
BAU Journal - Science and Technology BAU Journal - Science and Technology 

Volume 1 Issue 1 
ISSN: 2706-784X Article 8 

December 2019 

ROTARY OSCILLATION OF A RIGID SPHERE IN A COUPLE STRESS ROTARY OSCILLATION OF A RIGID SPHERE IN A COUPLE STRESS 

FLUID FLUID 

Tarek Shehadeh 
Faculty of Science, Beirut Arab University, Beirut, Lebanon, tarekhc20@gmail.com 

Emad Ashmawy 
Associate Professor, Faculty of Science, Beirut Arab University, Beirut, Lebanon, 
emad.ashmawy@bau.edu.lb 

Follow this and additional works at: https://digitalcommons.bau.edu.lb/stjournal 

 Part of the Architecture Commons, Business Commons, Engineering Commons, and the Physical 

Sciences and Mathematics Commons 

Recommended Citation Recommended Citation 
Shehadeh, Tarek and Ashmawy, Emad (2019) "ROTARY OSCILLATION OF A RIGID SPHERE IN A COUPLE 
STRESS FLUID," BAU Journal - Science and Technology: Vol. 1 : Iss. 1 , Article 8. 
Available at: https://digitalcommons.bau.edu.lb/stjournal/vol1/iss1/8 

This Article is brought to you for free and open access by Digital Commons @ BAU. It has been accepted for 
inclusion in BAU Journal - Science and Technology by an authorized editor of Digital Commons @ BAU. For more 
information, please contact ibtihal@bau.edu.lb. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons @ BAU (Beirut Arab University)

https://core.ac.uk/display/288017936?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.bau.edu.lb/stjournal
https://digitalcommons.bau.edu.lb/stjournal/vol1
https://digitalcommons.bau.edu.lb/stjournal/vol1/iss1
https://digitalcommons.bau.edu.lb/stjournal/vol1/iss1/8
https://digitalcommons.bau.edu.lb/stjournal?utm_source=digitalcommons.bau.edu.lb%2Fstjournal%2Fvol1%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/773?utm_source=digitalcommons.bau.edu.lb%2Fstjournal%2Fvol1%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/622?utm_source=digitalcommons.bau.edu.lb%2Fstjournal%2Fvol1%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=digitalcommons.bau.edu.lb%2Fstjournal%2Fvol1%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=digitalcommons.bau.edu.lb%2Fstjournal%2Fvol1%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=digitalcommons.bau.edu.lb%2Fstjournal%2Fvol1%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bau.edu.lb/stjournal/vol1/iss1/8?utm_source=digitalcommons.bau.edu.lb%2Fstjournal%2Fvol1%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ibtihal@bau.edu.lb


ROTARY OSCILLATION OF A RIGID SPHERE IN A COUPLE STRESS FLUID ROTARY OSCILLATION OF A RIGID SPHERE IN A COUPLE STRESS FLUID 

Abstract Abstract 
In this paper, the rotary oscillation of a rigid sphere in an incompressible couple stress fluid is studied. 
The classical no slip boundary conditions are imposed on spherical boundary. Moreover, it is assumed that 
the couple stresses on the boundary of the sphere vanish. In the present study, the motion is generated 
by a sudden rotary oscillation of the rigid sphere about an axe passing through its center with a time-
dependent angular velocity. Stokasian assumption is taken into consideration so that the non-linear terms 
are neglected in the equation of motion. The torque experienced by the couple stress fluid on the spherical 
body is obtained using an integral formula. Exact solutions are obtained and results are illustrated through 
graphs.. 
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1. INTRODUCTION 
The study of non-Newtonian fluids is an attractive subject for scientists interested in studying 

complex fluids due to its wide area of applications. Such type of fluids is widely used in many 

industrial areas such as liquid crystals, animal blood and polymer thickened oils. The well known 

classical model of Navier-Stokes do not describe adequitly the real behavior of such fluids. Different 

models have been introduced to treat such non adequacy. One of these models is called micropolar 

fluids model. This model was introduced by Eringen in 1964 as one class of more general theory 

