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ABSTRACT
This paper reviews recent research relating to the application of bioinformatics approaches to
determining HIV-1 protease specificity, outlines outstanding issues, and presents a new approach to
addressing these issues. Leading machine learning theory for the problem currently suggests that
the direct encoding of the physicochemical properties of the amino acid substrates is not required
for optimal performance. A number of amino acid encoding approaches which incorporate
potentially relevant physicochemical properties of the substrate are identified, and are evaluated
using a nonlinear task decomposition based neuroevolution algorithm. The results are evaluated,
and compared against a recent benchmark set on a nonlinear classifier using only amino acid
sequence and identity information. Ensembles of these nonlinear classifiers using the
physicochemical properties of the substrate are demonstrated to consistently outperform the
recently published state-of-the-art linear support vector machine based approach in out-of-sample
evaluations.
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Introduction

Human immunodeficiency virus (HIV) is the causative
agent of AIDS (acquired immunodeficiency syndrome).1,2

For the HIV virus to become infectious, it must mature to
its virion stage, allowing it to travel between cells. HIV enc-
odes many of the proteins required for its lifecycle in poly-
peptide chains which must be cleaved to produce several
different structural and functional peptides. To achieve
this, HIV also encodes theHIV-1 protease.3 The specificity
of HIV-1 protease allows it to cleave the viral Gag and
Gag-Pol precursor polyproteins.4

According to figures released by the World Health
Organization (WHO), the AIDS epidemic was responsi-
ble for between 1.4 and 1.7 million deaths globally in
2013.5 Although no cure for HIV or AIDS has been
found, this number has decreased since 2005. In the
United States of America, HIV incidence is stable at
50,000 per year.6 One approach which has contributed to
the reduction in AIDS deaths is the use of a protease
inhibitor, which binds to the active site of the HIV-1 pro-
tease preventing it from functioning correctly. This inter-
rupts an essential part of the HIV maturation process,
rendering it noninfectious. HIV is however a highly

robust virus, where it is estimated that, in an infected
individual, every possible single-point mutation can
occur between 104 and 105 times per day.7 For a given
protease inhibitor, it is likely that resistant variations of
the strain will eventually evolve.8 Therefore, to design
efficient inhibitors or cocktails of inhibitors that are able
to combat the robustness of HIV, a thorough under-
standing of the protease specificity is required.9

The dataset

The activity of the HIV-1 protease-peptide interaction
is dictated by the 4 amino acids at either side of a scis-
sile bond, forming the substrate of the protease.10 The
AAs in this 8 amino acid area (8-mer/octamer) are
labeled { P4, P3, P2, P1, P10, P20, P30, P40} under the
typically used nomenclature introduced by Schechter
and Berger,11 with the protease active site, if it exists,
located between positions P1 and P10.

As each letter in the octamer has 20 different possi-
ble identities, there are 208 (25,600,000,000) possible 8
character amino acid sequences. With numbers such
as this, it is unrealistic to define the specificity through
brute force laboratory work. Focus has therefore
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turned to the use of machine learning approaches to
generalize classifications for octamers as matching or
not matching HIV-1 protease specificity, given a sub-
set of octamers for which the specificity of HIV-1 pro-
tease has been defined.12

The data used in this case study was taken from
the UCI machine learning data repository.13 Each
exemplar has 2 attributes: an 8 letter string repre-
senting the 8 amino acids in the P4 to P40 loca-
tions, and a label, “1” or “¡1,” representing
whether this octamer would be cleaved (case) or
not cleaved (control) respectively by the HIV-1
protease at the P1-P10 site. The allowed alphabet
for the character string representing the octamer is
{A,R,N,D,C,Q,E,G,H,I,L,K,M,F,P,S,T,W,Y,V}, each
representing a different common amino acid. The
dataset is comprised of 4 separately published
datasets:

� 746: 746 exemplars (401 cleaved, 345 noncleaved)14

� 1625: 1,625 exemplars (374 cleaved, 1251
noncleaved)8

� Schilling: 3,272 exemplars (434 cleaved, 2,838
noncleaved)15

� Impens: 947 exemplars (149 cleaved, 798 non-
cleaved)collected from 4 publications16-19

This corresponds to a total of 6,590 exemplars, of
which 1,358 represent HIV-1 protease cleavages.
These 4 data sets contain 740 repeated exemplars, and
10 octamers with different classifications in different
sets. Removing the conflicting exemplars and reducing
the repeated exemplars each to a single instance, low-
ers the count to 5830 exemplars, of which 991 repre-
sent octamers cleavable by the HIV-1 protease. The
available data represents roughly 0.00002% of the pos-
sible combinations.

Literature review

Much of machine learning research identified on this
topic relates to the definition and encoding the
octamer sequences in a manner suitable for interpreta-
tion by a machine learning algorithm. Given a limited
number of exemplars, the training algorithm can learn
patterns in the training data (typically a sample of the
full distribution) which are not reflected in the full dis-
tribution, i.e., the learning algorithm will overfit the
training data.20 Removing irrelevant and redundant
features can produce more robust classifiers which are
more resilient to overfitting,21 as well as reducing the

complexity and computation time of the solutions.22

Therefore, dimensionality reduction has been a very
active topic in this domain.

