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1. INTRODUCTION 

Since decades, the topic of business failure prediction has been an important research 

area for both academics and practitioners. Bankruptcy prediction involves the classification of 

firms in a failing and a non-failing group1. Generally, this classification is based on (1) a 

prediction model that attributes a ‘score’ to each firm in the data set and (2) a certain cut-off 

point. To evaluate the classification results, several performance measures can be used. This 

note outlines these measures and illustrates the connections between them with numerical 

examples. This may help the reader to better understand (and possibly use) these classification 

measures2.  

 

2. CLASSIFICATION AND ERROR RATES 

In most research papers on failure prediction, statistical techniques like multiple 

discriminant analysis or logit analysis are applied3. Generally, a model score is calculated for 

each firm / observation in the data set. When classifying observations in two mutually 

exclusive groups, a cut-off point has to be chosen. We assume here that a company will be 

classified as ‘non-failing’ if its score is higher than the cut-off point and classified as ‘failing’ 

if it is lower4. 

Two types of misclassifications can then be made. A type I error represents a ‘credit 

risk’: a failing firm is classified as a non-failing one. A type II error represents a ‘commercial 

risk’: a non-failing firm is classified as a failing one. Both errors come with its costs. Altman 

(1980) mentions different components of type I and type II costs in the context of commercial 

bank lending. 

 

                                                 
 
1 Other classifications are also possible, e.g. ‘bankrupt’ versus ‘non-bankrupt’ or ‘financially distressed’ versus 
‘not distressed’. 
2 Of course, the use of these measures is not limited to bankruptcy prediction. 
3 See Balcaen & Ooghe (2006) for an overview of much-used statistical methodologies.  
4 This can also be the other way around, depending on the construction of the model.   
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3. UER, D-MAX AND GINI-COEFFICIENT 

The determination of an optimal cut-off point is not as easy as might be expected5. We 

hereafter assume that the loss functions of type I and type II errors are symmetrical. Although 

the type II error only leads to an opportunity cost, it is not incredible that this cost is as high as 

the more visible cost that goes with a type I error. Furthermore, as noted in Ooghe et al. 

(2005), “the allocation of weights to the different types of errors is subjective and depends on 

the degree of risk aversion of the risk analyst”. We also do not take into account the 

population proportions6. To determine the optimal cut-off point, we have to minimize the 

unweighted average of the type I and type II error rates, or UER (unweighted error rate).  

At each possible cut-off point c, the type II error can be measured by the cumulative 

distribution function of the non-failing firms (Fnf). This function gives the percentage of non-

failing firms that have a score smaller than (or equal to) the cut-off point, and thus are 

misclassified as failing firms. Analogously, the type I error is equal to 1 minus the value of the 

cumulative distribution of the failing firms (1 - Ff), since this gives the percentage of failing 

firms with a score higher than the cut-off point c. 

The optimal cut-off point – at which the unweighted average of the two types of error 

rates is minimal – is also the point at which there is the largest difference D (the so-called D-

max) between the cumulative distribution functions Ff and Fnf. The D-max is the central 

statistic of the Kolmogorov-Smirnov two-sample test (Siegel and Castellan, 1988).  

D-max is equal to max [Ff - Fnf] , while the minimum UER can be expressed as min [(1 

- Ff + Fnf) / 2]. Also, D =  1 – 2 * UER at each cut-off point. The cut-off point with the lowest 

UER thus corresponds to the score that discriminates most between failing and non-failing 

firms.  

A model can also be evaluated on its power to discriminate between failing and non-

failing firms not only at the optimal cut-off point, but at each possible cut-off point. We then 

evaluate the performance of a model based on the “inequality principle” (Joos et al., 1998), 

which means that we measure the aggregate inequality of the two distributions (failing and 

non-failing). We do so by constructing a trade-off function of the two types of error rates. 

