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Abstract: Efficient market theory states that financial markets can process information 
instantly. Empirical observations have challenged the stricter form of the efficient market 
hypothesis (EMH). These empirical observations and theoretical considerations show that price 
changes are difficult to predict if one starts from the time series of price changes. This paper 
provides an explanation in terms of algorithmic complexity theory of Kolmogorov that makes a 
clearer connection between the efficient market hypothesis and the unpredictable character of 
stock returns. 
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1. Introduction 
 

An investment theory that states it is impossible to "beat the market" because stock market 
efficiency causes existing share prices to always incorporate and reflect all relevant information. 
According to the efficient market hypothesis stocks always trade at their fair value on stock 
exchanges, making it impossible for investors to either purchase undervalued stocks or sell 
stocks for inflated prices. As such, it should be impossible to outperform the overall market 
through expert stock selection or market timing, and that the only way an investor can possibly 
obtain higher returns is by purchasing riskier investments. In finance, the efficient-market 
hypothesis asserts that financial markets are "information efficient". 
 
Empirical analyses have consistently found problems with the efficient-market hypothesis, the 
most consistent being that stocks with low price to earnings (and similarly, low price to cash - 
flow or book value) outperform other stocks. Alternative theories have proposed that ‘cognitive 
bases’ (over confidence, overreaction, representative bias etc) these inefficiencies, leading 
investors to purchase over priced growth stocks rather than value stocks. Although the efficient-
market hypothesis has become controversial because substantial and lasting inefficiencies are 
observed Beechey et al. (2000) consider that it remains a worthwhile starting point. 
 
The efficient market hypothesis as formulated in economics and finance, first by Samuelson 
(1965) and then by Fama and French (1992), suggest that properly anticipated prices fluctuate 
randomly. Using the hypothesis of ‘rational expectations’ and market efficiency, he was able to 
demonstrate how  yt+1 , the expected value of the price of a given asset at time  t+1, is related to 
the previous values of prices y0,  y1, . . . ..yt through the relation  
 

        
  y [ E 1t  t10 y . . . ,.y  ,y

] = yt                                                                                (1) 
 
Stochastic processes obeying the conditional probability given in equation (1) are called 
martingales.  Martingales are very important types of sequences, as shown in Davidson and 
Mackinnon (1993). 
 
Definition 1 
A sequence 

ty of random variables is called a martingale if, for all t, E 
ty  exists and is finite 

and for all t  
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 = yt                                                                        (2) 

 
Martingales do crop up as such from time to time in econometrics. An important notion 
surrounding the concept is that of a martingale difference sequence. 
 
Definition 2 
A sequence ty  is said to be a martingale difference sequence if1                   (3) 

             y [ E 1t │ t10 y . . . ,.y  ,y ] = 0 

 
Theorem 1 
If ty  is a martingale difference sequence and there is an r ≥ 1 such that the series 

 

       )y( Et
r2

t
1t

r)  (1                                                                                               (4) 

 
Converges, then 
  
Sn 0  almost certainly2 
 
Between the cash flow dates, there is a constant drift in the asset price and most likely, there 
will also be a finite drift if fluctuations are included. Such drifts are present in most real markets. 
A modified statement then is that, up to the drift dF /dt, the market does not expect a net change 
of the true or fundamental, prices. However, deviations of a certain amplitude y, where y = F (t) 
– F (0), occur with probabilities p (y), which satisfy 
 

     dy )y  ( p     = 1                                                                                                    (5)            

For all t. The expected profit from an investment is then 
 

                  )y  ( E  = dy  )(y  p y > 0,     so long as dF / dt > 0                          (6) 

 
Such an investment is not a ‘fair game’ of chance because it has a positive expectation. However 
for a fair game of chance:  E (y) = 0                                                                                           (7) 
 
The fair game (random walk) condition about the price changes observed in a financial market 
is equivalent to the statement that there is no way of making a profit on an asset by simply using 
its recorded history of its price fluctuations. This conclusion is the ‘weak form’ of the efficient 

                                                        
1 This condition is very short because the condition implies not only the existence of the unconditional expectations E (y t 

) but also that these are zero and the sequence is therefore centered. 
 