A critical review of work in this field up to 2007 is
presented in the paper “Bioinformatic approaches for
modeling the substrate specificity of HIV-1 protease: an
overview,” by R€ognvaldsson, You and Garwicz.23

Much of the work carried out up to this point uses
only a very limited number of exemplars. Addition-
ally, as discussed in the review, many of the exemplars
were generated using a single point mutation on
known cleavages, representing a very biased sampling
and likely the introduction of artificial patterns in the
dataset.

The 2004 paper “Why neural networks should not
be used for HIV-1 protease cleavage site prediction,” by
R€ognvaldsson and You, noted that nonlinear classi-
fiers such as the Multilayer Perceptron offered no
advantage for this problem over simple linear classi-
fiers (typically considered less powerful) such as the
perceptron or SVM using a linear kernel (LSVM),
when orthogonal encoding is employed.24 In orthogo-
nal encoding, each of the 20 amino acids is repre-
sented by a unique 20 bit binary vector comprising
19 00s and a single 1. This approach encodes only the
identities and sequence of the amino acids, without
any direct encoding of their physicochemical proper-
ties. However, given sufficient data, this encoding can
be used to indirectly learn relevant properties of the
amino acids. Recently (March 2015), a paper entitled
“State of the art prediction of HIV-1 protease cleavage
sites,” by R€ognvaldsson, You and Garwicz, was pub-
lished in the journal Bioinformatics, which purports
that, in the context of increased data availability,
the “state of the art” for this problem is achieved using
an LSVM and orthogonal encoding, which outper-
forms a number of direct physicochemical encodings
combined with an SVM using a (nonlinear) radial
basis function kernel (RSVM).25 The good perfor-
mance for orthogonal encoding combined with linear
classifiers on this problem has been corroborated by a
number of sources.

In contrast to this, other recent work on the topic
purports good performance when the physicochemical
properties of the amino acids are directly encoded,
although much of this work has been carried out on
much smaller data sets. Under this encoding, the use
of nonlinear classifiers also appears more relevant. A
recently published example by Niu et al. evaluated a
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set of 30 physicochemical properties of the amino
acids at specific offsets from the scissile bond, e.g. the
“normalized frequency of coil” for the amino acid at
position P1.26 The feature set was identified by carry-
ing out a filtering operation on the AAindex database,
which defines numerous scales relating to a range of
properties of the 20 coding amino acids.27 An Ada-
Boost (Adaptive Boosting) approach was applied to
classify the reduced feature set.28 The results achieved
were positive, and the relevance of many of the fea-
tures identified by their algorithm could be rational-
ized a posteriori in the context of HIV-1 protease,
suggesting credibility to the power of the filtering algo-
rithm used, and the relevance of numerous physico-
chemical properties to defining specificity of HIV-1
protease.

The work of Nanni and Lumini also suggests that
physicochemical properties can be used to increase
performance over orthogonal encoding.29 Under their
MppS (multiple physicochemical properties and sup-
port vector machines) algorithm, relevant physico-
chemical properties are selected from the AAindex
database using a sequential forward floating selection
(SFFS) algorithm. Individual LSVMs are trained using
a singular different physicochemical property. The
SVMs were combined into an ensemble and their col-
lective output selected using the “max rule.”

€Ozt€urk et al.30 present a novel hybrid algorithm to
reduce the dimensionality of orthogonal encoding
which looks at the overlap between 2 separate feature
selection algorithms; consistency based, and an SVM
based method of Recursive Feature Elimination
(RFE). €Ozt€urk et al. also highlight combining orthogo-
nal encoding and physicochemical properties as an
approach to improving performance.

Song et al. developed the PROSPER (Protease spec-
ificity prediction server) web server for the identifica-
tion of target cleavage sites for 24 different proteases,
including the HIV-1 protease, using a combination of
sequence and structure characteristics.31 The features
used are orthogonal encoding, secondary structure
(using PSIPRED32), solvent accessibility (using
SCRATCH33), and flexible areas of peptide which are
not static in conformation (using DISOPRED234). An
SVM with an RBF kernel is used to classify the
exemplars.

G€ok and €Ozcerit evaluated a feature set, denoted
OETMAP, combining orthogonal encoding with
physicochemical properties of the amino acids.35

Physicochemical properties are encoded for each
amino acid using a binary vector representing mem-
bership of 10 respective groups: {small, tiny, proline,
charged, negative, positive, hydrophobic, polar, aro-
matic, aliphatic}, as defined by Taylor et al..36

Although G€ok and €Ozcerit found the use of OETMAP
encoding to offer an improvement over orthogonal
encoding, later evaluations by R€ognvaldsson et al. on
a larger dataset found it to in fact be inferior to
orthogonal encoding.25

Later work by G€ok further evaluated the use of
physicochemical properties.37 Each of the 544 physi-
cochemical properties in the AAindex was evaluated
individually using an encoding where the non-zero
values in an orthogonal encoding are replaced by the
corresponding value from the scale.38 The perfor-
mance of the top 10, 20, and 30 most relevant physico-
chemical scales identified using this approach were
evaluated. The use of 20 features per amino acid was
shown to outperform orthogonal encoding, but per-
formance was reduced when the best 10 or 30 features
were evaluated. An LSVM outperformed an RSVM
when both were trained on this physicochemical fea-
ture set.

