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Abstract

This work presents a survey of new space vector modulation algo-
rithms for high power voltage source multilevel converters. These tech-
niques provide the nearest switching vectors sequence to the reference
vector and calculates the on-state durations of the respective switch-
ing state vectors without involving trigonometric functions, look-up
tables or coordinate system transformations which increase the compu-
tational load corresponding to the modulation of a multilevel converter.
These algorithms drastically reduce the computational load maintained
permitting the on-line computation of the switching sequence and the
on-state durations of the respective switching state vectors. The on-
state durations are reduced to a simple addition. In addition, the low
computational cost of the proposed methods is always the same and it
is independent of the number of levels of the converter. The algorithms
have been satisfactorily implemented in very low-cost microcontrollers.
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1 Introduction

In the recent years, multilevel converters are becoming popular in medium
and high power applications due to their ability to meet the increasing de-
mand of power ratings and power quality associated with reduced harmonic
distortion and lower EMI [1]. The advantages of multilevel converters are
well known since Akira Nabae proposed the topology of NPC (Neutral Point
Clamped) inverter in 1981 [2]. We can stress the importance of their capa-
bility of increasing the output voltage magnitude and reducing the output
voltage and current harmonic content, the switching frequency and the volt-
age supported by each power semiconductors. In that respect, they permit
to use the double voltage under the same type of switches. By synthesizing
the ac output voltage from several levels of voltages, staircase waveforms
are produced, which approach the sinusoidal waveform with low harmonic
distortion. Multilevel converter enables the ac voltage to be increased with-
out a transformer. In addition, the cancellation of low frequency harmonics
from the ac voltages at different levels means that the size of the ac in-
ductances can be reduced. Due to these attractive characteristics, several
control algorithms of multilevel converter have been recently proposed [3-6].
However, the carrier-based PWM methods [3,4] highly increase the algo-
rithm complexity and the computational load with the number of levels of
the multilevel converter, and the most of the space vector modulation algo-
rithms proposed in the literature involve trigonometric function calculations
or look-up tables or memories [6]. As far as the author knows the first space
vector modulation for three-level and multilevel inverters for calculating the
nearest switching vectors sequence to the reference vector and the on-state
durations of the respective switching state vectors without trigonometric
function calculations, look-up tables or coordinate system transformations
was presented in [7,8]. The results obtained using this iterative algorithm
[7,8] are improved using the fast modulation algorithm based on geometri-
cal considerations proposed in the section B of this paper. Finally, a new
three-dimensional space vector modulation is presented in this survey in
order to generalize the conventional two-dimensional techniques; both the
algorithms presented in this work and the algorithms modulations can be
found in the literature. The methods proposed in this paper can be applied
to the cascade [9], flying capacitor [10], and Neutral Point Clamped (NPC)
[11] topologies.
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2 Modulation techniques description

2.1 Iterative algorithm for multilevel converters

The first two-dimensional space vector modulation presented in this survey is
an iterative algorithm for multilevel converters with very low computational
cost. This method is based on the decision based pulse width modulation
developed by Holtz [12] for a conventional two-level converter. Three-phase
quantities are usually transformed into the phasor representation since it
simplifies the analysis of the modelled system [13].

In this paper, the problem is solved for a voltage vector in the first sex-
tant. However, this reference vector can be located in any of the six sectors
of the regular hexagon which contains the switching state vectors. This
problem is easily solved rotating u∗ counterclockwise by angle (n− 1) π

3
,

where n is the sextant number, n = 1, . . . , 6. This rotation displaces any
reference vector to the first 60o to be studied there. The switching state
vectors for the multilevel inverter control are determined by the reverse ro-
tation. The input to the modulation algorithm of the three-level converter
is the normalized reference voltage vector. The normalization depends on
the number of levels of the multilevel converter and the voltage level value
of the DC-link capacitors. As a result, Va, Vb, and Vc (1) take entire values
between 0 and n − 1, where n is the number of the level of the multilevel
converter. Thus, the first step of the method consists in localizing the sex-
tant n = 1, .., 6 where the reference voltage vector u∗ is located. The voltage
vector u∗ is transformed into u∗flat. This transformation consists in scaling
imaginary part by multiplying it by 1√

