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1. INTRODUCTION

Since decades, the topic of business failure pieditias been an important research
area for both academics and practitioners. Bankyuptediction involves the classification of
firms in a failing and a non-failing grotpGenerally, this classification is based on (1) a
prediction model that attributes a ‘score’ to eéioi in the data set and (2) a certain cut-off
point. To evaluate the classification results, savperformance measures can be used. This
note outlines these measures and illustrates thaeotions between them with numerical
examples. This may help the reader to better utatetgand possibly use) these classification

measures

2. CLASSIFICATION AND ERROR RATES

In most research papers on failure prediction,isstedl techniques like multiple
discriminant analysis or logit analysis are appliggenerally, a model score is calculated for
each firm / observation in the data set. When iflasg observations in two mutually
exclusive groups, a cut-off point has to be cho¥¥a.assume here that a company will be
classified as ‘non-failing’ if its score is highttvan the cut-off point and classified as ‘failing’
if it is lower".

Two types of misclassifications can then be madéyp® | error represents a ‘credit
risk’: a failing firm is classified as a non-fairone. A type Il error represents a ‘commercial
risk’: a non-failing firm is classified as a fairone. Both errors come with its costs. Altman
(1980) mentions different components of type | gk Il costs in the context of commercial

bank lending.

! Other classifications are also possible, e.g. ‘bartkmgpsus ‘non-bankrupt’ or ‘financially distressedrgus
‘not distressed’.

2 Of course, the use of these measures is not limitbdrtkruptcy prediction.

% See Balcaen & Ooghe (2006) for an overview of muskd statistical methodologies.

“ This can also be the other way around, dependirigeoonstruction of the model.



3. UER, D-MAX AND GINI-COEFFICIENT

The determination of an optimal cut-off point is as easy as might be expectatle
hereafter assume that the loss functions of tygaditype Il errors are symmetrical. Although
the type Il error only leads to an opportunity ¢itss not incredible that this cost is as high as
the more visible cost that goes with a type | erfurthermore, as noted in Ooghe et al.
(2005), ‘the allocation of weights to the different type®wbrs is subjective and depends on
the degree of risk aversion of the risk andly®We also do not take into account the
population proportiorfs To determine the optimal cut-off point, we haweentinimize the
unweighted average of the type | and type Il erates, oUER (unweighted error rate).

At each possible cut-off poir, the type Il error can be measured by the cunudati
distribution function of the non-failing firms=(;). This function gives the percentage of non-
failing firms that have a score smaller than (ouaqto) the cut-off point, and thus are
misclassified as failing firms. Analogously, th@e&yl error is equal to 1 minus the value of the
cumulative distribution of the failing firmsl(- ), since this gives the percentage of failing
firms with a score higher than the cut-off paint

The optimal cut-off point — at which the unweighieerage of the two types of error
rates is minimal — is also the point at which thisrthe largest differendg (the so-called-
max) between the cumulative distribution functioRsand Fn;. The D-max is the central
statistic of the Kolmogorov-Smirnov two-sample tSiegel and Castellan, 1988).

D-max is equal tanax [R- Fn, while the minimum UER can be expressednas|(1
- Fi+ Fn) / 2]. Also,D = 1 — 2 * UERat each cut-off point. The cut-off point with thenlest
UER thus corresponds to the score that discrimsnatest between failing and non-failing
firms.

A model can also be evaluated on its power to ulisoate between failing and non-
failing firms not only at the optimal cut-off poirbut at each possible cut-off point. We then
evaluate the performance of a model based on trexgtiality principle” (Joos et al., 1998),
which means that we measure the aggregate ineguélithe two distributions (failing and
non-failing). We do so by constructing a tradefafiction of the two types of error rates.

The graph of this trade-off function thus plots @dilssible combinations of type | and
type Il error rates, i.e. the type | and type Hoes at each possible cut-off point. The type I

error rate ) is situated on the X-axis, while the Y-axis githe corresponding type | error

® Hsieh (1993) and Koh (1994) discuss some of the diffésuof determining an optimal cut-off point.



rate (@ - ). The closer the trade-off function is situatedthie axes, the more the model
discriminates between failing and non-failing firnihe ‘best’ possible model is the one that
coincides with the two axes. There one can chowseygossible combination of type | and
type Il error rates, including both times 0%. Thetst’ possible model does not discriminate
and is a trade-off function between the two typegroor rates, but the sum of the two is
always equal to 100%.

