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The chemokine receptors CXCR1–3 bind to 11 chemokines (CXCL1–11) that are clustered on the same
chromosome in mammals but are largely missing in ray-finned fish. A second CXCR1/2, and a CXCR3a
and CXCR3b gene have been cloned in rainbow trout. Analysis of CXCR1–R3 genes in lobe-finned fish,
ray-finned fish and tetrapod genomes revealed that the teleostomian ancestor likely possessed loci
containing both CXCR1 and CXCR2, and CXCR3a and CXCR3b. Based on this synteny analysis the first
trout CXCR1/2 gene was renamed CXCR1, and the new gene CXCR2. The CXCR1/R2 locus was shown to
have further expanded in ray-finned fish. In relation to CXCR3, mammals appear to have lost CXCR3b
and birds both CXCR3a and CXCR3b during evolution. Trout CXCR1–R3 have distinct tissue expression
patterns and are differentially modulated by PAMPs, proinflammatory cytokines and infections. They
are highly expressed in macrophages and neutrophils, with CXCR1 and CXCR2 also expressed in B-cells.

� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction The analysis of vertebrate genomes (DeVries et al., 2006;
The coordinated movement of leucocytes is critical to both
innate and adaptive immune systems and is mediated primarily
by the chemokine system that includes a large number of ligands
binding to a smaller number of receptors (Zlotnik and Yoshie,
2012; Bajoghli, 2013; Nomiyama et al., 2013). Mice and humans
possess more than 40 chemokine ligands and 18 signalling chemo-
kine receptors. The chemokine ligands have been classified into
four groups (CC, CXC, CX3C, and XC) based on the position of the
first two cysteine residues (Nomiyama et al., 2010; Alejo and
Tafalla, 2011). Chemokine receptors are seven transmembrane
molecules connected by three intracellular loops (ICL) and three
extracellular loops (ECL), and have a conserved DRY amino acid
motif within the second ICL, which is involved in coupling to
G-proteins (Zlotnik and Yoshie, 2012). The chemokine receptors
are classified according to the chemokine group that they bind,
e.g. chemokine receptors binding CXC-chemokine ligands are
referred to as CXCR followed by the appropriate number.
Nomiyama et al., 2010, 2011; Chen et al., 2013) has revealed that
both chemokines and their receptors have been evolving rapidly
through species-specific gene duplications, although this type of
rapid evolution is more characteristic of the chemokines than their
receptors. Thus, the repertoire of chemokines differs between
species, even within the same lineage. For example, human and
mouse genomes contain 44 and 38 chemokines, respectively
(Zlotnik and Yoshie, 2012), with an even greater variability ob-
served in the teleost lineage, where zebrafish, medaka, stickleback
and tetraodon contain 89, 36, 24 and 20 chemokines, respectively
(Nomiyama et al., 2013). There are 17 CXC ligands described in
mammals, with mice lacking CXCL8, and humans lacking CXCL15.
CXCL1–11 are clustered on human chromosome (CH) 4, with
CXCL13 further downstream. Of note, the clustered CXCL1–11
chemokines bind to three signalling receptors, namely CXCR1–3.
CXCR1 binds only to CXCL6 and CXCL8, CXCR2 binds to CXCL1–3
and CXCL5–8, whilst CXCR3 binds to CXCL4 and CXCL9–11. CXCR1
and CXCR2 are key regulators of acute inflammatory responses by
mediating neutrophil infiltration into inflammatory sites and acti-
vation of neutrophil functions (Coelho et al., 2008). In addition to
their roles as mediators of inflammation, both receptors have been
shown to play important roles in angiogenesis, haematopoiesis and
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Table 1
Primers used for cloning and expression analysis.

Gene Primer Sequences (50- to 30) Application

CXCR2 F1 CTGAGACTCC GAGACAGACACTCC 30-RACE
F2 CTGTCAAGTG GACATGTAAAGCCAG 30-RACE
F GGACATGTAAAGCCAGCTCATGG Real-time

PCR
R AGGGTCAGGGAGAAGAGGAGGTC Real-time

PCR
CXCR3a F1 CCCATCATCTCTGTGGAAACTGA 30-RACE

F2 CTGATTGACAGACTGCATCAATACC 30-RACE
F CAAGGCAACCACAAATTACTATATTTATGATG Real-time

PCR
R CCCTCACAGACTCCAGGAAGTG Real-time

PCR
CXCR3b F1 CGAGAAGAGTGTCCTGAGTC 30-RACE

F2 CTGTGAAGGTGTTTCAGGTGTTC 30-RACE
F CACTGGAGCCATGTTTACAATCAACT Real-time

PCR
R CAGCACACACAGCACCAGGAT Real-time

PCR
EF-1a F CAAGGATATCCGTCGTGGCA Real-time

PCR
R ACAGCGAAACGACCAAGAGG Real-time

PCR
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cancer (Verbeke et al., 2011). CXCR3 is a chemokine receptor that is
highly expressed in effector T cells and plays an important role in T
cell trafficking and function (Groom and Luster, 2011).

The potential chemokine ligands binding to CXCR1–R3 are
largely missing in ray-finned fish, with only three types of CXCL8
homologues (potentially able to bind to CXCR1 or CXCR2) and
two types of CXCL11 homologues (potentially able to bind to
CXCR3) found in some fish species (Chen et al., 2013). However,
CXCR1/R2 like genes have been described from several fish species
including common carp Cyprinus carpio (Fujiki et al., 1999),
rainbow trout Oncorhynchus mykiss (Zhang et al., 2002), fugu Fugu
rubripes (Saha et al., 2007), mandarin fish Siniperca chuatsi (Chen
et al., 2009) zebrafish Danio rerio (Oehlers et al., 2010) and miiuy
croaker Miichthys miiuy (Xu et al., 2013). CXCR3 has also been re-
ported in grass carp Ctenopharyngodon idella (Chang et al., 2007)
and medaka Oryzias latipes (Aghaallaei et al., 2010). Furthermore,
multiple CXCR1–3 loci have been predicted in a few teleosts for
which their genome sequences are available (DeVries et al.,
2006; Nomiyama et al., 2010, 2011). Up to three CXCR1/R2 related
loci and even more CXCR3-related loci are present in zebrafish,
medaka and tetraodon (Nomiyama et al., 2011). Despite these
findings, the orthologous relationship of fish CXCR1–3 to mamma-
lian counterparts is obscure, in contrast to CXCR4 and CXCR5, also
known in teleost fish, where the relationships are clear. For exam-
ple, the origin of the teleost CXCR1/R2 loci was considered
different from that of mammalian CXCR1/R2, which are highly
identical in the same mammalian species and it had been hypoth-
esized they were generated by gene duplication early in the amni-
ote lineage (Nomiyama et al., 2013). Thus, a better understanding
of the phylogenetic relationships of these receptors is an important
prerequisite to understanding the evolution of chemokine ligand–
receptor interactions in the context of host-pathogen responses.