3
. The hexagon is flattened. Fig. 1

shows the regular hexagon defined by the switching state vectors before and
after transformation in the complex plane. Since the transformed sextants
are separated by 45o lines, the sextant can now be readily identified by com-
paring the real and imaginary parts of the complex transformed reference
voltage vector u∗flat. In addition, it can be easily proven [12] that, once the
sextant has been determined, the numeric evaluation of the switching times
gets reduced to a single addition involving uα and uβ. Summing up, the
transformation of u∗ into u∗flat makes it possible to avoid on-line computa-
tions. These computations are substituted by decision making. The states
space consists of a main regular hexagon. Each sextant of this hexagon is
now divided into several sectors. The number of sectors depends on the
number of levels of the multilevel converter.
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Figure 1: Switching state vectors before and after the transformation in the
complex plane.

2.1.1 Determination of the sextant of the reference voltage vector

Once the sextant n has been localized into the main regular hexagon, the
identification of the sector into the sextant, the nearest switching sequence
to approximate a reference voltage vector u∗ and the on-state durations are
calculated by rotating u∗ to the first sextant. The rotated reference voltage
vector is:

ug = uga + jugb = u*exp
³
−j (n− 1) π

3

´
; n = 1, . . . , 6. (1)

This vector ug is transformed in another one with identical real part and
reduced imaginary part

ugf = uga + j

√
3

3
ugb = ugfa + jugfb. (2)
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This simplifies the sector identification. In general, a vector u∗gf can be
expressed in function of the time of its surrounding state vectors

u∗gf = t1u
1
gf + t2u

2
gf + t3u

3
gf . (3)

In the algorithm the sub cycle Tnm is normalized to the unit

Tnm = 1 = t1 + t2 + t3. (4)

u∗gf can be studied from the centre of the regular hexagon which cor-
responds to u2gf . The new vector to approximate by its surrounding state
vectors is u ∗gf −u2gf .u∗gf must be related to its surrounding state vectors,
as it is shown in Fig. 2. In this case t2 = 1−t1−t3 and u∗gf can be expressed:

u∗gf = t1(u
1
gf − u2gf ) + t3(u

3
gf − u2gf ) + u2gf . (5)

Figure 2: Example for studying u∗gf from the centre of the regular sub-
hexagon corresponding to u2gf .
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2.1.2 Determination of the sector

It is necessary to locate the triangular sector and the sub hexagon where
u∗gf is found. To determine the sector where u

∗
gf is, a displacement to the

centre node of each regular sub hexagon is done. Localization of the vertical
and horizontal positions of the centre node is necessary. A fundamental
step of the approach is to localize the triangular sector where u∗gf is found.
As stated above, this is equivalent to determining the sub-hexagons and
the sextant of the hexagon where u∗gf points to [13,18]. This problem is
equivalent to the problem of finding the sextant for a regular hexagon of
a conventional two-level inverter. However, the above-described searching
algorithm ensures that the imaginary part of u∗gfd is either positive or zero
and therefore, the lower sextants (n = 4, 5, 6 in Fig. 1) can be ignored. This
simplifies the searching.

Once the sector where u∗gf is located has been determined, the on-state
durations can be calculated from the real and imaginary parts of u∗gfd by
using the expressions reported in [13,18]. Finally, a reverse rotation and
transformation to obtain the definitive state vectors and on-state durations,
which generate the original normalized reference voltage vector, is done.

Note that the proposed algorithm runs on-line only for the times it is
necessary. There is no need to generate, save and retrieve all the sectors,
state vectors, and on-state durations. On the other hand, this method uses
the minimum number of possible comparators. The algorithm used in this
work presents the advantage of eliminating the angle from the calculations.
Moreover, the numeric evaluation of the on-state durations is reduced to a
simple addition. This efficient method uses the minimum number of possible
comparators.

