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Abstract

Remote structural and machinery health monitoring (SMHM) of marine struc-

tures such as ships, oil and gas rigs, freight container terminals, and marine energy

platforms can ensure their reliability. However, the wired sensors currently used

in these applications are difficult and expensive to install and maintain. Wireless

Sensor Networks (WSN) can potentially replace them but there are significant

capability gaps that currently prevent their long-term deployment in the harsh

marine environment and the structurally-complex, compartmentalised, all-metal

scenarios with high volume occupancy of piping, ducting and operational machin-

ery represented by marine structures. These gaps are in sensing, processing and

communication hardware and firmware capabilities, reduction of power consump-

tion, hardware assembly and packaging for reliability in the marine environment,

reliability of wireless connectivity in the complex metal structures, and software

for WSN deployment planning in the marine environment. Taken together, these

gaps highlight the need for a systems integration methodology for marine SMHM

and this is the focus of the research presented in this thesis. The research takes

an applied approach by first designing the hardware and firmware for two wireless

sensing modules specifically for marine SMHM, one a novel eddy-current-based

3D module for measuring multi-axis metal structural displacement, the second

a fully-integrated module for monitoring of structure and machinery reliability.

The research then addresses module assembly and packaging methods to ensure

reliability in the marine environment, the development of an efficient methodology

for characterising the reliability of wireless connectivity in complex metal struc-

tures, and development of user interface software for planning WSN deployment

and for managing the collection of WSN data. These are then individually and

collectively characterised and tested for performance and reliability in laboratory,

land-based and marine deployments. In addition to the research outcomes in each

of these individual aspects, the overall research outcome represents a systems in-

tegration methodology that now allows deployment, with a high expectation of

reliability, of marine SMHM WSNs.
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Chapter 1

Introduction

1.1 Objectives of the work

The objective of the research presented in this thesis was the development and

validation of a “whole-system” methodology for the design and deployment of

wireless sensor networks (WSN) for structural and machinery health monitoring

(SMHM) in offshore marine applications in large, metal structures such as ships,

oil/gas and marine renewable energy platforms. In particular, it addressed the

following key components in the whole-system approach:

• Miniaturisation, hardware systems integration, and reliability of networked

multi-sensor wireless sensing nodes for SMHM in harsh marine environ-

ments.

• A systematic and time-efficient methodology for characterising WSN wire-

less link performance and reliability in complex, multi-chamber all-metal

environments with a high concentration of operating machinery.

• Hardware/firmware/software co-design for SMHM wireless sensing networks.

Hardware refers to the integration of microcontroller, memory, and sensors

in a packaged module, while firmware is the code that is programmed in

the microcontroller. Software refers to the program that runs in the PC

connected to the gateway node.
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1.2 Context of the work

In the broad context of addressing the gaps that currently restrict the deploy-

ment of marine SMHM WSNs, the specific research objectives are:

• A miniaturised, low power method to measure relative metal displacement

between adjacent components in a structure.

• A fully integrated WSN module with vibration and acoustic sensors for

SMHM.

• A firmware architecture for the WSN modules focused on sensing experi-

ments, compatible with current embedded networked OS, with a user in-

terface for remote experiment control and data collection.

The research therefore addresses ‘systems integration’, developing and inte-

grating these key components to put in place the whole-system solution. Each

component was individually validated through both laboratory and field testing

and the overall methodology was validated through WSN deployment and testing

in an on-board ship application.

1.2 Context of the work

Marine offshore structures have been deployed at sea for decades, whether for

extraction of fossil fuels or the more recent wind and wave renewable platforms.

Due to their difficult access and maintenance, the reliable monitoring of these

structures and associated machinery becomes a key issue to ensure their own

safety and that of their surrounding elements. This issue also affects naval and

cargo vessels, as they are immersed in the same marine environment and contain

structures and machinery of similar characteristics. To ensure a reliable collec-

tion of data, the monitoring and sensing system has to be made itself reliable.

Traditional wired systems used for structural and machine monitoring of these

platforms are of high cost and complexity. A Wireless Sensor Network (WSN)

can reduce this complexity and cost, simplifying the deployment and maintenance

of the system.

However, in the literature review in Chapter 2 it is shown that:
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1.3 Thesis preview

• Current WSN modules are not suitable for marine applications due to hav-

ing one or more of the following limitations:

– Not being able to process high-data rate sensors necessary for this

application such as vibration and acoustic sensors.

– Not integrating the aforementioned necessary sensors.

– Lack of compatibility with current networked embedded OSs, to allow

to fully take advantage of the networking capabilities of a WSN.

– Not being properly packaged, encapsulated, and tested to survive and

collect data reliably in these harsh environment scenarios.

• Current WSN characterisation techniques suffer from either of these issues:

– They do not provide a full all-to-all physical link characterisation, with

no upper-layer protocols in a synchronised manner.

– They have not been properly evaluated and analysed in real-world

metal marine environments.

These limitations and gaps are addressed in the work presented in this thesis

by:

• Designing and developing autonomous wireless sensing modules that are

suited for the marine environment, as well as characterising and testing

them.

• Developing and testing a methodology for WSN characterisation that can

be used in metal marine environments.

1.3 Thesis preview

• Chapter 2 starts with an overview of the marine offshore application envi-

ronment that sets up the work in this thesis, followed by the current state of

the art for the sensors used to monitor these structures and related machin-

ery. Eddy-current sensing is identified as a potentially suitable method for

monitoring structural stresses in these structures that are mainly composed
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1.3 Thesis preview

of metal. Vibration and acoustic sensing is shown to be the most common

method for fault detection in machinery, which can also be used for struc-

tural monitoring; however, marine-graded modules have not been found

that integrate these type of sensors. The chapter also examines the appli-

cation of wireless sensor modules and WSN in these environments, finishing

with a review of methods and systems to characterise wireless performance

in WSN in general and its application in particular to the complex metal

environments.

• Chapter 3 presents the design and development of a novel multi-axial sensor

based on eddy-current inductive sensing, for measuring relative displace-

ment between adjacent components in a steel framework. This sensor is

further integrated into a fully encapsulated wireless module, with a cuboid

shape made out of PCBs, 3D-printed plastic components and integrated

battery. The sensor and module are characterised in one and two axes for

different conditions such as metal thickness, type, and angle of inclination,

as well as testing the effects of water, battery integration, and encapsu-

lant. The characterisation was done by developing two different custom

test setups, one for general one/two axis testing and another one for plate

inclination testing. The characterisation of the sensor demonstrated a sens-

ing range of 0-20 mm and a resolution of 0.5 mm.

• Chapter 4 describes a new hardware/software WSN architecture for moni-

toring machinery in marine and harsh environments using COTS vibration,

acoustic, and temperature/humidity sensors, which overcomes the limita-

tions of current WSN platforms. The electronics design, module integration

and encapsulation are described, as well as the firmware running in the mi-

crocontroller. This module improves on the main CPU, radio, and power of

the hardware platform described in Chapter 3, adapting it to the necessary

sensors. It addresses the issues of current WSN modules in terms of power,

marine reliability, and OS compatibility, which allows research and industry

to deploy WSN for machine and structural monitoring in marine scenarios.

The sensor module is able to sample and save accelerometer data at 476 Hz
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and audio data at 7.5 KHz at the same time. A full-featured UI is also pre-

sented, which allows data collection and visualisation, experiment control,

and 3D-view support of the environment. The platform was validated in

laboratory conditions by testing it on different electro-mechanical setups.

• Chapter 5 presents a methodology to fully characterise wireless link commu-

nications in 802.15.4 networks, extending the state of the art methodologies

and tools described in Chapter 2, to be applied to complex, 3D, metal ma-

rine environments. This methodology and experimental setup focus on the

physical layer instead of application-level or networking-level layers typi-

cally found in the literature. The methodology was validated in three dif-

ferent metal scenarios with increasing complexity: an indoor-outdoor multi-

chamber metal environment composed of three freight containers; a large

engine room emulator containing a ship’s engine, several generators and

large amounts of metal piping, ducting, and gantries; a real naval vessel’s

engine room and its adjacent compartment. Different variables were studied

such as door openings, node location and orientation, and effect of heavy

machinery. Moreover, the methodology was also applied to a non-marine

scenario in a real application deployed in a data centre, in which unknown

issues were causing several node failures. With the applied methodology,

the root causes of the failures were found and subsequently corrected.

• Chapter 6 presents the validation of the modules for the marine environment

by accelerated reliability stress testing to marine and military standards.

The modules were subjected to vibration, humidity/temperature, and salt

mist stress tests. A network of SMHM sensor modules is also deployed in

different real-world marine environments, to prove the reliability of the data

collection, such as a river bridge during a storm, the motor of a RIB, and

a naval vessel’s engine room and adjacent compartments.

• Chapter 7 presents the overall conclusions and discusses the impact in the

research and application fields of WSN, miniaturisation, packaging, systems

integration, reliability, and the deployment of offshore marine WSN. Future
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work is discussed, including further validation of the inductive sensor mod-

ule in real structural applications as well as long-term deployment of a large

WSN in an exposed marine environment.
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Chapter 2

Literature Review

2.1 Application environment: marine structures

and machinery

2.1.1 Introduction

Structural and machine health monitoring (SMHM), using wireless sensor net-

works, is being widely used for a wide range of land-based structures and machin-

ery, such as bridges, buildings, and industrial scenarios. Marine structures such

as oil and gas drilling platforms, ships, and renewable energy devices can benefit

from SMHM, as they are deployed at sea for long periods and therefore exposed

to exceptionally harsh environmental and mechanical stresses, but the nature of

the structures and the stresses make SMHM design and deployment much more

difficult. These mechanical stresses correspond to the bending and flexing of the

different parts and components of the structure, produced by storms, wind gusts,

and wave impact, which can slowly deteriorate the structure leading to cracking

and eventually failure.

This section describes the stresses affecting marine deployments that can im-

pact their reliability, setting up the context environment for the sensing needs to

monitor and improve the reliability of these platforms.
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2.1 Application environment: marine structures and machinery

2.1.2 The offshore environment

Offshore structures have been deployed around the world for decades, with great

concern about their structural reliability due to the harsh environment conditions.

The continuous high humidity and wetting produced by the salt water they are

immersed in as well as rain can cause corrosion in the long term [12–14]. In

addition, the salt in the sea water can accelerate this corrosion, which can affect

not only the structure and machinery of these deployments but also the electronics

that compose their sensing systems [15]. Another important issue in floating

platforms is the continuous motion induced by wave and wind, which causes

cyclic mechanical stresses, as well as random high mechanical strains and shocks

produced by wind gusts and wave impact [16–18]; these can be specially severe

during specific climatic episodes such as storms or hurricanes [19]. All of these

stresses cause fatigue and cracking in the structure, which can ultimately lead to

deterioration or even catastrophic failure of the platform [20, 21]. The severity

of these environmental and mechanical stresses also makes offshore structures an

exceptionally harsh environment for deployment of electronics. Moreover, the

large amount of metal in the structure and high levels of electrical noise from

heavy machinery also makes it a difficult environment for wireless propagation,

as described in more detail in Section 2.5.

2.1.3 Applications: ships, platforms, and their associated

machinery

Drilling platforms consist of large pumping systems that extract gas and oil from

the bottom of the ocean, built on a metallic structure generally made out of steel.

To ensure their survivability, the first approaches have tried to address it by devel-

oping a strong and durable structure with a predictable lifetime. The literature

describes many probability-based models and studies focused on predicting the

effects of fatigue and cracking in the structure by the effects of wave loading and

other stresses [22–24]. However, this failure prediction does not replace the need

for continuous monitoring and a SHM system is still necessary.
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2.1 Application environment: marine structures and machinery

Naval and cargo vessels, although serving a different purpose than offshore

platforms and not permanently anchored, still share many of the characteristics

of these platforms: they are deployed at sea, run similar high-power industrial

machinery, and are large metal structures. As a consequence, they also suffer

from similar reliability problems, specially related to bad weather episodes [25]

when mechanical strains and wave impact shocks are worsened by the motion of

the vessel.

Although drilling platforms and ships are the best-known marine offshore

metal structures, in recent years, as the demand for renewable energy has ex-

panded, there have been large-scale deployments of offshore wind-energy plat-

forms [26] and numerous deployments of individual test platforms for the less-

mature technology of wave and tidal energy harvesting [27]. Being exposed to

the same harsh environmental and mechanical stresses but being unmanned, they

have an even greater need for remote SMHM. In the particular case of wave en-

ergy platforms, they have the added need for collection of detailed structural and

machinery performance and reliability data for proof-of-concept and as input to

redesigns, as there are many different mechanisms that have been proposed for

wave energy extraction and the most efficient and reliable are yet to be found [28].

The machines used in all types of offshore deployments, despite their dif-

ferences, also have several common characteristics: for energy generation, large

turbine-generators are mostly used [29], while conversion and storage requires

power converters and, typically, battery banks [30, 31]. Although ships are not

used to generate energy, the engines and pumps that are necessary to run them

are also composed of similar rotating parts, piping, wiring, and electrical con-

verters [32], and are also subject to the same stresses. Therefore, all of these

structures and devices could benefit from a SMHM system that targets metal

structures and high power machinery in the specific context of the marine envi-

ronment.

2.1.4 Conclusions

Although a great deal of work has been done over the years to ensure robust struc-

tural design in offshore platforms, a SMHM system can help to further improve
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2.2 Sensors for health monitoring of metal structures and machinery

the reliability of drilling platforms and ships, as well as push forward renewable

energies such us wave, tidal, and wind by driving down costs while also improving

the reliability of supply.

Given this broad context and the objectives of the research, this literature

review is therefore structured as follows:

• Sensors for health monitoring of structures and machinery.

• Sensors and WSN for marine environments.

• Wireless sensor modules.

• WSN wireless performance characterisation.

2.2 Sensors for health monitoring of metal struc-

tures and machinery

2.2.1 Introduction

As shown in the previous Section 2.1, continuous monitoring of offshore struc-

tures is important to prevent failures, as they are subject to harsh environmental

stresses. Visual inspection is expensive, time consuming, and specially hard for

unmanned and offshore structures with difficult access. Sensing systems can

provide this continuous monitoring and act as a prognostics tool to avoid these

failures.

In this section, the most common techniques for structural health monitoring

are introduced, with a specific focus on metal structures, as well as the monitoring

of machinery found in these types of scenarios.

2.2.2 Sensors for health monitoring of metal structures

Structural Health Monitoring Systems [33] (SHMS) are composed of an array of

sensors deployed in a structure with the objective of detecting atypical loading

or structural deterioration or damage. Sensors include foil [34] or fiber-optic

strain [35], accelerometer-based inclinometer [36] and vibration [37], laser [38],
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2.2 Sensors for health monitoring of metal structures and machinery

Figure 2.1: Commercial ship hull monitoring system using long strain gauges [1].

radar [39], guided wave [40], impedance [41], imaging [42], and Linear Variable

Differential Transformer (LVDT) [43]. Foil strain sensors have a high dependency

with temperature and are difficult to calibrate and install. Also, they can be

bulky, specially the long guages used for hull monitoring (Fig. 2.1), and the

transducer needs to be attached separately from the conditioning electronics.

Guided waves methods also need several transducers attached to the structure,

with complex electronics and signal processing to produce and read the necessary

signals that travel through the structure. Inclinometers offer limited information

as they only provide absolute inclination of individual members. Radars are

used in SHM also for measuring inclination, but they need a stationary large

screen at the opposite side of the structure to reflect the signal and measure

the displacement. MEMS accelerometers however are a low-cost solution that

can provide not only inclination but vibration data, although these data can be

difficult to interpret and process, as evidenced by the active research field of SHM

vibration analysis [44]. Impedance-based sensors have also recently benefited

from MEMS miniaturisation, but they require to be embedded in the structure

during construction and the data analysis is not straightforward either. Light-

based sensors such as laser and fibre-optics need complex conditioning electronics

and high power to drive the laser/LED light sensors, which also makes them

11



2.2 Sensors for health monitoring of metal structures and machinery

considerable large and expensive. Imaging as a sensing tool can be even more

complex and demanding systems, as they need cameras and image-processing

algorithms, which make them difficult to embed in battery-powered modules.

LVDT is used to measure the relative distance between components in a structure,

however the mechanical working principle of the sensor makes it large, difficult

to install, and requires either direct contact between both components of the

structure or a large adapting structure (Fig. 2.2). Table 2.1 shows the sensing

ranges and resolution for the described sensing technologies that use displacement

as a measurement.

Figure 2.2: LVDT sensor for measuring displacement in a concrete bridge [2].

SHMS may also look for material deterioration, e.g. cracking or corrosion,

using surface or bulk material sensors including strain, guided wave, impedance,

acoustic [45], optical, imaging and eddy-current sensors [46]. Except for eddy-

current sensors, all of these are again large (strain gauges), expensive (all) or

involve complex, in-contact measurement set-ups (all). Eddy-current sensors, on

the other hand, involve only a relatively straightforward, non-contact measure-

ment of inductive coupling to metal on the principle that metal deterioration
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Table 2.1: Characteristics of different displacement sensing technologies

Sensing technology Sensing range Resolution

Laser 0-25 mm 1 um

Radar not specified 1 mm

Imaging not specified 1 mm

LVDT 0.6-12 mm 0.06 mm

Kypris and Markham magnetic fields 0-50 mm 0.5 mm

Commercial eddy-current 0-10 mm 2 um

This work 0-20 mm 0.5 mm

will change the coupling between the sensing inductor and the metal. These sen-

sors are also widely used for position sensing and gap measurement in rotating

machinery [47, 48]. The basic principle of eddy-current sensing is based on the

circulating currents induced in the metal target, which are produced by a sens-

ing coil fed with an AC current. These induced currents produce a variation in

the inductance of the sensing coil, which is proportional to the properties of the

target material such as size, material, and distance to the coil (Fig. 2.3).

Figure 2.3: Eddy-current sensing principle of operation [3].

Interestingly, however, despite many apparent advantages for measurement

of structural movement in SHMS, eddy-current sensors have been little used for
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this. For SHMS, they have the advantage of low sensitivity to dust and humid-

ity in the measurement gap [49]. They have the disadvantage of sensitivity to

temperature [50] but this is less of a concern in SHMS where temperature is typ-

ically at atmospheric ambient, temperature gradients are small and temperature

variations are slow. Where temperature is a concern, a temperature sensor can

anyway be used for compensation. Kypris and Markham [4] describe an eddy-

current sensor for SHM, focused specifically on monitoring of expansion gaps and

cracks in concrete structures. It employs triaxial rectangular coils, offering 3-D

positioning with sub-0.5 mm accuracy, which can be used in different configura-

tions. However, it has two important drawbacks: the sensor conditioning is still

based in large bench-sized commercial instrumentation, and it needs a separate

transmitter and receiver that need both to be either embedded or attached to the

structure as it can be seen in Fig. 2.4.

Traditionally, eddy-current sensors needed custom electronics [50, 51] and

sometimes solenoid-type large sensing coils (Fig. 2.5). However, new state-of-

the-art sensor ICs, such as the LDC1000 [52] and LDC1614 [53] from TI, allow

for integration in autonomous sensor modules, due to the reduced size and power

consumption. These sensor ICs are optimised for use with PCB coils, which allow

further miniaturisation and packaging alternatives.

Figure 2.4: Different use cases for the eddy-current sensor node developed by
Kypris and Markham [4].
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Figure 2.5: Commercial eddy-current displacement sensor by Keyence [5].

As large structures such as bridges and offshore platforms bend and flex due

to environmental forces, the relative displacement between each of their different

beams and parts can change even in normal conditions. A sensor that can mea-

sure this relative displacement could detect damage or impending failure if this

distance is above certain threshold or if it deviates from the expected patterns

of natural movement. Although the distance and resolution needed for detecting

early failure in such structures depends on the size, components, and material of

the structure, the experimental data shown in [42], where loading is performed

in a large-scale arch-truss bridge testbed, suggests that a 20 mm measuring range

and 0.5 mm resolution could be a starting point for a relative displacement sensor

in this type of structures. In [54], a composite bridge was statically loaded until

intensive cracks appeared on the concrete slab. The cracks started to appear when

the vertical displacement was between 10-20 mm, and the relative displacement

in the same axis, measured with strain gauges, was around 1 mm. This confirms

that a sensor with this range that can measure displacement between two com-

ponents orthogonal or in the same axis could detect these failures. Developing

and characterising such a displacement sensor with a sensing range of 0-20 mm

and a resolution of 0.5 mm, and its associated electronics would be novel and is

an objective of the research in this thesis.
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2.2.3 Sensors for health monitoring of machinery

The machinery found in offshore deployments and ships is generally composed

of large engines, motors, turbines, pumps, and generators, which in many cases

produce strong vibrations, electrical noise, and overheating that can lead to fail-

ure. These devices and their parts such as gearboxes, bearings, rotors, and power

supplies need to be constantly monitored in a similar way as the structures where

this machinery is placed.

Lu et. al [55] provides a summary of typical gearbox component monitoring

techniques, which includes vibration, torque measurement, oil/debris analysis,

temperature, acoustic emission, and stator current/power. Vibration and acous-

tic sensors are specially interesting due to their reliability and ability to detect

early-stage faults in a wide range of components. They have been widely used for

prognostics and fault diagnosis of bearings [56], motors [57], and different types

of machinery [58,59]. Vibration sensors can also be used for monitoring the struc-

ture of the platform or facility where the machinery is deployed [60]. However,

traditional vibration and acoustic sensors are regarded as expensive, intrusive,

and requiring a high sampling rate [55, 59, 61]. To reduce cost and ease instal-

lation, high-end wired vibration-based sensor systems are being replaced with

low-cost wireless sensor modules using MEMS and other COTS sensors [62, 63],

although it is a challenge to achieve the required sampling rate of 100-200 Hz for

vibration [56,57] with low-power wireless systems. These WSN modules not only

reduce cost in terms of the hardware modules themselves but also in the associ-

ated overhead of installing and repairing the wiring, which is especially costly in

these complex structures located in environments with difficult access. The low

cost of the hardware also means that redundancy can be built into the system by

deploying a larger number of sensor, therefore if a sensor fails it does not need

immediate replacement as the rest of the network would keep working.

In [6], a WSN is used to monitor the condition of a marine gearbox, with

nodes based on the assembly of several off-the-shelf boards: a Zigbee module,

an accelerometer, and an energy harvester. Severino et al. [7] showed a similar

platform but focused on structural health monitoring using a TelosB [64] mote

connected to an acquisition board and accelerometer. While these experiments
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demonstrate the feasibility of using wireless sensors and MEMS to monitor devices

in these environments, most of the platforms used present a series of drawbacks:

they are either based on old platforms developed for networking research with

limited processing capabilities and memory (e.g. TelosB and MicaZ), which limits

also the sampling rate of the sensors, or on more powerful platforms with higher

power consumption and that do not support current standard WSN operating

systems such as Contiki-OS [65]. As shown in [7], the popular TelosB can only

reach 100 Hz when using an external ADC aquisition board, which would make it

even less viable if an acoustic sensor in the KHz range is also used simultaneously.

Moreover, accelerometer and acoustic sensors are never used together in these

studies that use low-power WSN platforms, even though the literature shows

methods that can combine both sources of data to improve fault detection [58,

66,67]. In addition, the use of different modules for communications, acquisition,

and sensors attached with cables or connectors instead of a single integrated board

complicates the packaging and encapsulation, as well as increasing the cost and

power consumption. This can be seen in Fig. 2.6, which shows the vibration-based

WSN nodes discussed previously for marine gearbox and structural monitoring.

This highlights the need for a more advanced integrated wireless sensing platform

based on vibration and acoustic sensors that is low-cost and low-power, but at the

same time delivering performance necessary to sample and store the data from

those high data rate sensors as well as reliable in the marine environment. This

is an objective of the research presented in this thesis.

2.2.4 Conclusions

Although many different sensing technologies have been used for structural health

and machine monitoring, most of them have several disadvantages including cost,

power consumption, and size. Vibration and acoustic sensors have been shown

to provide reliable data for monitoring and prognostics of machinery as well as

structures, and with the advances of MEMs they can be integrated into low-

cost modules. However, none of the wireless modules found in the literature are

designed specifically to withstand harsh environments. In addition, for monitor-

ing large metal structures eddy-current sensing potentially provides a low-cost
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(a) (b) 

Figure 2.6: Vibration-based WSN platforms for machine and structural monitor-
ing by Schirrmacher [6] (a) and Severino [7] (b).

contactless method that can be used to detect relative displacement between

components, but it has yet to be proven if it can meet the required range and

resolution as well as be integrated in an autonomous reliable module.

2.3 Sensors and WSN for marine environments

2.3.1 Introduction

Deploying sensors in marine environments is very challenging due to the envi-

ronmental stresses that are subject to, such as fouling, corrosion from water and

salt, wildlife interference, and vibration/shock produced by the waves and storms.

For this reason, marine sensors need extra protection to be able to survive these

extreme conditions.

This section describes the typical uses of the sensors for marine environments

and shows different types of WSN deployments done in these scenarios.
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2.3.2 Sensors for marine environments

Many of the sensors for structural and machine monitoring described in the previ-

ous Section 2.2 are being deployed in marine offshore environments, but they are

general structural or industrial sensors and not designed particularly for the ma-

rine environment [6,68,69]. When dealing with marine environments specifically,

most of the work found in the literature is focused on environmental sensing such

as water quality [70], ocean [71] and wildlife monitoring [72], instead of struc-

tural/machine health monitoring.

Smart buoys are the most common example of integrating and deploying

marine environmental sensors, and have been extensively covered in the liter-

ature [73–75]. The common components in the electronics contained in these

smarts buoys are similar to any autonomous sensing module: processing unit

(CPU), power system, sensors, and communication system. For the CPU, a

variety of different microprocessors have been used, although the trend lately

is shifting toward newer low-power microcontrollers [76]. Different sensors and

signal conditioning are employed depending on the application, with motion sen-

sors such as accelerometers being common to most of them. Although they

are battery-powered, photovoltaic cells can be added to extended their battery

life [73]. The communication system is usually wireless by GPRS, 3G, or other

long-range technologies when they are in isolation. However, many buoys can

be networked with low-power radios into a WSN, as described in the next Sec-

tion 2.3.3. Some of these buoys can have part of their components submerged [77],

although the communication system is usually on the surface, as normal wireless

transmission through water is difficult to achieve. Energy harvesting can be used

to extend the life of these autonomous systems, depending on the deployment

scenario. For sensors deployed outside or in closed chambers with artificial light,

solar panels can be installed. Vibration energy harvesting is also an alternative

for buoys, wave energy platforms, and sensors placed on top of heavy vibrating

machinery. Moreover, although these sensors are battery-powered, they could

also be connected to a close power source if available.

