on key household 
durable goods or automobiles in a given year.  
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He advised that it is inefficient to do away with such information if the value of the dependent variable is not 
available. This resulted into the popularly known Tobit regression model. McDonald & Moffitt (1980) 
supplement that the Tobit analysis assumes that the dependent variable has many numbers of its values 
clustered around limiting value, usually zero and provide an example of data on hours of work that are often 
clustered at zero. Splett et al. (1994) note that Tobit model is appropriate for conditions under which the 
dependent variable is observable for values over and above zero but latent for values at most zero. Calzolari 
et al. (2001) aver that due to the censoring or “missingness” in the data, the Tobit regression estimated 
parameters do not signify the decrease or increase in the value of the independent variables. The standard 
Tobit model specification follows:  

   
     

 
                                                                                                                                            (3) 

With the assumption that           
  , i.i.d. and independent from      ,                     and we 

observe, 

     
   

            
    

               
    

                                                                                                                   (4)                                                                       

 
   =      +                                                                                                                                          (5) 
Where    is the individual effects and represents unobservable specific characteristics for individual   and 
remains constant across time, the time effect is denoted by    and represents all unobservable characteristics 
of time at period t, and assumed to remain constant for all the cross-sectional units in the sample. While     is 
the stochastic error term that varies across individuals and time. In this study,    assumes zero values for all 
values of t. Hence, equation (3) of the standard Tobit panel specification following the Cameron & Trivedi 
(2005) becomes:       

   
        

 
                                                                                                                                    (6)    

Following the above explanations, the study uses equation 7, a result of modifying equations 2 and 6.   

   
        

 
                                                                                                           (7)                                                        

Where    
 

 is a continuous vector of non-climate factors such as capital, labour and farm size, D is a set of 

vectors, namely irrigation, use of fertilizers, flooding and soil quality while     represents climate factors such 
as rainfall and temperature. 
 
Data, Study Area and Sampling: The study uses Uganda National Panel Survey (UNPS) datasets of 
2009/10(wave1), 2010/2011(wave II), 2011/2012(wave III) and 2013/2014(wave IV) collected by Uganda 
Bureau of Statistics (UBOS). These data are part of the World Bank’s Living Standards Measurement Study-
Integrated Surveys on Agriculture (LSMS-ISA) undertaken in some African countries, such as Uganda, Ghana, 
South Africa inter aralia. The UNPS conducted throughout the country covered five modules, namely price, 
woman, socio-economic, community and agriculture. Specifically, the agriculture module questionnaire 
covered the subset of UNPS households engrossed in agricultural activities such as crop and livestock 
production. The agricultural module captures data on various aspects such as data on current land holdings 
and household land user rights, agricultural inputs (capital, labour, and fertilizers), crops grown among 
others. In other words, the module permits the land area estimation, both owned and cultivated, as well as 
production quantification for major crops inter alia. It also allowed collection of information on irrigation, 
flooding and access to extension services.  
 
In each wave, the sampled household was visited twice per year to cover two agricultural cropping seasons. 
The first season refers to the cropping cycle of temporary crops that are grown and reaped at the end of the 
second quarter of the year, usually stretching to the end of June. It therefore covers the months ranging from 
January to June. While the second cropping season usually runs from September to December. The seasons 
directly coincide with the rains as well as the growing cycle of crops (UBOS, 2009a). The questionnaires 
administered to each household were similar for each wave with little or no modifications. Due to two 
cropping seasons per year, two other sub-waves resulted for each year, making it eight sub-waves in total. By 
end June of 2008, the numbers of districts were eighty in Uganda (UBOS, 2009b). The first wave (2009/10 
UNPS) collection exercise began from September of 2009 to August of 2010 and covered all the 80 districts as 
of 2009. The random selection comprised of 2,975 households across the country, indicating that LSMS 
survey was nationally representative. The 2009/10 UNPS covered 2,975 households stretching over 322 
Enumeration Areas (EAs) in the four regions of  Central, Eastern, Northern and Western. 
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The 2010/11 UNPS sampled 2,716 households. The 2011/12 UNPS covered 2,346 households. Comparing the 
waves, we notice attrition of households. World Bank (2011) reveals that incidences of death, migration, 
imprisonment or hiding from creditors among others create attrition problems faced in panel surveys. While 
the 2013/14 UNPS involved refreshing a third of the sample of the first wave that had 2,975 households. 
UBOS (2015) posits that the approach of refreshing the sample does offset the loss of representativeness, 
since the new households have equal probability of selection. Baltagi (2008) instead calls the refreshing 
sample, a rotating panel. The preceding paragraphs provide a clear argument why the study opted for the 
unbalanced panel data despite the problems of attrition and selection biases. The crops for analysis used in 
the study include fruits, such as bananas; cereals such as maize; oil seeds such as, groundnuts; root tubers 
such as cassava and leguminous crops such as beans. These crops were selected for the study because Caffrey 
et al. (2013) cite them as the most affected by the vagaries of climate change in Uganda. Secondly, these crops 
were the major crops grown by almost every household countrywide (UBOS, 2013).  
 