Despite the presence of sequence data in the databases, func-
tional analysis of CXCR1–R3 is scarce, especially in economically
important fish species such as rainbow trout. A gene with homol-
ogy to mammalian CXCR1 and CXCR2 (IL-8R-like) has been previ-
ously reported in rainbow trout (Zhang et al., 2002). In this study,
we cloned a second trout gene with homology to CXCR1/CXCR2
and two CXCR3 genes (termed CXCR3a and CXCR3b). Phylogenetic
tree and synteny analysis of lobe-finned fish, ray-finned fish
(including the new trout molecules) and tetrapod molecules sug-
gests that the ancestors of fish and tetrapods had loci containing
CXCR1 and CXCR2, and CXCR3a and CXCR3b in their genomes.
These receptor genes have experienced lineage-specific conver-
sion, loss, and expansion in teleosts and tetrapods. We have ana-
lysed the expression of these receptors, in vivo, in a range of
tissues from healthy trout, in kidney tissue during bacterial and
parasitic infection and, in vitro, in stimulated primary head kidney
macrophages, purified neutrophils and B cells.

2. Materials and methods

2.1. Fish

Rainbow trout were purchased from the Mill of Elrich Trout
Fishery (Aberdeenshire, UK) and maintained in 1-m-diameter
aerated fibreglass tanks supplied with a continuous flow of recircu-
lating freshwater at 14 ± 1 �C. Fish were fed twice daily on standard
commercial pellets (EWOS), and were acclimated for at least
2 weeks prior to experimentation.

2.2. Cloning and sequence analysis of CXCR2, CXCR3a and CXCR3b in
rainbow trout

Blast (the basic local alignment search tool, Altschul et al., 1997)
search was performed at NCBI (http://blast.ncbi.nlm.nih.gov/
Blast.cgi) using mammalian CXCR2 and CXCR3 protein sequences,
resulting in the identification of candidate ESTs for salmonid
CXCR2 (acc. nos. CX355704, DW566408, EV375674 and EV37
8656) and two CXCR3 genes (acc. nos. CA343700 and CA381081).
Primers (Table 1) were designed within the 50-untranslated region
(UTR) of each EST and used for 30-RACE as described previously
(Wang and Secombes, 2003; Wang et al., 2008), using 30-RACE-
ready cDNA samples prepared from head kidney (HK) for CXCR2
and RTS-11 cells for CXCR3a and CXCR3b (Ganassin and Bols,
1998). Cloning, sequencing and protein sequence analysis was per-
formed as described previously (Wang et al., 2011a; Hong et al.,
2013). Programs used included: ClustalW (Chenna et al., 2003)
for multiple sequence alignments, MatGAT program (V2.02, Cam-
panella et al., 2003) for global sequence comparisons, SMART7
(Letunic et al., 2012) for transmembrane domain prediction,
MEGA5.2 (Tamura et al., 2011) for phylogenetic tree analysis and
Genomicus (Muffato et al., 2010) for synteny analysis.

2.3. Comparative expression analysis of CXCR1, CXCR2, CXCR3a and
CXCR3b

2.3.1. Real-time PCR analysis of gene expression
Primer design, quality control and real-time RT-PCR analysis

were performed as described previously (Wang et al., 2011a,b;
Hong et al., 2013). A common reference containing an equi-molar
amount of purified PCR products representing the four trout che-
mokine receptors was used for quantification. Primers used for
real-time PCR detection are detailed in Table 1.

2.3.2. Tissue distribution of gene expression
Six healthy rainbow trout (mean + SEM = 142 + 9 g) were anaes-

thetised, killed and seventeen tissues including; blood, HK, caudal
kidney, spleen, thymus, gills, intestine, adipose tissue, brain, heart,
muscle, ovary, liver, scales, skin, adipose fin, and tail fins, were
sampled. The RNA preparation and RT-PCR analysis was performed
as described previously (Hong et al., 2013). In all cDNA samples,
the expression of each gene was calculated relative to the expres-
sion level of the house keeping gene, elongation factor (EF)-1a.

2.3.3. Modulation of the expression of chemokine receptors in primary
macrophages

Primary HK macrophage cultures were prepared from four
individual fish, as outlined by Costa et al. (2011). At day 4 primary
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Table 2
Summary of sequence analysis of rainbow trout CXCR2, CXCR3a and CXCR3b.

Features CXCR2 CXCR3a CXCR3b

GenBank ID HG794530 AJ888881 AJ888878
cDNA Length (bp) 1393 1541 3308
In frame stop codona Yes Yes Yes
ORF (bp) 1089 1125 1143
ORF (aa) 362 374 380
30-UTR (bp)b 248 343 2065
50 UTR (bp) 28 54 79
polyA signal Yes Yes Yes
ATTTA motifs 0 0 4
N-glycoslyation sites 2 1 1

Notes.
a In frame stop codon before the main ORF in the 50-UTR.
b The length of 30-UTR excluding the poly A tail.
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macrophages were stimulated with polyinosinic:polycytidylic acid
(polyI:C, 50 lg/ml, Sigma), peptidoglycan (PGN, 5 lg/ml, Invivo-
gen), trout recombinant (r) IL-1b (20 ng/ml, Hong et al., 2001),
rIFN-c (20 ng/mL, Wang et al., 2011b), rIL-6 (100 ng/mL, Costa
et al., 2011) and rTNF-a3 (10 ng/mL, Hong et al., 2013) for 2, 4, 8
and 24 h. RNA extraction and real-time PCR analysis was con-
ducted as described above.

2.4. Expression of chemokine receptors during bacterial infection

A pathogenic strain (MT3072) of the Gram-negative salmonid
pathogen, Yersinia ruckeri, was injected intraperitoneally (i.p.)
(1 � 106 cfu in 0.5 ml PBS), as described previously (Wang et al.,
2009; Harun et al., 2011). A control group was injected with PBS
only (0.5 ml/fish). Six fish were killed at 6, 24, 48 and 72 h post-
infection and spleen tissue collected for total RNA extraction.
Real-time PCR analysis was conducted as described earlier.

