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Bacteriophages �MR299-2 and �NH-4 Can Eliminate Pseudomonas
aeruginosa in the Murine Lung and on Cystic Fibrosis Lung Airway
Cells

Debebe Alemayehu,a,b Pat G. Casey,b Olivia McAuliffe,a Caitriona M. Guinane,a,b James G. Martin,c Fergus Shanahan,b,d Aidan Coffey,e

R. Paul Ross,a,b and Colin Hillb,f

TEAGASC Food Research Centre, Moorepark, Fermoy, Co. Cork, Irelanda; Alimentary Pharmabiotic Centre, University College Cork, Cork, Irelandb; Meakins-Christie
Laboratories and Department of Medicine, McGill University, Montreal, Canadac; Department of Medicine, University College Cork, Cork, Irelandd; Department of
Biological Sciences, Cork Institute of Technology, Cork, Irelande; and Department of Microbiology, University College Cork, Cork, Irelandf

ABSTRACT Pseudomonas aeruginosa is a common cause of infection in the lungs of patients with cystic fibrosis (CF). In addition,
biofilm formation and antibiotic resistance of Pseudomonas are major problems that can complicate antibiotic therapy. We eval-
uated the efficacy of using bacteriophages to kill the pathogen in both biofilms and in the murine lung. We isolated and charac-
terized two phages from a local wastewater treatment plant, a myovirus (�NH-4) and a podovirus (�MR299-2). Both phages
were active against clinical isolates of P. aeruginosa. Together, the two phages killed all 9 clinical isolate strains tested, including
both mucoid and nonmucoid strains. An equal mixture of the two phages was effective in killing P. aeruginosa NH57388A (mu-
coid) and P. aeruginosa MR299 (nonmucoid) strains when growing as a biofilm on a cystic fibrosis bronchial epithelial
CFBE41o- cell line. Phage titers increased almost 100-fold over a 24-h period, confirming replication of the phage. Furthermore,
the phage mix was also effective in killing the pathogen in murine lungs containing 1 � 107 to 2 � 107 P. aeruginosa. Pseudomo-
nas was effectively cleared (reduced by a magnitude of at least 3 to 4 log units) from murine lungs in 6 h. Our study demonstrates
the efficacy of these two phages in killing clinical Pseudomonas isolates in the murine lung or as a biofilm on a pulmonary cell
line and supports the growing interest in using phage therapy for the control and treatment of multidrug-resistant Pseudomonas
lung infections in CF patients.

IMPORTANCE Given the rise in antibiotic resistance, nonantibiotic therapies are required for the treatment of infection. This is
particularly true for the treatment of Pseudomonas infection in patients with cystic fibrosis. We have identified two bacterial
viruses (bacteriophages) that can kill Pseudomonas growing on human lung cells and in an animal model of lung infection. The
use of bacteriophages is particularly appropriate because the killing agent can replicate on the target cell, generating fresh copies
of the bacteriophage. Thus, in the presence of a target, the killing agent multiplies. By using two bacteriophages we can reduce
the risk of resistant colonies developing at the site of infection. Bacteriophage therapy is an exciting field, and this study repre-
sents an important demonstration of efficacy in validated infection models.
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Cystic fibrosis (CF) is an inherited genetic disorder that chron-
ically affects the lungs and digestive system (pancreas and in-

testine) of children and adults worldwide. CF also affects the mu-
cus and glands of the liver, sinuses, and sex organs causing
progressive disability due to multiorgan system failure. CF results
from mutations in the transmembrane conductance regulator
gene (1–3). The defective enzyme leads to the production of un-
usually thick and sticky mucus and high levels of chloride contain-
ing secretions into ducts and body cavities. These secretions clog
the lungs, leading to life-threatening infections (4, 5).

The lungs of CF patients are often colonized at infancy or in
early childhood with Pseudomonas aeruginosa that may damage
the epithelial surface, resulting in altered airway physiology and
impairment of mucocillary clearance. This chronic infection is

one of the main causes of lung function decline and mortality in
CF patients (6, 7). Indeed, 80 to 95% of patients with CF succumb
to respiratory failure brought about by chronic bacterial infection
and concomitant airway inflammation (7). P. aeruginosa is partic-
ularly persistent in the lungs due to its aerobic nature and its
ability to form biofilms in the lungs of CF patients. Another sig-
nificant factor is the inherent resistance of P. aeruginosa to many
antibiotics due to membrane impermeability (8–12). Other ac-
quired mechanisms of resistance include production of
�-lactamases and carbapenemases (13) and multidrug efflux
pumps (14). It has also been noted that the most prevalent and
severe chronic lung infections in CF patients are caused by mucoid
P. aeruginosa strains (4, 11, 15).