These custom buoy systems are geared towards miniaturisation and integra-

tion, to save cost and power but commercial sensors used in marine deployments
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are still bulky and expensive and do not offer the necessary range of wireless net-

working options. Moreover, even though they are designed to be reliable in this

type of environments, the literature shows failures when deploying monitoring

systems with commercial sensors. The deployment described in [78] of a scaled-

down oscillating water column (OWC) device encountered a number of issues in

the reliability of the power and sensing systems, resulting in costly failures and

loss of data. A failure in the the water cooling system, caused by design prob-

lems in the hydraulic, power system, and diesel generator, resulted in seawater

pumped into the control room, and also overheating of the generator, ultimately

causing its shutdown. This, coupled with the short life of the battery bank and

the high power consumption of the information and control system, led to the

complete drain of the batteries in less than 24 hours. A better planning of the

power system and the use of a low power monitoring system could have avoided

this issue. Regarding the sensors, a few shortcomings were highlighted in the

hydraulic and mechanical brake sensors. Some extra temperature and air flow

sensors would have helped in the early detection of the problems experienced

in those systems. Moreover, the improper sizing of the mooring strain gauges

resulted in poor resolution in the measurements. Finally, the complex tubing of

the turbine pressure transducers caused it to become clogged with water after a

strong storm. This showed the importance that the monitoring system has on the

reliability of the platform in off-shore deployments. Lowering the cost of man-

ufacturing and deployment of these systems would permit the deployment of a

larger number of sensors, which would increase the redundancy of the monitoring

system. However, the systems integration, miniaturisation and wireless auton-

omy that have been achieved for many land-based SMHM deployments have not

yet been applied to SMHM in the marine domain and this is one of the objectives

of the research in this thesis.

2.3.3 Wireless Sensor Networks in marine environments

As the coverage area in marine environments is large, many sensors usually need

to be deployed. Due to the difficulty of running cables in this scenario, WSN are

optimal for aquaculture and ocean ecosystem monitoring [79–81]. These systems
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are composed of wireless sensing buoys randomly deployed at sea, where the radio

propagation and drifting of the nodes needs to be studied to guarantee a reliable

data collection [82,83].

The sensors and techniques described in Section 2.2 to monitor marine struc-

tures and machinery can also be integrated and deployed in a WSN of sensing

nodes. Although they are not subject to the same stresses and radio propaga-

tion characteristics of the water as with the floating buoys, they may still suffer

from splash and will be certainly exposed to high humidity, salt atmosphere,

and other harsh marine environmental conditions. Moreover, the large amount

of metal in these structures affects the communications due to multi-path fad-

ing, as discussed in Section 2.5. The literature shows many application-oriented

WSN deployments in different marine and similar environments, such us oil and

gas [84,85], bridges [9,86,87], wind turbines [88], and ships [10,11,89,90]. Xiong

et al. [89] presented a vibration monitoring system for ships composed of IEEE

802.15.4 WSN nodes in a star topology, but it was built with separate modules

with no packaging and was only tested in a vibration plate. Another WSN net-

work using 802.15.4 technology was deployed in a real naval ship to monitor the

hull [90], where some of the nodes used accelerometers only while others inter-

faced with strain gauges already present on the ship. These same nodes were

also deployed in a different ship in [11]. In [10], a different node made of stacked

modules is developed to replace the wired pressure tank gauge system on a ship.

All of these deployments present the following drawbacks, some of them al-

ready described in Section 2.2:

• The hardware modules used are:

– Based on multiple modules and evaluation modules wired together,

some of them in separate enclosures, which affects the reliability of

the system as well as power consumption [9–11,86–90].

– Not designed and packaged specifically to resist the hostile marine

conditions and not tested following marine reliability standards [84–

89].
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– Either not supporting current networked embedded OS [10,11, 84–86,

88–90], or based on older WSN modules [9, 87], which hinders further

routing and networking research.

• The firmware/software platform does not allow for remote configuration of

the nodes and does not offer simple data collection and configuration for

rapid deployment management (all).

• The node placement has not been properly studied from the wireless char-

acterisation perspective. Although some deployments have been done for

the specific purpose of testing the wireless propagation, they are incom-

plete and have their own particular issues, which are discussed in detail in

Section 2.5.3.2.

• They have not been characterised for use in a high metal-content environ-

ment (all).

2.3.4 Conclusions

A large part of the work done for sensing and WSN in the marine environment

has been related to monitoring the external environment by developing smart

buoys and similar devices, instead of monitoring the offshore structures and plat-

forms. When focusing on marine structures, the current hardware modules and

WSN deployments suffer from similar issues as the ones described in the previous

Section 2.2, further highlighting the need for integrated wireless sensor modules

with an architecture and packaging that is reliable for the marine environment.

2.4 Wireless sensor modules

2.4.1 Introduction

Most of the sensing modules and systems used in the deployments described in the

previous sections have at their core one of the well-known WSN nodes, also known

as “motes”, usually selected for software compatibility and easy development. A
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mote is composed of a low-power microcontroller, a radio transceiver, an external

flash memory, a power source, and one or several sensors.

This section describes the most common WSN sensor modules used in research

and their drawbacks, as well as other non-traditional WSN technologies.

2.4.2 2.4 GHz IEEE 802.15.4-compatible modules

IEEE 802.15.4-based radios transmitting at 2.4 GHz comprise the majority of

research and applications for what is known as WSN, due to the good balance

between power consumption, spectrum availability, and bandwidth.

The Telosb [64], also known as Tmote Sky in its earlier version, is by far the

most widely-used platform and also offers the best software and OS support. They

use a TI MSP430 microcontroller running at 8 MHz with 48 KB of flash and 10 KB

of RAM, as well as a 1 MB EEPROM, which is enough for simple networking

and sensing tasks but can be challenging to use with high data-rate sensors. The

transceiver used is the TI CC2420. The power consumption depends on the

application, with an average of around 20-25 mA when using the transceiver. It

is powered by two AA batteries with no regulators or battery chargers, which can

produce bad sensor readings when the battery voltage falls below the internal

reference. It also includes on-board temperature/humidity and ambient light

sensors, and the possibility to add more sensors through an external connector.

It lacks any encapsulation and the bare PCB is mounted directly on the 2xAA

battery holder. Although it has been the flagship sensor module for low-power

network research for more than a decade, it is now hard to develop some of the

newer protocols and applications due to memory restrictions.

The MicaZ [91] is similar to the Telosb in shape, battery configuration, and

power consumption. It is based on an Atmega128L microcontroller, which has

more flash than the Telosb (128 KB), but only 4 KB of RAM. It offers a wider

range of sensors and data acquisition systems but they are all in external expan-

sion boards that need to be attached.

SHIMMER [92] is a platform developed as a wireless wearable for biomedical

research. It has the same radio chip and microcontroller as the Telosb, but adds

an accelerometer, bluetooth and microSD card all in a smaller form factor. It is
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Table 2.2: Comparison of different WSN platforms

Platform CPU
Model

CPU
Speed

RAM Flash
memory

ADC
sampling
rate

TelosB MSP430 8 MHz 10 kB 48 kB 10 Khz

MicaZ Atmega128L 16 MHz 4 kB 128 kB 15 Khz

SHIMMER MSP430 8 MHz 10 kB 48 kB 10 Khz

Waspmote Atmega1281 8 MHz 8 kB 128 kB 15 Khz

This Work CC2538 32 MHz 32 kB 512 kB 7.5 Khz

a step forward to integration, but even though it was developed later the choice

of microcontroller and radio made the platform obsolete quickly.

The Waspmote [93] was originally developed for 802.15.4 technologies, using

an XBee [94] radio module which is easily addressable with AT-style commands.

The Waspmote has many different radio technologies and sensors available, all

of them in different modules that are attached to the main platform, and it also

includes an IDE for easy programming. This makes it an ideal platform for

prototyping and testing but less reliable for deployment.

Although newer microcontrollers with integrated 802.15.4 radios and better

performance have been available for some time, such as the CC2538 [95], there

were not commercial modules available when this research was being carried out.

A sensor node with a more powerful CPU and memory was necessary, i.e. higher

processing speed and increased RAM, that could overcome the problems of the

obsolete platforms being used in research, especially when sampling more than

one high-data rate sensor at the same time, such as accelerometer data and audio.

Table 2.2 shows a comparative of these platforms.

2.4.3 Networked embedded OS

A major contribution to the expansion of WSN lies within the firmware and

applications, particularly in the development of open-source embedded OS de-

signed specifically for wireless networking in platforms with constrained resources.

These, unlike traditional full-blown OS such as MS Windows or Linux, are
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lightweight systems that are compiled with the application in a single binary

to be loaded in the microcontroller. The most used networked embedded OS are

TinyOS and Contiki-OS.

TinyOS [96] is based on a monolithic architecture and component model,

in which the different modules regarding network protocols, file system, sensor

drivers, etc. can be bundled depending on the application requirements. It uses

nesC as a programming language, a pseudo-language similar to C. It supports

simple multi-threading, in which the application has to explicitly manage con-

currency by yielding the processor, adding an extra difficulty to the programmer.

Although it still has a large userbase and support for most of the older platforms,

its development has stagnated and there has not been any support added for

newer protocols and hardware platforms.

Contiki-OS [65] has a modular architecture and event-driven model, but has

threading-like support called protothreads. It is programmed in C and has a

steeper learning curve than TinyOS but, at the same time, is more powerful

and easier to extend. It also supports a large repository of protocols including

TCP/IP, as well as sensor drivers and utility applications. The main advantage

over TinyOS is that it is being actively developed and has a much larger com-

munity of users and contributing, supporting the newest networking protocols,

applications, and hardware platforms and chips such as the mentioned CC2538.

Recently, similar platforms have emerged such as RIOT [97] OS and Open-

WSN [98], but they are not a viable alternative due to their limited hardware

and libraries support.

These operating systems can be used as a base to design sensing applications

for WSN deployments; however, they make up only the skeleton of the system

and a proper architecture built upon them needs to be developed depending on

the application requirements.

2.4.4 Other technologies

Wifi and cellular technologies have been used in stand-alone buoys and wireless

sensing nodes; however, their networking capabilities are very limited and their

high-power make them less suitable for use in low-power nodes. Bluetooth can
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be a viable alternative to 802.15.4-based networks but until very recently mesh

networking was not possible and new standards still need to be developed and

tested.

Newer technologies are now entering the market, such as Ultra-Wide Band

(UWB) for short range, and LoRA and Sigfox for long range. UWB has a limited

availability of devices and higher power consumption, and due to its character-

istics it is being used mainly for indoor localisation. LoRA [99] and Sigfox [100]

transmit in the sub-GHz band. They are a good alternative for urban networks

and open environments, as they can offer more than 10 Km communication range.

However, their bandwidth is very limited to accommodate high data rate sensors

and their slow transmission time make them very hard to use in mesh networks.

2.4.5 Packaging of wireless sensor modules

Most of the commercial motes consist of only the bare PCBs and battery holder.

While some of them are hosted in plastic boxes, these boxes are not waterproof

and have large openings where dust and other contaminants can enter. Moreover,

they are not mechanically strong to survive high vibrations or have not been tested

for it. Therefore, it is usually left to the user to select or build a custom enclosure

that is suited for the application which depends on the environment in which it

will be deployed as well as the type of sensors.

Mainwaring et al. [8] describe a WSN for habitat monitoring, in which Mica

motes are used. As they are deployed in the open for weather monitoring, an

enclosure is designed to protect the node and sensors from humidity and other

environmental stresses. The entire node except the sensors is covered in a thin

layer of parylene sealant, and then it is placed in a transparent acrylic enclosure

for mechanical protection (Fig. 2.7). Although this packaging is sufficient pro-

tection for this type of environment, it might not be enough for harsher marine

environments, as the enclosure is not fully sealed.

Most of the WSNs described in the previous Section 2.3.3 that have been

deployed in ships and other offshore environments are packaged in off-the-shelf

waterproof boxes, as it can bee seen in Fig. 2.8. However, although a plastic en-

closure has been proven to be robust enough while being lightweight and resistant
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Figure 2.7: WSN node for habitat monitoring in an acrylic enclosure [8].

to corrosion, the lack of full encapsulation in these modules could provoke dete-

rioration of the electronics in the long term, due to the humidity and salt in the

environment. Fig. 2.8c shows also how the main processing and communication

module are often in the box separated from the sensor itself, which is connected

by cables.

Modular platforms composed of stacked boards, like the ones shown in [92,

101,102], are common in custom wireless sensor nodes, as the boards are easy to

replace and only the necessary ones for the application can be added. However,

they tend to have higher power consumption, and the addition of extra boards

and connectors decreases reliability due to thermomechanical stress, as well as

increasing weight and cost. A single-board module that includes all sensors and

electronics, whenever possible, reduces manufacturing costs and points of failure.

For structural monitoring, sensing in multiple axes can be necessary, as de-

scribed in Section 2.2.2. Cuboid modules have been shown to provide a compact,

robust, and easy to package configuration for multi-axial sensing. In [103], a

10 mm strain gauge based cuboid is described, using a novel board-folding method

to electrically connect the PCBs to eliminate the connectors. The drawbacks of

this module come from the requirements of external wiring to power it and extract
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(a) (b) 

(c) 

Figure 2.8: WSN nodes in plastic packaging for structural monitoring of bridges
(a) [9] and ship hull (b) [10] - (c) [11].

the data, which limits its use as a standalone system, in addition to the need to

be fully embedded in the material. A similar cuboid module for environmental

monitoring is shown in [104], with integrated coin cell batteries, flex connectors

and wireless communications. Although the small size of the battery and lack of

charger limits the life of the module, it proves the feasibility of using PCBs as

the structure of a cuboid module with plastic encapsulated batteries. The 3D-
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integration presented in both modules can be adapted to develop an autonomous

module for multi-axial sensing with integrated rechargeable battery and wireless

communications.

2.4.6 Conclusions

IEEE 802.15.4-based networks in the 2.4 GHz band is the most widely researched

technology in WSN. Moreover, the trade-off between power, range, and band-

width makes them optimal for structural and machine monitoring, as vibration-

based sensors need a high data rate, and a number of sensors can be networked

together in a small space without the need of covering large distances. How-

ever, the WSN devices used in research are obsolete platforms limited in memory

and performance, with no proper packaging beyond off-the-shelf plastic boxes,

adapted to the sensing and environmental needs of marine scenarios. A plastic-

encapsulated module with a more powerful architecture that integrates the nec-

essary sensors could offer not only a robust platform for SMHM but also a better

device for WSN researchers.

2.5 WSN Wireless performance characterisation

2.5.1 Introduction

Wireless characterisation is an important issue in WSN, as they are low-power

lossy networks with limited range and resources. It becomes even more important

when using high-data rate sensors such as vibration and audio, as loss of packets

in these situations can yield excessive retransmissions that can flood the network

making it unusable, as well as losing data fidelity. Moreover, the performance

can be affected by characteristics of the environment, e.g. metal, temperature,

humidity, electrical noise, etc.

This section presents the most common WSN performance characterisation

techniques found in the literature, which includes data-driven modelling as well

as experimental testbeds and real-world testing.
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2.5.2 Wireless performance modelling and characterisa-

tion

2.5.2.1 Link quality estimators for WSN

Link quality estimation between transmitters and receivers is necessary for se-

lecting the correct network topology and transmission parameters, which include

routing path, data rate, transmission power, etc. [105,106]. There are only three

metrics that can be directly observed and therefore are commonly used for link

quality estimation: Received Signal Strength Indicator (RSSI), Link Quality In-

dicator (LQI), and Packet Delivery Ratio (PDR) also referred to sometimes as

Packet Received Ratio (PRR) [107–109]. RSSI and LQI are provided by the radio

chip, extracted from the incoming packet, while PDR requires a more extended

experimental evaluation.

The RSSI parameter provides the signal strength or intensity in the receiver,

measured in dBm. In 2.4 GHz low-power WSN it generally ranges from -25 dBm

to -100 dBm, depending on the sensitivity of the receiver and the maximum power

of the transmitter. It is inversely proportional to the square of the distance

from the receiver to the transmitter. RSSI can be used to estimate distance

between transmitter and receiver, by deriving an environment-specific model from

the path-loss generic formula [110]. The opposite is also calculated with this

formula by estimating signal strength depending on the distance, which can be

used when planning a deployment. This is explained in more detail in the next

Section 2.5.2.2. A drawback of relying on RSSI is that, in presence of interferers,

the measured value is the sum of RSSI and the noise floor. Noise floor can

be considered as a special case of RSSI, in which the RSSI is measured when

none of the known transmitters in the network are sending packets, providing an

estimation of the current noise in the environment. An ideal noise floor in the

absence of interferers from other transmitters or noisy machinery has to be close

to the sensitivity of the radio receiver (e.g., -96 dBm in the most commonly used

CC2420 [111] chip).

LQI was introduced in the IEEE 802.15.4-2003 standard [112], although the

standard does not specify how it is calculated and which parameters to use.
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Nonetheless, all chip vendors have a similar way of estimating it. The CC2420

and in general all of the TI CC* family transceivers provide a dimensionless

correlation (CORR) to estimate the signal strength quality by calculating the

average correlation of the first eight symbols of the received packet, which can be

seen as an approximation of the chip error rate. The LQI is then calculated from

this correlation following eq. (2.1), where α and β must be calculated empirically

from the packet error rate.

LQI = (CORR− α)× β (2.1)

Although LQI values can range from 0-255, the correlation value obtained

directly from the chip (CORR) as the LQI estimation, with values ranging from

50 (worst) to 110 (best), is widely used in the literature. LQI can complement

RSSI by providing a better estimation of the SNR than just using RSSI and noise

floor [113].

PDR is the most relevant metric for WSN planning and characterisation,

as it is what is ultimately useful for application designers and network man-

agers [114, 115]. PDR for a specific transmitter-receiver link can be estimated

by sending a defined number of probe packets to the receiver, then calculating

the percentage of the received packets and sending it back to the transmitter.

However, PDR, as well as RSSI and LQI, can have dramatic temporal varia-

tions depending on the environment: people walking [116], lack of Line-Of-Sight

(LOS) [117], presence of vegetation [118], multi-path fading from metallic sur-

faces [119], and temperature [120], among others. Constantly calculating PDR is

not feasible as it would consume too much power and it would drain the batter-

ies quickly. To overcome this, many researchers have tried to find a correlation

between PDR and RSSI/LQI, as they can be extracted from the incoming data

packet [121, 122]. Zhao et al. [123] found out that having a high RSSI does not

always correlate with a high PDR, and it is affected by link asymmetry, as it was

also shown by [64,124]. The presence of interfering signals can also contribute to

the lack of correlation, by boosting the RSSI levels while yielding a lower PDR.
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These issues are even more pronounced in the transition area, that is the area be-

tween full connectivity and no connectivity. Links located in this area have been

shown to have erratic behaviour, and its width depends on the characteristics of

the environment [108]. However, the combined metrics of RSSI, LQI, and PDR

can provide a more accurate picture of the performance of a WSN [107,125].

Another issue when calculating PDR is that, if higher-layer protocols and

multi-hop are used while calculating the PDR, it becomes harder to calculate

the real PDR, as retransmissions in the higher layers are frequently transparent

and the real number of received packets is unknown. Until recently, no tools

were available to calculate this real PDR where nodes send packets in an all-to-

all fashion in a synchronised manner with no upper-layer protocols. This has

resulted in many real-world performance experiments being lacking in proper

methodology and reliability of the data, as described in the Section 2.5.3.2.

2.5.2.2 WSN performance modelling

Despite the limitations highlighted in the previous section that signal strength

indicators have in predicting network performance, it is still the mostly widely

used parameter for analytical modelling, as traditional wireless path loss models

can be applied. The path loss indicates the attenuation of the signal between

the transmitter and receiver, which is influenced mainly by the distance between

the nodes but also by others environmental factors. The most common model to

calculate the path loss is the log-normal shadow model, which can be used for

general wireless systems in indoors and outdoors environments, and is calculated

using eq. (2.2) [126]. The parameter d0 is the near-earth reference distance,

PL(d0) is the path loss or attenuation at the reference distance d0, , η is the

exponential path loss index, and Xσ is a zero-mean Gaussian random variable. All

these parameters can be adjusted for the specific environment from experimental

data, with obstacles affecting greatly the path loss index. This has been done in

multitude of studies for different scenarios [110,127–130].

PL(d) = PL(d0) + 10η log
d

d0
+Xσ (2.2)
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Most of the simulation tools designed for WSN use this radio model at their

core and, then build on it the different networking protocols to test [131, 132].

However, this model is limited to one dimension and it does not take into account

multi-path reflections from obstacles. For this, different tools have also been

developed that use different ray-tracing techniques for calculating the effect of

multi-path in the received signal in a specific environment [133, 134], most of

them in two dimensions and specifically targeted to indoor scenarios such as

buildings [135]. Some of them have attempted to developed 3D ray-tracing tools

for predicting signal strength [136–138], but it becomes computationally very

expensive and is not feasible to use when the scenario is too complex and contains

reflective metallic surfaces.

The main purpose of these tools, however, is not usually signal propagation

but testing and simulation of networking protocols, and the radio model acts only

as a support to try to approximate how the applications and protocols would

behave in real scenarios. This is the case of Cooja [139], the most commonly

used simulator in WSN, which supports ray-tracing and log-normal radio models

although only in 2D simple scenarios.

There is no modelling or prediction tool that can accurately model WSN

performance in the complex, 3D metallic environments that are characteristic of

marine WSN deployments and a critical issue in all these tools still remains in the

correlation between signal strength indicators and PDR. Therefore, experimental

data from testbeds and real scenarios is still essential to obtain an accurate view

of the performance of a WSN before full deployment. However, there is no stan-

dard methodology for systematically and efficiently collecting this experimental

data. Developing and verifying such a methodology in representative marine

environments is an objective of the research presented in this thesis.

2.5.3 Experimental deployments

2.5.3.1 Testbeds

To reduce the gap between simulations/mathematical models and real-world en-

vironments, many testbeds of wireless sensor nodes have been developed, some

of them as a one-off experiment and others as permanent deployments that can
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even be used remotely by the community of researchers. One of the most used

of these permanent open testbeds is Motelab [140], which provides a network

of wireless nodes deployed in a building at Harvard University, with USB con-

nections that provide a backchannel to reprogram the nodes. This allows data

logging and job scheduling via web interface, facilitating remote application de-

ployment and rapid network protocol testing. However, this network is limited to

the current nodes installed in the building and the environment conditions can-

not be changed. Although the source code is available for researchers to deploy

their own testbed, the need of cables and servers for the backchannel communi-

cation limits its usefulness in open or difficult environments. Indriya [141] is also

a similar permanent testbed installed in a building in the University of Singa-

pore, which also includes sensors in some of the nodes such as Passive Infrarred

(PIR), magnetometer, and accelerometer, but still needs USB cables to connect

each node to a gateway. Boano et al. tried to better approximate testing to

real conditions by developing two particularly interesting testbeds: Jamlab [142]

and Templab [143]. The first one allows for measuring and creating controlled

interference patterns in the frequency of interest with off-the-shelf nodes. The

second one allows the control of the on-board temperature of the sensor nodes, to

understand how temperature affects network protocols, as temperature variations

are common in outdoor deployments. Nonentheless, these two testbeds are still

installed in buildings, which makes it difficult to emulate propagation in more

complex outdoor or metallic scenarios. WINTeR [144] is a testbed setup for a

complex industrial environment, deployed in a small mock-up of an oil rig, which

includes a programmable EMI generator and remote control. Although it is a

definitive step forward for emulating harsh industrial environments, the lack of

physical access to the scenario hinders its usefulness due to the nodes not being

able to be relocated, and other variables in the scenario such as multi-chamber

communications and door openings cannot be studied, as the testbed size is only

3.5 x 7 m. Moreover, WINTeR testbed is only described on a high-level, with no

measurement data shown and no apparent access to the use of the testbed.

These testbed deployments have shown that although an effort is being made

to provide facilities for researchers to work on, they are still limited and focused

more on networking protocols and not the study of specific environments. They
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provide access to better data than simulations, but still real-deployments with

physical access to the site are needed to understand the performance of the net-

works and study the different variables that can affect them.

2.5.3.2 Real-world deployments

A large number of application-oriented WSN have been deployed in indoor and

outdoor environments [145–147], even in marine scenarios as described in Sec-

tion 2.3.3, as well as measuring campaigns focused in characterising the commu-

nications in those environments [148,149].

Regarding metal environments, Yuan et al. [150] tested a wireless sensor net-

work inside food cargo containers, recording the RSSI and LQI as well as the

sensor data. However, their focus was primarily on signal strength over distance,

and the experiment was done with multi-hop and duty-cycling protocols. Similar

analyses have been carried out for WSNs on board ships [151,152]. These studies,

using both simulations and practical measurements, show that communications

between adjacent rooms and decks are possible due to signal leakage through

bulkhead seals between compartments. In [153,154], tests included more realistic

shipboard variables, such us door opening and closing, operating machinery, and

people movements. However, all of these were built on top of the XMesh and

Zigbee protocols, focusing on the network topology and not on the analysis of

physical links. PDR and RSSI were measured but, due to the use of upper-layer

protocols that involve retransmissions and mesh network configuration, they do

not provide a comprehensive understanding of the propagation environment.

A key variable that can affect WSN communications quality in marine metal

environments, such as ships’ engine rooms and off-shore platforms, is electromag-

netic interference (EMI) from electro-mechanical machinery. Despite the litera-

ture showing some assessments of broadband and out-of-channel interference in

IEEE 802.15.4 networks [155,156], no experiments have been reported in a ship’s

engine room scenario with on/off switching of the machinery.

The common characteristic in most of these experiments, regardless of the

type of environment and whether they are done in a testbed or real-deployment,

is the lack of a consistent experimental methodology, which leads to a series of

issues:
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• No synchronisation between nodes. This can cause two nodes to send probes

at the same time, which can have the effect of measuring a high noise floor

in the receiver or losing the packet, due to collisions.

• Use of upper-layer and MAC protocols. These have error-corrections and

retransmissions that are transparent to the user, therefore the real PDR

cannot be accurately computed from this.

• No investigation of all or most relevant variables that can affect signal prop-

agation in the specific environment.

• No study of the relevant metrics, many times focusing only on RSSI and

distance-based models.