2.5. Expression of chemokine receptors during parasitic infection

Proliferative kidney disease (PKD) is a parasitic disease of
salmonid fish caused by the myxozoan parasite Tetracapsuloides
bryosalmonae. The parasite infects salmonid fish primarily via the
gill and skin epithelia, subsequently gaining access to internal tis-
sues via the vascular system with the kidney being the main target
organ for further development. Trunk kidney tissue collection and
cDNA preparation was as described previously (Wang et al., 2010;
Gorgoglione et al., 2013). The severity of clinical pathology was
analysed and a kidney swelling index assigned to each fish accord-
ing to the kidney swelling index system devised by Clifton-Hadley
and colleagues (Clifton-Hadley et al., 1987). Real-time PCR analysis
was conducted as described above.

2.6. Expression of chemokine receptors in purified neutrophils, B-cells
and primary macrophages

HK cells and primary HK macrophages were prepared as de-
scribed previously (Costa et al., 2011; Wang et al., 2011a).

2.6.1. Purification of B cells
Blood was collected from 4 rainbow trout and diluted in cell

culture medium (CM, Leibovitz L-15 medium containing 10% foetal
calf serum (FCS), 100 u/ml penicillin and 100 lg/ml streptomycin),
and heparin (10 u/ml). Peripheral blood leucocytes (PBL) were col-
lected from a 51% Percoll (Sigma–Aldrich) gradient and washed
once in CM. Cells were adjusted to 1 � 107 cells/ml in IF medium
(PBS supplemented with 2% FCS and 0.05% sodium azide; Sigma–
Aldrich) and B cells were purified by magnetic-activated cell sort-
ing (MACS) using an anti-trout IgM (I-14) monoclonal antibody
(DeLuca et al., 1983) and anti-mouse IgG1 beads (Miltenyi Biotec).
Purified B cells were >90% IgM positive as assessed by flow cytom-
etry, and were dissolved in TRI Reagent (Sigma–Aldrich) for subse-
quent RNA extraction.

2.6.2. Purification of neutrophils
Head kidney leucocytes were collected from four fish and

suspended in CM supplemented with heparin (10 u/ml). Cells were
fractionated using a 34–51% discontinuous Percoll gradient (at
400 g for 30 min). The granulocyte-enriched fraction at the
34–51% interface was retrieved and washed twice in IF medium.
Neutrophils were purified by magnetic cell isolation (MACS) using
the anti-trout neutrophil monoclonal antibody 5E9 (kindly pro-
vided by Dr. Chihaya Nakayasu, Aquatic Animal Health Division,
National Research institute of Aquaculture, Japan) (Sasaki et al.,
2002). Purified neutrophils, assessed to be >80% 5E9 positive by
flow cytometry were dissolved in TRI Reagent for subsequent
RNA extraction.
2.7. Statistical analysis

Real-time PCR data were analysed using the SPSS Statistics
package 19.0 (SPSS Inc., Chicago, Illinois), as described previously
(Wang et al., 2011a; Hong et al., 2013). One way-analysis of vari-
ance (ANOVA) and the LSD post hoc test were used to analyse
the expression data in Figs. 8–10, with p < 0.05 between treatment
groups and control groups considered significant. Since the in vitro
expression data consisted of sets of samples from individual fish, a
paired-sample T-test was applied (Figs. 6 and 7).
3. Results

3.1. Sequence analysis of trout CXCR2, CXCR3a and CXCR3b

The cloning and analysis of cDNA sequences for the three
chemokine receptors (CXCR2, CXCR3a and CXCR3b) in rainbow
trout are detailed in supplemental Figs. S1–S3 and summarised
in Table 2. Each cDNA sequence possesses an in-frame stop codon
upstream of the main open reading frame (ORF) and a polyadenyl-
ation signal before the poly A tail in the 30 untranslated region
(UTR), confirming the presence of the complete ORF and 30 UTR.
The CXCR3b gene possesses a large 30-UTR of 2065 bp containing
four ATTTA motifs, which may be indicative of post-transcriptional
regulation (Khabar, 2010). All four receptors have a seven trans-
membrane (TM) domain structure and a putative N-glycosylation
site in the first extracellular domain (Supplemental Figs. S1–S3).

A CXCR1/2-like gene has been isolated in rainbow trout
previously by Zhang et al. (2002). This gene shared similar aa se-
quence identities to mammalian CXCR1 and CXCR2 (32.4–37.4%
identities), but higher identity (53.5%) to carp CXCR1, the first
CXCR1/2-like gene identified in fish (Fujiki et al., 1999). In the light
of synteny analysis (described later), we have re-named the
CXCR1/2-like gene isolated by Zhang et al. (2002) as trout CXCR1
and the new CXCR1/2-like gene as trout CXCR2. At least two
CXCR1/2 related genes were identifiable in several model fish
species with known genome sequences (Nomiyama et al., 2011).
CXCR1 and CXCR2 in tetrapods exhibit high sequence identities
(e.g. 82.7% in lizard and 75.8% in human) whereas, in contrast, tel-
eost CXCR1 and CXCR2 molecules, within a species, share relatively
low aa identity (33.1–43.3%) (Table 3). Although teleost CXCR1 and
CXCR2 share high aa identities in different fish species, both mol-
ecules have similar aa identities to CXCR1 and CXCR2 in tetrapod
species. In general, teleost CXCR2 share a higher aa identity to both
tetrapod CXCR1 and CXCR2 (Table 3).