Reports have shown that organisms in biofilms are able to tol-

RESEARCH ARTICLE

March/April 2012 Volume 3 Issue 2 e00029-12 ® mbio.asm.org 1

 on January 11, 2020 by guest
http://m

bio.asm
.org/

D
ow

nloaded from
 

mbio.asm.org
http://mbio.asm.org/


erate 10- to 1,000-fold-higher levels of antibiotics than planktonic
bacteria (16, 17), and this can mean that the antibiotic concentra-
tion needed to eradicate a biofilm is higher than the peak serum
concentration (18), rendering it ineffective. The continued emer-
gence and reemergence of biofilm-forming Pseudomonas resistant
to one or more antibiotics pose a continuous challenge in the
treatment of lung infections in CF patients. As a result, there is a
need for alternative, nonantibiotic approaches such as phage ther-
apy (19, 20). Although phage therapy has been practiced in East-
ern European countries for decades, it has been neglected by the
Western world for many years. However, there is now a growing
interest in the use of phage therapy for the control and treatment
of multidrug-resistant bacterial infections in general, and for
Pseudomonas lung infections in CF patients in particular. Studies
on phage efficacy in clearing of biofilms formed on abiotic sur-
faces (catheters and microtiter plates) by P. aeruginosa confirmed
that phage can reduce the bacterial load in these biofilms by 50 to
99% (21, 22). A recent in vitro study showed that Pseudomonas
phage PT-6 was able to reduce the viscosity of alginate polymers
extracted from P. aeruginosa by almost 65%, a mechanism used by
phages to attack the exopolysaccharide matrix of mucoid Pseu-
domonas to gain access to the host cell (23). Recent reports show
the promising role phage therapy could play in the treatment of
acute lung infections in an in vivo murine lung model with
P. aeruginosa (24, 25) and Burkholderia cenocepacia (26). The ef-
fectiveness of phage therapy in rescuing larvae (an invertebrate
infection model) infected with Burkholderia cepacia complex from
death was reported by Seed and Dennis (27).

Currently, there is little information concerning the effect of
bacteriophage on biofilms growing on a lung tissue model. In this
report, we describe how a mixture of two newly isolated phages
can kill and clear lux-tagged Pseudomonas from the lungs of in-
fected mice and in biofilms growing on the surface of a cystic
fibrosis bronchial epithelial (CFBE41o-) monolayer. In this study,
we used bioluminescence imaging—a powerful tool for studying
bacterial infections in small-animal models, since it allows accu-
rate real-time in vivo temporal and spatial tracking of tagged bac-
teria in living animals (25, 28). Monitoring the light emitted by
tagged Pseudomonas cells in vivo was a valuable tool in verifying
the effectiveness of the phage mix to kill the pathogen. Pseudomo-
nas cell numbers were reduced by a magnitude of 3 to 4 log units
when the phage mix was tested in both in vivo and in vitro systems.

RESULTS
Isolation of phage from a sewage treatment plant. The overall
aim of this study was to assess the potential of bacteriophage ther-
apy to treat Pseudomonas lung infections. We initially isolated two
phages, �NH-4 and �MR299-2, from sewage obtained from a
water treatment plant. Both phages were demonstrated to be vir-
ulent to P. aeruginosa. Scanning electron microscopy revealed that
phage �MR299-2 virions have isometric capsids of 40 to 60 nm in
diameter and very short tails measuring 10 to 20 nm (Fig. 1A).
Morphologically, phage �MR299-2 shows similarity to Pseu-
domonas �Pap3 (29), a podovirus that has an isometric capsid and
short tail. We have assigned �MR299-2 to type species coliphage
T7 and to the family Podoviridae (Report of the International
Committee on Taxonomy of Viruses [30, 31]). Phage �NH-4 pos-
sessed an isometric capsid of 50 to 60 nm in diameter and a con-
tractile nonflexible tail with cross striations (noncontracted tail
length of 150 nm and contracted tail length of 85 nm; tail diameter

of 20 nm when contracted). In addition, a putative DNA injecting
structure of 70 nm in length (narrower than the contracted tail
sheath) and tail fibers were observed (Fig. 1B). Morphologically,
�NH-4 shows similarity to �PB1, �LBL3, and �SN that are clas-
sified into the T4 morphological group of the Myoviridae (32). On
the basis of structural characteristics obtained from the micro-
scopic analysis, we assign �NH-4 as a member of the Myoviridae
family according to the International Committee on Taxonomy of
Viruses (30, 31).

