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ABSTRACT. We prove that for any open Riemann surface N , natural number N ≥ 3, non-constant

harmonic map h : N → RN−2 and holomorphic 2-form H on N , there exists a weakly complete
harmonic map X = (Xj)j=1,...,N : N → RN with Hopf differential H and (Xj)j=3,...,N = h. In par-

ticular, there exists a complete conformal minimal immersion Y = (Yj)j=1,...,N : N → RN such that

(Yj)j=3,...,N = h.
As some consequences of these results:

• There exists complete full non-decomposable minimal surfaces with arbitrary conformal struc-
ture and whose generalized Gauss map is non-degenerate and fails to intersect N hyperplanes

of CP
N−1 in general position.

• There exists complete non-proper embedded minimal surfaces in RN , ∀ N > 3.

1. INTRODUCTION

In this paper we use methods coming from the study of minimal surfaces to construct har-
monic mappings of Riemann surfaces into RN with prescribed geometry. A basic reference for
this topic is, for instance, Klotz’s work [K].

Our main result states (see Corollary 4.5):

Theorem A. For any open Riemann surface N , natural number N ≥ 3, non-constant
harmonic map h : N → RN−2 and holomorphic 2-form H on N , there exists a weakly
complete harmonic map X = (Xj)j=1,...,N : N → RN with Hopf differential H and

(Xj)j=3,...,N = h.

Recall that the Hopf differential QX of a harmonic map X : N → RN is the holomorphic 2-form
given by QX := 〈∂zX, ∂zX〉, where ∂z means complex differential. By definition, X is said to be

weakly complete if ΓX := |∂zX|2 is a complete conformal Riemannian metric in N (see [K]).

The fact that conformal minimal immersions are harmonic maps strongly influences the global
theory of this kind of surfaces. It is well known that a harmonic immersion X : N → RN is min-
imal if and only if it is conformal, or equivalently, QX = 0. Weakly completeness is equivalent
to Riemannian completeness under minimality assumptions. The geometry of complete mini-
mal surfaces in RN, specially those properties regarding the Gauss map, has been the object of
extensive study over the last past decades (see for instance [O1, CO, C, F3, R]).

In the recent paper [AFL], the authors constructed complete minimal surfaces in R3 with arbi-
trarily prescribed conformal structure and non-constant third coordinate function (see also [AF]).
As a consequence, any open Riemann surface admits a complete conformal minimal immersion in
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R
3 whose Gauss map omits two antipodal points of the unit sphere. Theorem A let us generalize

these results to arbitrary higher dimensions (see Corollary 4.6):

Theorem B. For any open Riemann surface N , natural number N ≥ 3 and non-constant
harmonic map h : N → RN−2, there exists a complete conformal minimal immersion
X = (Xj)j=1,...,N : N → RN with (Xj)j=3,...,N = h.

Under some compatibility conditions depending on the map h, the flux map of the immersion
X can be also prescribed. Recall that the flux map of a conformal minimal immersion X : N → RN

is given by pX(γ) = Im
∫

γ ∂zX for all γ ∈ H1(N , Z). In particular, if h is the real part of a

holomorphic map H : N → CN−2, Theorem B provides a complete null holomorphic curve

F = (Fj)j=1,...,N : N → C
N such that (Fj)j=3,...,N = H. Likewise, Y = (Fj)j=2,...,N : N → C

N−1 is a
complete holomorphic immersion whose last N − 2 coordinates coincide with H.

Theorem B also includes some information about the Gauss map of minimal surfaces in RN.
Given a conformal minimal immersion X : N → RN, its generalized Gauss map GX : N →
CPN−1, GX(P) = ∂zX(P), is holomorphic and takes values on the complex hyperquadric {∑

N
j=1 w2

j =

0}. Chern and Osserman [C, CO] showed that if X is complete then either X(N ) is a plane or
GX(N ) intersects a dense set of complex hyperplanes. Even more, Ru [R] proved that if X is

complete and non-flat then GX cannot omit more than N(N + 1)/2 hyperplanes in CP
N−1 lo-

cated in general position (see also the works of Fujimoto [F2, F3] for a good setting). Under the
non-degeneracy assumption on GX, this upper bound is sharp for some values of N, see [F4].
However, the number of exceptional hyperplanes strongly depends on the underlying conformal

structure of the surface. Indeed, Ahlfors [A] proved that any holomorphic map G : C → CP
N−1,

N ≥ 3, avoiding N + 1 hyperplanes of CP
N−1 in general position is degenerate, that is to say,

G(C) lies in a proper projective subspace of CP
N−1 (see [W, Chapter 5, §5] and [F1] for further

generalizations). So, it is natural to wonder whether any open Riemann surface admits a com-
plete conformal minimal immersion in RN whose generalized Gauss map is non-degenerate and
omits N hyperplanes in general position. An affirmative answer to this question can be found in
the following (see Corollary 4.8)

Theorem C. Let N be an open Riemann surface, and let p : H1(N , Z) → R
N be a group

morphism, N ≥ 3.
Then there exists a complete conformal full non-decomposable minimal immersion X :

N → RN with pX = p and whose generalized Gauss map is non-degenerate and omits N

hyperplanes in general position.

On the other hand, Theorem B leads to some interesting consequences regarding Calabi-Yau
conjectures. The embedded Calabi-Yau problem for minimal surfaces asks for the existence of

complete bounded embedded minimal surfaces in R3. Complete embedded minimal surfaces in

R3 with finite genus and countably many ends are proper in space [MPR, CM]. However, this
result fails to be true for arbitrary higher dimensions. For instance, taking N the unit disc D in

C and h : D → R
2 the map h(z) = (Re(z), Im(z)), Theorem B generates complete non-proper

embedded minimal discs in R
4 (so in R

N for all N ≥ 4), see Corollary 4.7 for more details.