Table 3
Comparison of identities (top right) and similarities (bottom left) between CXCR1 and CXCR2 molecules from selected teleosts and tetrapods, and coelacanth. The accession
numbers of the sequences used are detailed in Fig. 3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1. CXCR1-Trout 40.5 58.1 50.3 37.5 55.5 36.3 42.0 38.6 35.8 37.1 39.8 39.5 39.3 38.4
2. CXCR2-Trout 57.2 36.3 37.2 55.4 37.6 50.5 37.5 45.0 43.5 44.3 46.5 45.7 42.6 43.9
3. CXCR1a-Tilapia 72.1 58.3 44.2 34.4 62.2 31.6 40.1 34.3 33.9 33.7 37.6 38.0 36.9 38.1
4. CXCR1b-Tilapia 65.6 58.6 65.0 36.8 44.9 37.0 42.2 41.4 39.0 39.7 41.4 44.4 39.5 41.1
5. CXCR2-Tilapia 51.7 71.4 52.8 55.4 36.4 50.7 36.2 44.7 42.3 43.5 41.1 42.1 41.3 42.4
6. CXCR1-Fugu 70.8 56.1 77.4 66.7 52.3 33.1 40.6 35.1 35.2 36.3 35.5 36.0 39.0 35.6
7. CXCR2-Fugu 53.2 68.0 53.5 58.6 66.3 52.1 35.4 39.6 38.1 39.9 37.9 41.1 37.5 41.7
8. CXCR1-Coelacanth 60.7 59.7 60.2 63.3 57.6 59.5 56.9 43.3 42.4 42.0 42.7 41.9 39.8 44.2
9. CXCR2-Coelacanth 57.1 64.6 56.5 58.9 63.4 54.3 58.5 62.2 53.7 54.0 53.3 54.9 48.3 53.7
10. CXCR1-Lizard 54.6 65.5 56.5 59.7 59.7 56.0 58.5 62.4 71.0 82.7 56.5 57.4 49.2 55.8
11. CXCR2-Lizard 54.9 64.9 55.2 59.7 58.4 54.9 59.3 62.7 69.9 88.9 58.2 57.1 51.4 56.3
12. CXCR1-Human 56.0 65.5 57.4 59.7 58.4 56.0 56.6 61.8 70.9 73.5 72.4 75.8 64.7 67.1
13. CXCR2-Human 59.2 67.1 57.5 62.8 61.3 56.7 58.1 60.6 74.2 74.4 74.2 84.4 59.5 71.1
14. CXCR1-Mouse 55.4 62.4 57.1 57.8 59.9 58.5 55.7 62.3 65.0 64.1 65.5 76.6 71.9 58.7
15. CXCR2-Mouse 56.0 67.1 56.0 58.3 61.3 55.4 60.2 62.1 71.0 72.1 70.5 78.6 85.0 70.5
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The structure of trout CXCR2 was predicted to have seven-
transmembrane domains, with an extracellular N-terminus and
an intracellular C-terminus. Due to the high aa identities of teleost
CXCR2 to mammalian CXCR1 and CXCR2, a multiple alignment was
constructed from CXCR1 and CXCR2 molecules from selected
mammalian (human), reptile (lizard), teleost (ray-finned) fish
species known to have experienced a further whole genome
duplication (WGD) event (trout, fugu and tilapia Oreochromis
niloticus), and the lobe-finned coelacanth Latimeria chalumnae
(Fig. 1). Vertebrate CXCR1 and CXCR2 are well conserved in the
seven TM domains with sequences all possessing four cysteine res-
idues (one in the N-terminal and three in the extracellular loops;
ECLs) that form two disulphide bonds, one from the N-terminal
to ECL3 and one from ECL1 to ECL2 (Limatola et al., 2005), and
the DRY motif in ICL2. There are also 1–3 potential N-glycosylation
sites present in the N-terminus of both CXCR1 and CXCR2, with the
exception of lizard CXCR2. Sequence alignments suggest that fish
CXCR2 molecules are more closely related to tetrapod CXCR1 and
CXCR2 as illustrated by the amino acid deletion in ICL2 and the
amino acid insertion in TM4 relative to fish CXCR1 (Fig. 1).

One CXCR3 gene is present in mammals but none have been
found in birds (Zlotnik and Yoshie, 2012). Surprisingly, we found
two CXCR3-related genes in amphibians, reptiles and lobe-finned
fish, and up to three in ray-finned fish in the ENSEMBL database.
Trout CXCR3a and CXCR3b share only 36.9% aa identity (Table 4).
In general, fish CXCR3a, along with CXCR3a from amphibians (frog)
and reptiles (turtle) share high aa identities to each other (39.6–
55.8%) and to mammalian CXCR3 molecules (41.5–49.7%), whilst
exhibiting lower aa identities to CXCR3b molecules (32.4–43.3%).
A multiple alignment of selected CXCR3a, CXCR3b, and mammalian
CXCR3 molecules highlighted general conservation in the seven TM
domains, the four cysteine residues in the extracellular domains,
the DRY motif, and the potential N-glycosylation sites in the N-ter-
minus (Fig. 2).

3.2. The common ancestor of fish and tetrapods had a locus containing
CXCR1 and CXCR2 in its genome

Fish CXCR1/R2 molecules have been described in a few fish spe-
cies; however their relationships to mammalian CXCR1/2 are not
clear. We first constructed a neighbour joining phylogenetic tree
using CXCR1–4 molecules from representative ray-finned fish
(zebrafish, medaka, tilapia, tetraodon, fugu and platyfish Xiphopho-
rus maculatus), a lobe-finned fish (coelancanth) that is a close living
relative of tetrapods (Amemiya et al., 2013), an amphibian (frog
Xenopus tropicalis), reptiles (anol lizard or turtle Pelodiscus sinensis),
a bird (chicken Gallus gallus) and a selection of mammals (human,
cow, dog, mouse and rat) (Fig. 3). It was clear that all the vertebrate
CXCR1 and CXCR2 molecules form a clade separate to the CXCR3
and CXCR4 clades. The CXCR1/R2 clade was further divided into
three subclades. All the tetrapod CXCR1 and CXCR2 molecules,
along with the lobe-finned fish CXCR2 formed one subclade, we
have termed tetrapod CXCR1/R2 group. The fish CXCR2 molecules
formed a second subgroup, whilst the fish CXCR1 molecules, with
the lobe-finned fish CXCR1 at the root of the group, formed the
third subgroup. It is noteworthy that the ray-finned fish CXCR1
were divided into CXCR1a and CXCR1b subgroups.

Phylogenetic analysis alone does not give a clear explanation as
to how the fish and tetrapod CXCR1 and CXCR2 molecules may
have originated. For example, two different evolutionary paths
could be put forward. In one the teleost CXCR1 and CXCR2 genes
could have been generated by the fish-wide WGD and the mam-
malian CXCR1 and CXCR2 genes by a gene duplication early in
the amniote lineage, as suggested by Nomiyama et al. (2011,
2013). However, the presence of CXCR1 and CXCR2 clades in differ-
ent teleost fish and the coelacanth may indicate an alternative evo-
lutionary pathway based on the premise that the teleostomian
ancestor already possessed the CXCR1 and CXCR2 genes that were
preserved in lobe-finned fish, converted in reptiles and mammals,
and duplicated in ray-finned fish.

To help clarify the evolutionary relationships of these mole-
cules, synteny analysis was carried out using the Genomicus data-
base v73.01 using the lizard CXCR1/R2 locus as a reference. Both
human and lizard CXCR1 and CXCR2 are syntenically well con-
served, as evidenced by large blocks of conserved genes on lizard
CH 1 and human CH 2 (Fig. 4). The CXCR1/CXCR2 loci of both the
lobe-finned coelacanth and ray-finned zebrafish are also synteni-
cally conserved (e.g. the presence of AAMP and ARPC2 genes close
to CXCR1 and CXCR2), which may represent the ancestral state.
Two syntenically conserved chromosomal loci containing CXCR1/
R2 genes were found in at least three model fish species (tilapia,
tetraodon and platyfish) (Fig. 4), suggesting that these loci may
have been generated by the teleost-wide WGD event. Together
the synteny and the phylogenetic analysis provides evidence that
the CXCR1 and CXCR2 genes were present in the ancestor of fish
and tetrapods and were duplicated in the ray-finned fish via the
WGD, with differential evolution of the loci in teleost fish and tet-
rapods that will be discussed later.

