HARMONIC MAPPINGS AND CONFORMAL MINIMAL IMMERSIONS OF RIEMANN SURFACES INTO $\mathbb{R}^{\mathbb{N}}$

ANTONIO ALARCÓN[†], ISABEL FERNÁNDEZ[‡], AND FRANCISCO J. LÓPEZ[†]

ABSTRACT. We prove that for any open Riemann surface \mathcal{N} , natural number $N \geq 3$, non-constant harmonic map $h : \mathcal{N} \to \mathbb{R}^{N-2}$ and holomorphic 2-form \mathfrak{H} on \mathcal{N} , there exists a weakly complete harmonic map $X = (X_j)_{j=1,\dots,N} : \mathcal{N} \to \mathbb{R}^N$ with Hopf differential \mathfrak{H} and $(X_j)_{j=3,\dots,N} = h$. In particular, there exists a complete conformal minimal immersion $Y = (Y_j)_{j=1,\dots,N} : \mathcal{N} \to \mathbb{R}^N$ such that $(Y_j)_{j=3,\dots,N} = h$.

As some consequences of these results:

- There exists complete full non-decomposable minimal surfaces with arbitrary conformal structure and whose generalized Gauss map is non-degenerate and fails to intersect N hyperplanes of \mathbb{CP}^{N-1} in general position.
- There exists complete non-proper embedded minimal surfaces in \mathbb{R}^N , $\forall N > 3$.

1. INTRODUCTION

In this paper we use methods coming from the study of minimal surfaces to construct harmonic mappings of Riemann surfaces into \mathbb{R}^N with prescribed geometry. A basic reference for this topic is, for instance, Klotz's work [**K**].

Our main result states (see Corollary 4.5):

Theorem A. For any open Riemann surface \mathcal{N} , natural number $N \geq 3$, non-constant harmonic map $h : \mathcal{N} \to \mathbb{R}^{N-2}$ and holomorphic 2-form \mathfrak{H} on \mathcal{N} , there exists a weakly complete harmonic map $X = (X_j)_{j=1,...,N} : \mathcal{N} \to \mathbb{R}^N$ with Hopf differential \mathfrak{H} and $(X_j)_{j=3,...,N} = h$.

Recall that the Hopf differential Q_X of a harmonic map $X : \mathcal{N} \to \mathbb{R}^N$ is the holomorphic 2-form given by $Q_X := \langle \partial_z X, \partial_z X \rangle$, where ∂_z means complex differential. By definition, X is said to be weakly complete if $\Gamma_X := |\partial_z X|^2$ is a complete conformal Riemannian metric in \mathcal{N} (see [**K**]).

The fact that conformal minimal immersions are harmonic maps strongly influences the global theory of this kind of surfaces. It is well known that a harmonic immersion $X : \mathcal{N} \to \mathbb{R}^N$ is minimal if and only if it is conformal, or equivalently, $Q_X = 0$. Weakly completeness is equivalent to Riemannian completeness under minimality assumptions. The geometry of complete minimal surfaces in \mathbb{R}^N , specially those properties regarding the Gauss map, has been the object of extensive study over the last past decades (see for instance [O1, CO, C, F3, R]).

In the recent paper [AFL], the authors constructed complete minimal surfaces in \mathbb{R}^3 with arbitrarily prescribed conformal structure and non-constant third coordinate function (see also [AF]). As a consequence, any open Riemann surface admits a complete conformal minimal immersion in

²⁰¹⁰ Mathematics Subject Classification. 53C43; 53C42, 30F15, 49Q05.

Key words and phrases. Complete minimal surfaces, harmonic mappings of Riemann surfaces, Gauss map.

[†] Research partially supported by MCYT-FEDER research project MTM2007-61775 and Junta de Andalucía Grant P09-FQM-5088.

[‡] Research partially supported by MCYT-FEDER research project MTM2007-64504 and Junta de Andalucía Grant P09-FQM-5088.

 \mathbb{R}^3 whose Gauss map omits two antipodal points of the unit sphere. Theorem A let us generalize these results to arbitrary higher dimensions (see Corollary 4.6):

Theorem B. For any open Riemann surface \mathcal{N} , natural number $N \geq 3$ and non-constant harmonic map $h : \mathcal{N} \to \mathbb{R}^{N-2}$, there exists a complete conformal minimal immersion $X = (X_j)_{j=1,...,N} : \mathcal{N} \to \mathbb{R}^N$ with $(X_j)_{j=3,...,N} = h$.

Under some compatibility conditions depending on the map h, the flux map of the immersion X can be also prescribed. Recall that the flux map of a conformal minimal immersion $X : \mathcal{N} \to \mathbb{R}^N$ is given by $p_X(\gamma) = \operatorname{Im} \int_{\gamma} \partial_z X$ for all $\gamma \in \mathcal{H}_1(\mathcal{N}, \mathbb{Z})$. In particular, if h is the real part of a holomorphic map $H : \mathcal{N} \to \mathbb{C}^{N-2}$, Theorem B provides a complete null holomorphic curve $F = (F_j)_{j=1,\dots,N} : \mathcal{N} \to \mathbb{C}^N$ such that $(F_j)_{j=3,\dots,N} = H$. Likewise, $Y = (F_j)_{j=2,\dots,N} : \mathcal{N} \to \mathbb{C}^{N-1}$ is a complete holomorphic immersion whose last N - 2 coordinates coincide with H.

Theorem B also includes some information about the Gauss map of minimal surfaces in \mathbb{R}^N . Given a conformal minimal immersion $X : \mathcal{N} \to \mathbb{R}^N$, its generalized Gauss map $G_X : \mathcal{N} \to \mathbb{CP}^{N-1}, G_X(P) = \partial_z X(P)$, is holomorphic and takes values on the complex hyperquadric $\{\sum_{j=1}^N w_j^2 = 0\}$. Chern and Osserman [C, CO] showed that if X is complete then either $X(\mathcal{N})$ is a plane or $G_X(\mathcal{N})$ intersects a dense set of complex hyperplanes. Even more, Ru [**R**] proved that if X is complete and non-flat then G_X cannot omit more than N(N + 1)/2 hyperplanes in \mathbb{CP}^{N-1} located in general position (see also the works of Fujimoto [**F2**, **F3**] for a good setting). Under the non-degeneracy assumption on G_X , this upper bound is sharp for some values of N, see [**F4**]. However, the number of exceptional hyperplanes strongly depends on the underlying conformal structure of the surface. Indeed, Ahlfors [**A**] proved that any holomorphic map $G : \mathbb{C} \to \mathbb{CP}^{N-1}$, $N \geq 3$, avoiding N + 1 hyperplanes of \mathbb{CP}^{N-1} (see [**W**, Chapter 5, §5] and [**F1**] for further generalizations). So, it is natural to wonder whether any open Riemann surface admits a complete conformal minimal immersion in \mathbb{R}^N whose generalized Gauss map is non-degenerate and omits N hyperplanes in general position. An affirmative answer to this question can be found in the following (see Corollary 4.8)

Theorem C. Let \mathcal{N} be an open Riemann surface, and let $p : \mathcal{H}_1(\mathcal{N}, \mathbb{Z}) \to \mathbb{R}^N$ be a group morphism, $N \ge 3$.

Then there exists a complete conformal full non-decomposable minimal immersion $X : \mathcal{N} \to \mathbb{R}^N$ with $p_X = p$ and whose generalized Gauss map is non-degenerate and omits N hyperplanes in general position.

On the other hand, Theorem B leads to some interesting consequences regarding Calabi-Yau conjectures. The embedded Calabi-Yau problem for minimal surfaces asks for the existence of complete bounded embedded minimal surfaces in \mathbb{R}^3 . Complete embedded minimal surfaces in \mathbb{R}^3 with finite genus and countably many ends are proper in space [**MPR**, **CM**]. However, this result fails to be true for arbitrary higher dimensions. For instance, taking \mathcal{N} the unit disc \mathbb{D} in \mathbb{C} and $h : \mathbb{D} \to \mathbb{R}^2$ the map $h(z) = (\operatorname{Re}(z), \operatorname{Im}(z))$, Theorem B generates complete non-proper embedded minimal discs in \mathbb{R}^4 (so in \mathbb{R}^N for all $N \ge 4$), see Corollary 4.7 for more details.

The paper is laid out as follows. In Section 2 we introduce the necessary background and notations. In Section 3 we prove a basic approximation result by holomorphic 1-forms in open Riemann surfaces (Lemma 3.3), which is the key tool for proving our main results. Finally, in Section 4 we state and prove Theorems A, B and C. It is worth mentioning that all these theorems actually follows from the more general result Theorem 4.4 in Section 4.

ACKNOWLEDGMENTS

The authors would like to thank José A. Gálvez for directing their attention to the paper [K].

2. Preliminaries

Given a topological surface M, ∂M will denote the one dimensional topological manifold determined by the boundary points of M. Given $S \subset M$, call by S° and \overline{S} the interior and the closure of S in M, respectively. Open connected subsets of $M - \partial M$ will be called *domains*, and those proper topological subspaces of M being surfaces with boundary are said to be *regions*. The surface M is said to be *open* if it is non-compact and $\partial M = \emptyset$.