2.2 Space vector modulation algorithm based on geometrical
considerations

An alternative space vector modulation algorithm for voltage source multi-
level converters is explained in the present section. This technique is based
on the above reported. However, this method calculates the switching times
and the space vectors using simple geometrical considerations. In addition,
the low computational cost of the proposed method is always the same and
is independent of the number of levels of the converter.
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2.2.1 Introduction to the method

Three-phase quantities are usually transformed into phasor representation
for simplifying the calculations. Three vectors u1, u2, and u3 are used to
approximate the desired voltage vector u∗ in polar coordinates in a control
cycle Tm. The modulation law requires the actual voltage vector u to equal
its reference value u∗ where u∗ is represented in the stationary reference
frame

u = u∗ = Ea +Ebexp

µ
j2π

3

¶
+Ecexp

µ
j4π

3

¶
= Re {u∗}+ jImg {u∗} . (6)

During each modulation sub cycle of duration Tm, a switching sequence
is generated. It is composed of three switching state vectors u1(t1), u2(t2),
and u3(t3), where t1, t2, and t3 are the on-state durations of the active
switching state vectors. The three vectors nearest to the reference vector
must be identified.

The input to the modulation algorithm of the multi-level converter is
the normalized reference voltage vector u∗n. The states space normalization
permits the developed algorithm to be independent of the DC-link voltage
and the numbers of levels of voltages of the converter. The states space of
a four level converter in the complex plane d-q is shown in [13,18], where
the coordinates of each triangle’s vertex represent the levels of the DC link
voltage necessary to connect to each phase of the inverter to obtain the
corresponding state. They take integer values between 0 and n − 1, where
n is the number of the level of the multilevel converter.

Figure 3: Equations of the straight lines which divide the flattened complex
plane.
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The voltage vector u∗ is transformed into u∗flat. This transformation
consists of scaling imaginary part multiplying it by 1/

√
3 [7,8,13,18]. The

transformation of u∗ into u∗flat allows us to use simple on-line computations
of the states and switching times [7,8,13,18]. The hexagon where the state
vectors are represented, is flattened and the three zones shown in Fig. 3 are
found in the complex plane d-q.

The computations are substituted by decision making with a very low
number of instructions and the numeric evaluation of the switching times
gets reduced to a single addition involving the real ud and imaginary uq
parts of the reference voltage vector [7,8,13].

2.2.2 Determination of the region

The first step of this method consists of determining the region of the flat-
tened d-q space where the normalized reference voltage vector u∗n is located.
In Fig. 4 the flow chart for determining the region is shown.

Figure 4: Flow chart for determining the region in the normalized flattened
complex plane.
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2.2.3 Calculation of a triangle’s vertex

The proposed algorithm can be explained while assuming that the reference
vector is located in zone 1. Two other cases are solved in the same way
[14,18].

The developed algorithm always requires the same computational cost
because it is independent of the number of levels of the multilevel converter.
This is one of the attractive advantages that this modulation presents if it is
compared with most of the algorithms found in the bibliography [3-6]. For
example, the representation of the states of a five level three phase inverter
in zone 1 is shown in Fig. 5.

Figure 5: States of a five level converter in zone 1.

Ea, Eb, Ec are the coordinates of one of the vertices in the triangle where
the reference vector is pointing to. Whatever voltage reference vector located
between both lines shown in Fig. 3, it satisfies the following expressions:

−udn + 1 < uqn < −udn + 2 ⇒ 1 < uqn + udn < 2. (7)

Every reference vector in this region of the complex plane has one vertex
of the triangle where u∗n is found with Ea = 1. In general, this value can be
calculated in zone 1 as:

Ea = integer(udn + uqn). (8)
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Figure 6: Limited region in complex plane.

In zone 1, the Ec component is always zero and the Eb component is
calculated by limiting the region where reference vector is supposed to be
found. An example of a limited region in the complex plane is illustrated in
Fig. 6.

Any voltage reference vector in the shaded region in Fig. 4 must satisfy
the following expression:

0.5 < uqn < 1 ⇒ 1 < 2 ∗ uqn < 2 (9)

where Eb can be calculated in zone 1 as:

Eb = integer(2 ∗ uqn). (10)

With this example, the calculation of the general expression of the state
Ea, Eb, Ec of a triangle’s vertex in zone 1 is explained. This method is valid
in every subregion of the zone 1. A generic subregion in zone 1 formed by
two triangles with different orientations is presented in [14,18].

In general, the lower left hand corner vertex of any subregion in zone 1
can be expressed as:

Ea = integer(udn + uqn),

Eb = integer(2 ∗ uqn),

Ec = “0“.