2 The regularity condition is quite weak, because of the factor of t  - ( 1 + r ). Note that 
        

1t

)r   1 ( t
 

 Converges for all r > 0. In particular the condition is satisfied if the (2k)th absolute moments of the  yt’ s,  )y ( E
r2

t  

are uniformly bounded, by which we mean that there is a constant k, independent of t, such that )y ( E
r2

t  < k for all 

t ( see Stout ( 1974). 
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market hypothesis. This price changes are unpredictable from the historical time series of those 
changes. 
 
Since the 1960s, a great number of empirical investigations have been devoted to testing the 
efficient market hypothesis. In the great majority of the empirical studies, the time correlation 
between price changes has been found to be negligibly small, supporting the efficient market 
hypothesis. However, it was shown in the 1960s that by using the information present in 
additional time series such as earnings/ price ratios, dividend yields and time-structure 
variables, it is also possible to make predictions of the rate of return of a given asset on a long 
time scale, much larger than a month. In actual markets, residual inefficiencies are always 
present. These empirical observations and theoretical considerations show that price changes 
are difficult to predict if one starts from the time series of price changes.  
 
2. Kolmogorov Complexity Theory (KCT): Introductory remarks 
 
The description of a fair game in terms of martingale is rather formal and mathematically 
complex. The problem of algorithmically constructing prices that reflect all available 
information has been studied and studied extensively by applying a computer. In this section, 
we will provide an explanation in terms of algorithmic complexity theory of Kolmogorov. For an 
excellent treatment of Kolmogorov, readers are asked to refer to Kolmogorov (1965), Cohn and 
Kumar (2007) and Ziegler and Koolen (2008). In order to describe Kolmogorov’s contribution, 
we begin with the fundamental wok of Shannon’s theory of information that provides much 
useful information in terms of bits or more generally, in terms of the normal amount of the 
complexity of structures needed to encode a given piece of information.  
 
Shannon’s Information theory: Suppose a random event has a discrete state x1 … Xn,   each with 
a probability p1 . . .Pn, the information value of x is a reduction of uncertainty 

                            H (x) = - ) P ( P log  P  j
n

1j
j                                                           (8) 

The right hand side is the entropy factor introduced by Boltzman (1974) is called the general 
function for information. 
 
Analogously for a continuous distribution                        

                             H    =   - ∫ p (x) log p (x) dx                            (9)                 

The most important result for Shannon’s theory of information is the following: 
                           R = H (x) -   Hy (x)                                                                                 (10) 
 
The amount H y (x) is the conditional entropy, also called, equivocation. The amount of 
information one receives would be equal to the amount of information sent minus the average 
rate of conditional entropy. As technology improves, the level of equivocation gradually reduces 
to more people. That means the value of information known to everyone is Zero.  The laws that 
govern human activities, including mental activities, are the same as the physical laws that 
govern non-living objects. H is a function of probability of a given event. Value is decreasing 
function of probability.  In information theory, P is the probability of some event 
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Note: Entropy of a Bernoulli trial as a function of success probability, often called the binary 
entropy function, Hb(p). The entropy is maximized at 1 bit per trial when the two possible 
outcomes are equally probable, as in an unbiased coin.              
 
P = 1 – log P = 0 when P approaches zero, - log P approaches infinity; the value of information is 
very high. If the information is announced publicly and becomes known to people, the value of 
information is very low. Little profit can be made by trading such information. Warren buffet 
who has a very successful record for gaining and using insightful market information would not 
announce to public what stock he is going to buy. Hy (x) offers the quantitative measure of 
information asymmetry. The amount of conditional entropy is determined by the correlation 
between the sender and the receiver. It is impossible to assume how much information one has 
from the information source. When x and y are independent H y (x) = H (x) and R = 0. No 
information can be transmitted between the two objects that are independent of each other. 
When the correlation between x and y are equal to one, Hy (x) = 0. No information loss occurs in 
transmission. The higher the correlation between the source and the receiver, the more 
information can be transmitted. Social impact of new product is gradually reached over the path 
of several decades. That is why the individual stocks and whole markets often exhibit cycles of 
different lengths. The whole analysis is in contrast to Grossman and Stiglitz where economic 
agents recognize the value of information instantly.     
  