3.3. Two CXCR3 genes (a and b) existed in the teleostomian ancestor

Phylogenetic analysis (Fig. 3) suggests that there are two types
of CXCR3, CXCR3a and CXCR3b, present in fish, amphibians and
reptiles, with only a single CXCR3 molecule equivalent to the



Fig. 1. Multiple alignments of vertebrate CXCR1 and CXCR2. The multiple alignment was produced using ClustalW, and conserved amino acids shaded using BOXSHADE
(version 3.21) except in the N-terminal domain. The N-terminus, seven transmembrane domains (TM1–7), three extracellular loops (ECL1–3) and intracellular loops (ICL1–3)
and the C-terminus are marked above the alignment. The four conserved cysteine residues in each extracellular domain are indicated by black arrows and the DRY motifs
below the alignment. Potential N-glycosylation sites in the N-terminal domain are underlined. The accession numbers for sequences used in this alignment are given in Fig. 3.

Table 4
Comparison of identities (top right) and similarities (bottom left) of CXCR3 molecules from selected teleosts, tetrapods, and coelacanth. The accession numbers of the sequences
used are detailed in Fig. 3 except for frog CXCR3a (a full-length protein sequence from Xenopus laevis with acc. no. K7ZRA2).

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1. Trout-a 55.8 37.6 46.1 41.3 46.2 45.5 42.3 45.3 36.9 37.9 38.5 36.0 37.1
2. Zebrafish-a1 73.5 38.5 42.7 39.6 40.9 41.5 41.8 42.0 33.2 36.9 35.0 33.5 32.4
3. Zebrafish-a2 58.0 56.7 30.1 29.2 32.0 30.8 29.5 30.8 26.4 26.4 28.2 27.3 28.5
4. Coelacanth-a 66.0 62.8 52.9 46.8 54.9 45.9 44.7 45.9 35.0 33.7 43.3 32.9 34.5
5. Frog-a 61.8 59.4 51.5 66.0 46.4 43.4 42.0 44.8 33.4 32.7 39.5 34.6 35.6
6. Turtle-a 64.2 62.4 50.8 71.7 65.8 49.7 48.4 49.6 35.4 33.8 40.1 37.3 38.1
7. Human 64.7 61.1 50.3 65.2 61.5 64.9 86.4 87.0 39.1 37.3 38.3 35.5 39.1
8. Mouse 61.0 61.9 49.7 62.6 62.9 64.0 91.8 84.5 37.9 36.2 38.4 35.1 37.6
9. Cow 63.9 62.9 49.5 64.7 62.9 65.6 92.4 89.9 38.4 35.4 40.4 35.9 38.1
10. Trout-b 58.2 52.4 47.6 57.9 53.7 54.7 55.8 55.8 53.7 57.8 40.9 39.3 40.9
11. Zebrafish-b 57.9 56.3 45.0 58.5 57.1 55.8 54.2 55.0 54.2 73.7 39.0 38.3 41.1
12. Coelacanth-b 55.2 54.7 48.4 58.2 57.0 56.2 55.4 55.2 56.2 59.7 61.3 41.3 41.6
13. Frog-b 55.9 52.3 45.5 54.8 55.2 57.6 53.0 55.3 53.0 57.1 55.8 57.7 47.6
14. Turtle-b 54.8 54.6 50.3 56.1 56.2 57.3 54.8 56.2 54.6 59.2 59.8 61.3 61.8

Q. Xu et al. / Developmental and Comparative Immunology 45 (2014) 201–213 205



Fig. 2. Multiple alignments of CXCR3a, CXCR3b and mammalian CXCR3. The multiple alignment was produced using ClustalW, and conserved amino acids shaded using
BOXSHADE (version 3.21) except in the N-terminal domain. The N-terminus, seven transmembrane domains (TM1–7), three extracellular loops (ECL1–3) and intracellular
loops (ICL1–3) and the C-terminus are marked above the alignment. The four conserved cysteine residues in each extracellular domain are indicated by black arrows and the
DRY motifs below the alignment. Potential N-glycosylation sites in the N-terminal domain are underlined. The accession numbers for sequences used in this alignment are
given in Fig. 3.
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CXCR3a type in mammals and no CXCR3 molecules found in birds
(Nomiyama et al., 2013). CXCR3a and CXCR3b genes in amphibians,
lobe-finned and ray-finned fish are located together on the same
chromosome and show conserved gene synteny (Fig. 5). Some
ray-finned fish possess more CXCR3 paralogues (e.g. medaka pos-
sesses one CXCR3b and two CXCR3a genes) generated by local gene
duplication events). However, only poor gene synteny was found
between the fish and mammalian CXCR3 loci. Nevertheless, fish
and amphibian synteny, together with the phylogenetic tree anal-
ysis, support the premise that the CXCR3a and CXCR3b genes were
present in the teleostomian ancestor, and were preserved in lobe-
finned fish, ray-finned fish, amphibians and potentially in reptiles.
CXCR3b was apparently lost in mammals, whereas both isoforms
have been lost in birds.

3.4. Tissue distribution of the expression of different chemokine
receptors

The relative expression levels of trout CXCR1, CXCR2, CXCR3a
and CXCR3b were examined in seventeen tissues from six healthy
fish by real-time PCR (Fig. 6). The expression of all the receptors
was detectable in all tissues examined. High constitutive expres-
sion of CXCR1 was present in immune-relevant tissues, e.g. thy-
mus, blood, spleen and gills, as well as in non-immune tissues
such as muscle, heart, brain and caudal kidney. The expression of
CXCR2 was particularly high in muscle, and relatively high in HK,
caudal kidney and thymus. The expression of CXCR1 was signifi-
cantly higher than CXCR2 in liver, brain, heart and blood, whilst
CXCR2 was significantly higher than CXCR1 in HK and muscle.
Interestingly, the relative expression levels of CXCR1 and CXCR2
did not differ in many immune relevant tissues such as thymus,
spleen, gills, intestine and skin (Fig. 6A).

The expression of CXCR3a and CXCR3b was generally higher
compared to that of CXCR1 and CXCR2, with CXCR3b expression
showing relatively little variation between tissues (Fig. 6). The
highest expression level of CXCR3a was observed in spleen tissue,
whilst CXCR3b was highly expressed in spleen, muscle and blood.
CXCR3a expression was significantly higher than CXCR3b in thy-
mus, adipose fin, caudal kidney, head kidney, gonad, and spleen.
CXCR3b expression was significantly higher than CXCR3a in tail
fins, liver and blood (Fig. 6B).