The paper is laid out as follows. In Section 2 we introduce the necessary background and
notations. In Section 3 we prove a basic approximation result by holomorphic 1-forms in open
Riemann surfaces (Lemma 3.3), which is the key tool for proving our main results. Finally, in
Section 4 we state and prove Theorems A, B and C. It is worth mentioning that all these theorems
actually follows from the more general result Theorem 4.4 in Section 4.
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2. PRELIMINARIES

Given a topological surface M, ∂M will denote the one dimensional topological manifold deter-

mined by the boundary points of M. Given S ⊂ M, call by S◦ and S the interior and the closure of
S in M, respectively. Open connected subsets of M − ∂M will be called domains, and those proper
topological subspaces of M being surfaces with boundary are said to be regions. The surface M is
said to be open if it is non-compact and ∂M = ∅.

If M is a Riemann surface, ∂z will denote the global complex operator given by ∂z|U = ∂
∂w dw

for any conformal chart (U, w) on M.

Remark 2.1. Throughout this paper N and N will denote a fixed but arbitrary open Riemann
surface and natural number greater than or equal to three, respectively.

Let S denote a subset of N , S 6= N . We denote by F0(S) as the space of continuous functions
f : S → C which are holomorphic on an open neighborhood of S in N . Likewise, F ∗

0 (S) will
denote the space of continuous functions f : S → C being holomorphic on S◦.

As usual, a 1-form θ on S is said to be of type (1, 0) if for any conformal chart (U, z) in N ,
θ|U∩S = h(z)dz for some function h : U ∩ S → C. We denote by Ω0(S) as the space of holomor-
phic 1-forms on an open neighborhood of S in N . We call Ω∗

0(S) as the space of 1-forms θ of type
(1, 0) on S such that (θ|U)/dz ∈ F ∗

0 (S ∩ U) for any conformal chart (U, z) on N .

We denote by ℧0(S) as the space of holomorphic 2-forms on an open neigborhood of S in N .

Let Div(S) denote the free commutative group of divisors of S with multiplicative notation.

A divisor D ∈ Div(S) is said to be integral if D = ∏
n
i=1 Q

ni
i and ni ≥ 0 for all i. Given D1,

D2 ∈ Div(S), we write D1 ≥ D2 if and only if D1D−1
2 is integral. For any f ∈ F0(S) we denote by

( f ) its associated integral divisor of zeros in S. Likewise we define (θ) for any θ ∈ Ω0(S).

In the sequel we will assume that S is a compact subset of N .

A compact Jordan arc in N is said to be analytical if it is contained in an open analytical Jordan

arc in N . By definition, a connected component V of N − S is said to be bounded if V is compact,

where V is the closure of V in N . Moreover, a subset K ⊂ N is said to be Runge (in N ) if N − K
has no bounded components.

Definition 2.2. A compact subset S ⊂ N is said to be admissible if and only if (see Figure 2.1):

• S is Runge,

• MS := S◦ consists of a finite collection of pairwise disjoint compact regions in N with C0

boundary,

• CS := S − MS consists of a finite collection of pairwise disjoint analytical Jordan arcs, and
• any component α of CS with an endpoint P ∈ MS admits an analytical extension β in N

such that the unique component of β − α with endpoint P lies in MS.

Let W be a domain in N , and let S be either a compact region or an admissible subset in N .
W is said to be a tubular neighborhood of S if S ⊂ W and W − S consists of a finite collection of

pairwise disjoint open annuli. In addition, if W is a compact region isotopic to W then W is said

to be a compact tubular neighborhood of S. Here isotopic means that ∗ : H1(W, Z) → H1(W, Z) is

an isomorphism, where  : W → W is the inclusion map.
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FIGURE 2.1. An admissible subset.

Let W ⊂ N be a domain with S ⊂ W. We shall say that a function f ∈ F ∗
0 (S) can be uni-

formly approximated on S by functions in F0(W) if there exists { fn}n∈N ⊂ F0(W) such that
{| fn − f |}n∈N → 0 uniformly on S. A 1-form θ ∈ Ω∗

0(S) can be uniformly approximated on S

by 1-forms in Ω0(W) if there exists {θn}n∈N ⊂ Ω0(W) such that { θn−θ
dz }n∈N → 0 uniformly on

S ∩ U, for any conformal closed disc (U, dz) on W.

Given an admissible compact set S ⊂ W, a function f : S → C
n, n ∈ N, is said to be smooth

if f |MS
admits a smooth extension f0 to an open domain V in W containing MS, and for any

component α of CS and any open analytical Jordan arc β in W containing α, f admits an smooth
extension fβ to β satisfying that fβ|V∩β = f0|V∩β. Likewise, an 1-form θ of type (1, 0) on S is

said to be smooth if for any closed conformal disc (U, z) on N such that S ∩ U is admissible, the

function θ
dz is smooth on S ∩ U. Given a smooth f ∈ F ∗

0 (S), we set d f ∈ Ω∗
0(S) as the smooth

1-form given by d f |MS
= d( f |MS

) and d f |α∩U = ( f ◦ α)′(x)dz|α∩U, where (U, z = x + iy) is a

conformal chart on W such that α ∩ U = z−1(R ∩ z(U)). Obviously, d f |α(t) = ( f ◦ α)′(t)dt for
any component α of CS, where t is any smooth parameter along α. This definition makes sense
also for smooth functions with poles in S◦.

A smooth 1-form θ ∈ Ω∗
0(S) is said to be exact if θ = d f for some smooth f ∈ F ∗

0 (S), or
equivalently if

∫

γ θ = 0 for all γ ∈ H1(S, Z).

2.1. Harmonic maps and minimal surfaces in RN. Given a non-constant harmonic map X =
(Xj)j=1,...,N : N → RN, the holomorphic quadratic differential

QX := 〈∂zX, ∂zX〉 =
N

∑
j=1

(∂zXj)
2

is said to be the Hopf differential of X. We also consider the conformal metric, possibly with
isolated singularities,

ΓX :=
1

2

N

∑
j=1

|∂zXj|2.

It is clear that 2ΓX is greater than or equal to the Riemannian metric on N (possibly with singular-
ities) induced by X. When X is an immersion then ΓX is a Riemannian metric, and if in addition
X is complete then ΓX is complete as well [K]. However, the reciprocal does not hold in general.

