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An overwhelming array of structural variants has evolved from a
comparatively small number of protein structural domains;
which has in turn facilitated an expanse of functional derivatives.
Herein, I review the primary mechanisms which have
contributed to the vastness of our existing, and expanding,
protein repertoires. Protein function prediction strategies, both
sequence and structure based, are also discussed and their
associated strengths and weaknesses assessed.

Introduction

While Louis Sullivan’s assertion that “form follows function” is
true of most man-made structures; in protein science the reverse is
true—function follows form.

Data from the most recent large scale sequencing projects has
facilitated detailed descriptions of the constituent protein
repertoires of more than 600 distinct organisms.1 Taking protein
domains (clusters of 50–200 conserved residues) to represent
units of evolution, as well as their more usual designation as
structural/functional motifs, it is possible to accurately trace the
evolutionary relationships of approximately half of these proteins.2

Until recently, in the absence of any experimental evidence,
homology-based transfer remained the gold standard for ascribing
a functional role to such newly identified proteins.3 Based on this
approach, if a query protein shares significant sequence similarity
(suggesting a common evolutionary origin) to a protein of
known function, then the function of the latter (subject) may be
transferred to the former (query protein). However, as the
databases continue to expand at an exponential rate, the utility of
homology based prediction methods continues to contract, with
fewer query proteins registering significant hits to known proteins.

Herein, I review the current knowledge on protein evolution
with a specific focus on how gene duplications, sequence
divergence and domain combinations have shaped protein
evolution. Furthermore, the most recent advances in the field of
automated function prediction (AFP) are discussed, along with
the future challenges and outstanding questions which still remain
to be answered.

What is Shaping Protein Structure?

Duplication. Of the animal genomes sequenced to date, the
proportion of matched domains which are the result of duplica-
tions is estimated at between 93% and 97%.4 Indeed, the hemo-
globins, which were the first homologous proteins to have their
structure determined, are perhaps the best example of how
duplication (and subsequent mutational events) has given rise to
subtle structural and functional variations such as oxygen binding
profiles.5 Furthermore, in addition to the generation of whole
protein homologs, partial gene duplications resulting in domain
duplication and elongation are also common features of protein
evolution.6 In many cases such enlargements have resulted from
the addition of sub-domains, variability in loop length and/or
changes to the structural core, such as β-sheet extensions.
Examples of such protein duplication events include cutinase
and bovine bile-salt activated cholesterol esterase (Fig. 1). While
cutinase is the smallest enzyme of the a/β hydrolases, with five
strands in the main β-sheet,7 bovine bile-salt activated cholesterol
esterase has 11 strands and loop structures up to 79 residues
in length.8

Divergence. There are essentially two types of protein
structural divergence: changes to the proteins surface or peripheral
regions (e.g., surface loops, surfaces helices and strands on the
edges of β-sheets) and the less common but far more detrimental
modifications to the proteins interior or core.9 Indeed, it has been
demonstrated that mutations in the protein surface are four times
more biologically acceptable than those in the interior.1 In
support of this is the observation that pairs of homologous
proteins with identities of approximately 20% have been shown to
exhibit up to 50% divergence in the peripheral regions alone.10

In addition to subtle changes resulting from missense point
mutations leading to single amino acid substitutions and the
resulting gradual divergence in structure and function, more
radical divergence of structure, mediated by domain shuffling
(recombination or permutation) has also been reported.11 Circular
permutations (CPs) in particular represent a specific form of
recombination event which is characterized by the presence of the
same protein sub-sequences in the same linear order but different
positions of the N and C termini,12 in essence CP of a protein can
be visualized as if its original termini were linked and new ones
created elsewhere (Fig. 2). First observed in plant lectins,14 a
substantial number of natural examples of CP have been reported;
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indeed, some 120 protein clusters which appear to have segments
of their sequences in different sequential order are reported in the
Circular Permutation Database.15 In addition to natural evolu-
tionary processes, artificial CPs have been engineered in an effort
to study protein folding properties as well as the design of more
efficient enzymes.16 A circularly permuted streptavidin for
example has been designed to remove the flexible polypeptide
loop that undergoes an open to closed conformational change
when biotin is bound. The original termini have been joined by a
tetrapeptide linker, and four loop residues have been removed,
resulting in the creation of new N- and C-termini.17