named microfluids theory (Eringen, 1998). The other model is called couple stress fluids model which 

has been introduced by Stokes (Stokes, 1966). This model differs from the classical Navier-Stokes 

model in containing a non-symmetric stress tensor, body couples and a couple stress tensor. In his 

introduced theory of couple stress fluids, Stokes considered the classical Cauchy stress tensor along 

with couple stresses (Stokes, 1966 and Stokes, 1984). Stokes introduced a fourth order differential 

equation which describes mathematically the motion of a couple stress fluid together with two 

constitutive equations consisting of stress and couple stress tensors. Different studies have been done 

on this model of fluids. Devakar et al studied analytically the solutions of some fundamental problems 

of couple stress fluid flows namely Couette, Poiseuille and generalized Couette flows  (Devakar, 

Sreenivasu and Shankar, 2014).  

The rotary motion of a spherical object attracted the attention of many researchers to study due 

to its applications different fields such as drug delivery and tissue engineering. Chadwich and Liao 

investigated the high frequency oscillation of a rigid sphere moving in an incompressible viscous 

fluid normal to a rigid plane (Chadwick and Liao, 2008). Faltas et al investigated the problem of the 

interaction of two spherical particles rotating in a micropolar fluid (Faltas, Sherief and Ashmawy, 

2012). Aparna and Murthy investigated the solution for rotary oscillation of a permeable sphere in a 

micropolar liquid (Aparna and Murthy, 2012). Sherief et al considered problems with similar 

geometries in the theory of micropolar fluids (e.g. Faltas, Sherief and El-Sapa, 2019 and Sherief, 

Faltas and El-Sapa, 2019). Ashmawy investigated the rotary oscillation of a composite sphere in a 

concentric spherical cavity with slip on the surface of the spherical cavity and stress jump on the 

porous fluid interface using Brinkman model (Ashmawy, 2015). The same author studied the 

unsteady Stokesian flow of an incompressible couple stress fluid around  a rotating sphere (Ashmawy, 

2016 a). He also obtained an analytical formula for the drag force acting on a slip spherical object 

moving in a couple stress fluid (Ashmawy, 2016 b). Many other recent research papers treating 

different problems in the theory of couple stress fluids are available in the literature such as 

(Ashmawy,  2018, Shehadeh and Ashmawy, 2019 and Ashmawy, 2019). The present work discusses 

the oscillatory flow of an incompressible couple stress fluid due to the rotary oscillation of a rigid 

sphere about its diameter. The no slip boundary condition is applied on the surface of the spherical 

object. In addition, the torque exerted by the fluid flow on the rigid sphere is deduced and discussed 

numerically through graphs. 

 

2. FORMULATION OF THE PROBLEM 

The fluid flow of an incompressible couple stress fluid with time dependence, Assuming that 

the body forces and body couples are absent, is described by the following equations (Stokes, 1984) 

Equation of conservation of mass 

Eq. (2.1)  𝛻. 𝑞⃗ = 0.   

Equation of conservation of momentum 

Eq. (2.2)  𝜌
𝜕𝑞⃗⃗

𝜕𝑡
+ 𝛻 × 𝛻 × 𝛻 × 𝛻 × 𝑞⃗ +𝜇𝛻 × 𝛻 × 𝑞⃗ − 𝛻p =0. 

where 𝑞⃗ denotes the velocity and p represents the fluid pressure. The material constant 𝜇 denotes the 

classical viscosity parameter of the fluid,  is the new viscosity coefficient which characterizes the 

couple stress effect and 𝜌 represents the fluid density. These coefficents have the dimensions 

respectively 𝑀/𝐿𝑇 and 𝑀𝐿/𝑇. 

The stress and couple stress constitutive equations are, respectively, given by 

1

Shehadeh and Ashmawy: ROTARY OSCILLATION OF A RIGID SPHERE IN A COUPLE STRESS FLUID

Published by Digital Commons @ BAU, 2019

https://www.sciencedirect.com/topics/engineering/couette-flow


Eq. (2.3)  𝑡𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 2𝜇𝑑𝑖𝑗 −
1

2
𝜀𝑖𝑗𝑘𝑚𝑠𝑘,𝑠, 

Eq. (2.4)  𝑚𝑖𝑗 = 𝑚𝛿𝑖,𝑗 + 4𝜂𝑤𝑖,𝑗 + 4𝜂′𝑤𝑗,𝑖. 