Definition 2.3. We say that a harmonic map X : N → RN is weakly complete (or complete in the
sense of [K]) if ΓX is a complete metric in N .

We also associate to X the group morphism

pX : H1(N , Z) → R
N, pX(γ) = Im

∫

γ
∂zX.
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Remark 2.4. If QX = 0 and ΓX never vanishes, then X is a conformal minimal immersion, ΓX is
the metric induced on N by X, and pX is the flux map of X.

If in addition X is a conformal minimal immersion and we write ∂zXj = f jdζ in terms of a local
parameter ζ on N , j = 1, . . . , N, then the (generalized) Gauss map of X is given by

GX : N → CP
N−1, GX(ζ) = [( f j(ζ))j=1,...,N],

where [w] is the class of w in CP
N−1, ∀w ∈ CN. It is well known that GX is a holomorphic map

taking values in the complex quadric {[(wj)j=1,...,N] ∈ CP
N−1 | ∑

N
j=1 w2

j = 0}.

A set of hyperplanes in CP
N−1 is said to be in general position if each subset of k hyperplanes,

with k ≤ N − 1, has an (N − 1 − k)-dimensional intersection.

Definition 2.5 ([O2]). Let X : N → RN be a conformal minimal immersion.

• X is said to be decomposable if, with respect to suitable rectangular coordinates in RN, one

has ∑
m
k=1(∂zXk)

2 = 0 for some m < N.
• X is said to be full if X(N ) is contained in no hyperplane of RN.

• The Gauss map GX is said to be degenerate if GX(N ) lies in a hyperplane of CP
N−1.

When N = 3, decomposable, non-full and degenerate are equivalent. However, if one passes
to higher dimensions then no two of these conditions are equivalent (see [O2]).

3. THE APPROXIMATION LEMMA

The next two lemmas are the key tools in the proof of the main result of this section (Lemma
3.3). They represent a slight generalization of Lemmas 2.4 and 2.5 in [AL].

From now on, ı denotes the imaginary unit and the symbol 6≡ 0 means non-identically zero.

Lemma 3.1. Let W ⊂ N be a domain with finite topology and S ⊂ N an admissible subset with S ⊂ W.
Consider f ∈ F ∗

0 (S) ∩ F0(MS) with f |MS
6≡ 0.

Then f can be uniformly approximated on S by functions { fn}n∈N in F0(W) satisfying that ( fn) =
( f |MS

) on W. In particular, fn never vanishes on W − MS for all n.

Proof. Let {Mk}k∈N be a sequence of compact tubular neighborhoods of MS in W such that
Mk ⊂ M◦

k−1 for any k, ∩k∈N Mk = MS and f holomorphically extends (with the same name)

to M1 and has no zeros on M1 − MS (take into account that f |MS
6≡ 0). Choose Mk so that, in

addition, the compact set Sk := Mk ∪ CS ⊂ W is admissible and α − M◦
k is a (non-empty) Jordan

arc for any component α of CS. In particular, MSk
= Mk and CSk

= CS − M◦
k , k ∈ N.

For any k ∈ N take gk ∈ F ∗
0 (Sk) ∩ F0(MSk

) satisfying

• gk|MSk
= f |MSk

,

• gk never vanishes on Sk − S◦
k (recall that f has no zeros on M1 − MS), and

• the sequence {gk|S}k∈N uniformly converges to f on S.

The construction of such functions is standard, we omit the details. Since gk satisfies the hy-
potheses of Lemma 2.4 in [AL], it can be uniformly approximated on Sk by a sequence {gk,n}n∈N ⊂
F0(W) with (gk,n) = (gk|MSk

) = ( f |MS
) on W, for any k. A standard diagonal argument concludes

the proof. �

Lemma 3.2. Let W ⊂ N be a domain with finite topology and S ⊂ N an admissible subset with S ⊂ W.
Consider θ ∈ Ω∗

0(S) ∩ Ω0(MS) with θ|MS
6≡ 0.
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Then θ can be uniformly approximated on S by 1-forms {θn}n∈N in Ω0(W) satisfying that (θn) =
(θ|MS

) on W. In particular, θn never vanishes on W − MS for all n.

Proof. Let ϑ be a never vanishing 1-form in Ω0(W). Define f := θ/ϑ ∈ F ∗
0 (S) ∩ F0(MS). By

Lemma 3.1, f can be uniformly approximated on S by a sequence { fn}n∈N in F0(W) satisfying
that ( fn) = ( f |MS

) on W for all n. It suffices to set θn := fnϑ, n ∈ N. �

Lemma 3.3. Let W ⊂ N be a domain with finite topology and S ⊂ N an admissible subset with S ⊂ W.
Let Θ ∈ ℧0(W) and Φ = (φ1, φ2) be a smooth pair in Ω∗

0(S)
2 ∩ Ω0(MS)

2 satisfying φ2
1 + φ2

2 = Θ|S
and either of the following conditions:

(A) φ1|MS
and φ2|MS

are linearly independent in Ω0(MS) and Θ has no zeros on CS.
(B) Θ = 0 and φ1|MS

6≡ 0.

Then Φ can be uniformly approximated on S by a sequence {Φn = (φ1,n, φ2,n)}n∈N ⊂ Ω0(W)2

satisfying

(a) φ2
1,n + φ2

2,n = Θ,

(b) Φn − Φ is exact on S, and
(c) the zeros of Φn on W are those of Φ on MS (in particular, Φn never vanishes on W − MS).

Proof. Assume (A) holds.

Claim 3.4. Without loss of generality it can be assumed that φ1, φ2 and dξ never vanish on CS, where
ξ := φ1/φ2.

Proof. Assume for a moment that the conclusion of the lemma holds when φ1, φ2 and dξ never
vanish on CS.

Take a sequence {Mk}k∈N as in the proof of Lemma 3.1 such that Φ holomorphically extends
(with the same name) to M1, and φ1, φ2 and dξ never vanish on M1 − MS, for all n (take into
account (A)). Recall that Sk := Mk ∪ CS ⊂ W◦ is an admissible set and CSk

= CS − M◦
k , k ∈ N.