Newell evaluated a number of typical feature selec-
tion algorithms on synthetic active substrates and
found that even the best algorithms identified mostly
incorrect features, and were, in general, only able to
detect simple or extremely strong features with confi-
dence.39 Following this observation, Newell introduces
a new algorithm, which uses the background probabil-
ity of observing each amino acid to adjust the signifi-
cance placed on localized sequence features (sets of
amino acids at particular positions) identified in the
training data. The approach is capable of detecting
first order features that are over or under-represented,
or higher order features that are over-represented.

Li et al. employ a nonlinear dimensionality reduc-
tion, to reduce the features in orthogonally encoded
octamers.40 An SVM is used to classify the reduced
feature set. Their results show that the information
relevant to the specificity of the HIV-1 protease in
orthogonal encoding can be maintained in a reduced
dimensionality.

Similarly, Kim et al. introduced the FS-MLP feature
selection algorithm to reduce the orthogonal encoding
from 160 bits to 14 key features.41 FS-MLP is a 2 stage
process in which a trained MLP is evaluated using a
heuristic approach to test combinations of input
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vectors to evaluate which produce an activation value
above a pre-selected threshold. A decision tree, a sim-
ple perceptron and an LSVM were evaluated on the
reduced feature set, and all were shown to offer an
improvement over the full feature set. The 14 feature
vector suggested by Kim et al. was evaluated briefly by
us, by training an LSVM on the {746, 1625, Schilling}
data set, and testing it on the Impens dataset. The per-
formance in terms of area under the curve for the
receiver operating characteristic (ROC-AUC)42 was
observed to drop from 0.900 to 0.834 compared to
standard orthogonal encoding.

Jaeger and Chen43 suggest a new reduced feature set
in which each amino acid is represented by 4 real val-
ued scales; hydropathy index, molecular mass, polarity
and occurrence percentage. The occurrence percentage
describes the average occurrence of each particular
amino acid calculated from a set of more than 1150
proteins. This feature set is used to train a multiple
classifier systems (MCS) comprising neural networks,
SVMs, and decision trees. An RSVM was shown to
out-perform an LSVM in these experiments.

Nanni and Lumini44 evaluate the use of ensem-
bles using different feature encodings and demon-
strate that ensembles can outperform stand-alone
methods. The best performance was achieved using
an ensemble with 3 different feature sets; 1) a vari-
ation of the quasi-residue couple model, 2) a selec-
tion of physicochemical properties, and 3) a
method for reducing the alphabet from 20 amino
acids to a set value. Orthogonal encoding was also
shown to be inferior to both the quasi-residue cou-
ple model and the physicochemical properties
individually.

Later work by Nanni and Lumini evaluated a
number of different encoding methods.45 By apply-
ing principal component analysis to the AAIndex,
they were able to identify a set of 19 physicochemi-
cal properties (denoted PC19) that best describe the
variance of the database. The feature set was evalu-
ated using an RSVM. Notably, performance was
further increased when the orthogonal and PC19
encodings are combined. The suitability of the
PC19 data set was evaluated for the research car-
ried out here by training an RSVM using the
parameters provided by Nanni and Lumini on the
{746, 1625, Schilling} dataset, and evaluating it on
the Impens data set. The classifier achieved an
accuracy of 88.49%, and an ROC-AUC of 0.899.

Yuan et al.46 present an approach which builds
heavily on previous research of Nanni and Lumini,45

by combining features extracted from the AAindex
database using PCA, with features extracted by Non-
linear Fisher transform, and orthogonal encoding.
The work of Yuan et al. goes further by reducing the
resultant feature vectors from 160, 152 and 144 values,
to 120, 124 and 106 values for orthogonal, PCA and
Fisher transform encoding respectively. Both the PCA
and Fisher feature sets are demonstrated to
outperform orthogonal encoding in a number of
experiments.

The performance of the Fisher feature set was eval-
uated by us, by training an RSVM on the {746, 1625,
Schilling} dataset using this encoding, and evaluating
it on the Impens data set. The RSVM performed well,
achieving an accuracy of 88.7% and an ROC-AUC of
0.898. An RSVM trained on a 456 feature vector com-
bining orthogonal encoding with the PCA and Fisher
feature sets, and using parameters suggested by Yuan
et al. achieved an accuracy of 85.22% and an
ROC-AUC of 0.881 when tested on the Impens data-
set, much lower than the performance rates suggested
by the experiments of Yuan et al.