All these issues can yield unreliable results in the measurements that do not

correspond with the real performance of the network. A new open-source tool,

Trident [157], can alleviate some of these problems, providing a foundation for

designing systematic experiments for WSN characterisation. It allows for remote

wireless experiment configuration, which facilitates node relocation to run multi-

ple experiments without having to carry cables and gateways for each node, as well

as computing the real PDR by sending synchronised probes with no upper-layer

protocols. The data from the experiments can also be collected wirelessly through

a gateway node connected to a laptop. A Python interface running on the laptop

provides experiment setup and control, as well as visualisation and exporting of

the collected results. The only drawback is that, due to being based on TinyOS,

an older networked embedded OS, it only supports older TelosB nodes. This

tool has already been used succesfully in real-world scenarios. In [118] a WSN is

deployed using Trident to study how the environmental factors in outdoor envi-

ronments affect the communications. However, it has not been previously used

for characterising metal marine environments.

2.5.4 Conclusions

One of the main lines of research in WSN focuses on wireless performance char-

acterisation and modelling, as it is important due to the lossy nature of these
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low-power networks. However, wireless communications are difficult to predict

in 3D complex scenarios, even more when there are large amounts of metal and

possible sources of EM noise. Therefore, experimental evaluation is necessary

in these scenarios to assess the performance of a WSN. Limited experiments in

testbeds and real scenarios have been done in these type of environments, but

a multi-variable methodology has yet to be developed and validated with the

correct metrics and experiment design.

2.6 Conclusions

The literature review presented in this chapter has shown that although WSN

have been widely used for general structural and machinery health monitoring,

there has only been limited used in off-shore marine applications such as oil and

gas, wind energy, and ships. This is primarily due to:

• Lack of a wireless sensor module and software architecture that is designed

and validated for the marine environment.

• The challenges that complex metal environments pose to wireless perfor-

mance, which makes it impossible to predict.

These issues make hard to manage and deploy WSN to monitor structures

and machinery in the marine environment.

The wireless sensing modules found in the literature are shown to be lack-

ing in CPU power, memory, and the necessary sensors, as well as an integrated

packaging that can withstand the marine environment conditions. These con-

ditions include high humidity, vibration/shock from waves and wind, and high

salt concentration from seawater. A plastic-encapsulated sensor with full WSN

standards support, which includes vibration, acoustic, and environmental sensors

can provide this hardware architecture to support WSN research and deploy-

ment in marine environments. To overcome the challenge of the high data rate

that vibration-based sensors need, an optimised hardware-software architecture

is necessary.
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Moreover, monitoring of metal structures usually employs large optical or

strain-based sensors that have high power consumption and cost. This makes the

case for a multi-axial wireless autonomous module using eddy-current methods

to measure relative displacement between adjacent beams in a metal structure,

to be used as a prognostic tool. Eddy-current sensors can take advantage of the

metal composition in these structures, as they can be used as a simple, contactless

sensing method that only uses PCBs, which can be integrated into cube-shaped

modules similar to the ones shown in the literature for different sensing mecha-

nisms such as strain gauges.

Regarding wireless performance in marine environments, the literature has

shown the difficulties of modelling and prediction when dealing with a complex

multi-chamber metal scenario, therefore leaving real-world experiments as the

only viable solution to assess wireless communication reliability. The limited ex-

periments described suggest that a better methodology is necessary, which studies

the multiple variables that can affect communications in these environments such

as opening between compartments, operating machinery, and placement of the

nodes, in addition to performing the experiments in a synchronised manner with

no higher-layer protocols to improve the fidelity of the collected data.

In summary, to address these challenges, a whole systems integration approach

that integrates hardware, packaging, wireless, reliability, firmware and software

is necessary to develop this full marine WSN solution.
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Chapter 3

Inductive Sensor Module for

Displacement Measurement in

Metal Structures

3.1 Introduction

Detection of atypical displacement is the focus of many structural health mon-

itoring systems, which use a network of sensors deployed on the structure to

recognise and prevent a possible structural failure. However, as shown in the

literature review, these sensors have one or more of the disadvantages of large

size, high power consumption, high cost, ability to measure only externally vis-

ible structural components, complexity in measuring movement in more than

one dimension/axis, or requirement to embed during construction. As the skele-

ton that supports large structures such as buildings, cranes, ships, and marine

platforms is mainly made of metal, eddy-current sensors can be used to detect

displacement between adjacent components in these structures. Although they

have been used for crack detection and position sensing in rotating machinery,

their use for measuring displacement in multiple axes in structures has not been

reported.

As well as being an appropriate way to measure metal displacement, eddy-

current sensing’s low sensitivity to the presence of moisture, dirt, and dust make

it especially suitable for marine and similar open environments. For structural
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monitoring, multi-axis sensing is desirable due to the complex nature of displace-

ment and warping, especially in marine structures which are typically based on a

steel framework that may, as in ships and some marine energy platforms, also be

covered with steel plates that will themselves also displace relative to each other.

Marine applications bring the further constraints of a salt-water environment re-

liability and the desirability of using battery-powered, wireless sensing to avoid

having to run a network of wiring in what are often very challenging offshore

deployment environments with difficult personnel access.

The primary research objectives of the research presented in this chapter were,

therefore, to first design, develop and characterise an eddy-current displacement

sensor suitable for marine and similar harsh environment applications and then,

based on this sensor, to devise, fabricate and evaluate a systems integration ap-

proach for a self-contained, multi-axis, wireless eddy-current metal structural dis-

placement sensor module that can operate reliably in the marine environment. To

extend the functionality of the module and to allow reliability stressors to be also

measured, the inclusion of mechanical shock/vibration and temperature/humidity

sensors was also an objective.

3.2 Sensor research challenges

The challenges for the sensor design stem from the requirements found in the

literature for structural monitoring.

The sensor needs to provide:

• Optimum eddy-current inductive sensing coil and driver/interface electron-

ics design.

• Calibration of the sensing coil to measure over the required sensing range

of 20 mm and resolution of 0.5 mm.

• For multi-axis applications, investigation of possible mutual interference ef-

fects on one eddy-current sensor due to the presence of eddy-current sensors

on other, adjacent axes.
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• Investigation of the effects of factors such as the presence of water on the

sensor performance.

3.3 Inductive displacement sensor design

3.3.1 Sensor interface electronics

Nabavi and Nihtianov [50] present detailed design strategies for custom eddy-

current sensor interface electronics. To reduce size, power consumption, and to

optimise performance, in this work a COTS IC dedicated to inductive sensing

is used. This is the LDC1614 [53] from TI, a 4-channel 28-Bit Inductance to

Digital Converter (LDC), optimised for PCB planar inductors. This was selected

as the LDC1xxx family from TI is the only commercial IC with proximity eddy-

current sensing capabilities, and the specific LDC1614 handles up to 4 channels,

allowing measurements in up to 4 different directions with a single IC. Although

the LDC1614 could potentially be used with other type of coils, PCB planar

inductors offer the best solution in terms of size, performance, and manufacturing

cost.

The principle of operation is based on the circulating currents, known as

eddy-currents, induced in a conductive material when it is brought near an AC

magnetic field generated by an inductor. The eddy-currents generate their own

magnetic field that oppose that of the inductor. This can be viewed as two cou-

pled inductors whose global inductance changes as a function of the size, distance

and/or composition of the target material. The LDC1614 generates the AC mag-

netic field using a resonant circuit driver connected to an LC tank formed by

the PCB coil and a parallel capacitor. The inductance changes are measured by

comparing the resonant oscillation frequency of the LC tank, given by eq. (3.1),

with an external reference frequency. The digitised sensor data counts that are

read from the sensor, DATAx, represent this ratio fSENSOR/fREF . The fSENSOR

can be calculated from the data counts using eq. (3.2), and thus the total in-

ductance L from eq. (3.1). As the size and composition of the target material

in SHM remains constant, the measured data counts will represent changes in
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Figure 3.1: LDC1614 diagram and eddy-current sensing principle of operation.

the distance from the sensing PCB coil to the target. A diagram of the sensor

operation and internals of the LDC1614 is in Fig. 3.1.

fSENSOR =
1

2π
√
LC

(3.1)

fSENSOR =
DATAx ∗ fREF

228
(3.2)

3.3.2 LC resonator and inductor design

The main design parameters for the sensing coil are the sensing range and resolu-

tion required by the application, i.e. 20 mm and 0.5 mm respectively. As minia-

turisation is also important, the coil needs to be as small as possible while achiev-

ing the desired range and resolution. A high Q-factor, as defined by eq. (3.3),

minimises resistive loses and maximises inductance, which gives a better sensing

range and resolution.
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Q =
ωL

R
(3.3)

The LDC1614 datasheet [53] and application report [158] set out design pa-

rameters for a high Q-factor sensing coil optimised for use with the IC. These

guidelines are derived from theory and experiments found in the literature, as

well as experimental data collected using the IC and different coil sensors.

The process for designing the PCB Coil is as follows:

• Although different shapes can be used, the experiments in [159] show that

a circular coil has the highest sensitivity when used for linear displacement

eddy-current sensing. This also maximises the size of the coil in a square

PCB while leaving space for the four mounting holes in the corners. The

purpose of these holes in the final assembly will be described in Section 3.5.5.

• From experimental data it is shown that the sensor resolution is best out

to a range of approximately the external radius of the sensing coil. Sensing

is possible beyond that range but the resolution is less. As the target

application requires at most a 0-20 mm sensing range, a PCB coil of 35-40

mm diameter is therefore necessary. An inductor with a Dout of 38 mm can

fit in a standard PCB size of 50x50 mm, including the above-mentioned

mounting holes and connectors.

• As shown in the TI application report [158] and also demonstrated by Huang

and Ngo in [160], an inductor inner-to-outer diameter ratio ofDin/Dout > 0.3

is ideal to have a high Q-factor. Therefore, an internal coil diameter of 12

mm is selected, which gives a Din/Dout value of 0.32. If the ratio is in-

creased, the number of windings would be too low and the inductance value

would fall.

• The inductance value not only in planar but in any type of coil is increased

with the number of turns. To maximise the number of turns for the selected

coil size, it is necessary to select the minimum track size and track gap

allowed by standard low-cost manufacturing, in this case 6-mil track and

6-mil gap.
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• A standard 1.6 mm PCB thickness is selected, as a thinner PCB would not

be strong enough when used in the final assembly.

• The number of layers selected for the inductor needs to be as high as possible

to provide a high inductance while keeping a low resistance, due to mutual

inductance between the layers. However, to maintain the desired frequency

of operation of the sensor, the capacitor used in the resonator has to be

decreased, as per eq. (3.1). As shown in the calculations below, to keep the

optimal sensor frequency the capacitor value would fall below the minimum

recommended specifications (100 pF) if the layer count increases beyond 2

layers.

In summary, the design parameters of the PCB sensing coils are: Dout = 38

mm, Din = 12 mm, 6-mil track, 6-mil gap, 2 layers, 1.6 mm substrate thickness,

and 50x50 mm total PCB size. Fig. 3.2a shows the planar PCB coil, with a

two-pin connector at the bottom and a mounting hole in each corner that will be

used when assembling the full module.

To select the correct capacitor to form the LC resonator tank, which deter-

mines the working frequency, and to evaluate the quality of the coil, the in-

ductance and quality factor need to be calculated. These can be obtained with

either of the two tools supplied by TI, an offline Excel sheet [161] or the online

web WEBENCH tool [162], based on F.E. modelling and simulations. These tools

also provide the value of the external capacitor for setting the sensor operating

frequency and the self-resonant frequency and resistive component of the coil. Al-

though the sensor can work from 1 kHz to 10 MHz, to achieve the best resolution

TI recommends a ratio of fSENSOR/fREF = 0.025 and fSENSOR < 0.8 ∗ fSR.

Since fREF comes from an external 40 MHz crystal oscillator, fSENSOR is about

1 MHz. The inductance for the 38 mm coil, using WEBENCH, is L = 139.7 µH,

with Q = 36.61 and self-resonant frequency fSR = 6.731 MHz, with fSR being

the self-resonant frequency of the coil. With an external capacitor C = 120 pF,

the working frequency of the LC resonator is fSENSOR = 1.209 MHz, well below

fSR.

Although the TI design tools allow a quick design of the sensing coil, the

calculated coil parameters are based on an ideal planar inductor. The tools do not
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Figure 3.2: (a) PCB Coil (b) Measurements of inductance and quality factor of
the PCB coil using an impedance analyser (selected working frequency in dashed
green line).

take into account the influence of connectors, connecting tracks, through holes and

variations in line/space dimensions or dielectric thickness due to manufacturing.

Therefore, the inductors were measured using a HP-4192A impedance analyser

with a 10 kHz - 10 MHz sweep. Fig. 3.2b shows that higher quality factor was

found between 1-2 MHz, while the inductance peak at 3.1 MHz indicates the self-

resonant frequency, half of the design tool predicted value although in the same

order of magnitude. With C = 120 pF, the measured inductance at 1 MHz is L

= 185 µH with Q = 31 and fSENSOR = 1.068 MHz, close to the recommended 1

MHz and still well below the measured self-resonance.

The LC tank circuit is not ideal and has a resistive component Rp, which is

also a function of the target distance. The output current of the sensor IDRIV E

needs to be set to a value that allows to maintain a constant oscillation amplitude

for the minimum Rp value. As the minimum measured value is Rp = 36.9KΩ,

the optimal sensor current calculated is IDRIV E = 40µA for each coil.
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Although the sensing coil design methodology described in this section has

produced an optimal coil, which can sense the desired 0-20 mm range and with a

high Q-factor that could potentially yield a precision in the order of um, it still

needs to be characterised with different metal targets under different conditions.

The maximum sensing range allowed by the TI LDC1614 is 70 mm, provided

an optimal sensing coil is designed for this range, which would have an external

diameter of 14 cm. This maximum range was obtained from TI WEBENCH tool.

3.4 Inductive sensor characterisation and cali-

bration

3.4.1 Introduction

The sensor described in the previous section presented a novel concept for struc-

tural monitoring of metallic structures by measuring relative displacement be-

tween components in the structure. The state-of-the-art eddy-current IC used in

the module needs to be fully characterised for the application, as little research

has been yet conducted using this type of highly integrated sensor in this ap-

plications. However, the bending or displacement of real structures is hard to

replicate in a laboratory, and the test systems can become complicated to design

and operate. Therefore, new testing methods have to be designed that emulate

these conditions, which are simple but accurate enough to validate and charac-

terise the module. Moreover, these test systems have to allow for multi-axial

displacement to evaluate interference between coils, as well as different variables

such as target metal type and thickness, angle relative to the coil, presence of

the battery near the sensor, potting resin, and water. To characterise the sensor

for these varying parameters, two different custom test systems were designed to

accurately emulate different displacements of metal parts.
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3.4.2 Characterisation of the planar inductor sensor

3.4.2.1 Test system design

As thick steel is challenging to bend in a controlled way, a different approach was

taken to allow for more precise measurements that kept the metal target static

while the sensor could be displaced, emulating the effect changing the distance

between the sensor and the plate. An L-shaped metal corner-plate was made

and fixed in place, then the sensing coils were moved relative to the plate using a

reconfigured pick-and-place machine. This allowed characterisation of the sensors

in two orthogonal axes and investigation of possibly cross-coupling or interference

between two adjacent coils and metal plates.

Fig. 3.3 shows the test system designed for characterising the sensor in one

or two out of the four possible axes, with the retrofitted manual pick-and-place

machine and several 3D-printed plastic components to fix the metal plate to the

machine, as well as a base support to hold the sensing coils. This base is attached

to the X-Y moving part of the pick-and-place, allowing location and locking of

the sensor at any desired distance D from each plate side. To illustrate better this

mechanism, a CAD diagram of the setup is shown in Fig. 3.4. To measure the

actual displacement, two optoNCDT-142 [163] laser displacement sensors were

used, mounted on the same base plate and pointing in the same direction as the

sensing coils, which are set 25 mm back from the front face of the coil. This is due

to the laser sensors needing a minimum distance of 25 mm to the target. The full

range of the sensors is 25 mm, with a linearity of 20-25 µm and a repeatability

of 1 µm, more than sufficient to characterise the sensors. For data collection,

the sensors were connected to a laptop using the module interface electronics

described in Section 3.5.3.

3.4.2.2 Experiment setup

To characterise the inductive sensor, a single planar PCB coil was used to measure

distances from 0-20 mm at 1 mm, 0.5 mm, and 0.1 mm steps to 20x20 cm mild

steel plates of four thicknesses of 4, 6, 8, and 10 mm. There were three different

step sizes, first to observe the general behaviour of the sensor (1 mm), then to

47



3.4 Inductive sensor characterisation and calibration

Laser
Displacement
Sensors

D1

D0

3D Printed
Support

Mild Steel
Plate

Figure 3.3: Test system setup, composed of a retrofitted pick-and-place machine
with 3D-printed support parts and laser displacement sensors.
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Figure 3.4: CAD diagram of the test system setup.

confirm that it can resolve the necessary 0.5 mm observed in the literature and,

finally, to test if it could achieve a higher resolution (0.1 mm). The four metal
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thicknesses allowed investigation of the effect of the material thickness in the

measurements as described in Section 3.4.3.2 below.

The LDC1614 IC was configured with the parameters calculated with the

WEBENCH tool for the designed coils. The reference count register limits the

resolution of the sensor, and is inversely proportional to its maximum sample

rate. As the samples were collected manually one by one, a high sample rate was

not necessary and the maximum resolution possible was selected by setting the

reference count register RCOUNT = 0xFFFF, limiting the maximum sample rate

to 9.5 sps. This can be changed for different applications up to a maximum of 4.08

Ksps, allowing a theoretical vibration detection bandwidth of 2 kHz. In SHMS

the sampling rate can be slow and at long intervals as the rate of displacement is

typically slow and this will increase battery life. The addition of the IMU gives

the option of increasing inductive sensing rates if a sudden large displacement,

caused, for example, by structural failure, impact or seismic shock, is detected by

the IMU.

3.4.2.3 Distance vs inductance results

Fig. 3.5 shows the sensor data counts (as defined in Section 3.3.1) for the inductor

L1 for the four metal thicknesses over the 0-20 mm range, at 1 mm steps. The

distance D0 is fixed at its farthest (20 mm), to minimise the interaction of this

side of the plate with its orthogonal inductor L1 and therefore avoid interference

with the D1 measurement (parallel plate). There are small differences between

the curves for the different plates; however, as this behaviour occurred in all of the

measurements, it is assumed they rather correspond to small errors introduced

whenever a plate is inserted and the zero from the laser sensors is set again

rather than due to an intrinsic effect of plate thickness. In fact, it is known that,

due to the skin effect [164], most of the induced currents in the target plates

will be confined to the surface of the conductor. If the skin depth is calculated

for a mild steel plate using eq. (3.4), with ρ and µ being the resistivity and

permeability of the material respectively, at f = 1 MHz sensor frequency it is

approximately 4.3 µm, which is 1000 times smaller than the thinnest plate used

49



3.4 Inductive sensor characterisation and calibration

0 5 10 15 20

D1 [mm]

7.4

7.6

7.8

8.0

8.2

8.4

8.6

8.8
L

1
[C

o
u

n
ts

]
×106

4 mm

6 mm

8 mm

10 mm

Figure 3.5: L1 counts vs D1 distance for the different plates, at D0=20 mm, with
measurements done at 1 mm step.

(4 mm). Therefore, for thicker plates the generated eddy-currents and hence the

measured inductance would be similar.

Cσ =

√
ρ

πfµ
(3.4)

3.4.2.4 Sensor resolution

The precision of the sensor is mainly determined by the reference count configu-

ration and the ratio of the target distance vs the diameter of the coil. Although

the theoretical resolution of the sensor can be less than 10 µm for up to 100%

distance/coil diameter, the impact of external variables like the test system setup,

the manual adjustments, and the laser sensors will lead to a lower resolution.

In Fig. 3.6, it can be seen that the measurements taken at 0.5 mm step have the

same shape as the ones in Fig. 3.5, with monotonic decaying exponential curves,

showing that a resolution of at least 0.5 mm is achieved. However, in Fig. 3.7

non-monotonic fluctuations are present when measuring at 0.1 mm step, due to

the system setup not being able to accurately resolve 0.1 mm increment displace-
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Figure 3.6: L1 counts vs D1 distance for the different plates, at D0=20 mm, with
measurements done at 0.5 mm step.

ments. Comparing the 4 mm thickness plate at the 5 mm distance measurement,

for the three figures, it can be seen a variation from 7.8× 106 to 7.9× 106 counts,

which corresponds to a measurement uncertainty of approximately 2 mm. This

is not an inherent uncertainty of the measurement method but happens because

of the manual setup of each individual set of measurements. When a metal plate

is inserted in the system, it must be moved until it touches the module screw

tops. Then the laser sensors are set to zero at that position. This base position

always varies slightly because of the multiple plastic parts in the setup, which

bend slightly when tightening up the screws.

The overall conclusion from all of the above measurements is that the sensor

module in the current test setup can detect displacement over a 0-20 mm range

with at least 0.5 mm resolution. The apparent measurement uncertainty due

to the limitations of the existing measurement setup will not affect a real-world

measurement as the sensor module will be solidly fixed in place on its base struc-

tural member and will be measuring relative movement of an adjacent structural

member.
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Figure 3.7: L1 counts vs D1 distance for the different plates, at D0=20 mm, with
measurements done at 0.1 mm step.

3.4.3 Characterisation of the planar inductor sensor in

two axes

3.4.3.1 Experiment setup

As described in the previous section, the planar PCB coils have to be adjacent to

each other to measure displacement in two different directions to two orthogonal

metal components and, therefore, cross-coupling and interference are possible.

The test system allows this to be investigated by measuring distance from two

coils to both sides of an L-plate, as previously shown in the test system setup

in Fig. 3.3 and 3.4. A full set of measurements was performed for both of the

coil-plate distances D0 and D1, coils L0 and L1 respectively, for the 0-20 mm

range, at 0.5 mm steps.

The procedure to perform each set of measurements is as follows:

1. Place the sensor coils in the 3D-printed support attached to the X-Y table,

as well as the laser sensors.

2. Move the X-Y table movable guide until the plastic screws of both sensor

coils are touching the metal sheets.
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3. Reset the zero of the laser sensors and start them on continuous measure-

ment.

4. Move the X-axis of the guide until its corresponding sensor reads 0.5 mm

and read the inductance value of both inductor sensors.

5. Keep moving the X-axis in 0.5 mm steps while keeping the Y-axis fixed,

and read the sensors until it reaches 20 mm distance.

6. Move the inductors back to the origin against the metal plates.

7. Move the Y-axis 0.5 mm and keep it fixed, while repeating again the full

X-axis measurements at 0.5 mm step until 20 mm distance.

8. Repeat again the same measurements, but separating another 0.5 mm the

Y-axis.

9. Keep repeating full range sets of X-axis measurements while separating the

Y-axis 0.5 mm after every set until it reaches 20 mm.

3.4.3.2 Effect of D0 distance on L1 inductor.

The effects of the proximity of a plate on its adjacent orthogonal coil are shown

in Fig. 3.8, a 3D representation of all the curves for L1 data counts vs D1 for the

whole range of D0 distances, for the 4 mm thick plate. It can be observed that

the effect is minimal and only when the sensor is closer to the D0 plate, due to

the higher sensitivity of the LDC1614 IC when the coil is closer to the target.

The largest standard deviation for this plate is 55308 (0.65% of the maximum

value) and occurs when D1=0, which is also the maximum found among all the

different plates. In Fig. 3.9, the average of these L1 vs D1 curves for the D0 range

is shown, for every plate thickness.

Overall, it can be concluded that the presence of even thick metal plates

adjacent and orthogonal to a given sensing coil do not have a significant effect

on the measurements made using that coil. Both sensors can therefore operate

independently with identical performance.
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Figure 3.8: L1 counts vs D1 and D0 distance for the 4 mm plate, at 0.5 mm step.

3.5 Inductive displacement module design

3.5.1 Module research challenges

From the deficiencies of current sensors for structural health monitoring found in

the literature as well as the issues of integrating the developed inductive sensor,

the following design and application constraints arise:

• The module needs to have a package design/shape that is easy to encap-

sulate and can protect the module from the harsh environment conditions

found in marine environments, i.e. high humidity and salt concentration as

well as vibration and shock. It has to be rigid and sturdy enough to with-

stand these shocks without being damaged. This packaging has to allow for

direct exposure of the coils close to the target surface.

• It needs to have wireless capabilities that support IEEE 802.15.4, the most
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Figure 3.9: Average L1 counts vs D1 distance curves over the D0 range for the
different plates.

widely used WSN technology, with a current embedded networked OS that

allows remote control and data collection of the sensor module.

• Extra COTS sensors that allow for environmental monitoring and can com-

plement the displacement measurements need to be integrated into the mod-

ule.

• It has to be self-contained, battery-powered, and rechargeable.

• The module needs to be 3D so that it is able to present multiple, orthogonal

sensing coils to adjacent metal structural members.

• The module must ensure that the coils are positionally stable relative to

each other, ensuring that they measure only relative metal movement and

not their own relative movement.

• The module needs to contain all required analog, digital, communications,

RF and power electronics, and battery assembled in such a way that they
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3.5 Inductive displacement module design

do not interfere with the multiple sensing coils.

• It, ideally, should be lower-cost than current systems, in terms not only of

hardware but also deployment cost.

The research challenges arise primarily from the above application constraints:

• Identification of a 3D configuration and assembly method that meets all of

these constraints.

• Characterisation of the measurement performance of the module.

• Encapsulation of the module for reliability in a marine environment.

3.5.2 Overall system design

To make the sensor a self-contained, wireless, autonomous module, the sensing

coils and IC needs to be integrated with a processing unit, communications, power

management, battery, and other sensors that complement its functionality. This

presents a series of challenges: the coils need to be exposed, as the range is limited

and the resolution is better when it is closer to the metal surface, therefore the

module cannot be simply packaged inside a box; to measure relative displacement

between two or more adjacent components in a structural framework, different

coils need to be placed orthogonally. A cubic structure made out of PCBs is then

an ideal solution. Fig. 3.10 shows a conceptual deployment of the module on a

structure.

The size of the cube is defined by the 50 mm square PCB of the optimal coil

described in Section 3.3.2. As the sensing IC supports up to 4 channels, 4 coils can

be used, allowing relative displacement measurement between up to four struc-

tural components. This leaves two faces of the cube to use for the electronics and

interconnects. Although the literature has, for example, shown a board-folding

method to interconnect and assemble a cuboid module made out of PCBs [103],

in this case it would not provide a sturdy enough structure due to the size of

the module. Conventional metal-pin male-female connectors can, however, offer

a simple and reliable choice, complemented with a 3D-printed internal scaffold
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Figure 3.10: Conceptual deployment of the inductive module on a structure.

to hold the cube together as well as the battery, as previously shown in other

battery-powered PCB cuboids [104]. Fig. 3.11a shows a CAD render of the cubic

design and Fig. 3.11b an unfolded “crucifix” view of the individual PCBs. Four

of the faces are planar sensing ‘COIL’ PCBs, three on the ‘lateral’ sides (L0 to

L2) and one on ‘top’ (L3). The ‘CONNECTOR’ PCB at the crucifix center acts

as a base for inter-PCB connectors and routes the lines from inductors L0, L1

and L2 to the ‘ELECTRONICS’ PCB with processing, communications, sensors,

and power. The L3 PCB is connected directly to the ‘ELECTRONICS’ PCB.