While domain shuffling may have dramatic effects on protein
structure, protein homologs usually conserve their catalytic
mechanisms, i.e., the relative positions of their functional active
sites or catalytic residues may shift but they retain their functional
activity. This usually occurs when divergence induces structural
changes in the catalytic region, thus necessitating a reconfigura-
tion of the position of the catalytic residues in order to maintain
function.18 In several cases, while the functionally equivalent
residues are located at non-homologous positions on the protein’s

3D structure, the catalytic residues themselves are identical. An
example of this is chloramphenicol acetyltransferase (PaXAT) and
UDP-N-acetylglucosamine acyltransferase (LpxA) both of which
contain an essential histidine residue thought to be involved in
deprotonation of a hydroxyl group in their individual substrates.
However, these residues are located at different points within the
protein fold; in LpxA, the histidine is located in the core of the
domain,19 whereas in PaXAT, it occurs in a loop extending from
the solenoid structure.

Thus, two proteins may have quite divergent structures and/or
sequences while retaining similar function; such proteins are said
to be functional analogs. Such analogs may also arise as a result of
convergent evolution; that is, they do not diverge from a common
ancestor but instead arise independently and converge on the
same active configuration as a result of natural selection for a
particular biochemical function. L-aspartate aminotransferase and
D-amino acid aminotransferase provide excellent examples of con-
vergently evolved functional analogs. Despite having a strikingly
similar arrangement of residues in their active sites, the two
proteins have completely different architectures; differing in size,
amino acid sequence and in the fold of the protein domains.

Conversely, certain proteins share significant sequence and/or
structure similarity but differ in terms of substrate specificity or
indeed catalytic function. An example of such structural analogs,
which arise by means of divergent evolution from a single
ancestor, include Human IL-10 (hIL-10); a cytokine that modu-
lates diverse immune responses and the Epstein-Barr virus (EBV)
IL-10 homolog (vIL-10). Although vIL-10 suppresses inflammat-
ory responses like hIL-10, it cannot activate many other immune-
stimulatory functions performed by the cellular cytokine.20

Combination. While the evolutionary impact of duplication
and divergence on protein sequence, structure and function is
obvious, multi-domain proteins are, for the most part, the result
of gene combinations.21 Such combinations can give rise to
domain recruitment and enlargement and can significantly affect

Figure 1. Protein duplication. Partial gene duplications resulting in domain duplication and elongation are common features of protein evolution. An
example of such a protein duplication event is observed between cutinase and bovine bile-salt activated cholesterol esterase. While cutinase (A) is the
smallest enzyme of the a/b hydrolases, with five strands in the main b-sheet, bovine bile-salt activated cholesterol esterase (B) has 11 strands, and loop
structures up to 79 residues in length.

Figure 2. A schematic example of a circular permutation. The original
termini (left) are fused to form a continuous part of the chain and new
termini are formed by cutting the polypeptide chain elsewhere (right).
Reproduced with permission from Uliel et al.13
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both protein structure/stability and function. For example, in the
case of domain recruitment the addition of an accessory domain
may affect protein function by modulating substrate selectivity;
achieved either by the addition of a binding site, or, by playing a
purely structural role, shaping the existing active site to accommo-
date substrates of different shapes and/or sizes.18 For example,
prokaryotic methionine aminopeptidase exists as a monomeric
single-domain protein while creatinase, is a two-domain protein.
The additional domain of the second subunit of creatinase
caps the active site allowing the binding of the small molecule
creatine.22

What is Protein Function?

Before commencing any discussion on protein function prediction
we must first consider what is meant by “function.” Biological
function is highly contextual; different aspects of the function of a
given protein may be viewed as occurring in different scales of
space and time from the almost instantaneous enzymatic reactions
to the much slower overall biological process.23 Knowing which
functional aspect is being investigated is thus extremely important
and can only properly be achieved by the establishment of a
standardized machine readable vocabulary.

Fortunately, significant progress has been made in the
computer science arena in developing the theory and application
of structured machine readable vocabularies, known as ontologies,
which provide a formal explicit specification of a commonly used
abstract model of the world.24 Ontologies not only allow formal
definition of concepts, but also enable the creation of software
tools capable of reasoning about the properties and relationships
of a domain. Formats such as the Resource Description
Framework (RDF) and the Web Ontology Language (OWL)
have been devised that allow ontological concepts to be persisted
and communicated. RDF, for example, allows the creation of
statements about a particular domain by the use of triples in the
form of subject-predicate-object expressions. The subject and
object represents a concept, whereas the predicate defines the
relationship between them.