Recent work by Nanni and Lumini in this field
relates to representing the octamer as an 8£8 matrix
instead of the typical vector based encoding.47 The
matrix represents both the sequence information and
a selected physicochemical scale.48 The matrix is then
treated as an image, and a texture descriptor taken
from image processing theory is applied to character-
ize the key features, which in turn form the inputs to a
standard classifier. Using the matrix based representa-
tion was shown to give lower performance than the
standard vector based encoding, but offered improved
performance when combined with the standard vector
encoding for HIV-1 protease specificity.49

O�gul noted that existing approaches tended to use
the identities or properties of the amino acids at spe-
cific sites, but did not directly consider potential inter-
actions between amino acids in the substrate.50 O�gul
used a modified version of the variable order Markov
model to represent this information. Very positive
results were reported, but the evaluations were limited
to the 1625 data set.

It is typical for the physicochemical properties of
the substrate to play a role in the specificity of a prote-
ase. Proteases preferentially cleave substrates within
extended loop regions,31 while properties such as
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hydrophobicity can affect the solvent accessible area of
the substrate.51 Additionally, previous wet lab research
has suggested that HIV-1 protease specificity depends
on the conformation of the substrate, rather than the
recognition of specific amino acids.20 Orthogonal
encoding, as was employed in the recently published
state of the art for detecting HIV-1 protease cleavage
points in a peptide,25 can be considered only an indi-
rect encoding of such properties of the amino acids
from which the learning algorithm must derive its
own interpretation and estimates of values. However,
it is not apparent if there is currently sufficient avail-
able training data (and of sufficient quality) to allow
the learning algorithms to infer these properties opti-
mally from an orthogonal encoding. Indeed, a number
of the papers highlighted in the literature review pur-
port improved performance through the use of the
direct encoding of relevant physicochemical proper-
ties. The previous definition of the problem as linear
relates to when orthogonal encoding is employed, but
the use of physiochemical scales are a lossy lower
dimensional encoding of the substrate, under which
the problem does not necessarily maintain its linear
separability.

A diversity matrix is presented in Table 1 summa-
rizing the different approaches stated in the reviewed
papers to addressing the problem. There is a large
amount of support in the literature for both the rele-
vance and irrelevance of physicochemical properties
to HIV-1 protease specificity.

MFF-NEAT

The literature reviewed supports the assumption that
orthogonal encoding is preferably handled with a lin-
ear classifier, but direct physicochemical encoding,
which is also likely beneficial, typically requires a

nonlinear classifier. If physicochemical properties are
used in conjunction with the orthogonal encoding, it
is unclear if standard learning algorithms would be
able to handle both these sets of information optimally
in conjunction with each other, or indeed if the 2 sets
of data are best handled independently. Therefore, the
classifier selected for evaluating combinations of dis-
parate encodings should be capable of automatically
identifying and handling multiple distinct patterns
appropriately from a dataset. For this reason, the
MFF-NEAT (modular feed forward neuroevolution of
augmenting topologies) classifier was selected for this
evaluation.52 MFF-NEAT is a topology and weight
evolving algorithm for artificial neural networks. It is
a modification to the standard NEAT algorithm which
adds the potential for automatic task decomposition to
build and train solution models with a mixture-of-
experts architecture.53

NEAT is a robust neuroevolution algorithm based
on 3 key concepts: complexification, speciation, and
principled crossover.54 In complexification, the initial
solutions are minimalist, comprising only the input
and output neurons connected by synapses. Over time
new neurons and synapses are added through muta-
tion to increase the complexity of the solution archi-
tectures. Architectural additions which don’t improve
performance are not expected to propagate through
the population. Speciation identifies how similar solu-
tions are by tracking the lineage of the architectural
additions, and is used to maintain diversity in the pop-
ulation. Principled crossover uses the lineage tracking
to limit crossover to common genes across solutions
when producing children to minimize the “competing
conventions problem.”55

A solution produced by MFF-NEAT here is
referred to as a “system” comprising a “gating net-
work” and zero or more “expert networks.” The

Table 1. Diversity matrix of the different approaches taken to defining HIV-1 specificity, as noted in the literature reviewed. [�] denotes
future planned work.

Reference

Approach 24 26 29 30 31 35 37 40 41 43 44 45 46 47 49

Orthogonal Encoding (or variant thereof) x x x x x x x x x x
Physicochemical Properties x x x x x x x x x x
Combines OE and Physicochemical properties [�] x x x x x
Sequence/structure information x x x x
Dimensionality reduction/feature selection x x x x x x x x x x x x
Linear classifier x x x x x x x x x x x
Nonlinear Classifier x x x x x x x x x x x
Ensemble x x [�] x x x x
Claims to outperform OE x x x x x x x
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number of expert networks and the individual net-
work architectures are dictated by the algorithm given
the problem. To evaluate an input vector, it is first
applied to each expert network. The original input
vector and the outputs of the expert networks form
the input vector to the gating network, which gener-
ates the overall output of the system. The expert net-
works do not work as an ensemble; none of the
networks individually may work as a classifier for the
problem. The expert networks are trained to deal with
patterns in the data which may not directly or inde-
pendently corresponding to classifier outputs. MFF-
NEAT harnesses the complexification, speciation, and
principled crossover of the NEAT algorithm, co-
evolves a population of expert networks, and employs
a form of negative correlation to assemble the expert
and gating networks into complete systems. An exam-
ple of a simple MFF-NEAT system is presented in
Fig. 1.