Since Θ never vanishes on CS, which consists of a finite collection of pairwise disjoint analyt-

ical Jordan arcs, then we can find θ ∈ Ω0(CS) with θ2 = Θ|CS
. Consider f j : CS → C, f j = φj/θ,

j = 1, 2, and notice that f 2
1 + f 2

2 = 1 and ξ|CS
= f1/ f2. Consider a sequence {( f1,k, f2,k)}k∈N of

pairs of smooth functions on CSk
satisfying:

i) f1,k, f2,k and d f1,k never vanish on CSk
,

ii) f 2
1,k + f 2

2,k = 1,

iii) the function gj,k given by gj,k|MSk
= f j, gj,k|CSk

= f j,k, lies in F ∗
0 (Sk) and is smooth, j = 1, 2,

iv) { f j,k}k∈N uniformly converges to f j on CS, j = 1, 2, and

v) Ψk|S − Φ is exact on S, where Ψk := (gj,kθ)j=1,2 ∈ Ω∗
0(Sk)

2 ∩ Ω0(MSk
)2.

The construction of this data is standard, we omit the details. Write Ψk = (ψj,k)j=1,2 and ξk =

ψ1,k/ψ2,k. From i), ii) and the definition of θ follow that ψ2
1,k + ψ2

2,k = Θ and dξk never vanishes

on CSk
. Moreover, iv) gives that {Ψk|S}k∈N uniformly converges to Φ on S.

By hypothesis, Lemma 3.3 holds for any Ψk, then there exists a sequence {Ψk,n}n∈N uniformly
converging to Ψk on Sk and satisfying (a), (b) and (c) of Lemma 3.3 for Φ = Ψk and S = Sk. Using
that {Ψk|S}k∈N converges to Φ, the zeros of Ψk in MSk

are those of Φ in MS, v), and a standard
diagonal argument, we can obtain a sequence satisfying the conclusion of the lemma, proving the
claim. �

In the sequel we will assume that φ1, φ2 and dξ never vanish on CS.
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Label η = φ1 − ıφ2 ∈ Ω∗
0(S) ∩ Ω0(MS) and observe that Θ/η = φ1 + ıφ2 ∈ Ω∗

0(S) ∩ Ω0(MS).
Notice that (Θ/η)|MS

, η|MS
6≡ 0,

φ1 =
1

2

(

η +
Θ

η

)

and φ2 =
ı

2

(

η − Θ

η

)

.

Let BS be a homology basis of H1(S, Z) and label ν as its cardinal number. Consider in F ∗
0 (S)

the maximum norm and the Fréchet differentiable map

P : F ∗
0 (S) → C

2ν, P( f ) =

(

∫

c

(

e f η + e− f Θ

η
− 2φ1 , e f η − e− f Θ

η
+ 2ıφ2

))

c∈BS

.

Label A : F ∗
0 (S) → C2ν as the Fréchet derivative of P at 0.

Claim 3.5. A|F0(W) is surjective.

Proof. Reason by contradiction and assume that A(F0(W)) lies in a complex subspace U =
{((xc, yc)

)

c∈BS
∈ C2ν | ∑c∈BS

(

Acxc + Bcyc
)

= 0}, where Ac, Bc ∈ C, ∀c ∈ BS, and

(3.1) ∑
c∈BS

(

|Ac|+ |Bc|
)

6= 0.

Then, writing Γ1 = ∑c∈BS
Ac c and Γ2 = ∑c∈BS

Bc c, we have

(3.2)
∫

Γ1

f φ2 + ı
∫

Γ2

f φ1 = 0, ∀ f ∈ F0(W).

Denote by Σ = { f ∈ F0(W) | ( f ) ≥ (φ2|MS
)2} (recall that φ2 never vanishes on CS). Then for

any f ∈ Σ the function d f /φ2 ∈ F ∗
0 (S) ∩ F0(MS), so it can be uniformly approximated on S

by functions in F0(W). This fact is trivial when f is constant, otherwise use Lemma 3.1. Hence
equation (3.2) applies and gives

(3.3) 0 =
∫

Γ2

ξd f =
∫

Γ2

f dξ, ∀ f ∈ Σ,

where we have used integration by parts (notice that f ξ, ξd f and f dξ are smooth).

Suppose Γ2 6= 0 and take [τ] ∈ H1
hol(W) (the first holomorphic De Rham cohomology group

of W) and g ∈ F0(W) so that
∫

Γ2
τ 6= 0, the function f := (τ + dg)/dξ lies in F ∗

0 (S) ∩ F0(MS)

and ( f |MS
) ≥ (φ2|MS

)2. The existence of such 1-form and function follows from well known ar-
guments on Riemann surfaces theory (take into account that (A) implies dξ|MS

6≡ 0). By Lemma
3.1, f can be uniformly approximated on S by functions in Σ, so equation (3.3) applies and shows
that 0 =

∫

Γ2
f dξ =

∫

Γ2
(τ + dg) =

∫

Γ2
τ 6= 0, a contradiction. Therefore Γ2 = 0.

Replacing (ξ, φ1, φ2, Γ1, Γ2) by (1/ξ, φ2, φ1, Γ2, Γ1) and using a symmetric argument, we can
prove that Γ1 = 0. This contradicts (3.1) and concludes the proof. �

Let {e1, . . . , e2ν} be a basis of C2ν, fix fi ∈ A−1(ei) ∩ F0(W) for all i, and set Q : C2ν → C2ν as
the analytical map given by

Q((zi)i=1,...,2ν) = P( ∑
i=1,...,2ν

zi fi).

By Claim 3.5 the differential dQ0 of Q at 0 is an isomorphism, then there exists a closed Eu-

clidean ball U ⊂ C2ν centered at the origin such that Q : U → Q(U) is an analytical diffeomor-
phism. Furthermore, notice that 0 = Q(0) ∈ Q(U) is an interior point of Q(U).