If *M* is a Riemann surface, ∂_z will denote the global complex operator given by $\partial_z|_U = \frac{\partial}{\partial w} dw$ for any conformal chart (U, w) on *M*.

Remark 2.1. Throughout this paper N and N will denote a fixed but arbitrary open Riemann surface and natural number greater than or equal to three, respectively.

Let *S* denote a subset of $\mathcal{N}, S \neq \mathcal{N}$. We denote by $\mathcal{F}_0(S)$ as the space of continuous functions $f : S \to \mathbb{C}$ which are holomorphic on an open neighborhood of *S* in \mathcal{N} . Likewise, $\mathcal{F}_0^*(S)$ will denote the space of continuous functions $f : S \to \mathbb{C}$ being holomorphic on S° .

As usual, a 1-form θ on *S* is said to be of type (1,0) if for any conformal chart (U,z) in \mathcal{N} , $\theta|_{U\cap S} = h(z)dz$ for some function $h: U \cap S \to \mathbb{C}$. We denote by $\Omega_0(S)$ as the space of holomorphic 1-forms on an open neighborhood of *S* in \mathcal{N} . We call $\Omega_0^*(S)$ as the space of 1-forms θ of type (1,0) on *S* such that $(\theta|_U)/dz \in \mathcal{F}_0^*(S \cap U)$ for any conformal chart (U,z) on \mathcal{N} .

We denote by $\mathcal{O}_0(S)$ as the space of holomorphic 2-forms on an open neigborhood of *S* in \mathcal{N} .

Let $\mathfrak{Div}(S)$ denote the free commutative group of divisors of S with multiplicative notation. A divisor $D \in \mathfrak{Div}(S)$ is said to be *integral* if $D = \prod_{i=1}^{n} Q_i^{n_i}$ and $n_i \ge 0$ for all i. Given D_1 , $D_2 \in \mathfrak{Div}(S)$, we write $D_1 \ge D_2$ if and only if $D_1 D_2^{-1}$ is integral. For any $f \in \mathcal{F}_0(S)$ we denote by (f) its associated integral divisor of zeros in S. Likewise we define (θ) for any $\theta \in \Omega_0(S)$.

In the sequel we will assume that *S* is a *compact subset* of \mathcal{N} .

A compact Jordan arc in \mathcal{N} is said to be analytical if it is contained in an open analytical Jordan arc in \mathcal{N} . By definition, a connected component V of $\mathcal{N} - S$ is said to be *bounded* if \overline{V} is compact, where \overline{V} is the closure of V in \mathcal{N} . Moreover, a subset $K \subset \mathcal{N}$ is said to be *Runge* (in \mathcal{N}) if $\mathcal{N} - K$ has no bounded components.

Definition 2.2. A compact subset $S \subset N$ is said to be *admissible* if and only if (see Figure 2.1):

- S is Runge,
- *M_S* := *S*[◦] consists of a finite collection of pairwise disjoint compact regions in *N* with *C*⁰ boundary,
- $C_S := \overline{S M_S}$ consists of a finite collection of pairwise disjoint analytical Jordan arcs, and
- any component α of C_S with an endpoint $P \in M_S$ admits an analytical extension β in \mathcal{N} such that the unique component of $\beta \alpha$ with endpoint P lies in M_S .

Let *W* be a domain in \mathcal{N} , and let *S* be either a compact region or an admissible subset in \mathcal{N} . *W* is said to be a *tubular neighborhood* of *S* if $S \subset W$ and W - S consists of a finite collection of pairwise disjoint open annuli. In addition, if \overline{W} is a compact region isotopic to *W* then \overline{W} is said to be a *compact tubular neighborhood* of *S*. Here *isotopic* means that $j_* : \mathcal{H}_1(W, \mathbb{Z}) \to \mathcal{H}_1(\overline{W}, \mathbb{Z})$ is an isomorphism, where $j: W \to \overline{W}$ is the inclusion map.

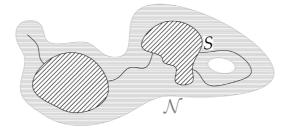


FIGURE 2.1. An admissible subset.

Let $W \subset \mathcal{N}$ be a domain with $S \subset W$. We shall say that a function $f \in \mathcal{F}_0^*(S)$ can be *uniformly approximated* on S by functions in $\mathcal{F}_0(W)$ if there exists $\{f_n\}_{n\in\mathbb{N}} \subset \mathcal{F}_0(W)$ such that $\{|f_n - f|\}_{n\in\mathbb{N}} \to 0$ uniformly on S. A 1-form $\theta \in \Omega_0^*(S)$ can be uniformly approximated on S by 1-forms in $\Omega_0(W)$ if there exists $\{\theta_n\}_{n\in\mathbb{N}} \subset \Omega_0(W)$ such that $\{\frac{\theta_n - \theta}{dz}\}_{n\in\mathbb{N}} \to 0$ uniformly on $S \cap U$, for any conformal closed disc (U, dz) on W.

Given an admissible compact set $S \subset W$, a function $f : S \to \mathbb{C}^n$, $n \in \mathbb{N}$, is said to be smooth if $f|_{M_S}$ admits a smooth extension f_0 to an open domain V in W containing M_S , and for any component α of C_S and any open analytical Jordan arc β in W containing α , f admits an smooth extension f_β to β satisfying that $f_\beta|_{V\cap\beta} = f_0|_{V\cap\beta}$. Likewise, an 1-form θ of type (1,0) on S is said to be smooth if for any closed conformal disc (U, z) on \mathcal{N} such that $S \cap U$ is admissible, the function $\frac{\theta}{dz}$ is smooth on $S \cap U$. Given a smooth $f \in \mathcal{F}_0^*(S)$, we set $df \in \Omega_0^*(S)$ as the smooth 1-form given by $df|_{M_S} = d(f|_{M_S})$ and $df|_{\alpha\cap U} = (f \circ \alpha)'(x)dz|_{\alpha\cap U}$, where (U, z = x + iy) is a conformal chart on W such that $\alpha \cap U = z^{-1}(\mathbb{R} \cap z(U))$. Obviously, $df|_{\alpha}(t) = (f \circ \alpha)'(t)dt$ for any component α of C_S , where t is any smooth parameter along α . This definition makes sense also for smooth functions with poles in S° .

A smooth 1-form $\theta \in \Omega_0^*(S)$ is said to be *exact* if $\theta = df$ for some smooth $f \in \mathcal{F}_0^*(S)$, or equivalently if $\int_{\gamma} \theta = 0$ for all $\gamma \in \mathcal{H}_1(S, \mathbb{Z})$.

2.1. Harmonic maps and minimal surfaces in $\mathbb{R}^{\mathbb{N}}$. Given a non-constant harmonic map $X = (X_i)_{i=1,...,\mathbb{N}} : \mathcal{N} \to \mathbb{R}^{\mathbb{N}}$, the holomorphic quadratic differential

$$Q_X := \langle \partial_z X, \partial_z X \rangle = \sum_{j=1}^{N} (\partial_z X_j)^2$$

is said to be the Hopf differential of X. We also consider the conformal metric, possibly with isolated singularities,

$$\Gamma_X := rac{1}{2} \sum_{j=1}^N |\partial_z X_j|^2.$$

It is clear that $2\Gamma_X$ is greater than or equal to the Riemannian metric on \mathcal{N} (possibly with singularities) induced by X. When X is an immersion then Γ_X is a Riemannian metric, and if in addition X is complete then Γ_X is complete as well [**K**]. However, the reciprocal does not hold in general.

Definition 2.3. We say that a harmonic map $X : \mathcal{N} \to \mathbb{R}^N$ is *weakly complete* (or complete in the sense of **[K]**) if Γ_X is a complete metric in \mathcal{N} .

We also associate to X the group morphism

$$p_X : \mathcal{H}_1(\mathcal{N},\mathbb{Z}) \to \mathbb{R}^N, \quad p_X(\gamma) = \operatorname{Im} \int_{\gamma} \partial_z X.$$

Remark 2.4. If $Q_X = 0$ and Γ_X never vanishes, then *X* is a conformal minimal immersion, Γ_X is the metric induced on \mathcal{N} by *X*, and p_X is the flux map of *X*.

If in addition *X* is a conformal minimal immersion and we write $\partial_z X_j = f_j d\zeta$ in terms of a local parameter ζ on \mathcal{N} , j = 1, ..., N, then the (*generalized*) *Gauss map* of *X* is given by

$$G_X: \mathcal{N} \to \mathbb{CP}^{N-1}, \quad G_X(\zeta) = [(f_j(\zeta))_{j=1,\dots,N}].$$

where [w] is the class of w in \mathbb{CP}^{N-1} , $\forall w \in \mathbb{C}^N$. It is well known that G_X is a holomorphic map taking values in the complex quadric $\{[(w_j)_{j=1,...,N}] \in \mathbb{CP}^{N-1} \mid \sum_{j=1}^N w_j^2 = 0\}.$

A set of hyperplanes in \mathbb{CP}^{N-1} is said to be in general position if each subset of *k* hyperplanes, with $k \leq N-1$, has an (N-1-k)-dimensional intersection.