Initial systems comprise only a gating network.
Both the expert and gating networks are evolved using
standard NEAT operators, but are speciated

independently. Performance is recorded on each indi-
vidual training exemplar in a structure referred to as a
“coverage vector.” The coverage vector of a system is
simply the performance of the system on each exem-
plar. The coverage vector of an expert species is calcu-
lated by sampling the performance of different
systems that employ that expert network species. Each
new expert species identified is recorded in an “expert
archive” with the associated coverage vector and a
holotype of that species. The negative correlation uses
the coverage vectors of the systems and the coverage
vector recorded for each species to determine the spe-
cies of expert network to add to a system. An expert of
that species is then spawned from the population or
the holotype, and added to the system. Expert net-
works are connected to a system by adding an addi-
tional input neuron to the gating network. When a
maximum number of expert networks allowed for a
system is reached, mutation allows for swapping of
the expert networks.

Although MFF-NEAT was designed to increase
coverage of the search space by maintaining diversity

Figure 1. Sample architecture produced by MFF-NEAT for a feature set with 4 inputs and 3 outputs.
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of the solutions, the population members can settle on
suboptimal solutions known as local minima due to
the greediness of genetic algorithms. If functionality
desirable for the improvement of a system is not being
evolved elsewhere in the population, the advantages of
the MFF-NEAT system are limited. The previously
published algorithm was modified here to address this
short coming, through the spawning of an island
which runs another instance of the algorithm,56 but
which focuses training only on the exemplars handled
poorly by the best performing system. The island
starts with a completely new population of solutions
and its own empty expert archive. After a number of
generations, useful expert network species identified
in the island can be made available to systems in the
main population through adding them to the original
expert archive.

The task decomposition provided by MFF-NEAT
should allow it to optimally combine features of differ-
ent encodings, or handle them independently as rele-
vant, but also be able to isolate and handle relevant
subsets of features without the need for an external
dimensionality reduction algorithm. The MFF-NEAT
software is available by e-mail.

Encodings

Based on the literature review, a number of different
encodings of the physicochemical properties of the
amino acid substrate were identified which were con-
sidered to potentially provide information relevant to
defining the specificity of HIV-1 protease. An over-
view of the encodings is provided in Table 2.

The z-Scales
The z-Scales are a set of 5 real valued principal proper-
ties for describing the variance of amino acids. The
scales were derived using PCA from a larger set of
physicochemical properties by Hellberg et al. and

Sandberg et al.57,58 The scales used in this research
correspond to hydrophobicity, steric properties, polar-
izability, polarity, and electronic effects.

Physicochemical group
The physicochemical group corresponds to a set of 7
real valued scales taken from the AAindex database.
The 7 values selected relate to the volume, mass,
hydrophobicity, surface area, and the propensity to
form an a-helix, b-strand and turn.59,60

Hydrophobicity group
This encoding places each amino acid into 1 of
3 groups, {{D,E,N,Q,R,K}, {C,S,T,P,G,H,Y}, {A,M,I,L,
V,F,W}}, corresponding to whether the amino acid is
considered hydrophobic, hydrophilic or neutral.59

Membership of the groups is encoded as a 3 bit
orthogonal vector per amino acid.60

BLOMAP
BLOMAP uses the BLOSUM62 substitution matrix
and the nonlinear Sammon projection to map the
information in the matrix to a lower dimensionality
(5 real values per amino acid) while retaining relevant
information about the relationships between the
amino acids.60

Exchange (substitution) group
This encoding represents the groupings of amino acids
which have a propensity to be substituted in homolo-
gous sequences through evolution, as derived from a
PAM (Point accepted mutation) matrix.59 The groups
are as follows: {{H,R,K}, {D,E,N,Q}, {C}, {S,T,P,A,G},
{M,I,L,V}, {F,Y,W}}. Each amino acid is encoded as a
6 bit binary vector.60

Orthogonal, PC19, Fisher, and Niu encoding are
described in the literature review.

Table 2. Selection of amino acid encoding formats identified in the literature review.

Encoding Attributes(per amino acid) Attributes(per Octamer) Type

Z Scales 5 40 Real Valued
Physicochemical 7 56 Real Valued
Hydrophobicity Group 3 24 Binary
BLOMAP 5 40 Real Valued
Exchange Group 6 48 Binary
Orthogonal 20 160 Binary
PC19 19 152 Real Valued
Nonlinear Fisher transform 18 144 Real Valued
Niu – 30 Real Valued
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Results

The importance of out of sample testing has been well
defined for the HIV-1 protease specificity problem.8,25

For this reason, the {746, 1625, Schilling} data sets
were used for training the classifiers and the Impens
dataset used to evaluate the classifiers. The Impens
data set was selected for generating the performance
measures as it has not been used in the definition or
evaluation of any of the physicochemical encodings
we wish to evaluate, removing the possibility of a
resubstitution error. Additionally, a benchmark has
been published for this experiment using the current
state of the art approach.25

Individual classifiers

Several instances were identified in the literature
review where it was noted that superior performance
was achieved by combining the use of orthogonal or
physicochemical encoding, over the performance of
either individually.30,31,35,46 Given this information, it
was decided that each physicochemical encoding
should be evaluated in conjunction with orthogonal
encoding. Additional evaluations were carried out
using combinations of the most promising feature
sets: {Orthogonal, Physicochemical, Niu}, {Orthogo-
nal, Physicochemical, Niu, z-Scales}, and combining
the most promising feature set {Orthogonal, Physico-
chemical, Niu} with the occurrence percentage, as
defined by Jaeger.