The graph of this trade-off function thus plots all possible combinations of type I and 

type II error rates, i.e. the type I and type II errors at each possible cut-off point. The type II 

error rate (Fnf) is situated on the X-axis, while the Y-axis gives the corresponding type I error 

                                                 
 
5 Hsieh (1993) and Koh (1994) discuss some of the difficulties of determining an optimal cut-off point.  
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rate  (1 - Ff). The closer the trade-off function is situated to the axes, the more the model 

discriminates between failing and non-failing firms. The ‘best’ possible model is the one that 

coincides with the two axes. There one can choose every possible combination of type I and 

type II error rates, including both times 0%. The ‘worst’ possible model does not discriminate 

and is a trade-off function between the two types of error rates, but the sum of the two is 

always equal to 100%. 

The Gini-coefficient, a measure for the discriminating power of a model, can then be 

calculated as the area between the trade-off function of the model in question and the trade-off 

function of this worst, non-discriminating model, divided by the area between the trade-off 

functions of the best and the worst model. We thus get a coefficient between 0 and 1. It is 

important to see that we do not have to calculate an optimal cut-off point here.  

Based on Joos et al. (1998), we can give the following empirical approximation of the 

Gini-coefficient: ∑
=

−− +−−=
n

i
iiii

^
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111  with xi and yi equal to the type II and type I 

error when using cut-off point i. 

    

4. SOME NUMERICAL EXAMPLES 

In this section we give some hypothetical examples, by which we can illustrate the use 

of the performance measures mentioned above. Models 1 to 4 are assumed to be failure 

prediction models that attribute a score between 0 and 1 to every firm (observation). 

 

Insert Model 1 About Here 

Models 1 and 2 are extremes. In the first model, one can discriminate perfectly 

between failing and non-failing firms by making the cut-off point c equal to 0,50. All failing 

firms have a model score lower than 0,50, while all non-failing firms score higher. At the cut-

off point, the unweighted error rate equals 0%, and the D-max between the two cumulative 

distributions is 100%. As a consequence, the Gini-coefficient is 1. Also in the graph of the 

trade-off function (at the end of this section) it becomes clear that one can choose for a cut-off 

point at which both error rates are equal to 0%. Therefore, model 1 is the best possible model.  

                                                                                                                                                         
 
6 See Joos et al. (1998) for more information on the impact of population proportions and misclassification costs.  
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Insert Model 2 About Here 

The second model is the worst possible model. It does not discriminate between failing 

and non-failing firms, since the cumulative distribution functions coincide. One can not select 

a cut-off point at which more failing than non-failing firms score lower. The UER is thus 50% 

at each possible c. The Gini-coefficient is zero. The trade-off function goes from 100% type I 

error rate (and a type II error rate of 0%) to 100% type II error rate (and a type I error of 0%).   

Insert Model 3 About Here 

In model 3, we can determine two optimal cut-off points. Both have a difference 

between the cumulative distributions of 40% and an average error rate of 30%. The difference 

is in the proportions of type I and type II errors. Following our assumptions, both cut-off 

points are equally valuable. The Gini-coefficient can be calculated as the area between the 

model (model 3) and the worst model (model 2), scaled by the area between the best model 

(model 1) and the worst model (model 2). In this case the Gini-coefficient is 0,360.  

Insert Model 4 About Here 

The fourth model gives a more realistic view of a failure prediction model. 78% of the 

firms have a score lower than or equal to 0,40, while 87% of the non-failing firms score 

higher. We thus get a UER of 17,5% and a D-max of 65%. The discriminating power of the 

model – as measured by the Gini-coefficient (0,773) – is of course a lot higher than that of 

model 3.   

Insert Trade-off functions models 1-4 About Here 

In this graph we see the ‘ideal’ model 1 coinciding with the axes, the non-

discriminating model 2 going from 100% type I error to 100% type II error, and models 3 and 

4 in between. The circles indicate the combination of error rates at the optimal cut-off points.  
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5. CONCLUSION 

In this note we briefly described some important performance measures that can be 

used in failure prediction research. We start from a failure prediction model that attributes a 

score from 0 to 1 to each firm, where a higher score indicates a lower chance of failure. 