Definition 2.5 (**[O2]**). Let $X : \mathcal{N} \to \mathbb{R}^N$ be a conformal minimal immersion.

- X is said to be *decomposable* if, with respect to suitable rectangular coordinates in ℝ^N, one has ∑_{k=1}^m (∂_zX_k)² = 0 for some m < N.
- *X* is said to be *full* if $X(\mathcal{N})$ is contained in no hyperplane of $\mathbb{R}^{\mathbb{N}}$.
- The Gauss map G_X is said to be *degenerate* if $G_X(\mathcal{N})$ lies in a hyperplane of \mathbb{CP}^{N-1} .

When N = 3, decomposable, non-full and degenerate are equivalent. However, if one passes to higher dimensions then no two of these conditions are equivalent (see **[O2]**).

3. THE APPROXIMATION LEMMA

The next two lemmas are the key tools in the proof of the main result of this section (Lemma 3.3). They represent a slight generalization of Lemmas 2.4 and 2.5 in [AL].

From now on, *t* denotes the imaginary unit and the symbol $\neq 0$ means *non-identically zero*.

Lemma 3.1. Let $W \subset \mathcal{N}$ be a domain with finite topology and $S \subset \mathcal{N}$ an admissible subset with $S \subset W$. Consider $f \in \mathcal{F}_0^*(S) \cap \mathcal{F}_0(M_S)$ with $f|_{M_S} \neq 0$.

Then f can be uniformly approximated on S by functions $\{f_n\}_{n \in \mathbb{N}}$ in $\mathcal{F}_0(W)$ satisfying that $(f_n) = (f|_{M_S})$ on W. In particular, f_n never vanishes on $W - M_S$ for all n.

Proof. Let $\{M_k\}_{k\in\mathbb{N}}$ be a sequence of compact tubular neighborhoods of M_S in W such that $M_k \subset M_{k-1}^\circ$ for any k, $\bigcap_{k\in\mathbb{N}}M_k = M_S$ and f holomorphically extends (with the same name) to M_1 and has no zeros on $M_1 - M_S$ (take into account that $f|_{M_S} \neq 0$). Choose M_k so that, in addition, the compact set $S_k := M_k \cup C_S \subset W$ is admissible and $\alpha - M_k^\circ$ is a (non-empty) Jordan arc for any component α of C_S . In particular, $M_{S_k} = M_k$ and $C_{S_k} = C_S - M_k^\circ$, $k \in \mathbb{N}$.

For any $k \in \mathbb{N}$ take $g_k \in \mathcal{F}^*_0(S_k) \cap \mathcal{F}_0(M_{S_k})$ satisfying

- $g_k|_{M_{S_k}} = f|_{M_{S_k}}$
- g_k never vanishes on $S_k S_k^{\circ}$ (recall that f has no zeros on $M_1 M_S$), and
- the sequence $\{g_k|_S\}_{k \in \mathbb{N}}$ uniformly converges to f on S.

The construction of such functions is standard, we omit the details. Since g_k satisfies the hypotheses of Lemma 2.4 in **[AL]**, it can be uniformly approximated on S_k by a sequence $\{g_{k,n}\}_{n \in \mathbb{N}} \subset \mathcal{F}_0(W)$ with $(g_{k,n}) = (g_k|_{M_{S_k}}) = (f|_{M_S})$ on W, for any k. A standard diagonal argument concludes the proof.

Lemma 3.2. Let $W \subset \mathcal{N}$ be a domain with finite topology and $S \subset \mathcal{N}$ an admissible subset with $S \subset W$. Consider $\theta \in \Omega_0^*(S) \cap \Omega_0(M_S)$ with $\theta|_{M_S} \neq 0$.

Then θ can be uniformly approximated on S by 1-forms $\{\theta_n\}_{n\in\mathbb{N}}$ in $\Omega_0(W)$ satisfying that $(\theta_n) =$ $(\theta|_{M_S})$ on W. In particular, θ_n never vanishes on $W - M_S$ for all n.

Proof. Let ϑ be a never vanishing 1-form in $\Omega_0(W)$. Define $f := \theta/\vartheta \in \mathcal{F}_0^*(S) \cap \mathcal{F}_0(M_S)$. By Lemma 3.1, *f* can be uniformly approximated on *S* by a sequence $\{f_n\}_{n \in \mathbb{N}}$ in $\mathcal{F}_0(W)$ satisfying that $(f_n) = (f|_{M_S})$ on *W* for all *n*. It suffices to set $\theta_n := f_n \vartheta$, $n \in \mathbb{N}$.

Lemma 3.3. Let $W \subset \mathcal{N}$ be a domain with finite topology and $S \subset \mathcal{N}$ an admissible subset with $S \subset W$. Let $\Theta \in \mathcal{V}_0(W)$ and $\Phi = (\phi_1, \phi_2)$ be a smooth pair in $\Omega_0^*(S)^2 \cap \Omega_0(M_S)^2$ satisfying $\phi_1^2 + \phi_2^2 = \Theta|_S$ and either of the following conditions:

(A) $\phi_1|_{M_S}$ and $\phi_2|_{M_S}$ are linearly independent in $\Omega_0(M_S)$ and Θ has no zeros on C_S . (B) $\Theta = 0$ and $\phi_1|_{M_S} \neq 0$.

Then Φ can be uniformly approximated on S by a sequence $\{\Phi_n = (\phi_{1,n}, \phi_{2,n})\}_{n \in \mathbb{N}} \subset \Omega_0(W)^2$ satisfying

(a) $\phi_{1,n}^2 + \phi_{2,n}^2 = \Theta$,

(b) $\Phi_n - \Phi$ is exact on *S*, and

(c) the zeros of Φ_n on W are those of Φ on M_S (in particular, Φ_n never vanishes on $W - M_S$).

Proof. Assume (A) holds.

Claim 3.4. Without loss of generality it can be assumed that ϕ_1, ϕ_2 and $d\xi$ never vanish on C_S , where $\xi := \phi_1 / \phi_2.$

Proof. Assume for a moment that the conclusion of the lemma holds when ϕ_1 , ϕ_2 and d_{ζ}^{x} never vanish on C_S .

Take a sequence $\{M_k\}_{k\in\mathbb{N}}$ as in the proof of Lemma 3.1 such that Φ holomorphically extends (with the same name) to M_1 , and ϕ_1 , ϕ_2 and $d\xi$ never vanish on $M_1 - M_S$, for all n (take into account (A)). Recall that $S_k := M_k \cup C_S \subset W^\circ$ is an admissible set and $C_{S_k} = C_S - M_k^\circ$, $k \in \mathbb{N}$.

Since Θ never vanishes on C_S , which consists of a finite collection of pairwise disjoint analytical Jordan arcs, then we can find $\theta \in \Omega_0(C_S)$ with $\theta^2 = \Theta|_{C_S}$. Consider $f_j : C_S \to \mathbb{C}$, $f_j = \phi_j/\theta$, j = 1, 2, and notice that $f_1^2 + f_2^2 = 1$ and $\xi|_{C_s} = f_1/f_2$. Consider a sequence $\{(f_{1,k}, f_{2,k})\}_{k \in \mathbb{N}}$ of pairs of smooth functions on C_{S_k} satisfying:

- *i*) $f_{1,k}$, $f_{2,k}$ and $df_{1,k}$ never vanish on C_{S_k} ,

ii) $f_{1,k}^2 + f_{2,k}^2 = 1$, *iii*) the function $g_{j,k}$ given by $g_{j,k}|_{M_{S_k}} = f_j, g_{j,k}|_{C_{S_k}} = f_{j,k}$, lies in $\mathcal{F}_0^*(S_k)$ and is smooth, j = 1, 2,

- *iv*) $\{f_{j,k}\}_{k \in \mathbb{N}}$ uniformly converges to f_j on C_S , j = 1, 2, and
- v) $\Psi_k|_S \Phi$ is exact on *S*, where $\Psi_k := (g_{i,k}\theta)_{i=1,2} \in \Omega_0^*(S_k)^2 \cap \Omega_0(M_{S_k})^2$.

The construction of this data is standard, we omit the details. Write $\Psi_k = (\psi_{i,k})_{i=1,2}$ and $\xi_k =$ $\psi_{1,k}/\psi_{2,k}$. From *i*), *ii*) and the definition of θ follow that $\psi_{1,k}^2 + \psi_{2,k}^2 = \Theta$ and $d\xi_k$ never vanishes on C_{S_k} . Moreover, *iv*) gives that $\{\Psi_k|_S\}_{k \in \mathbb{N}}$ uniformly converges to Φ on S.