The deformation rate tensor 𝑑𝑖𝑗 is defined by  

Eq. (2.5)  𝑑𝑖𝑗 =
1

2
(𝑞𝑖,𝑗 + 𝑞𝑗,𝑖). 

The tensor 𝑤𝑗,𝑖 represents the spin tensor and the vorticity vector is defined by 

Eq. (2.6)   𝑤⃗⃗⃗ =
1

2
𝛻 × 𝑞⃗. 

The material constant 𝜂′ is a second viscosity parameter which appears in the couple stress tensor. 

The couple stress viscosity coefficients , 𝜂 and 𝜂′ .are satisfying the following inequalities, 𝜂 ≥ 0 

and , 𝜂 ≥ 𝜂′.The scalar quantiy 𝑚 represents one third of the trace of the couple stress tensor, 𝛿𝑖,𝑗 

and 𝜀𝑖𝑗𝑘 are respectively the Kronecher delta and the alternating tensor defined by 

𝛿𝑖,𝑗 = {
0 𝑖𝑓 𝑖 ≠ 𝑗
1 𝑖𝑓 𝑖 = 𝑗

  , 

𝜀𝑖𝑗𝑘 = {

1, 𝑖𝑓 (𝑖, 𝑗, 𝑘)𝑖𝑠 𝑎 𝑐𝑦𝑐𝑙𝑖𝑐  𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 (1,2,3)

−1, 𝑖𝑓 (𝑖, 𝑗, 𝑘) 𝑖𝑠 𝑎 𝑛𝑜𝑛 𝑐𝑦𝑐𝑙𝑖𝑐 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓(1,2,3)
0, 𝑖𝑓 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑡𝑤𝑜 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙

  . 

Now we consider the rotary oscillation of a couple stress fluid about a rigid sphere of raduis 𝑎. The 

motion is generated by the rotary oscillation of the sphere about a vertical diameter with time-

dependent angular velocity 𝛺𝑒𝑖𝜎𝑡, where 𝛺 is a constant with the dimension of angular velocity and 

𝑖 = √−1 . We take a spherical polar coordinate system (𝑟, 𝜃, ϕ) with the center of the sphere as origin 

and a z-axis along the axis of rotation with base vectors  (𝑒
r
, 𝑒

θ
, 𝑒

ϕ
). Since the flow is axisymmetric, 

therefore all physical quantities are independent of 𝜙.  

The fluid velocity vector is assumed to take the form 

 Eq. (2.7)   𝑞⃗ = (0,0, 𝑞𝜙 (𝑟, 𝜃, t)),  

The following condition is applied on the spherical surface 

Eq. (2.8)  𝑞𝜙(𝑟, 𝜃, 𝑡) = 𝑎𝛺𝑠𝑖𝑛𝜃𝑒𝑖𝜎𝑡   on 𝑟 = 𝑎. 

The remaining condition satisfied on the surface of the sphere, 𝑟 = 𝑎, is the vanishing couple stress  

Eq. (2.9)  𝑚𝑟𝜃 = 0  on  𝑟 = 𝑎. 

 