 Communications over a channel - such as an ether net wire - is the primary motivation of 
information theory.1 How much information can one hope to communicate over a noisy (or 
otherwise imperfect) channel?  Let p(y | x) be the conditional probability distribution function of 
y given x. We will consider p(y | x) to be an inherent fixed property of our communications 
channel (representing the nature of the noise of our channel). Then the joint distribution of x 
and y is completely determined by our channel and by our choice of f(x), the marginal 
distribution of messages we choose to send over the channel. Under these constraints, we would 
like to maximize the rate of information, or the signal, we can communicate over the channel. 
The appropriate measure for this is the mutual information, and this maximum mutual 
information is called the channel capacity and is given by: 
                                           
 C = max I (x; y)                                                                                                      (11) 
 
This capacity has the property that is related to communicating at information rate R (where R 
is usually bits per symbol). For any information rate R < C and coding error ε > 0, for large 
enough N, there exists a code of length N and rate ≥ R and a decoding algorithm, such that the 
maximal probability of block error is ≤ ε; that is, it is always possible to transmit with arbitrarily 
small block error. In addition, for any rate R > C, it is impossible to transmit with arbitrarily 
small block error. Optimal codes that can be found to transmit data over a noisy channel with a 
small coding error at a rate near the channel capacity. 
 
Kolmogorov’s Algorithmic Complexity Theory: Information as we have known by now says a 
random object x ~ p(x) has a complexity (entropy) H = (x) p log )x(p  with the attendant 

interpretation that H bits are sufficient to describe X on the average. Algorithmic complexity 
says an object x has a complexity k (x) equal to the length of the shortest (binary) program that 
describes x. It is a beautiful fact that these ideas are much the same. In fact, it is roughly true that 

EK(x) = H. Moreover, if we let x  prints U p  )x(p rU
 be the probability that a given computer 

U prints x when given a random program, it can be shown that (x) K  )x(p/log(
U

1   for all x, 

thus establishing vital link between the ‘universal’ probability measure 
U

p  and the ‘universal’ 

complexity K. More on this later. As an author so eloquently put it: The concepts of information 
theory as applied to infinite sequences give rise very interesting investigations, which, without 
being indispensable as a basis of probability theory, can acquire a certain value in the 
investigation of the algorithm side of mathematics as a whole. 
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Different kinds of Kolmogorov complexity are available: the uniform complexity, prefix 
complexity, monotone complexity, time-bounded Kolmogorov complexity, and space-bounded 
Kolmogorov complexity.  But, the most popular types of computational complexity are the ‘time’ 
complexity of a problem equal to the number of steps that it takes to solve an instance of the 
problem as a function of the size of the input (measured in bits) using the most efficient 
algorithm, Burgisser et al (1997), and Tucker and Jucker (2001) classifies different 
computational problems by complexity class. But whatever be the way of classification, the 
complexity theory addresses computational problems and not particular problem instances. In 
computational complexity theory, a problem refers to the abstract question to be solved.  In 
contrast, an instance of this problem is a rather concrete utterance, which can serve as the input 
for a decision problem. The instance is a particular input to the problem, and the solution is the 
output corresponding to the given input. 
 
Definition 3:  
The definition of algorithmic complexity  
 

                                       
x(p) U          

 (p) l  min   (x) k
                                                                          (12) 

of a string x as the length of the shortest program for a universal computer U  to output x have 
immediate impact. 
 
 
Theorem 2:      
Kolmogorov theorem, which is known as the invariance theorem, says that the notion of 
complexity can be made fairly independent of the choice of the interpreter, that is, there are 
‘asymptotically optima’ interpretation U ( p) with the property that for any other computable 
partial function )p(  we have the inequality 

                                   c  )x(K   )x(KU                                                                    (13) 

where the constant c does not depend on x. 
Kolmogorov considered an arbitrary computable partial function  and defined )x(k  = x; the 

function acts as the decoder or interpreter (when information is reached to the receiver) of 

the description p.  The complexity of x is the length of the shortest description, with respect to 
the interpreter .   

This theorem can be proved simply by choosing U as the machine universal as defined above. 

Indeed the universality of the of U implies that there is a binary string q  with the property that 

for all p we have 
                                          )p(q U   )p(                                                                       (14) 

It is the algorithmic complexity theory that makes a clearer connection between the efficient 
market hypothesis and the unpredictable character of stock returns. Such a connection is now 
supported by the property that a time series that has a dense amount of non-redundant 
economic information (as the efficient market hypothesis requires for the stock returns time 
series) exhibits statistical features that are almost indistinguishable from those observed in a 
time series that is random3. 