Detailed ontologies can be created by composing further
defining concepts and relationships that model the domain of
interest. Ontologies that define different aspects of proteins could
be used to annotate biological data with functional facets and
provide the basis of a framework for machine based reasoning.

The Gene Ontology (GO)25 goes some way to achieving this
goal, formulizing a definition of functional context and providing
machine—legible functional annotation. GO has three “ontology
trees” describing three aspects of gene product function:
Molecular function, biological process and cellular location. By
providing a standard vocabulary and defining relationships
between terms, annotations can be computationally processed,26

thus providing a standard approach for programs to output their
functional predictions.

Having defined biological “function” and the means of
describing such functions we can now turn our attention to the
various function prediction programs, and their associated
strengths and weaknesses.

Protein Function Prediction Methods

Protein function prediction methods can be loosely divided into
sequence and structure based approaches. Herein, I outline the
current state of the art for sequence and structure based protein
function prediction.

Sequence based approaches. Homology-based transfer.
Homology-based transfer, using programs such as BLAST,27 is
perhaps the most widely used form of computational function
prediction method; assigning un-annotated proteins with the
function of their annotated homologs. The rationale for this
approach is based on the assumption that two sequences with a
high degree of similarity most likely evolved from a common
ancestor and thus must have similar functions.

While sequence similarity is undoubtedly correlated with
functional similarity, exceptions have been observed on both ends
of the similarity scale. Rost,28 for example, showed that even at
high sequence similarity rates, enzymatic function may not
necessarily be conserved, while Galperin et al.29 observed that
enzymes that are analogous on the basis of sequence dissimilarity
are in fact homologous. While such errors are the exception rather
than the rule, they may set the seed for further annotation errors;
as more sequences enter the databases, more are annotated by
homology-based transfer, thus helping to propagate and amplify
the original single erroneous annotation.30,31

Furthermore, as the databases continue to expand the utility of
the homology-based transfer approach begins to beak-down. The
recent explosion of large scale metagenomic sequencing projects32

has resulted in an unprecedented amount of novel sequence being
deposited in the databases. As a direct consequence of this
sequence expansion, the number of clustered similar proteins for
which no single annotated reference sequence exists is expanding
rapidly, eroding the foundations of the homology-based transfer
approach. Indeed, it has been estimated that , 35% of all
proteins could be annotated automatically when accepting errors
of # 5%, while even allowing for error rates of. 40% there is no
annotation for . 30% of all proteins.33

Sequence Motifs. Typically of the 100–300 amino acids in a
functional protein domain , 10% constitute the protein’s active
sites.34 Therefore, homology-based transfer from a complete
protein is often not necessary to predict a protein’s function. All
that is required is a sequence (or structure) based signature which
is associated with a particular function. Such signatures may occur
at a single position on the sequence or as a “fingerprint” composed
of several such patters. A few databases are dedicated to motif
searching; PROSITE35 for example is composed of manually
selected biologically important motifs and has three types of
signatures: patterns, rules and profiles. Each signature represents a
different automated method for searching motifs; while patterns
and rules typically span only a few residues (e.g., A typical
entry in PROSITE would be [ST]-x(2)-[DE], i.e. a serine or
threonine, followed by any two residues, followed by aspartate
or glutamate—the consensus sequence of a Casein kinase II
phosphorylation site) profiles extend the similarity to the level
of entire domains. Other well-known motif databases include
BLOCKS36 and PRINTS.37
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Genomic context and expression based prediction methods.
Genomic context based prediction, also referred to as phylo-
genomic profiling is a method for predicting protein function
based on the observation that proteins with similar pedigrees
(inter-genomic profiles) are believed to have evolved in tandem
and as such are likely to share a common function.38 Furthermore,
in prokaryote genomes the loci of functionally related proteins
tend to be co-located on the chromosome (Fig. 3A). Combining
co-evolution and co-location (chromosomal proximity) has given
rise to a new generation of function-prediction algorithms such as
Phydbac2.44