By hypothesis, Lemma 3.3 holds for any Ψ_k , then there exists a sequence $\{\Psi_{k,n}\}_{n \in \mathbb{N}}$ uniformly converging to Ψ_k on S_k and satisfying (a), (b) and (c) of Lemma 3.3 for $\Phi = \Psi_k$ and $S = S_k$. Using that $\{\Psi_k|_S\}_{k\in\mathbb{N}}$ converges to Φ , the zeros of Ψ_k in M_{S_k} are those of Φ in M_S , v), and a standard diagonal argument, we can obtain a sequence satisfying the conclusion of the lemma, proving the claim.

In the sequel we will assume that ϕ_1 , ϕ_2 and $d\xi$ never vanish on C_S .

Label $\eta = \phi_1 - \iota \phi_2 \in \Omega_0^*(S) \cap \Omega_0(M_S)$ and observe that $\Theta/\eta = \phi_1 + \iota \phi_2 \in \Omega_0^*(S) \cap \Omega_0(M_S)$. Notice that $(\Theta/\eta)|_{M_S}, \eta|_{M_S} \neq 0$,

$$\phi_1 = \frac{1}{2} \left(\eta + \frac{\Theta}{\eta} \right)$$
 and $\phi_2 = \frac{\iota}{2} \left(\eta - \frac{\Theta}{\eta} \right)$.

Let \mathcal{B}_S be a homology basis of $\mathcal{H}_1(S, \mathbb{Z})$ and label ν as its cardinal number. Consider in $\mathcal{F}_0^*(S)$ the maximum norm and the Fréchet differentiable map

$$\mathcal{P}: \mathcal{F}_0^*(S) \to \mathbb{C}^{2\nu}, \quad \mathcal{P}(f) = \left(\int_c \left(e^f \eta + e^{-f} \frac{\Theta}{\eta} - 2\phi_1, e^f \eta - e^{-f} \frac{\Theta}{\eta} + 2\iota\phi_2\right)\right)_{c \in \mathcal{B}_S}.$$

Label $\mathcal{A}: \mathcal{F}_0^*(S) \to \mathbb{C}^{2\nu}$ as the Fréchet derivative of \mathcal{P} at 0.

Claim 3.5. $\mathcal{A}|_{\mathcal{F}_0(W)}$ is surjective.

Proof. Reason by contradiction and assume that $\mathcal{A}(\mathcal{F}_0(W))$ lies in a complex subspace $\mathcal{U} = \{((x_c, y_c))_{c \in \mathcal{B}_S} \in \mathbb{C}^{2\nu} \mid \sum_{c \in \mathcal{B}_S} (A_c x_c + B_c y_c) = 0\}$, where $A_c, B_c \in \mathbb{C}, \forall c \in \mathcal{B}_S$, and

(3.1)
$$\sum_{c\in\mathcal{B}_S} \left(|A_c| + |B_c| \right) \neq 0$$

Then, writing $\Gamma_1 = \sum_{c \in \mathcal{B}_S} A_c c$ and $\Gamma_2 = \sum_{c \in \mathcal{B}_S} B_c c$, we have

(3.2)
$$\int_{\Gamma_1} f\phi_2 + \imath \int_{\Gamma_2} f\phi_1 = 0, \quad \forall f \in \mathcal{F}_0(W).$$

Denote by $\Sigma = \{f \in \mathcal{F}_0(W) \mid (f) \ge (\phi_2|_{M_S})^2\}$ (recall that ϕ_2 never vanishes on C_S). Then for any $f \in \Sigma$ the function $df/\phi_2 \in \mathcal{F}_0^*(S) \cap \mathcal{F}_0(M_S)$, so it can be uniformly approximated on Sby functions in $\mathcal{F}_0(W)$. This fact is trivial when f is constant, otherwise use Lemma 3.1. Hence equation (3.2) applies and gives

(3.3)
$$0 = \int_{\Gamma_2} \xi df = \int_{\Gamma_2} f d\xi, \quad \forall f \in \Sigma,$$

where we have used integration by parts (notice that $f\xi$, ξdf and $fd\xi$ are smooth).

Suppose $\Gamma_2 \neq 0$ and take $[\tau] \in \mathcal{H}^1_{hol}(W)$ (the first holomorphic De Rham cohomology group of W) and $g \in \mathcal{F}_0(W)$ so that $\int_{\Gamma_2} \tau \neq 0$, the function $f := (\tau + dg)/d\xi$ lies in $\mathcal{F}^*_0(S) \cap \mathcal{F}_0(M_S)$ and $(f|_{M_S}) \geq (\phi_2|_{M_S})^2$. The existence of such 1-form and function follows from well known arguments on Riemann surfaces theory (take into account that (A) implies $d\xi|_{M_S} \neq 0$). By Lemma 3.1, *f* can be uniformly approximated on *S* by functions in Σ , so equation (3.3) applies and shows that $0 = \int_{\Gamma_2} f d\xi = \int_{\Gamma_2} (\tau + dg) = \int_{\Gamma_2} \tau \neq 0$, a contradiction. Therefore $\Gamma_2 = 0$.

Replacing $(\xi, \phi_1, \phi_2, \Gamma_1, \Gamma_2)$ by $(1/\xi, \phi_2, \phi_1, \Gamma_2, \Gamma_1)$ and using a symmetric argument, we can prove that $\Gamma_1 = 0$. This contradicts (3.1) and concludes the proof.

Let $\{e_1, \ldots, e_{2\nu}\}$ be a basis of $\mathbb{C}^{2\nu}$, fix $f_i \in \mathcal{A}^{-1}(e_i) \cap \mathcal{F}_0(W)$ for all *i*, and set $\mathcal{Q} : \mathbb{C}^{2\nu} \to \mathbb{C}^{2\nu}$ as the analytical map given by

$$\mathcal{Q}((z_i)_{i=1,\dots,2\nu}) = \mathcal{P}(\sum_{i=1,\dots,2\nu} z_i f_i).$$

By Claim 3.5 the differential dQ_0 of Q at 0 is an isomorphism, then there exists a closed Euclidean ball $U \subset \mathbb{C}^{2\nu}$ centered at the origin such that $Q : U \to Q(U)$ is an analytical diffeomorphism. Furthermore, notice that $0 = Q(0) \in Q(U)$ is an interior point of Q(U).

Consider a sequence $\{\theta_n\}_{n \in \mathbb{N}} \subset \Omega_0(W)$ uniformly approximating η on *S* and with $(\theta_n) = (\eta|_{M_S})$ for all *n* (recall that $\eta|_{M_S} \neq 0$ and see Lemma 3.2).

Label $\mathcal{P}_n : \mathcal{F}_0^*(S) \to \mathbb{C}^{2\nu}$ as the Fréchet differentiable map given by

$$\mathcal{P}_n(f) = \left(\int_c \left(e^f \theta_n + e^{-f} \frac{\Theta}{\theta_n} - 2\phi_1, e^f \theta_n - e^{-f} \frac{\Theta}{\theta_n} + 2\iota\phi_2\right)\right)_{c \in \mathcal{B}_S}, \quad \forall n \in \mathbb{N}.$$

Call $Q_n : \mathbb{C}^{2\nu} \to \mathbb{C}^{2\nu}$ as the analytical map $Q_n((z_i)_{i=1,...,2\nu}) = \mathcal{P}_n(\sum_{i=1,...,2\nu} z_i f_i)$ for all $n \in \mathbb{N}$. Since $\{Q_n\}_{n \in \mathbb{N}} \to Q$ uniformly on compacts subsets of $\mathbb{C}^{2\nu}$, without loss of generality we can suppose that $Q_n : U \to Q_n(U)$ is an analytical diffeomorphism and $0 \in Q_n(U)$ for all n. Label $\alpha_n = (\alpha_{1,n}, \ldots, \alpha_{2\nu,n})$ as the unique point in U such that $Q_n(\alpha_n) = 0$ and note that $\{\alpha_n\}_{n \in \mathbb{N}} \to 0$. Set

$$\eta_n := e^{\sum_{i=1}^{2\nu} \alpha_{i,n} f_i} \theta_n, \quad \phi_{1,n} := \frac{1}{2} \left(\eta_n + \frac{\Theta}{\eta_n} \right) \quad \text{and} \quad \phi_{2,n} := \frac{\iota}{2} \left(\eta_n - \frac{\Theta}{\eta_n} \right), \quad \forall n \in \mathbb{N}$$

and let us check that the sequence $\{\Phi_n = (\phi_{1,n}, \phi_{2,n})\}_{n \in \mathbb{N}}$ satisfies the conclusion of the lemma. Indeed, since $(\eta_n) = (\theta_n) = (\eta|_{M_S})$ one has $\Theta/\eta_n \in \Omega_0(W)$ and so $\Phi_n \in \Omega_0(W)^2$. The convergence of $\{\Phi_n\}_{n \in \mathbb{N}}$ to Φ on *S* follows from the ones of $\{\theta_n\}_{n \in \mathbb{N}}$ to η and of $\{\alpha_n\}_{n \in \mathbb{N}}$ to 0. A straightforward computation gives (a). The fact that $Q_n(\alpha_n) = 0, n \in \mathbb{N}$, implies (b). Finally, $(\eta_n) = (\eta|_{M_S})$ for all *n* implies (c).