Climate data specifically for precipitation and temperature were obtained from Uganda National 
Meteorological Authority (UNMA). The climate data was from 13 weather stations, which include Entebbe, 
Makerere-Kampala, Soroti, Kasese, Namulonge, Gulu, Lira, Mbarara, Kabale, Masindi, Kitgum, Arua and Jinja. 
The UNMA precipitation and temperature data of each district was either incomplete or missing. Global 
weather data for SWAT was found to be complete and fully available for each district. The data was 
downloaded from the website www.globalweather.tamu.edu for Uganda from 1979 to 2014 covering 417 
weather stations. Despite the presence of climate data over a long period, the study utilized only climate data 
that corresponded with the four waves only. Using Google maps, latitude and longitude coordinates for each 
district were mapped to global weather data. It aimed at attaining all temperature and rainfall data for each 
district that prevailed during agricultural production periods. The average monthly climate data was 
combined with agricultural data to form one complete data set for analysis.  
 
Table 1: Variable Description and Expected Signs 
Variable  Description  Expected Sign 
Agricultural farm 
returns 

Estimate of the market value of output in dollars per household   Dependent 
variable 

Labour Labour was computed as person days. Person Days represent labour 
input.  Person Days=Number of days worked *Number of workers. 

+ 

Capital Total amount of capital expressed in US $. Capital valuation involved 
aggregation of the cost of hand hoes, ploughs, pangas, harrows, 
wheelbarrows, slashers, planter, pruning saws, knives, watering cans, 
sprayer, sheller, wheeler, planter, tractor and spades; 

+ 

Farm size  Plot/farm size, expressed in acres. + 
Fertilizers.  It is a dummy variable, 1 if a household used fertilizers and zero, 

otherwise.  
+ 

Soil Quality  It is a dummy variable, 1 if a respondent perceived soil quality as 
good/fair and 0 otherwise. 

+ 

Irrigation  A dummy variable, 1 if a household practised irrigation and 0 
otherwise. 

+ 

 Flooding A dummy variable, 1 if a particular household experienced flooding in 
a given cropping season and 0 otherwise. 

- 

Temperature Monthly average temperature   in degrees Celsius as units of 
measurement.  

- 

Rainfall Monthly average rainfall, expressed in millimeters.  + 
Source: Authors’ own 
 
4. Results and Discussion  
 
Agricultural farm returns are expressed in dollars with threshold value appearing as zero for various periods 
farmers harvested and this demotivates farmers from undertaking agricultural activities that are largely 
prone to losses. We note that the reasons for the pre-harvest loss in crop agro-based households were 
drought, floods, animals, pests, and hailstorms as shown in Table 2. 
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Table 2: The Main Reasons for the Pre-Harvest Loss per Crop 