An equal ratio of �NH-4 and �MR299-2 was used in all exper-
iments to assess their ability to kill Pseudomonas. The host range of
�NH-4 and �MR299-2 was determined by exposing different CF
Pseudomonas isolates to each individual phage using a plaque as-
say. Of the ten Pseudomonas isolates tested, eight were sensitive to
both phages, while all were sensitive to at least one phage (Ta-
ble 1). When the �299-2 and �NH-4 phages were added to Pseu-
domonas in LB broth either separately or in combination, the in-
dividual phage resulted in reduction of 3 to 4 log units while the
combination of the two resulted in a reduction of about 4.5 log
units (see Table S1 in the supplemental material).

Phage genome overview. Before phage can be used in human
therapy, it is important to assess any potential risk associated with
the phage genomes such as the presence of genetic determinants
for toxins or other virulence factors or for the capability to inte-
grate into the host genome. The complete sequences of phages
�299-2 and �NH-4 were determined using 454 pyrosequencing.
Phage �299-2 consists of a double-stranded DNA (dsDNA) mol-
ecule of 44,789 bp with a GC content of 52%, significantly lower

FIG 1 Scanning electron microscopy images of phage �229-2, a podophage
(A) and phage �NH-4, a myophage (B), stained with 0.2% phosphotungstic
acid. The arrows point to the short tail (10 to 20 nm long) of the podophage in
panel A and to the contracted tail sheath of the myovirus in panel B.
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than the 66.6% of P. aeruginosa. Both the genome size and GC
content of this phage are similar to the closely related Pseudomo-
nas phage �PaP3 (29). A total of 68 open reading frames (ORFs)
are predicted, 21 of which have a leftward orientation and 47 of
which are transcribed to the right (Fig. 2). Three tRNA genes
(tRNAAsn, tRNAAsp, and tRNAPro) were also identified in phage
�299-2, clustered at the 5’ end of the genome. While �299-2 is a
lytic phage, comparative genomic analysis revealed that its closest
homolog is the temperate Pseudomonas phage, �PaP3 (29), iso-
lated from hospital sewage. Interestingly, a recent study calls into
question the temperate nature of �PaP3, since no site-specific
recombinase is encoded up- or downstream of the �PaP3 attP site,
and immunity or reactivation of the integrated �PaP3 DNA was
not demonstrated (33). Of the 68 predicted protein products of
�299-2, 56 display the highest amino acid identity to proteins
from �PaP3 (see Table S3 in the supplemental material). Among
these are proteins involved in particle formation (ORF03, ORF04,
ORF06, and ORF07), genome replication (ORF29, ORF33/40, en-

coding DNA polymerase I subunits and ORF41, a putative pri-
mase/helicase), a putative lysozyme-like endolysin (ORF02) and
47 proteins of hypothetical function. A conserved genomic orga-
nization is also evident on comparing �299-2 to �PaP3. The re-
maining 12 ORFs show significant identity to proteins from the
lytic Pseudomonas phage LUZ24 (33). According to Ceyssens et al.,
�PaP3 and �LUZ24 represent a new genus within the Podoviridae
family (33). Considering the close relationship between �299-2
and �PaP3 and �LUZ24, it is likely that �299-2 also belongs to
this genus.

Phage �NH-4 is a member of the widespread and conserved
PB1-like viruses, with a genome of 66,116 bp and a GC content of
55.5%, also significantly lower than that of its host. A total of 94
ORFs were identified in the sequence; the predicted protein prod-
ucts of 56 of these ORFs have the highest amino acid identity to
�LMA2 (ST4), isolated from a river in Maastricht, Holland, in
2007 (32). Other �NH-4 proteins show significant identity to pre-
dicted proteins from PB1-like viruses such as �14-1, �SN, �LBL3,

TABLE 1 Strains and plasmids used in this study

Strain or plasmid Descriptiona

Sourceb

or reference

Sensitivityc of strain
to the following phage:

�NH-4 �MR299-2

Pseudomonas aeruginosa strains
MR299 Human CF sputum isolate CUH ��� ���
MR299::p16Slux lux-tagged MR299 This study ��� ���
NH57388A Stable mucoid CF mouse sputum isolate 20 ��� ��
NH57388A::p16Slux lux-tagged NH57388A This study ��� ��
MR300 Human CF sputum isolate CUH �� �
MR325 Human CF sputum isolate CUH � �
MR326 Human CF sputum isolate CUH ��� ��
MR327 Human CF sputum isolate CUH �� ��
MR330 Human CF sputum isolate CUH ��� ��
MR331 Human CF sputum isolate CUH �� �
CH001 Human CF sputum isolate AH ��� ���
POA1 UCC culture collection UCC ��� ��

Plasmid p16Slux lux-tagged plasmid vector 19
a UCC, University College Cork.
b CUH, Cork University Hospital (Cork, Ireland); AH, Alimentary Health Ltd. (Cork, Ireland).
c Symbols: ���, very strong lysis; ��, strong lysis; �, moderate lysis; �, no lysis.