The Gini-coefficient, a measure for the discriminating power of a modah then be
calculated as the area between the trade-off fumat the model in question and the trade-off
function of this worst, non-discriminating modelyided by the area between the trade-off
functions of the best and the worst model. We theisa coefficient between 0 and 1. It is
important to see that we do not have to calculatepimal cut-off point here.

Based on Joos et al. (1998), we can give the fatigwempirical approximation of the
Gini-coefficient: GIANI :1—Zn:(xi -x_ )y, +V.) with x, andy; equal to the type Il and type |

=

error when using cut-off poimt

4. SOME NUMERICAL EXAMPLES

In this section we give some hypothetical examggsyhich we can illustrate the use
of the performance measures mentioned above. Mddets 4 are assumed to be failure

prediction models that attribute a score betweandl to every firm (observation).

Insert Model 1 About Here

Models 1 and 2 are extremes. In the first modek oan discriminate perfectly
between failing and non-failing firms by making tbet-off pointc equal to 0,50. All failing
firms have a model score lower than 0,50, whilenah-failing firms score higher. At the cut-
off point, the unweighted error rate equals 0%, #relD-max between the two cumulative
distributions is 100%. As a consequence, the QGiefftcient is 1. Also in the graph of the
trade-off function (at the end of this sectionpéicomes clear that one can choose for a cut-off

point at which both error rates are equal to 0%er&fore, model 1 is the best possible model.

® See Joos et al. (1998) for more information orirtigact of population proportions and misclassificatiosts.
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Insert Model 2 About Here

The second model is the worst possible model.dsdwmt discriminate between failing
and non-failing firms, since the cumulative distitibn functions coincide. One can not select
a cut-off point at which more failing than non-fag firms score lower. The UER is thus 50%
at each possible The Gini-coefficient is zero. The trade-off fuiect goes from 100% type |

error rate (and a type Il error rate of 0%) to 109%e 1l error rate (and a type | error of 0%).

Insert Model 3 About Here

In model 3, we can determine two optimal cut-ofing® Both have a difference
between the cumulative distributions of 40% andegrage error rate of 30%. The difference
is in the proportions of type | and type Il erroFollowing our assumptions, both cut-off
points are equally valuable. The Gini-coefficieanhde calculated as the area between the
model (model 3) and the worst model (model 2),estdly the area between the best model

(model 1) and the worst model (model 2). In thisecthe Gini-coefficient is 0,360.

Insert Model 4 About Here

The fourth model gives a more realistic view ofduire prediction model. 78% of the
firms have a score lower than or equal to 0,40,levBi7% of the non-failing firms score
higher. We thus get a UER of 17,5% and a D-max5866The discriminating power of the
model — as measured by the Gini-coefficient (0,733 of course a lot higher than that of
model 3.

Insert Trade-off functions models 1-4 About Here

In this graph we see the ‘ideal’ model 1 coincidimgth the axes, the non-
discriminating model 2 going from 100% type | ertorl00% type Il error, and models 3 and

4 in between. The circles indicate the combinatibarror rates at the optimal cut-off points.



5. CONCLUSION

In this note we briefly described some importantfgrenance measures that can be
used in failure prediction research. We start frri@ilure prediction model that attributes a
score from 0 to 1 to each firm, where a higher edadicates a lower chance of failure.
Assuming equal misclassification costs and equalfadion proportions, an optimal cut-off
point can be calculated by minimizing the unweighéwerage of the type | and type Il error
rates (UER). At this cut-off point, the differenbetween the cumulative distributions of the
failing and the non-failing firms will reach its maum (D-max). With a Gini-coefficient one

can measure the total discriminating power of aehod
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MODEL 2 (NON-DISCRIMINANT)
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MODEL 3
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MODEL 4
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TRADE-OFF FUNCTIONSMODELS1-4

Type |l error = (1 - Ff)
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