Crop  Drought  Floods Animals Pests  Hailstorms  Others  Tot  Observations %gee 

Banana 11 1 5 10 3 20 50 2550 1.96 

Maize 208 28 36 14 9 30 325 4487 7.24 

G/ nuts 93 12 12 7 2 6 132 1787 7.39 

Cassava 58 19 19 20 3 85 204 2638 7.73 

Beans  164 29 7 15 10 34 259 4534 5.71 

Total 534 89 79 66 27 175 970 15996   

Source: Author’s calculations based on UNPS data 
 
Table 2 shows that most households cited drought and floods as some of the major challenges affecting 
agricultural returns. The climate related disasters such as drought, floods and hailstorms accounted for over 
67 percent of the factors affecting agricultural returns. The worst adversely affected crops were maize, beans 
and groundnuts. The main reason why most agricultural households experience large amounts of pre-harvest 
losses is due to overdependence on rain-fed agriculture as shown in Table 3, which shows water sources for 
agricultural production. Rains fall unexpectedly, for example, rains may appear early before gardens are 
prepared for planting and in some instances, rains stop when crops are starting to flower. Agricultural 
households with limited means to adapt irrigation watch their crops wither during dry spells. Various 
reasons explain why households fail to undertake adaptive strategies among which include low household 
incomes, limited sensitization of farmers, and lack of water tank reservoirs to store water that could be used 
during dry spells. Government’s sloppiness to provide the high cost irrigation infrastructure worsens the 
situation. Largely, these factors leave agricultural households without any other practical options; hence 
despairingly depend on natural rains instead of irrigation as shown in Table 3.  
 
Table 3: Water Sources for Farming  
Crop  Source Frequency Percentage  

Banana 
Rain-fed  2510 98.4 

Irrigated  40 1.57 

Maize  
Rain-fed  4405 98.17 

Irrigated  82 1.83 

G/nuts  
Rain-fed  1758 98.38 

Irrigated  29 1.62 

Cassava 
Rain-fed  2583 97.92 

Irrigated  55 2.08 

Beans  
Rain-fed  4457 98.3 

Irrigated  77 1.7 
Source: Authors’ calculations based on UNPS data 
 
Table 3 shows that on average, over 98.24 percent of the agricultural households entirely rely on the rain-fed 
agriculture. The percentage of households that irrigated on average was 1.76 percent. Amidst these climate 
shocks such as rainfall deficits, farmers without adaptive and cushioning strategies like irrigation are more 
food insecure, famine-prone, hunger stricken and subject to welfare loss and lower standards of living. In 
addition to the large agricultural losses emanating from long drought spells, prevalent floods at the end of dry 
hexes together with heavy destructive rains characterized by gales and hailstorms magnify the losses. The 
flooding incidences are repetitive in nature across the country. Agricultural households located on mountain 
slopes experience repetitive mudslides. Apart from being destructive to agricultural production, at worst, 
people lose their lives to mudslides that heap over their homesteads. The coefficients of labour input were 
positive and statistically significant for regressions of banana and beans. Households have stayed 
continuously in mudslide-prone areas due to scarcity of land favourable for extensive farming. As a result, 
land wrangles and conflicts are common in the country.  
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Regressions: The dependent variable has some zero values for each crop, the Tobit model was appropriate 
(Tobin, 1958). Panel Tobit and Pooled Tobit regression estimates appear in Table 4 and all continuous 
variables are in logarithmic form. The regression coefficients of capital, labour, farm size, temperature and 
rainfall represent elasticities, while soil quality, irrigation, fertilizers and flooding are dummies. The Pooled 
Tobit coefficient estimates are matching in sign with those of the panel Tobit model, and the statistical 
significance of all regression estimates are found similar except for the coefficient of flooding in the 
regression of banana. Basing on  the Akaike (1973) Information Criterion (AIC) and  Schwarz (1978) Bayesian 
Information Criterion (BIC), all the interpretations are based on the  Tobit panel regression results. The next 
discussion is for the results presented in Table 4.  
 
Table 4: Panel Tobit and Pooled Tobit Regression Estimates 

    Banana Beans Cassava G/nuts Maize 

Variables Panel Pooled Panel Pooled Panel Pooled Panel Pooled Panel Pooled 

Capital 0.137*** 0.144*** 0.195*** 0.199*** 0.042 0.042 0.203*** 0.189*** 0.176*** 0.185*** 

  (0.023) (0.025) (0.017) (0.018) (0.028) (0.028) (0.03) (0.031) (0.016) (0.017) 

Labour 0.050** 0.052** 0.043** 0.045*** -0.12*** -0.12*** -0.02 -0.026 -0.12*** -0.117*** 

  (-.021) (0.021) (0.017) (0.017) (0.024) (0.023) (0.029) (0.03) (0.02) (0.021) 

Farmsize 0.206*** 0.226*** 0.032 0.032 0.086*** 0.086*** 0.087*** 0.109*** 0.116*** 0.122*** 