FIG 2 Genome organization of phage �MR299-2 (top) and �NH-4 (bottom). The predicted open reading frames are indicated by the thick arrows, which are
shaded to show the level of protein identity to the corresponding regions of the closest P. aeruginosa (phage PaP3 for �MR299-2) or phage LMA2 (for �NH-4).
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�JG024, and �PB1 itself (32). As is the case with other PB1-like
viruses, the genes in �NH-4 are arranged in a compact manner
and appear to be organized into at least 7 transcriptional blocks,
alternating on both strands (Fig. 2). Based primarily on sequence
similarity to ORFs in the genomes of phages LMA2 and JG024,
genomic regions encoding phage particle formation (ORF19 to
-47) and phage DNA replication (ORF55 to -70) could be identi-
fied. ORF48 encodes a putative endolysin with 100% identity to
the endolysin of phage �LMA2 and belongs to a lysozyme-like
superfamily.

Biofilm growth by lux-tagged Pseudomonas on CFBE41o-
cell monolayer. We studied the ability of phage to penetrate and
attack Pseudomonas cells growing as biofilms on the surface of a
layer of human lung epithelial cells. CFBE41o- cells (CFBE stands
for cystic fibrosis bronchial epithelial) were grown in standard
6-well tissue culture plates, and a confluent culture with a tight
junction between cells was achieved after 8 to 10 days of incuba-
tion (12). The confluent culture was inoculated with lux-tagged
Pseudomonas strains NH57388A::p16Slux or MR299::p16Slux,
and growth was monitored in this static system for 24 h (Fig. 3A).
The addition of arginine in the minimal essential medium (MEM)
enhanced the formation of biofilms and helped preserve the in-
tegrity of the CFBE41o- cells, as suggested by Anderson et al. (12).
The amount of luminescence recorded for the growing biofilms
increased by 2 log units during the 24-h incubation (Fig. 3B).
Washing the biofilm monolayer culture twice with MEM removed

all planktonic Pseudomonas cells. The absence of motile cells and
the presence of only adhered clusters of microcolonies of various
sizes scattered across the epithelial cell monolayer were confirmed
by phase-contrast microscopy (see Fig. S2 in the supplemental
material). The amount of bioluminescence recorded after remov-
ing planktonic cells was only 25% lower than that obtained before
washing (Fig. 3A), which confirmed that the majority of Pseu-
domonas cells were adhered to the epithelial monolayer. We de-
termined the number of CFU after washing the monolayer at 2.6
� 107 to 3.8 � 107 CFU/well and 4.2 to 5.4 � 107 CFU/ well (well
area of 9.5 cm2) for strains NH57388A and MR299, respectively.

Calcofluor white, a fluorescence enhancer that binds to the
�(1–3) and �(1– 4) polysaccharide linkages found in biofilm ma-
trices produced by exopolysaccharide-producing organisms (12,
34, 35) was used to stain biofilms. The staining revealed that the
Pseudomonas cells were contained within a polysaccharide matrix
(Fig. 4A and B). The structures formed by the two Pseudomonas
strains NH57388A and MR299 measured on average 20 to 30
�m by 30 to 40 �m in diameter. The presence of abundant num-
bers of Pseudomonas cells packed in polysaccharide matrices and
attached to the cell line led us to conclude that the microcolony
structures formed on the monolayer fit the definition of biofilms.

Clearing of biofilms by phage. We examined the ability of the
mixture of phages to clear 24-h-old biofilms of P. aeruginosa
NH57388A or MR299. Calcofluor white staining revealed a
change to open and weak matrices in the presence of the �NH-4
and �MR299-2 phages, indicating considerable destruction to the
biofilm structure (Fig. 4C and D). At the same time, phage titers
increased almost 2 log units during the 24-h period, confirming
significant phage replication (Fig. 4E). The amount of lumines-
cence recorded for both Pseudomonas biofilms also decreased by 2
log units over a 24-h period (Fig. 5). In contrast, the light level
remained high and unchanged in the control biofilms (with no
phage added) over the same period. Direct plating results also
confirm that the significant reduction in light was a direct result of
the destruction of the Pseudomonas cells by the phage. The num-
bers of CFU estimated for the biofilms before phage added were
2.6 � 107 to 3.8 � 107 CFU/well and 4.2 � 107 to 5.4 � 107 CFU/
well (well area of 9.5 cm2) for strains NH57388A and MR299,
respectively, and the amount of phage added was 0.5 � 108 to 1.0
� 108/well (multiplicity of infection [MOI] of 2 to 5). During the
24-h incubation, the number of Pseudomonas cells in the biofilms
was reduced by 3 to 4 log units in the presence of phage.