3. SOLUTION OF THE PROBLEM 

In view of Eq. (2.8), we can assume that 𝑞𝜙(𝑟, 𝜃, 𝑡) = 𝑓(𝑟, 𝜃)𝑒𝑖𝜎𝑡  

Therefore, Eq. (2.2) reduces to 

Eq. (3.1)  (𝐸4 − 𝜆2𝐸2 + 𝜆2𝑙2)𝑟𝑠𝑖𝑛𝜃 𝑓(𝑟, 𝜃)𝑒𝑖𝜎𝑡 = 0, 

where 𝐸2 =
𝜕2

𝜕𝑟2 +
1

𝑟2

𝜕2

𝜕𝜃2 −
cot𝜃

𝑟2

𝜕

𝜕𝜃
,   𝜆2 =

𝜇

𝜂
  and 𝑙2 =

𝑖𝜎𝜌

𝜇
 

Assume that 𝑓(𝑟, 𝜃) =
1

𝑟
𝑔(𝑟)𝑠𝑖𝑛𝜃, and let 𝐷2=

𝜕2

𝜕𝑟2 −
2

𝑟2, so the above equation reduces  to 

Eq. (3.2)  (𝐷4 − 𝜆2𝐷2 + 𝜆2𝑙2)𝑔(𝑟) = 0. 

This equation will be factorized to: 
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Eq. (3.3)  (𝐷2 − 𝜉1
2)(𝐷2 − 𝜉2

2)𝑔(𝑟) = 0. 

where 𝜉1, 𝜉2 are the positive roots of the characteristic equation  

Eq. (3.4)  𝜉4 − 𝜆2𝜉2 + 𝜆2𝑙2 = 0. 

Solving the complex polynomial of degree 4 in Eq. (3.4) we get 

Eq. (3.5)   𝜉1 = 𝜆
√1−√𝜆2−4𝑙2

2
 and  𝜉2 = 𝜆

√1+√𝜆2−4𝑙2

2
. 

The solution of this differential equation (3.2) is found to be  

Eq. (3.6)  𝑔(𝑟) = √𝑟 ∑ 𝐴𝑖𝐾3

2

(𝜉𝑖𝑟)2
𝑖=1 , 

where 𝐾𝑛(. ) denotes the modified Bessel function of the second kind of order n.  

Therefore, the velocity component of the fluid flow is obtained as 

Eq. (3.7)  𝑞𝜙(𝑟, 𝜃, 𝑡) = 𝑒𝑖𝜎𝑡 𝑠𝑖𝑛𝜃

√𝑟
∑ 𝐴𝑖𝐾3

2

(𝜉𝑖𝑟)2
𝑖=1 . 

After computing the vorticity vector, the non-vanishing components are 

Eq. (3.8)  𝑤𝑟 =
𝑒𝑖𝜎𝑡𝑐𝑜𝑠𝜃

𝑟√𝑟
∑ 𝐴𝑖𝐾3

2

(𝜉𝑖𝑟)2
𝑖=1 . 

Eq. (3.9)  𝑤𝜃 =
𝑒𝑖𝜎𝑡𝑠𝑖𝑛𝜃

2𝑟√𝑟
∑ 𝐴𝑖 {𝐾3

2

(𝜉𝑖𝑟) + 𝑟𝜉𝑖𝐾1

2

(𝜉𝑖𝑟)}2
𝑖=1 . 

Using equation (2.3), the tangential stress component is 

Eq. (3.10) 𝑡𝑟𝜙 = 𝜇 (
𝜕𝑞𝜙

𝜕𝑟
−

𝑞𝜙

𝑟
) +

1

2
(

𝜕𝑚𝑟𝜃

𝜕𝑟
+

1

𝑟

𝜕𝑚𝜃𝜃

𝜕𝜃
+

2𝑚𝑟𝜃+𝑚𝜃𝑟

𝑟
+

𝑐𝑜𝑡𝜃

𝑟
{𝑚𝜃𝜃 − 𝑚𝜙𝜙}). 

Then by using equation (2.4) of the couple stress tensor we get the following equations 
 

Eq. (3.11)                       𝑚𝑟𝑟 = 𝑚 + 4(𝜂 + 𝜂′)
𝜕𝑤𝑟

𝜕𝑟
.  

Eq. (3.12)                       𝑚𝑟𝜃 = 4 {𝜂
𝜕𝑤𝜃

𝜕𝑟
+ 𝜂′ (

1

𝑟

𝜕𝑤𝑟

𝜕𝜃
−

𝑤𝜃

𝑟
)}.  

Eq. (3.13)                       𝑚𝜃𝑟 = 4 {𝜂′
𝜕𝑤𝜃

𝜕𝑟
+ 𝜂 (

1

𝑟

𝜕𝑤𝑟

𝜕𝜃
−

𝑤𝜃

𝑟
)}.  