Twenty training sets were generated from the {746,
1625, Schilling} datasets using the approach described
in the Methods section. Each data set was used to train
MFF-NEAT classifiers using 10 different alternative
amino acid encodings approaches. Summary statistics
for each encoding method evaluated on the Impens

dataset in terms of ROC-AUC are presented in
Table 3. Accuracy is defined as ((true positives C true
negatives) / (true positives C true negatives C false
negatives C false positives)) at a threshold of 0.5. The
columns IQR, 1Q and 3Q correspond to the values for
the interquartile range, the first quartile and third
quartile respectively.

MFF-NEAT ensembles

In the literature review, a number of examples have
been identified where performance on determining
the HIV-1 protease specificity has been improved
through the use of ensembles of classifiers.26,29,44,47,49

Therefore, the set of 20 MFF-NEAT classifiers trained
using each encoding was also evaluated as a single
ensemble using the sum rule. The results are presented
in Table 4. The performance of the ensembles in terms
of ROC-AUC relative to the ensemble members is
presented graphically by the solid black dots in Fig. 2.
The whiskers show the maximum and minimum per-
formance of individual classifiers within 1.5 times the
interquartile range of the upper and lower quartiles
respectively. The performance of individual classifiers
outside the whiskers, denoted by the hollow circles,
can be considered outliers.61

Further evaluation of the {Orthogonal, Niu,
Physicochemical} encoding

For the most promising encoding set identified, an
additional 80 MFF-NEAT classifiers were trained
using different samplings of the training data. The dis-
tribution of the performance of the full set of 100 clas-
sifiers using the {Orthogonal, Niu, Physicochemical}
encoding, evaluated individually, is presented in
Fig. 3. The performance of the 100 classifiers taken as

Table 3. Summary statistics for the evaluated amino acid encoding approaches. Each row represents the performance of classifiers
trained on same 20 samplings of the {746, 1625, Schilling} dataset and evaluated on the Impens data set. The performance of the LSVM
using orthogonal encoding trained on the 20 samplings is included for reference. Results are rounded to 3 decimal places.

Encoding Classifier Median Min Max 1Q 3Q IQR

{Orthogonal} LSVM 0.895 0.888 0.901 0.893 0.897 0.004
{Orthogonal, Niu} MFF-NEAT 0.898 0.869 0.907 0.888 0.902 0.014
{Orthogonal, Physicochemical} MFF-NEAT 0.897 0.888 0.910 0.891 0.903 0.012
{Orthogonal, BLOMAP} MFF-NEAT 0.897 0.881 0.913 0.893 0.902 0.009
{Orthogonal, Niu, Physicochemical, Occurrence} MFF-NEAT 0.896 0.866 0.908 0.882 0.904 0.022
{Orthogonal, Niu, Physicochemical} MFF-NEAT 0.894 0.873 0.911 0.888 0.903 0.014
{Orthogonal, Niu, Physicochemical, z-Scales} MFF-NEAT 0.888 0.854 0.909 0.877 0.893 0.016
{Orthogonal} MFF-NEAT 0.886 0.854 0.908 0.878 0.894 0.016
{Orthogonal, z-Scales} MFF-NEAT 0.885 0.868 0.910 0.874 0.897 0.023
{Orthogonal, PC19} MFF-NEAT 0.885 0.862 0.896 0.876 0.892 0.016
{Orthogonal, Fisher} MFF-NEAT 0.882 0.857 0.899 0.874 0.895 0.021
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an ensemble is presented in Table 5. To evaluate the
potential error of the evaluation of the ensemble for
this encoding presented in Fig. 2, the distribution of
performances of 100 ensembles of size 20 taken from
the pool of 100 is given in Fig. 4.

Discussion

From the presented results, it appears that a single
LSVM using orthogonal encoding can in general out-
perform a single MFF-NEAT classifier employing
direct encoding of physicochemical properties. Each
of the 100 training sets used to generate Figs. 3 and 4,
was used to train an LSVM with orthogonal encoding,
and the results compared against the corresponding
MFF-NEAT classifiers using the {Orthogonal, Niu,
Physicochemical} encoding. The LSVM achieved supe-
rior results to the MFF-NEAT classifier in 63% of the
cases in terms of ROC-AUC. The average ROC-AUC
over the 100 test sets were 0.896 and 0.892 for LSVM
and MFF-NEAT respectively, corresponding to a
0.46% performance decrease for the best MFF-NEAT
approach. Although the difference in performance is
low, suggesting consistency, a p value of 0.002392 was
generated by a paired student’s t-Test on the results.