Clearing of Pseudomonas from murine lungs. The ability of
phage to kill Pseudomonas in situ in the lungs of infected 8-week-
old female BALB/c mice (n � 16) was also examined (Fig. 6). In
this regard, lux tagging of Pseudomonas cells was very useful in
monitoring the fate of these cells in the lungs of infected mice. The
presence of Pseudomonas was evident in the lungs of both test and
control mice 2 h after infection. The amount of light recorded in
the control mice (without phage) increased 3-fold and reached its
maximum level after 6 h. The amount of light recorded in mice
treated with phage decreased significantly during the same period.

DISCUSSION

There has been increased interest in phage therapy as a means of
combating bacterial lung infections. However, there is little infor-
mation about the efficacy of bacteriophage in clearing Pseudomo-
nas growing on CF lung tissue or in an animal model. It has been
well documented that the CF lung environment causes normally

FIG 3 (A) Growth of lux-tagged Pseudomonas biofilms on the surface of the
CFBE410- cell monolayer. Light was measured 1, 5, and 24 h (before and after
the monolayer was washed with MEM). (B) Readings from 6 wells are shown.
Values are shown as means � standard deviations (SD) (error bars).
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motile, planktonic P. aeruginosa to form mucoid biofilms (36–
38). Our data show that 1 h after the addition of lux-tagged Pseu-
domonas cells to a CF epithelial monolayer, only a very low level of
localized light was detected. The signal then increased over 100-
fold in 24 h (Fig. 3). Washing the 24-h-old biofilm with MEM
medium resulted in 25% reduction in the amount of light, indi-
cating that 75% (2.6 � 107 to 5.4 � 107 CFU/well) of the Pseu-
domonas adhered as microcolonies over the entire surface of the
CF cell monolayer. It is well documented in the literature that

microcolony dispersal in Pseudomonas is a feature of biofilm mat-
uration (39–42).

To be effective, phage must be able to penetrate the biofilm
exopolysaccharide. This may account for the fact that it took more
time (22 to 24 h) for phage (at similar MOI) to clear Pseudomonas
growing on CFBE41o- cells than the 5 to 6 h required to clear
recently introduced planktonic cells from the lungs of infected
mice. We observed proliferation of Pseudomonas cells in the lungs
of mice in the absence of phage, whereas phage treatment pre-

FIG 4 Fluorescent image of 24-h-old culture of P. aeruginosa cells grown on a CFBE41o- cell monolayer after Calcofluor white (fluorescent enhancer) staining.
Staining confirms that P. aeruginosa NH57388A (A) and MR299 (B) are embedded in an exopolysaccharide structure prior to phage exposure. After 24-h
incubation in the presence of mixed phages, staining indicates open and weak matrices with reduced numbers of cells for both NH57388A (C) and MR299 (D).
An increase in phage titer was observed over the 24-h incubation period for both MR299 and NH57388A strains (E).

FIG 5 (A) Light emitted from nonmucoid P. aeruginosa MR299 strain and mucoid NH57388A strain grown on a CFBE410- cell monolayer for 24 h in the
presence (�) and absence (�) of phage mix. (B) The RLU values are mean � SD readings from 3 wells.
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vented growth and reduced the bacterial load to a nondetectable
level during the 6-h period. A recent study reported that the
amount of light measured in mice infected with a lux-tagged Pseu-
domonas PAK strain also decreased over 6 h when phage PAK-P1
was administered 2 h after infection (24, 25). The amount of light
increased in the control mice and in the mice that received a de-
layed phage treatment. The authors concluded that administering
phage 2 h after infection was critical to resolving infection in the
mouse model system and suggested that the efficacy of phage
needed to be tested against biofilms.

One advantage of using phage to control bacterial infection is
that they can replicate at the infection site (24). In addition to
being a very effective way of clearing Pseudomonas, the use of a
phage mix has another advantage over the use of a single phage in
that it reduces the likelihood of a phage resistance population
emerging. Different phages often use different bacterial receptors
and therefore will require independent mutations to generate re-
sistance to each phage (43). Consequently, unless mutants with
generalized resistance mechanism evolve, a mix of different
phages for which there is no cross-resistance should be able to
prevent multiple phage resistance and provide indefinite control
of bacterial population.