Consider a sequence {θn}n∈N ⊂ Ω0(W) uniformly approximating η on S and with (θn) =
(η|MS

) for all n (recall that η|MS
6≡ 0 and see Lemma 3.2).
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Label Pn : F ∗
0 (S) → C

2ν as the Fréchet differentiable map given by

Pn( f ) =

(

∫

c

(

e f θn + e− f Θ

θn
− 2φ1 , e f θn − e− f Θ

θn
+ 2ıφ2

))

c∈BS

, ∀n ∈ N.

Call Qn : C2ν → C2ν as the analytical map Qn((zi)i=1,...,2ν) = Pn(∑i=1,...,2ν zi fi) for all n ∈ N.

Since {Qn}n∈N → Q uniformly on compacts subsets of C2ν, without loss of generality we can
suppose that Qn : U → Qn(U) is an analytical diffeomorphism and 0 ∈ Qn(U) for all n. Label
αn = (α1,n, . . . , α2ν,n) as the unique point in U such that Qn(αn) = 0 and note that {αn}n∈N → 0.
Set

ηn := e∑
2ν
i=1 αi,n f iθn, φ1,n :=

1

2

(

ηn +
Θ

ηn

)

and φ2,n :=
ı

2

(

ηn −
Θ

ηn

)

, ∀n ∈ N

and let us check that the sequence {Φn = (φ1,n, φ2,n)}n∈N satisfies the conclusion of the lemma.

Indeed, since (ηn) = (θn) = (η|MS
) one has Θ/ηn ∈ Ω0(W) and so Φn ∈ Ω0(W)2. The con-

vergence of {Φn}n∈N to Φ on S follows from the ones of {θn}n∈N to η and of {αn}n∈N to 0. A
straightforward computation gives (a). The fact that Qn(αn) = 0, n ∈ N, implies (b). Finally,
(ηn) = (η|MS

) for all n implies (c).

The proof of the lemma in case (B) goes as follows.

Notice that Θ = 0 is nothing but φ2 = βφ1, where β ∈ {ı,−ı}.

As above, we can assume without loss of generality that φ1 never vanishes on CS (we omit

the details). Reasoning as in case (A), we can prove that Â|F0(W) : F0(W) → Cν is surjective,

where Â is the Fréchet derivative of P̂ : F ∗
0 (S) → Cν, P̂( f ) =

(

∫

c(e
f − 1)φ1

)

c∈B̂S

, at 0. Take

f̂i ∈ Â−1(êi) ∩ F0(W) for all i, where B̂S = {ê1, . . . , êν} is a basis of C
ν, and define Q̂ : C

ν → C
ν

by Q̂((zi)i=1,...,ν) = P̂(∑i=1,...,ν zi f̂i). Now, consider a sequence {θ̂n}n∈N ⊂ Ω0(W) that uniformly

approximates φ1 on S and (θ̂n) = (φ1|MS
) for all n (as above, recall that φ1|MS

6≡ 0 and see Lemma

3.2). Set P̂n : F ∗
0 (S) → Cν by P̂n( f ) =

(

∫

c(e
f θ̂n − φ1)

)

c∈B̂S

, and call Q̂n : Cν → Cν as the an-

alytical map Q̂n((zi)i=1,...,ν) = P̂n(∑i=1,...,ν zi f̂i) for all n ∈ N. To finish, reason as in case (A)

but setting φ1,n := e∑
ν
i=1 α̂i,n f̂ i θ̂n and φ2,n := βφ1,n, where α̂n = (α̂1,n, . . . , α̂ν,n) is chosen so that

Q̂n(α̂n) = 0 and {α̂n}n∈N → 0. �

4. MAIN RESULTS

The main results of this paper follow as consequence of Lemma 4.1 below. Although the proof
of this lemma is inspired by the technique developed in [AFL, Lemma 3.1], it represents a wide
generalization of that result.

We need the following notations and definitions.

Fix a nowhere zero τ0 ∈ Ω0(N ) (the existence of such a τ0 is well known, anyway see [AFL] for
a proof). Then for any compact subset K ⊂ N and any θ ∈ Ω∗

0(K) we set ‖θ‖ := maxK{|θ/τ0|}.
This norm induces the topology of the uniform convergence on Ω∗

0(K).

Let K ⊂ N be a connected compact region and σ2 a Riemannian metric on K possibly with sin-
gularities. Given P, Q ∈ K we denote by dist(K,σ)(P, Q) = min{lengthσ(α) | α curve in K joining P

and Q}. If K1 and K2 are two compact sets in K we set dist(K,σ)(K1, K2) = min{dist(K,σ)(P, Q) | P ∈
K1, Q ∈ K2}.

Lemma 4.1. Let M, K be two compact regions in N with M ⊂ K◦. Assume that M is Runge, K is
connected and consider P0 ∈ M◦. Let I be a conformal Riemannian metric on K possibly with iso-
lated singularities. Let f = (f1, f2) : H1(K, Z) → C2 be a group homomorphism, Θ ∈ ℧0(K) and
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Φ = (φ1, φ2) ∈ Ω0(M)2 satisfying

φ2
1 + φ2

2 = Θ|M, f(γ) =
∫

γ
Φ, ∀γ ∈ H1(M, Z),

and either of the following conditions:

(A) φ1 and φ2 are linearly independent in Ω0(M).
(B) Θ = 0, φ1 6≡ 0 and there is β ∈ {ı,−ı} such that f2 = βf1 and φ2 = βφ1.

Then, for any ǫ > 0 there exists Ψ = (ψ1, ψ2) ∈ Ω0(K)
2 so that

(L1) ‖Ψ − Φ‖ < ǫ on M,
(L2) ψ2

1 + ψ2
2 = Θ,

(L3) f(γ) =
∫

γ Ψ, ∀γ ∈ H1(K, Z),

(L4) dist(K,σ(Ψ,I))(P0, ∂K) > 1/ǫ, where σ2
(Ψ,I) := |ψ1|2 + |ψ2|2 + I , and

(L5) the zeros of Ψ on K are those of Φ on M (in particular, Ψ never vanishes on K − M).