As an extension of co-location, genes involved in similar cellular
functions also tend to be co-transcribed (Fig. 3B). Following this
logic unknown genes co-expressed with known genes may be
functionally annotated by virtue of association. This “guilt by
association” approach has given rise to an algorithm of the same
name, developed by Walker et al.,45 for the analysis of gene
expression arrays. Unlike the sequence motif based approach
which focuses on molecular function annotation; expression
microarray based predictions are useful for annotation of the
cellular aspect of protein function. Furthermore, given that most
cellular processes are performed by groups of physically interacting
proteins, it is fair to assume that such interacting proteins have

similar overall cellular functions. Thus, protein-protein inter-
action (PPI) data may also facilitate protein function annotation
and several PPI databases are now available such as STRING—a
database of known and predicted PPIs.46

Structure based approaches. Given that protein structure is far
more conserved than sequence, many proteins which exhibit little
or no sequence similarities, due to evolutionary constraints still
retain significant structure similarity.47 In this respect structure is
a useful indicator of function; indeed most known protein folds
are associated with a particular function or functional milieu.18

Programs that scan the Protein Data Bank (PDB) for structural
similarity given a query sequence include, among others,
FATCAT,48 PAST49 and VAST.50 However, knowledge of 3D
protein structure alone is not always sufficient to accurately infer
function. Indeed, it is estimated that functional hypotheses can be
made from 3D structures for only ~20–50% of hypothetical
proteins.51,52

Rather than focusing on the protein as a whole, it is possible,
and in some instances more desirable, to target 3D motifs
associated with specific functions (e.g., binding sites or active
sites). The rational for analyzing structure motifs (or patterns) is
analogous to that of sequence patterns—to identify unique
signatures indicative of a particular function. Libraries of 3D
motifs with known function have begun to evolve,53 one example
of which is PROCAT,54 a database of 3D enzyme active sites that
can be queried for specific functional signatures. In addition,
hybrid motifs incorporating information from sequence and
structure, as well as from the literature, have also been used to
predict protein function.55

Conclusions and Future Prospects

Herein, I have discussed how mechanisms such as gene duplica-
tion, sequence divergence and domain combinations56 have
shaped protein evolution and how the retention of sequence
and/or structural domains has facilitated the tracking of this
evolutionary process through the millennia. I have also introduced
the far more complex issue of protein function elucidation
wherein, in contrast to protein structure in which the data are
either known or easily predicted, the multifaceted and ambiguous
nature of biological function makes its elucidation a far more
complex endeavor. The complexity of the problem is perhaps best
illustrated by Jeffrey’s57 so called “moonlighting proteins” which
perform several contextually different functions, ranging from the
molecular to the cellular level. Thus, given the aggregate nature of
protein function prediction, perhaps the best outcome will be
achieved by adopting a multifaceted approach. For example, while
biochemical function prediction is likely best served by focusing
on sequence motifs, resolution of physiological function is better
addressed at the genomic level, based for example on microarray
expression data. Therefore, composite methods, employing a
diversity of features to assess different functional aspects, are
most likely to succeed. Examples of such aggregate functional
prediction programs include InterPro, ProKnow and ProFunc,
which utilize several data sources and/or algorithms to predict
function.

Figure 3. Genomic context based prediction. In prokaryote genomes
the loci of functionally related proteins tend to be co-located on
the chromosome; an example of this are the membrane bound ABC
transport proteins OpuC and OpuB(BilE) of Listeria monocytogenes which
are separated by only 2.4 Kb39 on the listerial chromosome and
contribute to bile resistance in this gastrointestinal pathogen.40-43 As an
extension of chromosomal proximity, genes involved in similar cellular
functions also tend to be co-transcribed as has also been shown to
be the case with opuC and opuB(bilE).40
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However, despite the emergence of ever more sophisticated and
versatile function prediction algorithms; the proper assessment
of such programs still remains a significant limitation to the
development of the field. Unlike assessment of protein structure,
function prediction methods still lack a viable blind benchmark
for which to assess program efficacy. This obstacle may eventually
be overcome by emulating successful collaborative efforts of
computational and experimental structural biologists in the form

of CASP (Critical Assessment of Structure Prediction) for the
benchmarking of protein structure.

Note

R.D.S. is an ESCMID Research Fellow. This article is based on a
Chapter entitled Prediction of Protein Functions in Functional
Genomics: Methods and Protocols, edited by Michael Kaufmann
and Claudia Klinger.
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