  (0.024) (0.026) (0.02) (0.02) (0.025) (0.027) (0.033) (0.035) (0.02) (0.021) 

Fertilizers 0.131* 0.148** -0.033 -0.018 0.239*** 0.239*** 0.065 -0.032 -0.46*** -0.469*** 

  (0.07) (0.067) (0.061) (0.054) (0.055) (0.053) (0.119) (0.109) (0.078) (0.064) 

S/Quality 0.001 -0.036 -0.16*** -0.156** 0.029 0.029 0.365*** 0.312*** 0.351*** 0.356*** 

  (0.104) (0.109) (0.055) (0.063) (0.078) (0.085) (0.101) (0.11) (0.061) (0.064) 

Irrigation 0.084 0.11 0.107 0.094 -0.161 -0.161 0.359 0.338** 0.038 0.038 

  (0.188) (0.182) (0.137) (0.157) (0.182) (0.193) (0.238) (0.164) (0.152) (0.144) 

Flooding  -0.128 -0.159* -0.074 -0.076 -0.019 -0.019 -0.195* -0.175* -0.24*** -0.270*** 

  (0.091) (0.094) (0.064) (0.068) (0.087) (0.092) (0.1) (0.104) (0.064) (0.07) 

Temp -1.700*** -1.86*** -1.01*** -0.97*** -1.5*** -1.50*** 0.543*** -1.26*** -2.02*** -2.005*** 

  (0.304) (0.301) (0.197) (0.206) (0.309) (0.309) (0.063) (0.32) (0.238) (0.221) 

R/F -0.02 -0.03 -0.08*** -0.08*** -0.035 -0.035 0.115*** 0.032 -0.025 -0.026 

  (0.025) (0.026) (0.018) (0.017) (0.027) (0.027) (0.024) (0.029) (0.02) (0.02) 

Sigma_u 0.445*** 1.191*** 0.267*** 1.180*** 0 1.308*** 0.338*** 1.251*** 0.424*** 1.348*** 

  (0.044) (0.021) (0.046) (0.017) (0.118) (0.025) (0.087) (0.029) (0.04) (0.019) 

Sigma_e 1.106*** 
 

1.150*** 
 

1.308*** 
 

1.216*** 
 

1.280***   
  (0.021)   (0.016)   (0.019)   (0.031)   (0.018)   

AIC  8119.65 8234.7 14310.1 14318 8794.51 8792 5804.27 5806.38 15222.2 15263.5 

BIC 8189.77 8234.7 14380.6 14382.6 8859 8851.22 5864.53 5861.17 15292.6 15327.5 

Wald chi2 206.14*** 19203*** 
 

10760.51*** 7791.00*** 14531.85*** 

F   
 

2333.15** 2494.19*** 1264.77*** 960.58 

 

2058.16 

N 2,549 2,549 4,516 4,516 2,621 2,621 1,769 1,769 4,469 4,469 

N 1,207   1,860   1,510   1,017   1,936   

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1
 
The results indicate that the coefficients of capital have the expected positive sign and are significantly 
different from zero at one percent level of significance, for crops such as banana, beans, groundnuts and 
maize. In the same vein of research, Odhiambo et al. (2004) and, Raza & Siddiqui (2014) identify physical 
capital as a major determinant of agricultural farm returns. The results affirm a fact that capital remains a 
vital input for agricultural production as it greatly affects agricultural returns or farm revenues. Ajwad et al. 
(2004) in the same steps affirm that at the household level, over a half of the changes in the agricultural 
revenues are explained by non-climate factors such as physical capital available to farmers as well as capacity 
to adapt it at the farm level. Despite agricultural physical capital’s importance, limited affordability, 
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accessibility and low absorption of improved technology remain major challenge to farmers in Uganda 
according to UBOS (2013). Labour is another vital input for agricultural production. The output elasticities 
with respect to labour are 0.05 for beans and 0.04 for banana. The positive coefficient validates a fact of great 
importance of labour input in the production process. In contrast, the coefficients of labour input in the 
regressions of cassava and maize are statistically significant and negative. These output elasticities with 
respect to labour input   for Uganda are the lowest compared to other countries such as Japan, 0.26 for rice; 
0.59 for vegetables and potatoes (see Tokunaga et al., 2015) and Fezzi & Bateman (2015) obtained 3.751 for 
United Kingdom.  
 