It can therefore be stated with confidence that the
LSVM approach is able to outperform an MFF-NEAT
classifier trained using the most promising physico-
chemical based encoding evaluated here.

However, it appears that, when taken as an ensem-
ble, the use of physicochemical properties combined
with nonlinear classifiers give a consistent improve-
ment in performance over the LSVM benchmark pre-
sented in Table 6 using tuned parameters, the
benchmark published by R€ognvaldsson et al.,25 and the
ensemble of LSVMs presented in Table 4. Although
the performance of each LSVM classifier is good, the
advantage gained by combining the different perspec-
tives appears limited. Conversely, despite the fact that,
in general, the performance of the MFF-NEAT classi-
fiers individually was weaker than that of the SVM, the
diversity of the solutions appears to have led to
increased generalization on the Impens data set when
combined. The under-performance of the individual
MFF-NEAT classifiers and the low performance of the
LSVM classifiers relative to the MFF-NEAT ensembles
suggest that neither the LSVM nor MFF-NEAT classi-
fiers may be best suited to this problem.

If the entire set of cleaved and noncleaved octamers
were available, there is evidence to suggest orthogonal

Table 4. The performance of the classifiers used to generate Table 3 for each amino acid encoding approach, when taken as an
ensemble.

Encoding Classifier Accuracy ROC-AUC

{Orthogonal} LSVM 0.910 0.898
{Orthogonal, Niu} MFF-NEAT 0.908 0.904
{Orthogonal, Physicochemical} MFF-NEAT 0.913 0.911
{Orthogonal, BLOMAP} MFF-NEAT 0.912 0.912
{Orthogonal, Niu, Physicochemical, Occurrence} MFF-NEAT 0.912 0.910
{Orthogonal, Niu, Physicochemical} MFF-NEAT 0.911 0.917
{Orthogonal, Niu, Physicochemical, z-Scales} MFF-NEAT 0.909 0.913
{Orthogonal} MFF-NEAT 0.907 0.900
{Orthogonal, z-Scales} MFF-NEAT 0.911 0.905
{Orthogonal, PC19} MFF-NEAT 0.909 0.903
{Orthogonal, Fisher} MFF-NEAT 0.908 0.904

Figure 2. ROC-AUC performance of each amino acid encoding evaluated as an ensemble of size 20 (solid black dot) overlapped with the
performance of the individual classifiers used in each ensemble, represented as a box plot.
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encoding and linear classifiers would be sufficient to
completely describe the problem. However, the
amount of training data currently available is limited,
which appears to restrict how well the learning algo-
rithms can infer the mappings from a high level repre-
sentation such as orthogonal encoding. In the context
of limited data being available, a good classifier
requires good generalization ability, and directly
encoding relevant properties does appear to amelio-
rate performance. From both Table 4 and Fig. 2 it can
be observed that the selection of physicochemical fea-
tures to include in the input vector does impact per-
formance, and indicates that MFF-NEAT is indeed
able to take advantage of this additional information,
where relevant, providing an increased performance
relative to the use of orthogonal encoding only.

Next we examine the performance of the 100 classi-
fiers trained using the {Niu, Physicochemical, Orthog-
onal} feature encoding. The distribution of the
performance of the classifiers taken individually, as
presented in Fig. 3, is roughly consistent with the dis-
tribution of the 20 classifier subset used in Fig. 2,
meaning that the 20 classifiers used in the earlier
experiments is a representative sampling. From Fig. 4,
it appears that the performance of the ensemble for
the {Niu, Physicochemical, Orthogonal} feature
encoding set presented in Fig. 2 is at the high end of
what we should expect from this encoding (overly
optimistic). The interquartile range in Fig. 4, however,
still represents a good level of performance relative to
the LSVM benchmark. Using the full set of 100 classi-
fiers as a single ensemble actually reduced the perfor-
mance, as shown in Table 5. This was later verified by
charting the average performance of 100 different

ensembles for each ensemble size ranging from 2 to 40
in steps of 2 (data not shown). Performance was
observed to fit a curve which peaked at an ensemble
size of 18, followed by a steady decline. In the same
experiment, the resubstitution error for the full {746,
1625, Schilling} dataset continued to decrease with the
increase in ensemble size, so it appears as though the
larger ensembles are overfitting the training data.

HIV-1 protease specificity is a high dimensional
problem, with limited exemplars, where even the rele-
vant input features are under debate. The scope of the
problem, limited amount of data, biased sampling,
potentially misclassified data, and importance of
underrepresented patterns make this data set repre-
sentative of common problems encountered in bioin-
formatics. These properties make it a very appealing
benchmark for putative machine learning bioinfor-
matics tools such as MFF-NEAT.