This arrangement provides sensing in three different directions on the horizontal

plane and one on the vertical, minimising track length between the coils and the

sensing IC. The full assembly is described in detail in Section 3.5.5.

3.5.3 Main electronics board

The ELECTRONICS PCB contains most of its components in the top layer,

Fig. 3.12a, facing the inside of the cube, to protect them from the environment

and to give some electrical shielding.
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Figure 3.11: (a) Cube module concept (b) Unfolded cube concept.

3.5.3.1 CPU, communications, and sensors

The core of the platform is the CC2538 [95], a low-power ARM Cortex-M3 MCU

with 32 KB RAM and 512 KB Flash, which includes a 2.4 GHz IEEE 802.15.4

radio and a wide range of peripherals, including an I2C and SPI bus to interface

with digital sensors. This microcontroller was chosen mainly for its increased pro-

cessing power over old MSP430-based platforms, its integrated radio that reduces

cost and power consumption, and its good Contiki-OS support (the networked

embedded OS predominantly used in WSN research). There are three different

types of sensors connected to the MCU I2C bus: the inductive displacement sen-

sor (described in Section 3.3.1), an LSM9DS1 [165] IMU (3-axis accelerometer,

gyroscope and magnetometer), and an SHT21 [166] humidity/temperature sen-

sor. The full IMU can provide extra features to the module, e.g. measuring of

tilting of the whole structure, or activation of the inductive sensing IC only when

a structural shock is detected, saving power. The humidity/temperature sensor

allows the module to be used also as an environmental monitoring sensor and
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the temperature sensor could be used to compensate for thermal expansion and

contraction which can cause substantial movement in large structures.

On the opposite, outer face of the PCB (Fig. 3.12b) are the components that

need external exposure, such as the humidity/temperature sensor. For battery

charging and firmware updating, a microUSB connector is also on this side of

the PCB, serving both functions with the same connector. Finally, opposite this

connector is a surface mount chip antenna, as well as a small UF.L connector, to

allow use of a higher gain external antenna to extend, if necessary, the wireless

range or to locate the antenna at a distance if, for example, the module was inside

an enclosed metal space.

3.5.3.2 Power management

Two 600 mAh rechargeable lithium-polymer batteries were chosen as a power

source and integrated inside the cube, as lithium-polymer is the most common

battery chemistry used in rechargeable embedded modules due to its safety and

high capacity-size ratio. The power consumption is approximately 25 mA when

measuring and 40 mA when transmitting data, with a quiescent current of less

than 1 mA when in power down mode. This allows for 50 days of continuous

operation if configured to measure and send 1 burst of samples/hour. A bigger

battery cannot be fitted inside the module, but if longer autonomy is needed

an external USB powerbank can be connected to the microUSB. As low power

operation is important for the application, a DS2745 [167] battery monitor is

also on the I2C bus that samples the battery voltage, as well as the instant and

accumulated current consumed by the node, which is useful to predict its battery

life. For power management, a battery charger IC [168] is used, with two SMD

LEDs to indicate the battery charging state (charging/charged), and an LDO

regulator [169] which provides a stable 3.3 V from the nominal 4.2 V of the

battery.

3.5.4 Firmware and software

The firmware developed for the module is built on top of Contiki-OS [65], an open

source operating system for the Internet of Things, designed to wirelessly inter-
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Figure 3.12: (a) Top layer PCB (internal side) (b) Bottom later PCB (external
side)

connect battery-powered, low-cost, microcontroller based devices. Some of its

features include support of recent low-power wireless communication standards,

such as 6LoWPAN, RPL and CoAP, which provide full networking capabilities

with a low overhead. To allow for remote command execution and sensor config-

uration, the main application is based on Contiki-shell, an interactive text-based

console that allows for definition of different command functions in the node, to

be triggered locally over a serial USB or remotely from the gateway to one or

multiple nodes. This makes it easy to extend the platform by adding commands

with different functionality. One of the limitations of Contiki-Shell is that when

launching remote commands in a node, the node will not send back a response to

the gateway. Thus, the Contiki-Shell core was modified and extended to receive

responses from the nodes when necessary. These extensions done to Contiki-

Shell are further explained in the following Chapter 4, section 4.5. All wireless

communications use the RIME stack, which provides a layered set of lightweight

communication primitives. Although the system architecture is designed to be
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used in single-hop networks, it could be modified to work in multi-hop by using

different RIME primitives. ContikiMAC is used for radio duty cycle, which keeps

the radio off 99% of the time, saving power but increasing the communication

delay. The remote control and data collection is done through a gateway node

connected to a laptop, using a custom Python script. The firmware can be up-

dated directly through the microUSB connector without the need for an external

JTAG programmer, due to the embedded bootloader present on the microcon-

troller.

3.5.5 Module integration

3.5.5.1 Module electrical and mechanical assembly

To produce a reliable and robust module, its assembly has to be strong enough

to withstand handling and deployment. As shown in the literature, the cuboid

structure described in the previous section is ideal to overcome these challenges.

To minimise interference with the inductive measurements, the materials sur-

rounding the coils and the electronics should be non-conductive, the assembly

therefore uses 3D-printed plastic assembly parts with nylon screws and standard

2.54 mm connectors.

Fig. 3.13a shows the internal module assembly. The CONNECTOR PCB at

the base of the cube has a horizontal female 2x6 pin connector that mates at 90

degrees with the vertical male in the ELECTRONICS PCB, connecting with the

differential inputs of the three inductive sensors. Only the top row of the female

connector is used as the bottom row provides the necessary gap for the edges of

the two boards to be at the same level. These six lines are then distributed to

each of the three PCB coils on the sides through another set of connectors. The

top coil is connected directly to a connector on the top of the ELECTRONICS

PCB.

To hold the whole module together, a small 3D printed corner-piece is used

in each of the eight cuboid corners, screwed with a 3 mm nylon bolt to each PCB

corner, with the nuts facing outside. The corner pieces and the distance between

the bolt holes are designed for an interference fit so that, when the bolts are

inserted, the assembly holds itself together. This way the last side of the cube
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Figure 3.13: (a) Module assembly with connectors, plastic corners and screws (b)
Battery assembly inside the cube.

can be closed and the nuts screwed on from the outside, which will also facilitate

the encapsulation process, as described in Section 3.5.5.3.

3.5.5.2 Battery integration

A 3D printed enclosure keeps the battery pack in the center of the cube, as far as

possible from the coils and electronics to minimise interference. This enclosure

slides in and is held between the 3D printed corners, Fig. 3.13b.

Fig. 3.14 shows the assembled cubic module with all integrated sensors and

electronics.

3.5.5.3 Module encapsulation

As the final application of the module is to be installed in marine off-shore struc-

tures, it needs to be fully sealed and protected from the high humidity and salt

62



3.5 Inductive displacement module design

50 mm

50 mm

Figure 3.14: Fully assembled module in cuboid form, with four PCB faces for
planar coils, one for the electronics and another for internal connectors.
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Figure 3.15: (a) Cube module pre-potting sealing (b) Cube module encapsulated.

found in the environment. For this, a resin compound is necessary to encap-

sulate the internal electronics and battery. The encapsulation resin used is the
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Electrolube UR5041 [170], a two-part ultra high performance resin system which

features excellent resistance to sea water and low water absorption, as well as good

temperature range performance (-60 to 125 oC) and high toughness, tear, and

oxidation resistance. This was selected as it is the only commercial encapsulation

resin found that is designed specifically for electronics in marine environments,

and offers a high performance in a range of challenging environments.

A first attempt at using the resin showed a much lower viscosity before curing

than expected by the value given in the datasheet (2500 mPa·s at 23oC), causing

leaking even through the vias of the PCB. As a consequence, special care had

to be taken to cover all holes and slits in the pcb edges and vias, as well as

sensitive components to avoid leaking. To seal the internals of the cube before

potting, adhesive rubber was used between the edge of the PCBs, while the rest

of the inner sides were covered by spraying conformal coating (Fig. 3.15a). The

coating used is the Electrolube PUC polyurethane coating [171], to avoid material

interactions with the encapsulation resin which is also polyurethane-based. The

external sides of the cube were also covered by the polyurethane coating after

potting, to further protect the PCB coils.

The procedure to encapsulate the module is as follows:

1. Assemble the bottom connector PCB, two side coils, top side coil, and

electronics following the procedure described in Section 3.5.5.1, leaving out

the side coil opposing the electronics PCB, as shown in Fig. 3.15a. The long

bolts that will be used to attach the module to the structure or test system

will have to be installed in the connector PCB also, as they are inserted

from the inside.

2. Seal with Blu Tack adhesive rubber the internal gaps between the PCBs,

as well as the plastic corners and bolts.

3. Place the battery into the battery holder and connect it to the electronics.

After covering the last coil connector with 3M polyimide film tape 5419,

spray the interior of the cube with a thin layer of polyurethane coating,

covering all the sides of the PCBs facing the inside of the cube, and slide

the battery inside the cube.
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4. Pour the resin compound into the module, filling it up to the border without

covering the connector (Fig. 3.15b).

5. Remove the tape from the connector, attach the last remaining PCB coil

and let the resin cure for 24 h at ambient temperature.

6. After curing, spray the exterior of the cube with a thin layer of polyurethane

coating for extra protection of the coils and electronics, covering all exterior

PCB sides including the assembly nuts and bolts. Before applying the

coating, the microUSB connector, buttons, and humidity/temperature filter

cap have to be covered with tape which will be removed after the coating

dries.

3.6 Inductive sensor module testing

3.6.1 Test setup

As the module is designed to be used as a fully autonomous wireless sensor, most

of the test measurements performed were with the battery inserted in the plastic

holder inside the module. However, for very noisy environments, or when wired

power is available, a USB connection can be used for communication and power.

This would also allow the connection of a larger battery pack to extend battery

life or to keep the batteries remote from the module in case of possible interference

with the displacement measurements. To test for this possible interference, the

module performance was compared with both USB and battery power. As some

SHMS applications could involve exposure to high humidity or rain, another test

was also performed with water sprayed over one of the inductors, to assess its

effects on the measurements, results below.

The sensor module has been characterised for parallel movement of the target

material, but structural deformation may also involve bending or torsion. To sim-

ulate bending, a second test setup was designed (Fig. 3.16), where the inclination

of a metal plate can be changed in one axis by a specified angle relative to the

sensing coil. While most civil structures are made of steel, this test rig was also

65



3.6 Inductive sensor module testing
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Figure 3.16: Test system setup for measuring angle of the plate, composed of a
precision x-axis stage and a protractor to measure distance and angle of inclina-
tion.

used for single axis parallel displacement of other metals. The results from these

measurements are later in this section.

3.6.2 Module performance

The fully assembled module performed as expected, with no packet data loss

while sampling and transmitting. The temperature sensor recorded a minimum

temperature of 24 oC and a maximum of 32.2 oC during the tests. The data

from the humidity sensor and IMU were also successfully collected. Fig. 3.17

represents the curves for L0 and L1 vs the distance to their corresponding plates,

when the distance to its opposing plate is at D=20 mm. On average L1 exhibits

a higher L count (lower inductance). This is most likely due to the battery not

being square, and then being closer to the L1 inductor than to L0. The battery

covering is partly metallic and a small eddy-current is induced in the surface of

the battery, lowering the total measured inductance. Although this will not have

any effect on the accuracy, the offset will have to be taken into account when

developing a model for a specific application.
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Figure 3.17: L counts vs D distance for the different plates for each inductor,
when the distance from its adjacent orthogonal plate to its inductor is D=20
mm.

3.6.3 Effects of the battery and water

Fig. 3.18 confirms that having the battery inserted instead of the module being

powered through USB causes an increase in the L1 counts, which corresponds

to a decrease in the measured inductance due to the proximity of the metallic

covering as explained in the previous section.

The experiments done when fresh water was splashed over the metal did not

produce any variation in the results compared to the experiments with the plates

dry, with only an RMS error of 1972 counts (0.024% of the maximum value).

This test was done first with the dry plates and immediately after was repeated

with water splashed, without removing the plates or the sensor nor recalibrating

the laser sensors, therefore the curves of both experiments overlap. Although

salt-water has higher conductivity, the fact that fresh water produced no change

suggests that the effect of salt-water should not be major. This was confirmed by

another test with a solution of sea salt and water splashed (3.5% salt concentra-
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Figure 3.18: Effects of the battery integration on the L1 counts.

tion, corresponding to the average salinity of seawater), which still experienced

an RMS error of 8028 counts (0.099% of the maximum value) with respect to

the plates dry. This also demonstrates that changes in ambient humidity have a

negligible effect on the sensor measurements. Temperature changes will have a

bigger effect but temperature compensation is possible following the guidelines in

the sensor IC application report [172]. Due to the size and operation of the test

setup, which makes it impractical to use it in the climatic chamber, this effect

was not investigated.

3.6.4 L sensor measurements vs plate inclination.

To show the sensor’s ability to measure plate bending or inclination, a 2 mm

mild steel plate was placed 10 mm from the measuring coil in the test setup of

Fig. 3.16. The plate inclination was changed from 87 to 110 degrees relative to the

measuring coil, in 1 degree steps, with the results shown in Fig. 3.19. This shows

that the sensor can measure these changes, demonstrating a similar exponential
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Figure 3.19: L0 counts vs angle of inclination, at D0=10 mm.

curve as observed with parallel plate movement. If detection of torsion of a plate

in three dimensions is necessary, a PCB sensing coil could conceivably be designed

to use multiple smaller coils on a single PCB; in this way a finer movement

detection would be achieved. However, the module is primarily intended to detect

anomalous structural movements from a baseline, however these movements are

caused, and the measurements in this section show that it can do this.

3.6.5 L sensor measurements vs different metal materials.

As described in [173], different target materials can affect the measurements due

to the differences in their conductivity. Fig. 3.20 shows the measurements for

three different metals: aluminium, stainless steel and mild steel. Aluminium and

this particular alloy of stainless steel have a very similar conductivity, therefore

they present almost identical curves, while mild steel differs. However it is easy

to compensate for these different conductivities by doing initial baseline measure-

ments after sensor module installation on a structure.
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3.6.6 L sensor measurements for potted vs not potted

module, for the 4 mm plate.

Section 3.5.5.3 showed the process to encapsulate the module internally with a

resin compound, as well as coating it externally, to protect it from high humidity

environments. Although these compounds have low conductivity, it could still

have an offset effect in the measured data from the sensing coils. Fig 3.21 shows
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the results of measuring the distance of L0 against the 4 mm mild steel plate with

two different modules, with and without potting, where only small differences of

less than 2 mm can be observed, attributed to the errors in the test system.

3.7 Discussion

3.7.1 Advances to the state of the art

The literature review has shown that different technologies exist that can monitor

large structural frames. However, most of these techniques need to have the

sensor embedded inside or in the surface of the structure, and the contactless

alternatives all present a series of drawbacks such as large size, high cost and

power consumption. No contactless system has been shown to be integrated,

low-cost, and autonomous, which can monitor a structural frame in different

directions.

These challenges have been addressed here by presenting a novel concept for

monitoring metal structures by using eddy-current sensing technologies to mea-

sure relative displacement between adjacent components in a steel framework,

and integrating this concept into a full wireless module. This was possible with

the use of a new eddy-current sensing coil interface IC, which avoids the need

for complex interface circuit design and optimisation, allowing more straightfor-

ward development of eddy-current sensor applications such as the structural steel

framework displacement measurement presented here. The module presented in

this chapter has a simple cubic form for proof-of-concept but the module could

conceivably also be trapezoidal in 3D, allowing displacement measurement be-

tween structural components that are not orthogonal or parallel. Assembly and

encapsulation would be more complex but still feasible.

The sensor module has been tested and characterised in one and two axes for

different conditions. The experiments performed have verified that, even with

relatively simple two-layer planar inductors, the inductive sensing technique can

measure relative displacement of up 20 mm with a resolution better than 0.5

mm, as well as angle of inclination with at least 1 degree of resolution. Changing

the dimensions of the coils would allow different sensing ranges and resolutions, if
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needed. The module could also be scaled-up in size without changing the inductor

dimensions, i.e. a small inductor in the centre of a large-area PCB. This would

retain the original range and resolution but would allow deployment of the module

on larger-scale metal structures. The work has also demonstrated that sensors

orientated to different axes can work without mutual interference even with other

metal components in near proximity. The immunity of the inductive sensors to

moisture/water makes them suitable for exposed and marine applications.

Although the module works well as a novel proof-of-concept, it can be im-

proved with the characteristics added to the health monitoring module described

in Chapter 4: an external flash, an on/off switch, and a waterproof microUSB

connector (which was not commercially available at the time when the inductive

module was developed). This would take the module to the next level required

for harsh environment and industrial applications. As the module is autonomous

and has wireless networking capabilities, multiple modules could form a WSN

network across a complex structure.

3.7.2 Engineering advances

The module presented here represents an engineering advance in low-cost fully

networked wireless sensor modules for structural monitoring. The use of 3D sys-

tems integration and miniaturisation techniques have allowed development of a

multiaxial metal displacement sensing module and the integration of other sensors

along with processing, wireless communications, and power to make a complete

standalone wireless SHM module. This presents advantages over current systems:

it is wireless and networked, contactless, small, and easy to install. It involves

no specialised, large or expensive sensors such as strain gauges, mechanical dis-

placement gauges, cameras or lasers, as well as being wireless, which removes the

cost of cabling making the deployment of a network of sensors more practical.

Because of all this, the module is of lower cost than existing techniques as well

as easier to deploy and maintain. The module could also be used on non-steel

structures by simply fixing a small metal plate to an adjacent concrete, wooden,

or composite beam. As the sensor module is small and the eddy currents flow

only in the surface layer, the plate will be small and thin and have a negligible
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effect on the displacement of the structure. The use of minimal 3D-printed parts

for support while using PCBs and standard connectors allows for a robust self-

contained cube module, easy to encapsulate and protect. The method showed for

encapsulating the module is simple and low-cost.

To solve the challenge of testing and characterising the module in laboratory

conditions, two different test setup systems have been developed, one of which

emulates plate movement by fixing the plates and displacing the sensor module

itself, and the second plate angular displacement by changing the plate inclina-

tion.

Future work could include more comprehensive characterisation of the effect of

coil design variables on measurement performance, as well as more comprehensive

testing of the effect of environmental variables on measurement performance:

temperature and humidity in particular. Moreover, a more precise and automated

test setup system could be developed, to allow assessing further the resolution

of the sensing coils as well as help in the development of a model for a real

application. To develop a model, first the exponential fitting curve has to be found

by selecting one of the measured curves and extracting a best-fit mathematical

model (using MATLAB or a similar tool). After this, the experimental data is

used to determine the different parameters of the model, which in the end will

be reduced to a simple equation with data counts as an input and displacement

in mm as an output.
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Chapter 4

Wireless Sensor Module for

Machine and Structural Health

Monitoring

4.1 Introduction

Chapter 2 has shown the recent trend to replace wired sensors used in structural

and machinery health monitoring with low-cost WSN using MEMS and other

COTS sensors, not only to reduce hardware cost but also to facilitate installation

and replacement. However, WSN technologies have yet to be fully adopted in ma-

rine and off-shore deployments. This is partially due to the challenging conditions

of these environments, which complicates sensor packaging and reliability, as well

as the existing gap between research devices and commercial sensors available

for these environments. The objective of the research presented in this chapter

is therefore to design and develop a sensor module for machine and structural

monitoring that bridges the gap between research and real-world deployment,

satisfying the technical and application requirements for both domains, allowing

them to be used for research experimentation as well as real-world deployments.

The literature review showed that vibration and acoustic sensors have been

widely used for prognostics and fault diagnosis of bearings, motors, and different

types of machinery. This becomes important specially in remote locations and

off-shore deployments such as marine platforms and ships, where their difficult
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access and harsh environment conditions, which includes salt-water exposure,

further complicate their maintenance and monitoring. However, the limitations

of current hardware platforms and systems architecture makes them less suited for

this type of applications. To solve this, a hardware-software co-design needs to be

applied to design a WSN module that can survive these harsh marine conditions,

with a firmware infrastructure oriented to sensing and software tools that serve

both research and industry.

This chapter presents a hardware and software WSN architecture for monitor-

ing machinery in marine and harsh environments using COTS vibration, acoustic,

and temperature/humidity sensors, which overcomes the limitations of compu-

tational power, networking compatibility, integration and reliability of current

WSN platforms described in the literature. The hardware module shares the

CPU, radio, and power management architecture with the inductive module pre-

sented in Chapter 3 but incorporates different MEMS sensors as well as external

flash memory, encased in a custom 3D-printed box for encapsulation against the

marine environment. The firmware and software also builds upon the founda-

tion of those developed for the inductive module, extending and improving their

features and offering a full-featured UI which allows for data collection and visu-

alisation, experiment control, and 3D-view support of the environment and node

location. This system could also be used to monitor structures in other harsh

environments.

4.2 Module research challenges

The challenges for the design of a WSN module for machine and structural moni-

toring that can be used in harsh environments arise from the combined necessities

of both research and real-world deployment. The requirement challenges to be

addressed are:

• Integrated electronics in a single PCB, including the range of sensors nec-

essary for structural and machine monitoring, to reduce cost and improve

75



4.3 Overall system design

power consumption, as opposed to having different modules assembled to-

gether (e.g. CPU, battery charging, radio, sensors, etc.). This can improve

mechanical reliability, as well as reduce manufacturing cost.

• A package design that can protect the module from the harsh environment

conditions found in marine environments, i.e. high humidity and salt con-

centration as well as vibration and shock.

• A more powerful CPU architecture that can overcome the limitations of

popular WSN devices used in research such as the TelosB, e.g. more pro-

cessing power, increased RAM and flash memory, and support for higher

data rate sensors (i.e. vibration and acoustic sensors).

• A common firmware and software framework, based on a current embedded

networked OS, which allows remote control of, and data collection from, the

sensor module. The firmware stack has to be focused on facilitating sensing

experiments instead of the most common wireless networking experiments,

while allowing flexibility for carrying out research also in the networking

layers. This will allow researchers to incorporate and improve network

and routing protocols in this platform that can improve the overall data

reliability in real applications.

• The overarching research task is finding a systems integration solution that

simultaneously addresses all of the above requirements.

4.3 Overall system design

The overall system concept is a sensing node, with a firmware/software architec-

ture that allows interval sensing of vibration and audio from the machinery or

structure, storing of the data, and sending the data wirelessly to the gateway on

demand, to be analysed later to detect and predict failures. The performance

of the sensing module developed in the previous chapter was demonstrated and

met the necessary requirements for an autonomous wireless WSN node for harsh
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environments. Therefore, the electronics for this module builds upon the previ-

ous one, sharing many of the components and form factor, but incorporating the

necessary sensors and improvements.

The following sections set out the systematic research and development pro-

cess that led to the final system integration solution, from the sensors ‘front-end’

to the ‘back-end’ management software for deploying and controlling a network

of sensing nodes.

4.3.1 Sensors

The sensors selected will need to cover the necessary ranges found in the literature

for measuring the vibration and audio associated with monitoring structures and

machinery.

Although microphones typically have a 0-20 kHz bandwidth, this will require a

very high sampling rate that will generate an excessive amount of data, which can

be a problem for both storage and transmission. Sound produced by machinery is,

however, usually low in frequency, and it has been demonstrated that a sampling

rate of 3 kHz is sufficient to capture the most important features of noise in

rotating machinery [67].

Regarding vibration, as shown in the literature [6, 56, 57], a bandwidth of

100-200 Hz is sufficient to detect faults using vibration data in motors, bearings,

and similar machinery, while the requirement for structural health monitoring is

even lower [7,63]. For the sensing range however, it is the structural health case

that gives the upper bound, as structures are exposed to forces higher than the

vibration of machinery. Nonetheless, a review of MEMS-based accelerometers

for structural vibration by Sabato et. al [63] defines an optimal sensing range

of ±14.71m.s−2 (±1.5g), which is comfortably within the capabilities of current

MEMS accelerometers. The necessary resolution however will depend on the full

scale of the measured signal and the signal-to-noise ratio, therefore the accelerom-

eter would need to be configured in each case to have the minimum necessary full

scale to maximise the resolution.

The addition of humidity and temperature not only provides environmental

data but can also warn of machinery overheating. A typical range from 0-50oC is
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sufficient to measure air temperature surrounding typical heavy marine machinery

(see measurements presented in the experiments of Chapter 5, where it rarely

goes above 45oC). By using a typical integrated temperature sensor, with a

range from −40-125oC, a higher temperature can be detected that would indicate

overheating.

4.3.1.1 Microphone

Small size, low-cost, and low-power are characteristics that make MEMS micro-

phones ideal for capturing audio when used in an embedded battery-powered

module. MEMS microphones are commonly designed for smartphones, headsets,

and similar applications, therefore they are optimised for human voice and en-

vironments with a medium level volume. Because the application of the module

targets heavy machinery, a digital MEMS microphone can saturate its output

when sensing in very noisy environments or placed on loud machines. Thus, an

analog MEMS microphone is necessary that allows designing of a conditioning

circuit with the necessary gain. This gain will, however, depend on the specific

environment and conditions and, to maximise signal excursion and resolution

without saturating the signal, the recommended amplifying circuit will need to

be modified to allow for a variable gain.

The microphone selected was the analog output INMP504 [174] from In-

vensense, as it is a reputable brand and also has a low-cost evaluation board

available for rapid prototyping. Importantly, this device has a bottom port so

that it sits flat on the top layer of the PCB and the audio enters only through a

hole in the PCB, allowing the microphone to be protected from the environment

more easily. It is connected to the 12 bits ADC of the microcontroller through the

signal conditioning circuit shown in Fig. 4.1, formed by an opamp-based inverter

amplifier with a high-pass filter at the input and a low-pass filter at the output.