In conclusion, this study demonstrates that Pseudomonas
growing on a CF airway tissue monolayer could be killed by phage.
Since chronic lung infections in CF patients are associated with
Pseudomonas biofilms rather than planktonic cells, we anticipate
that biofilm clearing from lungs of CF patients by bacteriophage
might take place in a similar manner to that observed with the
exopolysaccharide-producing microcolonies growing on an epi-

thelial cell monolayer. Moreover, we subsequently demonstrate
that the same phage mix was effective in killing the pathogen in the
lungs of infected mice. Our study reinforces the growing interest
in using phage therapy as a means of attacking multidrug-resistant
CF infections.

MATERIALS AND METHODS
Bacterial strains and culture conditions. Pseudomonas strains isolated
from CF patients and used in this study are shown in Table 1. LB medium
was used throughout this study to culture Pseudomonas strains. A double-
strength LB medium was made for phage isolation by doubling the weight
of dry ingredients required to prepare single-strength LB broth. Cultures
were grown at 37°C under aerobic conditions and shaking at 180 rpm.
Solid media and soft agar overlays contained 1.5% and 0.7% agar (BD
Difco, Oxford, United Kingdom), respectively.

Transformation of Pseudomonas with p16lux plasmid. P. aeruginosa
strains NH57388A (mucoid) and MR299 (nonmucoid) were transformed
with p16Slux plasmid (44) by the method of Shen et al. (45). In brief,
Pseudomonas strains were grown in LB medium at 37°C until an optical
density (OD) at 600 nm of 0.8 is reached. To facilitate electroporation,
Pseudomonas exopolysaccharide was digested by adding alginate-lyase
(catalog no. A1603; Sigma, Japan) to a final concentration of 2 U ml�1.
The cell enzyme mixture was incubated at 37°C for 30 min. The cells were
centrifuged at 10,000 � g (4°C) for 10 min. The resultant pellet was
washed twice with chilled electroporation buffer (containing 300 mM
glucose, 5 mm CaCl2, and 25 mM HEPES in distilled water [pH 7.0]) and
resuspended in 0.1 ml of buffer (1 � 109 to 1 � 1010 CFU/ml). These
electrocompetent cells were mixed with 10 �l of p16Slux-tagged plasmid
DNA (10 �g) and incubated on ice for 10 to 15 min. The mixture was
immediately transferred to a chilled electroporation cuvette (0.2-cm elec-
trode gap Gene-pulser cuvette; Bio-Rad, Hercules, CA) and subjected to a

FIG 6 Mice (n � 8) were infected with nonmucoid P. aeruginosa MR299 (A) and mucoid NH57388A (mucoid strain) (B). Test mice (�) were treated with the
phage mix (�MR299-2 and �NH-4B). Phage was given 2 h after the mice were infected with Pseudomonas. Control mice (�) did not receive the phage mix.
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single voltage shock by applying a pulse with an ECM 630 BTX Harvard
precision pulse apparatus (Holliston, MA) at the following settings: ca-
pacitor, 25 �F; resistor, 200 �; and voltage, 2.5 kV. Immediately after the
electric shock, 900 �l of chilled SOC medium (catalog no. S1797; Sigma-
Aldrich) was added to the mixture and incubated on ice for 10 min, fol-
lowed by incubation at 30°C for 2 to 3 h. The cells were concentrated by
centrifugation at 10,000 � g (room temperature), and transformants were
obtained by plating cells on LB agar containing erythromycin (800 �g/ml)
and incubating at a permissive temperature (30°C) for 24 to 48 h. Eryr

colonies were checked for light emission using a VivoVision IVIS100 im-
aging system (Xenogen, Alameda, CA), luminescence was measured in
relative light units (RLU) (in photons second�1), and the presence of
p16Slux was confirmed by miniprep and restriction analyses. A standard
curve was generated to determine the relationship between light measure-
ments and CFU (see Fig. S3 and Table S2 in the supplemental material).