Proof. The proof goes by induction on minus the Euler characteristic of W − M◦. Since M is Runge
then no component of K − M◦ is a closed disc, and so −χ(K − M◦) ≥ 0. The basis of the induction
is proved in the following

Claim 4.2. Lemma 4.1 holds if χ(K − M◦) = 0.

Proof. In this case K◦ − M = ∪k
j=1Aj, where Aj are pairwise disjoint open annuli, k ∈ N. On

each Aj we construct a Jorge-Xavier’s type labyrinth of compact sets as follows (see [JX]). Let
zj : Aj → C be a conformal parametrization, and let Cj ⊂ Aj be a compact region such that

Cj contains no singularities of I , zj(Cj) is a compact annulus of radii rj and Rj, where rj < Rj,

and zj(Cj) contains the homology of zj(Aj). This choice is possible since the singularities of I are

isolated. Since I|Cj
has no singularities, we can find a positive constant µ with

(4.1) I > µ2|dzj|2 on Cj, j = 1, . . . , k.

Consider a large m ∈ N (to be specified later) such that 2/m < min{Rj − rj | j = 1, . . . , k}. For

any j ∈ {1, . . . , k} label sj,0 := Rj and for any n ∈ {1, . . . , 2m2} set sj,n := Rj − n/m3 and consider
the compact set in Cj (see Figure 4.1):

Kj,n =

{

P ∈ Aj

∣

∣

∣

∣

sj,n +
1

4m3
≤ |zj(P)| ≤ sj,n−1 −

1

4m3
,

1

m2
≤ arg((−1)nzj(P)) ≤ 2π − 1

m2

}

.

Then, define

Kj =
2m2
⋃

n=1

Kj,n and K =
k
⋃

j=1

Kj.

Consider the pair Ξ = (ϕ1, ϕ2) ∈ Ω0(M ∪K)2 given by

Ξ|M = Φ, Ξ|Kj
=

{
(

1
2 (λdzj +

Θ
λdzj

) , ı
2 (λdzj − Θ

λdzj
)
)

if (A) holds
(

λdzj , βλdzj

)

if (B) holds,
j = 1, . . . , k,

where λ >

√
2 µm4 is a constant. Notice that ϕ2

1 + ϕ2
2 = Θ|M∪K.

Let W ⊂ N be a domain with finite topology containing K. Applying Lemma 3.3 to the data

Ŵ = W, Ŝ = M ∪K, Θ̂ = Θ, and Φ̂ = Ξ,
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FIGURE 4.1. The labyrinth of compact sets on the annulus zj(Cj).

we obtain a pair Ψ = (ψ1, ψ2) ∈ Ω0(K)
2 satisfying (L1), (L2), (L3), (L5) and

(4.2) |ψ1|2 + |ψ2|2 > µ2m8|dzj|2 on Kj, j = 1, . . . , k.

Then, taking into account (4.1), (4.2) and the definition of Kj, it is straightforward to check the
existence of a positive constant ρj depending neither on µ nor m such that

lengthσ(Ψ,I)
(α) > ρj · µ · m

for any α curve in Cj joining the two components of ∂Cj. Thus, we can choose m large enough so
that ρj · µ · m > 1/ǫ for any j = 1, . . . , k. This choice gives (L4) and we are done. �

The inductive step and so Lemma 4.1 are proved in the following

Claim 4.3. Consider n > 0 and assume that Lemma 4.1 holds if −χ(K − M◦) < n. Then it also holds if
−χ(K − M◦) = n.

Proof. Since M is Runge, ∗ : H1(M, Z) → H1(K, Z) is a monomorphism, where  : M → K is the
inclusion map. Up to this natural identification we will consider H1(M, Z) ⊂ H1(K, Z). Since
−χ(K − M◦) = n > 0, there exists γ̂ ∈ H1(K, Z)−H1(M, Z) intersecting K − M◦ in a compact
Jordan arc γ with endpoints P1, P2 ∈ ∂M and otherwise disjoint from ∂M ∪ ∂K, and such that
S := M ∪ γ is admissible. Notice that in this case γ = CS and M = MS.

Assume (A) holds, and in addition choose γ̂ so that Θ never vanishes on γ. Consider a pair

Φ̂ = (φ̂1, φ̂2) ∈ Ω∗
0(S)

2 ∩ Ω0(MS)
2 satisfying Φ̂|M = Φ, φ̂2

1 + φ̂2
2 = Θ|S and

∫

γ̂ Φ̂ = f(γ̂) (we

leave the details to the reader). By Lemma 3.3, case (A), applied to Φ̂, S, Θ and K◦, we can find

a compact tubular neighborhood U of S in K◦ and Ξ = (ϕ1, ϕ2) ∈ Ω0(U)2 such that ϕ1 and ϕ2

are linearly independent in Ω0(U)2, ‖Ξ − Φ‖ < ǫ/2 on M, ϕ2
1 + ϕ2

2 = Θ|U , the zeros of Ξ on U

are those of Φ on M, and Ξ − Φ̂ is exact on S. Since −χ(K − U◦) < n, the induction hypothesis

applied to Ξ and ǫ/2 gives the existence of a pair Ψ ∈ Ω0(K)
2 satisfying the conclusion of the

lemma.

Assume now that (B) holds, and take a function φ̂1 ∈ Ω∗
0(S) ∩ Ω0(MS) such that φ̂1|M = φ1

and
∫

γ̂ φ̂1 = f1(γ̂). Apply Lemma 3.3, case (B), to the data K◦, S and (φ̂1, βφ̂1), and obtain a com-

pact tubular neighborhood U of S in K◦ and a 1-form ϕ1 ∈ Ω0(U) such that ‖ϕ1 − φ1‖ < ǫ/4 on
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M, the zeros of ϕ1 on U are those of φ1 on M, and ϕ1 − φ̂1 is exact on S. As above, the induction
hypothesis applied to (ϕ1, βϕ1) and ǫ/2 gives a pair Ψ ∈ Ω0(K)

2 proving the claim. �

This finishes the proof of the lemma. �

Now we can state and prove the main theorem of this paper.