The gain of the amplifier is adjusted by an AD5110 I2C digital potentiometer

controlled by the microcontroller, connected in series to the resistor R20. This

yields a maximum gain of 58.8 and a minimum of 12. The minimum gain value

was designed to avoid saturation if the captured sound is near the maximum value

supported by the microphone, while the maximum gain corresponds to the one
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Figure 4.1: Microphone conditioning circuit with configurable gain.

fixed in the evaluation board of the microphone for standard use. The C43-R25

high-pass filter removes the DC before the resistor divider R22-R26 sets it to

VCC/2 for maximum signal excursion. As the ADC of the CC2538 has a maxi-

mum sampling rate of 7.5 kHz, an anti-aliasing filter is needed before the signal

is digitised. This is done by the R28-C48 filter, resulting in a 3.1 kHz microphone

bandwidth, which is sufficient to cover the necessary range.

To adjust the gain, an auto-calibration mechanism was developed in the

firmware. Before the first experiment in a new environment or conditions, the

microphone will sample 5 s of audio with the gain set to the minimum value,

measure the maximum signal received and calculate with this the corresponding

gain for this signal to have the maximum excursion. After this, the value of the

potentiometer will be saved in its own EEPROM and will keep its current value

until the calibration command is launched again.

4.3.1.2 IMU

For vibration measurement, the LSM9DS1 [165] IC from ST that is used in the

inductive module was selected, a full MEMS IMU that also contains a gyroscope

and magnetometer instead of a simple accelerometer, to be able to also use the

module for monitoring the wind- and wave-induced oscillations of offshore plat-
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forms and floating devices. It was selected as ST accelerometers and IMUs are

widely used in commercial devices, and also offer good support and documenta-

tion. Although this IC allows for an accelerometer sampling rate up to 952 Hz,

due to the speed limitations of the microcontroller the sensor is configured to

be used at 476 Hz, which is the maximum rate that can be used without losing

frames, yielding a sensing bandwidth of around 235 Hz. The selected microcon-

troller, with a CPU of 32 MHz allows this higher sampling rate, compared to the

100 Hz sampling rate found in older platforms. The maximum sampling rate of

the accelerometer and microphone at the same time cannot be calculated due to

the many variables involved, therefore the firmware has to be optimised to allow

maximum performance and it has to be experimentally tested. The accelerometer

can be used up to ±16 g, but it is configured by default at a full scale of ±8 g,

which is enough for machine and structural vibration monitoring. It is connected

to the microcontroller through the I2C bus.

4.3.1.3 Temperature and humidity

The sensor selected for humidity and temperature monitoring is the same as that

used in the inductive module, the SHT21 [166], the next generation of the SHT11

found in older WSN platforms such as the TelosB. This sensor has a 0.01oC

resolution for temperature and a 0.04% for relative humidity, with a temperature

range of −40-125oC. To protect it against water, dust, and other contaminants,

the sensor has a companion protective cap that can be easily attached to the

PCB, consisting of a single piece of PBT thermoplastic and a filter membrane.

4.3.2 CPU, communications, and memory

The requirements for a CPU and communications module are similar to the ones

for the inductive module presented in Chapter 3: a microcontroller capable of run-

ning Contiki-OS, so that networking functionalities can be added and extended,

with integrated 2.4 GHz radio communications for lower size and cost. In addi-

tion, an integrated ADC is necessary with sufficient sampling rate to capture the

analog output from the microphone.
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The processing unit selected is the CC2538 [95], the same as that used for

the inductive module, as the performance and software support was already ver-

ified in that module and having a common platform for both modules facilitates

firmware development. The integrated 7.5 kHz ADC is also sufficient to sam-

ple the microphone audio without the need of an external ADC, which would

increase cost and power consumption. This unit includes the most commonly

used communication buses in microcontrollers: I2C and SPI, which can be used

to connect different sensors; serial UART, which is used for communicating with

a host computer for debugging as well as firmware reprogramming.

As the module needs to be able to work autonomously, an external flash

memory connected to the microcontroller is necessary to store the data of the

experiments as well as configuration parameters. Moreover, even for temporarily

storing the current burst of sampled data the memory would be necessary, as

the data rate from the microphone and accelerometer combined is too high to

be sent wirelessly in real-time due to the microcontroller CPU not being able

to sample and then sending the data without losing frames, which was tested

experimentally.

The low-power AT45DB641E [175] flash memory from Adestos was added,

connected to the SPI bus, a common type of memory used for resource constrained

wireless nodes. This memory has a size of 64 Mbit, the largest available, which

allows storing of up to 90 samples of 5 s bursts of combined accelerometer and

audio data. In addition to the main memory, it also contains two SRAM buffers of

256 bytes each, which can increase the system ability to write a continuous data

stream. An SD-card memory was considered as alternative but was discarded

due to the large size and high power consumption.

Fig. 4.2 shows a diagram of the communication buses used for the sensors and

memory to communicate with the CPU of the microcontroller.

4.3.3 Power management

To power the module, a standard 4.2V rechargeable lithium-polymer battery of

4500 mAh capacity is used, with its voltage regulated by the same MCP1700 [169]

LDO regulator used in the inductive module. The battery model was chosen as a
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Figure 4.2: Diagram of the sensors and CPU communication architecture.

trade-off between physical size and capacity, as a smaller battery would have less

autonomy and a larger one would be too costly. Battery charging and monitoring

is also handled by the common MCP73831 [168] charger and DS2745 [167] monitor

ICs, as their performance was proved already in the inductive module, with two

SMD LEDs to indicate the battery charging state.

The module power consumption is approximately 25 mA when sampling data,

2 mA in command listening mode, and 35 mA when transmitting data. This

allows around 90 days of operation if configured to capture and save samples of

5 s of audio and accelerometer at a rate of 1 sample/day, which corresponds also

with the maximum number of samples the memory can store. The module can

therefore be deployed to collect experimental data and be retrieved later, although

a final commercial application would most likely involve an on-site gateway that

collects the data from all sensors periodically.

4.4 Module integration

4.4.1 Electronics assembly

As the electronics will be fully-encapsulated, conventional PCB design assembly

was used to maximise design flexibility and reduce cost. The components were

assembled on a 50x50 mm PCB, with most of them on its top layer, as can
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Figure 4.3: (a) Top PCB inside the box (b) Bottom with covered sensors

be seen in Fig. 4.3a. The bottom layer holds only the humidity/temperature

sensor. Although the microphone itself is placed on the top layer, to capture the

sound there is a through-hole to the bottom layer, as discussed in Section 4.3.1.1,

next to the humidity/temperature sensor. Both sensor openings are protected

from dust and water by the same PBT thermoplastic protective cap, as can be

seen in Fig. 4.3b. Fig. 4.4 shows a CAD drawing of the protective caps, which

are attached by inserting the corners into four holes in the PCB. The external

antenna is connected to an UF.L connector, and in this way it can be located at

a distance or replaced by a higher gain one if necessary. The firmware uploading

and battery charging is done through a waterproof microUSB connector, to allow

module sealing, improving upon the regular microUSB used in the inductive

module. The details of the assembly are explained in the next Section 4.4.2.
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Figure 4.4: Attachment of the protective caps for the exposed sensors.

4.4.2 Module assembly

To ensure the operation and survival of the health monitoring module in harsh en-

vironments, a custom ABS 3D-printed box was designed to enclose the electronics

and battery, with only the microUSB connector, on/off switch, antenna, humid-

ity/temperature, and microphone opening exposed. The humidity/temperature

and microphone holes are, however, covered by the two PBT thermoplastic pro-

tective caps, as it was shown in Fig. 4.3b. As there is no standard way to protect

MEMS microphones, a simple audio test covering it with the same cap used for

the humidity/temperature sensor proved that it did not have a noticeable effect

in the recorded sound level or frequency response compared with the opening

without cover, as it can be seen in Fig. 4.5. This was chosen after testing with

other materials covering the microphone hole, such as polyimide tape and plas-

tic, showing that these materials, which are not membrane-based, have a strong

attenuating effect on the measured audio signal, capturing only a flat signal ren-

dering the microphone useless (Fig. 4.6).

Fig. 4.7 shows an exploded view of the whole assembly. The PCB sits flat at

the bottom of the enclosure, attached with four plastic screws and spacers. The

battery is placed on top, held together between the spacers, the top enclosure,

and another four screws that close the box going from the lid to the PCB spacers.
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Figure 4.5: Microphone test with the protective cap on/off.

To be able to see the LED indicators when the box is closed, three light guides,

inserted into holes in the lid, interface with the SMD LEDs in the PCB. Four

flaps with holes extend from two sides of the box, as well as two larger handles on

the other sides, which can be used to attach the node to the machine or structure

with cable ties or screws. Finally, to facilitate the encapsulation of the module for

extra protection against humidity and salt, two slits cut out on the top enclosure

enable pouring of resin inside the box after the module is fully-assembled.

4.4.3 Module encapsulation

To encapsulate the health monitoring module, the same marine resin compound [170]

and polyurethane coating [171] used for the inductive sensing module were used,

using a similar process as that described in Section 3.5.5.3:

1. Seal with 3M polyimide film tape 5419 the edges of the filter caps used for

the humidity/temperature sensor and microphone, and attach the electron-

ics PCB to the plastic box. The filter caps have to be glued with Loctite
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Figure 4.6: Microphone test with polyimide tape and ABS plastic covers.
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Figure 4.7: Health monitoring module assembly.

Ultra Gel Super Glue against the holes before placing the PCB flat at the

bottom of the case, to avoid leaking. A small, hollow cylindrical plastic
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4.4 Module integration

socket has to be glued also on top of every LED, to later fit the light guides

and avoid the black resin covering the LEDs (Fig. 4.8).

2. Seal with Blu Tack adhesive rubber the inside of the switch, microUSB

connector, and antenna against the inner walls of the plastic box (Fig. 4.9a).

3. Spray polyurethane coating on the interior walls of the box, including the

PCB. This is necessary to minimise resin leaking through, due to the 3D-

printing creating a porous wall instead of a solid block.

4. Place the battery inside the box and close the lid.

5. Seal the edges of every screw on the top and bottom of the plastic case with

the same Loctite Gel glue, to avoid leaking.

6. Pour the resin compound into the box through the slits, filling it up to the

brim, and let the resin cure for 24 h at ambient temperature (Fig. 4.9b).

7. After curing, for extra protection spray the exterior of the box with the

polyurethane coating and let it dry.

Cylinder
Pivot

LED
Light Guide

LEDs

Hole

Figure 4.8: Light guide assembly before encapsulation.
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Figure 4.9: (a) Health monitoring module pre-potting sealing (b) Health moni-
toring module encapsulated.

4.5 Firmware and software platform

4.5.1 Overall firmware and software architecture

As shown in the literature, there are some existing tools for WSN deployments,

such as Trident [157], that allow for remote configuration and experiment con-

trol of the nodes through a gateway node. However, they are focused only on

network testing experiments and not on sensor data collection. Therefore, a

firmware/software architecture is necessary that supports on-demand remote con-

trol and configuration of sensing experiments, with a proper interface to allow

researchers as well as engineers to easily manage these experiments without the

need of node reprogramming. Also, nodes have to be able to work autonomously

and store data periodically, with parameters set up with the same tool, to facil-

itate deployment by personnel not familiar with the technology who would only

need to attach the node and switch it on.
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These two modes of operation, shown in Fig. 4.10, can be summarised as:

• On-demand experiments: The PC connected to a gateway node will

send commands to a specific node to start a sensing experiment. After the

experiment is finished, the gateway sends another command to download

the data.

• Periodic unattended experiments: The node will receive from the PC

gateway the experiment parameters, and after that the node will repeatedly

execute the command with the specified period. The list of commands will

be stored in the node memory, thus the experiments can start autonomously

if the node is reset or turned off/on.

All the communications from the gateway to the nodes need to be done wire-

lessly and support different commands to facilitate the control and configuration

of the nodes, such as recording audio and vibration data, sensor calibration, log-

ging battery level, setting transmission power, etc.

4.5.2 Firmware

Section 3.5.4 described the firmware developed for the inductive module, com-

posed of a basic networking infrastructure and sensor drivers that allow interactive

data collection from the module. This firmware, running on the CC2538 [95] mi-

crocontroller, uses Contiki-OS and an application based on Contiki-Shell. Contiki-

OS provides process-like structures called protothreads that run on a loop, making

it easy to create new processes as functions that interact with the network layers

and microcontroller peripherals. Applications can then be created selecting the

correct network parameters and sensors to collect and send the data. Thus, most

of the Contiki-OS based applications are configured in the code, compiled, and

flashed to the node which, after reboot, starts sending data periodically with the

specified data rate. Although this functionality works for simple deployments,

it lacks flexibility and reprogramming the node every time when different pa-

rameters are needed is cumbersome. Contiki-Shell is a module that improves this

functionality by providing a command-like structure on top. These commands are
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Figure 4.10: Firmware/Software main operation modes.

easily defined in code as new functions or protothreads, and they can be triggered

locally through the serial port or sent remotely from the gateway node. How-

ever, Contiki-Shell does not allow getting messages or acknowledgements from

the remote nodes, only from the local gateway node through the serial port. This

hinders the functionality of Contiki-Shell as it cannot be used to define commands

that ask remote nodes to sample data and send it back to the gateway.

Therefore, the firmware developed for the health monitoring module needed

substantial expansion beyond this existing infrastructure by extending the Contiki-

Shell functionality to support message replies from the nodes, allowing data col-

lection on-demand and in this way supporting the modes of operation described

in the previous section through remote shell commands. By default then, every

command call that is preceded by sendcmd ip for individual nodes or netcmd for

broadcast will receive a wireless reply from the nodes.
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The periodic experiments can be any command available in the node that can

also be used on-demand, which will be called from the gateway with the period

and other parameters such as file name. These parameters will be saved in a file

in the memory, then read and executed when the node is powered on or after

reset. The memory also stores the calibration file for the IMU as well as the data

files collected from every experiment, using the Contiki file system. The main

primitives of this file system are also implemented as shell commands, to be able

to remotely read and write files, format the memory, etc. As the memory did not

have Contiki support, the driver for this particular memory and microcontroller

had to be developed and integrated into the Contiki file system.

The libraries for the IMU, temperature/humidity, microphone, and battery

monitor also had to be developed and integrated into the Contiki structure, as

they are state-of-the-art sensors and the drivers were not available. Due to the

performance constraints of the system, sampling high data rate sensors such as

the audio and accelerometer at the same time, while saving the data to the

memory, presents a challenge for these constrained devices and a new solution

had to be found. This was done by using the different resources already available

in the microcontroller and IMU IC. To unburden the CPU from the microphone

sampling, the ADC was used with DMA and the blocks of data were stored

in two ring buffer arrays in the microcontroller RAM. For the accelerometer

sampling, a combination of the IMU IC internal buffer and another buffer in

the microcontroller firmware was used. The file writing was also buffered in the

external memory SRAM buffer before committing to the file. This architecture,

shown in Fig. 4.11, ensured that both sensors can be sampled and saved at the

required data rate without loss of frames. This represents an advance over the

applications typically found in WSN with embedded networked OSs, as they do

not usually handle high data rate sensors and therefore do not need a complex

firmware architecture to avoid losing data.

91



4.5 Firmware and software platform

DMA

Command Handling Text Interface
Contiki-Shell Based

RIME Network
Stack

64 MBit Flash Memory
 

Memory SRAM Buffer

IMU On-chip
Buffer MEMS Microphone

ADC

Temp Buffer Temp Buffer

Ring Buffer Ring Buffer

802.15.4 Radio

I²C

DATA SENSING AND STORAGE

Figure 4.11: Firmware sensing architecture.
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4.5.3 Software and user interface

The firmware developed allows full control of the nodes through a serial termi-

nal connected to the gateway but downloading data through the terminal is not

feasible as the bitstream needs to be saved in a file and converted to the proper

format. Moreover, interacting via the terminal is tedious and becomes harder

to manage when the network of nodes grows, besides not providing any visual

information on the data and environment. It becomes important then to have a

graphical interface that can ease the management of the nodes for on-demand ex-

periments but also to configure the periodic experiment parameters in the nodes.

Although some WSN tools exist that provide a graphical interface to interact with

the nodes, most of them are not focused on sensing experiments, do not provide

a 3D-view of the environment, and do not support the firmware architecture that

was developed in this research. Therefore the software and user interface were

developed from scratch.

For this, a custom Python application was developed to be run on a laptop,

which connects through the serial port to a gateway node. Python was selected

as it is an interpreted language that does not need compiling, allowing faster

iterations of the software as well as being multi-platform. Also, it has available

a large repository of modules including graphical libraries, statistical tools, etc.,

which makes development easier. The graphical interface was built using the

PyQt module, as it is one of the most robust graphical libraries. The interface

was divided in different tabs, which group the different functionalities.

The gateway console tab, Fig. 4.12, handles the serial connection to the gate-

way, displays the full activity log, and allows for manually sending commands.

This way, new functionalities could be added to the firmware as new commands

and could be executed from this graphical command line without the need to

integrate them immediately to the user interface. All commands that are called

from the other tabs that interact with the gateway are recorded in this window.

A control was included to set the node gateway address in case the gateway node

is replaced, and a broadcast command is sent to all nodes to inform them of this

change as nodes always send back unicast messages to the gateway.
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Figure 4.12: UI Gateway console view.

Figure 4.13: UI Network view.
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Fig. 4.13 shows the network management tab, divided in three different areas.

The right top side contains controls for network discovery. This sends a discovery

broadcast command to all nodes in the range and retrieves information from

them, displaying them on the left side in a list. This list contains the RSSI, LQI,

noise floor, CCA, battery, temperature, and humidity for each individual node.

Moreover, a calibration command can be called to adjust the audio gain or the

accelerometer bias, as well as launching specific commands to a node with the

selected recording time. The bottom left shows the files in the memory of the

node that is selected on the list of nodes, and allows downloading of individual

files as well as deleting and formatting the memory. A progress bar is shown

for each file with the percentage of the current file being downloaded from the

node. The bottom right of the panel lists the current periodic experiments set up

on the node and permits adding, deleting, and stopping experiments. Different

experiments can be active at the same time on the same node with different

periods, e.g. recording audio and accelerometer every 180 s and the battery level

every 300 s, as shown in the figure.

Fig. 4.14 shows the data analysis tab, where different plots can be displayed

of the selected downloaded audio or accelerometer data in time (left side), as

well as its power spectral density (right side), to quickly identify the peaks and

frequencies of interest. The plot canvasses are interactive and can be zoomed

in and hide/show the different axes when displaying the accelerometer data, as

well as saving the images. This was developed using matplotlib, a Python library

commonly used to produce publication-quality figures for academic papers, which

can be integrated also in any PyQt-based Python application. On the righthand

side, a file tree allows navigation through the downloaded data folders and selec-

tion of the audio and accelerometer files to display. This avoids having to process

manually all files when looking for specific data by having a quick look over the

time and frequency domain of the files to select the interesting data.

A 3D view tool was also implemented, as shown in Fig. 4.15, where an STL

CAD file can be loaded to display the target environment where the network is

deployed. On the right side is the configuration control panel and on the left side

the environment view. A CAD file can be selected and imported into the view, as

well as a CAD model for the nodes. The nodes that have been discovered by the
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Figure 4.14: UI Data view.

discovery command appear here in the control panel in a dropdown menu, where

each of them can be selected and then manually placed with the mouse by clicking

in the environment scene on their location in the real scenario. This tool can be

useful for studying the environment, making deployment decisions, and aiding

the development of propagation models by the automatic calculation of distances

between nodes in 3D space, in contrast with other tools that only allow nodes to

be arranged in a 2D space. A button in the configuration panel allows saving of

a list of the real distance in meters from each node to the others, provided that

the nodes have been placed in the correct location and the environment CAD

has been drawn with the correct dimensions. The environment view allows zoom

in, pan, and rotation of the scene, which makes it easy to see which nodes have

direct line of sight and which ones are blocked by an object.
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Figure 4.15: UI 3D Environment view.
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4.6 Laboratory bench testing

4.6.1 Three-phase motor connected to a wind turbine

To validate the performance of the health monitoring module platform, and its

associated firmware/software, several tests were done in laboratory conditions.

The first test consisted of attaching one of the modules to a custom rig in the

laboratory, composed of a SWEA 2 KW wind turbine connected to a three-phase

TEC 1500 rpm motor and driven by an Optidrive Variable Speed Drive (VSD).

This setup can be seen in Fig. 4.16, with the node placed on top of the wind

turbine with the z-axis of the accelerometer pointing up. The experiments were

performed with the motor configured at 320 rpm and a variable load, set up from

300 W to 1800 W in 300 W increments. For each load configuration, the sensor

recorded 5 s of audio and accelerometer data.

Sensor Module Motor

Wind Turbine

Figure 4.16: Experiment setup for the health monitoring module in a motor
connected to a wind turbine.

As the motor and turbine were brand new and presented no flaws, there were

no noticeable variations among the data collected for each experiment. Fig. 4.17a
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displays the accelerometer data for the 1200 W load test. Its power spectral

density (Fig. 4.17b) shows a noticeable peak at 45 Hz for the y-axis, several

peaks around 75-110 Hz for the x-axis, and a smaller magnitude spread around

the 150-160 Hz for the z-axis. The audio data for the same experiment can be

seen in Fig. 4.17c, with the energy distributed across the spectrum with no visible

peaks (Fig. 4.17d).
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Figure 4.17: Accelerometer and audio data collected at 1200 W load collected
from the motor and wind turbine setup.

4.6.2 Single-phase motor connected to a gearbox

For the second experiment setup, a single-phase WEG 1450 rpm motor was con-

nected to a reduction gearbox through a flexible coupling (Fig. 4.18), to be able

to misalign the rotating axis by slightly displacing the motor attachment to the

table. Due to the safety cage built on the setup, there was no space available on

the top of the motor, therefore the sensor module was placed on the side, with

the accelerometer y-axis aligned with the motor rotor. As the gearbox contained
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GearboxMotorSensor Module

Flexible Coupling

Figure 4.18: Experiment setup for the health monitoring module in a motor
connected to a gearbox.

no load, the motor was run at full speed (1450 rpm). Three different tests were

run, first with the motor properly aligned with the gearbox, then misaligning it

by 2 mm and 4 mm, sampling 5 s of audio and accelerometer data for each test.

From the collected accelerometer data, a peak is observed around 100 Hz in

all the tests for the three axes, as it is the typical working frequency for a 2-pole

single-phase motor powered by a 50 Hz AC power supply. Fig. 4.19 shows the

power spectral density for the y-axis for the three experiments, where we can

see how its magnitude approximately doubles for every misalignment step. The

audio data showed a spectrum similar to the one obtained in the previous setup,

as the misalignment produced by the flexible coupling is not expected to produce

a measurable noise. Faults produced in the motor itself such as bearing breakage

would be more likely to produce an audible noise that could be picked up by the

microphone.

For both experiment setups, the average time to download the audio was

3 min per file, while the accelerometer files took about 5 min due to the on-the-
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fly conversion from the binary data to the corrected values. Although the use of

ContikiMAC as a radio duty cycle increases the download time, the much lower

power consumption makes it a necessary trade-off to maximise battery life if the

current command-listening architecture described in Section 4.5 is to be used.
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Figure 4.19: Power spectral density of the y-axis accelerometer data collected
from the motor and gearbox setup.

Both of these experiments showed that the node worked as designed and could

identify deliberately-induced mechanical faults.

101



4.7 Discussion

4.7 Discussion

4.7.1 Advances to the state of the art

The literature review has highlighted the necessity for robust wireless sensing plat-

forms (integrating sensing, processing, wireless communication, firmware, soft-

ware and UI) that can be used reliably in marine harsh environments while also

addressing research needs and compatibility with current standards, protocols,

and embedded operating systems. The WSN platforms for machine and struc-

tural monitoring found in the literature are based on old platforms developed for

networking research with limited processing capabilities and memory (e.g. TelosB

and MICAz), which limits also the sampling rate of the sensors, or on more pow-

erful platforms with higher power consumption and that do not support current

standard WSN operating systems such as Contiki-OS. Moreover, they use differ-

ent modules for communications, acquisition, and sensors attached with cables

or connectors instead of a single integrated board, and do not provide a proper

firmware/software architecture focused on sensing.

These problems have been addressed in this research by developing an inte-

grated hardware-software WSN platform ready to be deployed in marine harsh

environments. The hardware module consists of a single board based on the same

state-of-the-art IEEE 802.15.4-compatible microcontroller, humidity/temperature

sensors, and battery management used in the inductive module described in Chap-

ter 3, but with MEMS vibration and microphone sensors instead of the inductive

one, encased in a custom 3D-printed box designed for easy resin encapsulation.

The firmware/software developed for this platform allow wireless data collection

and visualisation, experiment control, and 3D view support of the environment

and node location. This was developed based on the lessons learned from the

previous module design. It was discovered that an external memory flash could

be used to take full advantage of the high sampling rate of the accelerometer as

well as the microphone. The addition of this memory also permitted the enhance-

ment of the firmware, which now allows for periodic sensing experiments without

the need of a gateway, as well as storing calibration parameters. A switch was

also added to facilitate remote deployments, as it can be handed to the user to
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install it and the sensing experiment will start when the node is switched on.

However, this switch can be a potential point of failure and it should be replaced

with a magnetic reed switch hosted inside the box, which can then be used to

turn on/off the sensor with a magnet.

Due to the number of integrated sensors and analog components, as well as the

firmware architecture that requires to be always listening for commands, the qui-

escent current of the module is higher than desirable for long term deployments.

To extend the battery life, different strategies could be applied: the addition of a

load switch controlled by the CPU that can turn off the power for all the sensors,

memory, and other components when not in use; the adjustment of the firmware

architecture to the specific application to optimise power consumption.

This platform was tested in laboratory conditions and has been further tested

for reliability and in real deployments, work described in Chapter 6.

4.7.2 Engineering advances

The module presented here is a step forward in developing low-cost, fully-networked

wireless sensor modules for machine and structural health monitoring. It consists

of a single-board, microcontroller-based module with Contiki-OS support in a

hardware-software co-design fashion focused on sensing and operability, which

can work autonomously or as part of a network. The method shown for encap-

sulating the module is simple and low-cost.