The difference in output elasticities due to labour is not surprising since labour is highly skilled unlike in 
Uganda where majority of workers are unskilled. Secondly, the sector employs labour force rejects from other 
sectors. UBOS (2013) posits that agricultural sector absorbs the biggest percentage of the labour force left out 
by other various sectors of the economy yet it absorbs 32 percent of the total labour force. Deductively, one 
could allude that these are the majority-disgruntled workers. However, the sample of 88 observations used in 
the study of Tokunaga et al. (2015) was small; we are of the view that with a larger sample, the elasticities 
could have looked different. The elasticities due to labour input for cassava and maize are -0.120 and -0.123, 
respectively, however, groundnuts had negative coefficient but not significant. In the same line, Kabubo-
Mariara & Kabara (2018) using population density to represent availability of farm labour, find elasticity for 
beans as 0.00001. They also found that maize elasticity was positive but not significant.  The sign of 
coefficient of labour is a mixed bag since labour can be associated with both low and high agricultural returns 
or output because of the law of diminishing returns (Shephard, 1970). The farm size coefficients are positive 
and significant for almost all crop regressions under study, explicitly: banana, cassava, groundnuts and maize, 
although the farm size coefficient for beans was not significant. The output elasticities due to farm size are 
0.206 for banana, 0.086 for cassava, 0.087 for groundnuts and 0.116 for maize.  
 
These elasticities are not different from what Tokunaga et al. (2015) got in Japan, for example 0.16 for rice. 
The results indicate that acquisition of more land acreage increases agricultural returns in Uganda. Most 
farmers in Uganda are smallholder farmers cultivating less than one hectare of land, with probability of 
increasing up to 10 hectares in the less populated semi-arid zones (Salami et al., 2010). Acquiring more land 
with intention of expanding agricultural activities remains a mirage due to high population densities. UBOS 
(2013) advises that, despite scarcity of land, hope is not entirely lost, with appropriate use of inputs and 
adoption of improved farming methods, the quality and quantity of agricultural yields can increase with the 
same plots of land. Farmers that applied fertilizers significantly had more farm returns in particular for 
banana, and cassava growers. According to UBOS (2010) organic fertilizers are widely used by farmers in 
Uganda. These include green manure, farmyard compost and seaweed. Farmyard manure is made of mixture 
of cow dung, urine and litter, mostly straw that often absorbs urine. The findings are in agreement with the 
Mall et al. (2006) who find that farmers applying fertilizers obtain the same harvest; they were getting 
without fertilizers 20 to 30 years ago. Inferably, tilling land for long, exhausts the soil fertility hence need for 
use of fertilizer to increase farm values. Further, Mall et al. (2006) contend that changes in both temperature 
and precipitation are having greater effects on run-off and soil erosion, biodiversity, salinization and soil 
water content, all of which are impactful in dissolving nutrients in the soil. All these have greater impact on 
soil fertility hence the need for continued application of fertilizers. This replenishes soil fertility if correctly 
applied with appropriate soil tests for salinity and alkalinity.  
 
In contrast, maize growers significantly earned less farm returns. Application of fertilizers had no effect on 
farm returns for farmers that grew beans. Usually, smallholder farmers are often reluctant to apply fertilizers 
since leguminous crops such as beans and peas regularly fix their nitrogen in the soil. Sharma et al. (2014) 
establish that continued application of imbalanced inorganic fertilizers culminated into lesser crop yields of 
wheat and maize as it increases carbon soil content and decreases PH. Chang et al. (2014) and Han et al. 
(2016) caution that using inorganic fertilizers over a continuous longer period is more harmful than organic 
fertilizers derived from sawdust and livestock products such as cow dung. Further, application of inorganic or 
chemical fertilizers demands soil tests. Findings reveal that farmers that applied fertilizers were significantly 
not different from those that did not in terms of farm returns. We find this revelation not surprising since the 
farmers scarcely apply fertilizers in their gardens. GoU (2016) documents that farmers add only between 1-
1.5kg of nutrients for each hectare per annum, for every estimated loss of 80kg, hence positioning Uganda as 
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the least country in fertilizer usage across the globe and also this rate of usage is  below the mean of 8 kg per 
hectare in SSA. As a result, GoU (2016) attributes soil infertility and limited agricultural growth to limited use 
of fertilizers. The coefficients of soil quality are positive and significant for both regressions of groundnuts 
and maize. Farmers whose soils were good had more farm returns than their counterparts did. Kabubo-
Mariara & Kabara (2018) identify soils as good if they can keep enough moisture to support plant growth. 
However, growers of beans whose soils were good earned less revenues. They also find that silt soils were 
negatively associated with farm returns.  
 