The proof of the lemma in case (B) goes as follows.

Notice that $\Theta = 0$ is nothing but $\phi_2 = \beta \phi_1$, where $\beta \in \{\iota, -\iota\}$.

As above, we can assume without loss of generality that ϕ_1 never vanishes on C_S (we omit the details). Reasoning as in case (A), we can prove that $\hat{\mathcal{A}}|_{\mathcal{F}_0(W)} : \mathcal{F}_0(W) \to \mathbb{C}^{\nu}$ is surjective, where $\hat{\mathcal{A}}$ is the Fréchet derivative of $\hat{\mathcal{P}} : \mathcal{F}_0^*(S) \to \mathbb{C}^{\nu}$, $\hat{\mathcal{P}}(f) = \left(\int_c (e^f - 1)\phi_1\right)_{c\in\hat{\mathcal{B}}_S}$, at 0. Take $\hat{f}_i \in \hat{\mathcal{A}}^{-1}(\hat{e}_i) \cap \mathcal{F}_0(W)$ for all *i*, where $\hat{\mathcal{B}}_S = \{\hat{e}_1, \dots, \hat{e}_{\nu}\}$ is a basis of \mathbb{C}^{ν} , and define $\hat{\mathcal{Q}} : \mathbb{C}^{\nu} \to \mathbb{C}^{\nu}$ by $\hat{\mathcal{Q}}((z_i)_{i=1,\dots,\nu}) = \hat{\mathcal{P}}(\sum_{i=1,\dots,\nu} z_i \hat{f}_i)$. Now, consider a sequence $\{\hat{\theta}_n\}_{n\in\mathbb{N}} \subset \Omega_0(W)$ that uniformly approximates ϕ_1 on *S* and $(\hat{\theta}_n) = (\phi_1|_{M_S})$ for all *n* (as above, recall that $\phi_1|_{M_S} \not\equiv 0$ and see Lemma 3.2). Set $\hat{\mathcal{P}}_n : \mathcal{F}_0^*(S) \to \mathbb{C}^{\nu}$ by $\hat{\mathcal{P}}_n(f) = \left(\int_c (e^f \hat{\theta}_n - \phi_1)\right)_{c\in\hat{\mathcal{B}}_S}$, and call $\hat{\mathcal{Q}}_n : \mathbb{C}^{\nu} \to \mathbb{C}^{\nu}$ as the analytical map $\hat{\mathcal{Q}}_n((z_i)_{i=1,\dots,\nu}) = \hat{\mathcal{P}}_n(\sum_{i=1,\dots,\nu} z_i \hat{f}_i)$ for all $n \in \mathbb{N}$. To finish, reason as in case (A) but setting $\phi_{1,n} := e^{\sum_{i=1}^{\nu} \hat{\alpha}_{i,n} \hat{f}_i} \hat{\theta}_n$ and $\phi_{2,n} := \beta \phi_{1,n}$, where $\hat{\alpha}_n = (\hat{\alpha}_{1,n}, \dots, \hat{\alpha}_{\nu,n})$ is chosen so that $\hat{\mathcal{Q}}_n(\hat{\alpha}_n) = 0$ and $\{\hat{\alpha}_n\}_{n\in\mathbb{N}} \to 0$.

4. MAIN RESULTS

The main results of this paper follow as consequence of Lemma 4.1 below. Although the proof of this lemma is inspired by the technique developed in [AFL, Lemma 3.1], it represents a wide generalization of that result.

We need the following notations and definitions.

Fix a nowhere zero $\tau_0 \in \Omega_0(\mathcal{N})$ (the existence of such a τ_0 is well known, anyway see **[AFL]** for a proof). Then for any compact subset $K \subset \mathcal{N}$ and any $\theta \in \Omega_0^*(K)$ we set $\|\theta\| := \max_K \{|\theta/\tau_0|\}$. This norm induces the topology of the uniform convergence on $\Omega_0^*(K)$.

Let $K \subset \mathcal{N}$ be a connected compact region and σ^2 a Riemannian metric on K possibly with singularities. Given $P, Q \in K$ we denote by $dist_{(K,\sigma)}(P, Q) = min\{length_{\sigma}(\alpha) \mid \alpha \text{ curve in } K \text{ joining } P \text{ and } Q\}$. If K_1 and K_2 are two compact sets in K we set $dist_{(K,\sigma)}(K_1, K_2) = min\{dist_{(K,\sigma)}(P, Q) \mid P \in K_1, Q \in K_2\}$.

Lemma 4.1. Let M, K be two compact regions in \mathcal{N} with $M \subset K^{\circ}$. Assume that M is Runge, K is connected and consider $P_0 \in M^{\circ}$. Let \mathcal{I} be a conformal Riemannian metric on K possibly with isolated singularities. Let $\mathbf{f} = (\mathbf{f}_1, \mathbf{f}_2) : \mathcal{H}_1(K, \mathbb{Z}) \to \mathbb{C}^2$ be a group homomorphism, $\Theta \in \mathcal{O}_0(K)$ and

 $\Phi = (\phi_1, \phi_2) \in \Omega_0(M)^2$ satisfying

$$\phi_1^2+\phi_2^2=\Theta|_M, \quad \mathtt{f}(\gamma)=\int_\gamma \Phi, orall \gamma\in \mathcal{H}_1(M,\mathbb{Z}),$$

and either of the following conditions:

- (A) ϕ_1 and ϕ_2 are linearly independent in $\Omega_0(M)$.
- (B) $\Theta = 0, \phi_1 \neq 0$ and there is $\beta \in \{i, -i\}$ such that $f_2 = \beta f_1$ and $\phi_2 = \beta \phi_1$.

Then, for any $\epsilon > 0$ *there exists* $\Psi = (\psi_1, \psi_2) \in \Omega_0(K)^2$ *so that*

(L1) $\|\Psi - \Phi\| < \epsilon \text{ on } M$, (L2) $\psi_1^2 + \psi_2^2 = \Theta$, (L3) $f(\gamma) = \int_{\gamma} \Psi, \forall \gamma \in \mathcal{H}_1(K, \mathbb{Z})$, (L4) $\operatorname{dist}_{(K,\sigma_{(\Psi,\mathcal{I})})}(P_0, \partial K) > 1/\epsilon$, where $\sigma_{(\Psi,\mathcal{I})}^2 := |\psi_1|^2 + |\psi_2|^2 + \mathcal{I}$, and (L5) the zeros of Ψ on K are those of Φ on M (in particular, Ψ never vanishes on K - M).

Proof. The proof goes by induction on minus the Euler characteristic of $W - M^{\circ}$. Since M is Runge then no component of $K - M^{\circ}$ is a closed disc, and so $-\chi(K - M^{\circ}) \ge 0$. The basis of the induction is proved in the following

Claim 4.2. *Lemma* 4.1 *holds if* $\chi(K - M^{\circ}) = 0$.

Proof. In this case $K^{\circ} - M = \bigcup_{j=1}^{k} A_j$, where A_j are pairwise disjoint open annuli, $k \in \mathbb{N}$. On each A_j we construct a Jorge-Xavier's type labyrinth of compact sets as follows (see [JX]). Let $z_j : A_j \to \mathbb{C}$ be a conformal parametrization, and let $C_j \subset A_j$ be a compact region such that C_j contains no singularities of $\mathcal{I}, z_j(C_j)$ is a compact annulus of radii r_j and R_j , where $r_j < R_j$, and $z_j(C_j)$ contains the homology of $z_j(A_j)$. This choice is possible since the singularities of \mathcal{I} are isolated. Since $\mathcal{I}|_{C_j}$ has no singularities, we can find a positive constant μ with

(4.1)
$$\mathcal{I} > \mu^2 |dz_j|^2 \quad \text{on } C_j, j = 1, \dots, k$$

Consider a large $m \in \mathbb{N}$ (to be specified later) such that $2/m < \min\{R_j - r_j \mid j = 1, ..., k\}$. For any $j \in \{1, ..., k\}$ label $s_{j,0} := R_j$ and for any $n \in \{1, ..., 2m^2\}$ set $s_{j,n} := R_j - n/m^3$ and consider the compact set in C_j (see Figure 4.1):

$$\mathcal{K}_{j,n} = \left\{ P \in A_j \ \left| \ s_{j,n} + \frac{1}{4m^3} \le |z_j(P)| \le s_{j,n-1} - \frac{1}{4m^3}, \ \frac{1}{m^2} \le \arg((-1)^n z_j(P)) \le 2\pi - \frac{1}{m^2} \right\}.$$

Then, define

$$\mathcal{K}_j = \bigcup_{n=1}^{2m^2} \mathcal{K}_{j,n}$$
 and $\mathcal{K} = \bigcup_{j=1}^k \mathcal{K}_j$

Consider the pair $\Xi = (\varphi_1, \varphi_2) \in \Omega_0(M \cup \mathcal{K})^2$ given by

$$\Xi|_{M} = \Phi, \qquad \Xi|_{\mathcal{K}_{j}} = \begin{cases} \left(\frac{1}{2}(\lambda dz_{j} + \frac{\Theta}{\lambda dz_{j}}), \frac{1}{2}(\lambda dz_{j} - \frac{\Theta}{\lambda dz_{j}})\right) & \text{if (A) holds} \\ \left(\lambda dz_{j}, \beta \lambda dz_{j}\right) & \text{if (B) holds,} \end{cases} \quad j = 1, \dots, k,$$

where $\lambda > \sqrt{2} \mu m^4$ is a constant. Notice that $\varphi_1^2 + \varphi_2^2 = \Theta|_{M \cup \mathcal{K}}$.