Isolation of phage from sewage. Pseudomonas phages were isolated
from fresh sewage obtained from a local sewage treatment plant as de-
scribed previously (46) with some modifications. Sewage samples were
centrifuged at 3,200 � g value (Heraeus Labofuge 400 centrifuge; Thermo
Fisher Scientific, Inc., MA) for 12 min, and the supernatant was filtered
using a 0.45-�m-pore-size filter (Sarstedt, Actiengeselischaft and Co.,
Germany). The sewage filtrate (5 ml) was mixed with an equal volume of
double-strength LB broth, supplemented with 10 mM CaCl2, and inocu-
lated with a mixture of ten CF P. aeruginosa cultures (50 �l each of 1 � 107

to 2 � 107/ml). The samples were incubated overnight aerobically (37°C)
with slow shaking (20 to 30 rpm). Following overnight incubation, the
cultures were centrifuged at 3,200 � g value for 12 min to remove bacterial
cells and debris, and the supernatant was filtered through a sterile 0.45-
�m-pore-size filter. A double-layer LB agar plate containing a lawn of
individual host culture supplemented with 10 mM CaCl2 was prepared,
and 10 �l of cell-free filtrate containing phage was applied to the plate.
The plates were examined for the presence of plaques after incubating
aerobically for 18 to 24 h at 37°C.

Plaque purification and bacteriophage titers. Phages were purified
by successive single plaque isolation and propagation. In general, a single
plaque was picked from a plate using a sterile capillary tube and added to
a mid-log-phase Pseudomonas culture (108 CFU/ml) supplemented with
10 mM CaCl2. The culture mixture and phage mixture were incubated at
37°C overnight. The lysate was filtered through a 0.45-�m-pore-size ster-
ile filter, serial dilutions were made, and plaques were allowed to form on
a lawn of the same host culture. Single plaques were purified through 3
successive rounds of plaquing and repeated three additional times after
which purified phages were obtained. Phage titer was determined as the
number of PFU/ml by plaque assay as previously described (47).

DNA extraction and restriction digestion analysis. High-titer-
purified phage suspension was prepared by concentration of phage parti-
cles from 400 ml cell lysate in LB medium to a final volume of 1 ml in
sterile ice-cold ammonium acetate (0.1 M, pH 7.2) as described before
(46), and DNA was extracted from the high-titer-purified phage as previ-
ously described (46, 48, 49). Phage DNA was digested with restriction
endonuclease EcoRI (New England Biolabs, MA) according to the suppli-
er’s recommendation, and digested samples were analyzed by gel electro-
phoresis using agarose gel (0.7%) containing ethidium bromide (SF1).

Genome sequencing and annotation. The genomes of phages �NH-4
and �299-2 were sequenced by Beckman Coulter Genomics (Sanger se-
quencing services; Beckman Coulter, Takeley, United Kingdom) on a 454
GS-FLX sequencer, and sequences were assembled into contigs using the
Newbler program (Roche Applied Sciences). The quality of the sequence
was assessed using Hawkeye (Amos) (50). To confirm phage genome
structure, primers were designed at contig ends for PCR amplification
using Platinum PCR SuperMix (Invitrogen) followed by direct sequenc-
ing of the PCR products, and full phage genome assembly was performed
using the Phred-Phrap-Consed package (51, 52). ORFs were predicted
using GLIMMER 3.02 (53). The resulting gene models were fed into GA-
MOLA (54) for annotation. Complementary annotation was provided

using the RAST annotation server (55). Data were manually curated using
Artemis version 11 (56) where additional programs were then used, in-
cluding BLASTp (57), GATU (58) and RBS finder (53). Comparative
genomics with reference phages (�PaP3 and �LMA2) were analyzed us-
ing the Artemis comparison tool (ACT) (7) and the Mauve alignment tool
(59).

Electron microscopy and phage characterization. Electron micros-
copy image of phages was obtained by applying a drop of high-titer phage
suspension (1 � 109 to 2 � 109 PFU/ml) deposited on carbon-coated
copper grids, negatively stained with 2% (wt/vol) potassium phospho-
tungstate (pH 7.2) and examined with Zeiss Supra 40VP scanning elec-
tron microscope (Carl Zeiss SMT Ltd., Cambridge, United Kingdom)
fitted with a scanning transmission electron microscope detector (STEM)
operating in bright-field mode at an accelerating voltage of 25 kV
(Moorepark National Food Imaging Centre, TEAGASC Food Research
Centre [TFRC], and Advanced Microscope Research Facility, University
College Cork, Cork, Ireland).