                                                        
3 An axiomatic approach to Kolmogorov is based on Blum axioms (Blum, 1967). It is possible to treat different 
kinds of Kolmogorov complexity as particular cases of axiomatically defined generalized Kolmogoov complexity. 
Instead, of proving similar theorems, such as the basic invariance theorem, for each particular measure, it is 
possible to easily deduce all such results from one corresponding theorem proved in the axiomatic setting. This is a 
general advantage of the axiomatic approach in mathematics. The axiomatic approach to Kolmogorov complexity 
was also applied to software metrics, e.g., Debnath and Burgin, (2003) and Burgisser, et al (1997). 
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3. Efficient Market Hypothesis and KCT 
 
Within the algorithmic complexity theory, as we have now seen, the complexity of a given object 
coded in an n - digit binary sequence is given by the bit length K (n) of the shortest computer 
program that can print the given symbolic sequence. Such an algorithm does exist and is 
asymptotically optimal (invariance theorem). To illustrate this concept suppose that as a part of 
space exploration we want to transport information about the scientific and social achievement 
of the human race to regions outside the solar system. Among the information blocks we 
include, we transmit the value of   expressed as a decimal carried out to 125,000 places and 
the time series of the daily values of the Dow Jones industrial average between 1898 and the 
year of the space exploration (approximately 125,000 digits). To minimize the amount of 
storage space and transmission time needed for these two items of information, we write the 
two number sequences using, for each series, an algorithm that makes use of the regularities 
present in the sequence of digits. The best algorithm found for the sequence of digits in the 
value of   is extremely short. In contrast, an algorithm with comparable efficiency that has not 
been found for the time series is a non-redundant time series.  
 
Just as Shannon’s theory describes the maximum possible efficiency of error correcting methods 
and various levels of noise interference and data corruption,  within algorithmic complexity 
theory, a series of symbols is considered inefficient or  unpredictable if the information 
embodied cannot be ‘compressed’ or reduced to a more compact form. This statement is made 
more formal by saying that the most efficient algorithm reproducing the original series of 
symbols has the same length as the symbol sequence itself. 
Algorithm complexity theory, therefore, will help us understand the behavior of a financial time 
series4. In particular,  
 

 Algorithm complexity theory will make a clear connection between the efficient market 
hypothesis and the unpredictable character of stock returns. Such a connection is now 
supported by the fact that a time series that has a dense amount of non - redundant 
economic information (as the efficient market hypothesis requires) exhibits statistical 
features that are almost indistinguishable from those observed in a time series that is 
random. 

 Measurement of the deviation from randomness provides a tool to verify the validity 
and Limitations of the efficient market hypothesis. 

 From the point of view of algorithmic complexity theory, it is not possible to determine 
between trading on ‘noise’ and trading on information where we use information to 
refer to fundamental information concerning the traded asset, internal or external to 
the market. Algorithmic theory detects no difference between a time series carrying a 
large number of non-redundant economic information and a pure random process. 

 
4. Conclusion 
 
Investor performance and market patterns are primarily information driven. However, theories 
of finance offer little guidance in identifying informed investors and in distinguishing between 
securities with scarce information and those with widely available information. Most empirical 
evidences about market behaviors documented in the literature can be explained by 
Kolmogorov’s algorithm complexity information theory that can be generalized by Shannon’s 

                                                        
4 Decision problems are one of the central objects of study in computational complexity theory. Malajovich (2002) , Basu 
et al (2006) , and Tucker and Jucker (2001)view decision problem as a formal language where the members of the 
language are instances whose answer is yes, and the non-members are those instances whose output is no. The 
objective is to decide, with the aid of an algorithm whether a given input string is member of the formal language under 
consideration. If the algorithm deciding this problem returns the answer, yes, the algorithm is said to accept the input 
string, otherwise it is said to reject the input. The input is actually an arbitrary graph.  
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entropy theory of information. Investor performance and market patterns are the results of 
information processing by investors of different sizes with different background   knowledge. 
 
This property of financial time series looking unpredictable and their future values being 
essentially impossible to predict, is not a manifestation of the fact that the time series of 
financial asset prices does not reflect any valuable and important economic information. Indeed 
the opposite is true. The time series of prices in a financial market carries a large amount of 
non-redundant information. Because the quantity of information is so large, it is difficult to 
extract a subset of economic information associated with specific aspect. The difficulty in 
making predictions is thus related to an abundance of information of financial data, not to a lack 
of it. Therefore, what is needed an efficient algorithm that will help us understand better the 
behavior of a financial time series. 
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