Eq. (3.14)                       𝑚𝜃𝜃 = 𝑚 + 4(𝜂 + 𝜂′) (
1

𝑟

𝜕𝑤𝜃

𝜕𝜃
−

𝑤𝑟

𝑟
). 

Eq. (3.15)                       𝑚𝜙𝜙 = 𝑚 + 4(𝜂 + 𝜂′) (
𝑤𝑟

𝑟
+

𝑤𝜃

𝑟
𝑐𝑜𝑡𝜃). 

 

Inserting the vorticity expressions (3.8)-(3.9) into the above mentioned couple stress components, we 

get 

Eq. (3.16)  𝑚𝑟𝑟 = 𝑚 − 4(𝜂 + 𝜂′)
𝑐𝑜𝑠𝜃

𝑟√𝑟
𝑒𝑖𝜎𝑡 ∑ 𝜉𝑖𝐴𝑖𝐾5

2

(𝜉𝑖𝑟)2
𝑖=1 . 

The vanishing of the couple stress component 𝑚𝑟𝑟 on the spherical boundary 𝑟 = 𝑎 results in  

Eq. (3.17)  𝑚 = 4(𝜂 + 𝜂′)
𝑐𝑜𝑠𝜃

𝑎√𝑎
𝑒𝑖𝜎𝑡 ∑ 𝜉𝑖𝐴𝑖𝐾5

2

(𝜉𝑖𝑟)2
𝑖=1 . 

Eq. (3.18)  𝑚𝑟𝜃 =
−2𝑠𝑖𝑛𝜃

𝑟√𝑟
𝑒𝑖𝜎𝑡 ∑ 𝜉𝑖𝐴𝑖 {(𝜂+𝜂′)𝐾5

2

(𝜉𝑖𝑟) + 𝑟𝜂𝜉𝑖𝐾3

2

(𝜉𝑖𝑟)}2
𝑖=1 . 

Eq. (3.19)  𝑚𝜃𝑟 =
−2𝑠𝑖𝑛𝜃

𝑟√𝑟
𝑒𝑖𝜎𝑡 ∑ 𝜉𝑖𝐴𝑖 {(𝜂+𝜂′)𝐾5

2

(𝜉𝑖𝑟) + 𝑟𝜂′𝜉𝑖𝐾3

2

(𝜉𝑖𝑟)}2
𝑖=1 . 
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Eq. (3.20)  𝑚𝜃𝜃 = 𝑚𝜙𝜙 = 𝑚 + 2(𝜂 + 𝜂′)
𝑐𝑜𝑠𝜃

𝑟2√𝑟
𝑒𝑖𝜎𝑡 ∑ 𝐴𝑖 {3𝐾3

2

(𝜉𝑖𝑟) + 𝑟𝜉𝑖𝐾1

2

(𝜉𝑖𝑟)}2
𝑖=1 .  

 

Inserting these results in the equation of tangential stress (3.10) we get 

Eq. (3.21) 𝑡𝑟𝜙 =
𝑠𝑖𝑛𝜃

𝑟2√𝑟
𝑒𝑖𝜎𝑡 ∑ 𝜉𝑖𝐴𝑖 {[𝑟2(𝜂𝜉𝑖

2 − 𝜇) − 2(𝜂 + 𝜂′)]𝐾5

2

(𝜉𝑖𝑟) − 2𝜂𝜉𝑖𝑟𝐾3

2

(𝜉𝑖𝑟)}2
𝑖=1 .  

  

The remaining boundary conditions are used to give a system of two equations with two unknown 𝐴1 

and 𝐴2 as follow 

Eq. (3.22)  
−2𝑠𝑖𝑛𝜃

𝑟√𝑟
𝜉1 {(𝜂+𝜂′)𝐾5

2

(𝜉1𝑟) + 𝑟𝜂𝜉1𝐾3

2

(𝜉1𝑟)} 𝐴1 +

−2𝑠𝑖𝑛𝜃

𝑟√𝑟
𝜉2 {(𝜂+𝜂′)𝐾5

2

(𝜉2𝑟) +        𝑟𝜂𝜉1𝐾3

2

(𝜉2𝑟)} 𝐴2 =  0. 