The module overcomes several limitations of similar boards that use vibration

or audio for machine monitoring: the firmware architecture allows for on-demand

and periodic experiments, which has the advantage of being able to setup experi-

ments wirelessly that will run when the nodes are turned on, without the need of a

gateway, as well as interact with them through a gateway; the audio conditioning

circuit solves the problem of the fixed gain that digital MEMS microphones have,

which makes them less suitable for loud environments, by adding a programmable

potentiometer to the signal chain; the developed sensing architecture allows for

sampling and storing audio and accelerometer at high data rate at the same time

using only the low-power microcontroller and embedded bus peripherals.
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Chapter 5

Wireless Sensor Network

Performance Characterisation

5.1 Introduction

To ensure reliable data collection from wireless sensor nodes, it is necessary to

characterise the link quality in the actual target environment as modelling, for a

large metal environment with 3D spatial complexity and with the presence of ma-

chinery, is highly challenging and is impractical for real-world environments. The

literature review has shown that although there are methods to characterise WSN

communications, they have only been applied to the most common scenarios, i.e.,

open fields and buildings, and have not been adapted and tested in complex metal

marine environments. Moreover, the experiments and deployments shown in the

literature for these marine environments have been focused on application-level

or network-level topologies instead of the physical layer, due to this being the

classic approach followed in 2D simple scenarios, where the physical behaviour

is more easily predicted with distance-based models. However, a study of the

higher layers would not reveal underlying problems that can occur in complex

3D environments. The objectives of the research presented in this chapter are

therefore to:

1. Develop a systematic methodology to fully characterise the communications

in a WSN for metal marine environments.
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2. Validate the methodology in different complex metal environments by char-

acterising the effects of the different variables that can affect wireless com-

munications in these environments, such us node location, density of ma-

chinery and other metal objects, openings between compartments, and pres-

ence of electromagnetic noise.

5.2 Wireless characterisation challenges

Marine environments and structures such as ships, oil and gas rigs, and marine

energy platforms are composed of large amounts of metal and complex layouts

that make it very challenging to model the wireless propagation, and the use of

watertight doors between compartments further complicates wireless planning.

Moreover, the presence and density of heavy machinery in these environments

can also have an effect on the communications.

To specify wireless network architectures and protocols, and to design appli-

cations for these metallic offshore environments, it is essential to measure the link

quality in situ, as it cannot be accurately modelled and predicted. Although the

literature has demonstrated several WSN deployments in different metal and ship

environments, none used a methodology that can accurately characterise the link

quality between each sensor node.

To address these challenges, the methodology described in this chapter had to

have the following capabilities not collectively available in existing methodologies:

• Characterise wireless communications on the IEEE 802.15.4 physical layer,

avoiding the bias introduced by higher-layer protocols such as Zigbee which

includes transparent retransmissions in case of packet loss.

• Execute experiments in a synchronised manner, to avoid collisions that can

introduce reading errors in RSSI and PDR.

• Detect asymmetries between links, to identify nodes or locations with un-

reliable communications.

• Display overall network performance, as well as the performance of individ-

ual nodes.
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• Complete link characterisation and classification in an all-to-all fashion.

• Provide candidate nodes that can act as a sink.

5.3 Experimental methodology

5.3.1 Hardware and software tools

The hardware used for all three deployments consisted of 18 TelosB [64] nodes,

plus an extra gateway node connected to a laptop to configure the experiment

and download the data. They are composed of a low-power microcontroller, a 2.4

GHz IEEE 802.15.4 radio chip, an on-board PCB antenna, and several integrated

environmental sensors. These nodes were chosen for their wide use in research

and good software support.

To conduct the tests, the software used was an open-source tool Trident [157]

which, unlike similar tools available, allows to configure and run the experiments

without the need for a separate wired infrastructure. This expedites the work

of changing the location of the nodes between different experiments, as well as

retrieving the data via multi-hop wireless communication. The tool permits the

configuration of every node as a sender and receiver, synchronising the senders

in a round-robin fashion to avoid collisions and ensuring that there will not be

more than one node transmitting at the same time. This feature, along with

the ability to send probes without any MAC or upper-layer protocols, are key to

acurate characterisation of the physical medium. The nodes acting as receivers

log the number of received packets, RSSI and LQI, besides the noise floor sensed

by the sender before transmission and environmental variables. This tool has been

previously successfully used in different open field deployments, e.g. [118,176].

5.3.2 Testbed environments

The experiments used to develop and characterise the methodology were carried

out in three different scenarios with increasing complexity and scale:

• The first deployment, in three outdoor freight containers, assessed the effect

of door openings, node location and orientation on the communications.
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• The second was in a shore-based full-sized ship’s engine room training facil-

ity. This contained a large amount of piping and metal fixtures, as well as

several electrical generators and a ship’s engine that could be individually

and collectively switched on and off to test the effect of electrical noise.

• The third deployment was on a seagoing Irish Naval Service (INS) ship’s

engine room and its adjacent compartments, where the opening of the sealed

bulkhead door was varied as well as the switching of the main engine and

generators.

To characterise link behaviour and to validate the methodology, a full factorial

experiment was designed, in which one variable at a time is varied. Each experi-

ment was designed to be completed in a single day with a randomized run order

to minimise the confounding effects of the environmental variables of humidity

and temperature. These scenarios and experiment designs are described in more

detail below in their respective sections.

5.4 Experimental evaluation in a multi-chamber

metal environment

5.4.1 Environment description & experiment design

The nodes were installed inside and outside three freight containers located in an

outdoor yard and separated by 3 to 4 m, with various metal and concrete obsta-

cles between them (Fig. 5.1). Containers 1 and 2 are 6 m x 3 m, while container

3 is slightly smaller at 6 m x 2.5 m. This constitutes an indoor/outdoor metal

environment that more realistically replicates real-world environments. The dis-

tribution of the containers and the nodes can be seen in Fig. 5.2. The containers

contain several pieces of furniture such as tables and metal shelves, including a

small metal box where node 9 is placed. It should be noted also that container 2

has a double door, a metal exterior door and a wooden interior door, but these

were opened and closed as one door and not considered as separate variables.

The set of variables and levels for this environment can be seen in Table 5.1.

An important issue in these multi-chamber environments can be the size of the
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Figure 5.1: Outside view of the freight container testbed

openings between adjacent rooms. Therefore, to emulate this, three different

door openings for the containers were selected: fully closed, a minimum open-

ing of 5 cm (approximately a half-wave for the frequency used), and a maximum

opening of 40 cm, which corresponds to the size of an opening, such as a bulkhead

door, that would allow a person to pass through. As sensor nodes will typically

be used to monitor different parts of the structure and machinery, their height,

position, and orientation will vary. Therefore two heights were selected: middle

height (1.7 m), and ground level (0 m); and, because the antenna is not isotropic,

the best and worst case for this were selected: node attached horizontally and

vertically. Finally, as the software tool allows to interleave every round of packets

with different transmission power levels, two levels of 0 dBm (maximum power)

and -5 dBm were set, which would suppose around 20% reduction in power con-

sumption. All combinations of these variables form a total of 24 experiments,

organized in 12 different runs with two interleaved powers.

The nodes were placed inside containers 1 to 3, as shown in Fig. 5.2, to cover

key points such as corners, doors, and problematic areas behind metal shelves
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Figure 5.2: Node distribution in the containers

or furniture. Container 4 could not be used due to restricted access. Three

nodes (0, 11, and 17) were also attached to the outside of the doors, to allow

connectivity through the doors’ leakage. Since node 0 acts as the master node

for synchronising and distributing the experiment to all the nodes, its location

was chosen to be at midpoint distance from the rest, and therefore the best

candidate for the sink. This is not essential, as there are multi-hop capabilities

for distributing the configuration but, nevertheless, a good location of the master

node can facilitate it.

All experiment runs were performed on November 24th 2015, on a clear winter

day. For each run configuration, four rounds of probes per node were sent, 2

at high and 2 at low power, with every round composed of 10 probes with a

750 ms gap between them, and each probe with a burst of 10 messages with 50 ms

separation. This forms a total of 200 messages per round and power level per

node. The decision to perform burst experiments was made based on the target

application, considering that machine and structural monitoring often require

data bursts from accelerometers and other high sample rate sensors. The probes
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Table 5.1: Experiment variables

Variable Levels

Transmission power 0 dBm, -5 dBm

Node distance from ground 0 m, 1.7 m

Node antenna orientation Horizontal, Vertical

Container door openings Closed, Open 5 cm, Open 40 cm

used channel 26, to avoid interference with Wi-Fi networks, and were configured

not to use any MAC protocol. Each run configuration lasted for 10-15 min,

accounting for the probe sending and the data writing to the memory which,

along with changing the position of the nodes and data downloading, used the

full day of experiments for the total set of 12 runs.

5.4.2 Results & analysis

5.4.2.1 Overall network analysis

As shown in the literature [108], a simple way to get a general understanding

of the link quality of a wireless network is by looking at the RSSI, and its rela-

tionship with the PDR and LQI. Although the presence of interfering signals can

boost the RSSI levels while yielding a lower PDR [123], the setup of the experi-

ments guarantees a lower chance of that occurring, due to channel selection and

environment isolation.

In Fig. 5.3, the PDR of each probe burst for the different combinations of

rounds is represented, for high (0 dBm) and low (-5 dBm) power, with respect to

the mean RSSI. A total of n(n−1) = 306 links, with n = 18 nodes, were analyzed

for each round. The typical overturned “L” shape found in the literature [125,149]

can be observed, with disconnected, transitional, and connected areas. This can

also be seen in Fig. 5.4, which shows how LQI relates to RSSI. However, some

outliers (circled) appear in both plots occurring in node 11, which is attached to

the outside of the door in container 1, for the configurations with the doors open.

Since external interference is unlikely, this could be due to the multipath caused

by the amount of metal in the environment. Moreover, the overall noise floor
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Figure 5.3: PDR vs RSSI.
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Figure 5.4: LQI vs RSSI.
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measured is fairly constant and close to the sensitivity of the radio chip, with an

average of -96 dBm and σ = 1.28, which excludes the presence of other external

elements that could affect the signal integrity.

112



5.4 Experimental evaluation in a multi-chamber metal environment

PDR [%]

0
20

40
60

80
100

Se
nd

er

0
2

4
6

8
10

12
14

16

R
ec

ei
ve

r

0

2

4

6

8

10

12

14

16

(a) Transmission power at 0 dBm

PDR [%]

0
20

40
60

80
100

Se
nd

er

0
2

4
6

8
10

12
14

16

R
ec

ei
ve

r

0

2

4

6

8

10

12

14

16

(b) Transmission power at -5 dBm

Figure 5.5: PDR [%] between each node for all rounds at different transmission
powers.
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Figure 5.6: Link asymmetry calculated as |PDRn→m − PDRm→n|.

To have a global view of the performance of each node, Fig. 5.5 shows a 3D

representation of the PDR per probe, accounting for each node being a sender or

receiver, with each run of probes represented by a different colour, although the

colours are not meaningful and their purpose is to help visually align the points.

This type of 3D representation allows the rapid identification of problematic links

in a deployment, as links between nodes with low PDR will be visible near the

0% plane and potentially problematic ones that need further study will have the

probe messages between them distributed through the PDR axis. The first thing

to notice is the high concentration of points near the 100% PDR plane, except

for an empty rectangle between nodes 12-15 and 17, corresponding to the ones

located in container 3, and with a concentration of points in a mirrored space

on the 0% PDR plane. This could be due to two reasons: the door of this

container faced away from the other two containers and the presence of the large

metal block between container 2 and 3. This is more visible in the low power

configuration. Also, the same empty block can be seen repeated, but rotated

to the opposite side, suggesting a high degree of symmetry in the network. As

asymmetry predicts the unreliability of a link, and has an impact on upper-layer

protocols [177], a closer look at the average link asymmetry of individual nodes is

necessary. In Fig. 5.6, the asymmetry as defined in [149] is represented, where a

link is considered asymmetric if |PDRn→m − PDRm→n| > 40%. This shows that
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5.4 Experimental evaluation in a multi-chamber metal environment

only links 11-13 and 15-17 exhibit a noticeable, although small, asymmetry (<

10%), while most of the links are almost fully symmetrical.

5.4.2.2 Effects of the variables on network performance

An interesting effect of the environment can be observed by looking at the average

PDR and RSSI for each of the different door combinations, Table 5.2. Although

a positive correlation between PDR and RSSI is seen when representing all bursts

of probes in Fig. 5.3, the average values per combination shown in the table seem

to indicate the opposite. This is due to the fact that, when any of the variables are

set to have a negative effect on the signal range (e.g., closed doors), the average

PDR computed over the whole network decreases; however, as the number of

connected links also decreases, the average RSSI, which is calculated only over

the remaining links, increases. This indicates that the network becomes more

polarized, dropping links that were previously in the transitional region to the

disconnected region. In Tables 5.3 and 5.4 we can see that this is less noticeable

for the node height and orientation variables, as they have less impact on the

PDR.

An increase of over 50% is observed in the total PDR from closed doors to

fully open at full power, while for the node height and orientation it is much less.

Therefore, the number and size of the openings will be the key variables to take

into account when deploying wireless networks in these environments.

As expected, the best performance occurs when the nodes are transmitting

at high power, located at 1.7 m in horizontal, and with the container doors

fully open, yielding an overall PDR = 74.69% and mean RSSI = -69 dBm. On

the other hand, the worst case is found at low power, nodes vertically oriented

at ground level, and doors closed, with a resulting PDR = 37.25% and mean

RSSI = -66 dBm.

Due to the season and geographical area, the environmental variables recorded

during the tests did not undergo dramatic changes, with an average temperature

of 13.44 oC, σ = 1.63, and relative humidity of 68.03%, σ = 12.76, outside the

ranges that can affect significantly the performance of the node wireless commu-

nications.
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Table 5.2: Average PDR and RSSI for different door openings.

Transmission power Door state PDR [%] RSSI [dBm]

0 dBm

Closed 41.13 -64

Open 5 cm 47.83 -67

Open 40 cm 64.21 -70

-5 dBm

Closed 38.03 -66

Open 5 cm 42.35 -68

Open 40 cm 55.66 -71

Table 5.3: Average PDR and RSSI for different node heights.

Transmission power Node height PDR [%] RSSI [dBm]

0 dBm
1.7 m 53.49 -67

0 m 48.61 -68

-5 dBm
1.7 m 47.06 -68

0 m 43.63 -69

Table 5.4: Average PDR and RSSI for different antenna orientations.

Transmission power Orientation PDR [%] RSSI [dBm]

0 dBm
Horizontal 54.33 -67

Vertical 47.78 -67

-5 dBm
Horizontal 48.17 -68

Vertical 42.52 -69

5.4.2.3 Link classification and sink selection

Although the 3D plots above allow quick identification of problematic areas, a way

is still needed to quantify the link reliability to each specific node. For this the

link classification described in [118,149] is used, which aggregates the links in five

groups: dead (PDR = 0%), poor (PDR < 10%), intermediate (10% ≤ PDR ≤ 90%),

good (90% < PDR < 100%), and perfect (PDR = 100%). Fig. 5.7 shows the
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Figure 5.7: Number of dead (PDR = 0%), poor (PDR < 10%), intermediate
(10% ≤ PDR ≤ 90%), good (90% < PDR < 100%), and perfect (PDR = 100%)
links for each node.

number of links to each node distributed in each category, from a total of 17 pos-

sible links per node, for high and low power configurations. This representation,

along with the average total PDR per node shown in Fig. 5.8, allows identification

of the node with the best quality links that would be a good candidate for a sink

in a one-hop network.

It can be noticed that even though the average PDR drop from high to low

power per node is not large, the number of dead links increases considerably.

This renders most of the nodes incapable of acting as a sink, with the exception

of nodes 0 and 11, located outside containers 1 and 2, which keep all their links

in the connected and transitional region, due to their strategic location. Looking

at Fig. 5.8 confirms that the initial placement of the master node (node 0) as a

sink candidate was correct, as it yields a better performance than the rest of the

nodes, with an average PDR = 91.97% for all round combinations of high power.

Since it was previously established that the door openings are the most in-

fluential variable in this experiment, the average PDR and RSSI values is shown
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Table 5.5: Average PDR and RSSI for different door openings (node 0).

Transmission power Door state PDR [%] RSSI [dBm]

0 dBm

Closed 80.65 -74

Open 5 cm 96.92 -73

Open 40 cm 98.33 -68

-5 dBm

Closed 70.04 -78

Open 5 cm 88.69 -76

Open 40 cm 97.77 -73

in Table 5.5 for all the links to the sink candidate (node 0), for the different

door configurations for both powers. In this case, unlike the previous case when

the network links are shown as a whole, the expected increase in RSSI with the

PDR can be observed, as a result of the links being stable under all different

conditions. For the high power transmission, a PDR = 80.65% for the closed

door and a PDR = 98.33% for the open door case is obtained, with a 6 dB dif-

ference between both states, and a PDR = 96.92% is achieved with only a 5 cm

door opening. Even at the worst case, with the doors closed and low power, the

average to the sink candidate is PDR = 70.04%.
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5.5 Experimental evaluation in a ship’s engine room emulator

5.5 Experimental evaluation in a ship’s engine

room emulator

5.5.1 Environment description & experiment design

The previous scenario showed the behaviour of the network in a simple metal

multi-chamber environment. To increase complexity, the next deployment was

done in a full-scale operational engine room emulator, with control room, located

in the National Maritime College of Ireland (NMCI), which is normally used for

marine engineering training. As shown in Fig. 5.9, this is a 16 m x 20 m, high

ceilinged room with a high volume occupancy of various machinery, metal ducting

and piping, gantries, etc., which are representative of the environment found not

only in ships but in other off-shore structures. Moreover, from the control room

in the centre, a real ship’s engine connected to a variable load can be switched

on/off, as well as an auxiliary generator. The ship engine is a MaK 60M20 running

at 1000 RPM and the auxiliary generator a Caterpillar running at 1500 RPM.

The 18 nodes were distributed to cover the whole room, as shown in Fig. 5.10.

Nodes 2 and 4 were placed on top of the main engine, while node 3 was attached

under the cover, and node 6 on top of the working auxiliary generator. Node 0

(master) was placed at the most central position, on the window sill outside the

control room, at around 1.5 m from the ground.

In this scenario, the operation of the main engine and auxiliary generator were

modified to test the effect it could have in the network performance, as well as

the transmission power (Table 5.6). Also, because the environment is an open

space and can potentially yield a higher connectivity, an extra lower power level

(-10 dBm) was added to the test rounds, to assess if the transmission power could

be reduced further to save energy.

The experiments were also completed in a single day, on July 19th 2016, with

the same configuration as in the previous one in terms of channel selected and

messages per probe. However, because of the of the addition of the extra power

level the number of rounds of probes per node was 6 (2 rounds per power).
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Figure 5.9: Engine room emulator.
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Figure 5.10: Node distribution in the NMCI engine room.

Table 5.6: Experiment variables

Variable Levels

Transmission power 0 dBm, -5 dBm, -10 dBm

Machinery status All off, Aux generator on,
Aux generator + main engine on,
All on + 200 KW load

5.5.2 Results & analysis

5.5.2.1 Overall network analysis

Fig. 5.11 and 5.12 show the PDR for each probe and average LQI with respect

to the RSSI, respectively, for the three powers tested. Although the L-shaped

pattern and the different connectivity areas can still be discerned, more outliers

appear compared to the previous environment, despite having a shorter number

of experiment runs. As the outliers are distributed among the different rounds,

including the ones with machinery off, the conclusion is that having the engine

121



5.5 Experimental evaluation in a ship’s engine room emulator

−100 −80 −60 −40

RSSI [dBm]

−20

0

20

40

60

80

100

120

P
D

R
[%

]

0 dBm

−100 −80 −60 −40

RSSI [dBm]

−20

0

20

40

60

80

100

120

P
D

R
[%

]

-5 dBm

−100 −80 −60

RSSI [dBm]

−20

0

20

40

60

80

100

120

P
D

R
[%

]

-10 dBm

All machines off

Aux generator on

Aux generator + main engine on

All machines on + 200KW load

Figure 5.11: PDR vs RSSI for the engine room emulator environment.
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Figure 5.12: LQI vs RSSI for the engine room emulator environment.

or generators on is not causing them. This increase could be produced, however,

from the increase in the complexity of the environment i.e. the large amount

of piping, machinery and metal surfaces present in the room, all of which can

contribute to multipath. The noise floor stayed constant at -96 dBm, as in the

previous scenario.
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Figure 5.13: PDR [%] between each node for all rounds at different transmission
powers, for the engine room emulator environment.
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Figure 5.14: Link asymmetry calculated as |PDRn→m−PDRm→n|, for the NMCI
engine room.

Due the environment being composed of a single relatively small open room,

most of the probes were received with an average PDR close to 100% even for the

low power configuration (-10 dBm), as it can be seen in the 3D representation in

Fig. 5.13, with the exception of nodes 14 and 4. The lowest PDR occurs in the

link between them, consistent among all rounds. Although this may be due to

the lack of line of sight between both nodes, node 3 should be exhibiting similar

or worse behaviour, since it is located in the same place as node 4 but under the

cover of the engine. However, node 3 performed better than node 4 overall, again

suggesting that multipath can have unpredictable effects on the communications.

Looking at the asymmetry representation of the links in Fig. 5.14, node 14 shows

more than a 10% asymmetry in two of its links, which confirms this location as

particularly unreliable.

5.5.2.2 Effects of the variables on network performance

Table 5.7 shows the average PDR and RSSI obtained for the three powers tested

for each machinery setting. The network on average showed a high connectivity

for all the conditions, with over 97% PDR even for the worst case at -10 dBm;

we can see the expected average 5 dB drop in RSSI with for every 5 dB reduction
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Table 5.7: Average PDR and RSSI for different machinery states.

Transmission power Machinery state PDR [%] RSSI [dBm]

0 dBm

All off 99.05 -62

Aux generator on 99.12 -62

Aux gen + engine on 98.85 -62

All on + 200 KW 98.78 -62

-5 dBm

All off 98.65 -66

Aux generator on 98.55 -67

Aux gen + engine on 98.30 -67

All on + 200 KW 98.31 -67

-10 dBm

All off 97.91 -72

Aux generator on 97.94 -72

Aux gen + engine on 97.07 -72

All on + 200 KW 97.27 -73

in transmitted power, indicating that the network maintained stable links with

only a small decrease in PDR.

A slight reduction in average PDR can also be observed when different ma-

chines are turned on, although this could be due to the increase in temperature in

the nodes located on top of the turned on devices instead of the electrical noise,

which in some cases reached 40 oC for the nodes on top of the main engine. The

average temperature for all rounds was 25.16 oC, stable for most of the nodes but

with a σ = 2.6 due to the contribution to the average of those nodes.

5.5.2.3 Link classification and sink selection

Looking at the number of links per node in each category, as previously defined

for estimating link reliability, it can be seen in Fig. 5.15 that all the nodes have

most of their links with perfect connectivity for high power (0 dBm) and even

for low power (-10 dBm). The exception is nodes 4 and 14, already identified as

problematic, with the link between them dead for the low power configuration.

Node 3 also presents a lower number of perfect links, due to the node being inside
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Figure 5.15: Number of dead (PDR = 0%), poor (PDR < 10%), intermediate
(10% ≤ PDR ≤ 90%), good (90% < PDR < 100%), and perfect (PDR = 100%)
links for each node, for the engine room emulator environment.

the enclosure of the main engine, although none of them dead or poor.

Fig. 5.16 shows that, when using a high power (0 dBm) configuration, all

of the nodes present more than 95% PDR, therefore every node could act as a

data sink if necessary. Avoiding node 14 would allow network reliability to be

preserved, even at -10 dBm, saving power.

5.6 Experimental evaluation in a Naval vessel

engine room

5.6.1 Environment description & experiment design

To perform a final set of experiments in a more realistic scenario, the same 18

nodes were deployed in the LE Joyce offshore patrol vessel of the Irish Naval

Service (INS), Fig. 5.17. The nodes were installed in the 10 m x 12 m engine
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Figure 5.16: Average total PDR [%] per individual node, for the engine room
emulator environment.

Figure 5.17: LE Joyce INS offshore patrol vessel.

room and its adjacent 9 m x 4 m compartment, connected by a waterproof sliding

bulkhead door. Fig. 5.18 shows different views of the rooms, showing similar

piping as in the NMCI emulator room but with overall higher volume occupancy

of metal, with many more metal components and machinery. The main engine is

a Wartsila 16V26D2 and the auxiliary generator sets are MTU Motor 16V2000

M60. The distribution of the nodes is shown in Fig. 5.19: Node 0 (master) in
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Table 5.8: Experiment variables.

Variable Levels

Transmission power 0 dBm, -5 dBm, -10 dBm

Machinery status (main engine + genera-
tor)

on, off

Door opening Closed, Open 5 cm, Open 40 cm

the most centered place of the deployment, in the adjacent compartment on top

of a cardboard box close to the door at 1.5 m; nodes 1 and 2 on the floor at the

opposite side of the adjacent room, while nodes 3 and 4 at 1.5 m elevation on top

of metal boxes; nodes 5 and 6 on the floor one on each side of the door; one node

on top of each generator set (7 and 8, although only the generator below node 8

was turned on); node 9 on the floor at the top corner of the engine room; node 10

on top of a metal box at 1.5 m; nodes 13 and 14 on top of the main engine, and

nodes 11 and 15 at the bottom; Node 12 on top of the companion ladder to the

upper deck; node 16 and 17 on each side of the gearbox attached to the engine.

Although the previous experiments in the engine room emulator did not show

a notable effect of the machinery in the communications, since this engine is more

powerful and the scenario more complex, the communications were tested with

the machinery on/off (main engine, one generator set, and pumping system). This

was combined with the same three powers as in the previous scenario, adding also

the door opening as a variable with the three opening levels used in the freight

containers, Table 5.8, to form a full factorial experiment of 6 runs per power.

The experiments were completed on April 20th 2017, with the same configuration

parameters as in the other environments.

5.6.2 Results & analysis

5.6.2.1 Overall network analysis

Since this environment is even more complex than the engine room emulator, a

larger number of outliers is observed in the PDR and LQI vs RSSI measurements
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Figure 5.18: Naval ship’s engine room.
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Figure 5.20: PDR vs RSSI for the naval ship’s engine room environment.

(Fig. 5.20 and Fig. 5.21), such that the L-shape is no longer visible. An extra tran-

sition band is also formed around -60 dBm for all powers tested, showing that even

with a very high average signal strength and packet delivery (RSSI = -62 dBm,

PDR = 91.87%) the communications are very unpredictable. This is confirmed
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Figure 5.21: LQI vs RSSI for the naval ship’s engine room environment.

in the 3D plots in Fig. 5.22, where, despite having a large number of the probes

in the 100% plane, a cloud of probes appears randomly distributed across the

rest of the space. Particularly, node 2 displays an accumulation of probes in the

0% plane, as it is the farthest on the floor of the adjacent room. As expected,

the noise floor remained at -96 dBm average.
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Figure 5.22: PDR [%] between each node for all rounds at different transmission
powers, for the naval ship’s engine room environment.
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Figure 5.23: Link asymmetry calculated as |PDRn→m − PDRm→n|, for the naval
ship’s engine room environment.