3.5. Differential modulation of chemokine receptors in primary HK
macrophages

Mammalian CXCR1 and CXCR2 (Morohashi et al., 1995) and fish
CXCR3 (Wang et al., 2008; Aghaallaei et al., 2010) are known to be
expressed in monocytes/macrophages. We, therefore, examined
the modulation of chemokine receptor expression in primary HK
macrophages stimulated by PAMPs and proinflammatory cyto-
kines (Fig. 7). All four chemokine receptors were highly expressed
in trout primary HK macrophages. CXCR1 expression remained
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refractory to all stimulants, the only exception being the IL-1b-
mediated down-regulation of CXCR1 expression at 8 h (Fig. 7A).
CXCR2 expression was moderately induced by polyI:C at 24 h
and by TNF-a at 8 h but was refractory to PGN, IL-1b, IL-6 and
IFN-c stimulation (Fig. 7B). Both CXCR3a and CXCR3b were moder-
ately up-regulated by IFN-c (up to 4-fold) at 4 h post-stimulation
but were refractory to IL-6. Interestingly, the expression of CXCR3a
was markedly up-regulated by polyI:C (up to 68-fold), PGN (up to
47-fold), IL-1b (up to 29-fold) and TNF-a (up to 12-fold) (Fig. 7C).
In sharp contrast, the expression of CXCR3b was inhibited under
the same stimulatory conditions (Fig. 7D).
3.6. Modulation of chemokine receptors by bacterial and parasitic
infections

We further investigated chemokine receptor transcriptional
modulation by bacterial and parasitic infections. Following infec-
tion of trout with a common Gram-negative bacterial pathogen,
Y. ruckeri, the expression level of CXCR1 in HK was significantly
up-regulated (up to 18.4-fold) from 24 to 72 h relative to time
matched control fish. In contrast, CXCR2 expression was decreased
at 24 and 48 h post-infection. A modest, yet significant increase of
CXCR3a expression (2.4-fold) was observed at 24 h. CXCR3b
expression remained refractory to bacterial infection.

To gain further insights into the immune mechanisms underly-
ing the characteristic chronic lymphoid-driven immunopathology
seen in T. bryosalmonae infected rainbow trout (Gorgoglione
et al., 2013), the expression profiles of the chemokine receptors
were investigated in fish with clinical PKD relative to uninfected
controls. The expression of CXCR3a and CXCR3b was refractory to
PKD (Fig. 9C and D), whilst CXCR1 decreased at advanced clinical
stages (grade 3) (Fig. 9A). In contrast, CXCR2 expression was signif-
icantly up regulated in kidney tissue samples from grade 1 to grade
3 (Fig. 9B).
3.7. Expression of chemokine receptors in purified neutrophils and B
cells

To gain further insights into the cell types expressing these
chemokine receptors, we investigated their expression in purified
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primary HK macrophages, neutrophils, and B cells using HK leuco-
cytes as a reference, since all of the selected cell populations are
present in HK leucocyte preparations. The primary HK macro-
phages highly express macrophage/dendritic cell markers such as
MCSFR (Wang et al., 2008) and LAMP3/CD208 (Johansson et al.,
2012). Purified neutrophils were >80% 5E9 positive (Sasaki et al.,
2002) and B cells >90% IgM (I-14) positive (DeLuca et al., 1983).
The expression of both CXCR1 and CXCR2 was significantly higher
in MACS purified neutrophils and B cells compared to HK leuco-
cytes. CXCR1 expression was also significantly higher in primary
HK macrophages (Fig. 10). The expression of both CXCR3a and
CXCR3b was higher in primary macrophages and neutrophils com-
pared to HK leucocytes (Fig. 10).
4. Discussion

4.1. Evolution of CXCR1–3

4.1.1. The ancestral state of fish and tetrapod CXCR1–R3
The high sequence identity between CXCR1 and CXCR2 in the

same mammalian species and their linkage to the same chromo-
some suggests that the mammalian CXCR1 and CXCR2 genes have
arisen by gene duplication early in the amniote lineage. The
presence of (at least) two CXCR1/2 genes in teleosts has been
proposed to be due to chromosomal duplication or the teleost
fish-wide WGD (Nomiyama et al., 2013). However, our synteny
and phylogenetic tree analysis, that included the lobe-finned
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coelacanth, suggests that two CXCR1/R2 like genes were already
present in the ancestor of fish and tetrapods. Ray-finned fish ap-
pear to have expanded the CXCR1/R2 paralogues via the teleost-
wide WGD event leading to three (CXCR1a, CXCR1b and CXCR2)
genes in two genomic loci, as seen in three teleost fish species in
this study. The presence of CXCR1 and CXCR2 as gene neighbours
in both the lobe-finned coelancanth and ray-finned zebrafish sug-
gests that this was the primordial state of the CXCR1 and CXCR2
locus that appears to have been preserved in reptiles and mam-
mals, although with only one gene remaining in amphibians and
birds. The possibility that CXCR1 and CXCR2 arose from a single
CXCR1/R2 gene by gene duplication independently in both the
mammalian and reptile lineages is less likely, as this process would
have needed two independent events to have taken place: Firstly,
the loss of one of the CXCR1 or CXCR2 genes followed by two gene
duplication events. The high identity of CXCR1 and CXCR2 in mam-
mals and reptiles may have resulted from gene conversion (Shields,
2000), driven by ligand/receptor co-evolutionary processes (dis-
cussed later).

In contrast to the common scenario where multiple related tel-
eost genes reside in different chromosomal loci that have been
generated by the teleost-wide WGD event (Wang et al., 2008; Hus-
ain et al., 2012; Hong et al., 2013), two or more CXCR3-related
genes are found in close proximity to each other in several fish spe-
cies, implying that they have arisen from local gene duplication
events. The presence of clustered CXCR3a and CXCR3b genes in
both lobe-finned and ray-finned fish, as well as in amphibians
and potentially in reptiles may suggest that both genes were pres-
ent in the genome of the teleostomian ancestor. However, mam-
mals appear to have lost CXCR3b and birds both genes during
vertebrate evolution. Importantly, birds have lost the known
ligands of CXCR3 (i.e. CXCL9–11), which could account for the ab-
sence of CXCR3 in birds (Nomiyama et al., 2013).
0.01