On the other hand, the soil quality had no significant effect on farm returns for banana and cassava growers. 
GoU (2016) report shows that smallholder farmers can detect the soil quality as bad by perception and not 
scientifically. This is attributed to several reasons. First, they lack knowledge and capacity to test the 
nitrogen, phosphorous and potassium (NPK) ratio of the farm soils in the laboratory. Second, majority of 
farmers are short of knowledge and capacity to restock the missing soil nutrients, while others have a myth 
that fertilizers spoil soils. Irrigation had no any significant effect on farm values for farmers that grew banana, 
beans, maize, and cassava. It is not strange to find that irrigation has no impact on farm returns since the 
number of farmers that irrigated was less than 1 percent of the total respondents. UBOS (2013) documents 
that less than 1 percent of the land in Uganda is irrigated and the agricultural production is widely rain-fed. 
UBOS (2013) further reports that irrigation remains the best option to address the unpredictable weather 
variations, however, lack of affordability arising from high outlay needed to install irrigation infrastructure, 
keeps the venture as a distant dream. The effect of unreliable rainfall patterns and drought are ubiquitous. 
The high dependence on rain-fed agriculture impedes agricultural production (GoU, 2017). The proportion of 
agricultural households that practised irrigation in 2009/10 was one percent while in 2010/11 it was three 
percent. Bacha et al. (2011) cite smallholder irrigation as a pillar for attaining improved agricultural 
production, food security and lower rural poverty levels. Flooding had a significant negative relationship with 
farm returns for crop regressions of groundnuts and maize.  
 
Climatic Variables: The coefficients of temperature are negative and statistically significant for banana, 
beans, cassava, and maize. The output elasticities with respect to temperature lie between -2.02 percent and 
0.543 percent. This implies that for the average temperature increase by 1 percent, cassava farm returns 
decrease by 1.50 percent and beans by 1.004 percent. We notice that cassava and beans were the most hit 
crops by rising temperatures. These empirical results are consistent with those of  Tokunaga et al. (2015)  in 
Japan whose   elasticities are between -0.39 percent and -0.82 percent. Etwire et al. (2019) in Ghana find that 
for 1 percent increase in average temperature, the plantains revenues decrease by 2.612 percent, in Nigeria, 
Ater & Aye (2012) empirically estimate elasticity as -2.589 percent. Exenberger et al. (2014) find different 
elasticities for grouped countries, for example -0.004 percent for high income, -0.014 percent for middle 
income and -0.016 percent for low income. The difference in response to climate changes is responsible for a 
big output gap in agriculture between SSA and the developed countries (Barrios et al., 2008). These empirical 
results approve a mantra that SSA suffers more numerous adverse effects of climate change, yet it emits little 
greenhouse gases (Appiah, 2017). In contrast, temperature is positive and statistically significant for 
groundnuts. The results indicate that when average temperature increases by 1 percent, on average 
groundnuts’ farm revenues increase by 0.543 percent. Other  studies also find a significant effect of average 
temperature on farm revenues, for example Etwire et al. (2019) in Ghana establish that when average 
temperature increases by 1 percent, on average maize farm revenues increase by 0.28 percent. In addition, 
farmers of beans and cassava had fewer returns due to flooding although the effect was not significant.  
 