(11)
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2.2.4 Determination of the orientation of the triangle

Once the lower left hand corner vertex coordinates are known, it is necessary
to find out in which of the two triangles is the reference vector located for
determining other states and the switching times [14,18].

If the reference vector is found in the triangle called 1, the geometrical
condition in this region is:

uqn < udn +Eb −Ea ⇒ uqn − udn < (Eb −Ea). (12)

However, if this geometrical condition is not fulfilled then the reference
vector is located in triangle 2.

2.2.5 Calculation of the three nearest vectors to the reference
vector

The three nearest states to the reference vector are obtained when the co-
ordinates Ea, Eb, Ec and the orientation of the triangle are known. In zone
1 they are as follows:

Triangle(1)

State 1 : “Ea, Eb, Ec
00

State 2 : “Ea + 1, Eb, Ec
00

State 3 : “Ea + 1, Eb + 1, Ec
00

Triangle(2)

State 1 : “Ea, Eb, Ec
00

State 2 : “Ea + 1, Eb + 1, Ec
00

State 3 : “Ea, Eb + 1, Ec
00.

(13)

2.2.6 Calculation of the switching times of the active vectors

The switching times are calculated from the geometrical coordinates of the
active vectors. Therefore, the numeric evaluation of the switching times gets
reduced to a single addition involving only real and imaginary parts of the
reference voltage vector and the coordinates Ea, Eb, Ec.

The normalized geometrical components are obtained from the following
expression:

µ
uEaEbEcdn
uEaEbEcqn

¶
=

µ
1 −12 −12
0 1

2 −12

¶ Ea

Eb

Ec

 (14)
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where µ
uEaEbEcd
uEaEbEcq

¶
=

Ã
1 −12 −12
0

√
3
2 −

√
3
2

! Ea

Eb

Ec

 ,

µ
uEaEbEcdn
uEaEbEcqn

¶
=

Ã
uEaEbEcd
1√
3
uEaEbEcq

!
.

(15)

In [14,18] the geometrical coordinates of the sub-region in zone 1 is il-
lustrated.

The following step consists of calculating the switching time from the
equations:

Triangle 1

d1∗(Ea−Eb
2 ) + d2∗(Ea−Eb

2 +1) + d3∗(Ea−Eb
2 +

1
2) = udn

d1∗Eb2 +d2∗Eb2 +d3∗(Eb+12 ) = uqn

d1+d2+d3= 1

(16)

Triangle 2

d1∗(Ea−Eb
2 ) + d2∗(Ea−Eb

2 +
1
2) + d3∗(Ea−Eb

2 −12) = udn

d1∗Eb2 +d2∗Eb+12 +d3∗(Eb+12 ) = uqn

d1+d2+d3= 1

(17)

where the switching times ti = diTm, with i = 1, 2, 3 and Tm is the control
cycle.

Solving this system of equations for each considered triangle, we obtain
the following simple expressions of the duty cycles:

Triangle 1

d1 = 1 +Ea − udn − uqn

d2 = −Ea +Eb + udn − uqn

d3 = −Eb + 2uqn

(18)
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Triangle 2

d1 = 1 +Eb − 2uqn

d2 = −Ea + udn + uqn

d3 = Ea −Eb − udn + uqn.

(19)

2.2.7 Summary of results

Table 1 shows summaries of state vectors and the duty cycles in the three
regions in the complex plane d-q.

Finally, in order to validate the explained technique, experimental results
obtained in a 50kW back-to-back NPC three-level converter prototype, show
a satisfactorily good performance of the proposed algorithm. In these figures,
the phase voltage, the phase-phase voltage, and the neutral-phase voltage
are illustrated.

Figure 7: Origin of the sub-cube where the reference vector is supposed to
be found.
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2.3 Three-dimensional space vector algorithm of multilevel
converters

Finally, a three-dimensional (3D) space vector algorithm of multilevel con-
verters for compensating harmonics and zero sequence in three phase four
wire systems with neutral is presented in this section. The low computa-
tional cost of the proposed method is always the same and it is independent
of the number of levels of the converter. The conventional two-dimensional
space vector algorithms represent a particular case of the proposed general-
ized modulation algorithm. In general, the presented algorithm is useful in
systems with or without neutral, unbalanced load, triple harmonics, and for
generating whatever 3D control vector.