Let $W \subset N$ be a domain with finite topology containing *K*. Applying Lemma 3.3 to the data

$$\hat{W} = W$$
, $\hat{S} = M \cup \mathcal{K}$, $\hat{\Theta} = \Theta$, and $\hat{\Phi} = \Xi$,

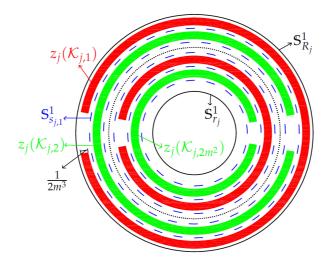


FIGURE 4.1. The labyrinth of compact sets on the annulus $z_i(C_i)$.

we obtain a pair $\Psi = (\psi_1, \psi_2) \in \Omega_0(K)^2$ satisfying (L1), (L2), (L3), (L5) and (4.2)

(4.2)
$$|\psi_1|^2 + |\psi_2|^2 > \mu^2 m^3 |dz_j|^2$$
 on $\mathcal{K}_j, j = 1, \dots, k$.

Then, taking into account (4.1), (4.2) and the definition of \mathcal{K}_j , it is straightforward to check the existence of a positive constant ρ_j depending neither on μ nor m such that

$$\operatorname{length}_{\sigma_{(\Psi|\tau)}}(\alpha) > \rho_j \cdot \mu \cdot m$$

for any α curve in C_j joining the two components of ∂C_j . Thus, we can choose *m* large enough so that $\rho_j \cdot \mu \cdot m > 1/\epsilon$ for any j = 1, ..., k. This choice gives (L4) and we are done.

The inductive step and so Lemma 4.1 are proved in the following

Claim 4.3. Consider n > 0 and assume that Lemma 4.1 holds if $-\chi(K - M^{\circ}) < n$. Then it also holds if $-\chi(K - M^{\circ}) = n$.

Proof. Since *M* is Runge, $j_* : \mathcal{H}_1(M, \mathbb{Z}) \to \mathcal{H}_1(K, \mathbb{Z})$ is a monomorphism, where $j : M \to K$ is the inclusion map. Up to this natural identification we will consider $\mathcal{H}_1(M, \mathbb{Z}) \subset \mathcal{H}_1(K, \mathbb{Z})$. Since $-\chi(K - M^\circ) = n > 0$, there exists $\hat{\gamma} \in \mathcal{H}_1(K, \mathbb{Z}) - \mathcal{H}_1(M, \mathbb{Z})$ intersecting $K - M^\circ$ in a compact Jordan arc γ with endpoints $P_1, P_2 \in \partial M$ and otherwise disjoint from $\partial M \cup \partial K$, and such that $S := M \cup \gamma$ is admissible. Notice that in this case $\gamma = C_S$ and $M = M_S$.

Assume (A) holds, and in addition choose $\hat{\gamma}$ so that Θ never vanishes on γ . Consider a pair $\hat{\Phi} = (\hat{\phi}_1, \hat{\phi}_2) \in \Omega_0^*(S)^2 \cap \Omega_0(M_S)^2$ satisfying $\hat{\Phi}|_M = \Phi$, $\hat{\phi}_1^2 + \hat{\phi}_2^2 = \Theta|_S$ and $\int_{\hat{\gamma}} \hat{\Phi} = \mathbf{f}(\hat{\gamma})$ (we leave the details to the reader). By Lemma 3.3, case (A), applied to $\hat{\Phi}$, S, Θ and K° , we can find a compact tubular neighborhood U of S in K° and $\Xi = (\varphi_1, \varphi_2) \in \Omega_0(U)^2$ such that φ_1 and φ_2 are linearly independent in $\Omega_0(U)^2$, $||\Xi - \Phi|| < \epsilon/2$ on M, $\varphi_1^2 + \varphi_2^2 = \Theta|_U$, the zeros of Ξ on U are those of Φ on M, and $\Xi - \hat{\Phi}$ is exact on S. Since $-\chi(K - U^\circ) < n$, the induction hypothesis applied to Ξ and $\epsilon/2$ gives the existence of a pair $\Psi \in \Omega_0(K)^2$ satisfying the conclusion of the lemma.

Assume now that (B) holds, and take a function $\hat{\phi}_1 \in \Omega_0^*(S) \cap \Omega_0(M_S)$ such that $\hat{\phi}_1|_M = \phi_1$ and $\int_{\hat{\gamma}} \hat{\phi}_1 = \mathbf{f}_1(\hat{\gamma})$. Apply Lemma 3.3, case (B), to the data K° , S and $(\hat{\phi}_1, \beta \hat{\phi}_1)$, and obtain a compact tubular neighborhood U of S in K° and a 1-form $\varphi_1 \in \Omega_0(U)$ such that $\|\varphi_1 - \varphi_1\| < \epsilon/4$ on *M*, the zeros of φ_1 on *U* are those of φ_1 on *M*, and $\varphi_1 - \hat{\varphi_1}$ is exact on *S*. As above, the induction hypothesis applied to $(\varphi_1, \beta \varphi_1)$ and $\epsilon/2$ gives a pair $\Psi \in \Omega_0(K)^2$ proving the claim.

This finishes the proof of the lemma.

Now we can state and prove the main theorem of this paper.

Theorem 4.4. Let $M \subset \mathcal{N}$ be a Runge compact region. Let \mathcal{I} be a conformal Riemannian metric on \mathcal{N} possibly with isolated singularities. Consider $\mathbf{f} = (\mathbf{f}_1, \mathbf{f}_2) : \mathcal{H}_1(\mathcal{N}, \mathbb{Z}) \to \mathbb{C}^2$ be a group homomorphism, $\Theta \in \mathcal{V}_0(\mathcal{N})$ and $\Phi = (\phi_1, \phi_2) \in \Omega_0(M)^2$ satisfying

$$\phi_1^2+\phi_2^2=\Thetaert_M, \ \ \ { t f}(\gamma)=\int_\gamma \Phi, orall \gamma\in \mathcal{H}_1(M,\mathbb{Z}),$$

and either of the following conditions:

- (A) ϕ_1 and ϕ_2 are linearly independent in $\Omega_0(M)$.
- (B) $\Theta = 0, \phi_1 \neq 0$ and there is $\beta \in \{i, -i\}$ such that $f_2 = \beta f_1$ and $\phi_2 = \beta \phi_1$.

Then, for any $\epsilon > 0$ there exists $\Psi = (\psi_1, \psi_2) \in \Omega_0(\mathcal{N})^2$ so that

- (T1) $\|\Psi \Phi\| < \epsilon \text{ on } M$,
- (T2) $\psi_1^2 + \psi_2^2 = \Theta$,
- (T3) $f(\gamma) = \int_{\gamma} \Psi, \forall \gamma \in \mathcal{H}_1(\mathcal{N}, \mathbb{Z}),$
- (T4) $|\psi_1|^2 + |\psi_2|^2 + \mathcal{I}$ is a complete conformal Riemannian metric on \mathcal{N} with singularities at the zeros of $|\phi_1|^2 + |\phi_2|^2 + I$ on M, and
- (T5) the zeros of Ψ on \mathcal{N} are those of Φ on M (in particular, Ψ never vanishes on $\mathcal{N} M$).

Proof. Label $M_1 = M$ and let $\{M_n \mid n \geq 2\}$ be an exhaustion of \mathcal{N} by Runge connected compact regions with $M_n \subset M_{n+1}^{\circ}$ for all $n \in \mathbb{N}$. Fix a base point $P_0 \in M^{\circ}$ and a positive $\varepsilon < \min{\{\varepsilon, 1\}}$ which will be specified later.

Label $\Phi_1 = \Phi$, and by Lemma 4.1 and an inductive process, construct a sequence of pairs $\{\Phi_n = (\phi_{i,n})_{i=1,2}\}_{n \in \mathbb{N}}$ satisfying that

- (a) $\Phi_n \in \Omega_0(M_n)^2, \forall n \in \mathbb{N}$,

- (b) $\|\Phi_n \Phi_{n-1}\| < \varepsilon/2^n$ on $M_{n-1}, \forall n \ge 2$, (c) $\phi_{1,n}^2 + \phi_{2,n}^2 = \Theta|_{M_n}, \forall n \in \mathbb{N}$, (d) $\mathbf{f}(\gamma) = \int_{\gamma} \Phi_n, \forall \gamma \in \mathcal{H}_1(M_n, \mathbb{Z}), \forall n \in \mathbb{N}$,
- (e) dist $_{(M_n,\sigma_{(\Phi_n,\mathcal{I})})}(P_0,\partial M_n) > 2^n$, where $\sigma_{(\Phi_n,\mathcal{I})}^2 = |\phi_{1,n}|^2 + |\phi_{2,n}|^2 + \mathcal{I}, \forall n \ge 2$, and (f) the zeros of Φ_n on M_n are those of Φ on $M, \forall n \in \mathbb{N}$.