Eq. (3.23)  
1

√𝑟
𝐾3

2

(𝜉1𝑟)𝐴1 +
1

√𝑟
𝐾3

2

(𝜉1𝑟)𝐴2 = 𝑎𝛺. 

Solving the system of linear equations in (3.22) and (3.23) we get 
 

Eq. (3.24)  𝐴2 =
−𝛺

 𝛥0
{𝑎√𝑎𝜉1 (𝑎𝜂𝜉1𝐾3

2

(𝜉1𝑎) + (𝜂+𝜂′)𝐾5

2

(𝜉1𝑎))}. 

Then putting 𝐴2 in one of the system of equations we can deduce that  
 

Eq. (3.25)  𝐴1 =
−𝛺

 𝛥0
{𝑎√𝑎𝜉2 (𝑎𝜂𝜉2𝐾3

2

(𝜉2𝑎) + (𝜂+𝜂′)𝐾5

2

(𝜉2𝑎))}. 

where 𝛥0 = 𝐾3

2

(𝜉1𝑎)𝜉2 (𝑎𝜂𝜉2𝐾3

2

(𝜉2𝑎) + (𝜂+𝜂′)𝐾5

2

(𝜉2𝑎)) − 𝐾3

2

(𝜉2𝑎)𝜉1 (𝑎𝜂𝜉1𝐾3

2

(𝜉1𝑎) +

          (𝜂+𝜂′)𝐾5

2

(𝜉1𝑎)). 

4. TORQUE ON THE RIGID SPHERE 

The torque exerted by the couple stress fluid on the surface of the sphere can be obtained by 

employing the following integral formula 

Eq. (4.1) 𝑇𝑧 = 2𝜋𝑎3 ∫ 𝑡𝑟𝜙|𝑟=𝑎𝑠𝑖𝑛2𝜃 𝑑𝜃
𝜋

0
. 

Inserting the expression (3.21) evaluated at 𝑟 = 𝑎 into the above-mentioned integral formula, we 

obtain  

Eq. (4.2) 𝑇𝑧 =
8𝜋

3
√𝑎𝑒𝑖𝜎𝑡 ∑ 𝜉𝑖𝐴𝑖 {[𝑎2(𝜂𝜉𝑖

2 − 𝜇) − 2(𝜂 + 𝜂′)]𝐾5

2

(𝜉𝑖𝑟) − 2𝜂𝜉𝑖𝑎𝐾3

2

(𝜉𝑖𝑟)}2
𝑖=1 . 

 

5. NUMERICAL RESULTS 
Here, we represent graphically the non dimensional torque  𝑇𝑧

∗ = 𝑇𝑧/𝑇0, where 𝑇0 = 8𝜋𝜇𝑎3𝛺, 

acting on a rigid sphere oscillating rotationally in a couple stress liquid. The torque is illustrated 

against different parameters such as 𝑡, 𝜎, 𝜂, and ′ .  

Figs. 1 and 2 illustrate, respectively, the variation of the real and imaginary parts of the torque 

acting on the spherical object versus the time 𝑡 for different values of the first couple stress viscosity 

parameter 𝜂. It is noticed that the increase in the value of 𝜂 results in a decrease in the amplitudes of 

the real and imaginary parts of the torque. Figs. 3 and 4 represents, respectively, the variation of the 

real and imaginary parts of the torque acting on the spherical object versus the time 𝑡 for different 
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values of the second couple stress viscosity parameter 𝜂’. It is observed that the increase of the 

coefficient 𝜂′ results in a slight increase in the amplitudes of the real and imaginary parts of the torque. 