This finding is in agreement with Bezabih et al. (2014) who find that floods were majorly responsible for low 
levels of output and famine in Ethiopia. In Kenya, Kabubo-Mariara & Kabara (2018) delineate how water 
logging and flooding destroy crops in the formative stages, while rotting of mature crops occurs during 
harvest season. We deductively assert that most of flood-prone areas are wetlands. Largely, flooding is due to 
anthropogenic actions that have encroached on wetlands and swampy areas for cultivation. The coefficient of 
average precipitation was positive and statistically significant for groundnuts. When the average 
precipitation increases by 1 percent, the groundnuts’ farm returns increase by 0.115 percent. In the same 
vein of research, Granados et al. (2017) and Ater & Aye (2012) obtain similar results. On the contrary, 
average, precipitation has a significant negative relationship with farm returns for beans. These results are in 
agreement with the findings of Tokunaga et al. (2015) and Nyuor et al. (2016). When average precipitation 
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increases by 1 percent, the beans farm returns decrease by 0.077 percent. The rains are destructive, often 
characterized by hailstorms, strong winds, flooding, and mudslides. Mudslides and floods are so rampant in 
the eastern parts of the country.  Rainfall has no significant effect on farm returns for banana, cassava and 
maize. Attrition is a common problem with panel data that cannot be ignored. Using the Heckit model, the 
attrition bias test results appear in Table 5. There is no evidence for attrition bias for regressions of banana 
and beans. In contrast, the bias was found existent for cassava, groundnuts and maize regressions. In 
summary, the farm value elasticities imputed to temperature are far greater in magnitudes compared to those 
of rainfall, an indication that rising average temperatures and rainfall deficits adversely cause greater 
reductions in farm returns of agricultural households in Uganda. 
 
Table 5: Attrition Test Results  

Variables  Banana  Beans  Cassava  G/nuts  Maize 

Capital  0.135***  0.152***  -0.024  0.110***  0.120*** 

  (0.028)  (0.032)  (0.03)  (0.039)  (0.027) 

Labour  0.051**  0.057***  -0.09***  -0.023  -0.072** 

  (0.021)  (0.018)  (0.024)  (0.029)  (0.03) 

Farmsize 0.218***  0.042*  0.028  0.104***  0.115*** 

  (0.032)  (0.022)  (0.026)  (0.033)  (0.021) 

Flooding -0.136  -0.047  0.12  0.029  -0.089 

  (0.093)  (0.066)  (0.089)  (0.115)  (0.082) 

Temperature 1.839***  -0.461  -0.351  0.762  1.274*** 

  (0.388)  (0.375)  (0.368)  (0.694)  (0.316) 

Rainfall  -0.022  -0.042*  0.006  0.023  -0.023 

  (0.024)  (0.023)  (0.027)  (0.027)  (0.02) 

Biasterm  0.357  -1.033  -2.90***  -2.98***  -2.29*** 

  (1.343)  (0.708)  (0.443)  (0.825)  (0.656) 

Irrigation  n.a  0.207  -0.262  n.a  -0.221 

  n.a  (0.142)  (0.18)  n.a  (0.166) 

Constant 8.863***  3.878***  4.653***  0.688  7.374*** 

  (1.199)  (1.135)  (1.201)  (2.082)  (0.987) 

Sigma_u 0.439***  0.262***  0  0.359***  0.425*** 

  (0.045)  (0.047)  (0.116)  (0.081)  (0.045) 

Sigma_e 1.111***  1.152***  1.303***  1.204***  1.311*** 

  (0.022)  (0.016)  (0.019)  (0.031)  (0.02) 

N 2,509  4,516  2,621  1,740  4,144 

N 1,202  1,860  1,510  1,008  1,904 

Robust Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
 
Regional Analysis Using Different Geographic Areas: In Table 6, we present regional regression results of   
Central, Eastern, Northern and Western. Different regions have differing social and economic backgrounds, 
different conditions for crop farming, and ecological environments such as rainfall, temperature, soil types, 
vegetation, water and topography. Because of these differences, it is relevant to analyse results regionally. 
Central is the reference category. Despite the regular occurrence of floods in the eastern region, 
mudslides/landslides in the hilly and mountainous areas of Elgon have not only tremendously discouraged 
farming but also decreased farm returns (GoU, 2013). This clearly explains why increases in rainfall amounts 
significantly lower farm returns for households that cultivated beans and groundnuts in the eastern region. 
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Table 6: Regression Coefficients with Regional Dummies 
Variables  Banana  Beans  Cassava  G/Nuts  Maize 

Capital  0.136***  0.177***  0.052*  0.187***  0.138*** 

   (0.023)  (0.017)  (0.028)  (0.03)  (0.016) 