Since $\bigcup_{n \in \mathbb{N}} M_n = \mathcal{N}$, items (a) and (b) and Harnack's theorem, then the sequence $\{\Phi_n\}_{n \in \mathbb{N}}$ uniformly converges on compact subsets of \mathcal{N} to a pair $\Psi = (\psi_i)_{i=1,2} \in \Omega_0(\mathcal{N})$ satisfying (T1). Items (c) and (d) directly give (T2) and (T3), respectively. Since $\{\Phi_n\}_{n \in \mathbb{N}}$ uniformly converges to Ψ and (f), Hurwitz's theorem gives that either the zeros of Ψ on \mathcal{N} are those of Φ on M or $\psi_1 = 0$ or $\psi_2 = 0$. However, (b) gives $\|\Psi - \Phi\| \le \varepsilon$ on *M* and so $\psi_j|_M \ne 0$, j = 1, 2, provided that ε is small enough. This proves (T5). Finally (T5) and (e) imply (T4) and we are done.

Corollary 4.5. Let $\mathfrak{H}, X = (X_i)_{i=3,\dots,N} : \mathcal{N} \to \mathbb{R}^{N-2}$ and $p = (p_i)_{i=1,\dots,N} : \mathcal{H}_1(\mathcal{N},\mathbb{Z}) \to \mathbb{R}^N$ be a 2-form in $\mathcal{V}_0(\mathcal{N})$, a non-constant harmonic map and a group homomorphism, respectively, satisfying that

- $\mathbf{p}_i(\gamma) = \operatorname{Im} \int_{\gamma} \partial_z X_i, \forall \gamma \in \mathcal{H}_1(\mathcal{N}, \mathbb{Z}), \forall i = 3, ..., N, and$ $\mathbf{p}_1 = \mathbf{p}_2 = 0$ when $\mathfrak{H} = \sum_{i=3}^{N} (\partial_z X_i)^2$.

Then there exists a weakly complete harmonic map $Y = (Y_i)_{i=1,\dots,N} : \mathcal{N} \to \mathbb{R}^N$ with

(I) $(Y_i)_{i=3,...,N} = X$, (II) $p_Y = p$, and (III) $Q_{\Upsilon} = \mathfrak{H}$.

Furthermore, if X is full then Y can be chosen to be full, and if X is an immersion then Y is.

Proof. Label $\Theta := \mathfrak{H} - \sum_{i=3}^{N} (\partial_z X_i)^2$, and assume for a moment that $\Theta \neq 0$. Consider a compact disc $K \subset \mathcal{N}$ and $\eta \in \Omega_0(K)$ such that both η and ϕ_1 never vanish on K, and ϕ_1 and ϕ_2 are linearly independent in $\Omega_0(K)$, where $\phi_1 := \frac{1}{2}(\eta + \Theta/\eta)$ and $\phi_2 := \frac{1}{2}(\eta - \Theta/\eta)$. Consider a pair $\Psi = (\psi_1, \psi_2)$ obtained from Theorem 4.4, case (A), applied to the data

$$\mathcal{N}, \quad M = K, \quad \mathcal{I} = \sum_{i=3}^{N} |\partial_z X_i|^2, \quad \Theta, \quad \Phi = (\phi_1, \phi_2), \quad \mathbf{f} = \iota(\mathbf{p}_1, \mathbf{p}_2)$$

and $\epsilon > 0$ to be specified later. Fix a point $P_0 \in \mathcal{N}$ and define $Y_k(P) = \operatorname{Re} \int_{P_0}^{P} \psi_k, \forall P \in \mathcal{N}, k = 1, 2,$ and $Y_k = X_k, \forall k = 3, ..., N$.

Statements (I), (II) and (III) trivially follow from the definition of Θ and f, and properties (T2) and (T3). Moreover, (T4) and the fact that ϕ_1 never vanishes on K give that $\sum_{i=1}^{N} |\partial_z Y_i|^2$ is a complete conformal metric on N, and so Y is weakly complete. Finally, if X is full then we can choose η so that the map

$$K \to \mathbb{R}^{\mathrm{N}}, \quad P \mapsto \left(\int_{P_0}^P \phi_1 \, , \, \int_{P_0}^P \phi_2 \, , \, X(P)\right)$$

is full as well. Then (T1) gives the fullness of Y provided that ϵ is chosen small enough.

Assume now that $\Theta = 0$. Take an exact $\phi_1 \in \Omega_0(M)$, $\phi_1 \neq 0$, and consider a pair Ψ obtained by applying Theorem 4.4, case (B), to the data

$$\mathcal{N}, \quad M=K, \quad \mathcal{I}=\sum_{i=3}^{^{\mathrm{N}}}|\partial_{z}X_{i}|^{2}, \quad \Theta=0, \quad \Phi=(\phi_{1},\iota\phi_{1}), \quad \mathtt{f}=0$$

and $\epsilon > 0$. To finish argue as above.

Corollary 4.6. Let $X = (X_i)_{i=3,\dots,n} : \mathcal{N} \to \mathbb{R}^{N-2}$ and $p = (p_j)_{j=1,\dots,N} : \mathcal{H}_1(\mathcal{N},\mathbb{Z}) \to \mathbb{R}^N$ be a non-constant harmonic map and a group homomorphism, respectively, satisfying that

- p_i(γ) = Im ∫_γ ∂_zX_i, ∀γ ∈ H₁(N, Z), ∀i = 3,..., N, and
 p₁ = p₂ = 0 when Σ^N_{i=3}(∂_zX_i)² = 0.

Then there exists a complete conformal minimal immersion $Y = (Y_i)_{i=1,\dots,N} : \mathcal{N} \to \mathbb{R}^N$ with $(Y_i)_{i=3,\dots,N} =$ *X* and $p_Y = p$. Furthermore, *Y* can be chosen full provided that *X* is.

Proof. Apply Corollary 4.5 for $\mathfrak{H} = 0$ and see Remark 2.4.

Corollary 4.7. Let \mathcal{N} be a bounded planar domain. Then there exists a complete non-proper holomorphic embedding of \mathcal{N} in \mathbb{C}^2 .

Proof. Consider $X = (X_3, X_4) : \mathcal{N} \to \mathbb{R}^2 \equiv \mathbb{C}$ given by X(z) = z. Let $Y = (Y_j)_{j=1,\dots,4} : \mathcal{N} \to \mathbb{R}^4$ be an immersion obtained from Corollary 4.6 applied to the data N, X and p = 0. Since X is injective, Y is an embedding. Finally, observe that Y is non-proper. Indeed, otherwise the holomorphic function $Y_1 + iY_2$ would be proper on \mathcal{N} , contradicting that \mathcal{N} is hyperbolic.

Corollary 4.8. Let $p : \mathcal{H}_1(\mathcal{N}, \mathbb{Z}) \to \mathbb{R}^N$ be a group homomorphism.

Then there exists a conformal complete minimal immersion $Y : \mathcal{N} \to \mathbb{R}^N$ satisfying

• $\mathbf{p}_Y = \mathbf{p}_Z$

12

- *Y* is non-decomposable and full,
- *G_Y is non-degenerate, and*
- G_{γ} fails to intersect N hyperplanes of \mathbb{CP}^{N-1} in general position.

Proof. We need the following

Claim 4.9 ([AFL, Theorem 4.2]). For any group homomorphism $\hat{p} : \mathcal{H}_1(\mathcal{N}, \mathbb{Z}) \to \mathbb{R}$ there exists a never vanishing $\phi \in \Omega_0(\mathcal{N})$ with $\int_{\gamma} \phi = \imath \hat{p}(\gamma), \forall \gamma \in \mathcal{H}_1(\mathcal{N}, \mathbb{Z})$.

Assume first that N is even.

Consider a nowhere zero $\phi \in \Omega_0(\mathcal{N})$ (see Claim 4.9) and a compact disc $M \subset \mathcal{N}$. Fix $P_0 \in M^\circ$ and take $\lambda_j \in \mathbb{C} - \{0\}$ and $\Phi_j = (\phi_{j,1}, \phi_{j,2}) \in \Omega_0(M)^2$, j = 1, ..., N/2, so that

- $\sum_{i=1}^{N/2} \lambda_i^2 = 0$,
- $\phi_{j,1}$ and $\phi_{j,2}$ are linearly independent in $\Omega_0(M)$ and $\phi_{j,1}^2 + \phi_{j,2}^2 = \lambda_j^2 \phi^2 |_M, \forall j = 1, \dots, N/2,$
- the minimal immersion $X: M \to \mathbb{R}^N$, $X(P) = \operatorname{Re}(\int_{P_0}^{P} (\Phi_j)_{j=1,\dots,N/2})$ is non-decomposable and full, and
- *G_X* is non-degenerate.