Cell culture and Pseudomonas biofilm formation on the surface of a
monolayer of human bronchial epithelial cells (CFBE41o- cells). Cystic
fibrosis bronchial epithelial (CFBE41o-) cell (60, 61) cultures were grown
by the method of Anderson et al. (12). In general, CFBE41o- cells were
seeded in sterile 6-well, flat-bottom tissue culture plates (Sarstedt, New-
ton, NC) at a concentration of 106 cells/well and maintained in minimal
essential medium (MEM) containing 10% fetal bovine serum, 2 mM
l-glutamate, 100 �g/ml penicillin, and 100 �g/ml streptomycin (all from
Invitrogen GIBCO, United Kingdom). The cells were grown at 37°C and
5% CO2 using a Jouan IGO150 cell life incubator (Jouan, St. Herblain,
France) for 8 to 10 days until cells form a confluent monolayer and tight
junctions. The medium (MEM) was changed every 2 or 3 days until con-
fluent growth was achieved.

For biofilm formation, lux-tagged P. aeruginosa cells were grown on
the confluent CFBE41o- cell monolayer using a coculture model system
(12). Once the monolayer growth was achieved (between 8 and 10 days),
the medium was replaced with 1.5 ml fresh MEM (without fetal bovine
serum, penicillin, and streptomycin), and lux-tagged Pseudomonas cells
were inoculated (1 � 107 to 2 � 107 CFU/well). The plates were incubated
at 37°C and 5% CO2 for 1 h. The medium containing the unattached
(planktonic) Pseudomonas cells was then removed using a sterile serolog-
ical pipette and replaced with fresh MEM supplemented with 0.4% argi-
nine and incubated for 24 h. Planktonic Pseudomonas cells were removed,
and the biofilm culture was washed twice using MEM supplemented with
0.4% arginine. The integrity of the epithelial cell monolayer and the pres-
ence of growing Pseudomonas microcolonies were assessed by phase-
contrast microscopy (Olympus IX50 inverted system microscope; Olym-
pus Co., Tokyo, Japan). Luminescence from biofilms was monitored by
Vivo Vision IVIS100 imaging system (Xenogen, Alameda, CA). Biofilm
CFU was estimated by the method of Wirtanen et al. (62) with some
modifications. A 24-h biofilm growing on an epithelial cell monolayer was
washed twice with MEM and then scraped off using a tissue culture scrap-
per and transferred to a 2-ml Eppendorf tube containing 1 ml phosphate
buffer. The tube was then vortexed thoroughly for 1 to 2 min to release the
cells. After this, the samples were then serially diluted, and a plate count
was made on a LB plate incubated at 37°C overnight.

Applying phages to biofilms and lung infections in mice. Fifty mi-
croliters of the phage mixture (1 � 109 to 2 � 109 PFU/ml of defined
phage [containing �NH-4 and �MR299-2] in a 1:1 mixture) was applied
to wells containing 24-h-old biofilms on a CFBE41o- cell monolayer, and
the plates were incubated at 37°C and 5% CO2 for 24 h. Biofilm clearing
was monitored by measuring light and images taken for times indicated,
using the IVIS100 imaging system. The lungs of 6- to 8-week-old conven-
tional female BALB/c mice (n � 16) were infected with Pseudomonas by
the method of Riedel et al. (28). The mice were infected intranasally with
50 �l lux-tagged Pseudomonas NH57388A or MR299 in phosphate buffer
(2 � 108 to 5 � 108 CFU/ml). Two hours following infection, 50 �l of a
phage mix suspension in phosphate buffer containing Pseudomonas
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phages �NH-4 and �MR299-2 (2 � 109 to 5 � 109 PFU/ml for a multi-
plicity of infection [MOI] of 10) were given intranasally. Fifty microliters
of phosphate buffer was given to the control groups. Animals were anes-
thetized with isoflurane, light was monitored, and images were taken us-
ing the IVIS 100 system at the time points indicated. Animals were kept in
an animal colony, and all experiments were approved by the animal ethics
committee of University College Cork.

Biofilm staining. Pseudomonas biofilms were stained with the fluores-
cent enhancer Calcofluor white (fluorescent brightener 28, catalog no.
F3543; Sigma Aldrich, China). In brief, the monolayers of CFBE41o- cells
containing biofilms were removed from wells using a sterile cell scraper
(Sarstedt, Actiengeselischaft and Co., Germany) and mixed with a drop of
Calcofluor white (0.1%) on a microscope slide. A coverslip was applied to
the slide; the edges were sealed with paraffin oil, and the microscope slide
was incubated for 1 h (37°C). Stained biofilm preparations were assessed
by using an Olympus BX51 fluorescence microscope fitted with a
U-RFL-T fluorescent power supply unit, and images were taken with a
DP50 integrated camera (all from Olympus Optical Co., Japan).

Nucleotide sequence accession numbers. The completed phage ge-
nome sequences of phages NH-4 and MR299-2 were deposited in Gen-
Bank database and assigned accession numbers JN254800 and JN254801,
respectively.
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