Labour  0.018  0.033**  -0.11***  -0.032  -0.14*** 

   (0.021)  (0.017)  (0.024)  (0.028)  (0.020) 

Farmsize   0.175***  0.057***  0.068***  0.098***  0.148*** 

   (0.023)  (0.020)  (0.026)  (0.033)  (0.020) 

Fertilizers  0.087  -0.087  0.260***  -0.047  -0.44*** 

   (0.069)  (0.062)  (0.055)  (0.120)  (0.077) 

Soil Quality  0.011  -0.118**  -0.03  0.311***  0.376*** 

   (0.102)  (0.055)  (0.079)  (0.101)  (0.061) 

Irrigation  0.045  0.042  -0.085  0.324  -0.072 

   (0.185)  (0.137)  (0.183)  (0.236)  (0.150) 

Flooding   -0.091  -0.067  -0.008  -0.16  -0.17*** 

   (0.089)  (0.064)  (0.087)  (0.100)  (0.064) 

Temperature  -0.596*  -0.449**  -1.74***  -1.32***  -1.16*** 

   (0.315)  (0.217)  (0.336)  (0.381)  (0.253) 

Precipitation  0.007  -0.06***  -0.041  0.027  -0.01 

   (0.023)  (0.018)  (0.027)  (0.029)  (0.020) 

Eastern Dummy  -0.47***  -0.27***  0.182**  0.076  -0.29*** 

   (0.072)  (0.056)  (0.073)  (0.103)  (0.059) 

Northern Dummy  -1.13***  -0.38***  0.282***  -0.068  -0.67*** 

   (0.133)  (0.061)  (0.080)  (0.110)  (0.067) 

Western Dummy  0.064  -0.066  0.217***  0.026  -0.133** 

   (0.060)  (0.049)  (0.078)  (0.100)  (0.065) 

Constant  5.107***  4.138***  8.502***  6.349***  7.284*** 

   (1.026)  (0.714)  (1.110)  (1.251)  (0.826) 

Sigma_u  0.378***  0.238***  n.a  0.365***  0.358*** 

   (0.048)  (0.050)  n.a  (0.079)  (0.045) 

Sigma_e  1.100***  1.149***  1.304***  1.196***  1.280*** 

   (0.021)  (0.016)  (0.010)  (0.031)  (0.018) 

N  2,549  4,516  2,621  1,769  4,469 

N  1,207  1,860  1,510  1,017  1,936 

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
 
The regional dummies in Table 6 show that both central and eastern regions reap more farm returns in the 
farming of bananas than northern region. The results also suggest that banana farm returns for western 
region are not different from those of central. Further, central and northern regions reap more farm returns 
from the farming of beans than other regions. Northern region gained more farm returns from the farming of 
both maize and cassava while the growing of groundnuts was mostly statistically significant in the central 
region as shown by the highest significant dummy coefficient. We also examined how climate factors affect 
farm returns regionally; beans growers experienced the worst effects of precipitation as shown by elasticity 
of -0.06 percent, while cassava growers were hit most by effects of temperature across the entire regions. 
Floods have more damaging effects on farm returns for both eastern and northern regions especially for 
maize growers.    
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5. Conclusion and Recommendations 
 
The paper examined the effect of both rainfall and temperature on agricultural returns. The climate related 
disasters such as drought, floods and hailstorms accounted for over 67 percent of the factors impeding 
agricultural returns and less than 2 percent of the farming households used irrigation. However, farmers that 
irrigated earned higher agricultural returns. The findings show that the output elasticities with respect to 
temperature range from -2.02 percent to 0.543 percent, while with respect to rainfall lie between -0.08 
percent and 0.155 percent. The climate coefficients show that both root tubers and legumes are the most 
affected crops by climate changes. Further, temperature increases were more destructive than rainfall. Apart 
from climate factors, non-climate factors such as capital, labour, farm size, fertilizers and soil quality are 
equally important inputs and significantly affect agricultural farm returns. 
 
Recommendations: Basing on the study findings, the study proposes that due to increasing adverse climate 
change effects in Uganda, adoption of multi-pronged approaches such as extensive irrigation, agro-based 
insurance, diversification of agricultural activities, use of food cribs during bumper harvests would lessen the 
effects of climate change. 
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