It can be observed further how the unreliability is increasing in this environ-

ment by looking at the asymmetry between links in Fig. 5.23, where it reaches

up to 20% for nodes 12-15, but still below the 40% defined as asymmetric.

5.6.2.2 Effects of the variables on network performance

To explore the effect the machinery has on the communications, Table 5.9 shows

the average PDR and RSSI per power with the machines on/off. As it was

observed in the engine room scenario, although a small drop in PDR can also

be seen here, it does not have an important effect. Even for the low power

configuration (-10 dBm) there is a decrease only from 89.09% to 88.93%. A

greater impact is produced by the door opening (Table 5.10), as reported in the

freight containers environment. Despite the door being waterproof sealed when

closed, there is only a reduction from 88.76% at 5 cm opening to 81.29% when

closed, at -10 dBm transmission power. This is most likely due to propagation

through the rubber door seal, possibly in combination with propagation through

other bulkhead seals where piping and ducting pass through.

The average temperature was kept constant by the AC system at 24.85 oC,

with a σ = 4.63, again due to the increase in the surface temperature of the
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Table 5.9: Average PDR and RSSI for different machinery states.

Transmission power Machinery state PDR [%] RSSI [dBm]

0 dBm
Off 94.02 -58

On 94.17 -57

-5 dBm
Off 92.75 -62

On 92.25 -62

-10 dBm
Off 89.09 -67

On 88.93 -67

Table 5.10: Average PDR and RSSI for different door openings.

Transmission power Door state PDR [%] RSSI [dBm]

0 dBm

Closed 91.28 -61

Open 5 cm 94.38 -58

Open 40 cm 96.64 -54

-5 dBm

Closed 87.43 -65

Open 5 cm 93.20 -63

Open 40 cm 96.87 -59

-10 dBm

Closed 81.29 -69

Open 5 cm 88.76 -68

Open 40 cm 96.98 -64

machines measured by the nodes placed on them.

5.6.2.3 Link classification and sink selection

While the PDR vs RSSI and 3D plots suggested an unstable network, the average

links per node all show above 10% PDR connectivity for high and low power, as

shown in Fig. 5.24. However, for the worst case rounds where the machines

are on and the door closed (Fig. 5.25), all the nodes that are farther from the

sliding door show dead links. Nodes 0, 4, 5, 6, 7 and 8 present no dead links,

which makes them good sink candidates. Although node 12 is also close to the
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Figure 5.24: Number of dead (PDR = 0%), poor (PDR < 10%), intermediate
(10% ≤ PDR ≤ 90%), good (90% < PDR < 100%), and perfect (PDR = 100%)
links for each node, for the naval ship’s engine room environment.

door, it performs worse due to being placed on top of the companion ladder with

no line of sight. Fig. 5.26 shows that node 6, located next to the door in the

engine room, presents the highest overall PDR, with around 97% for the three

power configurations, while nodes 1, 2 and 17 (located at the end of each room)

have the lowest with around 75% for the low power configuration. This suggests

that whenever there are sealed doors that could be closed, a sink or node with

forwarding capabilities needs to be placed near the door.
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Figure 5.25: Link classification for the closed door and machinery on round, at
-10 dBm.
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engine room environment.
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5.7 Application of methodology in a similar non-

marine scenario: A WSN deployment in a

data centre

5.7.1 Introduction

An important aspect of the management and control of modern data centres

is cooling and energy optimisation. Airflow and temperature measurements are

key components for modelling and predicting environmental changes and cooling

demands. For this, a WSN can facilitate the sensor deployment and data col-

lection in a changing environment. However, these scenarios present challenging

characteristics that make it difficult to predict network behaviour and therefore

make network planning and deployment difficult. Some of these characteristics

are common to the other scenarios studied in this work, i.e. large amounts of

metal surfaces, wiring, and machinery that can produce electrical noise such as

the servers and AC units.

In this section, a final validation of the WSN connectivity analysis method-

ology, described in the preceding sections, to resolve connectivity problems in a

completely different application environment is reported. The application was a

17-month duration deployment of a WSN in a data centre, as part of the GENiC

EU project [178]. The original deployment was done by the GENIC researchers

(without any involvement of the author of this thesis) and with no prior connectiv-

ity assessment in the environment or planning, unforeseen network connectivity

problems emerged. The research reported in this section therefore deals with the

study of the data collected from these sensors, as well as the execution of wireless

connectivity experiments with Trident, with the objective of finding and correct-

ing the node communication problems. As well as being an interesting research

problem in itself, this will demonstrate the broader applicability and adaptability

of the WSN characterisation methodology described in the previous sections as

well as its use for WSN problem-solving.
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5.7.2 Deployment description

5.7.2.1 Deployment scenario

The deployment was done in a typical medium-size university data centre room

that houses large communications equipment for the campus. The layout of the

windowless room, with a floor area of 34 m2 (7.3 m x 4.7 m), is depicted in

Fig. 5.27. There are 8 server racks in the room, arranged in two rows, forming

one cold aisle in the center of the room and two hot aisles between the rear of the

racks and the walls. Cooling is provided by a Computer Room Air Conditioning

(CRAC) unit from the adjacent room via underfloor vents through four perforated

floor tiles in front of the racks of the cold aisle. A backup air conditioning (AC)

unit is placed in the server room itself. The power is fed to the cabinets from

four bus bars, which run above the two rows of cabinets, as shown in Fig. 5.28a.

5.7.2.2 Hardware and software

The deployment consists of 30 TelosB nodes, including a sink node with a serial

connection to a PC gateway, that measure humidity and temperature. To mea-

sure the air velocity, each node incorporates a compact airflow probe sensor, either

the EE575-V2B1 [179] or the newer EE671-V2XDKD [180]. To interconnect the

airflow sensors with the nodes, a custom PCB was designed by the GENiC re-

searchers, allowing nodes to switch on and off the sensors to minimize power

consumption, and adapting the airflow voltage readings to the ADC voltage ref-

erence of the TelosB nodes. Moreover, due to the voltage requirements of the

airflow sensor, an external pack of 12 AA batteries was added to supply enough

power to the sensor and the mentioned PCB, while the TelosB was powered by

the standard 2AA battery pack. The nodes also report the battery voltage of the

node and the airflow battery pack, RSSI, and LQI for offline link analysis.

The TelosB nodes run a custom Contiki application that measures and reports

the parameters mentioned. The data rate of the application is configurable and

set to 1 message every 5 minutes by default. Due to the room size, multihop

communication was discarded, and the nodes simply formed a one-hop network,

using the reliable unicast (runicast) primitive of Contiki’s Rime stack [181] to
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Figure 5.27: Sensor nodes and gateway distribution in the room. Problematic
nodes marked with red and blue.

report the measured information to a sink node. To reduce power consumption,

the nodes only switch on the radio to transmit the packet every reporting period

and retransmit it up to four times when necessary. The sink keeps the radio

always on, as it is USB-powered. To avoid collisions, nodes employ a CSMA

MAC layer and also randomize the exact transmission time within the last four

seconds of the reporting period. Furthermore, nodes transmit at the maximum

power (0 dBm) and use channel 26 to avoid cross-technology interference.
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Figure 5.28: Node and airflow sensor placement.

5.7.2.3 Node deployment

The distribution of the nodes can be seen in Fig. 5.27. The MAC addresses in

the figure indicate the position of the TelosB nodes, which were placed either on

top of the racks or in between them (Fig. 5.28b), except the nodes monitoring

the CRAC unit and the sink (Fig. 5.28c), which were placed on top of the metal

bars. The airflow sensors, which are connected to the TelosB by cables, are fixed

with cable ties at rack inlet and outlet, below the tiles in front of the racks and

at the CRAC unit, as shown in Fig. 5.28a.

5.7.3 Analysis of the deployment

5.7.3.1 Overview

Fig. 5.29 shows the PDR for all the nodes during the 17 months of the duration

of the deployment, from October 23rd 2014 to March 23rd 2016, split in three

main periods:
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Figure 5.29: Overall PDR per node per day during the complete life of the de-
ployment.

1. From October 23rd 2014 to June 12th 2015 – Lossy: The network was

installed in different phases, including firmware and application gateway

updates. This, along with battery replacements and hardware updates,

produced an expected highly unreliable period.

2. From June 12th to July 16th 2015 – Investigation: Several nodes were

systematically failing to communicate with the sink, without any apparent

hardware or software issue. This investigation is described in detail below.

3. From July 17th to March 23rd 2016 – Reliable: After the investigation

period, the network problems were fixed, yielding an overall PDR of 99.92%.

5.7.3.2 Communication issues: investigation and correction

The period where the nodes were having unknown problems is divided in two

investigations. The packets received from the affected nodes during the whole

period can be seen in Fig. 5.30, with the blue line marking the first investigation

and the red line the second. The nodes involved are also marked in red and blue
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respectively in the deployment distribution (Fig. 5.27) and the overall deployment

PDR (Fig. 5.29) respectively.

Figure 5.30: Packets received from problematic nodes during the period with
problems reported.

The first investigation was done due to nodes 230.241 and 252.22 not report-

ing data since the beginning of June 2015, as can be seen in Fig. 5.30. A short 20

min. experiment was run using Trident in all the nodes to assess the connectivity,

during which each node sent 40 packets, at a rate of 1 packet/s. Looking at the

data from this experiment, all 29 nodes had perfect connectivity. Both problem-

atic nodes had a strong RSSI/LQI: 230.241 was -44 dBm/107 and 252.22 was -56

dBm/106. The noise floor for both was low, at -93 dBm. After reprogramming

the nodes with the application and slightly repositioning them closer to the rack

and facing the sink, the whole network was reporting correctly with a 99.96%.

This suggested that just the small repositioning produced when the nodes were

programmed with Trident and then reprogrammed later changed the multipath

conditions that most likely were causing the issue. Even nodes that were close to

the failing nodes were reporting correctly before. This is consistent with the ex-

periments described in the ship’s engine room emulator in Section 5.5, where two

nodes close together with high RSSI yielded a very different PDR performance.

On July 7th 2015, a second investigation was necessary due to intermittent or

total failure in the nodes marked red in the Figures 5.27 and 5.29, from July 1st

2015. Looking at the previous results from the short experiment, the nodes in red

recorded the highest noise floor. A long test was run then on July 8th 2015 for

six hours, equivalent to 12 consecutive rounds with the same configuration as the

short one, to account for the variations in time induced by the environment on the
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collected metrics. All but the group of nodes reported in Table 5.11 were exposed

to low noise floor levels, below -90 dBm, for both experiments. When looking

at the failing nodes’ data collected from the gateway on the day of the failure,

in Fig. 5.31 it can be seen that overheating affected the data center causing a

temperature increase to 44oC, probably due to some failure in the AC systems.

This must have triggered the auxiliary AC unit, as the temperature went down

quickly. However, the failing nodes stopped reporting fully or intermittently and

they did not recover after the event, as the noise floor value kept high. The

main issue with this was the CCA (Clear Channel Assessment) threshold, which

was configured in the application at -90 dBm, lower than the noise floor of those

nodes. As the channel is sensed by the node before sending a packet, due to the

inherent noise being higher than the configured CCA, the node was never sending

the packet, as it was confusing this noise with an interfering packet being sent

from another node. The solution was to change this CCA threshold to a higher

value, thereby allowing the node to ignore the noise and send the packet. After

this, the network operated reliably with near 100% for the remaining life of the

deployment, except for the moments when the application gateway was down.

5.7.4 Conclusion

Although the deployment studied in this section presented some similarities with

the previous scenarios, such as high amount of metal and wiring, it also had

some differences such as the type of machinery running (computer servers and

AC units) which probably played a role in the noise floor problems encountered.

This machinery could have switching circuitry around 2.4 GHz, causing this high

noise floor, unlike the large engines found in the other scenarios which switch

at typical low frequencies in the 0-120 Hz. However, it is emphasized here that

assessing the characteristics of the links in the environment where the WSN must

be deployed is key for supporting the deployment and informing the selection of

communication parameters that make the protocols and the application apt for

the target environment. This shows the wider applicability of the connectivity

analysis methodology and also its impact as a problem-solving tool in real-world

applications.
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Table 5.11: Noise floor and RSSI of problematic nodes.

Short Long

Node address
Noise
[dBm]

RSSI
[dBm]

Noise
[dBm]

RSSI
[dBm]

189.141 -84 -51 -84 -59

117.53 -85 -57 -85 -57

5.252 -87 -48 -85 -59

59.246 -84 -43 -81 -52

5.24 -88 -48 -84 -49

220.61 -88 -48 -89 -48

133.33 -88 -45 -89 -46

228.247 -90 -45 -90 -47

152.15 -90 -48 -91 -48

The research presented in this section led to a co-authored publication as a

third author. The first three authors have agreed that their contributions to the

work should be regarded as equal, while the last three were granted honorary

authorship.
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Figure 5.31: Temperature, RSSI, and PDR of the failing nodes during June 30
and July 1, 2015.
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5.8 Discussion

5.8.1 Advances to the state of the art

The literature review has shown that wireless communications are possible in

all-metal marine environments such as on board ships, even between adjacent

rooms and decks separated by watertight doors due to signal leakage through

bulkhead seals between compartments. However, the nature of the environment

makes it sensitive to multipath propagation and electromagnetic noise, which can

cause signal degradation even at short distances. This highlights the necessity

to perform a practical study in different environments to characterise and better

understand the wireless performance, with a focus on the physical layer which

gives an accurate view of the performance by removing the bias of the upper layer

protocols.

The methodology described in this chapter provides a framework for these

studies by defining structured multi-variable experiments and a systematic anal-

ysis of the results, giving a global network view, as well as individual node perfor-

mance and link quality. This new framework consists of current state-of-the-art

physical layer WSN experimental methodologies combined with standard design

of experiments and new added representations of the collected metrics, i.e. 3D

node-to-node PDR plots and link asymmetry heatmaps, as well as selected ones

from the literature such as link quality classification. This provides a tool for

engineers and researchers to assist the design and deployment of WSN in harsh

environments. The 3D node-to-node PDR representation is a novel and very use-

ful way of representing the data, as it allows quick visualisation in a single plot

of the problematic areas in all the links of a deployment. This representation

could be further improved by assigning colours to each of the probes depending

on their PDR percentage, which would highlight the problems more clearly.

The methodology presented has been validated in three different metal scenar-

ios with increasing complexity. The first one composed of three freight containers,

creating an indoors-outdoors multi-chamber metal environment, accounting for

the effects of node position and orientation, door openings, and transmission

power. The second one consisting of a large engine room emulator containing
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a ship’s engine, several generators and large amounts of metal piping, ducting,

and gantries, where the effects of running machinery are tested. The third one

was performed in a real naval ship’s engine room and its adjacent compartment,

accounting for the opening/closing of the waterproof door between the rooms

as well as the switching of the machinery. The collected data and analysis con-

tributes to the understanding of the performance on these complex scenarios, to

help push forward the use of WSN as a low-cost alternative to wired networks.

After the first tests, the experiment design changed to focus on the variables

that made the most impact on the PDR, i.e., the node placement, transmission

power, and door openings, while discarding node height and antenna orientation.

The most notable discovery was the large performance difference between close

nodes in some specific placements, where a node inside a motor was performing

much better than another one placed on top outside. Future research could look

into these unexpected behaviours in more detail by experimenting with a large

number of nodes together in that specific area. Moreover, another line of research

can focus on comparing this established WSN technology with newer ones, such

as LoRa or ultrawideband, which might have a better multipath immunity but

are not yet fully integrated into the WSN paradigm.

Finally, a study performed in a data centre for a related research project

highlighted the need for these methodologies to assess the link performance of

difficult scenarios with metal and machinery before the deployment, as multipath

fading and switching noise can cause unexpected communication problems that

can by alleviated with node relocation or application/protocol reconfiguration.

5.8.2 Engineering & scientific merit

The studies performed have shown a high overall connectivity for all the scenarios,

with more than 80% PDR even in the worst conditions with a network of nodes

in different metallic chambers with the doors closed and low transmission power,

and at least one node was found to be placed in an optimal position to be acting

as a sink with no dead links to the rest of the nodes. Moreover, electromagnetic

noise from ship engines and generators only showed a minor effect on the commu-

nications. With the increasing complexity of every scenario, i.e. larger amount
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of piping and metal fixtures, an increase is also found in the number of outliers

when correlating the RSSI with the PDR and LQI. This is different from what

is found in the literature for different scenarios such as open fields or buildings,

which have a well defined transition zone. In the naval ship scenario, as it is the

most complex of the three, the transition zone is wide enough to cover most of

the area, making the prediction of the PDR in a node very difficult. Therefore, a

path-loss model based on distance and RSSI as it is usually done in the literature

would not have any meaningful capabilities of predicting the PDR of each node

in these environments. This makes it necessary instead to perform a practical

study of each specific target scenario, including a connectivity assessment follow-

ing the methodology demonstrated in this chapter, to identify areas of difficult

connectivity and optimal sink location.

Despite the unpredictability and unreliability in the communications that has

been shown in the more complex scenarios, as the PDR remains high the loss of

packets can be mitigated with retransmissions and error correction codes in the

upper layer protocols, making a WSN a viable solution for these environments

for non-critical data.
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Chapter 6

Validation

6.1 Introduction

The work presented in the preceding chapters developed systems integration and

packaging methodologies for two structural and machinery health monitoring

sensor modules, associated firmware and software, and an overarching framework

for deployment design and for in-situ wireless network link quality analysis. All

of this was focused on deployment and reliable operation of health monitoring

wireless sensing networks in high metal-content marine environments. The final

stages of the research were, first, validation using accelerated stress testing that

the modules themselves would be reliable for long-term deployment in the ma-

rine environment and, second, verification that the modules could be successfully

deployed in a variety of machinery and structural health monitoring applications.

6.2 Validation tasks

The two main tasks for validating the work presented in the previous chapters

are:

• To select and carry out application-focused accelerated stress tests to verify

that the systems integration, packaging, and encapsulation methodologies

developed through the research are sufficient to ensure reliability in the

marine environment.
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• To verify that the methodologies for WSN deployment and data collection

would allow operation in real-world marine environment health monitoring

scenarios.

6.3 Accelerated stress testing

6.3.1 Introduction

This section presents the accelerated reliability stress testing performed in the

laboratory on both the inductive and health monitoring sensor modules. This

involved vibration, humidity/temperature, and salt atmosphere exposure testing

to ensure their reliability in harsh marine conditions.

6.3.2 Vibration reliability test

6.3.2.1 Test description

The health monitoring and inductive modules were both tested for vibration reli-

ability following Lloyd’s Test Specification Number 1 [182], an industry standard

for performance and environmental testing of electronic systems used in marine

applications, based on several IEC standards. This specification defines two dif-

ferent vibration tests, one with lower acceleration (Vibration test 1) and another

one with higher (Vibration test 2). The modules are to be mounted on the vibra-

tion table in their normal orientation with respect to the vertical, corresponding

to how they would be installed in the real environment.

Vibration test 1 The first test is divided in two parts: the first one has to

be carried out using a sine sweep with varying frequency, displacement, and

acceleration in accordance with Table 6.1, to detect resonance frequencies in the

module.

The second part of the test consists of an endurance test of 90 minutes at

30 Hz, with an acceleration of ±0.7 g. This is a relevant test to assess the

reliability of these modules, as they will be mounted on vibrating machinery or
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Frequency range Displacement Acceleration

2+3
−0 – 13.2 Hz ±1.0 mm

13.2 – 100 Hz ±0.7 g

Table 6.1: Test specification standard 1

swaying structures and therefore they will be subject to low frequency vibration

for long periods of time.

Vibration test 2 The second vibration test is similar to the first one, with a

varying sine sweep following the profile in Table 6.2, and an endurance test.

The endurance test is performed for 90 min at 30 Hz like in the test 1, but

with an acceleration of ±4 g.

Frequency range Displacement Acceleration

2+3
−0 – 25 Hz ±1.6 mm

25 – 100 Hz ±4.0 g

Table 6.2: Test specification standard 2

Sensor Module Shaker

Figure 6.1: Vibration test setup for the health monitoring module (encapsulated).
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Sensor Module ShakerCable Tie Bolt & Nut Aluminium
Plates

Figure 6.2: Diagram of the vibration test setup.

6.3.2.2 Health monitoring module testing

Fig. 6.1 shows the setup test for the health monitoring module on the vibration

platform (an electrodynamic shaker, B&K Model V455 [183]). The sensor module

was placed between two aluminium plates, the bottom one attached with screws

to the vibration platform and the upper one on top of the module. Both alu-

minium plates were pressed against the box by a pass-through bolt and nut, and

further fastened with a cable tie, as shown in Fig. 6.2. This mounting method

was chosen due to it being previously used in vibration tests (unpublished) by

other researchers in Nimbus and now used as common internal practice. Gen-

eral practice for clamping to a shaker is that it should be as rigid as possible to

minimise stray secondary vibrations and resonances. This method performs that

function well for odd-shaped test specimens that cannot be bolted down directly

to the mounting plate. It is also similar to the mounting methods used in the

field deployments described below. One sample of the module was tested, as only

a small number of samples were available and the majority were being used for

the deployments and could not be risked.

The sweep test was run over 1 min, with a sweep rate of 5 oct/min, at 0.7 g

(Vibration test 1) and 4 g (Vibration test 2). Because the encapsulated module

forms a single block, no resonance frequencies were expected to be found. How-
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ever, as shown in Fig. 6.3, in both Vibration test 1 and 2 a resonance appeared

during the sweep at around 50-60 Hz in the x-y axes. As it is unlikely to be com-

ing from the sensor module, this could be either from the vibration table itself,

i.e. a loose component, or from the anchoring of the vibration table to the floor.

This was confirmed in further tests with the inductive module and an external

accelerometer, presented in the next Section 6.3.2.3.
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Figure 6.3: Vibration test frequency sweeps for the health monitoring module.

After performing the endurance tests for the vibration 1 and 2 specifications,

the module was still fully functional, with data being collected periodically every

15 min. during the tests and afterwards. Fig. 6.4 shows the accelerometer data

and its calculated PSD, collected during the higher vibration endurance test (Vi-

bration test 2), where it can be seen that the accelerometer successfully tracked

the shaker vibration profile.

6.3.2.3 Inductive module testing

Fig. 6.5 shows the setup of the inductive module in the vibration platform, with

an external, battery-powered accelerometer placed on top of the module. The

module was fixed in the same way as the health monitoring module in the pre-

vious section, with the external accelerometer fixed with polyimide tape. As in
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Figure 6.4: Vibration endurance test 2 at 30 Hz for the health monitoring module.

Sensor Module ShakerAccelerometer

Figure 6.5: Vibration test setup for the inductive module (encapsulated).

the previous tests done in the health monitoring module, a similar resonance fre-

quency was found at around 50-60 Hz in x-y axes (Fig. 6.6). A sweep test was

repeated with only the accelerometer board mounted on top of the top aluminium

plate, obtaining a similar result but with less amplitude (Fig 6.7), confirming that

the resonance frequency is due to the vibration platform setup and not the sensor

modules.

The Vibration test 1 and 2 endurance tests were also successfully performed

with the same parameters used for the health monitoring module (90 min at
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Figure 6.6: Vibration test frequency sweeps for the inductive module.
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Figure 6.7: Vibration test frequency sweeps with external accelerometer only.

30 Hz), testing the operation of the module every 15 min by wirelessly reading the

values of the sensing coils. Fig. 6.8 shows the external accelerometer data and its

calculated PSD, collected during the higher vibration endurance test (Vibration

test 2).
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Figure 6.8: Vibration endurance test 2 at 30 Hz for the inductive module.
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6.3.3 Humidity/temperature reliability test

The Lloyd’s Test Specification Number 1 [182] for marine electronics followed

in the previous section also defines standard tests for humidity/temperature en-

durance testing: cyclic and steady. Both modules were tested simultaneously

following this specification using a WEISS WKL 100 climate test chamber [184].

The temperature and humidity were recorded every minute with the health mon-

itoring module.

6.3.3.1 Humidity cyclic test

The test parameters for the cyclic test according to the reference specification

are:

• Temperature: 55 oC.

• Humidity: 95%.

• Duration: 2 cycles (12+12) hours’ duration.

The cyclic test in the reference defines a controlled temperature starting at

20oC, ramping up to 55oC, keeping it steady for 12 hours and then cooling back

down to 20oC for 8 hours. The humidity is kept between 90-100% during the

high temperature period and 80-100% during the cooldown. After this, the cycle

is repeated again starting from a low humidity (0-20%) and 20oC temperature.

Fig. 6.9 shows this T-H test profile programmed in the climatic chamber (green

colour).

Although the standard defines interval functional testing of the specimen be-

tween the cycles and at the end, this was not necessary for the two modules, due to

the memory in the health monitoring module and the wireless data transmission

capabilities of both modules; this allowed continuous functionality monitoring of

the modules during the tests. Fig. 6.9 shows the recorded humidity and tem-

perature in memory by the health monitoring module during the cycles, where

it can be seen that the module successfully tracked the T-H profile. During the

cooldown period of the cycle it can be seen that the humidity falls below the

set specification, due to the chamber not being able to keep such high humidity
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with low temperature, as relative humidity is dependent on the temperature. The

inductive module was wirelessly tested every 24 hours, reading the values of the

four coils to verify that the microcontroller and radio were operating correctly.

Both modules continued to function without any deterioration in parameters or

reliability for the full duration of the tests.
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Figure 6.9: Temperature and relative humidity recorded by the health monitoring
module inside the humidity chamber during the cycle testing.

6.3.3.2 Humidity steady test

As with vibration testing, long exposure is an important test to assess the re-

liability of the modules. The steady state test for humidity/temperature is de-

fined with an initial 20oc temperature, raised to the specified maximum operating

temperature (in this case 55oC, as in the previous test) and maximum relative

humidity (100%). These conditions have to be maintained for a period of at least

96 hours, followed by a reduction in temperature back to 20oC within a period

of between one and two hours.

The humidity and temperature collected by the health monitoring module

during the duration of the test is shown in Fig. 6.10, as well as the programmed

T-H profile, demonstrating that it not only survived the test but also successfully

tracked the T-H profile. The values of the sensing coils of the inductive module

were also successfully read every 24 h. During and after the completion of the

test, both modules were fully functional and there was no visible deterioration.

158



6.3 Accelerated stress testing

0 20 40 60 80 100 120

Time [h]

19

23

27

31

35

39

43

47

51

55

oC
20-100% 90-100% 80-100%

10

20

30

40

50

60

70

80

90

100

%

Temperature

Humidity

T-H profile

Figure 6.10: Temperature and relative humidity recorded by the health monitor-
ing module inside the humidity chamber during the steady testing.