Figs. 5 and 6 discuss the influence of 𝜎 versus the time 𝑡 for the real and imaginary parts of the non 

dimensional torque. It is found that the wavelength of the real and imaginary parts of the torque 

decreases with the increase in the value of 𝜎. Figs. 7 and 8 show the variation of the real and imaginary 

parts of the torque versus 𝜂 for different values of 𝜂′. It is shown that the increase in the values of 𝜂′ 
decreases the values of the torque very slightly. Figs. 9 and 10 represent the behaviours of the real 

and imaginary parts of the velocity of the fluid flow versus the time 𝑡 for different values of 𝜂′. Again 

it is observed that the effect of the viscosity parameter 𝜂′ is slight. It is found that the amplitudes of 

the real and imaginary parts of the torque increases slightly with the increase in the value of 𝜂’. Figs. 

11 and 12 discuss the influence of 𝜎 on both real and imaginary parts of the fluid velocity. It is shown 

that as the values of 𝜂 increase, the wavelength of the real and imaginary parts decrease. Finally, figs. 

13 and 14 show the variation of the real and imaginary parts of the velocity versus 𝑟 for different 

values of 𝜎. It is noticed that as the value of  𝜎 increases, the value of the real part of the velocity 

decreases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2: Variation of the imaginary part of the normalized torque when 𝜎 = 1.0 and 𝜂′ = 0.0 
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Fig.1: Variation of the real part of the normalized torque when 𝜎 = 1.0 and 𝜂′ = 0.0 
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Fig.5: Variation of the real part of the normalized torque when 𝜂'=0.0 and 𝜂 = 0.01  
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Fig.3: Variation of the real part of the normalized torque when 𝜎 = 1.0 and 𝜂 = 0.01. 
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Fig.7: Variation of the real part of the normalized torque when 1.0 and 𝑡 = 0.1.
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Fig.6: Variation of the imaginary part of the normalized torque when 𝜂′ = 0.0 and 𝜂 = 0.01  
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Fig.9: Variation of the real part of the velocity when 1.0, 𝜂 = 0.01 and 𝑟 = 2.0. 
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Fig.8: Variation of the imaginary part of the normalized torque when 1.0 and 𝑡 = 0.1.
 

0 

1 

2 

3 

4 

-1 

-2 

-3 

𝐼𝑚{𝑇𝑍
∗} 

 

 
 
 
 
 
 

08.0'

05.0'

01.0'

03.0'

00.0'

8

BAU Journal - Science and Technology, Vol. 1, Iss. 1 [2019], Art. 8

https://digitalcommons.bau.edu.lb/stjournal/vol1/iss1/8



 

 

 

 

 

 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 

𝑡                                                                                                                    

 

Fig.11: Variation of the real part of the velocity when 𝜂′=0.0, 𝜂 = 0.01 and  𝑟 = 2.0. 
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Fig.10: Variation of the imaginary part of the velocity when 1.0, 𝜂 = 0.01 and 𝑟 = 2.0. 
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       Fig.13: Variation of the real part of the velocity when 𝜂′=0.0, 𝜂 = 0.01 and 𝑡 = 0.1 
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Fig.12: Variation of the imaginary part of the velocitywhen 𝜂′=0.0, 𝜂 = 0.01 and  𝑟 = 2.0. 
 

10

BAU Journal - Science and Technology, Vol. 1, Iss. 1 [2019], Art. 8

https://digitalcommons.bau.edu.lb/stjournal/vol1/iss1/8



 

6. CONCLUSION 
A. The problem of rotary oscillation of a rigid sphere in an incompressible couple stress fluid 

is solved.  

B. The non-dimensional torque exerted by a couple stress fluid flow on the spherical surface 

of a rigid sphere oscillating rotationally in it is evaluated and discussed through graphs. It is concluded 

from the numerical results that the increase in the viscosity parameter 𝜂 results in an increase in each 

of the real and imaginary parts of the torque.  

C. The numerical results indicate that the second couple stress viscosity coefficient, namely 𝜂′, 
has a small influence on the torque.  

D. Taking the viscosity parameter 𝜂 to be zero, the classical case of Navier-Stokes theory can 

be recovered.  

 

REFERENCES 
- Aparna, P. and Murthy, J. V. R. (2012). Rotary Oscillations Of A Permeable Sphere In An 

Incompressible Micropolar Fluid. International Journal of Applied Mathematics and Mechanics, 

8(16), 79-91.  