0.1

1

10

Control PolyI:C PGN IL-1β IL-6 TNF-α IFN-γ

D. CXCR3b

**
**

***
*

*
*

*

0.1

1

10

Control PolyI:C PGN IL-1β IL-6 TNF-α IFN-γ

B. CXCR2

* *

tment

. Four day old primary HK macrophages were stimulated with PAMPs (polyI:C and
. Quantification of gene expression was as described in Fig. 6. Modulated expression
lls normalized to that of time-matched controls. The means + SEM of cells from four
ime-matched control samples are shown above the bars. ⁄p 6 0.05, ⁄⁄p 6 0.01 and



0

1

2

3

4

5

6 h 24 h 48 h 72 h

D. CXCR3b PBS

YR

0

1

2

3

4

5

6 h 24 h 48 h 72 h

B. CXCR2

*
*

PBS

YR

0

5

10

15

20

25

6 h 24 h 48 h 72 h

A. CXCR1
**

* *

PBS

YR

0

1

2

3

4

5

6 h 24 h 48 h 72 h

C. CXCR3a PBS

YR

Fo
ld

 c
ha

ng
e

Time

*

Fig. 8. Modulation of trout chemokine receptor expression by bacterial infection. Rainbow trout were i.p. injected with Y. ruckeri (YR) or PBS as control. HK tissue was
collected at 6, 24, 48 and 72 h post-challenge and real-time PCR analysis performed as described in Fig. 6. Results, presented as a fold change relative to the controls, are
means + SEM of five fish. The significance of LSD post hoc tests after one way-analysis of variance between infected and control fish is shown above the bars. ⁄p 6 0.05 and
⁄⁄p 6 0.01.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C. CXCR3a

Grade  0          1          1-2          2 3
0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5

D. CXCR3b

Grade   0          1         1-2          2 3  

0

2

4

6

8

10

Grade  0          1          1-2          2 3

B. CXCR2
**

*
*

*
*

A. CXCR1

Grade  0          1          1-2          2 3
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fo
ld

 c
ha

ng
e

PKD infection grade

Fig. 9. Modulation of trout chemokine receptor expression by parasite infection. Kidneys from rainbow trout infected with T. bryosalmonae (grade 1, 1–2, 2 and 3) or from
uninfected (control, grade 0) fish were collected during a natural infection (Wang et al., 2010; Gorgoglione et al., 2013). Results, presented as a fold change relative to the
control fish, are means + SEM. The numbers of fish analysed were 11, 5, 9, 10 and 9 representing control, Grade 1, 1–2, 2, and 3, respectively. The significance of LSD post hoc
tests after one way-analysis of variance between infected and control fish is shown above the bars. ⁄p 6 0.05 and ⁄⁄p 6 0.01.

210 Q. Xu et al. / Developmental and Comparative Immunology 45 (2014) 201–213
4.1.2. Coevolution of chemokines and their receptors
To maintain functional interactions, chemokine ligands and

their receptors must both co-evolve so that changes in one partner
at the points of interaction are complemented by changes in the
other. Mammalian CXCR1 and CXCR2 bind to a cluster of proin-
flammatory CXC chemokines that seem to have originated from a
lineage specific expansion in mammals. With the exception of
CXCL8, most of these chemokines have not been found in birds,
amphibians or fish (Nomiyama et al., 2013). Thus, mammalian
CXCR2 binds to CXCL1–3 and CXCL5–8, whilst CXCR1 binds to
CXCL6 and CXCL8, with the only exception known to date being
the absence of CXCL8 in rodents (mouse and rat). The binding of
multiple common ligands might be a driving force for the evolu-
tionary conversion of mammalian CXCR1 and CXCR2. Potentially
the selective pressure of CXCR1 and CXCR2 gene conversion in
rodents has been relaxed owing to the absence of CXCL8. Indeed,
rodent CXCR1 and CXCR2 are more divergent (58.7% aa identity)
than in other mammals (e.g. 75.8% aa identity in human) and ap-
pear to be phylogenetically distinct, whereas in other mammalian
species they group together. Evidence supporting CXCR1 and
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CXCR2 gene conversion being specific to non-rodent mammalian
species has been obtained (Shields, 2000).
4.1.3. Implication of more CXCR1–3 genes in fish
In humans, CXCR1–R3 bind to twelve CXC ligands (CXCL1–11

and CXCL4L1) (Nomiyama et al., 2010, 2013). According to the
mammalian ligand-receptor binding paradigm, the five or more
receptors (CXCR1a, CXCR1b, CXCR2, CXCR3a and CXCR3b) present
in most ray-finned fish could bind up to five ligands (CXCL8_L1–3
and CXCL11_L1–2, Chen et al., 2013). Although little is known
about the specific ligand-receptor pairing, the presence of more
receptors suggests that more specific ligand-receptor pairings
could exist in fish. Recently, CXCR2 was reported to be the func-
tional receptor for CXCL8_L1 in zebrafish where it is known to be
involved in neutrophil recruitment during local infections, even
though both CXCR1 and CXCR2 are expressed in neutrophils (Deng
et al., 2013). As to whether zebrafish CXCR1 is specific for other
CXCL8-related molecules or both CXCR1 and CXCR2 bind to fish-
specific CXC ligands remains to be determined. Nevertheless, the
specific CXCL8_L1-CXCR2 pairing in zebrafish provides evidence
supporting the existence of novel fish-specific chemokine-receptor
pairings.

Of the four receptors discussed, CXCR3b is absent in mamma-
lian genomes, whilst both CXCR3a and CXCR3b are absent in birds,
the latter being consistent with the lack of binding ligands (CXCL9–
11) in bird genomes. Two potential ligands, CXCL11_L1–2, have
been described in several fish species (Chen et al., 2013). It will
be interesting to see in future studies whether the two CXCR3
receptors bind to both CXCL11 ligands or if fish CXCR3b may part-
ner with novel fish specific ligands, such as the CXCL-F ligands
(Chen et al., 2013).
4.2. Functional implications of the gene expression analysis

Rainbow trout CXCR1, CXCR2, CXCR3a and CXCR3b are differen-
tially expressed in different tissues from healthy fish. In general,
CXCR1 and CXCR3b expression are less variable across different tis-
sues, which may be indicative of a homeostatic role for these
receptors. The high expression levels of CXCR1, CXCR2 and CXCR3a
in immune relevant tissues, such as thymus, spleen, gills and HK,
and differential modulation by PAMPs, cytokines, and pathogens,
suggests that they are involved in immune regulation. Mammalian
CXCR1 and CXCR2 are key regulators of inflammation and activa-
tors of neutrophils and CXCR3 is highly expressed in effector T
cells. Whether this paradigm holds true in teleost fish warrants
further investigation considering the difference of the ligands of
CXCR1–R3 and the receptors between fish and mammals. To our
surprise the highest expression levels of CXCR2 were observed in
muscle, which was over two orders of magnitude higher than in
immune tissues such as thymus, spleen and gill tissues, which
may indicate a potential role of this receptor in the fish musculo-
skeletal system. Human CXCR2 is also expressed in skeletal muscle
and is influenced by acute exercise at both the mRNA and protein
levels and has been implicated in exercise-stimulated angiogenesis
(Frydelund-Larsen et al., 2007). Thus, in fish, the high level of
CXCR2 expression in fish muscle may relate to swimming
behaviour.