Assuming equal misclassification costs and equal population proportions, an optimal cut-off 

point can be calculated by minimizing the unweighted average of the type I and type II error 

rates (UER). At this cut-off point, the difference between the cumulative distributions of the 

failing and the non-failing firms will reach its maximum (D-max). With a Gini-coefficient one 

can measure the total discriminating power of a model.  
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MODEL 1 PERFECTLY DISCRIMINATING 

 

 
 
 
 
 

c Ff 1 - Ff Fnf UER D Gini
0,00 0,0% 100,0% 0,0% 50,0% 0,0%
0,10 20,0% 80,0% 0,0% 40,0% 20,0% 0,000
0,20 40,0% 60,0% 0,0% 30,0% 40,0% 0,000
0,30 60,0% 40,0% 0,0% 20,0% 60,0% 0,000
0,40 80,0% 20,0% 0,0% 10,0% 80,0% 0,000
0,50 100,0% 0,0% 0,0% 0,0% 100,0% 0,000
0,60 100,0% 0,0% 20,0% 10,0% 80,0% 0,000
0,70 100,0% 0,0% 40,0% 20,0% 60,0% 0,000
0,80 100,0% 0,0% 60,0% 30,0% 40,0% 0,000
0,90 100,0% 0,0% 80,0% 40,0% 20,0% 0,000
1,00 100,0% 0,0% 100,0% 50,0% 0,0% 0,000
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MODEL 2 (NON-DISCRIMINANT) 

 

 
 
 

c Ff 1 - Ff Fnf UER D Gini
0,00 0,0% 100,0% 0,0% 50,0% 0,0%
0,10 10,0% 90,0% 10,0% 50,0% 0,0% 0,190
0,20 20,0% 80,0% 20,0% 50,0% 0,0% 0,170
0,30 30,0% 70,0% 30,0% 50,0% 0,0% 0,150
0,40 40,0% 60,0% 40,0% 50,0% 0,0% 0,130
0,50 50,0% 50,0% 50,0% 50,0% 0,0% 0,110
0,60 60,0% 40,0% 60,0% 50,0% 0,0% 0,090
0,70 70,0% 30,0% 70,0% 50,0% 0,0% 0,070
0,80 80,0% 20,0% 80,0% 50,0% 0,0% 0,050
0,90 90,0% 10,0% 90,0% 50,0% 0,0% 0,030
1,00 100,0% 0,0% 100,0% 50,0% 0,0% 0,010
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MODEL 3 

 
 

 
 
 
 
 
 
 
 
 

c Ff 1 - Ff Fnf UER D Gini
0,00 0,0% 100,0% 0,0% 50,0% 0,0%
0,10 20,0% 80,0% 0,0% 40,0% 20,0% 0,000
0,20 40,0% 60,0% 0,0% 30,0% 40,0% 0,000
0,30 40,0% 60,0% 20,0% 40,0% 20,0% 0,240
0,40 40,0% 60,0% 40,0% 50,0% 0,0% 0,240
0,50 60,0% 40,0% 40,0% 40,0% 20,0% 0,000
0,60 80,0% 20,0% 40,0% 30,0% 40,0% 0,000
0,70 80,0% 20,0% 60,0% 40,0% 20,0% 0,080
0,80 80,0% 20,0% 80,0% 50,0% 0,0% 0,080
0,90 100,0% 0,0% 80,0% 40,0% 20,0% 0,000
1,00 100,0% 0,0% 100,0% 50,0% 0,0% 0,000

0,360
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MODEL 4 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

c Ff 1 - Ff Fnf UER D Gini
0,00 0,0% 100,0% 0,0% 50,0% 0,0%
0,10 25,0% 75,0% 2,0% 38,5% 23,0% 0,035
0,20 50,0% 50,0% 5,0% 27,5% 45,0% 0,038
0,30 65,0% 35,0% 9,0% 22,0% 56,0% 0,034
0,40 78,0% 22,0% 13,0% 17,5% 65,0% 0,023
0,50 85,0% 15,0% 21,0% 18,0% 64,0% 0,030
0,60 90,0% 10,0% 30,0% 20,0% 60,0% 0,023
0,70 94,0% 6,0% 42,0% 24,0% 52,0% 0,019
0,80 97,0% 3,0% 60,0% 31,5% 37,0% 0,016
0,90 99,0% 1,0% 80,0% 40,5% 19,0% 0,008
1,00 100,0% 0,0% 100,0% 50,0% 0,0% 0,002

0,773
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TRADE-OFF FUNCTIONS MODELS 1 - 4 
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