The algorithm presented in this work is a generalization of the well known
2D space vector technique, including the algorithms explained above [16].

The replacement of conventional two level converters by multilevel con-
verters in active filters highly improves the harmonic content of the output
signal of the converter. Most of the active filter control techniques found
in the bibliography are based on current control pulse width modulation
(PWM) or bang-bang [15], where each leg of the converter is independently
controlled. However, it would be desirable to use an effective 3D Space Vec-
tor Modulation for this kind of applications because it can drastically reduce
the control complexity and the computational load.

It is necessary to develop a new 3D space vector algorithm for multilevel
converters to compensate a zero sequence in active power filters with neutral
with single-phase distorting loads, which generate large neutral currents.

In general, the proposed algorithm is useful in systems with or without
neutral, unbalanced load, triple harmonics and for generating whatever 3D
control vector.

The space vectors will coplanar if the system is balanced without triple
harmonics. However, it is necessary to generalize the approach to a 3D space
if the system is unbalanced or if there is zero sequence or triple harmonics
because the reference vectors are not on a plane.

The proposed algorithm is the first 3D space vector modulation tech-
nique for multilevel converters which permits the on-line calculation of the
sequence of the nearest space vector for generating the reference voltage vec-
tor [16,18]. This generalized method provides the nearest switching vectors
sequence to the reference vector and calculates the on-state durations of
the respective switching state vectors without involving trigonometric func-
tions, look-up tables, or coordinate system transformations which increase
the computational load corresponding to the modulation of multilevel con-
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verters. In this work, a very simple and fast 3D modulation algorithm based
on geometrical considerations is presented. The computational cost of the
proposed method is very low and independent of the number of levels of
the converter. This technique can be used as modulation algorithm in all
applications which provide a 3D vector control.

2.3.1 Reference vector synthesis

During each modulation subcycle of duration Tm, a switching sequence is
generated. It is composed of four switching state vectors u1(t1), u2(t2),
u3(t3), and u4(t4), where t1, t2, t3, and t4 are the on-state durations of the
active switching state vectors. The four vectors nearest to the reference
vector must be identified [18]. The proposed 3D Space Vector Modulation
(SVM) algorithm easily calculates the four state vectors which generate
the reference vector. In general, with unbalanced systems or with triple
harmonics, the reference vector could be not placed in the 2D plane of the
multilevel converter. In this way, it is necessary to use a switching sequence
with four state vectors. Thus, the reference vector will be pointing to a
volume which is a tetrahedron. The vertices of that tetrahedron are the
state vectors of the switching sequence. In addition, the algorithm permits to
obtain the corresponding duty cycles without using tables or trigonometric
functions. The modulation algorithm input is the normalized voltage vector.
The normalization only depends on the number of levels of the multilevel
converter n, and the voltage level value of the DC-link capacitors, VDC [16].
The reference vector must be multiplying by the normalization constantq
2
3
VDC
n−1 .
Step 1: Find the sub-cube where the reference vector is pointing to.
The space vectors of a multilevel converter form a cube in a 3D space.

This space can be decomposed into several tetrahedrons which generate the
cube total volume. For a certain reference vector in three-phase coordinates
(ua, ub, uc), the integer part of each component (a, b, c) is calculated, where

a = integer (ua),

b = integer (ub),

c = integer (uc).

(20)

The 3D space is formed by a certain number of sub-cubes depending on
the number of the levels of the converter. (a, b, c) are the origin coordinates
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Figure 8: Tetrahedrons into the cube with the corresponding state vectors.
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corresponding to the reference system of the sub-cube where the reference
vector is pointing to.

Step 2: Six tetrahedrons are considered into each sub-cube. Therefore, it
is necessary to define the tetrahedron where the reference vector is pointing
to. This tetrahedron is easily found by comparing with three planes into
the 3D space which define the six tetrahedrons inside the sub-cube. The
three planes which define the six tetrahedrons are shown in [16,18]. Only
the maximum of three comparisons is needed.