6.3.4 Salt mist test

The high concentration of salt in the ambient at sea can affect the reliability

and durability of electronics due to the corrosion affecting the components and

PCB traces during long exposure to salt. As the nodes are developed to be used

in marine environments, a salt mist test was performed on both sensor modules

(inductive and health monitoring) in a Heraeus HSN 400 salt spray test chamber.

The standard used for this was the MIL-STD-883 test method 1009.8 [185],

designed as an accelerated laboratory corrosion test simulating the effects of sea-

coast atmosphere on devices and package elements. This standard defines the

setup conditions of an exposure chamber that uses a salt fog to maintain the

necessary conditions. The salt fog should be maintained at 35 oC, with a salt

concentration between 0.5 to 3.0% by weight in deionized or distilled water, and

a pH between 6.5 and 7.2. The test was programmed to run for 96 h continuously

(Test condition C).

The modules were left in the testing facility and were not accessible, therefore

the performance of the module could not be assessed periodically but the health

monitoring module was programmed to record temperature and humidity every

15 min. The result is shown in Fig. 6.11. It can be seen on the figure that a

sudden dip in temperature occurred on the second day of the test. This was due

159



6.3 Accelerated stress testing

to a failure in the deionised water system that feeds the salt chamber and which

caused a shut down of the system. Although the test had to be stopped due

to the system failure, it shows that the module successfully detected the failure,

validating its functionality as a machine health-monitor. After this, the test was

restarted from the beginning.
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Figure 6.11: Temperature and relative humidity recorded by the health monitor-
ing module during the salt mist test.

After the test, the health monitoring module was cleaned with water to re-

move the salt traces deposited on the outside of the box. It presented no visible

deterioration and was still working correctly. The only exposed components, i.e.

the microUSB connector, antenna, and filter caps, were not affected by the salt

mist.

For the inductive module however, as the electronics PCB contains more ex-

posed components that are not robust or waterproof and are not protected by a

box, the salt mist had a heavy visible effect, causing corrosion. Fig. 6.12 shows

the electronics PCB side after the exposure. The microUSB was severely dam-

aged, as were the buttons. Nonetheless, a simple test collecting data wirelessly

from the sensing coils showed that the module was still functional, and humid-

ity/temperature could be measured as well as the sensor coils. Shortly after that,

the module ran out of battery and it had to be recharged. Due to the damage of

the connector, when attempting to recharge the module a short-circuit destroyed
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Figure 6.12: Inductive module after accelerated salt mist exposure.

the electronics with no possibility of recovery. When trying to remove the charg-

ing cable, the connector was also accidentally ripped off from the PCB, including

the pads. This showed that although the module works as a proof-of-concept, a

newer version would need to include the same waterproof microUSB as the one

used in the health monitoring module.
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6.4 Validation in real-world module deployments

6.4 Validation in real-world module deployments

6.4.1 Introduction

To demonstrate the health monitoring module’s ability to collect data and survive

in outdoors marine and harsh environments, several long and short deployments

in real-world scenarios were performed.

6.4.2 Module testing in a RIB

The first real-world test to verify the functionality of the health monitoring mod-

ule was performed at sea on a rigid-inflatable boat (RIB), Fig. 6.13. An encap-

sulated module was attached with cable ties to the steering system that connects

both engines of the RIB, as shown in Fig. 6.14. The RIB was at sea for approxi-

mately 5 hours and 30 min. As the RIB was used by a group of marine biologists

to collect samples, during the trip there were periods of travelling and periods

were the boat was at sea completely still. Accelerometer, audio, temperature,

and humidity were sampled and saved every 5 min., with a duration of 5 s for

every accelerometer and audio sample.

Figure 6.13: RIB used for the testing.
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Sensor Module

Figure 6.14: Health monitoring module testing installed on the steering system
connected to the RIB engines.

Fig. 6.15 shows accelerometer and audio data collected during one of the still

periods. Although the RIB was not moving, the accelerometer shows some high

peaks up to 4 g induced by wave slap. Those large peaks of the wave slaps are

produced every 4.5 s approximately, which can also be noticed in the audio data

plot and can even be heard if the audio is played. The PSD shows also a low

vibration at around 23 Hz, most likely due to the engines being on despite the

RIB remaining still.

The data collected for one of the periods when the RIB was travelling are

shown in Fig. 6.16. A strong acceleration data can be seen around 60 Hz of up

to 1 g, especially for the x-axis, corresponding to the vibration of the engines.

Another peak is seen around 50 Hz in the z-axis, with strong components spread

around the 40-60 Hz band, reaching up to 2.2 g. The audio also showed a much

stronger amplitude than when the RIB was still, nearly to the point of saturating

the microphone.
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Figure 6.15: Acceleration and audio collected when the RIB was still in the water.
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Figure 6.16: Acceleration and audio collected when the RIB was in movement.
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Fig. 6.17 shows the temperature and relative humidity collected over the whole

rib outing. Overall, the RIB test validated the module performance and reliability

in an exposed and demanding application environment.
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Figure 6.17: Temperature and relative humidity collected during the RIB deploy-
ment.

6.4.3 Module testing on a river bridge

River bridges are large outdoor structures, typically of metal and/or concrete,

placed in high humidity environments, which makes them an ideal location for

testing the health monitoring module. Daly’s bridge in Cork City (Fig. 6.18),

also known as The “Shakey Bridge”, is a wrought iron suspension bridge opened

in 1927 and now suffering serious corrosion to the point where its closure is

threatened on safety grounds. It is a particularly interesting structure to monitor

as it oscillates when even one person walks over it and also in strong winds. One

of the health monitoring sensor modules was attached to the frame at the center

of the bridge (Fig. 6.19) during the night of the Ophelia post-tropical hurricane

that hit Ireland in October 2017. This was the most severe recorded storm of

the past decades, with wind gusts reaching 84 knots (155.6 Km/h) in the Cork

region. The state of the bridge is evident in the close-up picture of the sensor

attached to one of the corroded metal braces of the bridge.
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Figure 6.18: Daly’s ’shakey’ bridge in Cork.

Sensor Module

Figure 6.19: Health monitoring module testing installed on a bridge before the
storm.

The module recorded temperature/humidity and 5 s of acceleration data every

hour during 33 hours, starting at 20:00 on the day before the forecast arrival of the

storm. Fig. 6.20 shows the spectrogram of the acceleration in the z-axis over time

during the deployment. A high peak can be observed at Hour 15 (11:00), with

the highest value around 80 Hz, coinciding with the period when the strength of

the storm was also as its highest in Cork City.
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Figure 6.20: Frequency response on the z-axis of the bridge during the Storm
Ophelia.
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Figure 6.21: Temperature and relative humidity collected on the bridge during
the Storm Ophelia.

Fig. 6.21 shows the recorded temperature and humidity. Temperature was

stable except for a peak around 14:00 on the day of the storm, corresponding to

a brief sunny period, which warmed and dried the sensor, then slowly started de-

clining as night approached. It can be seen how humidity rose slightly above 100%

at some points, due to heavy rain which covered the sensor cap. This can produce

readings above 100% relative humidity, a phenomenon called supersaturation.

The module was recovered after the experiment, fully functional and with

no visible deterioration, showing that it can collect data without interruptions
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during very harsh conditions.

6.4.4 Module WSN deployment in a Navy ship

As a final validation, a long-term deployment was done with a network of 5 nodes

in the same P60-class INS ship used in the wireless performance experiments

described in Chapter 5.6. Four sensors were placed next to several pieces of

machinery in the engine room: the water pumps, the main engine, the gearbox,

and the boiler. Another sensor was placed in the Machinery Control Room (MCR)

adjacent to the engine room. The sensors collected temperature/humidity every

hour, and 5 s of audio and accelerometer data every 5 hours, during a typical

16-day patrol voyage. While 4 out of the 5 sensors recorded data during the full

duration of the trip, the fifth, however, placed at the boiler, stopped recording

at day 12. This could be due to a sensor hardware failure or human error. As

the sensor was tested again after the deployment with no issues, it was either

a transient hardware fault or an accidental switching off of the sensor module

during engine room operations.

Fig. 6.22 to 6.26 shows the recorded temperature/humidity for all the sensor

modules for the duration of the deployment, and 6.27 to 6.31 the spectrogram of

the acceleration on the z-axis (normal to the surface of the sensors’ placement).
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Figure 6.22: Temperature and relative humidity – Pumps.
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Figure 6.23: Temperature and relative humidity – Engine.
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Figure 6.24: Temperature and relative humidity – Machinery Control Room
(MCR).

On the day after the deployment, a peak in temperature is observed on the

pumps (33oC), engine (42oC), gearbox (35oC), and boiler (36oC), while the MRC

was stable due to it being in another deck, with no machinery near and an AC

system on. On Day 5, another temperature peak is seen in the engine and boiler,

with the pumps and gearbox experiencing also higher temperature on that day,

the previous and the day after. This probably indicates that the machinery is

being operated at higher power to bring the ship back to shore, as the 2-week

patrol cycles are split in half where the ship is brought back to shore briefly
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Figure 6.25: Temperature and relative humidity – Gearbox.
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Figure 6.26: Temperature and relative humidity – Boiler.

before going back to sea. Except for the one in the MCR, all sensors recorded

daily periodic up and down temperature cycles. The relative humidity was always

below 70%, as the compartments are sealed from the outside and a ventilation

system is in place.

Looking at the vibration spectrogram, the mid-trip cycle increase in machinery

activity that was perceived in the temperature plots can be observed. On Days

5-7, a higher vibration was detected in the pumps (50 Hz) and boiler (50 Hz

and 100-130 Hz wide band signal), which was also picked up by the MCR even

though it is in a different deck. The gearbox showed smaller vibration on Day 5,
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Figure 6.27: Frequency response on the z-axis – Pumps.
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Figure 6.28: Frequency response on the z-axis – Engine.

but higher on Day 7 (50 Hz), while the highest was found on Day 8, coinciding

with the higher vibration of the pumps (30 Hz). On Day 1, vibration was detected

by all the sensors, due to the machines being set up for departure. The engine

presented a constant narrow band vibration with the highest magnitude, around

the typical frequency found in large engines (60 Hz), during the whole duration

of the deployment.

Overall, this test validated both the module performance over an extended

deployment in a highly-dense, completely metallic environment with a range of

large, operating machinery and continuous personnel activity.
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Figure 6.29: Frequency response on the z-axis – Machinery Control Room (MCR).
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Figure 6.30: Frequency response on the z-axis – Gearbox.
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Figure 6.31: Frequency response on the z-axis – Boiler.
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6.5 Discussion

6.5.1 Advances to the state of the art

The literature review has shown a variety of wireless sensing platforms developed

to be used in different industrial and indoor environments. However, none of them

have been tested for reliability following marine standards and also deployed in

real-world harsh marine environments.

The research presented in this chapter has addressed these issues by testing

the inductive and the health monitoring sensor module for vibration stresses and

humidity/temperature following the Lloyd’s Test Specification for marine elec-

tronics, using a vibration plate and a climatic chamber. The modules were also

tested for salt mist following the MIL-STD-883 as an accelerated corrosion test

that simulates the salt water conditions found in marine environments. Although

both modules have been proved to survive all testing, the inductive module would

still need further development and tests to be able to be used in real applications,

as evidenced by the damage produced by the salt mist test in some of the sensor

external components.

Several health monitoring modules have been deployed in different marine

real-world scenarios, showing that it can collect data reliably during short and

long periods in harsh conditions. This presents a complete validation of the pre-

ceding design and development work. The data collected showed that vibration

from the accelerometer can provide immediate information more easily observed

about the status of the machinery and structure, while audio data would need

further processing and might only be useful for detecting specific flaws, provided

the background noise is not excessively loud. Although the modules have shown

to reliably save data in memory and it has been retrieved in the laboratory, to

further validate the application a gateway PC would need to be installed and be

controlled remotely, to be able to sense and retrieve data in real-time.
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Chapter 7

Conclusions & Future Work

The thesis has presented research on the theme of systems integration that ad-

dresses several key gaps in existing knowledge and technology to allow deployment

of WSNs to marine offshore structures and the machinery they contain. There

have therefore been contributions to both research and applications in these sev-

eral topics.

7.1 Advances and contribution to the state of

the art

Through original research, the work presented in this thesis has achieved the

objective of covering key gaps in SMHM for marine applications by developing and

verifying a whole-systems integration methodology for design and development

of WSN in offshore marine metal environments. In the literature review, it had

been identified that:

• No plastic-encapsulated multi-sensor WSN modules were found that offered

the necessary range of sensors, capabilities, hardware-software integration,

and reliability for the use in the marine environment.

• A systematic methodology did not exist for characterising wireless link per-

formance in metal marine environments with operating machinery.

This thesis have addressed these issues by original research in the following areas.
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7.1.1 Contribution to wireless sensor modules for SMHM

Monitoring of steel structures is still an ongoing research problem, as it is not easy

to embed sensors in them and the ones used currently such as FBG (Fiber Bragg

Grating), strain gauge, and optical sensors tend to be large, costly, and with

high power consumption. A novel concept has been developed to address this, by

designing and characterising an eddy-current based sensor module that measures

bending or displacement in two or more adjacent axes, as large structures tend to

bend due to the forces from the environment; this way it could be detected if this

displacement is too large and the structure is in danger of collapse. Different test

setups were designed to characterise the module, proving it meets the required

range and resolution in one and two axes, and the effects of different variables

have been investigated such as metal characteristics, presence of water, proximity

of the battery, and encapsulant.

Vibration and acoustic sensors are the most widely used method for machine

and structural monitoring. A wireless sensor module has been developed that

addressed the issues of current WSN modules for machinery health monitoring in

terms of power, reliability, and compatibility. The module integrates a microcon-

troller, memory, 802.15.4-compatible radio and the necessary vibration, acoustic,

and temperature/humidity sensors. It has been validated in laboratory conditions

in different motor test setups and in the engine room of a naval vessel.

7.1.2 Contribution to systems integration and packaging

for reliability

By using 3D systems integration, a cuboid module has been developed to assemble

the inductive sensor, with PCB sensing coils in four of its sides, allowing for multi-

axial displacement sensing. The use of inductive sensing ICs has allowed further

miniaturisation and power reduction. The battery is hosted inside the cube using

plastic holders, which makes the module a low-cost and fully autonomous solution.

It is rechargeable and wireless, and it can be easily deployed autonomously or as

part of a network of modules.
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The vibration and acoustic health monitoring platform has been enclosed in

a 3D-printed plastic custom box, with LED light guides, waterproof microusb

connector, and PTFE-based membrane caps to cover the sensors while maintain-

ing their sensing fidelity. This makes it easy to encapsulate it for protection in

marine harsh environments.

Both modules were fully encapsulated in marine-graded resin compounds and

further covered with resin coating. The packaging and encapsulation of both

modules were validated for the marine environment by performing accelerated

stress testing following marine standards for vibration, humidity/temperature,

and salt-mist.

Moreover, the health monitoring module was tested in real-world applications:

a RIB, a river bridge during a post-tropical hurricane, and a network of modules

in a naval ship at sea. This testing validated the capabilities of the module as

well as the packaging to withstand real marine harsh conditions.

7.1.3 Contribution to hardware/firmware/software co-design

for WSN

The firmware-software developed for the hardware modules provides full remote

wireless configuration and control of the nodes, with the ability to set up on-

demand and periodic self-starting sensing experiments, data file management, and

calibration. This is an advance over other platforms, as it makes it easier to deploy

and manage WSN and to set up sensing experiments. By building the system on

top of Contiki-shell and Contiki-OS, and enhancing them with application-focused

additions, it is possible to extend the platform with new commands as well as

networking protocols. The developed sampling strategy, using a combination

of DMA, hardware and software buffers allowed for optimised high data rate

sensing without the need for extra components. The configurable gain for the

MEMS microphone makes it possible to adjust it depending on the sound level

of the environment, avoiding saturation and maintaining the best signal-to-noise

ratio. The user interface provides visual feedback of the environment in 3D and

placed nodes, as well as basic visualisation of the recorded audio and vibration

data in time and frequency. The control of the experiments, data and memory
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management, and discovery of the network of nodes can also be done from this

user interface.

7.1.4 Contribution to wireless link quality performance

evaluation

The literature shows numerous studies of wireless performance in different envi-

ronments, and in some cases even simple propagation models derived from data

from low-complexity scenarios. It has been shown that communications are pos-

sible in complex metallic environments such as ships and shipping containers.

However, the lack of a proper methodology is a known issue in most of these

experiments: they are performed with upper-layer protocols that include retrans-

missions, nodes are not synchronised, and the necessary metrics are not provided,

among others. Therefore, the conclusions derived from these studies are incom-

plete and an improved methodology is necessary.

Until recently, no tool was available for performing proper WSN wireless char-

acterisation and being able to design an experimental framework with a scientific

methodology. By using Trident as a testing tool, which includes the aforemen-

tioned capabilities of disabling upper-layer protocols and node synchronisation, a

proper design of experiments can be developed, which has been proved in studies

in forests and open fields but not marine environments. In the research presented

in this thesis, this tool is used to perform similar experiments in metal marine

environments, but with a different structured multi-variable experiment design

with a systematic analysis of the results to assess the link quality of the network

as well as individual nodes. Three environments were studied: multiple freight

containers, a large engine room emulator containing a ship’s engine, and a naval

ship’s operational engine room and its adjacent compartment. Different variables

such as opening/closing of doors, node placement and position, and activation

of machinery were studied. It was proven that a high connectivity was found in

most of the cases, and a WSN can be a viable monitoring system to be used in

these challenging scenarios. However, a minor change in the placement of a node

can cause a dramatic impact in the link quality of the node, due to multi-path

fading, as it was highlighted in the engine room scenario, where two nodes placed
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under and over the engine cover produced very different results, with the node

under the cover even having better connectivity than the one outside. This was

proven in a fourth scenario, where a real application in a data centre was run-

ning with reliability issues in some nodes. By analysing the application data and

running connectivity experiments the problem was found and fixed. Therefore,

it is not possible to ensure the reliability of the network unless these studies are

performed before deployment. The methodology developed through the research

in this thesis now overcomes this.

7.2 Impact on the research and application fields

Until now, there has been a gap between the sensors used in commercial marine

applications and the wireless sensor nodes used by researchers to test and develop

reliable wireless networking protocols. The modules developed in this work can

act as a stepping stone for future researchers working towards developing research

modules and applications that are closer to industry needs, using commercial-off-

the-shelf components and low-cost manufacturing processes. In some applications

such as marine renewable energy, miniaturisation and low-cost of these sensors

could help driving down deployment costs, which increase their chances of ex-

pansion in an industry greatly impacted by reliability and cost over-run issues.

The use of plastic-encapsulated microcontrolled-based wireless sensing modules

has been proven to be reliable to be used in harsh marine environments to replace

commercial sensors.

The developed hardware-software architecture provides researchers and users

alike a flexible platform that can be used for networking research as well as a rapid

WSN deployment and management tool. The capability of wireless node experi-

ment pre-configuration allows for operators not familiar with WSN deployments

to easily deploy these networks by just attaching and turning on the modules.

This has been proven in the navy ship’s scenario, were nodes were shipped pre-

configured and collected data for two weeks. This is particularly interesting in

marine offshore scenarios, as they are often remote and a WSN expert cannot

always obtain access to the site.
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The developed inductive module has proven that the use of state-of-the-art

eddy-current displacement ICs can be used to detect relative displacement be-

tween adjacent components in metal structures. This has shown the potential of

developing low-cost commercial sensor modules not only for marine structures but

also for buildings, bridges, and general large metal-based structures. It also opens

up an area of research for developing prognostic mathematical models that can

correlate different types of relative displacement with impending failures, where

these modules can provide a low-cost solution for collecting displacement data.

The methodology designed for wireless performance characterisation can allow

researchers and engineers to study in-situ the reliability of a WSN prior to and

during deployment, as its prediction is not practical using currently available

approaches. It identified the variables, metrics, and graphical representations that

are important to understand the environment and make deployment decisions.

The experiments performed in the different scenarios have proven not only this

methodology but also that, despite the high amount of metal and machinery, the

multipath effects can be mitigated by appropriate node and sink placement.

Marine researchers can now monitor structural and machine reliability in-situ,

allowing research on the reliability of new marine structural concepts and machin-

ery deployments or the impact of, for example, more extreme weather conditions,

caused by climate change, on the reliability of existing marine structures. In the

commercial application field, those responsible for marine structures now have

both the hardware, software, and deployment methodology to use WSNs.

7.3 Peer-reviewed publications

The originality of the research presented in this thesis has been demonstrated

by producing five peer-reviewed publications: two conference papers, two journal

papers, and a co-authored conference paper.

• David Rojas and John Barrett. Link Quality Evaluation of a Wireless Sen-

sor Network in Metal Marine Environments, Wireless Networks, Springer.

April 2018. This journal paper continues on from the methodology and

experiments presented in the conference paper Experimental Analysis of a
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Wireless Sensor Network in a Multi-Chamber Metal Environment, evaluat-

ing two more complex scenarios: a shore-based, full-sized, operational ship’s

engine room training facility and a naval ship’s engine room. These new

scenarios include the study of the effect of operating marine machinery.

• David Rojas and John Barrett. A Novel 3D Embedded Module for Dis-

placement Measurement in Metal Structures, IEEE Transactions on Com-

ponents, Packaging and Manufacturing Technology. Volume: 7, Issue: 11,

Nov. 2017. The inductive sensor is presented in this paper, including the

characterisation in one and two axes and the study of the effects of differ-

ent variables, as well as the description of the module integration and the

design of the two testing rigs.

• David Rojas and John Barrett. A Hardware-Software WSN Platform for

Machine and Structural Monitoring, 28th Irish Signals and Systems Con-

ference. Killarney, Ireland, pp. 1-6, June 2017. The design, development,

and laboratory testing of the health monitoring module is presented, as well

as the firmware-software platform and whole-systems integration approach.

• David Rojas and John Barrett. Experimental Analysis of a Wireless Sen-

sor Network in a Multi-Chamber Metal Environment, Proceedings of the

22nd European Wireless Conference (European Wireless 2016). Oulu, Fin-

land, pp. 1-6, May 2016. A first study of a WSN in a scenario composed

of several freight containers is shown in this paper, with a multi-variable

experiment design to assess the possible effects of these variables in the

wireless communication performance.

• Ramona Marfievici, Pablo Corbalan, David Rojas, Alan McGibney, Susan

Rea, and Dirk Pesch. Tales from the C130 Horror Room: A Wireless Sensor

Network Story in a Data Center, FAILSAFE’17, the 1st ACM International

Workshop on the Engineering of Reliable, Robust, and Secure Embedded

Wireless Sensing Systems. Delft, The Netherlands, pp. 24-31, November

2017. A study on a high-metal content data centre scenario is presented in

this collaborative paper. Connectivity issues that were causing failures were
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found and fixed by applying the methodologies developed for the marine

scenarios in this research.

7.4 Future research

The systems integration research in this thesis has achieved the objectives of de-

signing, developing, packaging, connecting and testing of wireless sensor modules

for monitoring marine structures and devices. It has been shown that these mod-

ules in particular and WSN technologies in general can work reliably in these

scenarios. However, future research has also been highlighted.

The ideal validation of the systems integration concept would be long-term

deployment of a large WSN in an exposed marine environment. However, this

was beyond the time and resources available and only more limited validations

were possible. This means that problems or weaknesses not evident from these

limited validations could be exposed by a long-term deployment, particularly in

reliability. However, the first steps were taken in showing that such a large-

scale deployment would be justified based on the success of the deployments

reported in this thesis. For a long-term deployment, a real application would

need to be developed, to be able to remotely monitor and control the status of

the network. This application would have to be built on top of the developed

software platform, and it would include one or more remotely controlled sinks

acting as gateways connected to internet. This way, a network of nodes can be

deployed in a structure, e.g. a bridge, ship, or off-shore platform to collect and

analyse the data. This would help further the adoption of these technologies in

industrial real-world applications.

Another area of interest could focus on developing data and signal processing

algorithms to be run in the nodes, which would improve the features of both

modules. This opens up a wide area of research, as different problems can be

investigated, such as data compression or methods that could detect early failures

in the node, saving power. However, it is very challenging to implement these type

of algorithms in low-power microcontrollers, and it is a topic that goes beyond

the scope of the research objectives of this thesis. It may become easier in the

near future to do this as chip companies are launching low-power designs with
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embedded algorithm/AI processing to meet demands for edge-processing in the

IoT. It is a very promising area of research for reliability prognostics.

Although the inductive sensor has been tested in laboratory test rigs as a

proof-of-concept, it would need further testing in structural applications, as well

as characterisation of the effect of environmental variables, to be validated in real-

world environments. The steps to validate this sensor module for real structural

applications would be: first, to develop a high precision, possibly automated

testing setup that can identify the actual resolution of the sensor module in

different configurations. This testing setup will include not only plate/sensor

displacement but actual beam/plate bending. Second, to deploy several nodes in

a real structure that suffers frequent movement, e.g. the ‘Shakey’ bridge where

the health monitoring module was deployed.

Finally, the wireless characterisation experiments have proven the feasibil-

ity of a WSN deployment in different metal marine scenarios. However, it has

only been tested using TelosB devices, as the testing tool (Trident) is based on

TinyOS and is therefore limited to be used with older radio ICs. If Trident is

ported to ContikiOS, newer ICs will also be supported, such as those used for

the sensor modules in this thesis. This opens up the possibility of evaluating

how the improved sensitivity and resistance against multi-path fading of newer

chips actually affects the performance in these networks. With this, the core of

Trident could be incorporated in the Contiki-Shell based firmware application

developed in this thesis and, in this way, periodic connectivity assessments can

be run remotely from the deployed network to detect if there have been changes

in the environment and reassess the network reliability.
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Appendix B

CAD 3D-printed parts
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B.2 Inductive module test setup support parts
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B.2 Inductive module test setup support parts
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B.3 SMHM module box and LED pivot
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Appendix C

Firmware and Software

C.1 Firmware

• contiki code: This contains the firmware developed for both wireless sens-

ing modules. The contiki folder has the unmodified Contiki 2.6 core, while

the rest of the folders include all the firmware specifically developed for this

thesis.

Download: http://www.davidrojas.co.uk/contiki_code.zip

C.2 Software

• wirelessPyGTW: This contains the software scripts and UI developed in

Python and Qt to control and manage the network of sensing modules.

Download: http://www.davidrojas.co.uk/wirelessPyGTW.zip

• trident scripts: This contains the python scripts developed to analyse and

plot the raw data from the Trident wireless characterisation experiments

reported in this thesis.

Download: http://www.davidrojas.co.uk/trident_scripts.zip
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