An important prerequisite towards understanding the func-
tional significance of CXCR1–R3 in fish is to determine the cell
types that express them. Thus, we examined the expression of
CXCR1–R3 in purified primary macrophages, neutrophils, and B
cells. Even though our cell preparations did not reach 100% purity,
the comparison of CXCR gene expression between the different cell
types and to unfractionated HK leucocytes indicated that CXCR1
and CXCR2 are highly expressed in neutrophils and B cells, with
CXCR1 also expressed abundantly in macrophages relative to total
HK cells. Whilst it remains possible that gene expression in puri-
fied neutrophils and B cells was influenced by the MACS procedure,
it is, nevertheless, clear that these cell types can express these
receptors at relatively high levels. CXCR3a and CXCR3b were also
abundantly expressed in macrophages and neutrophils. These data
are consistent with CXCR3 studies in medaka where CXCR3 expres-
sion, in vivo, was found to be associated with myeloid markers and
genes linked to antigen uptake and presentation and with grass
carp studies describing the abundant expression of CXCR3 in mac-
rophages and granulocytes (Chang et al., 2007; Aghaallaei et al.,
2010). In mammals, CXCR3 is highly expressed in IL-2 activated T
cells, but undetectable in resting T cells, B cells, monocytes and
granulocytes. The exclusive expression of CXCR3 in activated T
cells suggests that it may have a role in the selective recruitment
of lymphocyte subsets (Groom and Luster, 2011). Our initial anal-
ysis on trout HK leucocytes revealed that expression of CXCR3a but
not CXCR3b increased in response to stimulation with the T cell
mitogen phytohemagglutinin (un-published data). However, the
expression of CXCR3a and CXCR3b in fish T cells remains to be
determined.

Macrophages produce proinflammatory cytokines (e.g. IL-1b,
TNF-a and IL-6) in response to PAMPs (polyI:C and PGN). These
proinflammatory cytokines, together with IFN-c can then act to
regulate macrophage function via different signalling pathways.
In addition, the proinflammatoy cytokines can regulate each other,
e.g. IL-1b upregulates the expression of TNF-a, and vice versa
(Hong et al., 2001, 2013). The differential modulation of
CXCR1–R3 expression in primary HK macrophages suggests that
different pathways regulate the expression of these receptors.
CXCR3a is upregulated rapidly by both PAMPs (polyI:C and PGN)
and proinflammatoy cytokines (IL-1b and TNF-a), hinting that
some common pathways of the TLR signalling and proinflamma-
tory cytokine signalling may be involved in regulation of this
receptor. The converse regulation of trout CXCR3a and CXCR3b
by PAMPs and proinflammatory cytokines is particularly interest-
ing. According to known mammalian CXC ligand receptor binding,
only one potential CXCR3 ligand (cIP or CXCL11_L1), has been
identified in rainbow trout to date (Laing et al., 2002a; Chen
et al., 2013). cIP and CXCR3a are highly up regulated by polyI:C,
IL-1b and TNF-a whilst, in contrast, CXCR3b expression was
down-regulated. This may indicate that CXCR3a-cIP is a possible
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ligand-receptor pair in rainbow trout. Whether CXCR3a and
CXCR3b bind to the same ligand or CXCR3b binds to other ligands
remains to be determined.

4.3. CXCR1–3 in disease models

The expression of chemokine receptors has been examined in
several fish disease models (Huising et al., 2003; Gonzalez et al.,
2007; Forlenza et al., 2008). In this study, the expression of trout
CXCR1–3 in response to an acute Gram-negative bacterial (Y. ruck-
eri) infection and a chronic parasitic (T. bryosalmonae) infection
was investigated. Two distinct patterns of CXCR1 and CXCR2
expression were observed. Whilst the bacterial infection increased
CXCR1 expression but decreased CXCR2 expression, PKD enhanced
CXCR2 expression at all stages of clinical disease. It is not clear
whether such changes in gene expression are the result of direct
activation or inhibition of transcription, or due to the movement
of cells that express the receptors. Apparently the cells expressing
CXCR1 and CXCR2 can overlap. For example, both receptors are ex-
pressed in neutrophils and B cells, although this may not be the
case with all cell types. Future studies aiming to identify cell pop-
ulations expressing CXCR1 and CXCR2 in fish disease models may
help to clarify the molecular mechanisms underpinning pathogen-
mediated pathology.

Interestingly, the expression of IL-8 (CXCL8_L1, Chen et al.,
2013) was up-regulated by Y. ruckeri infection (Raida et al., 2011),
but refractory to T. bryosalmonae (Gorgoglione et al., 2013). So far,
only one CXCL8 like molecule has been identified in rainbow trout
(Laing et al., 2002b), even though up to three may exist in other fish
species. The concomitant increase in IL-8 and CXCR1 expression in
the bacterial infection model suggests that this is a likely chemo-
kine ligand-receptor pairing with a functional role in this disease.
The increased expression of CXCR2 but lack of IL-8 up-regulation
in PKD may be indicative of additional chemokines, yet to be dis-
covered in rainbow trout that could bind to CXCR2 and play a func-
tional role in PKD pathology.
5. Conclusions

The analysis of CXCR1–R3 genes in lobe-finned, ray-finned fish
and tetrapod genomes has revealed that the teleostomian ancestor
likely possessed clustered CXCR1/CXCR2 and CXCR3a/CXCR3b loci.
During vertebrate evolution, CXCR1 and CXCR2 appear to have
undergone gene conversion in mammals probably driven by
ligand/receptor co-evolutionary processes. Mammals appear to
have lost CXCR3b, whilst birds have lost both CXCR3a and CXCR3b,
along with their putative ligands. The CXCR1/R2 locus has been
further expanded in ray-finned fish via the fish-wide WGD event.
Thus, more CXCR1–R3 orthologues are present in this lineage de-
spite fewer potential ligands being found to date. This implies that
unique ligand-receptor pairings could exist in fish. Trout CXCR1–
R3 have distinct tissue expression patterns and are differentially
modulated by PAMPs and proinflammatory cytokines in primary
head kidney macrophages and by bacterial and parasitic infection
in vivo. All the receptors were found to be expressed in macro-
phages and neutrophils with CXCR1/R2 also highly expressed in
B-cells.
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