- Ashmawy, E.A. (2015). Rotary Oscillation of a Composite Sphere in a Concentric Spherical 

Cavity Using Slip and Stress Jump Conditions. European Physical Journal Plus, 130, 163 (1-12). 

- Ashmawy, E. A. (2016). Unsteady Stokes Flow of a Couple Stress Fluid Around a Rotating Sphere 

with Slip. The European Physical Journal Plus, 131(5), 175. 

- Ashmawy, E. A. (2016). Drag on a Slip Spherical Particle Moving in a Couple Stress 

Fluid. Alexandria Engineering Journal, 55(2), 1159-1164. 

- Ashmawy, E. A. (2018). Hydrodynamic Interaction Between Two Rotating Spheres in an 

Incompressible Couple Stress Fluid. European Journal of Mechanics-B/Fluids, 72, 364-373. 

- Ashmawy, E. A. (2019). Effects of Surface Roughness on a Couple Stress Fluid Flow Through 

Corrugated Tube. European Journal of Mechanics-B/Fluids, 76, 365-374. 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 
𝑟                                                                                                                  

     Fig.14: Variation of the imaginary part of the velocity when 𝜂′=0.0, 𝜂 = 0.01 and 𝑡 = 0.1 
 

0.00 

-0.01 

-0.02 

-0.03 

-0.04 

-0.05 

-0.06 

-0.07 

-0.08 

𝐼𝑚{𝑉} 
 

 
 
 
 
 
 

5.0

6.0

9.0

8.0

0.1

11

Shehadeh and Ashmawy: ROTARY OSCILLATION OF A RIGID SPHERE IN A COUPLE STRESS FLUID

Published by Digital Commons @ BAU, 2019



- Chadwick, R. S. and Liao, Z. (2008). High-Frequency Oscillations of a Sphere in a Viscous Fluid 

near a Rigid Plane. SIAM Review. Society for Industrial and Applied Mathematics, 50(2), 313-

322. 

- Devakar, M., Sreenivasu, D.and Shankar, B. (2014). Analytical Solutions of Couple Stress Fluid 

Flows with Slip Boundary Conditions. Alexandria Engineering Journal, 53, 723–730. 

- Eringen, A. C. (1998). Microcontinuum field theories. New York: Spinger. 

- Faltas, M. S., Sherief, H. H., & Ashmawy, E. A. (2012). Interaction of two spherical particles 

rotating in a micropolar fluid. Mathematical and Computer Modelling, 56(9-10), 229-239. 

- Faltas, M.S., Sherief, H.H. and El-Sapa, S. (2019). Interaction Between Two Rigid Spheres 

Moving in a Micropolar Fluid with Slip Surfaces. Journal of Molecular Liquids, 290, 111165 (1-

12). 

- Shehadeh, T. H., & Ashmawy, E. A. (2019). Interaction of two rigid spheres translating collinearly 

in a couple stress fluid. European Journal of Mechanics-B/Fluids, 78, 284-290. 

- Sherief, H. H., Faltas, M. S., & El-Sapa, S. (2019). Axisymmetric creeping motion caused by a 

spherical particle in a micropolar fluid within a nonconcentric spherical cavity. European Journal 

of Mechanics-B/Fluids., 77, 211-220. 

- Stokes, V. K. (1966). Couple stresses in fluids. The physics of fluids, 9(9), 1709-1715. 

- Stokes, V. K. (1984). Theories of Fluids with Microstructure. New York, Spinger.  

 

 

12

BAU Journal - Science and Technology, Vol. 1, Iss. 1 [2019], Art. 8

https://digitalcommons.bau.edu.lb/stjournal/vol1/iss1/8

javascript:void(0)
javascript:void(0)

	ROTARY OSCILLATION OF A RIGID SPHERE IN A COUPLE STRESS FLUID
	Recommended Citation

	ROTARY OSCILLATION OF A RIGID SPHERE IN A COUPLE STRESS FLUID
	Abstract
	Keywords

	Architectural Scientific Journal