Step 3: Once (a, b, c) coordinates are known, the main step of the al-
gorithm consists in calculating the four space vectors corresponding to the
four vertices of a tetrahedron into the selected sub-cube (in step 1). These
vectors will generate the reference vector. Configurations of the 3D space
with different number of tetrahedrons into the cube have been studied. How-
ever, the minimum number of comparisons is obtained using six tetrahedrons
[16,18]. In Fig. 8, the tetrahedrons in the cube with the corresponding state
vectors are illustrated.

Figure 9: Algorithm for the selection of each tetrahedron with the corre-
sponding state vectors.
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Figure 10: Experimental results obtained in a 50kW back-to-back NPC
three-level converter prototype: a) phase voltage; b) phase-phase voltage;
c) neutral-phase voltage.
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Step 4: Calculation of the switching times.
The new algorithm calculates on-line the four state vectors in the 3D

space and the corresponding duty-cycles using only sixty nine instructions
and a maximum of three comparisons for calculating the suitable tetrahe-
dron. The computational load is always the same and is independent of the
number of levels of the multilevel converter. In addition, the algorithm pro-
vides the switching sequence that minimizes the total harmonic distortion
and the commutation number of the semiconductor devices.

General structure of the algorithm
The flow diagram of the new 3D modulation algorithm for choosing the

tetrahedron where the reference vector is pointing to is shown in Fig. 9.
Notice that the algorithm is extremely simple.

2.3.2 Calculation of duty-cycles

Once the state vectors which generate each reference vector are known, the
corresponding duty-cycles are calculated. The algorithm generates a matrix
with four state vectors and the corresponding switching times ti.

S =


S1aS

1
bS

1
cd1

S2aS
2
bS

2
cd2

S3aS
3
bS

3
cd3

S4aS
4
bS

4
cd4


ti = diTm, i = 1, ..., 4

(21)

where Tm is the sample time.
The state vectors are the vertices of the corresponding tetrahedron which

generates the reference vector. The equations to be solved are:

ua = S1ad1 + S2ad2 + S3ad3 + S4ad4,

ub = S1bd1 + S2b d2 + S3bd3 + S4b d4,

uc = S1cd1 + S2cd2 + S3cd3 + S4bd4,

d1 + d2 + d3 + d4 = 1.

(22)

The numeric evaluation of the duty cycles or on-state durations of the
switching states are reduced to a simple addition as shown in Table 2. a, b,
and c represent the different voltage levels of the capacitors battery. They
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acquire values between zero and n−1 where n is the number of levels of the
multilevel converter.

The duty cycles are functions only of the reference vector components
and the integer part of reference vector coordinates.

In addition, the optimized switching sequence is selected in order to
minimize the switching number. The space vectors sequence in half cycle is:
u1 = (S

1
a, S

1
b , S

1
c ), u2 = (S

2
a, S

2
b , S

2
c ), u3 = (S

3
a, S

3
b , S

3
c ), and u4 = (S

4
a, S

4
b ,

S4c ). In the second half cycle the space vectors form a reverse sequence.

Tetrahedron Space vectors sequence Switching times
Case 1.1 (S1a, S

1
b , S

1
c) = (a, b, c)

(S2a, S
2
b , S

2
c) = (a + 1, b, c)

(S3a, S
3
b , S

3
c) = (a + 1, b, c + 1)

(S4a, S
4
b , S

4
c) = (a + 1, b + 1, c + 1)

d1= 1 + a — ua,
d2= -a + c + ua — uc,
d3= b — c — ub + uc,
d4= - b + ub,

Case 1.2 (S1a, S
1
b , S

1
c) = (a, b, c)

(S2a, S
2
b , S

2
c) = (a, b, c + 1)

(S3a, S
3
b , S

3
c) = (a + 1, b, c + 1)

(S4a, S
4
b , S

4
c) = (a + 1, b + 1, c + 1)

d1= 1 + c - uc,
d2= a — c — ua + uc,
d3= - a + b + ua - ub,
d4= - b + ub,

Case 1.3 (S1a, S
1
b , S

1
c) = (a, b, c)

(S2a, S
2
b , S

2
c) = (a, b, c + 1)

(S3a, S
3
b , S

3
c) = (a, b + 1, c + 1)