In this paper, we have improved accuracy in pre-
dicting HIV-1 protease specificity through the com-
bination of direct encoding of physicochemical
properties and ensembles of nonlinear classifiers.
However, the specific classifier used, although offer-
ing robust performance across all experiments, is
not considered as optimal for this problem. Addi-
tionally, although the physicochemical properties
worked well, it is likely that improvement can be
made through further refining the input vector fea-
tures. In light of these findings, future work will
focus on the definition of a reduced set of the
physicochemical properties that are relevant to
describing the protease substrate, as well as interro-
gating previously unused properties, prior to the
evaluation of different classifiers. The potential

Figure 3. Distribution of the performances of the 100 classifiers trained using the {Orthogonal, Niu, Physicochemical} encoding in terms
of ROC-AUC. The performances of the 20 classifiers used in Fig. 2 for the same encoding are included for reference.

Table 5. Performance of an ensemble of 100 MFF-NEAT classifiers using {Niu, Physicochemical, Orthogonal} encoding, trained on various
samplings of the {746, 1625, Schilling} dataset and evaluated on the Impens data set. An ensemble of LSVMs trained on the same sam-
plings is included for reference.

Encoding Classifier Ensemble size Accuracy ROC-AUC

{Orthogonal, Niu, Physicochemical} MFF-NEAT 100 0.911 0.906
{Orthogonal} LSVM 100 0.911 0.900
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transfer of this research to other related topics will
also be investigated.

Methods

Parameter selection

For the MFF-NEAT algorithm, the parameters used
were as specified in the previously published evalua-
tions, with 2 exceptions. Firstly, the expert speciation
threshold was made more dynamic to account for the
wider range of network sizes resultant from the range
in cardinality of the input vectors evaluated. The
expert network speciation threshold was initially set as
((number inputs � number outputs) / 10), and
adjusted such that 1 new expert species was added to
the archive approximately every 10 generations, i.e.,
the expert archive should have roughly 200 elements
after 2000 generations. Secondly, the parameters used
for controlling the islands are novel as this modifica-
tion had not previously been published. The island
was set to run for 500 additional generations at the
500th generation.

For the LSVMs, the only parameter that requires
tuning is the C value. The published state of the art
evaluated a range of C values where log(C) D {0, 0.25,
0.5, 0.75…… 4.75, 5}, but the actual selected value is
not provided.25 Each C value in this range was reeval-
uated by training an LSVM on 80% of the data in the
{746, 1625, Schilling} datasets, and evaluating it on the
remaining 20%. For each C value, this was repeated
10 times using different samplings of the data. Using
this approach, the value selected for C for setting a
benchmark LSVM performance on generalization to
the Impens data set was 1.284, favoring the highest
average ROC-AUC, as suggested by R€ognvaldsson
et al.25 The performance achieved when training an

LSVM on the full {746, 1625, Schilling} dataset, and
testing on the Impens data set is presented in Table 6.
The performance achieved is close to the benchmark
published by R€ognvaldsson et al..25

Generating the training data

For out-of-sampling testing on the Impens dataset, the
{746, 1625, Schilling} data sets were combined to form
a single set of 5643 exemplars. The 9 exemplars of the
same octamer, but with different classifications across
datasets were removed. Reducing the repeated exem-
plars to a single instance each further reduced the size
of the data set from 5625 to 4955, comprising 852 case
and 4103 control exemplars. The experimental design
which was decided upon requires 100 different per-
mutations of the dataset. Generating the 100 data sets
a priori rather than randomly at runtime allows the
same datasets to be reused across evaluations of differ-
ent encodings, and allows evaluation of the results
using paired t-tests.

For each permutation, the first 80% of the case
exemplars, and first 80% of the control exemplars
were designated the “training set,” and the remainder
designated the “generalization set.” The training set is
used to set the weights of the classifiers. As neural net-
works are susceptible to over training,62 the generali-
zation set is used to select the best generalizing
classifier. Each training set at this point contained 681
case exemplars and 3282 control exemplars. This cor-
responds roughly to a ratio of 1:4.82 for case to control
exemplars. Neural networks however have poor ability
to intelligently handle imbalanced training data.63 To
reduce the impact of this imbalance on the training of
the MFF-NEAT algorithm, the number of control
exemplars in the training set is randomly under-
sampled such that the ratio of case to control was
reduced to 1:3. This ratio was selected as it had previ-
ously been used successfully in the construction of the
PROSPER web server31 as well as other similar proj-
ects.64,65 The generalization set remained unchanged.
Therefore, each training set comprised 681 case and
2043 control exemplars, and each corresponding

Figure 4. The distribution of ROC-AUC performances of 100 different ensembles each of size 20 taken from a pool of 100 classifiers using
the {Orthogonal, Niu, Physicochemical} encoding.

Table 6. Performance of an LSVM on the Impens dataset, when
trained on the full {746, 1625, Schilling} data set, using a value of
1.284 for C.

Classifier Accuracy ROC-AUC

LSVM - Orthogonal 0.893 0.894
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generalization set comprised 171 case and 821 control
exemplars.

Abbreviations

AA amino acid
AUC area under the curve.

HIV-1 human immunodeficiency virus type 1
LSVM SVM with a linear kernel

MFF-NEAT modular feedforward neuroevolution
of augmenting topologies

ROC receiver operating characteristic
RSVM SVM with a radial basis function (RBF)

kernel
SVM support vector machine
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