Theorem 4.4. Let M ⊂ N be a Runge compact region. Let I be a conformal Riemannian metric on N
possibly with isolated singularities. Consider f = (f1, f2) : H1(N , Z) → C2 be a group homomorphism,
Θ ∈ ℧0(N ) and Φ = (φ1, φ2) ∈ Ω0(M)2 satisfying

φ2
1 + φ2

2 = Θ|M, f(γ) =
∫

γ
Φ, ∀γ ∈ H1(M, Z),

and either of the following conditions:

(A) φ1 and φ2 are linearly independent in Ω0(M).
(B) Θ = 0, φ1 6≡ 0 and there is β ∈ {ı,−ı} such that f2 = βf1 and φ2 = βφ1.

Then, for any ǫ > 0 there exists Ψ = (ψ1, ψ2) ∈ Ω0(N )2 so that

(T1) ‖Ψ − Φ‖ < ǫ on M,
(T2) ψ2

1 + ψ2
2 = Θ,

(T3) f(γ) =
∫

γ Ψ, ∀γ ∈ H1(N , Z),

(T4) |ψ1|2 + |ψ2|2 + I is a complete conformal Riemannian metric on N with singularities at the zeros

of |φ1|2 + |φ2|2 + I on M, and
(T5) the zeros of Ψ on N are those of Φ on M (in particular, Ψ never vanishes on N − M).

Proof. Label M1 = M and let {Mn | n ≥ 2} be an exhaustion of N by Runge connected compact
regions with Mn ⊂ M◦

n+1 for all n ∈ N. Fix a base point P0 ∈ M◦ and a positive ε < min{ǫ, 1}
which will be specified later.

Label Φ1 = Φ, and by Lemma 4.1 and an inductive process, construct a sequence of pairs
{Φn = (φj,n)j=1,2}n∈N satisfying that

(a) Φn ∈ Ω0(Mn)2, ∀n ∈ N,
(b) ‖Φn − Φn−1‖ < ε/2n on Mn−1, ∀n ≥ 2,
(c) φ2

1,n + φ2
2,n = Θ|Mn , ∀n ∈ N,

(d) f(γ) =
∫

γ Φn, ∀γ ∈ H1(Mn, Z), ∀n ∈ N,

(e) dist(Mn,σ(Φn,I))(P0, ∂Mn) > 2n, where σ2
(Φn,I) = |φ1,n|2 + |φ2,n|2 + I , ∀n ≥ 2, and

(f) the zeros of Φn on Mn are those of Φ on M, ∀n ∈ N.

Since ∪n∈N Mn = N , items (a) and (b) and Harnack’s theorem, then the sequence {Φn}n∈N

uniformly converges on compact subsets of N to a pair Ψ = (ψj)j=1,2 ∈ Ω0(N ) satisfying (T1).

Items (c) and (d) directly give (T2) and (T3), respectively. Since {Φn}n∈N uniformly converges to
Ψ and (f), Hurwitz’s theorem gives that either the zeros of Ψ on N are those of Φ on M or ψ1 = 0
or ψ2 = 0. However, (b) gives ‖Ψ − Φ‖ ≤ ε on M and so ψj|M 6≡ 0, j = 1, 2, provided that ε is
small enough. This proves (T5). Finally (T5) and (e) imply (T4) and we are done. �

Corollary 4.5. Let H, X = (Xi)i=3,...,N : N → RN−2 and p = (pj)j=1,...,N : H1(N , Z) → RN be a

2-form in ℧0(N ), a non-constant harmonic map and a group homomorphism, respectively, satisfying that

• pi(γ) = Im
∫

γ ∂zXi, ∀γ ∈ H1(N , Z), ∀i = 3, . . . , N, and

• p1 = p2 = 0 when H = ∑
N
i=3(∂zXi)

2.

Then there exists a weakly complete harmonic map Y = (Yj)j=1,...,N : N → R
N with
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(I) (Yi)i=3,...,N = X,
(II) pY = p, and

(III) QY = H.

Furthermore, if X is full then Y can be chosen to be full, and if X is an immersion then Y is.

Proof. Label Θ := H− ∑
N
i=3(∂zXi)

2, and assume for a moment that Θ 6≡ 0. Consider a compact
disc K ⊂ N and η ∈ Ω0(K) such that both η and φ1 never vanish on K, and φ1 and φ2 are lin-

early independent in Ω0(K), where φ1 := 1
2 (η + Θ/η) and φ2 := ı

2 (η − Θ/η). Consider a pair
Ψ = (ψ1, ψ2) obtained from Theorem 4.4, case (A), applied to the data

N , M = K, I =
N

∑
i=3

|∂zXi|2, Θ, Φ = (φ1, φ2), f = ı(p1, p2)

and ǫ > 0 to be specified later. Fix a point P0 ∈ N and define Yk(P) = Re
∫ P

P0
ψk, ∀P ∈ N , k = 1, 2,

and Yk = Xk, ∀ k = 3, . . . , N.

Statements (I), (II) and (III) trivially follow from the definition of Θ and f, and properties (T2)

and (T3). Moreover, (T4) and the fact that φ1 never vanishes on K give that ∑
N
j=1 |∂zYj|2 is a com-

plete conformal metric on N , and so Y is weakly complete. Finally, if X is full then we can choose
η so that the map

K → R
N, P 7→

(

∫ P

P0

φ1 ,
∫ P

P0

φ2 , X(P)

)

is full as well. Then (T1) gives the fullness of Y provided that ǫ is chosen small enough.

Assume now that Θ = 0. Take an exact φ1 ∈ Ω0(M), φ1 6≡ 0, and consider a pair Ψ obtained
by applying Theorem 4.4, case (B), to the data

N , M = K, I =
N

∑
i=3

|∂zXi|2, Θ = 0, Φ = (φ1, ıφ1), f = 0

and ǫ > 0. To finish argue as above. �

Corollary 4.6. Let X = (Xi)i=3,...,n : N → RN−2 and p = (pj)j=1,...,N : H1(N , Z) → RN be a
non-constant harmonic map and a group homomorphism, respectively, satisfying that

• pi(γ) = Im
∫

γ ∂zXi, ∀γ ∈ H1(N , Z), ∀i = 3, . . . , N, and

• p1 = p2 = 0 when ∑
N
i=3(∂zXi)

2 = 0.