(S4a, S
4
b , S

4
c) = (a + 1, b + 1, c + 1)

d1= 1+ c - uc,
d2= b — c — ub + uc,
d3= a — b — ua + ub,
d4= - a + ua,

Case 2.1 (S1a, S
1
b , S

1
c) = (a, b, c)

(S2a, S
2
b , S

2
c) = (a, b + 1, c)

(S3a, S
3
b , S

3
c) = (a, b + 1, c + 1)

(S4a, S
4
b , S

4
c) = (a + 1, b + 1, c + 1)

d1= 1 + b — ub,
d2= - b + c + ub — uc,
d3= a - c — ua + uc,
d4= - a + ua,

Case 2.2 (S1a, S
1
b , S

1
c) = (a, b, c)

(S2a, S
2
b , S

2
c) = (a, b + 1, c)

(S3a, S
3
b , S

3
c) = (a + 1, b + 1, c)

(S4a, S
4
b , S

4
c) = (a + 1, b + 1, c + 1)

d1= 1 + b - ub,
d2= a — b —ua + ub,
d3= - a + c + ua -uc,
d4= - c + uc,

Case 2.3 (S1a, S
1
b , S

1
c) = (a, b, c)

(S2a, S
2
b , S

2
c) = (a + 1, b, c)

(S3a, S
3
b , S

3
c) = (a + 1, b + 1, c)

(S4a, S
4
b , S

4
c) = (a + 1, b + 1, c + 1)

d1= 1 + a - ua,
d2= - a + b + ua - ub,
d3= - b + c + ub - uc,
d4= - c + uc.

Table 2. States sequence and switching times.
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The proposed 3D technique is a generalization of the 2D space vector
algorithms. One should notice the behaviour of a balanced system without
triple harmonics using the 3D algorithm. In this case, one of the four active
vectors given by the algorithm has the switching time equal to zero. Then,
the problem is reduced to the well known 2D situation.

The algorithm has been successfully implemented with a micro controller
in order to prove the technique using a reference vector with triple harmon-
ics and zero sequence. The modulation is the output signal of the micro
controller which has been digitally filtered with a low pass filter that elimi-
nates the higher frequencies. In this way, this permits to obtain the output
signals of Diode Clamped Inverter (Va, Vb, and Vc) obtaining signals that
follow the input reference signals.

Figure 11: Comparison of computational burden.
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Finally, the comparison between the proposed modulation algorithms
and a SVM with very low computational burden found in the literature [17],
is illustrated in Fig. 11. This figure shows that the complexity of the al-
gorithms and the number of instructions using the proposed methods are
drastically reduced compared with other conventional Space Vector Modu-
lation (SVM) and sinusoidal PWM modulation techniques.

3 Conclusions

Three new space vector modulation techniques for multilevel converters are
explained in this survey. These algorithms are very useful for the on-line
computation of the switching sequence and the on-state durations of the
respective switching state vectors corresponding to the modulation of mul-
tilevel converters without physical affecting the connected load. The vector
selection is adjusted according to the input reference to improve the voltage
generation being balanced the DC-link capacitor voltage. These techniques
permit an economic and simple electronic implementation and the on-line
computation of the switching state vectors for the modulation of a multilevel
inverter. Moreover, the space vector modulations present the advantage of
eliminating the angle from the calculations and the numeric evaluation of
the on-state durations are reduced to a simple addition. The computational
burden, the complexity of the algorithms and the number of instructions
using the proposed methods are drastically reduced compared with other
conventional Space Vector Modulation (SVM) and sinusoidal PWM modu-
lation techniques.

The 3D space vector modulation algorithm, explained in the last section
of this paper, directly allows compensating zero sequence in systems with
a neutral and optimizing the switching sequence minimizing the number of
switching. The computational complexity is very low and independent of the
number of levels of the converter. This algorithm does not use trigonometric
functions or look-up tables. It has been satisfactorily implemented in very
low-cost micro controllers. This technique can be used as a modulation al-
gorithm in all applications needing a 3D control vector such as active filters
with four wires with single-phase distorting loads which generate large neu-
tral currents, where the conventional 2D space vector modulations cannot
be used.

This work was supported by the Comisión Interministerial de Ciencia y
Tecnología of the Spanish government under Project DPI 2001-3089.
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