Write $p = (p_k)_{k=1,...,N}$, and for any j = 1, ..., N/2 consider $\Psi_j = (\psi_{j,1}, \psi_{j,2}) \in \Omega_0(\mathcal{N})^2$ given by Theorem 4.4, case (A), applied to the data

$$\mathcal{N}, \quad M, \quad \mathcal{I}=|\phi|^2, \quad \mathtt{f}=\imath(\mathtt{p}_{2j-1},\mathtt{p}_{2j}), \quad \Theta=\lambda_j^2\phi^2, \quad \Phi=\Phi_j,$$

and $\epsilon > 0$ which will be specified later. Define

$$Y: \mathcal{N} \to \mathbb{R}^{\mathrm{N}}, \quad Y(P) = \operatorname{Re}\left(\int_{P_0}^{P} (\Psi_j)_{j=1,\dots,\mathrm{N}/2}\right).$$

Statement (T3) in Theorem 4.4 gives that Y is well defined. From (T2) follows that $\sum_{j=1}^{N/2} (\psi_{j,1}^2 + \psi_{j,2}^2) = 0$, and so Y is conformal. Moreover, $\sum_{j=1}^{N/2} (|\psi_{j,1}|^2 + |\psi_{j,2}|^2) \ge |\psi_{1,1}|^2 + |\psi_{1,2}|^2 \ge \frac{1}{|\lambda_1|^2+1} (|\psi_{1,1}|^2 + |\psi_{1,2}|^2 + |\phi|^2)$ that is a complete Riemannian metric on \mathcal{N} (take into account (T4)). Therefore, Y is a complete conformal minimal immersion. Item (T3) implies that $p_Y = p$. Since X is non-decomposable and full and G_X is non-degenerate, then Y and G_Y are, provided that ϵ is chosen small enough (see (T1)). Finally, observe that $\psi_{j,1}^2 + \psi_{j,2}^2$ never vanishes on \mathcal{N} for all $j = 1, \ldots, N/2$, hence G_Y fails to intersect the hyperplanes

$$\Pi_{j,\delta} := \left\{ [(w_k)_{k=1,\dots,N}] \in \mathbb{CP}^{N-1} \mid w_{2j-1} + (-1)^{\delta} i w_{2j} = 0 \right\}, \quad \forall (j,\delta) \in \{1,\dots,N/2\} \times \{0,1\},$$

which are located in general position.

Assume now that N is odd.

Write $\mathbf{p} = (\mathbf{p}_k)_{k=1,\dots,N}$ and consider a nowhere zero $\phi \in \Omega_0(\mathcal{N})$ with $\int_{\gamma} \phi = \iota \mathbf{p}_N(\gamma), \forall \gamma \in \mathcal{H}_1(\mathcal{N},\mathbb{Z})$ (see Claim 4.9). Fix a compact disc $M \subset \mathcal{N}$ and a point $P_0 \in M^\circ$. Take $\lambda_j \in \mathbb{C} - \{0\}$ and $\Phi_j = (\phi_{j,1}, \phi_{j,2}) \in \Omega_0(M)^2, j = 1, \dots, (N-1)/2$ so that:

- $\sum_{j=1}^{(N-1)/2} \lambda_j^2 = -1$,
- $\phi_{j,1}$ and $\phi_{j,2}$ are linearly independent in $\Omega_0(M)$ and $\phi_{j,1}^2 + \phi_{j,2}^2 = \lambda_j^2 \phi^2|_M, \forall j = 1, \dots, (N-1)/2,$
- the minimal immersion $X : M \to \mathbb{R}^N$, $X(P) = \operatorname{Re}(\int_{P_0}^{P} ((\Phi_j)_{j=1,\dots,(N-1)/2}, \phi)$ is non-decomposable and full, and
- *G_X* is non-degenerate.

For any j = 1, ..., (N-1)/2 consider $\Psi_j = (\psi_{j,1}, \psi_{j,2}) \in \Omega_0(\mathcal{N})^2$ given by Theorem 4.4, case (A), applied to the data

$$\mathcal{N}$$
, M , $\mathcal{I} = |\phi|^2$, $\mathbf{f} = \iota(\mathbf{p}_{2j-1}, \mathbf{p}_{2j})$, $\Theta = \lambda_j^2 \phi^2$, $\Phi = \Phi_j$,

and $\epsilon > 0$ which will be specified later.

As above

$$Y: \mathcal{N} \to \mathbb{R}^{N}, \quad Y(P) = \operatorname{Re}\left(\int_{P_0}^{P} ((\Psi_j)_{j=1,\dots,(N-1)/2}, \phi)\right)$$

is the immersion we are looking for, provided that ϵ is small enough. In this case G_Y fails to intersect the following hyperplanes of \mathbb{CP}^{N-1} located in general position:

$$\Pi_{j,\delta} := \left\{ [(w_k)_{k=1,\dots,N}] \in \mathbb{CP}^{N-1} \mid w_{2j-1} + (-1)^{\delta} \imath w_{2j} = 0 \right\},$$

$$\forall (j,\delta) \in \{1,\dots,(N-1)/2\} \times \{0,1\}, \text{ and}$$

$$\Pi := \left\{ [(w_k)_{k=1,\ldots,N}] \in \mathbb{CP}^{N-1} \mid w_N = 0 \right\}$$

The proof is done.

REFERENCES

- [A] L.V. Ahlfors, The theory of meromorphic curves. Acta Soc. Sci. Fennicae. Nova Ser. A. 3 (1941), 1–31.
- **[AF]** A. Alarcón and I. Fernández, Complete minimal surfaces in \mathbb{R}^3 with a prescribed coordinate function. Preprint (arXiv:0808.2363).
- [AFL] A. Alarcón, I. Fernández and F.J. López, *Complete minimal surfaces and harmonic functions*. Comment. Math. Helv., in press.
- [AL] A. Alarcón and F.J. López, Minimal surfaces in R³ properly projecting into R². Preprint (arXiv:0910.4124).
- [C] S.S. Chern, Minimal surfaces in an Euclidean space of N dimensions. 1965 Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), 187–198 Princeton Univ. Press, Princeton, N.J.
- [CO] S.S. Chern and R. Osserman, Complete minimal surfaces in euclidean n-space. J. Analyse Math. 19 (1967), 15–34.
- [CM] T.H. Colding and W.P. Minicozzi, *The Calabi-Yau conjectures for embedded surfaces*. Ann. of Math. (2) **167** (2008), 211–243.
- [F1] H. Fujimoto, *Extensions of the big Picard's theorem*. Tohoku Math. J. 24 (1972), 415–422.
- [F2] H. Fujimoto, On the Gauss map of a complete minimal surface in \mathbb{R}^m . J. Math. Soc. Japan 35 (1983), 279–288.
- [F3] H. Fujimoto, Modified defect relations for the Gauss map of minimal surfaces. II. J. Differential Geom. 31 (1990), 365–385.
- [F4] H. Fujimoto, Examples of complete minimal surfaces in \mathbb{R}^m whose Gauss maps omit m(m+1)/2 hyperplanes in general position. Sci. Rep. Kanazawa Univ. 33 (1988), 37–43.
- [JX] L.P.M. Jorge and F. Xavier, A complete minimal surface in R³ between two parallel planes. Ann. of Math. (2) 112 (1980), 203–206.
- [K] T. Klotz Milnor, Mapping surfaces harmonically into Eⁿ. Proc. Amer. Math. Soc. 78 (1980), 269–275.
- [MPR] W.H. Meeks III, J. Pérez and A. Ros, *The embedded Calabi-Yau conjectures for finite genus*. Preprint.
- [01] R. Osserman, Global properties of minimal surfaces in E^3 and E^n . Ann. of Math. (2) 80 (1964), 340–364.
- [02] R. Osserman, A survey of minimal surfaces. Second edition. Dover Publications, Inc., New York, 1986. vi+207 pp.
- [**R**] M. Ru, On the Gauss map of minimal surfaces immersed in \mathbb{R}^n . J. Differential Geom. **34** (1991), 411–423.
- [W] H. Wu, The equidistribution theory of holomorphic curves. Annals of Mathematics Studies, no. 64, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo 1970.

DEPARTAMENTO DE MATEMÁTICA APLICADA, UNIVERSIDAD DE MURCIA, E-30100 ESPINARDO, MURCIA, SPAIN

E-mail address: ant.alarcon@um.es

DEPARTAMENTO DE MATEMÁTICA APLICADA I, UNIVERSIDAD DE SEVILLA, E-41012 SEVILLA, SPAIN

E-mail address: isafer@us.es

DEPARTAMENTO DE GEOMETRÍA Y TOPOLOGÍA, UNIVERSIDAD DE GRANADA, E-18071 GRANADA, SPAIN

E-mail address: fjlopez@ugr.es

14