Then there exists a complete conformal minimal immersion Y = (Yj)j=1,...,N : N → RN with (Yi)i=3,...,N =
X and pY = p. Furthermore, Y can be chosen full provided that X is.

Proof. Apply Corollary 4.5 for H = 0 and see Remark 2.4. �

Corollary 4.7. Let N be a bounded planar domain. Then there exists a complete non-proper holomorphic

embedding of N in C2.

Proof. Consider X = (X3, X4) : N → R2 ≡ C given by X(z) = z. Let Y = (Yj)j=1,...,4 : N → R4

be an immersion obtained from Corollary 4.6 applied to the data N , X and p = 0. Since X is injec-
tive, Y is an embedding. Finally, observe that Y is non-proper. Indeed, otherwise the holomorphic
function Y1 + ıY2 would be proper on N , contradicting that N is hyperbolic. �

Corollary 4.8. Let p : H1(N , Z) → RN be a group homomorphism.

Then there exists a conformal complete minimal immersion Y : N → RN satisfying

• pY = p,
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• Y is non-decomposable and full,
• GY is non-degenerate, and

• GY fails to intersect N hyperplanes of CP
N−1 in general position.

Proof. We need the following

Claim 4.9 ([AFL, Theorem 4.2]). For any group homomorphism p̂ : H1(N , Z) → R there exists a never
vanishing φ ∈ Ω0(N ) with

∫

γ φ = ıp̂(γ), ∀γ ∈ H1(N , Z).

Assume first that N is even.

Consider a nowhere zero φ ∈ Ω0(N ) (see Claim 4.9) and a compact disc M ⊂ N . Fix P0 ∈ M◦

and take λj ∈ C − {0} and Φj = (φj,1, φj,2) ∈ Ω0(M)2, j = 1, . . . , N/2, so that

• ∑
N/2
j=1 λ2

j = 0,

• φj,1 and φj,2 are linearly independent in Ω0(M) and φ2
j,1 + φ2

j,2 = λ2
j φ2|M, ∀j = 1, . . . , N/2,

• the minimal immersion X : M → RN, X(P) = Re(
∫ P

P0
(Φj)j=1,...,N/2) is non-decomposable

and full, and
• GX is non-degenerate.

Write p = (pk)k=1,...,N, and for any j = 1, . . . , N/2 consider Ψj = (ψj,1, ψj,2) ∈ Ω0(N )2 given by
Theorem 4.4, case (A), applied to the data

N , M, I = |φ|2, f = ı(p2j−1, p2j), Θ = λ2
j φ2, Φ = Φj,

and ǫ > 0 which will be specified later. Define

Y : N → R
N, Y(P) = Re

(

∫ P

P0

(Ψj)j=1,...,N/2

)

.

Statement (T3) in Theorem 4.4 gives that Y is well defined. From (T2) follows that ∑
N/2
j=1 (ψ

2
j,1 +

ψ2
j,2) = 0, and so Y is conformal. Moreover, ∑

N/2
j=1 (|ψj,1|2 + |ψj,2|2) ≥ |ψ1,1|2 + |ψ1,2|2 ≥ 1

|λ1|2+1
(|ψ1,1|2 +

|ψ1,2|2 + |φ|2) that is a complete Riemannian metric on N (take into account (T4)). Therefore, Y
is a complete conformal minimal immersion. Item (T3) implies that pY = p. Since X is non-
decomposable and full and GX is non-degenerate, then Y and GY are, provided that ǫ is chosen

small enough (see (T1)). Finally, observe that ψ2
j,1 +ψ2

j,2 never vanishes on N for all j = 1, . . . , N/2,

hence GY fails to intersect the hyperplanes

Πj,δ :=
{

[(wk)k=1,...,N] ∈ CP
N−1 | w2j−1 + (−1)δıw2j = 0

}

, ∀(j, δ) ∈ {1, . . . , N/2} × {0, 1},

which are located in general position.

Assume now that N is odd.

Write p = (pk)k=1,...,N and consider a nowhere zero φ ∈ Ω0(N ) with
∫

γ φ = ıpN(γ), ∀γ ∈
H1(N , Z) (see Claim 4.9). Fix a compact disc M ⊂ N and a point P0 ∈ M◦. Take λj ∈ C − {0}
and Φj = (φj,1, φj,2) ∈ Ω0(M)2, j = 1, . . . , (N − 1)/2 so that:

• ∑
(N−1)/2
j=1 λ2

j = −1,

• φj,1 and φj,2 are linearly independent in Ω0(M) and φ2
j,1 + φ2

j,2 = λ2
j φ2|M, ∀j = 1, . . . , (N −

1)/2,

• the minimal immersion X : M → RN, X(P) = Re(
∫ P

P0
((Φj)j=1,...,(N−1)/2, φ) is non-decomposable

and full, and
• GX is non-degenerate.
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For any j = 1, . . . , (N − 1)/2 consider Ψj = (ψj,1, ψj,2) ∈ Ω0(N )2 given by Theorem 4.4, case
(A), applied to the data

N , M, I = |φ|2, f = ı(p2j−1, p2j), Θ = λ2
j φ2, Φ = Φj,

and ǫ > 0 which will be specified later.

As above

Y : N → R
N, Y(P) = Re

(

∫ P

P0

((Ψj)j=1,...,(N−1)/2, φ)

)

is the immersion we are looking for, provided that ǫ is small enough. In this case GY fails to

intersect the following hyperplanes of CP
N−1 located in general position:

Πj,δ :=
{

[(wk)k=1,...,N] ∈ CP
N−1 | w2j−1 + (−1)δıw2j = 0

}

,

∀(j, δ) ∈ {1, . . . , (N − 1)/2} × {0, 1}, and

Π :=
{

[(wk)k=1,...,N] ∈ CP
N−1 | wN = 0

}

.

The proof is done. �
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